NASA Astrophysics Data System (ADS)
Tolosa, Leah; Ge, Xudong; Kostov, Yordan; Lakowicz, Joseph R.; Rao, Govind
2003-07-01
Glucose is the major source of carbon, and glutamine is the major source of nitrogen in cell culture media. Thus, glucose and glutamine monitoring are important in maintaining optimal conditions in industrial bioprocesses. Here we report reagentless glucose and glutamine sensors using the E. coli glucose binding protein (GBP) and the glutamine binding protein (GlnBP). Both of these proteins are derived from the permease system of the gram-negative bacteria. The Q26C variant of GBP was labeled at the 26-position with anilino-naphthalene sulfonate (ANS), while the S179C variant of GlnBP was labeled at the 179-position with acrylodan. The ANS and acrylodan emissions are quenched in the presence of glucose and glutamine, respectively. The acrylodan-labeled GlnBP was labeled at the N-terminal with ruthenium bis-(2,2"-bipyridyl)-1,10-phenanthroline-9-isothiocyanate. The ruthenium acts as a non-responsive long-lived reference. The apparent binding constant, Kd", of 8.0 μM glucose was obtained from the decrease in intensity of ANS in GBP. The reliability of the method in monitoring glucose during yeast fermentation was determined by comparison with the YSI Biochemistry Analyzer. The apparent binding constant, Kd", of 0.72 μM glutamine was calculated from the ratio of emission intensities of acrylodan and ruthenium (I515/I610) in GlnBP. The presence of the long-lived ruthenium allowed for modulation sensing at lower frequencies (1-10 MHz) approaching an accuracy of +/- 0.02 μM. The conversion of the GBP into a similar ratiometric sensor was described.
Martínez-Lozada, Zila; Guillem, Alain M; Flores-Méndez, Marco; Hernández-Kelly, Luisa C; Vela, Carmelita; Meza, Enrique; Zepeda, Rossana C; Caba, Mario; Rodríguez, Angelina; Ortega, Arturo
2013-05-01
Glutamate, the major excitatory transmitter in the vertebrate brain, is removed from the synaptic cleft by a family of sodium-dependent glutamate transporters profusely expressed in glial cells. Once internalized, it is metabolized by glutamine synthetase to glutamine and released to the synaptic space through sodium-dependent neutral amino acid carriers of the N System (SNAT3/slc38a3/SN1, SNAT5/slc38a5/SN2). Glutamine is then taken up by neurons completing the so-called glutamate/glutamine shuttle. Despite of the fact that this coupling was described decades ago, it is only recently that the biochemical framework of this shuttle has begun to be elucidated. Using the established model of cultured cerebellar Bergmann glia cells, we sought to characterize the functional and physical coupling of glutamate uptake and glutamine release. A time-dependent Na⁺-dependent glutamate/aspartate transporter/EAAT1-induced System N-mediated glutamine release could be demonstrated. Furthermore, D-aspartate, a specific glutamate transporter ligand, was capable of enhancing the co-immunoprecipitation of Na⁺-dependent glutamate/aspartate transporter and Na⁺-dependent neutral amino acid transporter 3, whereas glutamine tended to reduce this association. Our results suggest that glial cells surrounding glutamatergic synapses may act as sensors of neuron-derived glutamate through their contribution to the neurotransmitter turnover. © 2013 International Society for Neurochemistry.
Wada, Akira; Mie, Masayasu; Aizawa, Masuo; Lahoud, Pedro; Cass, Anthony E G; Kobatake, Eiry
2003-12-31
The chemically and genetically remodeling of proteins with ligand binding specificities can be utilized to synthesize various protein-based microsensors for detecting single biomolecules. Here, we describe the construction and characterization of fluorophore-labeled glutamine binding proteins (QBP) and derivatives coupled to the independently designed hydrophobic polypeptide (E12) that can adhere onto solid surfaces via hydrophobic interactions. The single cysteine mutant (N160C QBP) modified with the three environmentally sensitive fluorescent dyes (IAANS, acrylodan, and IANBD ester) showed increased changes in fluorescence intensity induced by glutamine binding. The use of these conjugates as reagentless fluorescence sensors enables us to determine the glutamine concentrations (0.1-50 microM) in homogeneous solution. The fusion of N160C QBP with E12, (Gly4-Ser)n spacers (GSn), and IANBD resulted in the novel fluorescence sensing elements having an adhering capability to hydrophobic surfaces of unmodified microplates. In ELISA and fluorescence experiments for the microplates treated with a series of the conjugates, IANBD-labeled N160C QBP-GS1-E12 displayed the best reproducibility in adhesion onto the hydrophobic surfaces and the precise correlation between fluorescence changes and glutamine concentrations. The performance of the biosensor-attached microplate for glutamine titrations demonstrated that the hydrophobic interaction of E12 with solid surfaces is useful for effective immobilization of proteins that need specific conformational movements in recognizing particular biomolecules. Therefore, the technique using E12 as a surface-linking domain for protein adhesion onto unmodified substrates could be applied effectively to prepare microplates/arrays for a wide variety of high-throughput assays on chemical and biological samples.
NASA Astrophysics Data System (ADS)
Domratcheva, Tatiana; Hartmann, Elisabeth; Schlichting, Ilme; Kottke, Tilman
2016-03-01
BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm-1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm-1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein.
Domratcheva, Tatiana; Hartmann, Elisabeth; Schlichting, Ilme; Kottke, Tilman
2016-01-01
BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm−1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm−1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein. PMID:26947391
When Is It Appropriate to Use Glutamine in Critical Illness?
Mundi, Manpreet S; Shah, Meera; Hurt, Ryan T
2016-08-01
Glutamine is a nonessential amino acid, which under trauma or critical illness can become essential. A number of historic small single-center randomized controlled trials (RCTs) have demonstrated positive treatment effects on clinical outcomes with glutamine supplementation. Meta-analyses based on these trials demonstrated a significant reduction in hospital mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS with intravenous (IV) glutamine. Similar results were not noted in 2 large multicenter RCTs (REDOXS and MetaPlus) assessing the efficacy of glutamine supplementation in ventilated ICU patients. The REDOXS trial of 40 ICUs randomized 1223 ventilated ICU patients to glutamine (IV and enteral), antioxidants, both glutamine and antioxidants, or placebo. The main conclusions were a trend toward increased 28-day mortality and significant increased hospital and 6-month mortality in those who received glutamine. The MetaPlus trial of 14 ICUs, which randomized 301 ventilated ICU patients to glutamine-enriched enteral vs an isocaloric diet, noted increased 6-month mortality in the glutamine-supplemented group. Newer RCTs have focused on specific populations and have demonstrated benefits in burn and elective surgery patients with glutamine supplementation. Whether larger studies will confirm these findings is yet to be determined. Recent American Society for Parenteral and Enteral Nutrition guidelines recommend that IV and enteral glutamine should not be used in the critical care setting based on the moderate quality of evidence available. We agree with these recommendations and would encourage larger multicenter studies to evaluate the risks and benefits of glutamine in burn and elective surgery patients. © 2016 American Society for Parenteral and Enteral Nutrition.
Glutamine: an obligatory parenteral nutrition substrate in critical care therapy.
Stehle, Peter; Kuhn, Katharina S
2015-01-01
Critical illness is characterized by glutamine depletion owing to increased metabolic demand. Glutamine is essential to maintain intestinal integrity and function, sustain immunologic response, and maintain antioxidative balance. Insufficient endogenous availability of glutamine may impair outcome in critically ill patients. Consequently, glutamine has been considered to be a conditionally essential amino acid and a necessary component to complete any parenteral nutrition regimen. Recently, this scientifically sound recommendation has been questioned, primarily based on controversial findings from a large multicentre study published in 2013 that evoked considerable uncertainty among clinicians. The present review was conceived to clarify the most important questions surrounding glutamine supplementation in critical care. This was achieved by addressing the role of glutamine in the pathophysiology of critical illness, summarizing recent clinical studies in patients receiving parenteral nutrition with intravenous glutamine, and describing practical concepts for providing parenteral glutamine in critical care.
Glutamine: An Obligatory Parenteral Nutrition Substrate in Critical Care Therapy
Stehle, Peter; Kuhn, Katharina S.
2015-01-01
Critical illness is characterized by glutamine depletion owing to increased metabolic demand. Glutamine is essential to maintain intestinal integrity and function, sustain immunologic response, and maintain antioxidative balance. Insufficient endogenous availability of glutamine may impair outcome in critically ill patients. Consequently, glutamine has been considered to be a conditionally essential amino acid and a necessary component to complete any parenteral nutrition regimen. Recently, this scientifically sound recommendation has been questioned, primarily based on controversial findings from a large multicentre study published in 2013 that evoked considerable uncertainty among clinicians. The present review was conceived to clarify the most important questions surrounding glutamine supplementation in critical care. This was achieved by addressing the role of glutamine in the pathophysiology of critical illness, summarizing recent clinical studies in patients receiving parenteral nutrition with intravenous glutamine, and describing practical concepts for providing parenteral glutamine in critical care. PMID:26495301
The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis*
Hauf, Ksenia; Kayumov, Airat; Gloge, Felix; Forchhammer, Karl
2016-01-01
TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated l-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA. PMID:26635369
Buhrke, Thorsten; Brecht, Marc; Lubitz, Wolfgang; Friedrich, Bärbel
2002-09-01
[NiFe] hydrogenases contain a highly conserved histidine residue close to the [NiFe] active site which is altered by a glutamine residue in the H(2)-sensing [NiFe] hydrogenases. In this study, we exchanged the respective glutamine residue of the H(2) sensor (RH) of Ralstonia eutropha, Q67 of the RH large subunit HoxC, by histidine, asparagine and glutamate. The replacement by histidine and asparagine resulted in slightly unstable RH proteins which were hardly affected in their regulatory and enzymatic properties. The exchange to glutamate led to a completely unstable RH protein. The purified wild-type RH and the mutant protein with the Gln/His exchange were analysed by continuous-wave and pulsed electron paramagnetic resonance (EPR) techniques. We observed a coupling of a nitrogen nucleus with the [NiFe] active site for the mutant protein which was absent in the spectrum of the wild-type RH. A combination of theoretical calculations with the experimental data provided an explanation for the observed coupling. It is shown that the coupling is due to the formation of a weak hydrogen bond between the protonated N(epsilon) nucleus of the histidine with the sulfur of a conserved cysteine residue which coordinates the metal atoms of the [NiFe] active site as a bridging ligand. The effect of this hydrogen bond on the local structure of the [NiFe] active site is discussed.
Effects of glutamine on gastrointestinal motor activity in patients following gastric surgery.
Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Andoh, Hiroyuki; Kuwano, Hiroyuki
2011-04-01
Postoperative ileus (POI) is one of the most common complications of gastrointestinal surgery. The present study was performed to evaluate the effects of glutamine administration on POI after gastric surgery in humans. The subjects were 31 patients who underwent partial distal gastrectomy for gastric cancer and who were randomly assigned to one of two groups based on postoperative treatment: the glutamine group (3 g/day) and the control group. Manometric recording was done 12 days after surgery, and plasma glutamine concentrations were measured preoperatively and on postoperative day 12. Motor activities of the duodenum in the glutamine group were significantly greater than those of the control group in the interdigestive state. The incidence of phase III motor activity (interdigestive migrating motor contractions) in the glutamine group was significantly higher than that in the control group (60 versus 19%). The glutamine group showed a significantly smaller decrease of plasma glutamine levels compared with the control group. Glutamine could act as a motility-recovery agent after gastrectomy in humans.
Glutaminolysis: A Hallmark of Cancer Metabolism.
Yang, Lifeng; Venneti, Sriram; Nagrath, Deepak
2017-06-21
Glutamine is the most abundant circulating amino acid in blood and muscle and is critical for many fundamental cell functions in cancer cells, including synthesis of metabolites that maintain mitochondrial metabolism; generation of antioxidants to remove reactive oxygen species; synthesis of nonessential amino acids (NEAAs), purines, pyrimidines, and fatty acids for cellular replication; and activation of cell signaling. In light of the pleiotropic role of glutamine in cancer cells, a comprehensive understanding of glutamine metabolism is essential for the development of metabolic therapeutic strategies for targeting cancer cells. In this article, we review oncogene-, tumor suppressor-, and tumor microenvironment-mediated regulation of glutamine metabolism in cancer cells. We describe the mechanism of glutamine's regulation of tumor proliferation, metastasis, and global methylation. Furthermore, we highlight the therapeutic potential of glutamine metabolism and emphasize that clinical application of in vivo assessment of glutamine metabolism is critical for identifying new ways to treat patients through glutamine-based metabolic therapy.
Ukai, Hirofumi; Araki, Yasuhiro; Kira, Shintaro; Oikawa, Yu; May, Alexander I; Noda, Takeshi
2018-04-01
TORC1 is a central regulator of cell growth in response to amino acids. The role of the evolutionarily conserved Gtr/Rag pathway in the regulation of TORC1 is well-established. Recent genetic studies suggest that an additional regulatory pathway, depending on the activity of Pib2, plays a role in TORC1 activation independently of the Gtr/Rag pathway. However, the interplay between the Pib2 pathway and the Gtr/Rag pathway remains unclear. In this study, we show that Pib2 and Gtr/Ego form distinct complexes with TORC1 in a mutually exclusive manner, implying dedicated functional relationships between TORC1 and Pib2 or Gtr/Rag in response to specific amino acids. Furthermore, simultaneous depletion of Pib2 and the Gtr/Ego system abolishes TORC1 activity and completely compromises the vacuolar localization of TORC1. Thus, the amino acid-dependent activation of TORC1 is achieved through the Pib2 and Gtr/Ego pathways alone. Finally, we show that glutamine induces a dose-dependent increase in Pib2-TORC1 complex formation, and that glutamine binds directly to the Pib2 complex. These data provide strong preliminary evidence for Pib2 functioning as a putative glutamine sensor in the regulation of TORC1.
Ukai, Hirofumi; Araki, Yasuhiro; Kira, Shintaro; Oikawa, Yu; May, Alexander I.
2018-01-01
TORC1 is a central regulator of cell growth in response to amino acids. The role of the evolutionarily conserved Gtr/Rag pathway in the regulation of TORC1 is well-established. Recent genetic studies suggest that an additional regulatory pathway, depending on the activity of Pib2, plays a role in TORC1 activation independently of the Gtr/Rag pathway. However, the interplay between the Pib2 pathway and the Gtr/Rag pathway remains unclear. In this study, we show that Pib2 and Gtr/Ego form distinct complexes with TORC1 in a mutually exclusive manner, implying dedicated functional relationships between TORC1 and Pib2 or Gtr/Rag in response to specific amino acids. Furthermore, simultaneous depletion of Pib2 and the Gtr/Ego system abolishes TORC1 activity and completely compromises the vacuolar localization of TORC1. Thus, the amino acid-dependent activation of TORC1 is achieved through the Pib2 and Gtr/Ego pathways alone. Finally, we show that glutamine induces a dose-dependent increase in Pib2-TORC1 complex formation, and that glutamine binds directly to the Pib2 complex. These data provide strong preliminary evidence for Pib2 functioning as a putative glutamine sensor in the regulation of TORC1. PMID:29698392
Umapathy, Nagavedi S; Dun, Ying; Martin, Pamela M; Duplantier, Jennifer N; Roon, Penny; Prasad, Puttur; Smith, Sylvia B; Ganapathy, Vadivel
2008-11-01
Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB(0,+)) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Three transport systems--N, A, and L--participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle.
Umapathy, Nagavedi S.; Dun, Ying; Martin, Pamela M.; Duplantier, Jennifer N.; Roon, Penny; Prasad, Puttur; Smith, Sylvia B.; Ganapathy, Vadivel
2008-01-01
Purpose Glutamine transport is essential for the glutamate-glutamine cycle, which occurs between neurons and glia. System N, consisting of SN1 (SNAT3) and SN2 (SNAT5), is the principal mediator of glutamine transport in retinal Müller cells. Mediators of glutamine transport in retinal ganglion cells were investigated. Methods The relative contributions of various transport systems for glutamine uptake (systems N, A, L, y+L, ASCT, and ATB0,+) were examined in RGC-5 cells based on differential features of the individual transport systems. mRNA for the genes encoding members of these transport systems were analyzed by RT-PCR. Based on these data, SN1 and SN2 were analyzed in mouse retina, RGC-5 cells, and primary mouse ganglion cells (GCs) by in situ hybridization (ISH), immunofluorescence (IF), and Western blotting. Results Three transport systems—N, A, and L—participated in glutamine uptake in RGC-5 cells. System N was the principal contributor; systems A and L contributed considerably less. ISH and IF revealed SN1 and SN2 expression in the ganglion, inner nuclear, and photoreceptor cell layers. SN1 and SN2 colocalized with the ganglion cell marker Thy 1.2 and with the Müller cell marker vimentin, confirming their presence in both retinal cell types. SN1 and SN2 proteins were detected in primary mouse GCs. Conclusions These findings suggest that in addition to its role in glutamine uptake in retinal glial cells, system N contributes significantly to glutamine uptake in ganglion cells and, hence, contributes to the retinal glutamate-glutamine cycle. PMID:18689705
Theron, A.; Roth, R. L.; Hoppe, H.; Parkinson, C.; van der Westhuyzen, C. W.; Stoychev, S.; Wiid, I.; Pietersen, R. D.; Baker, B.
2017-01-01
Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay. PMID:28972974
Avenell, Alison
2009-08-01
The amino acid glutamine has numerous important roles including particularly antioxidant defence, immune function, the inflammatory response, acid-base balance and N economy. The present systematic review of randomised controlled trials of nutrition support with glutamine up to August 2008 has found that parenteral glutamine in critical illness is associated with a non-significant reduction in mortality (risk ratio 0.71 (95% CI 0.49, 1.03)) and may reduce infections. However, poor study quality and the possibility of publication bias mean that these results should be interpreted with caution. There is no evidence to suggest that glutamine is harmful in terms of organ failure and parenteral glutamine may reduce the development of organ failure.
Regulation of protein metabolism by glutamine: implications for nutrition and health.
Xi, Pengbin; Jiang, Zongyong; Zheng, Chuntian; Lin, Yingcai; Wu, Guoyao
2011-01-01
Glutamine is the most abundant free alpha-amino acid in plasma and skeletal muscle. This nutrient plays an important role in regulating gene expression, protein turnover, anti-oxidative function, nutrient metabolism, immunity, and acid-base balance. Interestingly, intracellular and extracellular concentrations of glutamine exhibit marked reductions in response to infection, sepsis, severe burn, cancer, and other pathological factors. This raised an important question of whether glutamine may be a key mediator of muscle loss and negative nitrogen balance in critically ill and injured patients. Therefore, since the initial reports in late 1980s that glutamine could stimulate protein synthesis and inhibit proteolysis in rat skeletal muscle, there has been growing interest in the use of this functional amino acid to improve protein balance under various physiological and disease conditions. Although inconsistent results have appeared in the literature regarding a therapeutic role of glutamine in clinical medicine, a majority of studies indicate that supplementing appropriate doses of glutamine to enteral diets or parenteral solutions is beneficial for improving nitrogen balance in animals or humans with glutamine deficiency.
Ohno, Tetsuro; Mochiki, Erito; Ando, Hiroyuki; Fukasawa, Takaharu; Toyomasu, Yoshitaka; Ogata, Kyoichi; Aihara, Ryuusuke; Asao, Takayuki; Kuwano, Hiroyuki
2009-06-01
Postoperative ileus (POI) is a transient bowel dysmotility that occurs following many types of operations and is one of the most common complications of gastrointestinal surgery. We hypothesized that enteral supplementation of glutamine after abdominal surgery would restore fuel to the small intestine, suppress oxidative stress, and lead to improvement in POI. Twelve dogs underwent distal gastrectomy and were each randomly assigned to one of two groups based on postoperative treatment: the water injection (control) group and the glutamine injection group. Water (40 ml) or L(+)-glutamine (1 g/40 ml water) was injected into the residual stomach through the gastric tube every 12 h after surgery for 7 days. Changes in the plasma and intestinal intracellular concentration of glutamine and in gastrointestinal motility were measured. The plasma and intracellular glutamine levels decreased after the operation in both groups, although the decreased intracellular glutamine levels were not significantly different than preoperative levels. The glutamine group showed a significantly smaller decrease of the plasma glutamine level compared with the control group (P < 0.05). All the dogs showed gastrointestinal dysmotility after the operation. The mean length of time between the operation and the appearance of interdigestive migrating contractions in the glutamine group was significantly shorter than in the control group (22.4 +/- 3.1 h versus 37.8 +/- 4.0 h, respectively; P < 0.05). In conclusion, glutamine could act as a motility-recovery agent after abdominal surgery and thereby decrease the duration of POI.
Regulation of the cellular and physiological effects of glutamine.
Chwals, Walter J
2004-10-01
Glutamine is the most abundant amino acid in humans and possesses many functions in the body. It is the major transporter of amino-nitrogen between cells and an important fuel source for rapidly dividing cells such as cells of the immune and gastrointestinal systems. It is important in the synthesis of nucleic acids, glutathione, citrulline, arginine, gamma aminobutyric acid, and glucose. It is important for growth, gastrointestinal integrity, acid-base homeostasis, and optimal immune function. The regulation of glutamine levels in cells via glutaminase and glutamine synthetase is discussed. The cellular and physiologic effects of glutamine upon the central nervous system, gastrointestinal function, during metabolic support, and following tissue injury and critical illness is also discussed.
Liao, Jianwei; Liu, Pan-Pan; Hou, Guoxin; Shao, Jiajia; Yang, Jing; Liu, Kaiyan; Lu, Wenhua; Wen, Shijun; Hu, Yumin; Huang, Peng
2017-02-28
Cancer stem cells (CSCs) are thought to play an important role in tumor recurrence and drug resistance, and present a major challenge in cancer therapy. The tumor microenvironment such as growth factors, nutrients and oxygen affect CSC generation and proliferation by providing the necessary energy sources and growth signals. The side population (SP) analysis has been used to detect the stem-like cancer cell populations based on their high expression of ABCG2 that exports Hoechst-33342 and certain cytotoxic drugs from the cells. The purpose of this research is to investigate the effect of a main nutrient molecule, glutamine, on SP cells and the possible underlying mechanism(s). Biochemical assays and flow cytometric analysis were used to evaluate the effect of glutamine on stem-like side population cells in vitro. Molecular analyses including RNAi interfering, qRT-PCR, and immunoblotting were employed to investigate the molecular signaling in response to glutamine deprivation and its influence on tumor formation capacity in vivo. We show that glutamine supports the maintenance of the stem cell phenotype by promoting glutathione synthesis and thus maintaining redox balance for SP cells. A deprivation of glutamine in the culture medium significantly reduced the proportion of SP cells. L-asparaginase, an enzyme that catalyzes the hydrolysis of asparagine and glutamine to aspartic acid and glutamate, respectively, mimics the effect of glutamine withdrawal and also diminished the proportion of SP cells. Mechanistically, glutamine deprivation increases intracellular ROS levels, leading to down-regulation of the β-catenin pathway. Glutamine plays a significant role in maintaining the stemness of cancer cells by a redox-mediated mechanism mediated by β-catenin. Inhibition of glutamine metabolism or deprivation of glutamine by L-asparaginase may be a new strategy to eliminate CSCs and overcome drug resistance.
Glutamine Transporters in Mammalian Cells and Their Functions in Physiology and Cancer
Bhutia, Yangzom D.; Ganapathy, Vadivel
2016-01-01
The SLC (solute carrier)-type transporters (∼400 in number) in mammalian cells consist of 52 distinct gene families, grouped solely based on the amino acid sequence (primary structure) of the transporter proteins and not on their transport function. Among them are the transporters for amino acids. Fourteen of them, capable of transporting glutamine across the plasma membrane, are found in four families: SLC1, SLC6, SLC7, and SLC38. However, it is generally thought that the members of the SLC38 family are the principal transporters for glutamine. Some of the glutamine transporters are obligatory exchangers whereas some function as active transporters in one direction. While most glutamine transporters mediate the influx of the amino acid into cells, some actually mediate the efflux of the amino acid out of the cells. Glutamine transporters play important roles in a variety of tissues, including the liver, brain, kidney, and placenta, as clearly evident from the biological and biochemical phenotypes resulting from the deletion of specific glutamine transporters in mice. Owing to the obligatory role of glutamine in growth and proliferation of tumor cells, there is increasing attention on glutamine transporters in cancer biology as potential drug targets for cancer treatment. Selective blockers of certain glutamine transporters might be effective in preventing the entry of glutamine and other important amino acids into tumor cells, thus essentially starving these cells to death. This could represent the beginning of a new era in the discovery of novel anticancer drugs with a previously unexplored mode of action. PMID:26724577
Plasma glutamine and upper respiratory tract infection during intensified training in swimmers.
Mackinnon, L T; Hooper, S L
1996-03-01
The purposes of this study were to determine the effects of 4 wk of intensified training on resting plasma glutamine concentration, and to determine whether changes in plasma glutamine concentration relate to the appearance of upper respiratory tract infection (URTI) in swimmers during intensified training. Resting plasma glutamine concentration was measured by high performance liquid chromatography in 24 elite swimmers (8 male, 16 female, ages 15-26 yr) during 4 wk of intensified training (increased volume). Symptoms of overtraining syndrome (OT) were identified in eight swimmers (2 male, 6 female) based on decrements in swim performance and persistent high fatigue ratings; non-overtrained subjects were considered well-trained (WT). Ten of 24 swimmers (42%, 1 OT and 9 WT) exhibited URTI during the study. Plasma glutamine concentration increased significantly (P = 0.04, ANOVA) over the 4 wk, but the increase was significant only in WT swimmers (P < 0.05, post-hoc analysis). Compared with WT, plasma glutamine was significantly lower in OT at the mid-way timepoint only (P < 0.025, t-test with Bonferroni correction). There was no significant difference in glutamine levels between athletes who developed URTI and those who did not. These data suggest that plasma glutamine levels may not necessarily decrease during periods of intensified training, and that the appearance of URTI is not related to changes in plasma glutamine concentration in overtrained swimmers.
Ladd, Fernando V L; Ladd, Aliny A B L; Ribeiro, Antônio Augusto C M; Costa, Samuel B C; Coutinho, Bruna P; Feitosa, George André S; de Andrade, Geanne M; de Castro-Costa, Carlos Maurício; Magalhães, Carlos Emanuel C; Castro, Ibraim C; Oliveira, Bruna B; Guerrant, Richard L; Lima, Aldo Angelo M; Oriá, Reinaldo B
2010-06-01
The effect of zinc and glutamine on brain development was investigated during the lactation period in Swiss mice. Malnutrition was induced by clustering the litter size from 6-7 pups/dam (nourished control) to 12-14 pups/dam (undernourished control) following birth. Undernourished groups received daily supplementation with glutamine by subcutaneous injections starting at day 2 and continuing until day 14. Glutamine (100 mM, 40-80 microL) was used for morphological and behavioral studies. Zinc acetate was added in the drinking water (500 mg/L) to the lactating dams. Synaptophysin and myelin basic protein brain expressions were evaluated by immunoblot. Zinc serum and brain levels and hippocampal neurotransmitters were also evaluated. Zinc with or without glutamine improved weight gain as compared to untreated, undernourished controls. In addition, zinc supplementation improved cliff avoidance and head position during swim behaviors especially on days 9 and 10. Using design-based stereological methods, we found a significant increase in the volume of CA1 neuronal cells in undernourished control mice, which was not seen in mice receiving zinc or glutamine alone or in combination. Undernourished mice given glutamine showed increased CA1 layer volume as compared with the other groups, consistent with the trend toward increased number of neurons. Brain zinc levels were increased in the nourished and undernourished-glutamine treated mice as compared to the undernourished controls on day 7. Undernourished glutamine-treated mice showed increased hippocampal gamma-aminobutyric acid and synaptophysin levels on day 14. We conclude that glutamine or zinc protects against malnutrition-induced brain developmental impairments. Copyright 2010 Elsevier Inc. All rights reserved.
Wu, JiaMin; Li, Zhi; Yang, Zeping; Guo, Ling; Zhang, Ye; Deng, Huihui; Wang, Cuifeng; Feng, Min
2018-06-25
It is not efficient enough using the current approaches for tumor-selective drug delivery based on the EPR effect and ligand-receptor interactions, and they have largely failed to translate into the clinic. So it is urgent to explore an enhanced strategy for effective delivery of anticancer agents. Clinically, many cancers require large amounts of glutamine for their continued growth and survival, resulting in circulating glutamine extraction by the tumor being much greater than that for any organs, behaving as a "glutamine trap". In the present study, we sought to elucidate whether the glutamine trap effect could be exploited to deliver therapeutic agents to selectively kill cancer cells. Here, a macromolecular glutamine analog, glutamine-functionalized branched polyethylenimine (GPI), was constructed as the carrier to deliver anti-CD47 siRNA for the blockage of CD47 "don't eat me" signals on cancer cells. The GPI/siRNA glutamine-rich polyplexes exhibited remarkably high levels of cellular uptake by glutamine-dependent lung cancer cells, wild-type A549 cells (A549WT) and its cisplatin-resistant cells (A549DDP), specifically under glutamine-depleted conditions. It was noted that the glutamine transporter ASCT2 was highly expressed both on A549WT and A549DDP, but almost no expression in normal human lung fibroblasts cells. Inhibition of ASCT2 significantly prevented the internalization of GPI polyplexes. These findings raised the intriguing possibility that the glutamine-rich GPI polyplexes utilize the ASCT2 pathway to selectively facilitate their cellular uptake by cancer cells. GPI further delivered anti-CD47 siRNA efficiently both in vitro and in vivo to down-regulate the intratumoral mRNA and protein expression levels of CD47. CD47 functions as a "don't eat me" signal and binds to the immunoreceptor SIRPα inducing evasion of phagocytic clearance. GPI/anti-CD47 siRNA polyplexes achieved significant antitumor activities both on A549WT and A549DDP tumor-bearing nude mice. Notably, it had no adverse effect on CD47-expressing red blood cells and platelets, likely due to selective delivery. Therefore, the glutamine-rich carrier GPI driven by the glutamine trap effect provides a promising new strategy for designing anticancer drug delivery systems.
Glutamine and antioxidants: status of their use in critical illness.
van Zanten, Arthur R H
2015-03-01
Many studies in critically ill patients have addressed enteral or parenteral supplementation of glutamine and antioxidants to counteract assumed deficiencies and induce immune-modulating effects to reduce infections and improve outcome. Older studies showed marked reductions in mortality, infectious morbidity and length of stay. Recent studies no longer show beneficial effects and in contrast even demonstrated increased mortality. This opiniating review focuses on the latest information and the consequences for the use of glutamine and antioxidants in critically ill patients. Positive effects in systematic reviews and meta-analyses are based on results from older, smaller and mainly single-centre studies. New information has challenged the conditional deficiency hypothesis concerning glutamine in critically ill patients. The recent REDOXS and MetaPlus trials studying the effects of glutamine, selenium and other antioxidants have shown no benefits and increased mortality. Given that the first dictum in medicine is to do no harm, we cannot be confident that immune-modulating nutrient supplementation with glutamine and antioxidants is effective and well tolerated for critically ill patients. Until more data are available, it is probably better not to routinely administer glutamine and antioxidants in nonphysiological doses to mechanically ventilated critically ill patients.
NASA Astrophysics Data System (ADS)
Pochini, Lorena; Scalise, Mariafrancesca; Galluccio, Michele; Indiveri, Cesare
2014-08-01
Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.
Cardaci, Simone; Rizza, Salvatore; Filomeni, Giuseppe; Bernardini, Roberta; Bertocchi, Fabio; Mattei, Maurizio; Paci, Maurizio; Rotilio, Giuseppe; Ciriolo, Maria Rosa
2012-09-01
Anticancer drug efficacy might be leveraged by strategies to target certain biochemical adaptations of tumors. Here we show how depriving cancer cells of glutamine can enhance the anticancer properties of 3-bromopyruvate, a halogenated analog of pyruvic acid. Glutamine deprival potentiated 3-bromopyruvate chemotherapy by increasing the stability of the monocarboxylate transporter-1, an effect that sensitized cells to metabolic oxidative stress and autophagic cell death. We further elucidated mechanisms through which resistance to chemopotentiation by glutamine deprival could be circumvented. Overall, our findings offer a preclinical proof-of-concept for how to employ 3-bromopyruvate or other monocarboxylic-based drugs to sensitize tumors to chemotherapy. ©2012 AACR.
Esmaeili, Fatemeh; Ghaheri, Matin; Kahrizi, Danial; Mansouri, Mohsen; Safavi, Seyed Mehdi; Ghorbani, Tayebeh; Muhammadi, Sarre; Rahmanian, Elham; Vaziri, Siavash
2018-02-10
Stevia rebaudiana Bertoni is one of the most important biologically sourced and low-calorie sweeteners that contains a lots of Steviol glycosides. Tissue culture is the best method for propagation of stevia and micro nutrients can affect both morphological traits and steviol glycosides production. In the present study, we investigated the effect of different concentrations of glutamine (10, 20, 30 and 40 g/l) on expression of UGT74G1 and UGT76G1 genes and stevioside and rebaudioside A accumulation in the leaves of stevia under in vitro conditions. The highest level of expression for UGT74G1 (1.000 Total lab unit) was seen at plants grown in MS media without glutamine and the highest gene expression level for UGT76G1 (1.321 Total lab unit) was observed at plants grown in 2% glutamine. Based on HPLC results, the highest amount of stevioside (22.74) was accumulated in plants which were under 3% glutamine treatment and the lowest production level of stevioside (16.19) was resulted under MS (0 glutamine) medium. The highest rebaudioside A (12.19) accumulation was observed under 2% glutamine treatment and the lowest accumulation of rebaudioside A (8.41) was seen at plants grown in MS medium.
Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao
2014-01-01
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid–base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid–base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy. PMID:24810329
Sawant, Onkar B; Ramadoss, Jayanth; Hankins, Gary D; Wu, Guoyao; Washburn, Shannon E
2014-08-01
Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75-2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A chronic weekend binge drinking paradigm between gestational days (GD) 99 and 115 was utilized. Fetuses were surgically instrumented on GD 117 ± 1 and studied on GD 120 ± 1. Binge alcohol exposure caused maternal acidemia, hypercapnea, and hypoxemia. Fetuses were acidemic and hypercapnic, but not hypoxemic. Alcohol exposure increased fetal mean arterial pressure, whereas fetal heart rate was unaltered. Alcohol exposure resulted in ~40 % reduction in maternal uterine artery blood flow. Labeled microsphere analyses showed that alcohol induced >2-fold increases in fetal whole brain blood flow. The elevation in fetal brain blood flow was region-specific, particularly affecting the developing cerebellum, brain stem, and olfactory bulb. Maternal L-glutamine supplementation attenuated alcohol-induced maternal hypercapnea, fetal acidemia and increases in fetal brain blood flow. L-Glutamine supplementation did not affect uterine blood flow. Collectively, alcohol exposure alters maternal and fetal acid-base balance, decreases uterine blood flow, and alters fetal regional brain blood flow. Importantly, L-glutamine supplementation mitigates alcohol-induced acid-base imbalances and alterations in fetal regional brain blood flow. Further studies are warranted to elucidate mechanisms responsible for alcohol-induced programming of maternal uterine artery and fetal circulation adaptations in pregnancy.
Damiani, Chiara; Colombo, Riccardo; Gaglio, Daniela; Mastroianni, Fabrizia; Westerhoff, Hans Victor; Vanoni, Marco; Alberghina, Lilia
2017-01-01
Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which metabolic pathways are used to convert glucose and glutamine to balanced energy and biomass production, we performed systematic constraint-based simulations of a model of human central metabolism. Sampling of the feasible flux space allowed us to obtain a large number of randomly mutated cells simulated at different glutamine and glucose uptake rates. We observed that, in the limited subset of proliferating cells, most displayed fermentation of glucose to lactate in the presence of oxygen. At high utilization rates of glutamine, oxidative utilization of glucose was decreased, while the production of lactate from glutamine was enhanced. This emergent phenotype was observed only when the available carbon exceeded the amount that could be fully oxidized by the available oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this metabolic pattern is optimal to maximize biomass and ATP production; it requires the activity of a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced metabolic changes. We validated computational results through an extension of Flux Balance Analysis that allows prediction of metabolite variations. Taken together these findings offer new understanding of the logic of the metabolic reprogramming that underlies cancer cell growth. PMID:28957320
van Zwol, Annelies; Moll, Henriëtte A; Fetter, Willem P F; van Elburg, Ruurd M
2011-01-01
In a previous randomised controlled trial, we found that glutamine-enriched enteral nutrition in 102 very low birthweight (VLBW) infants decreased both the incidence of serious infections in the neonatal period and the risk of atopic dermatitis during the first year of life. We hypothesised that glutamine-enriched enteral nutrition in VLBW infants in the neonatal period influences the risk of allergic and infectious disease at 6 years of age. Eighty-eight of the 102 infants were eligible for the follow-up study (13 died, 1 chromosomal abnormality). Doctor-diagnosed allergic and infectious diseases were assessed by means of validated questionnaires. The association between glutamine-enriched enteral nutrition in the neonatal period and allergic and infectious diseases at 6 years of age was based on univariable and multivariable logistic regression analyses. Seventy-six of the 89 (85%) infants participated, 38 in the original glutamine-supplemented group and 38 in the control group. After adjustment, we found a decreased risk of atopic dermatitis in the glutamine-supplemented group: adjusted odds ratio (aOR) 0.23 [95% CI 0.06, 0.95]. No association between glutamine supplementation and hay fever, recurrent wheeze and asthma was found. A decreased risk of gastrointestinal tract infections was found in the glutamine-supplemented group (aOR) 0.10 [95% CI 0.01, 0.93], but there was no association with upper respiratory, lower respiratory or urinary tract infections. We concluded that glutamine-enriched enteral nutrition in the neonatal period in VLBW infants decreased the risk of atopic dermatitis and gastrointestinal tract infections at 6 years of age. © 2010 Blackwell Publishing Ltd.
Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing
2016-08-04
Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution ¹H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats.
Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing
2016-01-01
Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution 1H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p < 0.05). Moreover, N-carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p < 0.05). Results suggested that glutamine and N-carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats. PMID:27527211
2014-01-01
Introduction Glutamine rate of appearance (Ra) may be used as an estimate of endogenous glutamine production. Recently a technique employing a bolus injection of isotopically labeled glutamine was introduced, with the potential to allow for multiple assessments of the glutamine Ra over time in critically ill patients, who may not be as metabolically stable as healthy individuals. Here the technique was used to evaluate the endogenous glutamine production in critically ill patients in the fed state with and without exogenous glutamine supplementation intravenously. Methods Mechanically ventilated patients (n = 11) in the intensive care unit (ICU) were studied on two consecutive days during continuous parenteral feeding. To allow the patients to be used as their own controls, they were randomized for the reference measurement during basal feeding without supplementation, before or after the supplementation period. Glutamine Ra was determined by a bolus injection of 13C-glutamine followed by a period of frequent sampling to establish the decay-curve for the glutamine tracer. Exogenous glutamine supplementation was given by intravenous infusion of a glutamine containing dipeptide, L-alanyl-L-glutamine, 0.28 g/kg during 20 hours. Results A 14% increase of endogenous glutamine Ra was seen at the end of the intravenous supplementation period as compared to the basal measurements (P = 0.009). Conclusions The bolus injection technique to measure glutamine Ra to estimate the endogenous production of glutamine in critically ill patients was demonstrated to be useful for repetitive measurements. The hypothesized attenuation of endogenous glutamine production during L-alanyl-L-glutamine infusion given as a part of full nutrition was not seen. PMID:24731231
Kung, Hsiu-Ni; Marks, Jeffrey R.; Chi, Jen-Tsan
2011-01-01
Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type–specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS). Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies. PMID:21852960
Plasma Glutamine Is a Minor Precursor for the Synthesis of Citrulline: A Multispecies Study1234
Marini, Juan C; Agarwal, Umang; Didelija, Inka C; Azamian, Mahshid; Stoll, Barbara; Nagamani, Sandesh CS
2017-01-01
Background: Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2-[15N]-glutamine to citrulline has been used as evidence for this precursor-product relation. However, work in mice has shown that nitrogen and carbon tracers follow different moieties of glutamine and that glutamine contribution to the synthesis of citrulline is minor. It is unclear whether this small contribution of glutamine is also true in other species. Objective: The objective of the present work was to determine the contribution of glutamine to citrulline production by using nitrogen and carbon skeleton tracers in multiple species. Methods: Humans (n = 4), pigs (n = 5), rats (n = 6), and mice (n = 5) were infused with l-2-[15N]- and l-[2H5]-glutamine and l-5,5-[2H2]-citrulline. The contribution of glutamine to citrulline synthesis was calculated by using different ions and fragments: glutamine M+1 to citrulline M+1, 2-[15N]-glutamine to 2-[15N]-citrulline, and [2H5]-glutamine to [2H5]-citrulline. Results: Species-specific differences in glutamine and citrulline fluxes were found (P < 0.001), with rats having the largest fluxes, followed by mice, pigs, and humans (all P < 0.05). The contribution of glutamine to citrulline as estimated by using glutamine M+1 to citrulline M+1 ranged from 88% in humans to 46% in pigs. However, the use of 2-[15N]-glutamine and 2-[15N]-citrulline as precursor and product yielded values of 48% in humans and 28% in pigs. Furthermore, the use of [2H5]-glutamine to [2H5]-citrulline yielded lower values (P < 0.001), resulting in a contribution of glutamine to the synthesis of citrulline of ∼10% in humans and 3% in pigs. Conclusions: The recycling of the [15N]-glutamine label overestimates the contribution of glutamine to citrulline synthesis compared with a tracer that follows the carbon skeleton of glutamine. Glutamine is a minor precursor for the synthesis of citrulline in humans, pigs, rats, and mice. PMID:28275102
A Tracer Bolus Method for Investigating Glutamine Kinetics in Humans
Mori, Maiko; Smedberg, Marie; Klaude, Maria; Tjäder, Inga; Norberg, Åke; Rooyackers, Olav; Wernerman, Jan
2014-01-01
Glutamine transport between tissues is important for the outcome of critically ill patients. Investigation of glutamine kinetics is, therefore, necessary to understand glutamine metabolism in these patients in order to improve future intervention studies. Endogenous glutamine production can be measured by continuous infusion of a glutamine tracer, which necessitates a minimum measurement time period. In order to reduce this problem, we used and validated a tracer bolus injection method. Furthermore, this method was used to measure the glutamine production in healthy volunteers in the post-absorptive state, with extra alanine and with glutamine supplementation and parenteral nutrition. Healthy volunteers received a bolus injection of [1-13C] glutamine, and blood was collected from the radial artery to measure tracer enrichment over 90 minutes. Endogenous rate of appearance (endoRa) of glutamine was calculated from the enrichment decay curve and corrected for the extra glutamine supplementation. The glutamine endoRa of healthy volunteers was 6.1±0.9 µmol/kg/min in the post-absorptive state, 6.9±1.0 µmol/kg/min with extra alanyl-glutamine (p = 0.29 versus control), 6.1±0.4 µmol/kg/min with extra alanine only (p = 0.32 versus control), and 7.5±0.9 µmol/kg/min with extra alanyl-glutamine and parenteral nutrition (p = 0.049 versus control). In conclusion, a tracer bolus injection method to measure glutamine endoRa showed good reproducibility and small variation at baseline as well as during parenteral nutrition. Additionally, we showed that parenteral nutrition including alanyl-glutamine increased glutamine endoRa in healthy volunteers, which was not attributable to the alanine part of the dipeptide. PMID:24810895
Gutiérrez, Claudia; Villa, Sofía; Mota, Felipe R.; Calva, Juan J.
2007-01-01
This study assessed whether an oral rehydration solution (ORS) in which glucose is replaced by L-glutamine (L-glutamine ORS) is more effective than the standard glucose-based rehydration solution recommended by the World Health Organization (WHO-ORS) in reducing the stool volume and time to rehydrate in acute diarrhoea. In a double-blind, randomized controlled trial in a Mexican hospital, 147 dehydrated children, aged 1–60 month(s), were assigned either to the WHO-ORS (74 children), or to the L-glutamine ORS (73 children) and followed until successful rehydration. There were no significant differences between the groups in stool output during the first four hours, time to successful rehydration, volume of ORS required for rehydration, urinary output, and vomiting. This was independent of rotavirus-associated infection. An L-glutamine-containing glucose-free ORS seems not to offer greater clinical benefit than the standard WHO-ORS in mildly-to-moderately-dehydrated children with acute non-cholera diarrhoea. PMID:18330060
Glutamine activates STAT3 to control cancer cell proliferation independently of glutamine metabolism
Vazeille, Thibaut; Sonveaux, Pierre
2016-01-01
Cancer cells can use a variety of metabolic substrates to fulfill the bioenergetic and biosynthetic needs of their oncogenic program. Besides bioenergetics, cancer cell metabolism also directly influences genetic, epigenetic and signaling events associated with tumor progression. Many cancer cells are addicted to glutamine, and this addiction is observed in oxidative as well as in glycolytic cells. While both oxidative and bioreductive glutamine metabolism can contribute to cancer progression and glutamine can further serve to generate peptides (including glutathione) and proteins, we report that glutamine promotes the proliferation of cancer cells independently of its use as a metabolic fuel or as a precursor of glutathione. Extracellular glutamine activates transcription factor STAT3, which is necessary and sufficient to mediate the proliferative effects of glutamine in glycolytic and in oxidative cancer cells. Glutamine also activates transcription factors HIF-1, mTOR and c-Myc, but these factors do not mediate the effects of glutamine on cancer cell proliferation. Our findings shed a new light on the anticancer effects of L-asparaginase that possesses glutaminase activity and converts glutamine into glutamate extracellularly. Conversely, cancer resistance to treatments that block glutamine metabolism could arise from glutamine-independent STAT3 re-activation. PMID:27748760
Interrelationships between glutamine and citrulline metabolism.
Marini, Juan C
2016-01-01
This article analyzes the contribution of glutamine to the synthesis of citrulline and reviews the evidence that glutamine supplementation increases citrulline production. Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter randomized controlled trial resulted in increased mortality in the glutamine-supplemented group. Within this context, defining the contribution of glutamine to the production of citrulline, and thus to de-novo arginine synthesis, has become a pressing issue. The beneficial effects of glutamine supplementation may be partially mediated by the effects of glutamine on citrulline synthesis by the gut and the de-novo synthesis of arginine by the kidney and other tissues. Although there is no strong evidence to support that glutamine is a major precursor for citrulline synthesis in humans, glutamine has the potential to increase overall gut function and in this way increase citrulline production.
MYC-induced reprogramming of glutamine catabolism supports optimal virus replication
Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.
2015-01-01
Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297
Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles
NASA Technical Reports Server (NTRS)
Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa
1986-01-01
The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.
Sappington, Daniel R.; Siegel, Eric R.; Hiatt, Gloria; Desai, Abhishek; Penney, Rosalind B.; Jamshidi-Parsian, Azemat; Griffin, Robert J.; Boysen, Gunnar
2016-01-01
Background Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems. Methods The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and Bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry. Results A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 hrs >50% of excreted glutathione is derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a glutaminase (GLS)-specific inhibitor, reduced cell proliferation and viability, and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity. Conclusions We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well. General significance Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability. PMID:26825773
Nonnutritive effects of glutamine.
Roth, Erich
2008-10-01
Glutamine is the most abundant free amino acid of the human body. Besides its role as a constituent of proteins and its importance in amino acid transamination, glutamine has regulatory capacity in immune and cell modulation. Glutamine deprivation reduces proliferation of lymphocytes, influences expression of surface activation markers on lymphocytes and monocytes, affects the production of cytokines, and stimulates apoptosis. Moreover, glutamine administration seems to have a positive effect on glucose metabolism in the state of insulin resistance. Glutamine influences a variety of different molecular pathways. Glutamine stimulates the formation of heat shock protein 70 in monocytes by enhancing the stability of mRNA, influences the redox potential of the cell by enhancing the formation of glutathione, induces cellular anabolic effects by increasing the cell volume, activates mitogen-activated protein kinases, and interacts with particular aminoacyl-transfer RNA synthetases in specific glutamine-sensing metabolism. Glutamine is applied under clinical conditions as an oral, parenteral, or enteral supplement either as the single amino acid or in the form of glutamine-containing dipeptides for preventing mucositis/stomatitis and for preventing glutamine-deficiency in critically ill patients. Because of the high turnover rate of glutamine, even high amounts of glutamine up to a daily administration of 30 g can be given without any important side effects.
Interrelationships between glutamine and citrulline metabolism
2015-01-01
Purpose of review To analyze the evidence that glutamine supplementation increases citrulline production. To determine the contribution of glutamine to the synthesis of citrulline. Recent findings Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter randomized controlled trial resulted in increased mortality in the glutamine supplemented group. Within this context, defining the contribution of glutamine to the production of citrulline, and thus to de novo arginine synthesis, has become a pressing issue. Summary The beneficial effects of glutamine supplementation may be partially mediated by the effects of glutamine on citrulline synthesis by the gut and the de novo synthesis of arginine by the kidney and other tissues. Although there is no strong evidence to support that glutamine is a major precursor for citrulline synthesis in humans, glutamine has the potential to increase overall gut function and in this way increase citrulline production. PMID:26560519
Hediger, Hedy; Stevens, Richard L.; Brandenberger, Hans; Schmid, Karl
1973-01-01
A new procedure for the qualitative and quantitative determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides based on g.l.c. has been developed. Under the conditions of esterification and trifluoroacetylation N-trifluoroacetylaspartic acid mono-n-butyl ester was formed from asparagine and N-trifluoroacetylglutamic acid mono-n-butyl ester from both glutamine and pyrrolidonecarboxylic acid. To distinguish between the latter two compounds, the esterification was carried out at room temperature yielding 30% of esterified pyrrolidonecarboxylic acid but less than 1% of esterified glutamine. In extending the g.l.c. of amino acids, the previously unknown positions in the g.l.c. elution pattern of the following amino acids could also be reproducibly determined: carboxymethylcysteine, homoserine, hydroxylysine and ∈-methyl-lysine. Further, certain glycopeptides were investigated and the artifacts due to their carbohydrate moieties were determined. PMID:4733240
Introduction to the Glutamate-Glutamine Cycle.
Sonnewald, Ursula; Schousboe, Arne
2016-01-01
The term 'glutamate-glutamine cycle' was coined several decades ago based on the observation that using certain 14 C-labeled precursors for studies of brain metabolism the specific radioactivity of glutamine generated from glutamate was higher than that of glutamate, its immediate precursor. This is metabolically impossible unless it is assumed that at least two distinct pools of these amino acids exist. This combined with the finding that the enzyme synthesizing glutamine from glutamate was expressed in astrocytes but not in neurons formed the basis of the notion that a cycle must exist in which glutamate released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must be a tight coupling between metabolism of glutamate in astrocytes, transfer of glutamine to neurons and de novo synthesis of glutamine in astrocytes. To understand this, knowledge about the activity and regulation of the enzymes and transporters involved in these processes is required and as can be seen from the table of contents these issues will be dealt with in detail in the individual chapters of the book.
Ko, Ying-Hui; Lin, Zhao; Flomenberg, Neal; Pestell, Richard G; Howell, Anthony; Sotgia, Federica
2011-01-01
Glutamine metabolism is crucial for cancer cell growth via the generation of intermediate molecules in the tricarboxylic acid (TCA) cycle, antioxidants and ammonia. The goal of the current study was to evaluate the effects of glutamine on metabolism in the breast cancer tumor microenvironment, with a focus on autophagy and cell death in both epithelial and stromal compartments. For this purpose, MCF7 breast cancer cells were cultured alone or co-cultured with nontransformed fibroblasts in media containing high glutamine and low glucose (glutamine +) or under control conditions, with no glutamine and high glucose (glutamine −). Here, we show that MCF7 cells maintained in co-culture with glutamine display increased mitochondrial mass, as compared with control conditions. Importantly, treatment with the autophagy inhibitor chloroquine abolishes the glutamine-induced augmentation of mitochondrial mass. It is known that loss of caveolin-1 (Cav-1) expression in fibroblasts is associated with increased autophagy and an aggressive tumor microenvironment. Here, we show that Cav-1 downregulation which occurs in fibroblasts maintained in co-culture specifically requires glutamine. Interestingly, glutamine increases the expression of autophagy markers in fibroblasts, but decreases expression of autophagy markers in MCF7 cells, indicating that glutamine regulates the autophagy program in a compartment-specific manner. Functionally, glutamine protects MCF7 cells against apoptosis, via the upregulation of the anti-apoptotic and anti-autophagic protein TIGAR. Also, we show that glutamine cooperates with stromal fibroblasts to confer tamoxifen-resistance in MCF7 cancer cells. Finally, we provide evidence that co-culture with fibroblasts (1) promotes glutamine catabolism, and (2) decreases glutamine synthesis in MCF7 cancer cells. Taken together, our findings suggest that autophagic fibroblasts may serve as a key source of energy-rich glutamine to fuel cancer cell mitochondrial activity, driving a vicious cycle of catabolism in the tumor stroma and anabolic tumor cell expansion. PMID:22236876
Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway
Yuan, Lingqin; Sheng, Xiugui; Willson, Adam K; Roque, Dario R; Stine, Jessica E; Guo, Hui; Jones, Hannah M; Zhou, Chunxiao; Bae-Jump, Victoria L
2015-01-01
Glutamine is one of the main nutrients used by tumor cells for biosynthesis. Therefore, targeted inhibition of glutamine metabolism may have anti-tumorigenic implications. In the present study, we aimed to evaluate the effects of glutamine on ovarian cancer cell growth. Three ovarian cancer cell lines, HEY, SKOV3, and IGROV-1, were assayed for glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis, cell stress, and glucose/glutamine metabolism. Our results revealed that administration of glutamine increased cell proliferation in all three ovarian cancer cell lines in a dose dependent manner. Depletion of glutamine induced reactive oxygen species and expression of endoplasmic reticulum stress proteins. In addition, glutamine increased the activity of glutaminase (GLS) and glutamate dehydrogenase (GDH) by modulating the mTOR/S6 and MAPK pathways. Inhibition of mTOR activity by rapamycin or blocking S6 expression by siRNA inhibited GDH and GLS activity, leading to a decrease in glutamine-induced cell proliferation. These studies suggest that targeting glutamine metabolism may be a promising therapeutic strategy in the treatment of ovarian cancer. PMID:26045471
Meynial-Denis, D; Beaufrère, A-M; Mignon, M; Patureau Mirand, P
2013-01-01
Muscle is the major site for glutamine synthesis via glutamine synthetase (GS). This enzyme is increased 1.5-2 fold in 25-27-mo rats and may be a consequence of aging-induced stress. This stimulation is similar to the induction observed following a catabolic state such as glucocorticoid treatment (6 to 24 months). Although oral glutamine supply regulates the plasma glutamine level, nothing is known if this supplementation is interrupted before the experiment. Adult (8-mo) and very old (27-mo) female rats were exposed to intermittent glutamine supplementation for 50 % of their age lifetime. Treated rats received glutamine added to their drinking water and control rats water alone but the effect of glutamine supplementation was only studied 15 days after the last supplementation. Glutamine pretreatment discontinued 15 days before the experiment increased plasma glutamine to ~ 0.6 mM, a normal value in very old rats. However, it failed to decrease the up-regulated GS activity in skeletal muscle from very old rats. Our results suggest that long-term treatment with glutamine started before advanced age but discontinued 15 days before rat sacrifice is effective in increasing plasma glutamine to recover basal adult value and in maintaining plasma glutamine in very old rats, but has no long-lasting effect on the GS activity of skeletal muscle with advanced age.
Bagga, Puneet; Behar, Kevin L; Mason, Graeme F; De Feyter, Henk M; Rothman, Douglas L; Patel, Anant B
2014-01-01
13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (∼25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels >1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036±0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (∼0.6 mmol/L), VGln(in) would be ∼0.010 μmol/g per minute, which corresponds to ∼6% of the glutamine synthesis rate and rises to ∼11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ∼20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose. PMID:25074745
Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro
NASA Technical Reports Server (NTRS)
Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki
1987-01-01
The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.
Glutamate and asparagine cataplerosis underlie glutamine addiction in melanoma
Ratnikov, Boris; Aza-Blanc, Pedro; Ronai, Ze'ev A.; Smith, Jeffrey W.; Osterman, Andrei L.; Scott, David A.
2015-01-01
Glutamine dependence is a prominent feature of cancer metabolism, and here we show that melanoma cells, irrespective of their oncogenic background, depend on glutamine for growth. A quantitative audit of how carbon from glutamine is used showed that TCA-cycle-derived glutamate is, in most melanoma cells, the major glutamine-derived cataplerotic output and product of glutaminolysis. In the absence of glutamine, TCA cycle metabolites were liable to depletion through aminotransferase-mediated α-ketoglutarate-to-glutamate conversion and glutamate secretion. Aspartate was an essential cataplerotic output, as melanoma cells demonstrated a limited capacity to salvage external aspartate. Also, the absence of asparagine increased the glutamine requirement, pointing to vulnerability in the aspartate-asparagine biosynthetic pathway within melanoma metabolism. In contrast to melanoma cells, melanocytes could grow in the absence of glutamine. Melanocytes use more glutamine for protein synthesis rather than secreting it as glutamate and are less prone to loss of glutamate and TCA cycle metabolites when starved of glutamine. PMID:25749035
Chen, Xingxiang; Shi, Xiuli; Gan, Fang; Huang, Da; Huang, Kehe
2015-03-18
Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases.
Ribarits, Alexandra; Mamun, A N K; Li, Shipeng; Resch, Tatiana; Fiers, Martijn; Heberle-Bors, Erwin; Liu, Chun-Ming; Touraev, Alisher
2007-07-01
Reversible male sterility and doubled haploid plant production are two valuable technologies in F(1)-hybrid breeding. F(1)-hybrids combine uniformity with high yield and improved agronomic traits, and provide self-acting intellectual property protection. We have developed an F(1)-hybrid seed technology based on the metabolic engineering of glutamine in developing tobacco anthers and pollen. Cytosolic glutamine synthetase (GS1) was inactivated in tobacco by introducing mutated tobacco GS genes fused to the tapetum-specific TA29 and microspore-specific NTM19 promoters. Pollen in primary transformants aborted close to the first pollen mitosis, resulting in male sterility. A non-segregating population of homozygous doubled haploid male-sterile plants was generated through microspore embryogenesis. Fertility restoration was achieved by spraying plants with glutamine, or by pollination with pollen matured in vitro in glutamine-containing medium. The combination of reversible male sterility with doubled haploid production results in an innovative environmentally friendly breeding technology. Tapetum-mediated sporophytic male sterility is of use in foliage crops, whereas microspore-specific gametophytic male sterility can be applied to any field crop. Both types of sterility preclude the release of transgenic pollen into the environment.
Mechanism for acivicin inactivation of triad glutamine amidotransferases.
Chittur, S V; Klem, T J; Shafer, C M; Davisson, V J
2001-01-30
Acivicin [(alphaS,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid] was investigated as an inhibitor of the triad glutamine amidotransferases, IGP synthase and GMP synthetase. Nucleophilic substitution of the chlorine atom in acivicin results in the formation of an imine-thioether adduct at the active site cysteine. Cys 77 was identified as the site of modification in the heterodimeric IGPS from Escherichia coli (HisHF) by tryptic digest and FABMS. Distinctions in the glutaminase domains of IGPS from E. coli, the bifunctional protein from Saccharomyces cerevisiae (HIS7), and E. coli GMPS were revealed by the differential rates of inactivation. While the ammonia-dependent turnover was unaffected by acivicin, the glutamine-dependent reaction was inhibited with unit stoichiometry. In analogy to the conditional glutaminase activity seen in IGPS and GMPS, the rates of inactivation were accelerated > or =25-fold when a nucleotide substrate (or analogue) was present. The specificity (k(inact)/K(i)app) for acivicin is on the same order of magnitude as the natural substrate glutamine in all three enzymes. The (alphaS,5R) diastereomer of acivicin was tested under identical conditions as acivicin and showed little inhibitory effect on the enzymes indicating that acivicin binds in the glutamine reactive site in a specific conformation. The data indicate that acivicin undergoes a glutamine amidotransferase mechanism-based covalent bond formation in the presence of nucleotide substrates or products. Acivicin and its (alphaS,5R) diastereomer were modeled in the glutaminase active site of GMPS and CPS to confirm that the binding orientation of the dihydroisoxazole ring is identical in all three triad glutamine amidotransferases. Stabilization of the imine-thioether intermediate by the oxyanion hole in triad glutamine amidotransferases appears to confer the high degree of specificity for acivicin inhibition and relates to a common mechanism for inactivation.
Glutamine metabolism in a holostean (Amia calva) and teleost fish (Salvelinus namaycush).
Chamberlin, M E; Glemet, H C; Ballantyne, J S
1991-01-01
Amino acid metabolism was examined in mitochondria from the lateral red muscle of a teleost (lake char, Salvelinus namaycush) and a nonteleost fish (bowfin, Amia calva). Isolated mitochondria oxidize a wide variety of substrates and have high respiratory control ratios. In both species, glutamine is oxidized more rapidly than any other amino acid. The rate of glutamine oxidation by bowfin mitochondria exceeds that of lake char mitochondria, and the bowfin displays correspondingly higher levels of mitochondrial phosphate-dependent glutaminase. It is suggested that amino acids in general, and glutamine in particular, are important oxidative substrates for nonteleost red muscle. The teleost red muscle, however, may rely on both glutamine and fatty acids as oxidative substrates. It appears that glutamate derived from glutamine is oxidized primarily via glutamate dehydrogenase, whereas exogenous glutamate is oxidized primarily via aspartate aminotransferase. Complete oxidation of glutamine may be accomplished in the absence of other substrates by conversion of glutamine-derived malate to pyruvate via malic enzyme. To assess the relative abilities of various tissues to synthesize and oxidize glutamine, the activities of glutamine synthetase and glutaminase were measured. The results of these studies indicate that the organization of glutamine metabolism of fish differs markedly from that in mammals.
Kratochwill, Klaus; Boehm, Michael; Herzog, Rebecca; Lichtenauer, Anton Michael; Salzer, Elisabeth; Lechner, Michael; Kuster, Lilian; Bergmeister, Konstantin; Rizzi, Andreas; Mayer, Bernd; Aufricht, Christoph
2012-03-01
Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.
Wang, Hao; Zhang, Chen; Wu, Guoyao; Sun, Yuli; Wang, Bin; He, Beibei; Dai, Zhaolai; Wu, Zhenlong
2015-01-01
Dysfunction of tight junction integrity is associated with decreased nutrient absorption and numerous gastrointestinal diseases in humans and piglets. Although l-glutamine has been reported to enhance intestinal-mucosal mass and barrier function under stressful conditions, in vivo data to support a functional role for l-glutamine on intestinal tight junction protein (TJP) expression in weanling mammals are limited. This study tested the hypothesis that glutamine regulates expression of TJPs and stress-related corticotropin-releasing factor (CRF) signaling in the jejunum of weanling piglets. Piglets were reared by sows or weaned at 21 d of age to a corn and soybean meal-based diet that was or was not supplemented with 1% l-glutamine for 7 d. Growth performance, intestinal permeability, TJP abundance, and CRF expression were examined. Weaning caused increases (P < 0.05) in intestinal permeability by 40% and in CRF concentrations by 4.7 times in association with villus atrophy (P < 0.05). Western blot analysis showed reductions (P < 0.05) in jejunal expression of occludin, claudin-1, zonula occludens (ZO) 2, and ZO-3, but no changes in the abundance of claudin-3, claudin-4, or ZO-1 in weanling piglets compared with age-matched suckling controls. Glutamine supplementation improved (P < 0.05) intestinal permeability and villus height, while reducing (P < 0.05) jejunal mRNA and protein levels for CRF and attenuating (P < 0.05) weanling-induced decreases in occludin, claudin-1, ZO-2, and ZO-3 protein abundances. Collectively, our results support an important role for l-glutamine in regulating expression of TJPs and CRF in the jejunum of weanling piglets. © 2015 American Society for Nutrition.
The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases
Kim, Min-Hyun; Kim, Hyeyoung
2017-01-01
Glutamine, the most abundant free amino acid in the human body, is a major substrate utilized by intestinal cells. The roles of glutamine in intestinal physiology and management of multiple intestinal diseases have been reported. In gut physiology, glutamine promotes enterocyte proliferation, regulates tight junction proteins, suppresses pro-inflammatory signaling pathways, and protects cells against apoptosis and cellular stresses during normal and pathologic conditions. As glutamine stores are depleted during severe metabolic stress including trauma, sepsis, and inflammatory bowel diseases, glutamine supplementation has been examined in patients to improve their clinical outcomes. In this review, we discuss the physiological roles of glutamine for intestinal health and its underlying mechanisms. In addition, we discuss the current evidence for the efficacy of glutamine supplementation in intestinal diseases. PMID:28498331
Mérida, A; Candau, P; Florencio, F J
1991-01-01
Glutamine synthetase activity from Synechocystis sp. strain PCC 6803 is regulated as a function of the nitrogen source available in the medium. Addition of 0.25 mM NH4Cl to nitrate-grown cells promotes a clear short-term inactivation of glutamine synthetase, whose enzyme activity decreases to 5 to 10% of the initial value in 25 min. The intracellular levels of glutamine, determined under various conditions, taken together with the results obtained with azaserine (an inhibitor of transamidases), rule out the possibility that glutamine per se is responsible for glutamine synthetase inactivation. Nitrogen starvation attenuates the ammonium-mediated glutamine synthetase inactivation, indicating that glutamine synthetase regulation is modulated through the internal balance between carbon-nitrogen compounds and carbon compounds. The parallelism observed between the glutamine synthetase activity and the internal concentration of alpha-ketoglutarate suggests that this metabolite could play a role as a positive effector of glutamine synthetase activity in Synechocystis sp. Despite the similarities of this physiological system to that described for enterobacteria, the lack of in vivo 32P labeling of glutamine synthetase during the inactivation process excludes the existence of an adenylylation-deadenylylation system in this cyanobacterium. Images PMID:1676397
Effect of glutamine supplementation on neutrophil function in male judoists.
Sasaki, Eiji; Umeda, Takashi; Takahashi, Ippei; Arata, Kojima; Yamamoto, Yousuke; Tanabe, Masaru; Oyamada, Kazuyuki; Hashizume, Erika; Nakaji, Shigeyuki
2013-01-01
Glutamine is an important amino acid for immune function. Though high intensity and prolonged exercise decreases plasma glutamine concentration and causes immune suppression, the relationship between neutrophil functions and glutamine has not yet been found. The purpose of this study was to investigate the impacts of glutamine supplementation on neutrophil function. Twenty-six male university judoists were recruited. Subjects were classified into glutamine and control groups. The glutamine group ingested 3000 mg of glutamine per day and the control group ingested placebo for 2 weeks. Examinations were performed at the start of preunified loading exercise (pre-ULE), then 1 and 2 weeks after ULE (post-ULE). Reactive oxygen species (ROS) production, phagocytic activity, serum opsonic activity and serum myogenic enzymes were measured. Differences between the levels obtained in pre-ULE and post-ULE for the two groups were compared. In the glutamine group, ROS production activity increased 1 week after ULE, whereas it was not observed in the control group (P < 0.001). Though myogenic enzymes increased significantly after ULE (P < 0.001), the glutamine group remained unchanged by supplementation during ULE. Glutamine supplementation has prevented excessive muscle damage and suppression of neutrophil function, especially in ROS production activity, even during an intensive training period. Copyright © 2013 John Wiley & Sons, Ltd.
Minaeva, Ekaterina; Forchhammer, Karl; Ermilova, Elena
2015-11-01
Glutamine is a metabolite of central importance in nitrogen metabolism of microorganisms and plants. The Chlorella PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase (NAGK) that leads to arginine formation. We provide evidence that glutamine promotes effective growth of C. variabilis strain NC64A. The present study shows that externally supplied glutamine directly influences the internal pool of arginine in NC64A. Glutamine synthetase (GS) catalyzes the ATP-dependent conversion of glutamate and ammonium to glutamine. The results of this study demonstrate that glutamine acts as a negative effector of GS activity. These data emphasize the importance of glutamine-dependent coupling of metabolism and signaling as components of an efficient pathway allowing the maintenance of metabolic homeostasis and sustaining growth of Chlorella. Copyright © 2015 Elsevier GmbH. All rights reserved.
Hegedus, Andrea; Kavanagh Williamson, Maia; Khan, Mariam B.; Dias Zeidler, Julianna; Da Poian, Andrea T.; El-Bacha, Tatiana; Struys, Eduard A.
2017-01-01
Abstract Glutamine is a conditionally essential amino acid that is an important metabolic resource for proliferating tissues by acting as a proteinogenic amino acid, a nitrogen donor for biosynthetic reactions and as a substrate for the citric acid or tricarboxylic acid cycle. The human immunodeficiency virus type 1 (HIV-1) productively infects activated CD4+ T cells that are known to require glutamine for proliferation and for carrying out effector functions. As a virus, HIV-1 is furthermore entirely dependent on host metabolism to support its replication. In this study, we compared HIV-1 infected with uninfected activated primary human CD4+ T cells with regard to glutamine metabolism. We report that glutamine concentrations are elevated in HIV-1-infected cells and that glutamine is important to support HIV-1 replication, although the latter is closely linked to the glutamine dependency of cell survival. Metabolic tracer experiments showed that entry of glutamine-derived carbon into the citric acid cycle is unaffected by HIV-1 infection, but that there is an increase in the secretion of glutamine-derived glutamic acid from HIV-1-infected cells. Western blotting of key enzymes that metabolize glutamine revealed marked differences in the expression of glutaminase isoforms, KGA and CAG, as well as the PPAT enzyme that targets glutamine-derived nitrogen toward nucleotide synthesis. Altogether, this demonstrates that infection of CD4+ T cells with HIV-1 leads to considerable changes in the cellular glutamine metabolism. PMID:28844150
Glutamine Acts as a Neuroprotectant against DNA Damage, Beta-Amyloid and H2O2-Induced Stress
Chen, Jianmin; Herrup, Karl
2012-01-01
Glutamine is the most abundant free amino acid in the human blood stream and is ‘conditionally essential’ to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS). Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H2O2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD) brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD. PMID:22413000
Dosing and efficacy of glutamine supplementation in human exercise and sport training.
Gleeson, Michael
2008-10-01
Some athletes can have high intakes of l-glutamine because of their high energy and protein intakes and also because they consume protein supplements, protein hydrolysates, and free amino acids. Prolonged exercise and periods of heavy training are associated with a decrease in the plasma glutamine concentration and this has been suggested to be a potential cause of the exercise-induced immune impairment and increased susceptibility to infection in athletes. However, several recent glutamine feeding intervention studies indicate that although the plasma glutamine concentration can be kept constant during and after prolonged strenuous exercise, the glutamine supplementation does not prevent the postexercise changes in several aspects of immune function. Although glutamine is essential for lymphocyte proliferation, the plasma glutamine concentration does not fall sufficiently low after exercise to compromise the rate of proliferation. Acute intakes of glutamine of approximately 20-30 g seem to be without ill effect in healthy adult humans and no harm was reported in 1 study in which athletes consumed 28 g glutamine every day for 14 d. Doses of up to 0.65 g/kg body mass of glutamine (in solution or as a suspension) have been reported to be tolerated by patients and did not result in abnormal plasma ammonia levels. However, the suggested reasons for taking glutamine supplements (support for immune system, increased glycogen synthesis, anticatabolic effect) have received little support from well-controlled scientific studies in healthy, well-nourished humans.
Hegedus, Andrea; Kavanagh Williamson, Maia; Khan, Mariam B; Dias Zeidler, Julianna; Da Poian, Andrea T; El-Bacha, Tatiana; Struys, Eduard A; Huthoff, Hendrik
2017-12-01
Glutamine is a conditionally essential amino acid that is an important metabolic resource for proliferating tissues by acting as a proteinogenic amino acid, a nitrogen donor for biosynthetic reactions and as a substrate for the citric acid or tricarboxylic acid cycle. The human immunodeficiency virus type 1 (HIV-1) productively infects activated CD4 + T cells that are known to require glutamine for proliferation and for carrying out effector functions. As a virus, HIV-1 is furthermore entirely dependent on host metabolism to support its replication. In this study, we compared HIV-1 infected with uninfected activated primary human CD4 + T cells with regard to glutamine metabolism. We report that glutamine concentrations are elevated in HIV-1-infected cells and that glutamine is important to support HIV-1 replication, although the latter is closely linked to the glutamine dependency of cell survival. Metabolic tracer experiments showed that entry of glutamine-derived carbon into the citric acid cycle is unaffected by HIV-1 infection, but that there is an increase in the secretion of glutamine-derived glutamic acid from HIV-1-infected cells. Western blotting of key enzymes that metabolize glutamine revealed marked differences in the expression of glutaminase isoforms, KGA and CAG, as well as the PPAT enzyme that targets glutamine-derived nitrogen toward nucleotide synthesis. Altogether, this demonstrates that infection of CD4 + T cells with HIV-1 leads to considerable changes in the cellular glutamine metabolism.
Glutamine Metabolism in Cancer: Understanding the Heterogeneity
Cluntun, Ahmad A; Lukey, Michael J; Cerione, Richard A; Locasale, Jason W
2017-01-01
Reliance on glutamine has long been considered a hallmark of cancer cell metabolism. However, some recent studies have challenged this notion in vivo, prompting a need for further clarifications on the role of glutamine metabolism in cancer. We find that there is ample evidence of an essential role for glutamine in tumors and that a variety of factors, including tissue type, the underlying cancer genetics, the tumor microenvironment and other variables such as diet and host physiology collectively influence the role of glutamine in cancer. Thus the requirements for glutamine in cancer are overall highly heterogeneous. In this review, we discuss the implications both for basic science and for targeting glutamine metabolism in cancer therapy. PMID:28393116
Targeting Glutamine Induces Apoptosis: A Cancer Therapy Approach
Chen, Lian; Cui, Hengmin
2015-01-01
Glutamine metabolism has been proved to be dysregulated in many cancer cells, and is essential for proliferation of most cancer cells, which makes glutamine an appealing target for cancer therapy. In order to be well used by cells, glutamine must be transported to cells by specific transporters and converted to glutamate by glutaminase. There are currently several drugs that target glutaminase under development or clinical trials. Also, glutamine metabolism restriction has been proved to be effective in inhibiting tumor growth both in vivo and vitro through inducing apoptosis, growth arrest and/or autophagy. Here, we review recent researches about glutamine metabolism in cancer, and cell death induced by targeting glutamine, and their potential roles in cancer therapy. PMID:26402672
Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State
Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony
2012-01-01
A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary tumor growth was impaired in mice injected with parental cell line, but not in mice injected with Gln-ind cells. PMID:22570721
Glutamine metabolism and cycling in Neurospora crassa.
Mora, J
1990-01-01
Evidence for the existence of a glutamine cycle in Neurospora crassa is reviewed. Through this cycle glutamine is converted into glutamate by glutamate synthase and catabolized by the glutamine transaminase-omega-amidase pathway, the products of which (2-oxoglutarate and ammonium) are the substrates for glutamate dehydrogenase-NADPH, which synthesizes glutamate. In the final step ammonium is assimilated into glutamine by the action of a glutamine synthetase (GS), which is formed by two distinct polypeptides, one catalytically very active (GS beta), and the other (GS alpha) less active but endowed with the capacity to modulate the activity of GS alpha. Glutamate synthase uses the amide nitrogen of glutamine to synthesize glutamate; glutamate dehydrogenase uses ammonium, and both are required to maintain the level of glutamate. The energy expended in the synthesis of glutamine drives the cycle. The glutamine cycle is not futile, because it is necessary to drive an effective carbon flow to support growth; in addition, it facilitates the allocation of nitrogen or carbon according to cellular demands. The glutamine cycle which dissipates energy links catabolism and anabolism and, in doing so, buffers variations in the nutrient supply and drives energy generation and carbon flow for optimal cell function. PMID:2145504
Leite, Jaqueline Santos Moreira; Raizel, Raquel; Hypólito, Thaís Menezes; Rosa, Thiago Dos Santos; Cruzat, Vinicius Fernandes; Tirapegui, Julio
2016-08-01
In this study we investigated the chronic effects of oral l-glutamine and l-alanine supplementation, either in their free or dipeptide form, on glutamine-glutathione (GLN-GSH) axis and cytoprotection mediated by HSP-27 in rats submitted to resistance exercise (RE). Forty Wistar rats were distributed into 5 groups: sedentary; trained (CTRL); and trained supplemented with l-alanyl-l-glutamine, l-glutamine and l-alanine in their free form (GLN+ALA), or free l-alanine (ALA). All trained animals were submitted to a 6-week ladder-climbing protocol. Supplementations were offered in a 4% drinking water solution for 21 days prior to euthanasia. Plasma glutamine, creatine kinase (CK), myoglobin (MYO), and erythrocyte concentration of reduced GSH and glutathione disulfide (GSSG) were measured. In tibialis anterior skeletal muscle, GLN-GSH axis, thiobarbituric acid reactive substances (TBARS), and the expression of heat shock factor 1 (HSF-1), 27-kDa heat shock protein (HSP-27), and glutamine synthetase were determined. In CRTL animals, high-intensity RE reduced muscle glutamine levels and increased GSSG/GSH rate and TBARS, as well as augmented plasma CK and MYO levels. Conversely, l-glutamine-supplemented animals showed an increase in plasma and muscle levels of glutamine, with a reduction in GSSG/GSH rate, TBARS, and CK. Free l-alanine administration increased plasma glutamine concentration and lowered muscle TBARS. HSF-1 and HSP-27 were high in all supplemented groups when compared with CTRL (p < 0.05). The results presented herein demonstrate that l-glutamine supplemented with l-alanine, in both a free or dipeptide form, improve the GLN-GSH axis and promote cytoprotective effects in rats submitted to high-intensity RE training.
Hyzinski-García, María C.; Vincent, Melanie Y.; Haskew-Layton, Renée E.; Dohare, Preeti; Keller, Richard W.; Mongin, Alexander A.
2011-01-01
In our previous work, we found that perfusion of the rat cerebral cortex with hypoosmotic medium triggers massive release of the excitatory amino acid L-glutamate but decreases extracellular levels of L-glutamine (R.E. Haskew-Layton et al., PLoS ONE, 3: e3543). The release of glutamate was linked to activation of volume-regulated anion channels (VRAC), while mechanism(s) responsible for alterations in extracellular glutamine remained unclear. When mannitol was added to the hypoosmotic medium in order to reverse reductions in osmolarity, changes in microdialysate levels of glutamine were prevented, indicating an involvement of cellular swelling. Since the main source of brain glutamine is astrocytic synthesis and export, we explored the impact of hypoosmotic medium on glutamine synthesis and transport in rat primary astrocyte cultures. In astrocytes, a 40% reduction in medium osmolarity moderately stimulated the release of L-[3H]glutamine by ~2-fold and produced no changes in L-[3H]glutamine uptake. In comparison, hypoosmotic medium stimulated the release of glutamate (traced with D[3H]aspartate) by more than 20-fold. In whole-cell enzymatic assays, we discovered that hypoosmotic medium caused a 20% inhibition of astrocytic conversion of L[3H]glutamate into L-[3H]glutamine by glutamine synthetase. Using an HPLC assay we further found a 35% reduction in intracellular levels of endogenous glutamine. Overall, our findings suggest that cellular swelling (1) inhibits astrocytic glutamine synthetase activity, and (2) reduces substrate availability for this enzyme due to the activation of VRAC. These combined effects likely lead to reductions in astrocytic glutamine export in vivo and may partially explain occurrence of hyperexcitability and seizures in human hyponatremia. PMID:21517854
Boehm, Michael; Herzog, Rebecca; Gruber, Katharina; Lichtenauer, Anton Michael; Kuster, Lilian; Csaicsich, Dagmar; Gleiss, Andreas; Alper, Seth L.; Aufricht, Christoph; Vychytil, Andreas
2016-01-01
Background Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. Methods In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. Results AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07–2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. Conclusion We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD. PMID:27768727
The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, S.M.; Habash, D.Z.
2009-07-02
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulationmore » of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.« less
Verdon, Quentin; Boonen, Marielle; Ribes, Christopher; Jadot, Michel; Sagné, Corinne
2017-01-01
Lysosomes degrade cellular components sequestered by autophagy or extracellular material internalized by endocytosis and phagocytosis. The macromolecule building blocks released by lysosomal hydrolysis are then exported to the cytosol by lysosomal transporters, which remain undercharacterized. In this study, we designed an in situ assay of lysosomal amino acid export based on the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis that detects lysosomal storage. This assay was used to screen candidate lysosomal transporters, leading to the identification of sodium-coupled neutral amino acid transporter 7 (SNAT7), encoded by the SLC38A7 gene, as a lysosomal transporter highly selective for glutamine and asparagine. Cell fractionation confirmed the lysosomal localization of SNAT7, and flux measurements confirmed its substrate selectivity and showed a strong activation by the lysosomal pH gradient. Interestingly, gene silencing or editing experiments revealed that SNAT7 is the primary permeation pathway for glutamine across the lysosomal membrane and it is required for growth of cancer cells in a low free-glutamine environment, when macropinocytosis and lysosomal degradation of extracellular proteins are used as an alternative source of amino acids. SNAT7 may, thus, represent a novel target for glutamine-related anticancer therapies. PMID:28416685
Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang
2014-05-01
Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine. Copyright © 2014 Elsevier B.V. All rights reserved.
Buijs, Nikki; Brinkmann, Saskia J H; Oosterink, J Efraim; Luttikhold, Joanna; Schierbeek, Henk; Wisselink, Willem; Beishuizen, Albertus; van Goudoever, Johannes B; Houdijk, Alexander P J; van Leeuwen, Paul A M; Vermeulen, Mechteld A R
2014-11-01
Arginine plays a role in many different pathways in multiple cell types. Consequently, a shortage of arginine, caused by pathologic conditions such as cancer or injury, has the potential to disturb many cellular and organ functions. Glutamine is the ultimate source for de novo synthesis of arginine in humans via the intestinal-renal axis. Therefore, we hypothesized that parenteral glutamine supplementation may stimulate the interorgan pathway of arginine production. The objectives were to quantify arginine production from its precursor glutamine and to establish the contribution of the kidneys to de novo synthesis of arginine in patients receiving intravenous supplementation of glutamine dipeptide during major abdominal surgery. Whole-body and renal metabolism of glutamine, citrulline, and arginine was assessed by stable isotope techniques in 7 patients receiving a perioperative supplement of intravenous alanyl-glutamine (0.5 g · kg(-1) · d(-1)). Plasma glutamine, citrulline, and arginine concentrations increased significantly in patients receiving intravenous glutamine dipeptide. At whole-body level, 91% of total citrulline turnover was derived from glutamine, whereas 49% of whole-body citrulline turnover was used for de novo synthesis of arginine. The kidneys were responsible for 75% of whole-body arginine production from citrulline. Glutamine and citrulline are important sources for de novo arginine synthesis. The kidneys are the main production site for endogenous arginine. After comparison of these results with previous similar studies, our data suggest that an intravenous glutamine supplement doubles renal arginine production from citrulline. This trial was registered at www.trialregister.nl as NTR2914. © 2014 American Society for Nutrition.
Glutamate and CO2 production from glutamine in incubated enterocytes of adult and very old rats.
Meynial-Denis, Dominique; Bielicki, Guy; Beaufrère, Anne-Marie; Mignon, Michelle; Mirand, Philippe Patureau; Renou, Jean-Pierre
2013-04-01
Glutamine is the major fuel for enterocytes and promotes the growth of intestinal mucosa. Although oral glutamine exerts a positive effect on intestinal villus height in very old rats, how glutamine is used by enterocytes is unclear. Adult (8 months) and very old (27 months) female rats were exposed to intermittent glutamine supplementation for 50% of their age lifetime. Treated rats received glutamine added to their drinking water, and control rats received water alone. Jejunal epithelial cells (~300×10(6) cells) were incubated in oxygenated Krebs-Henseleit buffer for 30 min containing [1-(13)C] glutamine (~17 M) for analysis of glutamine metabolites by (13)C nuclear magnetic resonance ((13)C NMR). An aliquot fraction was incubated in the presence of [U-(14)C] glutamine to measure produced CO2. Glutamine pretreatment increased glutamate production and decreased CO2 production in very old rats. The ratio CO2/glutamate, which was very high in control very old rats, was similar at both ages after glutamine pretreatment, as if enterocytes from very old rats recovered the metabolic abilities of enterocytes from adult rats. Our results suggest that long-term treatment with glutamine started before advanced age (a) prevented the loss of rat body weight without limiting sarcopenia and (b) had a beneficial effect on enterocytes from very old rats probably by favoring the role of glutamate as a precursor for glutathione, arginine and proline biosynthesis, which was not detected in (13)C NMR spectra in our experimental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.
Interrelationships between glutamine and citrulline metabolism
USDA-ARS?s Scientific Manuscript database
This article analyzes the contribution of glutamine to the synthesis of citrulline and reviews the evidence that glutamine supplementation increases citrulline production. Glutamine supplementation has been proposed in the treatment of critically ill patients; however, a recent large multicenter ran...
Renal Hemodynamics and Ammoniagenesis
Lemieux, Guy; Vinay, Patrick; Cartier, Pierre
1974-01-01
Renal production of ammonia by the left kidney was studied in 31 acidotic dogs (NH4Cl) after acute constriction of the renal artery. Renal ammoniagenesis fell in direct proportion with the reduction in glomerular filtration rate and renal plasma flow. The renal extraction of glutamine by the experimental kidney fell in direct proportion with the reduction in renal hemodynamics. Extracted glutamine remained greater than filtered glutamine indicating that both the luminal and antiluminal transport sites were operative. The relationship between renal extraction of glutamine and ammoniagenesis observed during control was maintained after renal artery constriction (1.7 μmol NH3 produced for each μmol of glutamine extracted). Systemic venous or renal intra-arterial infusion of glutamine during arterial constriction increased renal production of ammonia to or above control values. These observations indicate that the mechanisms responsible for glutamine extraction and ammonia production were operating normally despite reduced hemodynamics. When measured immediately after arterial clamping, the renal venous pNH3 was found to rise significantly decreasing progressively thereafter towards control values. The extracted fraction of total glutamine delivered to the kidney (31%) did not change after acute reduction of the glutamine load. Thus, the antiluminal extraction site was incapable of lowering renal venous plasma glutamine concentration below 0.33 μM/ml. In a second series of experiments, the properties of the antiluminal site of transport for glutamine were studied after complete occlusion of the left ureter in acidotic and nonacidotic animals. Under these circumstances, it was demonstrated that the antiluminal site is capable of extracting sufficient glutamine to maintain total ammonia production at 60% or more of control. In acidotic animals, changes in cellular pNH3 appeared to play a key role on the antiluminal extraction of glutamine since the significant rise in renal blood flow often observed after ureteral occlusion prevented the rise in pNH3 noted when blood flow remained constant. Thus, when renal blood flow rose glutamine extraction and ammonia production were maintained at control values. In these acidotic animals, glutamine infusion failed to influence ammonia production until luminal transport was restored by release of ureteral clamp and resumption of glomerular filtration. The latter observation establishes that reabsorbed glutamine is utilized at least in part for ammonia production. PMID:4812445
Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.
Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung
2014-05-01
To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and cultured without glutamine showed higher levels of ROS and IL-8 than those transfected with negative control siRNA; increased levels of ROS and IL-8 were suppressed by the treatment of glutamine. Glutamine deprivation induces ROS production, NF-κB activation, and IL-8 expression as well as a reduction in GSH in A-T fibroblasts, all of which are attenuated by glutamine supplementation.
Exogenous Glutamine in Respiratory Diseases: Myth or Reality?
Oliveira, Gisele P.; de Abreu, Marcelo Gama; Pelosi, Paolo; Rocco, Patricia R. M.
2016-01-01
Several respiratory diseases feature increased inflammatory response and catabolic activity, which are associated with glutamine depletion; thus, the benefits of exogenous glutamine administration have been evaluated in clinical trials and models of different respiratory diseases. Recent reviews and meta-analyses have focused on the effects and mechanisms of action of glutamine in a general population of critical care patients or in different models of injury. However, little information is available about the role of glutamine in respiratory diseases. The aim of the present review is to discuss the evidence of glutamine depletion in cystic fibrosis (CF), asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and lung cancer, as well as the results of exogenous glutamine administration in experimental and clinical studies. Exogenous glutamine administration might be beneficial in ARDS, asthma, and during lung cancer treatment, thus representing a potential therapeutic tool in these conditions. Further experimental and large randomized clinical trials focusing on the development and progression of respiratory diseases are necessary to elucidate the effects and possible therapeutic role of glutamine in this setting. PMID:26861387
Glutamine: Precursor or nitrogen donor for citrulline synthesis?
USDA-ARS?s Scientific Manuscript database
Although glutamine is considered the main precursor for citrulline synthesis, the current literature does not differentiate between the contribution of glutamine carbon skeleton, versus nonspecific nitrogen (i.e., ammonia) and carbon derived from glutamine oxidation. To elucidate the role of glutami...
Glutamine and cancer: cell biology, physiology, and clinical opportunities
Hensley, Christopher T.; Wasti, Ajla T.; DeBerardinis, Ralph J.
2013-01-01
Glutamine is an abundant and versatile nutrient that participates in energy formation, redox homeostasis, macromolecular synthesis, and signaling in cancer cells. These characteristics make glutamine metabolism an appealing target for new clinical strategies to detect, monitor, and treat cancer. Here we review the metabolic functions of glutamine as a super nutrient and the surprising roles of glutamine in supporting the biological hallmarks of malignancy. We also review recent efforts in imaging and therapeutics to exploit tumor cell glutamine dependence, discuss some of the challenges in this arena, and suggest a disease-focused paradigm to deploy these emerging approaches. PMID:23999442
Reid, Michael A.; Lowman, Xazmin H.; Pan, Min; Tran, Thai Q.; Warmoes, Marc O.; Ishak Gabra, Mari B.; Yang, Ying; Locasale, Jason W.; Kong, Mei
2016-01-01
Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability. PMID:27585591
Massive glutamine cyclization to pyroglutamic acid in human serum discovered using NMR spectroscopy.
Nagana Gowda, G A; Gowda, Yashas N; Raftery, Daniel
2015-04-07
Glutamine is one of the most abundant metabolites in blood and is a precursor as well as end product central to numerous important metabolic pathways. A number of surprising and unexpected roles for glutamine, including cancer cell glutamine addiction discovered recently, stress the importance of accurate analysis of glutamine concentrations for understanding its role in health and numerous diseases. Utilizing a recently developed NMR approach that offers access to an unprecedented number of quantifiable blood metabolites, we have identified a surprising glutamine cyclization to pyroglutamic acid that occurs during protein removal. Intact, ultrafiltered and protein precipitated samples from the same pool of human serum were comprehensively investigated using (1)H NMR spectroscopy at 800 MHz to detect and quantitatively evaluate the phenomenon. Interestingly, although glutamine cyclization occurs in both ultrafiltered and protein precipitated serum, the cyclization was not detected in intact serum. Strikingly, due to cyclization, the apparent serum glutamine level drops by up to 75% and, concomitantly, the pyroglutamic acid level increases proportionately. Further, virtually under identical conditions, the magnitude of cyclization is vastly different for different portions of samples from the same pool of human serum. However, the sum of glutamine and pyroglutamic acid concentrations in each sample remains the same for all portions. These unexpected findings indicate the importance of considering the sum of apparent glutamine and pyroglutamic acid levels, obtained from the contemporary analytical methods, as the actual blood glutamine level for biomarker discovery and biological interpretations.
Tekın, Ahmet; Yemış, Mustafa; Küçükkartallar, Tevfik; Vatansever, Celalettin; Çakir, Murat; Yilmaz, Hüseyin; Toy, Hatice; Özer, Şükru
2010-09-01
The aim of this study was to examine whether liquid glutamine given to rabbits after resection is as effective as intravenous (i.v.) glutamine and to study the positive effects of glutamine on mucosal atrophy that occurs after bowel resection. Thirty rabbits with an average weight of 2500 g were used. On the third day, 30 rabbits were divided into three groups as follows: Group I (controls): bowel resection + oral total parenteral nutrition, Group II (oral liquid L-glutamine): Bowel resection + oral total parenteral nutrition + oral liquid L-glutamine, and Group III (i.v. L-glutamine): bowel resection + oral total parenteral nutrition + i.v. L-glutamine. On the postoperative 7th day, all subjects were sacrificed to examine intestinal adaptation indicators. There was an increase in average villus height and crypt depth in Group III compared to the other groups (p=0.0001). In Group II, the villus height and crypt depth increased more than in Group I, but the difference was less significant (p=0.038). There was no significant difference between groups in terms of average goblet cell proliferation. In our experimental study, it was observed that the orally given L-glutamine liquid in the rabbit intestinal adaptation model prevented mucosal atrophy after 50% bowel resection and even increased mucosa mass. However, i.v. glutamine led to similar and even better results. Neither route of glutamine administration was determined to have an effect on goblet cell proliferation.
Pogorelova, T N; Gunko, V O; Linde, V A
2014-01-01
Metabolism of glutamine and glutamic acid has been investigated in the placenta and amniotic fluid under conditions of placental insufficiency. The development of placental insufficiency is characterized by the increased content of glutamic acid and a decrease of glutamine in both placenta and amniotic fluid. These changes changes were accompanied by changes in the activity of enzymes involved in the metabolism of these amino acids. There was a decrease in glutamate dehydrogenase activity and an increase in glutaminase activity with the simultaneous decrease of glutamine synthetase activity. The compensatory decrease in the activity of glutamine keto acid aminotransferase did not prevent a decrease in the glutamine level. The impairments in the system glutamic acid-glutamine were more pronounced during the development of premature labor.
Hu, Kai; Zhang, Jing-Xiu; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Zhou, Xiao-Qiu
2015-06-01
This study was designed to investigate the effects of dietary glutamine on the growth performance, cytokines, target of rapamycin (TOR), and antioxidant-related parameters in the spleen and head kidney of juvenile Jian carp (Cyprinus carpio var. Jian). Fish were fed the basal (control) and glutamine-supplemented (12.0 g glutamine kg(-1) diet) diets for 6 weeks. Results indicated that the dietary glutamine supplementation improved the growth performance, spleen protein content, serum complement 3 content, and lysozyme activity in fish. In the spleen, glutamine down-regulated the expression of the interleukin 1 and interleukin 10 genes, and increased the level of phosphorylation of TOR protein. In the head kidney, glutamine down-regulated the tumor necrosis factor α and interleukin 10 gene expressions, phosphorylated and total TOR protein levels, while up-regulated the transforming growth factor β2 gene expression. Furthermore, the protein carbonyl content was decreased in the spleen of fish fed glutamine-supplemented diet; conversely, the anti-hydroxyl radical capacity and glutathione content in the spleen were increased by glutamine. However, diet supplemented with glutamine did not affect the lipid peroxidation, anti-superoxide anion capacity, and antioxidant enzyme activities in the spleen. Moreover, all of these antioxidant parameters in the head kidney were not affected by glutamine. Results from the present experiment showed the importance of dietary supplementation of glutamine in benefaction of the growth performance and several components of the innate immune system, and the deferential role in cytokine gene expression, TOR kinase activity, and antioxidant status between the spleen and head kidney of juvenile Jian carp.
Holecek, Milan; Muthny, Tomas; Kovarik, Miroslav; Sispera, Ludek
2006-01-01
Glutamine and branched-chain amino acids (BCAA; valine, leucine, and isoleucine) are used as nutrition supplements in the treatment of proteocatabolic illness. We hypothesized that simultaneous administration of BCAA and glutamine affects protein metabolism more significantly than separate administration. In the present study, we evaluated their effect on protein synthesis in skeletal muscle, liver, and jejunum of septic rats. Twenty-four hours after induction of sepsis by subcutaneous injection of turpentine, the rats were infused for 6 hours with 5 mL of 1.75% glutamine, 1.75% BCAA, 1.75% glutamine+BCAA, or saline solution. The control group consisted of intact rats infused with saline. Protein synthesis was measured at the end of infusion by a "flooding method" with [3,4,5-(3)H]phenylalanine. In turpentine-treated animals, we observed a decrease in glutamine concentration in blood plasma and skeletal muscle, a decrease in BCAA concentration in liver and jejunum, and a decrease in protein synthesis in all tissues. Glutamine or glutamine+BCAA infusion increased glutamine concentration in plasma and muscle and stimulated protein synthesis in the liver. The BCAA infusion enhanced concentrations of BCAA in plasma and tissues, but the effect of BCAA on protein synthesis was insignificant. Synergistic effect of simultaneous infusion of glutamine and BCAA on protein synthesis was not observed. We conclude that glutamine infusion to rats with septic injury may significantly improve impaired protein synthesis in the liver and that there is no synergistic effect of glutamine and BCAA infusion on protein synthesis in skeletal muscle, liver, and jejunum.
da Rosa, Carlos Vinicius D.; Azevedo, Silvia C. S. F.; Bazotte, Roberto B.; Peralta, Rosane M.; Buttow, Nilza C.; Pedrosa, Maria Montserrat D.; de Godoi, Vilma A. F.; Natali, Maria Raquel M.
2015-01-01
We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a whole. Thus, we can conclude that local differences in absorption and metabolism could explain the differences between the supplementation with L-glutamine or GDP. PMID:26659064
da Rosa, Carlos Vinicius D; Azevedo, Silvia C S F; Bazotte, Roberto B; Peralta, Rosane M; Buttow, Nilza C; Pedrosa, Maria Montserrat D; de Godoi, Vilma A F; Natali, Maria Raquel M
2015-01-01
We evaluated the effects of the supplementation with L-glutamine and glutamine dipeptide (GDP) on biochemical and morphophysiological parameters in streptozotocin-diabetic rats. For this purpose, thirty animals were distributed into six groups treated orally (gavage) during thirty days: non diabetic rats (Control) + saline, diabetic + saline; Control + L-glutamine (248 mg/kg), Diabetic + L-glutamine (248 mg/kg), Control + GDP (400 mg/kg), Diabetic + GDP (400 mg/kg). Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg) and confirmed by fasting glucose ≥ 200 mg/dL. Physiological parameters, i.e., body mass, food intake, blood glucose, water intake, urine and faeces were evaluated during supplementation. After the period of supplementation, the animals were euthanized. The blood was collected for biochemical assays (fructosamine, transaminases, lipid profile, total protein, urea, ammonia). Moreover, the jejunum was excised and stored for morphophysiological assays (intestinal enzyme activity, intestinal wall morphology, crypt proliferative index, number of serotoninergic cells from the mucosa, and vipergic neurons from the submucosal tunica). The physiological parameters, protein metabolism and intestinal enzyme activity did not change with the supplementation with L-glutamine or GDP. In diabetic animals, transaminases and fructosamine improved with L-glutamine and GDP supplementations, while the lipid profile improved with L-glutamine. Furthermore, both forms of supplementation promoted changes in jejunal tunicas and wall morphometry of control and diabetic groups, but only L-glutamine promoted maintenance of serotoninergic cells and vipergic neurons populations. On the other hand, control animals showed changes that may indicate negative effects of L-glutamine. Thus, the supplementation with L-glutamine was more efficient for maintaining intestinal morphophysiology and the supplementation with GDP was more efficient to the organism as a whole. Thus, we can conclude that local differences in absorption and metabolism could explain the differences between the supplementation with L-glutamine or GDP.
GLUTAMINE AND HYPERAMMONEMIC CRISES IN PATIENTS WITH UREA CYCLE DISORDERS
Lee, B.; Diaz, G.A.; Rhead, W.; Lichter-Konecki, U.; Feigenbaum, A.; Berry, S.A.; Le Mons, C.; Bartley, J.; Longo, N.; Nagamani, S.C.; Berquist, W.; Gallagher, R.C.; Harding, C.O.; McCandless, S.E.; Smith, W.; Schulze, A.; Marino, M.; Rowell, R.; Coakley, D.F.; Mokhtarani, M.; Scharschmidt, B.F.
2016-01-01
Blood ammonia and glutamine levels are used as biomarkers of control in patients with urea cycle disorders (UCDs). This study was undertaken to evaluate glutamine variability and utility as a predictor of hyperammonemic crises (HACs) in UCD patients. Methods The relationships between glutamine and ammonia levels and the incidence and timing of HACs were evaluated in over 100 adult and pediatric UCD patients who participated in clinical trials of glycerol phenylbutyrate. Results The median (range) intra-subject 24-hour coefficient of variation for glutamine was 15% (8–29%) as compared with 56% (28%–154%) for ammonia, and the correlation coefficient between glutamine and concurrent ammonia levels varied from 0.17 to 0.29. Patients with baseline (fasting) glutamine values >900 µmol/L had higher baseline ammonia levels (mean [SD]: 39.6 [26.2] µmol/L) than patients with baseline glutamine ≤900 µmol/L (26.6 [18.0] µmol/L). Glutamine values >900 µmol/L during the study were associated with an approximately 2-fold higher HAC risk (odds ratio [OR]=1.98; p=0.173). However, glutamine lost predictive significance (OR=1.47; p=0.439) when concomitant ammonia was taken into account, whereas the predictive value of baseline ammonia ≥ 1.0 upper limit of normal (ULN) was highly statistically significant (OR=4.96; p=0.013). There was no significant effect of glutamine >900 µmol/L on time to first HAC crisis (hazard ratio [HR]=1.14; p=0.813), but there was a significant effect of baseline ammonia ≥ 1.0 ULN (HR=4.62; p=0.0011). Conclusions The findings in this UCD population suggest that glutamine is a weaker predictor of HACs than ammonia and that the utility of the predictive value of glutamine will need to take into account concurrent ammonia levels. PMID:26586473
Effects of hyperthyroidism and hypothyroidism on glutamine metabolism by skeletal muscle of the rat.
Parry-Billings, M; Dimitriadis, G D; Leighton, B; Bond, J; Bevan, S J; Opara, E; Newsholme, E A
1990-01-01
1. The effects of hyperthyroidism and hypothyroidism on the concentrations of glutamine and other amino acids in the muscle and plasma and on the rates of glutamine and alanine release from incubated isolated stripped soleus muscle of the rat were investigated. 2. Hyperthyroidism decreased the concentration of glutamine in soleus muscle but was without effect on that in the gastrocnemius muscle or in the plasma. Hyperthyroidism also increased markedly the rate of release of glutamine from the incubated soleus muscle. 3. Hypothyroidism decreased the concentrations of glutamine in the gastrocnemius muscle and plasma but was without effect on that in soleus muscle. Hypothyroidism also decreased markedly the rate of glutamine release from the incubated soleus muscle. 4. Thyroid status was found to have marked effects on the rate of glutamine release by skeletal muscle per se, and may be important in the control of this process in both physiological and pathological conditions. PMID:2268261
Glutamine deprivation stimulates mTOR-JNK-dependent chemokine secretion
Shanware, Naval P.; Bray, Kevin; Eng, Christina H.; Wang, Fang; Follettie, Maximillian; Myers, Jeremy; Fantin, Valeria R.; Abraham, Robert T.
2014-01-01
The non-essential amino acid, glutamine, exerts pleiotropic effects on cell metabolism, signalling and stress resistance. Here we demonstrate that short-term glutamine restriction triggers an endoplasmic reticulum (ER) stress response that leads to production of the pro-inflammatory chemokine, interleukin-8 (IL-8). Glutamine deprivation-induced ER stress triggers colocalization of autophagosomes, lysosomes and the Golgi into a subcellular structure whose integrity is essential for IL-8 secretion. The stimulatory effect of glutamine restriction on IL-8 production is attributable to depletion of tricarboxylic acid cycle intermediates. The protein kinase, mTOR, is also colocalized with the lysosomal membrane clusters induced by glutamine deprivation, and inhibition of mTORC1 activity abolishes both endomembrane reorganization and IL-8 secretion. Activated mTORC1 elicits IL8 gene expression via the activation of an IRE1-JNK signalling cascade. Treatment of cells with a glutaminase inhibitor phenocopies glutamine restriction, suggesting that these results will be relevant to the clinical development of glutamine metabolism inhibitors as anticancer agents. PMID:25254627
Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei
2017-11-01
Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.
Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.
2017-01-01
Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer. PMID:29107960
Further Concerns About Glutamine: A Case Report on Hyperammonemic Encephalopathy.
Cioccari, Luca; Gautschi, Matthias; Etter, Reto; Weck, Anja; Takala, Jukka
2015-10-01
We report a case of a woman with hyperammonemic encephalopathy following glutamine supplementation. Case report. Plasma amino acid analysis suggestive of a urea cycle defect and initiation of a treatment with lactulose and the two ammonia scavenger drugs sodium benzoate and phenylacetate. Together with a restricted protein intake ammonia and glutamine plasma levels decreased with subsequent improvement of the neurological status. Massive catabolism and exogenous glutamine administration may have contributed to hyperammonemia and hyperglutaminemia in this patient. This case adds further concerns regarding glutamine administration to critically ill patients and implies the importance of monitoring ammonia and glutamine serum levels in such patients.
Sen, Nirmalya; Cross, Allison M; Lorenzi, Philip L; Khan, Javed; Gryder, Berkley E; Kim, Suntae; Caplen, Natasha J
2018-06-06
Ewing sarcoma (EWS) is a soft tissue and bone tumor that occurs primarily in adolescents and young adults. In most cases of EWS, the chimeric transcription factor, EWS-FLI1 is the primary oncogenic driver. The epigenome of EWS cells reflects EWS-FLI1 binding and activation or repression of transcription. Here, we demonstrate that EWS-FLI1 positively regulates the expression of proteins required for serine-glycine biosynthesis and uptake of the alternative nutrient source glutamine. Specifically, we show that EWS-FLI1 activates expression of PHGDH, PSAT1, PSPH, and SHMT2. Using cell-based studies, we also establish that EWS cells are dependent on glutamine for cell survival and that EWS-FLI1 positively regulates expression of the glutamine transporter, SLC1A5 and two enzymes involved in the one-carbon cycle, MTHFD2 and MTHFD1L. Inhibition of serine-glycine biosynthesis in EWS cells impacts their redox state leading to an accumulation of reactive oxygen species, DNA damage, and apoptosis. Importantly, analysis of EWS primary tumor transcriptome data confirmed that the aforementioned genes we identified as regulated by EWS-FLI1 exhibit increased expression compared with normal tissues. Furthermore, retrospective analysis of an independent data set generated a significant stratification of the overall survival of EWS patients into low- and high-risk groups based on the expression of PHGDH, PSAT1, PSPH, SHMT2, SLC1A5, MTHFD2, and MTHFD1L. In summary, our study demonstrates that EWS-FLI1 reprograms the metabolism of EWS cells and that serine-glycine metabolism or glutamine uptake are potential targetable vulnerabilities in this tumor type. © 2018 The Authors. Molecular Carcinogenesis Published by WileyPeriodicals, Inc.
Coutinho, F; Castro, C; Rufino-Palomares, E; Ordóñez-Grande, B; Gallardo, M A; Oliva-Teles, A; Peres, H
2016-01-01
A study was undertaken to evaluate dietary glutamine supplementation effects on gilthead sea bream performance, intestinal nutrient absorption capacity, hepatic and intestinal glutamine metabolism and oxidative status. For that purpose gilthead sea bream juveniles (mean weight 13.0g) were fed four isolipidic (18% lipid) and isonitrogenous (43% protein) diets supplemented with 0, 0.5, 1 and 2% glutamine for 6weeks. Fish performance, body composition and intestinal nutrient absorption capacity were not affected by dietary glutamine levels. Hepatic and intestinal glutaminase (GlNase), glutamine synthetase (GSase), alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase activities were also unaffected by dietary glutamine supplementation. In the intestine GlNase activity was higher and GSase/GlNase ratio was two-fold lower than in the liver, suggesting a higher use of glutamine for energy production by the intestine than by the liver. The liver showed higher catalase and glucose-6-phosphate dehydrogenase activities, while the intestine presented higher glutathione peroxidase and glutathione reductase activities and oxidised glutathione content, which seems to reveal a higher glutathione dependency of the intestinal antioxidant response. Total and reduced glutathione contents in liver and intestine and superoxide dismutase activity in the intestine were enhanced by dietary glutamine, though lipid peroxidation values were not affected. Overall, differences between liver and intestine glutamine metabolism and antioxidant response were identified and the potential of dietary glutamine supplementation to gilthead sea bream's antioxidant response was elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, Jianmin; Chen, Yanping; Vail, Graham; Chow, Heiman; Zhang, Yang; Louie, Lauren; Li, Jiali; Hart, Ronald P; Plummer, Mark R; Herrup, Karl
2016-08-18
Our previous studies of Alzheimer's disease (AD) suggested that glutamine broadly improves cellular readiness to respond to stress and acts as a neuroprotectant both in vitro and in AD mouse models. We now expand our studies to a second neurodegenerative disease, ataxia-telangiectasia (A-T). Unlike AD, where clinically significant cognitive decline does not typically occur before age 65, A-T symptoms appear in early childhood and are caused exclusively by mutations in the ATM (A-T mutated) gene. Genetically ATM-deficient mice and wild type littermates were maintained with or without 4 % glutamine in their drinking water for several weeks. In ATM mutants, glutamine supplementation restored serum glutamine and glucose levels and reduced body weight loss. Lost neurophysiological function assessed through the magnitude of hippocampal long term potentiation was significantly restored. Glutamine supplemented mice also showed reduced thymus pathology and, remarkably, a full one-third extension of lifespan. In vitro assays revealed that ATM-deficient cells are more sensitive to glutamine deprivation, while supra-molar glutamine (8 mM) partially rescued the reduction of BDNF expression and HDAC4 nuclear translocation of genetically mutant Atm(-/-) neurons. Analysis of microarray data suggested that glutamine metabolism is significantly altered in human A-T brains as well. Glutamine is a powerful part of an organism's internal environment. Changes in its concentrations can have a huge impact on the function of all organ systems, especially the brain. Glutamine supplementation thus bears consideration as a therapeutic strategy for the treatment of human A-T and perhaps other neurodegenerative diseases.
Smedberg, Marie; Wernerman, Jan
2016-11-10
Glutamine has been launched as a conditionally indispensible amino acid for the critically ill. Supplementation has been recommended in guidelines from international societies. Although data have been presented pointing out that glutamine supplementation may not be for everybody, recommendations for treatments and design of study protocols have included all critically ill patients. Results from more recent studies and meta-analyses indicate that indiscriminate use of glutamine supplementation in critically ill patients may actually cause harm rather than beneficial effects. This viewpoint sorts out arguments of controversy in the glutamine story.
Bencharif, D; Amirat, L; Pascal, O; Anton, M; Schmitt, E; Desherces, S; Delhomme, G; Langlois, M-L; Barrière, P; Larrat, M; Tainturier, D
2010-04-01
Twenty sperm samples from five dogs were frozen in liquid nitrogen at -196 degrees C in 16 different media, two control media containing 20% egg yolk and 6% low-density lipoproteins (LDL); 10 test media containing 6% LDL (the active cryoprotective ingredient of chicken egg yolk) combined with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 mmol of glutamine respectively at 4%, 5%, 7%, and 8% LDL. Following thawing, sperm mobility was assessed using an image analyser, HAMILTON THORN CERROS 12. The percentage of mobile spermatozoa was 62.05% in the 6% LDL + 20 mmol glutamine medium compared with 48.90% in the egg yolk-based medium (p < 0.05) or 57.55% for the 6% LDL medium (p < 0.05). Furthermore, in most cases, the motility parameters (average path velocity, curvilinear velocity, straight line velocity) in the 6% LDL + 20 mmol glutamine medium, were superior, to a statistically significant extent, to those in the control media. Finally, the 6% LDL + 20 mmol glutamine combination provides spermatozoa with better protection during freezing than egg yolk or the 6% LDL medium alone in terms of acrosome integrity (fluorescein isothiocyanate--Pisum sativum agglutinin test: p < 0.05), the flagellar plasma membrane (hypo-osmotic test: p < 0.05 for 6% LDL), the DNA (acridine orange test; no significant difference) and the integrity of the acrosome (Spermac test: no significant difference).
Khan, Md Wasim; Layden, Brian T; Chakrabarti, Partha
2018-06-01
Glutamine, a well-established oncometabolite, anaplerotically fuels mitochondrial energy metabolism and modulates activity of mammalian/mechanistic target of rapamycin complexes (mTOR). Currently, mTOR inhibitors are in clinical use for certain types of cancer but with limited success. Since glutamine is essential for growth of many cancers, we reasoned that glutamine deprivation under conditions of mTOR inhibition should be more detrimental to cancer cell survival. However, our results show that when cells are deprived of glutamine concomitant with mTOR inhibition, hepatocarcinoma cells elicit an adaptive response which aids in their survival due to enhanced autophagic flux. Moreover, inhibition of mTOR promotes Akt ubiquitination and its proteasomal degradation however we show that Akt degradation is abrogated by increased autophagy following glutamine withdrawal. Under conditions of glutamine deficiency and mTOR inhibition, the enhanced stability of Akt protein may provide survival cues to cancer cells. Thus, our data uncovers a novel molecular link between glutamine metabolism, autophagy and stability of Akt with cancer cell survival. Copyright © 2018 Elsevier B.V. All rights reserved.
A stochastic modeling of isotope exchange reactions in glutamine synthetase
NASA Astrophysics Data System (ADS)
Kazmiruk, N. V.; Boronovskiy, S. E.; Nartsissov, Ya R.
2017-11-01
The model presented in this work allows simulation of isotopic exchange reactions at chemical equilibrium catalyzed by a glutamine synthetase. To simulate the functioning of the enzyme the algorithm based on the stochastic approach was applied. The dependence of exchange rates for 14C and 32P on metabolite concentration was estimated. The simulation results confirmed the hypothesis of the ascertained validity for preferred order random binding mechanism. Corresponding values of K0.5 were also obtained.
Haque, S M; Chen, K; Usui, N; Iiboshi, Y; Okuyama, H; Masunari, A; Cui, L; Nezu, R; Takagi, Y; Okada, A
1996-01-01
OBJECTIVE: The authors determined the effects of alanyl-glutamine-supplemented total parenteral nutrition (TPN) on mucosal metabolism, integrity, and permeability of the small intestine in rats. METHODS: Male Sprague-Dawley rats were randomized to receive TPN supplemented with a conventional amino acids mixture (STD group) or the same solution supplemented with alanyl-glutamine; both solutions were isocaloric and isonitrogenous. On the seventh day of TPN, D-xylose and fluorescein isothiocyanate (FITC)-dextran were administered orally. One hour later, superior mesenteric vein (SMV) D-xylose and plasma FITC-dextran concentration were measured. Intestinal blood flow and calculated intestinal substrates flux were measured with ultrasonic transit time flowmetery. RESULTS: Plasma FITC-dextran increased significantly in the STD group. Intestinal blood flow and SMV D-xylose concentration did not differ between the groups. Mucosa weight, villus height, mucosal wall thickness, mucosal protein, and DNA and RNA content in jejunal mucosa were significantly increased in the alanyl-glutamine group. Jejunal mucosal glutaminase activity and net intestinal uptake of glutamine (glutamine flux) were significantly higher in the alanyl-glutamine group as compared with the STD group. CONCLUSION: Addition of alanyl-glutamine dipeptide to the TPN solution improves intestinal glutamine metabolism and prevents mucosal atrophy and deterioration of permeability. PMID:8604914
Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells.
Tiburcio-Félix, Reynaldo; Escalante-López, Miguel; López-Bayghen, Bruno; Martínez, Daniel; Hernández-Kelly, Luisa C; Zinker, Samuel; Hernández-Melchor, Dinorah; López-Bayghen, Esther; Olivares-Bañuelos, Tatiana N; Ortega, Arturo
2018-06-01
Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.
Glutamine Randomized Studies in Early Life: The Unsolved Riddle of Experimental and Clinical Studies
Briassouli, Efrossini; Briassoulis, George
2012-01-01
Glutamine may have benefits during immaturity or critical illness in early life but its effects on outcome end hardpoints are controversial. Our aim was to review randomized studies on glutamine supplementation in pups, infants, and children examining whether glutamine affects outcome. Experimental work has proposed various mechanisms of glutamine action but none of the randomized studies in early life showed any effect on mortality and only a few showed some effect on inflammatory response, organ function, and a trend for infection control. Although apparently safe in animal models (pups), premature infants, and critically ill children, glutamine supplementation does not reduce mortality or late onset sepsis, and its routine use cannot be recommended in these sensitive populations. Large prospectively stratified trials are needed to better define the crucial interrelations of “glutamine-heat shock proteins-stress response” in critical illness and to identify the specific subgroups of premature neonates and critically ill infants or children who may have a greater need for glutamine and who may eventually benefit from its supplementation. The methodological problems noted in the reviewed randomized experimental and clinical trials should be seriously considered in any future well-designed large blinded randomized controlled trial involving glutamine supplementation in critical illness. PMID:23019424
Bertrand, Julien; Goichon, Alexis; Chan, Philippe; Azhar, Saida; Lecleire, Stéphane; Donnadieu, Nathalie; Vaudry, David; Cailleux, Anne-Françoise; Déchelotte, Pierre; Coëffier, Moïse
2014-04-01
Glutamine, the most abundant amino acid in the human body, plays several important roles in the intestine. Previous studies showed that glutamine may affect protein expression by regulating ubiquitin-proteasome system. We thus aimed to evaluate the effects of glutamine on ubiquitinated proteins in human duodenal mucosa. Five healthy male volunteers were included and received during 5 h, on two occasions and in a random order, either an enteral infusion of maltodextrins alone (0.25 g kg(-1) h(-1), control), mimicking carbohydrate-fed state, or maltodextrins with glutamine (0.117 g kg(-1) h(-1), glutamine). Endoscopic duodenal biopsies were then taken. Total cellular protein extracts were separated by 2D gel electrophoresis and analyzed by an immunodetection using anti-ubiquitin antibody. Differentially ubiquitinated proteins were then identified by liquid chromatography-electrospray ionization MS/MS. Five proteins were differentially ubiquitinated between control and glutamine conditions. Among these proteins, we identified two chaperone proteins, Grp75 and hsp74. Grp75 was less ubiquitinated after glutamine infusion compared with control. In contrast, hsp74, also called Apg-2, was more ubiquitinated after glutamine. In conclusion, we provide evidence that glutamine may regulate ubiquitination processes of specific proteins, i.e., Grp75 and Apg-2. Grp75 has protective and anti-inflammatory properties, while Apg-2 indirectly regulates stress-induced cell survival and proliferation through interaction with ZO-1. Further studies should confirm these results in stress conditions.
Effects of glutamine, taurine and their association on inflammatory pathway markers in macrophages.
Sartori, Talita; Galvão Dos Santos, Guilherme; Nogueira-Pedro, Amanda; Makiyama, Edson; Rogero, Marcelo Macedo; Borelli, Primavera; Fock, Ricardo Ambrósio
2018-06-01
The immune system is essential for the control and elimination of infections, and macrophages are cells that act as important players in orchestrating the various parts of the inflammatory/immune response. Amino acids play important role in mediating functionality of the inflammatory response, especially mediating macrophages functions and cytokines production. We investigated the influence of glutamine, taurine and their association on the modulation of inflammatory pathway markers in macrophages. The RAW 264.7 macrophage cell line was cultivated in the presence of glutamine and taurine and proliferation rates, cell viability, cell cycle phases, IL-1α, IL-6, IL-10 and TNF-α as well as H 2 O 2 production and the expression of the transcription factor, NFκB, and its inhibitor, IκBα, were evaluated. Our results showed an increase in viable cells and increased proliferation rates of cells treated with glutamine concentrations over 2 mM, as well as cells treated with both glutamine and taurine. The cell cycle showed a higher percentage of cells in the phases S, G2 and M when they were treated with 2 or 10 mM glutamine, or with glutamine and taurine in cells stimulated with lipopolysaccharide. The pNFκB/NFκB showed reduced ratio expression when cells were treated with 10 mM of glutamine or with glutamine in association with taurine. These conditions also resulted in reduced TNF-α, IL-1α and H 2 O 2 production, and higher production of IL-10. These findings demonstrate that glutamine and taurine are able to modulate macrophages inflammatory pathways, and that taurine can potentiate the effects of glutamine, illustrating their immunomodulatory properties.
Petry, Éder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio
2015-04-01
Liver L-glutamine is an important vehicle for the transport of ammonia and intermediary metabolism of amino acids between tissues, particularly under catabolic situations, such as high-intensity exercise. Hence, the aim of this study was to investigate the effects of oral supplementations with L-glutamine in its free or dipeptide forms (with L-alanine) on liver glutamine-glutathione (GSH) axis, and 70 kDa heat shock proteins (HSP70)/heat shock transcription factor 1 (HSF1) expressions. Adult male Wistar rats were 8-week trained (60 min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were daily supplemented with 1 g of L-glutamine/kg body weight per day in either l-alanyl-L-glutamine dipeptide (DIP) form or a solution containing L-glutamine and l-alanine in their free forms (GLN+ALA) or water (controls). Exercise training increased cytosolic and nuclear HSF1 and HSP70 expression, as compared with sedentary animals. However, both DIP and GLN+ALA supplements enhanced HSF1 expression (in both cytosolic and nuclear fractions) in relation to exercised controls. Interestingly, HSF1 rises were not followed by enhanced HSP70 expression. DIP and GLN+ALA supplements increased plasma glutamine concentrations (by 62% and 59%, respectively) and glutamine to glutamate plasma ratio in relation to trained controls. This was in parallel with a decrease in plasma ammonium levels. Supplementations increased liver GSH (by 90%), attenuating the glutathione disulfide (GSSG) to GSH ratio, suggesting a redox state protection. In conclusion, oral administration with DIP and GLN+ALA supplements in endurance-trained rats improve liver glutamine-GSH axis and modulate HSF1 pathway.
Glutamine supplementation to prevent morbidity and mortality in preterm infants.
Moe-Byrne, Thirimon; Brown, Jennifer V E; McGuire, William
2016-01-12
Glutamine is a conditionally essential amino acid. Endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress. Evidence exists that glutamine supplementation improves clinical outcomes in critically ill adults. It has been suggested that glutamine supplementation may also benefit preterm infants. To determine the effects of glutamine supplementation on mortality and morbidity in preterm infants. We used the standard search strategy of the Cochrane Neonatal Review Group. This included searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2015, Issue 12), MEDLINE, EMBASE and Maternity and Infant Care (to December 2015), conference proceedings and previous reviews. Randomised or quasi-randomised controlled trials that compared glutamine supplementation versus no glutamine supplementation in preterm infants at any time from birth to discharge from hospital. We extracted data using the standard methods of the Cochrane Neonatal Review Group, with separate evaluation of trial quality and data extraction by two review authors. We synthesised data using a fixed-effect model and reported typical relative risk, typical risk difference and weighted mean difference. We identified 12 randomised controlled trials in which a total of 2877 preterm infants participated. Six trials assessed enteral glutamine supplementation and six trials assessed parenteral glutamine supplementation. The trials were generally of good methodological quality. Meta-analysis did not find an effect of glutamine supplementation on mortality (typical relative risk 0.97, 95% confidence interval 0.80 to 1.17; risk difference 0.00, 95% confidence interval -0.03 to 0.02) or major neonatal morbidities including the incidence of invasive infection or necrotising enterocolitis. Three trials that assessed neurodevelopmental outcomes in children aged 18 to 24 months and beyond did not find any effects. The available trial data do not provide evidence that glutamine supplementation confers important benefits for preterm infants.
Glutamine supplementation to prevent morbidity and mortality in preterm infants.
Moe-Byrne, Thirimon; Brown, Jennifer V E; McGuire, William
2016-04-18
Glutamine is a conditionally essential amino acid. Endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress. Evidence exists that glutamine supplementation improves clinical outcomes in critically ill adults. It has been suggested that glutamine supplementation may also benefit preterm infants. To determine the effects of glutamine supplementation on mortality and morbidity in preterm infants. We used the standard search strategy of the Cochrane Neonatal Review Group. This included searches of the Cochrane Central Register of Controlled Trials (CENTRAL, 2015, Issue 12), MEDLINE, EMBASE and Maternity and Infant Care (to December 2015), conference proceedings and previous reviews. Randomised or quasi-randomised controlled trials that compared glutamine supplementation versus no glutamine supplementation in preterm infants at any time from birth to discharge from hospital. We extracted data using the standard methods of the Cochrane Neonatal Review Group, with separate evaluation of trial quality and data extraction by two review authors. We synthesised data using a fixed-effect model and reported typical relative risk, typical risk difference and weighted mean difference. We identified 12 randomised controlled trials in which a total of 2877 preterm infants participated. Six trials assessed enteral glutamine supplementation and six trials assessed parenteral glutamine supplementation. The trials were generally of good methodological quality. Meta-analysis did not find an effect of glutamine supplementation on mortality (typical relative risk 0.97, 95% confidence interval 0.80 to 1.17; risk difference 0.00, 95% confidence interval -0.03 to 0.02) or major neonatal morbidities including the incidence of invasive infection or necrotising enterocolitis. Three trials that assessed neurodevelopmental outcomes in children aged 18 to 24 months and beyond did not find any effects. The available trial data do not provide evidence that glutamine supplementation confers important benefits for preterm infants.
Ren, Wenkai; Luo, Wei; Wu, Miaomiao; Liu, Gang; Yu, Xinglong; Fang, Jun; Li, Teijun; Yin, Yulong; Wu, Guoyao
2013-09-01
Porcine circovirus type 2 (PCV2) causes reproductive failure in swine. As glutamine can enhance immune function in animals, this study was conducted with mice to test the hypothesis that dietary glutamine supplementation will improve pregnancy outcome in PCV2-infected dams. Beginning on day 0 of gestation, mice were fed a standard diet supplemented with 1.0% L-glutamine or 1.22% L-alanine (isonitrogenous control). All mice were infected with PCV2 (2000 TCID50) on day 10 of gestation. On day 17 of gestation, six mice from each group were euthanized to obtain maternal tissues and fetuses for hematology and histopathology tests. The remaining mice continued to receive their respective diets supplemented with 1.0% L-glutamine or 1.22% L-alanine through lactation. The PCV2 virus was present in maternal samples (serum and lung) of most mice in the control group but was not detected in the glutamine-supplemented mice. Dietary glutamine supplementation reduced abortion, decreased fetal deaths, and enhanced neonatal survival. The glutamine treatment also reduced concentrations of interleukin-6, while increasing concentrations of tumor necrosis factor-α and C-reactive protein, in the maternal serum of mice. Furthermore, glutamine supplementation attenuated microscopic lesions in maternal tissues (lung, spleen, and liver). Collectively, these results indicate that dietary glutamine supplementation is beneficial for ameliorating reproductive failure in virus-infected mice. The findings support the notion that gestating dams require adequate amounts of dietary glutamine for the optimal survival and growth of embryos, fetuses, and neonates, and have important implications for nutritional support of mammals (including swine and humans) during gestation and lactation.
Boutry, Claire; Matsumoto, Hideki; Bos, Cécile; Moinard, Christophe; Cynober, Luc; Yin, Yulong; Tomé, Daniel; Blachier, François
2012-10-01
Endotoxemia affects intestinal physiology. A decrease of circulating citrulline concentration is considered as a reflection of the intestinal function. Citrulline can be produced in enterocytes notably from glutamate and glutamine. The aim of this work was to determine if glutamate, glutamine and citrulline concentrations in blood, intestine and muscle are decreased by endotoxemia, and if supplementation with glutamate or glutamine can restore normal concentrations. We induced endotoxemia in rats by an intraperitoneal injection of 0.3 mg kg(-1) lipopolysaccharide (LPS). This led to a rapid anorexia, negative nitrogen balance and a transient increase of the circulating level of IL-6 and TNF-α. When compared with the values measured in pair fed (PF) animals, almost all circulating amino acids (AA) including citrulline decreased, suggesting a decrease of intestinal function. However, at D2 after LPS injection, most circulating AA concentrations were closed to the values recorded in the PF group. At that time, among AA, only glutamate, glutamine and citrulline were decreased in gastrocnemius muscle without change in intestinal mucosa. A supplementation with 4% monosodium glutamate (MSG) or an isomolar amount of glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscle. However, MSG supplementation led to an accumulation of glutamate in the intestinal mucosa. In conclusion, endotoxemia rapidly but transiently decreased the circulating concentrations of almost all AA and more durably of glutamate, glutamine and citrulline in muscle. Supplementation with glutamate or glutamine failed to restore glutamate, glutamine and citrulline concentrations in plasma and muscles. The implication of a loss of the intestinal capacity for AA absorption and/or metabolism in endotoxemia (as judged from decreased citrulline plasma concentration) for explaining such results are discussed.
Mok, Elise; Eléouet-Da Violante, Catherine; Daubrosse, Christel; Gottrand, Frédéric; Rigal, Odile; Fontan, Jean-Eudes; Cuisset, Jean-Marie; Guilhot, Joëlle; Hankard, Régis
2006-04-01
Glutamine has been shown to acutely decrease whole-body protein degradation in Duchenne muscular dystrophy (DMD). To improve nutritional support in DMD, we tested whether oral supplementation with glutamine for 10 d decreased whole-body protein degradation significantly more than did an isonitrogenous amino acid control mixture. Twenty-six boys with DMD were included in this randomized, double-blind parallel study; they received an oral supplement of either glutamine (0.5 g . kg(-1) . d(-1)) or an isonitrogenous, nonspecific amino acid mixture (0.8 g . kg(-1) . d(-1)) for 10 d. The subjects in each group were not clinically different at entry. Leucine and glutamine metabolisms were estimated in the postabsorptive state by using a primed continuous intravenous infusion of [1-(13)C]leucine and [2-(15)N]glutamine before and 10 d after supplementation. A significant effect of time was observed on estimates of whole-body protein degradation. A significant (P < 0.05) decrease in the rate of leucine appearance (an index of whole-body protein degradation) was observed after both glutamine and isonitrogenous amino acid supplementation [x +/-SEM: 136 +/- 9 to 124 +/- 6 micromol . kg fat-free mass (FFM)(-1) . h(-1) for glutamine and 136 +/- 6 to 131 +/- 8 micromol . kg FFM(-1) . h(-1) for amino acids]. A significant (P < 0.05) decrease in endogenous glutamine due to protein breakdown was also observed (91 +/- 6 to 83 +/- 4 micromol . kg FFM(-1) . h(-1) for glutamine and 91 +/- 4 to 88 +/- 5 micromol . kg FFM(-1) . h(-1) for amino acids). The decrease in the estimates of whole-body protein degradation did not differ significantly between the 2 supplemental groups. Oral glutamine or amino acid supplementation over 10 d equally inhibits whole-body protein degradation in DMD.
Day, P.E.L.; Cleal, J.K.; Lofthouse, E.M.; Goss, V.; Koster, G.; Postle, A.; Jackson, J.M.; Hanson, M.A.; Jackson, A.A.; Lewis, R.M.
2013-01-01
Introduction Placental glutamine synthesis has been demonstrated in animals and is thought to increase the availability of this metabolically important amino acid to the fetus. Glutamine is of fundamental importance for cellular replication, cellular function and inter-organ nitrogen transfer. The objective of this study was to investigate the role of glutamate/glutamine metabolism by the isolated perfused human placenta in the provision of glutamine to the fetus. Methods Glutamate metabolism was investigated in the isolated dually perfused human placental cotyledon. U–13C-glutamate was used to investigate the movement of carbon and 15N-leucine to study movement of amino-nitrogen. Labelled amino acids were perfused via maternal or fetal arteries at defined flow rates. The enrichment and concentration of amino acids in the maternal and fetal veins were measured following 5 h of perfusion. Results Glutamate taken up from the maternal and fetal circulations was primarily converted into glutamine the majority of which was released into the maternal circulation. The glutamine transporter SNAT5 was localised to the maternal-facing membrane of the syncytiotrophoblast. Enrichment of 13C or 15N glutamine in placental tissue was lower than in either the maternal or fetal circulation, suggesting metabolic compartmentalisation within the syncytiotrophoblast. Discussion Placental glutamine synthesis may help ensure the placenta's ability to supply this amino acid to the fetus does not become limiting to fetal growth. Glutamine synthesis may also influence placental transport of other amino acids, metabolism, nitrogen flux and cellular regulation. Conclusions Placental glutamine synthesis may therefore be a central mechanism in ensuring that the human fetus receives adequate nutrition and is able to maintain growth. PMID:24183194
Lima, Aldo A M; Anstead, Gregory M; Zhang, Qiong; Figueiredo, Ítalo L; Soares, Alberto M; Mota, Rosa M S; Lima, Noélia L; Guerrant, Richard L; Oriá, Reinaldo B
2014-01-01
To determine the impact of supplemental zinc, vitamin A, and glutamine alone or in combination on growth, intestinal barrier function, stress and satiety-related hormones among Brazilian shantytown children with low median height-for-age z-scores. A randomized, double-blind, placebo-controlled trial was conducted in children aged two months to nine years from the urban shanty compound community of Fortaleza, Brazil. Demographic and anthropometric information was assessed. The random treatment groups available for testing (a total of 120 children) were as follows: (1) glutamine alone, n = 38; (2) glutamine plus vitamin A plus zinc, n = 37; and a placebo (zinc plus vitamin A vehicle) plus glycine (isonitrogenous to glutamine) control treatment, n = 38. Leptin, adiponectin, insulin-like growth factor (IGF-1), and plasma levels of cortisol were measured with immune-enzymatic assays; urinary lactulose/mannitol and serum amino acids were measured with high-performance liquid chromatography. ClinicalTrials.gov: NCT00133406. Glutamine treatment significantly improved weight-for-height z-scores compared to the placebo-glycine control treatment. Either glutamine alone or all nutrients combined prevented disruption of the intestinal barrier function, as measured by the percentage of lactulose urinary excretion and the lactulose:mannitol absorption ratio. Plasma leptin was negatively correlated with plasma glutamine (p = 0.002) and arginine (p = 0.001) levels at baseline. After glutamine treatment, leptin was correlated with weight-for-age (WAZ) and weight-for-height z-scores (WHZ) (p≤0.002) at a 4-month follow-up. In addition, glutamine and all combined nutrients (glutamine, vitamin A, and zinc) improved the intestinal barrier function in these children. Taken together, these findings reveal the benefits of glutamine alone or in combination with other gut-trophic nutrients in growing children via interactions with leptin.
Heyland, Daren K; Elke, Gunnar; Cook, Deborah; Berger, Mette M; Wischmeyer, Paul E; Albert, Martin; Muscedere, John; Jones, Gwynne; Day, Andrew G
2015-05-01
The recent large randomized controlled trial of glutamine and antioxidant supplementation suggested that high-dose glutamine is associated with increased mortality in critically ill patients with multiorgan failure. The objectives of the present analyses were to reevaluate the effect of supplementation after controlling for baseline covariates and to identify potentially important subgroup effects. This study was a post hoc analysis of a prospective factorial 2 × 2 randomized trial conducted in 40 intensive care units in North America and Europe. In total, 1223 mechanically ventilated adult patients with multiorgan failure were randomized to receive glutamine, antioxidants, both glutamine and antioxidants, or placebo administered separate from artificial nutrition. We compared each of the 3 active treatment arms (glutamine alone, antioxidants alone, and glutamine + antioxidants) with placebo on 28-day mortality. Post hoc, treatment effects were examined within subgroups defined by baseline patient characteristics. Logistic regression was used to estimate treatment effects within subgroups after adjustment for baseline covariates and to identify treatment-by-subgroup interactions (effect modification). The 28-day mortality rates in the placebo, glutamine, antioxidant, and combination arms were 25%, 32%, 29%, and 33%, respectively. After adjusting for prespecified baseline covariates, the adjusted odds ratio of 28-day mortality vs placebo was 1.5 (95% confidence interval, 1.0-2.1, P = .05), 1.2 (0.8-1.8, P = .40), and 1.4 (0.9-2.0, P = .09) for glutamine, antioxidant, and glutamine plus antioxidant arms, respectively. In the post hoc subgroup analysis, both glutamine and antioxidants appeared most harmful in patients with baseline renal dysfunction. No subgroups suggested reduced mortality with supplements. After adjustment for baseline covariates, early provision of high-dose glutamine administered separately from artificial nutrition was not beneficial and may be associated with increased mortality in critically ill patients with multiorgan failure. For both glutamine and antioxidants, the greatest potential for harm was observed in patients with multiorgan failure that included renal dysfunction upon study enrollment. © 2014 American Society for Parenteral and Enteral Nutrition.
2014-01-01
Introduction Glutamine supplementation is supposed to reduce mortality and nosocomial infections in critically ill patients. However, the recently published reducing deaths due to oxidative stress (REDOX) trials did not provide evidence supporting this. This study investigated the impact of glutamine-supplemented nutrition on the outcomes of critically ill patients using a meta-analysis. Methods We searched for and gathered data from the Cochrane Central Register of Controlled Trials, MEDLINE, Elsevier, Web of Science and ClinicalTrials.gov databases reporting the effects of glutamine supplementation on outcomes in critically ill patients. We produced subgroup analyses of the trials according to specific patient populations, modes of nutrition and glutamine dosages. Results Among 823 related articles, eighteen Randomized Controlled Trials (RCTs) met all inclusion criteria. Mortality events among 3,383 patients were reported in 17 RCTs. Mortality showed no significant difference between glutamine group and control group. In the high dosage subgroup (above 0.5 g/kg/d), the mortality rate in the glutamine group was significantly higher than that of the control group (relative risk (RR) 1.18; 95% confidence interval (CI), 1.02 to 1.38; P = 0.03). In 15 trials, which included a total of 2,862 patients, glutamine supplementation reportedly affected the incidence of nosocomial infections in the critically ill patients observed. The incidence of nosocomial infections in the glutamine group was significantly lower than that of the control group (RR 0.85; 95% CI, 0.74 to 0.97; P = 0.02). In the surgical ICU subgroup, glutamine supplementation statistically reduced the rate of nosocomial infections (RR 0.70; 95% CI, 0.52 to 0.94; P = 0.04). In the parental nutrition subgroup, glutamine supplementation statistically reduced the rate of nosocomial infections (RR 0.83; 95% CI, 0.70 to 0.98; P = 0.03). The length of hospital stay was reported in 14 trials, in which a total of 2,777 patients were enrolled; however, the patient length of stay was not affected by glutamine supplementation. Conclusions Glutamine supplementation conferred no overall mortality and length of hospital stay benefit in critically ill patients. However, this therapy reduced nosocomial infections among critically ill patients, which differed according to patient populations, modes of nutrition and glutamine dosages. PMID:24401636
2014-01-01
Introduction Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined. Methods Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily. Results Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Plasma glutamate remained unchanged and cerebral glutamate was decreased without any signs of cerebral impairment. Urea and ammonia were significantly increased within normal limits without signs of organ dysfunction (urea: from 2.7 ± 1.6 to 5.5 ± 1.5 mmol/ l; ammonia: from 12 ± 6.3 to 26 ± 8.3 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test). Conclusions High dose L-alanine-L-glutamine infusion (0.75 g/ kg/ d up to 5 days) increased plasma and brain glutamine and alanine levels. This was not associated with elevated glutamate or signs of potential glutamate-mediated cerebral injury. The increased nitrogen load should be considered in patients with renal and hepatic dysfunction. Trial registration Clinicaltrials.gov NCT02130674. Registered 5 April 2014 PMID:24992948
Ren, Wenkai; Liu, Shuping; Chen, Shuai; Zhang, Fengmei; Li, Nengzhang; Yin, Jie; Peng, Yuanyi; Wu, Li; Liu, Gang; Yin, Yulong; Wu, Guoyao
2013-10-01
This study was conducted to determine the effects of graded doses of L-glutamine supplementation on the replication and distribution of Pasteurella multocida, and the expression of its major virulence factors in mouse model. Mice were randomly assigned to the basal diet supplemented with 0, 0.5, 1.0 or 2.0 % glutamine. Pasteurella multocida burden was detected in the heart, liver, spleen, lung and kidney after 12 h of P. multocida infection. The expression of major virulence factors, toll-like receptors (TLRs), proinflammatory cytokines (interleukin-1 beta, interleukin-6, and tumor necrosis factor alpha) and anti-oxidative factors (GPX1 and CuZnSOD) was analyzed in the lung and spleen. Dietary 0.5 % glutamine supplementation has little significant effect on these parameters, compared to those with basal diet. However, results showed that a high dose of glutamine supplementation increased the P. multocida burden (P < 0.001) and the expression of its major virulence factors (P < 0.05) as compared to those with a lower dose of supplementation. In the lung, high dose of glutamine supplementation inhibited the proinflammatory responses (P < 0.05) and TLRs signaling (P < 0.05). In the spleen, the effect of glutamine supplementation on different components in TLR signaling depends on glutamine concentration, and high dose of glutamine supplementation activated the proinflammatory response. In conclusion, glutamine supplementation increased P. multocida burden and the expression of its major virulence factors, while affecting the functions of the lung and spleen.
Cudalbu, Cristina; Lanz, Bernard; Duarte, João MN; Morgenthaler, Florence D; Pilloud, Yves; Mlynárik, Vladimir; Gruetter, Rolf
2012-01-01
Brain glutamine synthetase (GS) is an integral part of the glutamate–glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. 15N MRS is an alternative approach to 13C MRS. Incorporation of labeled 15N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate–glutamine cycle. To measure 15N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel 15N pulse sequence to simultaneously detect, for the first time, [5-15N]Gln and [2-15N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized 1H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of 1H and 15N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. PMID:22167234
Crowther, Mark
2009-08-01
The relationship between glutamine and malignancy can be traced back to the 1950s and the requirement for glutamine for malignant-cell growth in culture. Later studies demonstrated an association between the rate of proliferation of the malignant cells and glutamine usage. The excessive use of glutamine by malignant cells was seen as an opportunity for the development of a treatment using glutamine analogues, but unfortunately excessive toxicity was observed during clinical studies. In animal models glutamine supplementation, initially thought to increase tumour growth, actually causes tumour regression as a result of improved immune clearance of the tumour and appears to reduce the severity of the side effects of chemo- and radiotherapy. This finding led to human studies in both traditional cancer therapy and bone-marrow transplantation, which are reviewed here. Unfortunately, the majority of the studies performed are small and have poor methodological reporting. There is clinical heterogeneity in terms of routes of administration, dosing schedules, chemotherapy regimens and diseases. Studies of glutamine in non-bone-marrow transplantation chemo- and/or radiotherapy treatment suggest a possible trend towards reductions in objective mucositis but no effect on subjective symptoms. There is no evidence for its effect on other clinical outcomes. For bone-marrow transplantation there appears to be some benefit from oral glutamine in reducing mucositis and graft v. host disease, while intravenous glutamine may reduce infections but at the expense of an increased relapse rate. Good-quality studies are required in this area.
Lin, Tsung-Chin; Chen, Yun-Ru; Kensicki, Elizabeth; Li, Angela Ying-Jian; Kong, Mei; Li, Yang; Mohney, Robert P.; Shen, Han-Ming; Stiles, Bangyan; Mizushima, Noboru; Lin, Liang-In; Ann, David K.
2012-01-01
Autophagy is a catabolic process that functions in recycling and degrading cellular proteins, and is also induced as an adaptive response to the increased metabolic demand upon nutrient starvation. However, the prosurvival role of autophagy in response to metabolic stress due to deprivation of glutamine, the most abundant nutrient for mammalian cells, is not well understood. Here, we demonstrated that when extracellular glutamine was withdrawn, autophagy provided cells with sub-mM concentrations of glutamine, which played a critical role in fostering cell metabolism. Moreover, we uncovered a previously unknown connection between metabolic responses to ATG5 deficiency and glutamine deprivation, and revealed that WT and atg5−/− MEFs utilized both common and distinct metabolic pathways over time during glutamine deprivation. Although the early response of WT MEFs to glutamine deficiency was similar in many respects to the baseline metabolism of atg5−/− MEFs, there was a concomitant decrease in the levels of essential amino acids and branched chain amino acid catabolites in WT MEFs after 6 h of glutamine withdrawal that distinguished them from the atg5−/− MEFs. Metabolomic profiling, oxygen consumption and pathway focused quantitative RT-PCR analyses revealed that autophagy and glutamine utilization were reciprocally regulated to couple metabolic and transcriptional reprogramming. These findings provide key insights into the critical prosurvival role of autophagy in maintaining mitochondrial oxidative phosphorylation and cell growth during metabolic stress caused by glutamine deprivation. PMID:22906967
Intrahippocampal glutamine administration inhibits mTORC1 signaling and impairs long-term memory
Rozas, Natalia S.; Redell, John B.; Pita-Almenar, Juan D.; Mckenna, James; Moore, Anthony N.; Gambello, Michael J.
2015-01-01
The mechanistic Target of Rapamycin Complex 1 (mTORC1), a key regulator of protein synthesis and cellular growth, is also required for long-term memory formation. Stimulation of mTORC1 signaling is known to be dependent on the availability of energy and growth factors, as well as the presence of amino acids. In vitro studies using serum- and amino acid-starved cells have reported that glutamine addition can either stimulate or repress mTORC1 activity, depending on the particular experimental system that was used. However, these experiments do not directly address the effect of glutamine on mTORC1 activity under physiological conditions in nondeprived cells in vivo. We present experimental results indicating that intrahippocampal administration of glutamine to rats reduces mTORC1 activity. Moreover, post-training administration of glutamine impairs long-term spatial memory formation, while coadministration of glutamine with leucine had no influence on memory. Intracellular recordings in hippocampal slices showed that glutamine did not alter either excitatory or inhibitory synaptic activity, suggesting that the observed memory impairments may not result from conversion of glutamine to either glutamate or GABA. Taken together, these findings indicate that glutamine can decrease mTORC1 activity in the brain and may have implications for treatments of neurological diseases associated with high mTORC1 signaling. PMID:25878136
Zhong, Xiang; Li, Wei; Huang, Xuexin; Wang, Yuanxiao; Zhang, Lili; Zhou, Yanmin; Hussain, Ahmad; Wang, Tian
2012-10-01
Neonates with intrauterine growth retardation (IUGR) often suffer from impaired cellular immunity, and weaning may further aggravate adverse effects of IUGR on development and function of the immune system. In this study, we investigated effects of glutamine supplementation on immune status in the intestines of weaning pigs with IUGR, focusing on molecular mechanisms underlying altered immune response. Piglets with IUGR were weaned at 21 days of age and received orally 1.22 g alanine or 1 g glutamine per kg body weight every 12 h. Weight gain and intestinal weight of weaning piglets were increased by glutamine supplementation. Levels of serum IgG in piglets supplemented with glutamine were increased compared with Control piglets. The production of IL-1 and IL-8 in the serum and jejunum was decreased by glutamine supplementation, whereas the levels of IL-4 in the serum and the concentrations of IL-4 and IL-10 in the jejunum were increased. The expression of heat shock protein 70 (Hsp70) in the jejunum was increased by glutamine supplementation, but the degradation of inhibitor κB and the activity of nuclear factor-κB (NF-κB) were decreased. In conclusion, glutamine supplementation enhanced immune response in weaning piglets with IUGR. The effects of glutamine in IUGR are associated with increased Hsp70 expression and suppression of NF-κB activation.
Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun
2016-07-01
Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Egnatchik, Robert A; Brittain, Evan L; Shah, Amy T; Fares, Wassim H; Ford, H James; Monahan, Ken; Kang, Christie J; Kocurek, Emily G; Zhu, Shijun; Luong, Thong; Nguyen, Thuy T; Hysinger, Erik; Austin, Eric D; Skala, Melissa C; Young, Jamey D; Roberts, L Jackson; Hemnes, Anna R; West, James; Fessel, Joshua P
2017-03-01
Pulmonary arterial hypertension (PAH) is increasingly recognized as a systemic disease driven by alteration in the normal functioning of multiple metabolic pathways affecting all of the major carbon substrates, including amino acids. We found that human pulmonary hypertension patients (WHO Group I, PAH) exhibit systemic and pulmonary-specific alterations in glutamine metabolism, with the diseased pulmonary vasculature taking up significantly more glutamine than that of controls. Using cell culture models and transgenic mice expressing PAH-causing BMPR2 mutations, we found that the pulmonary endothelium in PAH shunts significantly more glutamine carbon into the tricarboxylic acid (TCA) cycle than wild-type endothelium. Increased glutamine metabolism through the TCA cycle is required by the endothelium in PAH to survive, to sustain normal energetics, and to manifest the hyperproliferative phenotype characteristic of disease. The strict requirement for glutamine is driven by loss of sirtuin-3 (SIRT3) activity through covalent modification by reactive products of lipid peroxidation. Using 2-hydroxybenzylamine, a scavenger of reactive lipid peroxidation products, we were able to preserve SIRT3 function, to normalize glutamine metabolism, and to prevent the development of PAH in BMPR2 mutant mice. In PAH, targeting glutamine metabolism and the mechanisms that underlie glutamine-driven metabolic reprogramming represent a viable novel avenue for the development of potentially disease-modifying therapeutics that could be rapidly translated to human studies.
Buchman, A L
2001-07-01
Glutamine is a nonessential amino acid that can be synthesized from glutamate and glutamic acid by glutamate-ammonia ligase. Glutamine is an important fuel source for the small intestine. It was proposed that glutamine is necessary for the maintenance of normal intestinal morphology and function in the absence of luminal nutrients. However, intestinal morphologic and functional changes related to enteral fasting and parenteral nutrition are less significant in humans than in animal models and may not be clinically significant. Therefore, it is unclear whether glutamine is necessary for the preservation of normal intestinal morphology and function in humans during parenteral nutrition. It was suggested that both glutamine-supplemented parenteral nutrition and enteral diets may pre-vent bacterial translocation via the preservation and augmentation of small bowel villus morphology, intestinal permeability, and intestinal immune function. However, it is unclear whether clinically relevant bacterial translocation even occurs in humans, much less whether there is any value in the prevention of such occurrences. Results of the therapeutic use of glutamine in humans at nonphysiologic doses indicate limited efficacy. Although glutamine is generally recognized to be safe on the basis of relatively small studies, side effects in patients receiving home parenteral nutrition and in those with liver-function abnormalities have been described. Therefore, on the basis of currently available clinical data, it is inappropriate to recommend glutamine for therapeutic use in any condition.
Kaplan, J B; Merkel, W K; Nichols, B P
1985-06-05
The amide group of glutamine is a source of nitrogen in the biosynthesis of a variety of compounds. These reactions are catalyzed by a group of enzymes known as glutamine amidotransferases; two of these, the glutamine amidotransferase subunits of p-aminobenzoate synthase and anthranilate synthase have been studied in detail and have been shown to be structurally and functionally related. In some micro-organisms, p-aminobenzoate synthase and anthranilate synthase share a common glutamine amidotransferase subunit. We report here the primary DNA and deduced amino acid sequences of the p-aminobenzoate synthase glutamine amidotransferase subunits from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. A comparison of these glutamine amidotransferase sequences to the sequences of ten others, including some that function specifically in either the p-aminobenzoate synthase or anthranilate synthase complexes and some that are shared by both synthase complexes, has revealed several interesting features of the structure and organization of these genes, and has allowed us to speculate as to the evolutionary history of this family of enzymes. We propose a model for the evolution of the p-aminobenzoate synthase and anthranilate synthase glutamine amidotransferase subunits in which the duplication and subsequent divergence of the genetic information encoding a shared glutamine amidotransferase subunit led to the evolution of two new pathway-specific enzymes.
Pournourmohammadi, Shirin; Grimaldi, Mariagrazia; Stridh, Malin H; Lavallard, Vanessa; Waagepetersen, Helle S; Wollheim, Claes B; Maechler, Pierre
2017-07-01
Glucose homeostasis is determined by insulin secretion from the ß-cells in pancreatic islets and by glucose uptake in skeletal muscle and other insulin target tissues. While glutamate dehydrogenase (GDH) senses mitochondrial energy supply and regulates insulin secretion, its role in the muscle has not been elucidated. Here we investigated the possible interplay between GDH and the cytosolic energy sensing enzyme 5'-AMP kinase (AMPK), in both isolated islets and myotubes from mice and humans. The green tea polyphenol epigallocatechin-3-gallate (EGCG) was used to inhibit GDH. Insulin secretion was reduced by EGCG upon glucose stimulation and blocked in response to glutamine combined with the allosteric GDH activator BCH (2-aminobicyclo-[2,2,1] heptane-2-carboxylic acid). Insulin secretion was similarly decreased in islets of mice with ß-cell-targeted deletion of GDH (ßGlud1 -/- ). EGCG did not further reduce insulin secretion in the mutant islets, validating its specificity. In human islets, EGCG attenuated both basal and nutrient-stimulated insulin secretion. Glutamine/BCH-induced lowering of AMPK phosphorylation did not operate in ßGlud1 -/- islets and was similarly prevented by EGCG in control islets, while high glucose systematically inactivated AMPK. In mouse C2C12 myotubes, like in islets, the inhibition of AMPK following GDH activation with glutamine/BCH was reversed by EGCG. Stimulation of GDH in primary human myotubes caused lowering of insulin-induced 2-deoxy-glucose uptake, partially counteracted by EGCG. Thus, mitochondrial energy provision through anaplerotic input via GDH influences the activity of the cytosolic energy sensor AMPK. EGCG may be useful in obesity by resensitizing insulin-resistant muscle while blunting hypersecretion of insulin in hypermetabolic states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shokati, Touraj; Zwingmann, Claudia; Leibfritz, Dieter
2005-10-01
Multinuclear NMR spectroscopy is used to investigate the effect of glutamine on neuronal glucose metabolism. Primary neurons were incubated with [1-(13C)]glucose in the absence or presence of glutamine (2 mM) and/or NH4Cl (5 mM). After ammonia-treatment, the concentrations of high-energy phosphates decreased up to 84% of control, which was aggravated in glutamine-containing medium (up to 42% of control). These effects could not be attributed to changes in mitochondrial glucose oxidation. Withdrawal of glutamine decreased amino acid concentrations, e.g. of glutamate to 53%, but also considerably lessened the 13C enrichment in [4-(13C)]glutamate to 8.3% of control, and decreased the 13C-enrichment in acetyl-CoA entering the Krebs cycle (P < 0.001). Thus, although glutamine is potent in replenishing neuronal glutamate stores, glutamate formation is mainly attributed to its de novo synthesis from glucose. Furthermore, mitochondrial glucose metabolism strongly depends on the supply of carbons from glutamine, indicating that exogenous glutamine is a well-suited substrate to replenish neuronal Krebs cycle intermediates.
Claros, M G; Aguilar, M L; Cánovas, F M
2010-09-01
In higher plants, ammonium is assimilated into amino acids through the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle. This metabolic cycle is distributed in different cellular compartments in conifer seedlings: glutamine synthesis occurs in the cytosol and glutamate synthesis within the chloroplast. A method for preparing intact chloroplasts of pine cotyledons is presented with the aim of identifying a glutamine-glutamate translocator. Glutamine-glutamate exchange has been studied using the double silicone layer system, suggesting the existence of a translocator that imports glutamine into the chloroplast and exports glutamate to the cytoplasm. The translocator identified is specific for glutamine and glutamate, and the kinetic constants for both substrates indicate that it is unsaturated at intracellular concentrations. Thus, the experimental evidence obtained supports the model of the GS/GOGAT cycle in developing pine seedlings that accounts for the stoichiometric balance of metabolites. As a result, the efficient assimilation of free ammonia produced by photorespiration, nitrate reduction, storage protein mobilisation, phenylpropanoid pathway or S-adenosylmethionine synthesis is guaranteed.
Glutamine metabolism in advanced age
2016-01-01
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age. PMID:26936258
Glutamine supplementation suppresses herpes simplex virus reactivation.
Wang, Kening; Hoshino, Yo; Dowdell, Kennichi; Bosch-Marce, Marta; Myers, Timothy G; Sarmiento, Mayra; Pesnicak, Lesley; Krause, Philip R; Cohen, Jeffrey I
2017-06-30
Chronic viral infections are difficult to treat, and new approaches are needed, particularly those aimed at reducing reactivation by enhancing immune responses. Herpes simplex virus (HSV) establishes latency and reactivates frequently, and breakthrough reactivation can occur despite suppressive antiviral therapy. Virus-specific T cells are important to control HSV, and proliferation of activated T cells requires increased metabolism of glutamine. Here, we found that supplementation with oral glutamine reduced virus reactivation in latently HSV-1-infected mice and HSV-2-infected guinea pigs. Transcriptome analysis of trigeminal ganglia from latently HSV-1-infected, glutamine-treated WT mice showed upregulation of several IFN-γ-inducible genes. In contrast to WT mice, supplemental glutamine was ineffective in reducing the rate of HSV-1 reactivation in latently HSV-1-infected IFN-γ-KO mice. Mice treated with glutamine also had higher numbers of HSV-specific IFN-γ-producing CD8 T cells in latently infected ganglia. Thus, glutamine may enhance the IFN-γ-associated immune response and reduce the rate of reactivation of latent virus infection.
Sakiyan, Iffet; Anar, Mustafa; Oğütcü, Hatice; Agar, Guleray; Sarı, Nurşen
2014-06-01
This study was conducted to evaluate the antimutagenic and antimicrobial activities of Schiff bases attached L-glutamine and L-asparagine. Antibacterial activities of the compounds against S. aureus, Sh. dys. typ 7, L. monocytogenes 4b, E. coli, S. typhi H, S. epidermis, Br. abortus, M. luteus, B. cereus, P. putida, and antifungal activity against Candida albicans were studied. These compounds were investigated for antimutagenic properties against Aflatoxin Bı (AFBı) using micronuclei (MN) assay in human lymphocyte cell culture in vitro. The protective role of these compounds against AFBı-induced MN is probably related to its doses.
Oteng-Pabi, Samuel K; Clouthier, Christopher M; Keillor, Jeffrey W
2018-01-01
Transglutaminases (TGases) are enzymes that catalyse protein cross-linking through a transamidation reaction between the side chain of a glutamine residue on one protein and the side chain of a lysine residue on another. Generally, TGases show low substrate specificity with respect to their amine substrate, such that a wide variety of primary amines can participate in the modification of specific glutamine residue. Although a number of different TGases have been used to mediate these bioconjugation reactions, the TGase from Bacillus subtilis (bTG) may be particularly suited to this application. It is smaller than most TGases, can be expressed in a soluble active form, and lacks the calcium dependence of its mammalian counterparts. However, little is known regarding this enzyme and its glutamine substrate specificity, limiting the scope of its application. In this work, we designed a FRET-based ligation assay to monitor the bTG-mediated conjugation of the fluorescent proteins Clover and mRuby2. This assay allowed us to screen a library of random heptapeptide glutamine sequences for their reactivity with recombinant bTG in bacterial cells, using fluorescence assisted cell sorting. From this library, several reactive sequences were identified and kinetically characterized, with the most reactive sequence (YAHQAHY) having a kcat/KM value of 19 ± 3 μM-1 min-1. This sequence was then genetically appended onto a test protein as a reactive 'Q-tag' and fluorescently labelled with dansyl-cadaverine, in the first demonstration of protein labelling mediated by bTG.
Stancáková, Alena; Civelek, Mete; Saleem, Niyas K; Soininen, Pasi; Kangas, Antti J; Cederberg, Henna; Paananen, Jussi; Pihlajamäki, Jussi; Bonnycastle, Lori L; Morken, Mario A; Boehnke, Michael; Pajukanta, Päivi; Lusis, Aldons J; Collins, Francis S; Kuusisto, Johanna; Ala-Korpela, Mika; Laakso, Markku
2012-07-01
We investigated the association of glycemia and 43 genetic risk variants for hyperglycemia/type 2 diabetes with amino acid levels in the population-based Metabolic Syndrome in Men (METSIM) Study, including 9,369 nondiabetic or newly diagnosed type 2 diabetic Finnish men. Plasma levels of eight amino acids were measured with proton nuclear magnetic resonance spectroscopy. Increasing fasting and 2-h plasma glucose levels were associated with increasing levels of several amino acids and decreasing levels of histidine and glutamine. Alanine, leucine, isoleucine, tyrosine, and glutamine predicted incident type 2 diabetes in a 4.7-year follow-up of the METSIM Study, and their effects were largely mediated by insulin resistance (except for glutamine). We also found significant correlations between insulin sensitivity (Matsuda insulin sensitivity index) and mRNA expression of genes regulating amino acid degradation in 200 subcutaneous adipose tissue samples. Only 1 of 43 risk single nucleotide polymorphisms for type 2 diabetes or hyperglycemia, the glucose-increasing major C allele of rs780094 of GCKR, was significantly associated with decreased levels of alanine and isoleucine and elevated levels of glutamine. In conclusion, the levels of branched-chain, aromatic amino acids and alanine increased and the levels of glutamine and histidine decreased with increasing glycemia, reflecting, at least in part, insulin resistance. Only one single nucleotide polymorphism regulating hyperglycemia was significantly associated with amino acid levels.
Stančáková, Alena; Civelek, Mete; Saleem, Niyas K.; Soininen, Pasi; Kangas, Antti J.; Cederberg, Henna; Paananen, Jussi; Pihlajamäki, Jussi; Bonnycastle, Lori L.; Morken, Mario A.; Boehnke, Michael; Pajukanta, Päivi; Lusis, Aldons J.; Collins, Francis S.; Kuusisto, Johanna; Ala-Korpela, Mika; Laakso, Markku
2012-01-01
We investigated the association of glycemia and 43 genetic risk variants for hyperglycemia/type 2 diabetes with amino acid levels in the population-based Metabolic Syndrome in Men (METSIM) Study, including 9,369 nondiabetic or newly diagnosed type 2 diabetic Finnish men. Plasma levels of eight amino acids were measured with proton nuclear magnetic resonance spectroscopy. Increasing fasting and 2-h plasma glucose levels were associated with increasing levels of several amino acids and decreasing levels of histidine and glutamine. Alanine, leucine, isoleucine, tyrosine, and glutamine predicted incident type 2 diabetes in a 4.7-year follow-up of the METSIM Study, and their effects were largely mediated by insulin resistance (except for glutamine). We also found significant correlations between insulin sensitivity (Matsuda insulin sensitivity index) and mRNA expression of genes regulating amino acid degradation in 200 subcutaneous adipose tissue samples. Only 1 of 43 risk single nucleotide polymorphisms for type 2 diabetes or hyperglycemia, the glucose-increasing major C allele of rs780094 of GCKR, was significantly associated with decreased levels of alanine and isoleucine and elevated levels of glutamine. In conclusion, the levels of branched-chain, aromatic amino acids and alanine increased and the levels of glutamine and histidine decreased with increasing glycemia, reflecting, at least in part, insulin resistance. Only one single nucleotide polymorphism regulating hyperglycemia was significantly associated with amino acid levels. PMID:22553379
Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang
2005-05-01
As an abundant amino acid in the human body, glutamine has many important metabolic roles that may protect or promote tissue integrity and enhance the immune system. A relative deficiency of glutamine in such patients could compromise recovery and result in prolonged illness and an increase in late mortality. The purpose of this clinical study is to observe the effects of enteral supplement with glutamine granules on protein metabolism in severely burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trial. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, glutamine and B group patents were supplemented with glutamine granules or placebo (glycine) at 0.5 g/kg per day for 14 days with oral feeding or tube feeding, respectively. The level of plasma glutamine, plasma protein content, urine nitrogen and urine 3-methylhistidine (3-MTH) excretion were determined, wound healing rate of the burned area and hospital stay were recorded. The results showed that there were significant reductions in plasma glutamine level and abnormal protein metabolism. After supplement with glutamine granules for 14 days, the plasma glutamine concentration was significantly higher than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P<0.01) and the plasma prealbumin and transferrin in Gln group were remarkably higher than those in B group (P<0.01), but the concentration of total protein and albumin were not significantly changed compared with B group (P>0.05). On the other hand, the amount of urine nitrogen and 3-MTH excreted in Gln group were significantly lower than that in B group. In addition, wound healing was faster and hospital stay days were shorter in Gln group than B group (46.59+/-12.98 days versus 55.68+/-17.36 days, P<0.05). These indicated that supplement glutamine granules with oral feeding or tube feeding could abate the degree of glutamine depletion, promote protein synthesis, inhibit protein decompose, improve wound healing and reduce hospital stay.
Rosenwasser, Shilo; Graff van Creveld, Shiri; Schatz, Daniella; Malitsky, Sergey; Tzfadia, Oren; Aharoni, Asaph; Levin, Yishai; Gabashvili, Alexandra; Feldmesser, Ester; Vardi, Assaf
2014-02-18
Diatoms are ubiquitous marine photosynthetic eukaryotes responsible for approximately 20% of global photosynthesis. Little is known about the redox-based mechanisms that mediate diatom sensing and acclimation to environmental stress. Here we used a quantitative mass spectrometry-based approach to elucidate the redox-sensitive signaling network (redoxome) mediating the response of diatoms to oxidative stress. We quantified the degree of oxidation of 3,845 cysteines in the Phaeodactylum tricornutum proteome and identified approximately 300 redox-sensitive proteins. Intriguingly, we found redox-sensitive thiols in numerous enzymes composing the nitrogen assimilation pathway and the recently discovered diatom urea cycle. In agreement with this finding, the flux from nitrate into glutamine and glutamate, measured by the incorporation of (15)N, was strongly inhibited under oxidative stress conditions. Furthermore, by targeting the redox-sensitive GFP sensor to various subcellular localizations, we mapped organelle-specific oxidation patterns in response to variations in nitrogen quota and quality. We propose that redox regulation of nitrogen metabolism allows rapid metabolic plasticity to ensure cellular homeostasis, and thus is essential for the ecological success of diatoms in the marine ecosystem.
L-glutamine is used to is used to reduce the frequency of painful episodes (crises) in adults and children ... oxygen to all parts of the body). L-glutamine is in a class of medications called amino ...
USDA-ARS?s Scientific Manuscript database
The enteral metabolism of glutamine and citrulline are intertwined because, while glutamine is one of the main fuel sources for the enterocyte, citrulline is one of its products. It has been shown that the administration of 15N labeled glutamine results in the incorporation of the 15N label into cit...
Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.
Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P
2016-03-23
Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.
Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang
2004-03-01
Glutamine is an important energy source in intestinal mucosa, the small intestine is the major organ of glutamine uptake and metabolism and plays an important role in the maintenance of whole body glutamine homeostasis. The purpose of this clinical study is to observe the protection effects of enteral supplement with glutamine granules on intestinal mucosal barrier function in severe burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-85%) were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). Glutamine granules 0.5 g/kg were supplied orally for 14 days in Gln group, and the same dosage of placebo were given for 14 days in B group. The plasma level of glutamine, endotoxin and the activity of diamine oxidase (DAO), as well as intestinal mucosal permeability were determined. The results showed that the levels of plasma endotoxin, activity and urinary lactulose and mannitol (L/M) ratio in all patients were significant higher than that of normal control. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 microM/l versus 447.63 +/- 132.28 microM/l, P < 0.01). On the other hand, the levels of plasma DAO activity and urinary L/M ratio in Gln group were lower than those in B group. In addition, the wound healing was better and hospital stay days were reduced in the Gln group (46.59 +/- 12.98 days versus 55.68 +/- 17.36 days, P < 0.05). These results indicated that glutamine granules taken orally could abate the degree of intestine injury, lessen intestinal mucosal permeability, ameliorate wound healing and reduce hospital stay.
Pantel, Austin R.; Li, Shihong; Lieberman, Brian P.; Ploessl, Karl; Choi, Hoon; Blankemeyer, Eric; Lee, Hsiaoju; Kung, Hank F.; Mach, Robert H.
2017-01-01
Glutaminolysis is a metabolic pathway adapted by many aggressive cancers, including triple-negative breast cancers (TNBC), to utilize glutamine for survival and growth. In this study, we examined the utility of [18F](2S,4R)4-fluoroglutamine ([18F]4F-Gln) PET to measure tumor cellular glutamine pool size, whose change might reveal the pharmacodynamic (PD) effect of drugs targeting this cancer-specific metabolic pathway. High glutaminase (GLS) activity in TNBC tumors resulted in low cellular glutamine pool size assayed via high-resolution 1H magnetic resonance spectroscopy (MRS). GLS inhibition significantly increased glutamine pool size in TNBC tumors. MCF-7 tumors, with inherently low GLS activity compared to TNBC, displayed a larger baseline glutamine pool size that did not change as much in response to GLS inhibition. The tumor-to-blood-activity-ratios (T/B) obtained from [18F]4F-Gln PET images matched the distinct glutamine pool sizes of both tumor models at baseline. After a short course of GLS inhibitor treatment, the T/B values increased significantly in TNBC, but did not change in MCF-7 tumors. Across both tumor types and after GLS inhibitor or vehicle treatment, we observed a strong positive correlation between T/B values and tumor glutamine pool size measured using MRS (R2=0.71). In conclusion, [18F]4F-Gln PET tracked cellular glutamine pool size in breast cancers with differential GLS activity and detected increases in cellular glutamine pool size induced by GLS inhibitors. This study accomplished the first necessary step towards validating [18F]4F-Gln PET as a PD marker for glutaminase-targeting drugs. PMID:28202527
Anderson, P M
1989-01-01
The first two steps of urea synthesis in liver of marine elasmobranchs involve formation of glutamine from ammonia and of carbamoyl phosphate from glutamine, catalysed by glutamine synthetase and carbamoyl-phosphate synthetase, respectively [Anderson & Casey (1984) J. Biol. Chem. 259, 456-462]; both of these enzymes are localized exclusively in the mitochondrial matrix. The objective of this study was to establish the enzymology of carbamoyl phosphate formation and utilization for pyrimidine nucleotide biosynthesis in Squalus acanthias (spiny dogfish), a representative elasmobranch. Aspartate carbamoyltransferase could not be detected in liver of dogfish. Spleen extracts, however, had glutamine-dependent carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, dihydro-orotase, and glutamine synthetase activities, all localized in the cytosol; dihydro-orotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine-5'-decarboxylase activities were also present. Except for glutamine synthetase, the levels of all activities were very low. The carbamoyl-phosphate synthetase activity is inhibited by UTP and is activated by 5-phosphoribosyl 1-pyrophosphate. The first three enzyme activities of the pyrimidine pathway were eluted in distinctly different positions during gel filtration chromatography under a number of different conditions; although complete proteolysis of inter-domain regions of a multifunctional complex during extraction cannot be excluded, the evidence suggests that in dogfish, in contrast to mammalian species, these three enzymes of the pyrimidine pathway exist as individual polypeptide chains. These results: (1) establish that dogfish express two different glutamine-dependent carbamoyl-phosphate synthetase activities, (2) confirm the report [Smith, Ritter & Campbell (1987) J. Biol. Chem. 262, 198-202] that dogfish express two different glutamine synthetases, and (3) provide indirect evidence that glutamine may not be available in liver for biosynthetic reactions other than urea formation. Images Fig. 1. PMID:2570570
Capes, Deborah L; Goldschen-Ohm, Marcel P; Arcisio-Miranda, Manoel; Bezanilla, Francisco; Chanda, Baron
2013-08-01
Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.
Role of glutamine in cobinamide biosynthesis in Propionibacterium shermanii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliseev, A.A.; Pushkin, A.V.; Belozerova, E.V.
1987-01-10
The role of glutamine as a possible donor of amide groups in the biosynthesis of vitamin B/sub 12/ was investigated. In the incubation of P. shermanii cells preliminarily exhausted with respect to nitrogen on media containing ammonium sulfate or asparagine, the glutamine synthetase inhibitor methionine sulfoximine suppressed the formation of cobinamide (factor B) from the monoamide of cobiric acid (by 75 and 59%, respectively). At the same time, the inhibitor did not affect cobinamide synthesis on a medium with glutamine. The amide group of glutamine, labeled with /sup 13/N, was used for the amidation of corrinoids four times as efficientlymore » as the amine group. It was concluded that a glutamine-dependent synthetase, which catalyzes the amidation of cobiric acids with the formation of cobinamide, functions in cells of propionic acid bacteria.« less
[Advances in the research of effects of glutamine on immune function of burn patients].
Liu, Y H; Guo, P F; Chen, G Y; Bo, Y C; Ma, Y; Cui, Z J
2018-04-20
Glutamine is the most abundant amino acid found in plasma and cells. It is the preferred fuel for enterocytes in the small intestine, macrophages, and lymphocytes. After serious burn, increased requirement of glutamine by the gastrointestinal tract, kidney and lymphocytes, and relatively insufficient self synthesis likely contribute to the rapid decline of glutamine in circulation and cells. Glutamine supplementation can not only protect intestinal mucosa, maintain normal intestinal barrier function, reduce bacterial translocation, and enhance the intestinal immune function, but also increase the number of lymphocytes, enhance the phagocytic function of macrophage, promote the synthesis of immunoglobulin, and reduce the body's inflammatory response, so as to enhance the immune function. Therefore, glutamine supplementation can improve and enhance the immune function, reduce complications and promote the prognosis of severely burned patients.
Ovarian cancer therapeutic potential of glutamine depletion based on GS expression.
Furusawa, Akiko; Miyamoto, Morikazu; Takano, Masashi; Tsuda, Hitoshi; Song, Yong Sang; Aoki, Daisuke; Miyasaka, Naoyuki; Inazawa, Johji; Inoue, Jun
2018-05-28
Amino acids (AAs) are biologically important nutrient compounds necessary for the survival of any cell. Of the 20 AAs, cancer cells depend on the uptake of several extracellular AAs for survival. However, which extracellular AA is indispensable for the survival of cancer cells and the molecular mechanism involved have not been fully defined. In this study, we found that the reduction of cell survival caused by glutamine (Gln) depletion is inversely correlated with the expression level of glutamine synthetase (GS) in ovarian cancer (OVC) cells. GS expression was downregulated in 45 of 316 OVC cases (14.2%). The depletion of extracellular Gln by treatment with l-asparaginase, in addition to inhibiting Gln uptake via the knockdown of a Gln transporter, led to the inhibition of cell growth in OVC cells with low expression of GS (GSlow-OVC cells). Furthermore, the re-expression of GS in GSlow-OVC cells induced the inhibition of tumor growth in vitro and in vivo. Thus, these findings provide novel insight into the development of an OVC therapy based on the requirement of Gln.
Glutamine Transport and Mitochondrial Metabolism in Cancer Cell Growth
Scalise, Mariafrancesca; Pochini, Lorena; Galluccio, Michele; Console, Lara; Indiveri, Cesare
2017-01-01
The concept that cancer is a metabolic disease is now well acknowledged: many cancer cell types rely mostly on glucose and some amino acids, especially glutamine for energy supply. These findings were corroborated by overexpression of plasma membrane nutrient transporters, such as the glucose transporters (GLUTs) and some amino acid transporters such as ASCT2, LAT1, and ATB0,+, which became promising targets for pharmacological intervention. On the basis of their sodium-dependent transport modes, ASCT2 and ATB0+ have the capacity to sustain glutamine need of cancer cells; while LAT1, which is sodium independent will have the role of providing cancer cells with some amino acids with plausible signaling roles. According to the metabolic reprogramming of many types of cancer cells, glucose is mainly catabolized by aerobic glycolysis in tumors, while the fate of Glutamine is completed at mitochondrial level where the enzyme Glutaminase converts Glutamine to Glutamate. Glutamine rewiring in cancer cells is heterogeneous. For example, Glutamate is converted to α-Ketoglutarate giving rise to a truncated form of Krebs cycle. This reprogrammed pathway leads to the production of ATP mainly at substrate level and regeneration of reducing equivalents needed for cells growth, redox balance, and metabolic energy. Few studies on hypothetical mitochondrial transporter for Glutamine are reported and indirect evidences suggested its presence. Pharmacological compounds able to inhibit Glutamine metabolism may represent novel drugs for cancer treatments. Interestingly, well acknowledged targets for drugs are the Glutamine transporters of plasma membrane and the key enzyme Glutaminase. PMID:29376023
García-Espinosa, María A; Rodrigues, Tiago B; Sierra, Alejandra; Benito, Marina; Fonseca, Carla; Gray, Heather L; Bartnik, Brenda L; García-Martín, María L; Ballesteros, Paloma; Cerdán, Sebastián
2004-01-01
We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial glutamine synthesis being stoichiometrically coupled to glycolytic ATP production, (iii) glutamine serving as the main precursor of neurotransmitter glutamate and (iv) glutamatergic neurotransmission being supported by lactate oxidation in the neurons in a process accounting for 60-80% of the energy derived from glucose catabolism. However, more recent experimental approaches using inhibitors of the glial tricarboxylic acid (TCA) cycle (trifluoroacetic acid, TFA) or of glutamine synthase (methionine sulfoximine, MSO) reveal that a considerable portion of the energy required to support glutamine synthesis is derived from the oxidative metabolism of glucose in the astroglia and that a significant amount of the neurotransmitter glutamate is produced from neuronal glucose or lactate rather than from glial glutamine. Moreover, a redox switch has been proposed that allows the neurons to use either glucose or lactate as substrates for oxidation, depending on the relative availability of these fuels under resting or activation conditions, respectively. Together, these results suggest that the coupling mechanisms between neuronal and glial metabolism are more complex than initially envisioned.
Sawant, Onkar B; Wu, Guoyao; Washburn, Shannon E
2015-06-01
Prenatal alcohol exposure is known to cause fetal growth restriction and disturbances in amino acid bioavailability. Alterations in these parameters can persist into adulthood and low birth weight can lead to altered fetal programming. Glutamine has been associated with the synthesis of other amino acids, an increase in protein synthesis and it is used clinically as a nutrient supplement for low birth weight infants. The aim of this study was to explore the effect of repeated maternal alcohol exposure and L-glutamine supplementation on fetal growth and amino acid bioavailability during the third trimester-equivalent period in an ovine model. Pregnant sheep were randomly assigned to four groups, saline control, alcohol (1.75-2.5 g/kg), glutamine (100 mg/kg, three times daily) or alcohol + glutamine. In this study, a weekend binge drinking model was followed where treatment was done 3 days per week in succession from gestational day (GD) 109-132 (normal term ~147). Maternal alcohol exposure significantly reduced fetal body weight, height, length, thoracic girth and brain weight, and resulted in decreased amino acid bioavailability in fetal plasma and placental fluids. Maternal glutamine supplementation successfully mitigated alcohol-induced fetal growth restriction and improved the bioavailability of glutamine and glutamine-related amino acids such as glycine, arginine, and asparagine in the fetal compartment. All together, these findings show that L-glutamine supplementation enhances amino acid availability in the fetus and prevents alcohol-induced fetal growth restriction.
Effect of glutamine supplementation on changes in the immune system induced by repeated exercise.
Rohde, T; MacLean, D A; Pedersen, B K
1998-06-01
The ability of lymphocytes to proliferate and generate lymphokine activated killer (LAK) cell activity in vitro is dependent on glutamine. In relation to intense exercise the lymphocyte concentration, the proliferative response, the natural killer and LAK cell activity, and the plasma glutamine concentration decline. It has been hypothesized that in relation to physical activity a lack of glutamine may temporarily affect the function of the immune system. The purpose of this study was to examine the influence of glutamine supplementation on exercise-induced immune changes. In a randomized cross-over placebo-controlled study, eight healthy male subjects performed three bouts of ergometer bicycle exercise lasting 60, 45, and 30 min at 75% of their VO2max separated by 2 h of rest. The arterial plasma glutamine concentration declined from 508 +/- 35 (pre-exercise) to 402 +/- 38 microM (2 h after the last exercise bout) in the placebo trial and was maintained above pre-exercise levels in the glutamine supplementation trial. The numbers of circulating lymphocytes and the phytohemagglutinin-stimulated lymphocyte proliferative response declined 2 h after, respectively, during each bout of exercise, whereas the LAK cell activity declined 2 h after the third bout. Glutamine supplementation in vivo, given in the described doses at the specific times, did not influence these changes. The present study does not appear to support the hypothesis that those aspects of postexercise immune changes studied are caused by decreased plasma glutamine concentrations.
In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose
NASA Astrophysics Data System (ADS)
Xu, Su; Shen, Jun
2006-10-01
An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.
Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton
Flynn, K. J.; Fasham, M. J. R.; Hipkin, C. R.
1997-01-01
An empirically based mathematical model is presented which can simulate the major features of the interactions between ammonium and nitrate transport and assimilation in phytoplankton. The model (ammonium-nitrate interaction model), which is configured to simulate a generic microalga rather than a specified species, is constructed on simplified biochemical bases. A major requirement for parametrization is that the N:C ratio of the algae must be known and that transport and internal pool sizes need to be expressed per unit of cell C. The model uses the size of an internal pool of an early organic product of N assimilation (glutamine) to regulate rapid responses in ammonium-nitrate interactions. The synthesis of enzymes for the reduction of nitrate through to ammonium is induced by the size of the internal nitrate pool and repressed by the size of the glutamine pool. The assimilation of intracellular ammonium (into glutamine) is considered to be a constitutive process subjected to regulation by the size of the glutamine pool. Longer term responses have been linked to the nutrient history of the cell using the N:C cell quota. N assimilation in darkness is made a function of the amount of surplus C present and thus only occurs at low values of N:C. The model can simulate both qualitative and quantitative temporal shifts in the ammonium-nitrate interaction, while inclusion of a derivation of the standard quota model enables a concurrent simulation of cell growth and changes in nutrient status.
A Survey of Glutamine Synthetase Activities in Tissues from Three Classes of Fish.
1980-09-01
reveree side it necessay end identify by block enamaber) Glutamine synthetase, gamma-glutamyl transferase, osmoregulation , glutamate, glutamine...aspects of osmoregulation as well. The only known route of glutanmine synthesis n all species is activity of glutamine synthetase (EC 6.3.1.2) which...for osmoregulation . There is a relatively small difference n species which retain urea for osmoregulation . This may help to explain the relationship of
Khiabani, Aytak Bakhshayesh; Moghaddam, Gholamali; Kia, Hossein Daghigh
2017-09-01
The aim of the present study was to investigate the effects of l-glutamine on the quality of frozen-thawed rooster semen. Semen samples were collected from eight mature roosters (Ross 308). After initial semen assessments, samples of adequate quality were mixed together and diluted with modified Beltsville extender without l-glutamine (control) and supplemented with 2.5, 5, and 7.5mM l-glutamine. Semen straws were subjected to cryopreservation and evaluated twice at 15-day intervals. After thawing, sperm viability, total and progressive sperm motilities were measured by Eosin-Nigrosine and Computer-Aided Sperm Analysis (CASA), respectively. The results showed that sperm functions decreased on day 30 compared to day 15. The extender supplemented with 5mM glutamine improved (p<0.05) sperm viability, total and progressive sperm motilities compared to other treatments and the control group. The best level of glutamine appeared to be 2.5mM, as it provided the highest sperm membrane integrity and the lowest level of abnormalities. The results of this study suggest that the addition of glutamine to the diluent improves semen quality and using glutamine allows rooster sperm to be frozen for longer. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Shuai; Liu, Shuping; Zhang, Fengmei; Ren, Wenkai; Li, Nengzhang; Yin, Jie; Duan, Jielin; Peng, Yuanyi; Liu, Gang; Yin, Yulong; Wu, Guoyao
2014-10-01
Little is known about effects of dietary glutamine supplementation on specific and general defense responses in a vaccine-immunized animal model. Thus, this study determined roles for dietary glutamine supplementation in specific and general defense responses in mice immunized with inactivated Pasteurella multocida vaccine. The measured variables included: (1) the production of pathogen-specific antibodies; (2) mRNA levels for pro-inflammatory cytokines, toll-like receptors and anti-oxidative factors; and (3) the distribution of P. multocida in tissues and the expression of its major virulence factors in vivo. Dietary supplementation with 0.5 % glutamine had a better protective role than 1 or 2 % glutamine against P. multocida infection in vaccine-immunized mice, at least partly resulting from its effects in modulation of general defense responses. Dietary glutamine supplementation had little effects on the production of P. multocida-specific antibodies. Compared to the non-supplemented group, dietary supplementation with 0.5 % glutamine had no effect on bacterial burden in vivo but decreased the expression of major virulence factors in the spleen. Collectively, supplementing 0.5 % glutamine to a conventional diet provides benefits in vaccine-immunized mice by enhancing general defense responses and decreasing expression of specific virulence factors.
Rogero, Marcelo Macedo; Borelli, Primavera; Vinolo, Marco Aurélio Ramirez; Fock, Ricardo Ambrósio; de Oliveira Pires, Ivanir Santana; Tirapegui, Julio
2008-06-01
To investigate the effect that early weaning associated with the ingestion of either a glutamine-free or supplemented diet has on the functioning of peritoneal macrophages, hematopoiesis and nutritional status of mice. Swiss Webster mice were early weaned on their 14th day of life and distributed to two groups, being fed either a glutamine-free diet (-GLN) or a glutamine-supplemented diet (+GLN). Animals belonging to a control group (CON) were weaned on their 21st day of life. The -GLN and +GLN groups had a lower lean body mass, carcass protein and ash content, plasma glutamine concentration and lymphocyte counts both in the peripheral blood and bone marrow when compared to the CON group (P<0.05). Dietary supplementation with glutamine reversed both the lower concentrations of protein and DNA in the muscle and liver, as well as the reduced capacity of spreading and synthesizing nitric oxide, hydrogen peroxide, TNF-alpha, IL-1 beta and IL-6 in cultures of peritoneal macrophages obtained from the -GLN group (P<0.05). These data indicate that the ingestion of glutamine modulates the function of peritoneal macrophages in early weaned mice. However, a glutamine-supplemented diet cannot substitute maternal milk in respect to immunological and metabolic parameters.
Effect of oral glutamine on enterocyte turnover during methotrexate-induced mucositis in rats.
Sukhotnik, Igor; Mogilner, Jorge G; Karry, Rahel; Shamian, Benhoor; Lurie, Michael; Kokhanovsky, Natalie; Ure, Benno M; Coran, Arnold G
2009-01-01
The objective of this study was to evaluate the effects of oral glutamine in preventing intestinal mucosal damage caused by methotrexate (MTX) in rats. Male Sprague-Dawley rats were divided into 3 experimental groups: control rats, rats treated intraperitoneally with MTX (MTX rats) and rats treated with oral glutamine in the drinking water (2%) 72 h following intraperitoneal injection of a single dose of MTX (MTX-glutamine rats). Intestinal mucosal damage (Park's injury score), mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 h following MTX injection. RT-PCR was used to determine Bax and Bcl-2 mRNA expression. MTX-glutamine rats demonstrated greater jejunal and ileal mucosal weight and mucosal DNA, greater ileal villus height and crypt depth, and a greater index of proliferation in the jejunum and ileum compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-glutamine rats (vs. MTX) was accompanied by decreased Bax and increased Bcl-2 mRNA expression. Treatment with oral glutamine prevents mucosal injury and improves intestinal recovery following MTX injury in the rat.
Biosynthesis of Nucleoside Diphosphoramidates in Campylobacter jejuni.
Taylor, Zane W; Brown, Haley A; Holden, Hazel M; Raushel, Frank M
2017-11-21
Campylobacter jejuni is a pathogenic Gram-negative bacterium and a leading cause of food-borne gastroenteritis. C. jejuni produces a capsular polysaccharide (CPS) that contains a unique O-methyl phosphoramidate modification (MeOPN). Recently, the first step in the biosynthetic pathway for the assembly of the MeOPN modification to the CPS was elucidated. It was shown that the enzyme Cj1418 catalyzes the phosphorylation of the amide nitrogen of l-glutamine to form l-glutamine phosphate. In this investigation, the metabolic fate of l-glutamine phosphate was determined. The enzyme Cj1416 catalyzes the displacement of pyrophosphate from MgCTP by l-glutamine phosphate to form CDP-l-glutamine. The enzyme Cj1417 subsequently catalyzes the hydrolysis of CDP-l-glutamine to generate cytidine diphosphoramidate and l-glutamate. The structures of the two novel intermediates, CDP-l-glutamine and cytidine diphosphoramidate, were confirmed by 31 P nuclear magnetic resonance spectroscopy and mass spectrometry. It is proposed that the enzyme Cj1416 be named CTP:phosphoglutamine cytidylyltransferase and that the enzyme Cj1417 be named γ-glutamyl-CDP-amidate hydrolase.
Awad, Sherif; Constantin-Teodosiu, Dumitru; Constantin, Despina; Rowlands, Brian J; Fearon, Kenneth C H; Macdonald, Ian A; Lobo, Dileep N
2010-08-01
To investigate the effects of preoperative feeding with a carbohydrate-based drink that also contained glutamine and antioxidants (oral nutritional supplement [ONS], Fresenuis Kabi, Germany) on glycogen reserves, mitochondrial function, and the expression of key metabolic genes and proteins. Preoperative carbohydrate loading attenuates the decline in postoperative insulin sensitivity but the cellular mechanisms underlying this remain unclear. Two groups of 20 patients undergoing laparoscopic cholecystectomy participated in this randomized placebo-controlled double-blind study. Patients received either 600 mL of ONS or placebo the evening before surgery, and again 300 mL 3 to 4 hours before anesthesia. A 300-mL aliquot of ONS contained 50 g of carbohydrate, 15 g of glutamine and antioxidants. Blood was sampled before ingestion of the evening drink, after induction of anesthesia, and on postoperative day 1 for measurement of concentrations of glucose, glutamine, and antioxidants. Rectus abdominis muscle and liver biopsies were performed intraoperatively to determine glycogen and glutamine concentrations, mitochondrial function, pyruvate dehydrogenase kinase (PDK4), forkhead transcription factor 1 (FOXO1), and metallothionein 1A (Mt1A) expression. There were no drink-related complications. ONS ingestion led to increased intraoperative liver glycogen reserves (44%, P < 0.001) and plasma glutamine and antioxidant concentrations, the latter 2 remaining elevated up to the first postoperative day. Muscle PDK4 mRNA, PDK4 protein expression, and Mt1A mRNA expression were 4-fold (P < 0.001), 44% (P < 0.05), and 1.5-fold (P < 0.001), respectively, lower in the ONS group. There were no differences in FOXO1 mRNA and protein expression. The changes in muscle PDK4 may explain the mechanism by which preoperative feeding with carbohydrate-based drinks attenuates the development of postoperative insulin resistance.
Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata.
Wall, J D; Gest, H
1979-01-01
In contrast to wild-type cells, glutamine auxotrophs of the photosynthetic bacterium Rhodopseudomonas capsulata synthesize nitrogenase, produce H2 (catalyzed by nitrogenase), and continue to reduce dinitrogen to ammonia in the presence of exogenous NH4+. The glutamine synthetase activity of such mutants is less than 2% of that observed in the wild type. It appears that glutamine synthetase plays a significant role in regulation of nitrogenase synthesis in R. capsulata. PMID:35518
Hayashi, Mariko Kato
2018-04-12
Many kinds of transporters contribute to glutamatergic excitatory synaptic transmission. Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters to be released from presynaptic terminals. After synaptic vesicle release, glutamate is taken up by neurons or astrocytes to terminate the signal and to prepare for the next signal. Glutamate transporters on the plasma membrane are responsible for transporting glutamate from extracellular fluid to cytoplasm. Glutamate taken up by astrocyte is converted to glutamine by glutamine synthetase and transported back to neurons through glutamine transporters on the plasma membranes of the astrocytes and then on neurons. Glutamine is converted back to glutamate by glutaminase in the neuronal cytoplasm and then loaded into synaptic vesicles again. Here, the structures of glutamate transporters and glutamine transporters, their conformational changes, and how they use electrochemical gradients of various ions for substrate transport are summarized. Pharmacological regulations of these transporters are also discussed.
Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion.
Zhang, Ji; Fan, Jing; Venneti, Sriram; Cross, Justin R; Takagi, Toshimitsu; Bhinder, Bhavneet; Djaballah, Hakim; Kanai, Masayuki; Cheng, Emily H; Judkins, Alexander R; Pawel, Bruce; Baggs, Julie; Cherry, Sara; Rabinowitz, Joshua D; Thompson, Craig B
2014-10-23
Many cancer cells consume large quantities of glutamine to maintain TCA cycle anaplerosis and support cell survival. It was therefore surprising when RNAi screening revealed that suppression of citrate synthase (CS), the first TCA cycle enzyme, prevented glutamine-withdrawal-induced apoptosis. CS suppression reduced TCA cycle activity and diverted oxaloacetate, the substrate of CS, into production of the nonessential amino acids aspartate and asparagine. We found that asparagine was necessary and sufficient to suppress glutamine-withdrawal-induced apoptosis without restoring the levels of other nonessential amino acids or TCA cycle intermediates. In complete medium, tumor cells exhibiting high rates of glutamine consumption underwent rapid apoptosis when glutamine-dependent asparagine synthesis was suppressed, and expression of asparagine synthetase was statistically correlated with poor prognosis in human tumors. Coupled with the success of L-asparaginase as a therapy for childhood leukemia, the data suggest that intracellular asparagine is a critical suppressor of apoptosis in many human tumors.
The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain
NASA Astrophysics Data System (ADS)
Kanamori, Keiko; Ross, Brian D.
2001-12-01
[5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.
Albers, Marcel J. I. J.; Steyerberg, Ewout W.; Hazebroek, Frans W. J.; Mourik, Marjan; Borsboom, Gerard J. J. M.; Rietveld, Trinet; Huijmans, Jan G. M.; Tibboel, Dick
2005-01-01
Objective: To assess the effect of isocaloric isonitrogenous parenteral glutamine supplementation on intestinal permeability and nitrogen loss in newborns and infants after major digestive-tract surgery. Summary Background Data: Glutamine supplementation in critically ill and surgical adults may normalize intestinal permeability, attenuate nitrogen loss, improve survival, and lower the incidence of nosocomial infections. Previous studies in critically ill children were limited to very-low-birthweight infants and had equivocal results. Methods: Eighty newborns and infants were included in a double-blind, randomized trial comparing standard parenteral nutrition (sPN; n = 39) to glutamine-supplemented parenteral nutrition (GlnPN; glutamine target intake, 0.4 g kg−1 day−1; n = 41), starting on day 2 after major digestive-tract surgery. Primary endpoints were intestinal permeability, as assessed by the urinary excretion ratio of lactulose and rhamnose (weeks 1 through 4); nitrogen balance (days 4 through 6), and urinary 3-methylhistidine excretion (day 5). Secondary endpoints were mortality, length of stay in the ICU and the hospital, number of septic episodes, and usage of antibiotics and ICU resources. Results: Glutamine intake plateaued at 90% of the target on day 4. No differences were found between patients assigned sPN and patients assigned GlnPN regarding any of the endpoints. Glutamine supplementation was not associated with adverse effects. Conclusions: In newborns and infants after major digestive-tract surgery, we did not identify beneficial effects of isonitrogenous, isocaloric glutamine supplementation of parenteral nutrition. Glutamine supplementation in these patients therefore is not warranted until further research proves otherwise. PMID:15798461
Therapeutic strategies impacting cancer cell glutamine metabolism
Lukey, Michael J; Wilson, Kristin F; Cerione, Richard A
2014-01-01
The metabolic adaptations that support oncogenic growth can also render cancer cells dependent on certain nutrients. Along with the Warburg effect, increased utilization of glutamine is one of the metabolic hallmarks of the transformed state. Glutamine catabolism is positively regulated by multiple oncogenic signals, including those transmitted by the Rho family of GTPases and by c-Myc. The recent identification of mechanistically distinct inhibitors of glutaminase, which can selectively block cellular transformation, has revived interest in the possibility of targeting glutamine metabolism in cancer therapy. Here, we outline the regulation and roles of glutamine metabolism within cancer cells and discuss possible strategies for, and the consequences of, impacting these processes therapeutically. PMID:24047273
BNIP3 contributes to the glutamine-driven aggressive behavior of melanoma cells.
Vara-Perez, Monica; Maes, Hannelore; Van Dingenen, Sarah; Agostinis, Patrizia
2018-06-01
Aerobic glycolysis (Warburg effect) is used by cancer cells to fuel tumor growth. Interestingly, metastatic melanoma cells rely on glutaminolysis rather than aerobic glycolysis for their bioenergetic needs through the tricarboxylic acid cycle. Here, we compared the effects of glucose or glutamine on melanoma cell proliferation, migration and oxidative phosphorylation in vitro. We found that glutamine-driven melanoma cell's aggressive traits positively correlated with increased expression of HIF1α and its pro-autophagic target BNIP3. BNIP3 silencing reduced glutamine-mediated effects on melanoma cell growth, migration and bioenergetics. Hence, BNIP3 is a vital component of the mitochondria quality control required for glutamine-driven melanoma aggressiveness.
Role of glucocorticoids in increased muscle glutamine production in starvation
NASA Technical Reports Server (NTRS)
Tischler, Marc E.; Henriksen, Erik J.; Cook, Paul H.
1988-01-01
The role of glucocorticoids in the synthesis of muscle glutamine during starvation was investigated in adrenalectomized fasted rats injected with cortisol (1 mg/100 g body weight). It was found that administration of cortisol in vivo increased (compared to nontreated starved adrenalectomized controls) the glutamine/glutamate ratio and the activity of glutamine synthetase in the diaphragm and the extensor digitorum muscles, and that these effects were abolished by prior treatment with actinomycin D or proflavine. The results obtained in in vitro experiments, using fresh-frozen soleus, extensor digitorum longus, and diaphragm muscle preparations, supported the in vivo indications of the cortisol-enhanced glutamine synthesis and protein turnover in starved adrenalectomized animals.
Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae
Yoshinaga, Naoko; Aboshi, Takako; Abe, Hiroaki; Nishida, Ritsuo; Alborn, Hans T.; Tumlinson, James H.; Mori, Naoki
2008-01-01
Since the first fatty acid amino acid conjugate (FAC) was isolated from regurgitant of Spodoptera exigua larvae in 1997 [volicitin: N-(17-hydroxylinolenoyl)-l-glutamine], their role as elicitors of induced responses in plants has been well documented. However, studies of the biosyntheses and the physiological role of FACs in the insect have been minimal. By using 14C-labeled glutamine, glutamic acid, and linolenic acid in feeding studies of Spodoptera litura larvae, combined with tissue analyses, we found glutamine in the midgut cells to be a major source for biosynthesis of FACs. Furthermore, 20% of the glutamine moiety of FACs was derived from glutamic acid and ammonia through enzymatic reaction of glutamine synthetase (GS). To determine whether FACs improve GS productivity, we studied nitrogen assimilation efficiency of S. litura larvae fed on artificial diets containing 15NH4Cl and glutamic acid. When the diet was enriched with linolenic acid, the nitrogen assimilation efficiency improved from 40% to >60%. In the lumen, the biosynthesized FACs are hydrolyzed to fatty acids and glutamine, which are reabsorbed into tissues and hemolymph. These results strongly suggested that FACs play an active role in nitrogen assimilation in Lepidoptera larva and that glutamine containing FACs in the gut lumen may function as a form of storage of glutamine, a key compound of nitrogen metabolism. PMID:18997016
Marino, Luise V; Pathan, Nazima; Meyer, Rosan W; Wright, Victoria J; Habibi, Parviz
2016-03-01
Glutamine has been shown to promote the release of heat shock protein 70 (HSP70) both within experimental in vitro models of sepsis and in adults with septic shock. This study aimed to investigate the effects of 2 mM glutamine and an inhibitor of HSP70 (KNK437) on the release of HSP70 and inflammatory mediators in healthy adult volunteers. An in vitro whole blood endotoxin stimulation assay was used. The addition of 2 mM glutamine significantly increased HSP70 levels over time (P < 0.05). HSP70 release had a positive correlation at 4 h with IL-1 β (r = 0.51, P = 0.03) and an inverse correlation with TNF-α (r = -0.56, P = 0.02) and IL-8 levels (r = -0.52, P = 0.03), and there were no significant correlations between HSP70 and IL6 or IL-10 or glutamine. Glutamine supplementation significantly (P < 0.05) attenuated the release of IL-10 at 4 h and IL-8 at 24 h, compared with conditions without glutamine. In endotoxin-stimulated blood there were no significant differences in the release of IL-6, TNF-α, and IL-1 β with glutamine supplementation at 4 and 24 h. However, glutamine supplementation (2 mM) appeared to attenuate the release of inflammatory mediators (IL-1 β, IL-6, TNF-α), although this effect was not statistically significant. The addition of KNK437, a HSP70 inhibitor, significantly diminished HSP70 release, which resulted in lower levels of inflammatory mediators (P < 0.05). Glutamine supplementation promotes HSP70 release in an experimental model of sepsis. After the addition of KNK437, the effects of glutamine on HSP70 and inflammatory mediator release appear to be lost, suggesting that HSP70 in part orchestrates the inflammatory mediator response to sepsis. The clinical implications require further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.
Sheridan, Robert L; Prelack, Kathrina; Yu, Yong-Ming; Lydon, Martha; Petras, Lisa; Young, Vernon R; Tompkins, Ronald G
2004-06-01
Glutamine is a nonessential amino acid that, in recent years, has been found to play important roles in several metabolic and immunologic processes. It has been theorized that, in a stressed state, it may become "conditionally essential" because the patient's ability to manufacture glutamine may not be adequate to meet their needs under this condition. We chose to evaluate the ability of 48 hours of enteral glutamine to enhance immediate nitrogen accretion in stressed pediatric burn patients. Nine children with serious burns who were tolerating tube feedings were enrolled in a human studies committee-approved protocol in which they received 48 hours of enteral feedings with glutamine replacing 20% of essential and nonessential amino acids and 48 hours of isonitrogenous, isocaloric standard enteral feedings. This interval was chosen to help ensure that the study periods were comparable from a metabolic perspective. At the end of each period, protein kinetics were determined by a primed constant infusion of L-[1-(13)C] leucine tracer. The order of the studies was randomized. Seven children completed both phases of the study. Results were compared by paired t test and are presented as mean +/- standard error of the mean. During the glutamine feeding period, the leucine flux and leucine oxidation rate were significantly lower than those in the conventional feeding period. This reflects a reduction in total leucine intake from 80 +/- 11 to 62 +/- 10 micromol/kg per hour. However, there was no significant difference in the net balance of leucine accretion into proteins between these 2 dietary periods, which indicated that enriched glutamine feeding for 48 hours did not result in an immediate whole body protein gain in this group of pediatric patients. In addition, plasma glutamine concentration showed a moderate increase after 48 hours of supplementation but did not reach significance. Rapid protein accretion does not occur with short-term enteral glutamine supplementation. Several days of glutamine supplementation may be required to restore plasma glutamine levels and stimulate protein synthesis.
Cruzat, Vinicius F; Pantaleão, Lucas C; Donato, José; de Bittencourt, Paulo Ivo Homem; Tirapegui, Julio
2014-03-01
Sepsis is a leading cause of death in intensive care units worldwide. Low availability of glutamine contributes to the catabolic state of sepsis. L-Glutamine supplementation has antioxidant properties and modulates the expression of heat shock proteins (HSPs). This study investigated the effects of oral supplementation with L-glutamine plus L-alanine (GLN+ALA), both in the free form and L-alanyl-L-glutamine dipeptide (DIP), on glutamine-glutathione (GSH) axis and HSPs expression in endotoxemic mice. B6.129F2/J mice were subjected to endotoxemia (lipopolysaccharides from Escherichia coli, 5 mg.kg(-1), LPS group) and orally supplemented for 48 h with either L-glutamine (1 g.kg(-1)) plus L-alanine (0.61 g.kg(-1)) (GLN+ALA-LPS group) or 1.49 g.kg(-1) of DIP (DIP-LPS group). Endotoxemia reduced plasma and muscle glutamine concentrations [relative to CTRL group] which were restored in both GLN+ALA-LPS and DIP-LPS groups (P<.05). In supplemented groups were re-established GSH content and intracellular redox status (GSSG/GSH ratio) in circulating erythrocytes and muscle. Thiobarbituric acid reactive substance was 4-fold in LPS treated mice relative to the untreated CTRL group, and plasma TNF-α and IL-1β levels were attenuated by the supplements. Heat shock proteins 27, 70 and 90 (protein and mRNA) were elevated in the LPS group and were returned to basal levels (relative to CTRL group) in both GLN+ALA-LPS and DIP-LPS groups. Supplementations to endotoxemic mice resulted in up-regulation of GSH reductase, GSH peroxidase and glutamate cysteine ligase mRNA expression in muscle. In conclusion, oral supplementations with GLN+ALA or DIP are effective in reversing the conditions of LPS-induced deleterious impact on glutamine-GSH axis in mice under endotoxemia. Copyright © 2014 Elsevier Inc. All rights reserved.
Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio
2016-08-01
We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.
Beaufrère, A M; Neveux, N; Patureau Mirand, P; Buffière, C; Marceau, G; Sapin, V; Cynober, L; Meydinal-Denis, D
2014-11-01
Glutamine is the preferred fuel for the rat small intestine and promotes the growth of intestinal mucosa, especially in the event of gut injury. Quantitatively, glutamine is one important precursor for intestinal citrulline release. The aim of this study was to determine whether the effect of glutamine on the increase in intestinal villus height is correlated with an increase in both gut mass and citrulline plasma level in very old rats. We intermittently supplemented very old (27-mo) female rats with oral glutamine (20% of diet protein). Intestinal histomorphometric analysis of the small bowel was performed. Amino acids, in particular citrulline, were measured in the plasma, liver and jejunum. Markers of renal (creatinine, urea) and liver (alanine aminotransferase [ALT]) and aspartate aminotransferase (AST) functions were measured to evaluate renal and liver functions in relation to aging and to glutamine supplementation. Liver glutathione was also determined to evaluate cellular redox state. Glutamine supplementation maintains the body weight of very old rats, not by limiting sarcopenia but rather by increasing the organ mass of the splanchnic area. Total intestine mass was significantly higher in glutamine-supplemented rats than in controls (15%). Measurement of villus height and crypt depth demonstrated that the difference between villus and crypt was significantly improved in glutamine pre-treated rats compared to controls (~ 11%). Plasma citrulline also increased by 15% in glutamine-supplemented rats compared to controls. Citrulline appears as a biomarker of enterocyte mass in villous atrophy associated with advanced age. Non-invasive measurement of this metabolite may be useful in following the state of the gastrointestinal tract in very old people, whose numbers are increasing worldwide and the care of whom is a major public health issue. The gut may contribute to the malnutrition caused by malabsorption frequently observed in the elderly.
Beutheu, Stéphanie; Ghouzali, Ibtissem; Galas, Ludovic; Déchelotte, Pierre; Coëffier, Moïse
2013-10-01
Chemotherapy induces an increase of intestinal permeability that is partially related to an alteration of tight junction proteins, occludin and zonula occludens-1 (ZO-1). Protective effects of glutamine on intestinal barrier function have been previously shown but the effects of other amino acids remained poorly documented. Thus, we aimed to evaluate the effects of nine amino acids on intestinal permeability during methotrexate (MTX) treatment in Caco-2 cells. Caco-2 cells were incubated in culture medium supplemented with glutamine, arginine, glutamate, leucine, taurine, citrulline, glycine, histidine or cysteine during 24 h and then treated with MTX (100 ng/ml). The dose of each amino acid was 16.6 fold the physiological plasma concentrations. Barrier function was assessed by transepithelial electrical resistance (TEER), FITC-dextran paracellular flux, occludin and ZO-1 expression and localization. Signaling pathways were also studied. Only glutamine, glutamate, arginine and leucine reversed the decrease of TEER observed after MTX treatment (P < 0.05). Interestingly, the addition of 6-diazo-5-oxo-1-norleucine, an inhibitor of glutaminase, blunted the effect of glutamine on MTX-treated cells (P < 0.05). Glutamine and arginine combination restored TEER and FITC-dextran flux to a similar extent than glutamine alone. In addition, pretreatment of Caco-2 cells with glutamine and arginine, alone or combined, differently limited the decrease of ZO-1 and occludin expression (P < 0.05) and the alteration of their cellular distribution, through c-Jun N-terminal kinase (JNK), Extracellular signal-regulated kinase (ERK) and nuclear factor kappa B (NF-κB) pathways. Glutamine prevented MTX-induced barrier disruption in Caco-2 cells. Arginine also had protective effects but in a lesser extent. The effect of glutamine and arginine should be evaluated in vivo. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Ramezani Ahmadi, Amirhossein; Rayyani, Elham; Bahreini, Mehdi; Mansoori, Anahita
2018-05-09
This systematic review and meta-analysis of available evidence was conducted to obtain a conclusive result on the effects of glutamine supplementation on athletes. Systematic review and meta-analysis. Data related to body mass, lean body mass, body fat percentage, Vo2 max, lymphocytes, leukocytes and neutrophil counts were extracted to determine the effects of GLN on performance outcomes. The literature search was conducted across the databases Pubmed, Scopus, ISI Web of Science, SID (Scientific Information Database) and Cochrane Central Register of Controlled Trials, covering a period up to January 2017. Clinical trials evaluating glutamine supplementation outcomes on athletes aged over 18 were included. A total of 47 studies were included in the systematic review, and 25 trials matched the inclusion criteria for the meta-analysis. According to the meta-analysis, glutamine has a significant effect on weight reduction (WMD = -1.36 [95% CI: -2.55 to -0.16], p = 0.02). Moreover, neutrophil numbers were reduced following glutamine intake at doses greater than 200 mg/kg body weight (WMD = -605.77 [95% CI: -1200.0 to 52.1]; P = 0.03). Also, supplementation by glutamine dipeptide resulted in higher blood glucose after exercise (WMD = 0.51 [95% CI: 0.18, 0.83] mmol/l; P = 0.002). There was no association between glutamine ingestion and other outcomes investigated. According to this meta-analysis, generally, glutamine supplementation has no effect on athletics immune system, aerobic performance, and body composition. However, the current study showed that glutamine resulted in greater weight reduction. In addition, the present study suggests that the efficacy of glutamine supplementation on neutrophil numbers could be affected by supplement type and dose. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Glutamine supplementation favors weight loss in nondieting obese female patients. A pilot study.
Laviano, A; Molfino, A; Lacaria, M T; Canelli, A; De Leo, S; Preziosa, I; Rossi Fanelli, F
2014-11-01
Glutamine supplementation improves insulin sensitivity in critically ill patients, and prevents obesity in animals fed a high-fat diet. We hypothesized that glutamine supplementation favors weight loss in humans. Obese and overweight female patients (n=6) were enrolled in a pilot, cross-over study. After recording anthropometric (that is, body weight, waist circumference) and metabolic (that is, glycemia, insulinemia, homeostatic model of insulin resistance (HOMA-IR)) characteristics, patients were randomly assigned to 4-week supplementation with glutamine or isonitrogenous protein supplement (0.5 g/KgBW/day). During supplementation, patients did not change their dietary habits nor lifestyle. At the end, anthropometric and metabolic features were assessed, and after 2 weeks of washout, patients were switched to the other supplement for 4 weeks. Body weight and waist circumference significantly declined only after glutamine supplementation (85.0±10.4 Kg vs 82.2±10.1 Kg, and 102.7±2.0 cm vs 98.9±2.9 cm, respectively; P=0.01). Insulinemia and HOMA-IR declined by 20% after glutamine, but not significantly so. This pilot study shows that glutamine is safe and effective in favoring weight loss and possibly enhancing glucose metabolism.
Belmonte, Liliana; Coëffier, Moïse; Le Pessot, Florence; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre
2007-05-28
To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 +/- 1.05 vs 1.72 +/- 0.46 mumol/g tissue, P<0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal alpha1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model.
Ortiz, María; Córdoba, Juan; Alonso, Juli; Rovira, Alex; Quiroga, Sergi; Jacas, Carlos; Esteban, Rafael; Guardia, Jaume
2004-03-01
Congenital portosystemic shunts are rare abnormalities of liver vasculature that can cause neurological symptoms, probably secondarily to the effects of the metabolism of ammonia in the brain. Our aim was to investigate the relationship between capillary blood ammonia after oral glutamine challenge and magnetic resonance spectroscopy in three patients with congenital portosystemic shunts. Neuropsychological tests, oral glutamine challenge and magnetic resonance spectroscopy were performed at baseline and after 6 months of follow-up in three patients with congenital portosystemic shunts. The results were compared to those obtained in a group of six cirrhotic patients with prior episodes of hepatic encephalopathy and healthy controls. Patients with congenital portosystemic shunts exhibited abnormalities of neuropsychological tests, magnetic resonance spectroscopy and a response to the oral glutamine challenge similar to those observed in patients with cirrhosis. The intensity of the rise of brain glutamine was correlated to the area under the curve of ammonia after the oral glutamine challenge (R=0.72). Neurological manifestations of patients with congenital portosystemic shunts are mediated through similar mechanisms that are involved in the pathogenesis of hepatic encephalopathy. The area under the curve appears to be the better parameter that defines the response to the oral glutamine challenge.
Rhys, Natasha H; Soper, Alan K; Dougan, Lorna
2015-12-24
Recent studies suggest that hydrophilic interactions play an important role in controlling self-assembly in biological processes. To explore the effect of temperature on this interaction, we extend our previous work on the glutamine-water system at 24 °C (at a mole ratio of 1 glutamine to 269 water molecules) and present additional neutron diffraction data, at the same concentration, at 37 and 60 °C, using hydrogen/deuterium substitution on the water and glutamine, coupled with further extensive empirical potential structure refinement computer simulations. Taking all the possible hydrophilic couplings between glutamine molecules into account, we find that nearly one-fifth of the glutamines in solution are linked by hydrogen bonds at any one time. This number contrasts strongly with the ∼3-4% fraction found in the same simulation with random packing and no hydrogen bonds. Within the uncertainties imposed by dilute solution statistics, we find no temperature dependence in these values. The clusters are highly transitory, forming and disappearing rapidly as the simulations proceed. Hydrophobic association of the alkyl groups on glutamine without concomitant hydrophilic association of the charged head and side-chain groups is only weakly observed.
A controlled trial of glutamine effects on bone healing.
Polat, Onur; Kilicoglu, Sibel Serin; Erdemli, Esra
2007-01-01
Glutamine is considered a nonessential amino acid, but it may be conditionally essential in patients with catabolic conditions. For centuries, researchers have looked for ways to promote and accelerate fracture healing. This controlled animal study examines the effects of glutamine on fracture healing. The left tibias of 10 standardized albino rats were broken at the distal third to produce a closed fracture. L-glutamine/L-alanyl solution (2.0 mL/kg) was administered through the tail veins of half the rats for the first 7 d, and physiologic serum alone was given to the control group. On the 21st day, all rats were euthanized and their left legs removed; after histologic observation, the tibias were examined under light microscopy. In the glutamine-injected group, development of primary callus was quicker and more regular than in the control group. The control group produced insufficient fibrous callus, and the glutamine group attained formed cartilaginous callus. Glutamine was noted to have positive effects on healing of traumatically fractured bone through attainment of positive nitrogen balance. This effect was minimal in enhancing the quality of fracture healing under conditions of stress, but some effect was noted on the speed of healing. Further research is needed in this area.
Bioenergetics of Stromal Cells As a Predictor of Aggressive Prostate Cancer
2015-09-01
presence of glucose or glutamine alone or in combination compared to RWPE-1 cells and decreases with increasing malignancy. Glutamine maintained higher...increasing malignancy in presence of glucose or glutamine alone or in combination. It was performed using MIST. MiST: After three baseline OCR...measurements in an assay medium (DMEM containing 10 mM glucose, 4 mM glutamine at pH 7.4 without bicarbonate), Oligomycin (1.0 μM), FCCP (0.125 μM), and
Rathmacher, J A; Nissen, S; Panton, L; Clark, R H; Eubanks May, P; Barber, A E; D'Olimpio, J; Abumrad, N N
2004-01-01
Combining the amino acids arginine and glutamine with the leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) has been shown to reverse lean tissue loss in cancer and acquired immunodeficiency syndrome (AIDS) patients. Although each of these nutrients has been shown to be safe, the safety of this mixture has not been reported. Three double-blind studies examined the safety of the combination of HMB, arginine and glutamine on blood chemistries, hematology, emotional profile, and adverse events. Study 1 was conducted in healthy adult males (n = 34), study 2 was in HIV patients with AIDS-associated weight loss (n = 43), and study 3 was in cancer patients with wasting (n = 32). Volunteers were assigned to either a placebo or a mixture of 3 g HMB, 14 g arginine, and 14 g glutamine per day. Across the 3 studies, HMB, arginine, and glutamine supplementation was not associated with any adverse indicators of health. The only significant changes noted were positive indicators of health status. HMB, arginine, and glutamine supplementation was associated with an improvement in emotional profile (p = .05), a decreased feeling of weakness (p = .03), and increased red blood cells, hemoglobin, hematocrit, lymphocytes, and eosinophils (p < .05) when compared with placebo-supplemented subjects. Blood creatinine levels were not changed. However, blood urea nitrogen increased (p = .01) with HMB, arginine, and glutamine supplementation, which was possibly caused by the additional nitrogen consumed or to the fact that ureagenesis is influenced by arginine and glutamine supplementation. These results show that HMB, arginine, and glutamine can be safely used to treat muscle wasting associated with AIDS and cancer.
Zhu, Ying; Li, Tingting; Ramos da Silva, Suzane; Lee, Jae-Jin; Lu, Chun; Eoh, Hyungjin; Jung, Jae U.
2017-01-01
ABSTRACT While glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival. Numerous types of cancer also depend on asparagine for cell proliferation. The underlying mechanisms of the glutamine and asparagine requirement in cancer cells in different contexts remain unclear. In this study, we show that the oncogenic virus Kaposi’s sarcoma-associated herpesvirus (KSHV) accelerates the glutamine metabolism of glucose-independent proliferation of cancer cells by upregulating the expression of numerous critical enzymes, including glutaminase 2 (GLS2), glutamate dehydrogenase 1 (GLUD1), and glutamic-oxaloacetic transaminase 2 (GOT2), to support cell proliferation. Surprisingly, cell crisis is rescued only completely by supplementation with asparagine but minimally by supplementation with α-ketoglutarate, aspartate, or glutamate upon glutamine deprivation, implying an essential role of γ-nitrogen in glutamine and asparagine for cell proliferation. Specifically, glutamine and asparagine provide the critical γ-nitrogen for purine and pyrimidine biosynthesis, as knockdown of four rate-limiting enzymes in the pathways, including carbamoylphosphate synthetase 2 (CAD), phosphoribosyl pyrophosphate amidotransferase (PPAT), and phosphoribosyl pyrophosphate synthetases 1 and 2 (PRPS1 and PRPS2, respectively), suppresses cell proliferation. These findings indicate that glutamine and asparagine are shunted to the biosynthesis of nucleotides and nonessential amino acids from the tricarboxylic acid (TCA) cycle to support the anabolic proliferation of KSHV-transformed cells. Our results illustrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway. PMID:28811348
Du, Yang T; Piscitelli, Diana; Ahmad, Saima; Trahair, Laurence G; Greenfield, Jerry R; Samocha-Bonet, Dorit; Rayner, Christopher K; Horowitz, Michael; Jones, Karen L
2018-06-07
Glutamine is a potent stimulus for the release of glucagon-like peptide-1, which increases postprandial insulin and slows gastric emptying (GE). We determined the effects of glutamine on GE of, and glycaemic responses to, low- and high-nutrient drinks in eight healthy males (mean age 21.6 ± 0.7 years and BMI 22.9 ± 0.7 kg/m²). Participants were studied on four occasions on which they consumed either a low-nutrient (beef soup; 18 kcal) or high-nutrient (75 g dextrose; 255 kcal) drink, each with or without 30 g of glutamine (120 kcal), in a randomised, crossover design. GE (2D ultrasound), blood glucose and plasma insulin concentrations were measured concurrently. Glutamine slowed GE (half emptying time (T50)) of both low- (45 ± 3 min vs. 26 ± 2 min, p < 0.001), and high-nutrient, (100 ± 5 min vs. 77 ± 5 min, p = 0.03) drinks, however, there was no effect on GE of the high nutrient drinks when expressed as kcal/min (3.39 ± 0.21 kcal/min vs. 3.81 ± 0.20 kcal/min, p = 0.25). There was no change in blood glucose after the low-nutrient drinks with or without glutamine, despite a slight increase in plasma insulin with glutamine ( p = 0.007). The rise in blood glucose following the high-nutrient drink ( p = 0.0001) was attenuated during the first 60 min by glutamine ( p = 0.007). We conclude that in healthy subjects, glutamine slows GE of both low- and high-nutrient drinks comparably and attenuates the rise in blood glucose after the high-nutrient glucose drink.
Management of Chemoradiation-Induced Mucositis in Head and Neck Cancers With Oral Glutamine
Panda, Niharika; Dash, Manoj Kumar; Mohanty, Sumita; Samantaray, Sagarika
2016-01-01
Purpose Head and neck cancers are the third most common cancers worldwide. Oral mucositis is the most common toxicity seen in patients who receive chemoradiation to treat head and neck cancer. The aim of this study was to evaluate the efficacy and safety of oral glutamine supplementation in these patients. Materials and Methods From December 2013 to December 2014, we randomly assigned to two arms 162 patients who had squamous cell carcinoma of the head and neck. Patients in arm A were given oral glutamine once per day, whereas those in arm B served as negative control subjects. All patients received radiotherapy given as 70 Gy in 35 fractions over 7 weeks with an injection of cisplatin once per week. Patients were assessed once per week to evaluate for the onset and severity of mucositis, pain, use of analgesics, and for Ryle tube feeding. Results We observed that 53.1% of patients developed mucositis toward the fifth week in the glutamine arm compared with 55.5% of patients in the control arm at the third week. None in the glutamine arm compared with 92.35% of patients in the control arm developed G3 mucositis. Rates of adverse events like pain, dysphagia, nausea, edema, and cough, as well as use of analgesics and Ryle tube feeding, were significantly lower in the glutamine arm than in the control arm. Conclusion This study highlights that the onset as well as the severity of mucositis in patients receiving glutamine was significantly delayed. None of the patients receiving glutamine developed G3 mucositis. Hence, the findings emphasize the use of oral glutamine supplementation as a feasible and affordable treatment option for mucositis in patients with head and neck cancers who are receiving chemoradiation. PMID:28717702
Protective effects of glutamine on human melanocyte oxidative stress model.
Jiang, Liya; Guo, Zhen; Kong, Yulong; Liang, Jianhua; Wang, Yi; Wang, Keyu
2018-01-01
Vitiligo is a disorder caused by the loss of the melanocyte activity on melanin pigment generation. Studies show that oxidative-stress induced apoptosis in melanocytes is closely related to the pathogenesis of vitiligo. Glutamine is a well known antioxidant with anti-apoptotic effects, and is used in a variety of diseases. However, it is unclear whether glutamine has an antioxidant or anti-apoptotic effect on melanocytes. The aim of this study was to investigate the protective effects of glutamine on a human melanocyte oxidative stress model. The oxidative stress model was established on human melanocytes using hydrogen peroxide. The morphology and viability of melanocytes, levels of oxidants [reactive oxygen species and malondialdehyde], levels of antioxidants [superoxide dismutase and glutathione-S-transferase], and apoptosis-related indicators (caspase-3, bax and bcl-2) were examined after glutamine exposure at various concentrations. Expressions of nuclear factor-E2-related factor 2, heme oxygenase-1, and heat shock protein 70 were detected using western blot technique after glutamine exposure at various concentrations. Our results demonstrate that pre-treatment and post-treatment with glutamine promoted melanocyte viability, increased levels of superoxide dismutase, glutathione-S-transferase and bcl-2, decreased levels of reactive oxygen species, malondialdehyde, bax and caspase-3, and enhanced nuclear factor-E2-related factor 2, heme oxygenase-1, and heat shock protein 70 expression in a dose dependent manner. The effect of pre-treatment was more significant than post-treatment, at the same concentration. The mechanisms of glutamine activated nuclear factor-E2-related factor 2 antioxidant responsive element signaling pathway need further investigation. Glutamine enhances the antioxidant and anti-apoptotic capabilities of melanocytes and protects them against oxidative stress.
Liu, Jia; Marchase, Richard B; Chatham, John C
2007-01-01
It has been shown that glutamine protects the heart from ischemia/reperfusion (I/R) injury; however, the mechanisms underlying this protection have not been identified. Glutamine:fructose-6-phosphate amidotransferase (GFAT) regulates the entry of glucose into the hexosamine biosynthesis pathway (HBP), and activation of this pathway has been shown to be cardioprotective. Glutamine is required for metabolism of glucose via GFAT; therefore, the goal of this study was to determine whether glutamine cardioprotection could be attributed to increased flux through the HBP and elevated levels of O-linked N-acetylglucosamine (O-GlcNAc) on proteins. Hearts from male rats were isolated and perfused with Krebs-Henseliet buffer containing 5 mM glucose, and global, no-flow ischemia was induced for 20 min followed by 60 min of reperfusion. Thirty-minute pre-treatment with 2.5 mM glutamine significantly improved functional recovery (RPP: 15.6+/-5.7% vs. 59.4+/-6.1%; p<0.05) and decreased cardiac troponin I release (25.4+/-3.0 vs. 4.7+/-1.9 ng/ml; p<0.05) during reperfusion. This protection was associated with a significant increase in the levels of protein O-GlcNAc and ATP. Pre-treatment with 80 muM azaserine, an inhibitor of GFAT, completely reversed the protection seen with glutamine and prevented the increase in protein O-GlcNAc. O-GlcNAc transferase (OGT) catalyzes the formation of O-GlcNAc, and inhibition of OGT with 5 mM alloxan also reversed the protection associated with glutamine. These data support the hypothesis that in the ex vivo perfused heart glutamine cardioprotection is due, at least in part, to enhanced flux through the HBP and increased protein O-GlcNAc levels.
L-glutamine for sickle cell anemia: more questions than answers.
Quinn, Charles T
2018-06-12
In 2017, the Food and Drug Administration (FDA) approved two medications for sickle cell anemia (SCA): hydroxyurea for children (≥2 years of age) and L-glutamine for children and adults (≥5 years). The approval of hydroxyurea for children was long overdue, having been authorized by the FDA for adults in 1998 and by the European Medicines Agency for adults and children in 2007, but the approval of L-glutamine was a surprise to many in the field. There are few published studies of L-glutamine as a treatment for SCA, so all can be reviewed in this brief manuscript. Accordingly, there are many unanswered questions about L-glutamine and its role in current therapy for SCA. Copyright © 2018 American Society of Hematology.
Corticosteroids increase glutamine utilization in human splanchnic bed
USDA-ARS?s Scientific Manuscript database
Glutamine is the most abundant amino acid in the body and is extensively taken up in gut and liver in healthy humans. To determine whether glucocorticosteroids alter splanchnic glutamine metabolism, the effect of prednisone was assessed in healthy volunteers using isotope tracer methods. Two groups ...
77 FR 59106 - Glufosinate Ammonium; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... to conclude that the changes in brain glutamine synthetase activity are of significant concern for... technical material. In chronic studies in the rat, inhibition of brain glutamine synthetase, increased.... Changes in glutamine synthetase levels were observed in liver, kidney, and brain in rats. The altered...
Transgenic algae engineered for higher performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J
The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.
In Vivo Conversion of 5-Oxoproline to Glutamate by Higher Plants 1
Mazelis, Mendel; Pratt, Helen M.
1976-01-01
l-(U-14C)-5-oxoproline (pyrollidone carboxylic acid or pyroglutamic acid) was infiltrated into detached leaves of a number of species and incubated for 1 to 6 hours. In every case, conversion to labeled glutamate and glutamine was observed. The amount converted varied from 1 to 64% of the total label fed depending on the species. The ratio of glutamate-14C to glutamine-14C ranged from 5 in Vicia faba to 1 in sugar beet. This ratio could be affected by preinfiltrating various compounds before allowing the uptake of the 5-oxoproline. When l-methionine-dl-sulfoximine was prefed to sugar beet leaves, the glutamate-glutamine ratio increased from 1 to 10. Prior treatment of V. faba leaves with azaserine resulted in essentially only labeled glutamine being recovered. Preinfiltration with NaF or ATP gave similar results in that the glutamate-glutamine ratio was greatly decreased. The results are consistent with glutamate being produced from the 5-oxoproline and then being converted to glutamine. PMID:16659431
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B-cells
Le, Anne; Lane, Andrew N.; Hamaker, Max; Bose, Sminu; Gouw, Arvin; Barbi, Joseph; Tsukamoto, Takashi; Rojas, Camilio J.; Slusher, Barbara S.; Zhang, Haixia; Zimmerman, Lisa J.; Liebler, Daniel C.; Slebos, Robbert J.C.; Lorkiewicz, Pawel K.; Higashi, Richard M.; Fan, Teresa W. M.; Dang, Chi V.
2012-01-01
Summary Because MYC plays a causal role in many human cancers, including those with hypoxic and nutrient-poor tumor microenvironments, we have determined the metabolic responses of a MYC-inducible human Burkitt lymphoma model P493 cell line to aerobic and hypoxic conditions, and to glucose deprivation, using Stable Isotope Resolved Metabolomics. Using [U-13C]-glucose as the tracer, both glucose consumption and lactate production were increased by MYC expression and hypoxia. Using [U-13C,15N]-glutamine as the tracer, glutamine import and metabolism through the TCA cycle persisted under hypoxia, and glutamine contributed significantly to citrate carbons. Under glucose deprivation, glutamine-derived fumarate, malate, and citrate were significantly increased. Their 13C labeling patterns demonstrate an alternative energy-generating glutaminolysis pathway involving a glucose-independent TCA cycle. The essential role of glutamine metabolism in cell survival and proliferation under hypoxia and glucose deficiency, makes them susceptible to the glutaminase inhibitor BPTES, and hence could be targeted for cancer therapy. PMID:22225880
2011-01-01
Background Accidental autoclaving of L-glutamine was found to facilitate the Agrobacterium infection of a non host plant like tea in an earlier study. In the present communication, we elucidate the structural changes in L-glutamine due to autoclaving and also confirm the role of heat transformed L-glutamine in Agrobacterium mediated genetic transformation of host/non host plants. Results When autoclaved at 121°C and 15 psi for 20 or 40 min, L-glutamine was structurally modified into 5-oxo proline and 3-amino glutarimide (α-amino glutarimide), respectively. Of the two autoclaved products, only α-amino glutarimide facilitated Agrobacterium infection of a number of resistant to susceptible plants. However, the compound did not have any vir gene inducing property. Conclusions We report a one pot autoclave process for the synthesis of 5-oxo proline and α-amino glutarimide from L-glutamine. Xenobiotic detoxifying property of α-amino glutarimide is also proposed. PMID:21624145
Ersin, S; Tuncyurek, P; Esassolak, M; Alkanat, M; Buke, C; Yilmaz, M; Telefoncu, A; Kose, T
2000-04-01
Recent studies indicated that glutamine and arginine support the mucosal barrier in several ways. This experimental study hypothesized that administration of glutamine- and arginine-enriched diets before abdominal radiation therapy would provide a radioprotective effect on intestinal mucosa, and this would augment the therapeutic effectiveness provided by postirradiation administration. A rat model of radiation enteritis was designed with a single dose of 1100 cGy to the abdomen. Thirty-five rats were randomized into five groups of seven. A 7-day glutamine-enriched diet for Group I and a 7-day arginine-enriched diet for Group II were administered both pre- and postradiation. For Groups III and IV, the same glutamine and arginine diets were given, respectively, postradiation only. Group V was fed a glutamine- and arginine-free diet and was the control group. The rats underwent laparotomy for culture of mesenteric lymph nodes and removal of segments of ileum, jejenum, and colon for microscopic examination. Bacterial translocation was significantly higher in Group V (P < 0.05), while intestinal villus count and villus height were significantly higher in all of the groups fed glutamine and arginine when compared with the control group (P < 0.0001 and P < 0.05, respectively). Both arginine- and glutamine-enriched diets have protective effects on gut mucosa in the postirradiation state; however, pre- and postirradiation administration together does not provide superior protection versus postradiation administration alone. Copyright 2000 Academic Press.
Rogero, Marcelo Macedo; Borges, Maria Carolina; de Castro, Inar Alves; Pires, Ivanir S O; Borelli, Primavera; Tirapegui, Julio
2011-09-01
Glutamine, one of the most abundant amino acids found in maternal milk, favors protein anabolism. Early-weaned babies are deprived of this source of glutamine, in a period during which endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress, mainly during infections. The objective of this study was to verify the effects of dietary glutamine supplementation on the body composition and visceral protein status of early-weaned mice inoculated with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Mice were weaned early on their 14th day of life and seperated into two groups, one of which was fed a glutamine-free diet (n = 16) and the other a glutamine-supplemented diet (40 g/kg diet) (n = 16). At 21 days of age, some mice were intraperitoneally injected with BCG. Euthanasia was performed at the 28th day of age. BCG inoculation significantly reduced body weight (P < 0.001), lean mass (P = 0.002), water (P = 0.006), protein (P = 0.007) and lipid content (P = 0.001) in the carcass. Dietary glutamine supplementation resulted in a significant increase in serum IGF-1 (P = 0.019) and albumin (P = 0.025) concentration, muscle protein concentration (P = 0.035) and lipid content (P = 0.002) in the carcass. In conclusion, dietary glutamine supplementation had a positive influence on visceral protein status but did not affect body composition in early-weaned mice inoculated with BCG.
Chen, Chien-Chia; Chang, Tung-Cheng; Wang, Ming-Yang; Wu, Ming-Hsun; Lin, Ming-Tsan
2012-09-01
Exogenous glutamine supplement is known to improve morbidity and mortality of critically-ill patients. This study was conducted to elucidate the role of glutamine in minimally invasive surgery. We retrospectively reviewed subtotal gastrectomy patients in National Taiwan University Hospital from Dec 2005 to Dec 2008. The patients were divided into three groups. Group 1 underwent subtotal gastrectomy by laparotomy without glutamine supplement, group 2 underwent subtotal gastrectomy by laparotomy with glutamine supplement and group 3 underwent gasless laparoscopy-assisted subtotal gastrectomy with parenteral glutamine supplement. There were 155 patients in total; 85 patients in group 1, 17 in group 2 and 53 in group 3. The mean flatus days after operation are 3.6, 3.1 and 2.8 for groups 1, 2 and 3, respectively (p=0.001). Oral intake after operation was commenced after 6.7, 5.0 and 4.7 days (p=0.006). The body temperature had borderline differences between groups 3 and 1. There were significant differences in postoperative systemic responses including heart rates (p<0.001) and tenderness (p=0.011) 5 days after operation for group 3 vs. group 1. Minimally invasive surgery was a negative factor for postoperative body temperature change. Glutamine was a significant factor for postoperative heart rate change and reduction of tenderness. Glutamine supplement may have synergic effects of rapid recovery in minimal invasive surgery for subtotal gastrectomy patients by minimizing the postoperative systemic response and accelerating recovery.
Rogero, Marcelo Macedo; Borges, Maria Carolina; de Castro, Inar Alves; Pires, Ivanir S. O.; Borelli, Primavera; Tirapegui, Julio
2011-01-01
Glutamine, one of the most abundant amino acids found in maternal milk, favors protein anabolism. Early-weaned babies are deprived of this source of glutamine, in a period during which endogenous biosynthesis may be insufficient for tissue needs in states of metabolic stress, mainly during infections. The objective of this study was to verify the effects of dietary glutamine supplementation on the body composition and visceral protein status of early-weaned mice inoculated with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). Mice were weaned early on their 14th day of life and seperated into two groups, one of which was fed a glutamine-free diet (n = 16) and the other a glutamine-supplemented diet (40 g/kg diet) (n = 16). At 21 days of age, some mice were intraperitoneally injected with BCG. Euthanasia was performed at the 28th day of age. BCG inoculation significantly reduced body weight (P < 0.001), lean mass (P = 0.002), water (P = 0.006), protein (P = 0.007) and lipid content (P = 0.001) in the carcass. Dietary glutamine supplementation resulted in a significant increase in serum IGF-1 (P = 0.019) and albumin (P = 0.025) concentration, muscle protein concentration (P = 0.035) and lipid content (P = 0.002) in the carcass. In conclusion, dietary glutamine supplementation had a positive influence on visceral protein status but did not affect body composition in early-weaned mice inoculated with BCG. PMID:22254124
In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine
NASA Astrophysics Data System (ADS)
Cabella, C.; Karlsson, M.; Canapè, C.; Catanzaro, G.; Colombo Serra, S.; Miragoli, L.; Poggi, L.; Uggeri, F.; Venturi, L.; Jensen, P. R.; Lerche, M. H.; Tedoldi, F.
2013-07-01
Glutamine metabolism is, with its many links to oncogene expression, considered a crucial step in cancer metabolism and it is thereby a key target for alteration in cancer development. In particular, strong correlations have been reported between oncogene expression and expression and activity of the enzyme glutaminase. This mitochondrial enzyme, which is responsible for the deamidation of glutamine to form glutamate, is overexpressed in many tumour tissues. In animal models, glutaminase expression is correlated with tumour growth rate and it is readily possible to limit tumour growth by suppression of glutaminase activity. In principle, hyperpolarized 13C MR spectroscopy can provide insight to glutamine metabolism and should hence be a valuable tool to study changes in glutaminase activity as tumours progress. However, no such successful in vivo studies have been reported, even though several good biological models have been tested. This may, at least partly, be due to problems in preparing glutamine for hyperpolarization. This paper reports a new and improved preparation of hyperpolarized [5-13C]glutamine, which provides a highly sensitive 13C MR marker. With this preparation of hyperpolarized [5-13C]glutamine, glutaminase activity in vivo in a rat liver tumour was investigated. Moreover, this marker was also used to measure response to drug treatment in vitro in cancer cells. These examples of [5-13C]glutamine used in tumour models warrant the new preparation to allow metabolic studies with this conditionally essential amino acid.
Rappeneau, Virginie; Blaker, Amanda; Petro, Jeff R.; Yamamoto, Bryan K.; Shimamoto, Akiko
2016-01-01
Background: Women are twice as likely as men to develop major depression. The brain mechanisms underlying this sex disparity are not clear. Disruption of the glutamate–glutamine cycle has been implicated in psychiatric disturbances. This study identifies sex-based impairments in the glutamate–glutamine cycle involving astrocytes using an animal model of depression. Methods: Male and female adult Long-Evans rats were exposed to chronic social defeat stress (CSDS) for 21 days, using a modified resident-intruder paradigm. Territorial aggression was used for males and maternal aggression was used for females to induce depressive-like deficits for intruders. The depressive-like phenotype was assessed with intake for saccharin solution, weight gain, estrous cycle, and corticosterone (CORT). Behaviors displayed by the intruders during daily encounters with residents were characterized. Rats with daily handling were used as controls for each sex. Ten days after the last encounter, both the intruders and controls were subjected to a no-net-flux in vivo microdialysis to assess glutamate accumulation and extracellular glutamine in the nucleus accumbens (NAc). The contralateral hemispheres were used for determining changes in astrocytic markers, including glial fibrillary acidic protein (GFAP) and glutamate transporter-1 (GLT-1). Results: Both male and female intruders reduced saccharin intake over the course of CSDS, compared to their pre-stress period and to their respective controls. Male intruders exhibited submissive/defensive behaviors to territorial aggression by receiving sideways threats and bites. These males showed reductions in striatal GLT-1 and spontaneous glutamine in the NAc, compared to controls. Female intruders exhibited isolated behaviors to maternal aggression, including immobility, rearing, and selfgrooming. Their non-reproductive days were extended. Also, they showed reductions in prefrontal and accumbal GFAP+ cells and prefrontal GLT-1, compared to controls. When 10 μM of glutamate was infused, these females showed a significant accumulation of glutamate compared to controls. Infusions of glutamate reduced extracellular glutamine for both male and female intruders compared to their respective controls. Conclusion: Twenty-one days of territorial or maternal aggression produced a depressive-like phenotype and impaired astrocytes in both male and female intruders. Disruption of the glutamate–glutamine cycle in the PFC-striatal network may be linked to depressive-like deficits more in females than in males. PMID:28018190
Comparative Aspects of Tissue Glutamine and Proline Metabolism
USDA-ARS?s Scientific Manuscript database
The cellular metabolism of glutamine and proline are closely interrelated since they can be interconverted with glutamate and ornithine via the mitochondrial pathway involving pyrolline-5-carboxylate (P5C). In adults, glutamine and proline are converted via P5C to citrulline in the gut, then citrul...
Belmonte, Liliana; Coëffier, Moïse; Pessot, Florence Le; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre
2007-01-01
AIM: To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. METHODS: Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. RESULTS: Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 ± 1.05 vs 1.72 ± 0.46 μmol/g tissue, P < 0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal α1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. CONCLUSION: Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model. PMID:17569119
Glutamine Modulates Macrophage Lipotoxicity
He, Li; Weber, Kassandra J.; Schilling, Joel D.
2016-01-01
Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs), activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli. PMID:27077881
Solmaz, Ali; Yiğitbaş, Hakan; Yavuz, Erkan; Ozdogan, Kamil; Arici, Sinan; Sarac, Tulin; Çelebi, Fatih; Celik, Atilla
2016-01-01
Introduction. Short bowel syndrome can crop up if more than 50% of small intestine is resected or when less than 100 cm of small bowel is left. Glutamine is the main food source of enterocytes. Curcumin has protective effects on intestinal ischemia-reperfusion damage. Nesfatin-1 is a satiety molecule. It has protective effects on gastric mucosa. The primary purpose of this study is to compare effects of glutamine, curcumin, and nesfatin-1 on the gastric serosal surface neomucosa formation on rats. Materials and Methods. 24 Wistar-Hannover rats were randomly divided into 4 groups and treated with saline, glutamine, curcumin, and nesfatin-1 after ileogastric anastomosis. After 14 days all rats were euthanized, and blood was collected. En bloc resection of anastomotic part was performed for histopathological examination. Results. PDGF, TGF-β, and VEGF levels and neomucosa formation were higher in glutamine group (p = 0.003, p = 0.003, and p = 0.025). Glutamine promotes the intestinal neomucosa formation on the gastric serosal surface and augments growth factors essential for neomucosa formation on rats. Conclusion. Glutamine may be used in short bowel syndrome for increasing the absorption surface area. But that needs to be determined by adequately powered clinical trials. PMID:27525002
Yang, Chun-Ju; Huang, Ting-Shuo; Lee, Tung-Liang; Yang, Kang-Chung; Yuan, Shin-Sheng; Lu, Ruey-Hwa; Hsieh, Chung-Ho; Shyu, Yu-Chiau
2017-12-31
Few diagnostic biomarkers for sepsis after emergency peritonitis surgery are available to clinicians, and, thus, it is important to develop new biomarkers for patients undergoing this procedure. We investigated whether serum glutamine and selenium levels could be diagnostic biomarkers of sepsis in individuals recovering from emergency peritonitis surgery. From February 2012 to March 2013, patients who had peritonitis diagnosed at the emergency department and underwent emergency surgery were screened for eligibility. Serum glutamine and selenium levels were obtained at pre-operative, post-operative and recovery time points. The average level of pre-operation serum glutamine was significantly different from that on the recovery day (0.317 ± 0.168 vs. 0.532 ± 0.155 mM, P < 0.001); moreover, serum glutamine levels were unaffected by surgery. Selenium levels were significantly lower on the day of surgery than they were at recovery (106.6 ± 36.39 vs. 130.68 ± 56.98 ng/mL, P = 0.013); no significant difference was found between pre-operation and recovery selenium levels. Unlike selenium, glutamine could be a sepsis biomarker for individuals with peritonitis. We recommend including glutamine as a biomarker for sepsis severity assessment in addition to the commonly used clinical indicators.
Brusilow, Saul W; Cooper, Arthur J L
2011-11-01
Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure, is a contributing factor: the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Case report. Johns Hopkins Hospital. A 22-yr-old woman who, 36 hrs before admission, ingested 15 g acetaminophen was admitted to the Johns Hopkins Hospital. She was treated with N-acetylcysteine. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hrs after ingestion when she became confused, irritable, and agitated. She was intubated, ventilated, and placed on lactulose. Shortly thereafter, she was noncommunicative, unresponsive to painful stimuli, and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure was made. She improved very slowly until 180 hrs after ingestion when she moved all extremities. She woke up shortly thereafter. Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in acute liver failure, the patient's plasma ammonia peaked when she exhibited no obvious neurologic deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurologic status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high but began to normalize several hours after plasma ammonia had returned to normal. The patient only started to recover as her plasma glutamine began to return to normal. We suggest that the biochemical data are consistent with the osmotic gliopathy theory--high plasma ammonia leads to high plasma glutamine--an indicator of excess glutamine in astrocytes (the site of brain glutamine synthesis). This excess glutamine leads to osmotic stress in these cells. The lag in recovery of brain function presumably reflects time taken for the astrocyte glutamine concentration to return to normal. We hypothesize that an inhibitor of brain glutamine synthesis may be an effective treatment modality for acute liver failure.
Brusilow, Saul W; Cooper, Arthur J.L.
2011-01-01
Objective Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure (ALF), is a contributing factor – the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Design Case report. Setting Johns Hopkins Hospital. Patient A 22-year old white female who, 36 hours prior to admission, ingested 15 grams of acetaminophen was admitted to the Johns Hopkins Hospital. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hours after ingestion when she became confused, irritable and agitated. Interventions She was intubated, ventilated and placed on lactulose. Shortly thereafter she was non-communicative, unresponsive to painful stimuli and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure (ICP) was made. She improved very slowly until 180 hours after ingestion when she moved all extremities. She woke up shortly thereafter. Measurements and main results Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in ALF the patient’s plasma ammonia peaked when she exhibited no obvious neurological deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurological status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high, but began to normalize several hours after plasma ammonia had returned to normal. The patient only commenced to recover as her plasma glutamine began to return to normal. Conclusions We suggest that the biochemical data are consistent with the osmotic gliopathy theory – high plasma ammonia leads to high plasma glutamine – an indicator of excess glutamine in astrocytes (the site of brain glutamine synthesis). This excess glutamine leads to osmotic stress in these cells. The lag in recovery of brain function presumably reflects time taken for the astrocyte glutamine concentration to return to normal. We hypothesize that an inhibitor of brain glutamine synthesis may be an effective treatment modality for ALF. PMID:21705899
Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2
Keresztessy, Zsolt; Csősz, Éva; Hársfalvi, Jolán; Csomós, Krisztián; Gray, Joe; Lightowlers, Robert N.; Lakey, Jeremy H.; Balajthy, Zoltán; Fésüs, László
2006-01-01
Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q6, Q8, and Q22 are modified by TG2. Kinetic parameters of SnQ1 transamidation (KMapp = 250 μM, kcat = 18.3 sec−1, and kcat/KMapp = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research. PMID:17075129
Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2.
Keresztessy, Zsolt; Csosz, Eva; Hársfalvi, Jolán; Csomós, Krisztián; Gray, Joe; Lightowlers, Robert N; Lakey, Jeremy H; Balajthy, Zoltán; Fésüs, László
2006-11-01
Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q(6), Q(8), and Q(22) are modified by TG2. Kinetic parameters of SnQ1 transamidation (K(M)(app) = 250 microM, k(cat) = 18.3 sec(-1), and k(cat)/K(M)(app) = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research.
Mamtimin, Batur; Xia, Guo; Mijit, Mahmut; Hizbulla, Mawlanjan; Kurbantay, Nazuk; You, Li; Upur, Halmurat
2015-01-01
Abnormal Savda Munziq (ASMq) is a traditional Uyghur herbal preparation used as a therapy for abnormal Savda-related diseases. In this study, we investigate ASMq's dynamic effects on abnormal Savda rat models under different disease conditions. Abnormal Savda rat models with hepatocellular carcinoma (HCC), type 2 diabetes mellitus (T2DM), and asthma dosed of ASMq. Serum samples of each animal tested by nuclear magnetic resonance spectroscopy and analyzed by orthogonal projection to latent structure with discriminant analysis. Compared with healthy controls, HCC rats had higher concentrations of amino acids, fat-related metabolites, lactate, myoinositol, and citrate, but lower concentrations of α-glucose, β-glucose, and glutamine. Following ASMq treatment, the serum acetone very low-density lipoprotein (VLDL), LDL, unsaturated lipids, acetylcysteine, and pyruvate concentration decreased, but α-glucose, β-glucose, and glutamine concentration increased (P < 0.05). T2DM rats had higher concentrations of α- and β-glucose, but lower concentrations of isoleucine, leucine, valine, glutamine, glycoprotein, lactate, tyrosine, creatine, alanine, carnitine, and phenylalanine. After ASMq treated T2DM groups showed reduced α- and β-glucose and increased creatine levels (P < 0.05). Asthma rats had higher acetate, carnitine, formate, and phenylalanine levels, but lower concentrations of glutamine, glycoprotein, lactate, VLDL, LDL, and unsaturated lipids. ASMq treatment showed increased glutamine and reduced carnitine, glycoprotein, formate, and phenylalanine levels (P < 0.05). Low immune function, decreased oxidative defense, liver function abnormalities, amino acid deficiencies, and energy metabolism disorders are common characteristics of abnormal Savda-related diseases. ASMq may improve the abnormal metabolism and immune function of rat models with different diseases combined abnormal Savda.
Wu, Canrong; Zheng, Mengzhu; Gao, Suyu; Luan, Shanshan; Cheng, Li; Wang, Liqing; Li, Jiachen; Chen, Lixia; Li, Hua
2017-01-01
Kidney-type glutaminase (KGA), a mitochondrial enzyme converting glutamine to glutamate for energy supply, was over-expressed in many cancers and had been regarded as a promising therapeutic target in recent years. Structure-based virtual ligand screening predicted physapubescin K, a new withanolide from Physalis pubescens, to be potential KGA inhibitor. Enzyme activity inhibition assays and microscale thermophoresis experiments had demonstrated the efficiency and specificity of physapubescin K targeting KGA. Additionally, physapubescin K exhibited potent proliferation inhibitory effects on a panel of human cancer cell lines, such as SW1990 and HCC827-ER. It blocked glutamine metabolism in SW1990 with increasing intracellular level of glutamine and decreasing glutamate and its downstream metabolites. Physapubescin K also significantly inhibited the tumor growth in a SW1990 xenograft mouse model. Interestingly, physapubescin K could reverse the resistance of HCC827-ER cells to erlotinib and synergize with the hexokinase 2 inhibitor to markedly enhance the inhibition of SW1990 cell proliferation. PMID:29371926
Zhou, Xihong; Wu, Xin; Yin, Yulong; Zhang, Cui; He, Liuqin
2012-08-01
The objective of this study was to evaluate the effect of oral supplementation with a combination of arginine and glutamine on the intestinal mucosa and inflammatory cytokines of lipopolysaccharide (LPS)-induced adult rats. Fifty Sprague-Dawley rats (average weight of 185 ± 15 g) were randomly divided into five groups: control group A (CA) and control group B (CB), both orally supplemented with 0.9% saline; group Arg, supplemented with 300 mg/kg day(-1) arginine; group Gln, supplemented with 300 mg/kg day(-1) glutamine; group AG, supplemented with 150 mg/kg day(-1) arginine and 150 mg/kg day(-1) glutamine. The experiment lasted for 2 weeks. Food intake and body weight were measured during the experiment. At 10.00 h of day 15, animals were injected with 4 mg/kg LPS (group CB, Arg, Gln, and AG) or sterile saline (group CA) after supplementation. Then at 14.00 h, all animals were killed and blood and tissue collected. The results showed that compared with group CB, arginine concentration tended to be increased (P > 0.05) in group Arg and AG, while there was no significant difference in glutamine concentration among the groups challenged with LPS. Oral supplementation with arginine or/and glutamine mitigated morphology impairment (lower villus height, P < 0.05) in the jejunum and ileum induced by LPS challenge. LPS administration resulted in a significant increase in TNF-α, IL-1β, IL-6 and IL-10 mRNA abundance. Arginine only significantly decreased TNF-α mRNA abundance in the ileum, while glutamine significantly decreased both TNF-α and IL-10 mRNA in the ileum. A combination of arginine and glutamine significantly decreased TNF-α and IL-1β mRNA abundance in both the jejunum and ileum, while they also significantly decreased anti-inflammatory IL-10 in the ileum. These results revealed that an oral supply of combined arginine and glutamine had more favorable effects on the intestinal mucosa and inflammatory cytokines than a supply of arginine or glutamine alone.
Sanchez, Erica L.; Carroll, Patrick A.; Thalhofer, Angel B.; Lagunoff, Michael
2015-01-01
Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of Kaposi’s Sarcoma (KS). KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA) cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG) and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings expand our understanding of the required metabolic pathways that are activated during latent KSHV infection of endothelial cells, and demonstrate a novel role for the extended Myc-regulatory network, specifically MondoA, during latent KSHV infection. PMID:26197457
Legault, Zachary; Bagnall, Nicholas; Kimmerly, Derek S
2015-10-01
The study aimed to examine the effects that L-glutamine supplementation has on quadriceps muscle strength and soreness ratings following eccentric exercise. It was hypothesized that glutamine ingestion would quicken the recovery rate of peak force production and decrease muscle soreness ratings over a 72-hr recovery period. Sixteen healthy participants (8♀/8♂; 22 ± 4 years) volunteered in a double-blind, randomized, placebo-controlled crossover study. Supplement conditions consisted of isoenergetic placebo (maltodextrin, 0.6 g·kg-1·day-1) and L-glutamine (0.3 g·kg-1·day-1 + 0.3 g·kg-1·day-1 maltodextrin) ingestion once per day over 72 hr. Knee extensor peak torque at 0°, 30°, and 180° per second and muscle soreness were measured before, immediately following, 24, 48, and 72 hr posteccentric exercise. Eccentric exercise consisted of 8 sets (10 repetitions/set) of unilateral knee extension at 125% maximum concentric force with 2-min rest intervals. L-glutamine resulted in greater relative peak torque at 180°/sec both immediately after (71 ± 8% vs. 66 ± 9%), and 72 hr (91 ± 8% vs. 86 ± 7%) postexercise (all, p < .01). In men, L-glutamine produced greater (p < .01) peak torques at 30°/ sec postexercise. Men also produced greater normalized peak torques at 30°/sec (Nm/kg) in the L-glutamine condition than women (all, p < .05). In the entire sample, L-glutamine resulted in lower soreness ratings at 24 (2.8 ± 1.2 vs. 3.4 ± 1.2), 48 (2.6 ± 1.4 vs. 3.9 ± 1.2), and 72 (1.7 ± 1.2 vs. 2.9 ± 1.3) hr postexercise (p < .01). The L-glutamine supplementation resulted in faster recovery of peak torque and diminished muscle soreness following eccentric exercise. The effect of L-glutamine on muscle force recovery may be greater in men than women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel
The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of cropmore » yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.« less
Lomivorotov, V V; Efremov, S M; Shmyrev, V A; Ponomarev, D N; Sviatchenko, A V; Kniaz'kova, L G
2012-01-01
It was conducted a study of glutamine cardioptotective effects during perioperative use in patients with ischemic heart disease, operated under CB. Exclusion criteria were: left ventricular ejection fraction less than 50%, diabetes melitus, myocardial infarction less than 3 months ago, Patients of the study group (n=25) had glutamine (20% solution N(2)-L-alanine-L-glutamine ("Dipeptiven" Fresenius Kabi, Germany); 0.4 g/kg/day. Patients of control group (n=25) received placebo (0.9% NaCl solution). The main indicators were the dynamics of troponin I, as well as central hemodynamics parameters. On the 1-st day after operation the concentration of troponin I was significantly lower in the glutamine-group compared placebo-group (1.280 (0.840-2.230) 2.410 (1.060-6.600) ng/ml; p=0.035). 4 hours after CB in a glutamine-group also had significantly large indicators of cardiac index (2.58 (2.34-2.91) l/min/m2 vs 2.03 (1.76-2.32)) l/min/m2; p=0,002) and stroke index (32.8 (27.8-36.0.) ml/m2 vs 26.1 (22.6-31.8) ml/m2; p=0.023). Systemic vascular resistance index was significantly lower in glutamine-group (1942 (1828-2209) dyn x s/cm(-5)/m2 vs 2456 (2400-3265) dyn x s/cm(-5)/m2; p=0.001). Conclusion. Perioperative use of N(2)-L-alanine-L-glutamine during the first 24 hours ofperioperative period gives cardioprotective effect in patients with ischemic heart disease operated under CB.
Free-Energy Landscape of Protein-Ligand Interactions Coupled with Protein Structural Changes.
Moritsugu, Kei; Terada, Tohru; Kidera, Akinori
2017-02-02
Protein-ligand interactions are frequently coupled with protein structural changes. Focusing on the coupling, we present the free-energy surface (FES) of the ligand-binding process for glutamine-binding protein (GlnBP) and its ligand, glutamine, in which glutamine binding accompanies large-scale domain closure. All-atom simulations were performed in explicit solvents by multiscale enhanced sampling (MSES), which adopts a multicopy and multiscale scheme to achieve enhanced sampling of systems with a large number of degrees of freedom. The structural ensemble derived from the MSES simulation yielded the FES of the coupling, described in terms of both the ligand's and protein's degrees of freedom at atomic resolution, and revealed the tight coupling between the two degrees of freedom. The derived FES led to the determination of definite structural states, which suggested the dominant pathways of glutamine binding to GlnBP: first, glutamine migrates via diffusion to form a dominant encounter complex with Arg75 on the large domain of GlnBP, through strong polar interactions. Subsequently, the closing motion of GlnBP occurs to form ligand interactions with the small domain, finally completing the native-specific complex structure. The formation of hydrogen bonds between glutamine and the small domain is considered to be a rate-limiting step, inducing desolvation of the protein-ligand interface to form the specific native complex. The key interactions to attain high specificity for glutamine, the "door keeper" existing between the two domains (Asp10-Lys115) and the "hydrophobic sandwich" formed between the ligand glutamine and Phe13/Phe50, have been successfully mapped on the pathway derived from the FES.
Plasma glutamine is a minor precursor for the synthesis of citrulline: A multispecies study
USDA-ARS?s Scientific Manuscript database
Glutamine is considered the main precursor for citrulline synthesis in many species, including humans. The transfer of 15N from 2[15N]-glutamine to citrulline has been used as evidence for this precursor-product relationship. However, work in mice has shown that nitrogen and carbon tracers follow di...
USDA-ARS?s Scientific Manuscript database
Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...
Shiyan, Anna; Thompson, Melanie; Köcher, Saskia; Tausendschön, Michaela; Santos, Helena; Hänelt, Inga; Müller, Volker
2014-01-01
Halobacillus halophilus, a moderately halophilic bacterium isolated from salt marshes, produces various compatible solutes to cope with osmotic stress. Glutamate and glutamine are dominant compatible solutes at mild salinities. Glutamine synthetase activity in cell suspensions of Halobacillus halophilus wild type was shown to be salt dependent and chloride modulated. A possible candidate to catalyze glutamine synthesis is glutamine synthetase A2, whose transcription is stimulated by chloride. To address the role of GlnA2 in the biosynthesis of the osmolytes glutamate and glutamine, a deletion mutant (ΔglnA2) was generated and characterized in detail. We compared the pool of compatible solutes and performed transcriptional analyses of the principal genes controlling the solute production in the wild type strain and the deletion mutant. These measurements did not confirm the hypothesized role of GlnA2 in the osmolyte production. Most likely the presence of another, yet to be identified enzyme has the main contribution in the measured activity in crude extracts and probably determines the total chloride-modulated profile. The role of GlnA2 remains to be elucidated. PMID:24782854
Reduction of proteinuria through podocyte alkalinization.
Altintas, Mehmet M; Moriwaki, Kumiko; Wei, Changli; Möller, Clemens C; Flesche, Jan; Li, Jing; Yaddanapudi, Suma; Faridi, Mohd Hafeez; Gödel, Markus; Huber, Tobias B; Preston, Richard A; Jiang, Jean X; Kerjaschki, Dontscho; Sever, Sanja; Reiser, Jochen
2014-06-20
Podocytes are highly differentiated cells and critical elements for the filtration barrier of the kidney. Loss of their foot process (FP) architecture (FP effacement) results in urinary protein loss. Here we show a novel role for the neutral amino acid glutamine in structural and functional regulation of the kidney filtration barrier. Metabolic flux analysis of cultured podocytes using genetic, toxic, and immunologic injury models identified increased glutamine utilization pathways. We show that glutamine uptake is increased in diseased podocytes to couple nutrient support to increased demand during the disease state of FP effacement. This feature can be utilized to transport increased amounts of glutamine into damaged podocytes. The availability of glutamine determines the regulation of podocyte intracellular pH (pHi). Podocyte alkalinization reduces cytosolic cathepsin L protease activity and protects the podocyte cytoskeleton. Podocyte glutamine supplementation reduces proteinuria in LPS-treated mice, whereas acidification increases glomerular injury. In summary, our data provide a metabolic opportunity to combat urinary protein loss through modulation of podocyte amino acid utilization and pHi. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Glutamine supplementation in cystic fibrosis: A randomized placebo-controlled trial.
Forrester, Doug L; Knox, Alan J; Smyth, Alan R; Barr, Helen L; Simms, Rebecca; Pacey, Sarah J; Pavord, Ian D; Honeybourne, David; Dewar, Jane; Clayton, Andy; Fogarty, Andrew W
2016-03-01
Pulmonary infection and malnutrition in cystic fibrosis are associated with decreased survival. Glutamine has a possible anti-microbial effect, with a specific impact against Pseudomonas aeruginosa. We aimed to test the hypothesis that oral glutamine supplementation (21 g/day) for 8 weeks in adults with cystic fibrosis would decrease pulmonary inflammation and improve clinical status. The study design was a randomized double-blind placebo-controlled study design with an iso-nitrogenous placebo. The primary analysis was intention to treat, and the primary outcome was change in induced sputum neutrophils. Thirty-nine individuals were recruited and thirty-six completed the study. Glutamine supplementation had no impact on any of the outcome measures in the intention-to-treat analysis. In the per protocol analysis, glutamine supplementation was associated with an increase in induced sputum neutrophils (P = 0.046), total cells (P = 0.03), and in Pseudomonas isolation agar colony forming units (P = 0.04) compared to placebo. There was no effect of glutamine supplementation on markers of pulmonary inflammation in the intention-to-treat analysis. © 2015 Wiley Periodicals, Inc.
Glucose Limitation Alters Glutamine Metabolism in MUC1-Overexpressing Pancreatic Cancer Cells.
Gebregiworgis, Teklab; Purohit, Vinee; Shukla, Surendra K; Tadros, Saber; Chaika, Nina V; Abrego, Jaime; Mulder, Scott E; Gunda, Venugopal; Singh, Pankaj K; Powers, Robert
2017-10-06
Pancreatic cancer cells overexpressing Mucin 1 (MUC1) rely on aerobic glycolysis and, correspondingly, are dependent on glucose for survival. Our NMR metabolomics comparative analysis of control (S2-013.Neo) and MUC1-overexpressing (S2-013.MUC1) cells demonstrates that MUC1 reprograms glutamine metabolism upon glucose limitation. The observed alteration in glutamine metabolism under glucose limitation was accompanied by a relative decrease in the proliferation of MUC1-overexpressing cells compared with steady-state conditions. Moreover, glucose limitation induces G1 phase arrest where S2-013.MUC1 cells fail to enter S phase and synthesize DNA because of a significant disruption in pyrimidine nucleotide biosynthesis. Our metabolomics analysis indicates that glutamine is the major source of oxaloacetate in S2-013.Neo and S2-013.MUC1 cells, where oxaloacetate is converted to aspartate, an important metabolite for pyrimidine nucleotide biosynthesis. However, glucose limitation impedes the flow of glutamine carbons into the pyrimidine nucleotide rings and instead leads to a significant accumulation of glutamine-derived aspartate in S2-013.MUC1 cells.
da Silva Lima, Fabiana; Rogero, Marcelo Macedo; Ramos, Mayara Caldas; Borelli, Primavera; Fock, Ricardo Ambrósio
2013-06-01
Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine-a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis-is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice. Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated. Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway. These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.
Bilz, Nicole C; Jahn, Kristin; Lorenz, Mechthild; Lüdtke, Anja; Hübschen, Judith M; Geyer, Henriette; Mankertz, Annette; Hübner, Denise; Liebert, Uwe G; Claus, Claudia
2018-06-27
The flexible regulation of cellular metabolic pathways enables cellular adaptation to changes in energy demand under conditions of stress such as posed by a virus infection. To analyze such an impact on cellular metabolism, rubella virus (RV) was used in this study. RV replication under selected substrate supplementation with glucose, pyruvate, and glutamine as essential nutrients for mammalian cells revealed its requirement for glutamine. The assessment of the mitochondrial respiratory (based on oxygen consumption rate, OCR) and glycolytic (based on extracellular acidification rate, ECAR) rate and capacity by respective stress tests through Seahorse technology enabled determination of the bioenergetic phenotype of RV-infected cells. Irrespective of the cellular metabolic background, RV infection induced a shift of the bioenergetic state of epithelial (Vero and A549) and endothelial (HUVEC) cells to a higher oxidative and glycolytic level. Interestingly there was a RV strain-specific, but genotype-independent demand for glutamine to induce a significant increase in metabolic activity. While glutaminolysis appeared to be rather negligible for RV replication, glutamine could serve as donor of its amide nitrogen in biosynthesis pathways for important metabolites. This study suggests that the capacity of rubella viruses to induce metabolic alterations could evolve differently during natural infection. Thus, changes in cellular bioenergetics represent an important component of virus-host interactions and could complement our understanding of the viral preference for a distinct host cell population. Importance RV pathologies, especially during embryonal development, could be connected with its impact on mitochondrial metabolism. With bioenergetic phenotyping we pursued a rather novel approach in virology. For the first time it was shown that a virus infection could shift the bioenergetics of its infected host cell to a higher energetic state. Notably, the capacity to induce such alterations varied among different RV isolates. Thus, our data adds viral adaptation of cellular metabolic activity to its specific needs as a novel aspect to virus-host evolution. Additionally, this study emphasizes the implementation of different viral strains in the study of virus-host interactions and the use of bioenergetic phenotyping of infected cells as a biomarker for virus-induced pathological alterations. Copyright © 2018 American Society for Microbiology.
Villa Nova, Mônica; Ratti, Bianca A; Herculano, Leandro S; Bittencourt, Paulo R S; Novello, Cláudio R; Bazotte, Roberto Barbosa; Lautenschlager, Sueli de Oliveira Silva; Bruschi, Marcos Luciano
2017-12-12
Catabolic conditions like acquired immunodeficiency syndrome, cancer, and burn can cause immunosuppression. Amino acids such as alanine and glutamine are essential for the activity of the immune system. Propolis is immunostimulant and the waste of propolis extraction has been reused with technological and therapeutic purposes. Therefore, this study describes the association of propolis byproduct extract (BPE) with pectin to prepare spray-dried microparticles containing the dipeptide l-alanyl-l-glutamine as stimulant systems of neutrophils. The use of a factorial design allowed selecting the best formulation, which was characterized by morphology, size, and entrapment efficiency analyses. In addition, the systems were characterized by thermal and X-ray diffraction analysis, Fourier-transform infrared spectroscopy, in vitro drug release, and in vitro cytotoxicity and stimulation test of neutrophils. Small well-structured microparticles with good entrapment efficiency values were achieved. Thermal stability of formulation was observed, and it was proved that pectin, BPE and l-alanyl-l-glutamine were dispersed throughout the matrix. The drug was released from the microparticles during 24 h governed by swelling and diffusion. The drug-loaded formulations showed a significant stimulating effect on neutrophils. These structures could increase the activity of immune cells, and other in vitro and in vivo studies should be performed in the future.
Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks
Simão, Daniel; Terrasso, Ana P.; Teixeira, Ana P.; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M.
2016-01-01
The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-13C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells. PMID:27619889
Functional metabolic interactions of human neuron-astrocyte 3D in vitro networks.
Simão, Daniel; Terrasso, Ana P; Teixeira, Ana P; Brito, Catarina; Sonnewald, Ursula; Alves, Paula M
2016-09-13
The generation of human neural tissue-like 3D structures holds great promise for disease modeling, drug discovery and regenerative medicine strategies. Promoting the establishment of complex cell-cell interactions, 3D culture systems enable the development of human cell-based models with increased physiological relevance, over monolayer cultures. Here, we demonstrate the establishment of neuronal and astrocytic metabolic signatures and shuttles in a human 3D neural cell model, namely the glutamine-glutamate-GABA shuttle. This was indicated by labeling of neuronal GABA following incubation with the glia-specific substrate [2-(13)C]acetate, which decreased by methionine sulfoximine-induced inhibition of the glial enzyme glutamine synthetase. Cell metabolic specialization was further demonstrated by higher pyruvate carboxylase-derived labeling in glutamine than in glutamate, indicating its activity in astrocytes and not in neurons. Exposure to the neurotoxin acrylamide resulted in intracellular accumulation of glutamate and decreased GABA synthesis. These results suggest an acrylamide-induced impairment of neuronal synaptic vesicle trafficking and imbalanced glutamine-glutamate-GABA cycle, due to loss of cell-cell contacts at synaptic sites. This work demonstrates, for the first time to our knowledge, that neural differentiation of human cells in a 3D setting recapitulates neuronal-astrocytic metabolic interactions, highlighting the relevance of these models for toxicology and better understanding the crosstalk between human neural cells.
Doiphode, Prakash G.; Malovichko, Marina V.; Mouapi, Kelly Njine; Maurer, Muriel C.
2014-01-01
Activated Factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF MS) based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetics assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting the final deacylation portion of the transglutaminase reaction. With the MALDI-TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, S. Aureus fibronectin binding protein A, and thrombin activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P-1 substrate position is sensitive to charge character and the P-2 and P-3 to the broad FXIIIa substrate specificity pockets. The more distant P-8 to P-11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase. PMID:24751466
Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis.
Lin, Yan-Ren; Li, Chao-Jui; Syu, Shih-Han; Wen, Cheng-Hao; Buddhakosai, Waradee; Wu, Han-Ping; Hsu Chen, Cheng; Lu, Huai-En; Chen, Wen-Liang
2016-01-01
Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2) were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n = 20) and control (normal saline, n = 20) groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control). Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group ( p < 0.05). In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53) and apoptosis (caspase-3, Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5). More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells' beating function at a low pH level.
l-Glutamine supplementation promotes an improved energetic balance in Walker-256 tumor-bearing rats.
Martins, Heber Amilcar; Bazotte, Roberto Barbosa; Vicentini, Geraldo Emilio; Lima, Mariana Machado; Guarnier, Flavia Alessandra; Hermes-Uliana, Catchia; Frez, Flavia Cristina Vieira; Bossolani, Gleison Daion Piovezana; Fracaro, Luciane; Fávaro, Larissa Dos Santos; Manzano, Mariana Inocêncio; Zanoni, Jacqueline Nelisis
2017-03-01
We evaluated the effects of supplementation with oral l-glutamine in Walker-256 tumor-bearing rats. A total of 32 male Wistar rats aged 54 days were randomly divided into four groups: rats without Walker-256 tumor, that is, control rats (C group); control rats supplemented with l-glutamine (CG group); Walker-256 tumor rats without l-glutamine supplementation (WT group); and WT rats supplemented with l-glutamine (WTG group). l-Glutamine was incorporated into standard food at a proportion of 2 g/100 g (2%). After 10 days of the experimental period, the jejunum and duodenum were removed and processed. Protein expression levels of key enzymes of gluconeogenesis, that is, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, were analyzed by western blot and immunohistochemical techniques. In addition, plasma corticosterone, glucose, insulin, and urea levels were evaluated. The WTG group showed significantly increased plasma glucose and insulin levels ( p < 0.05); however, plasma corticosterone and urea remained unchanged. Moreover, the WTG group showed increased immunoreactive staining for jejunal phosphoenolpyruvate carboxykinase and increased expression of duodenal glucose-6-phosphatase. Furthermore, the WTG group presented with less intense cancer cachexia and slower tumor growth. These results could be attributed, at least partly, to increased intestinal gluconeogenesis and insulinemia, and better glycemia maintenance during fasting in Walker-256 tumor rats on a diet supplemented with l-glutamine.
Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.
Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes
2015-11-01
Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.
Tannus, Andrea Ferreira S; Darmaun, Dominique; Ribas, Durval F; Oliveira, José Eduardo D; Marchini, Julio Sergio
2009-08-01
It has been demonstrated that glutamine, a conditionally essential amino acid, improves nitrogen balance, acts as a stimulant of protein synthesis, and decreases proteolysis in myopathic children. In contrast, other studies have shown no beneficial effect of glutamine supplementation on burn victims or critically ill patients. Nonetheless, we hypothesized that glutamine supplementation would increase the fractional protein synthesis rate (FSR) in the jejunal mucosa of malnourished male Wistar rats. Thus, the objective of the present study was to test the effect of daily oral glutamine supplementation (0.42 g kg(-1) d(-1) for 14 days) on the FSR of the jejunal mucosa of healthy and malnourished rats. A 4-hour kinetic study with l-[1-(13)C]leucine was subsequently performed, and jejunal biopsies were obtained 1.5 cm from the Treitz angle and analyzed. Malnourished rats showed a 25% weight loss and increased urinary nitrogen excretion. Plasma amino acid concentration did not differ between groups. (13)C enrichment in plasma and jejunal cells was higher in the malnourished groups than in the healthy group. The FSR (percent per hour) was similar for the control and experimental groups (P > .05), with a mean range of 22%/h to 27%/h. Oral glutamine supplementation alone did not induce higher protein incorporation by the jejunal mucosa in malnourished rats, regardless of total food intake or the presence or absence of glutamine supplementation.
The kidney of chicken adapts to chronic metabolic acidosis: in vivo and in vitro studies.
Craan, A G; Lemieux, G; Vinay, P; Gougoux, A
1982-08-01
Renal adaptation to chronic metabolic acidosis was studies in Arbor Acre hens receiving ammonium chloride by stomach tube 0.75 g/kg/day during 6 days. During a 14-day study, it was shown that the animals could excrete as much as 60% of the acid load during ammonium chloride administration. At the same time urate excretion fell markedly but the renal contribution to urate excretion (14%) did not change. During acidosis, blood glutamine increased twofold and the tissue concentration of glutamine rose in both liver and kidney. Infusion of L-glutamine led to increased ammonia excretion and more so in acidotic animals. Glutaminase I, glutamate dehydrogenase, alanine aminotransferase (GPT), and malic enzyme activities increased in the kidney during acidosis but phosphoenolpyruvate carboxykinase (PEPCK) activity did not change. Glutaminase I was not found in the liver, but hepatic glutamine synthetase rose markedly during acidosis. Glutamine synthetase was not found in the kidney. Renal tubules incubated with glutamine and alanine were ammoniagenic and gluconeogenic to the same degree as rat tubules with the same increments in acidosis. Lactate was gluconeogenic without increment during acidosis. The present study indicates that the avian kidney adapts to chronic metabolic acidosis with similarities and differences when compared to dog and rat. Glutamine originating from the liver appears to be the major ammoniagenic substrate. Our data also support the hypothesis that hepatic urate synthesis is decreased during acidosis.
Outgrowth of Rice Tillers Requires Availability of Glutamine in the Basal Portions of Shoots.
Ohashi, Miwa; Ishiyama, Keiki; Kojima, Soichi; Konishi, Noriyuki; Sasaki, Kazuhiro; Miyao, Mitsue; Hayakawa, Toshihiko; Yamaya, Tomoyuki
2018-05-09
Our previous studies concluded that metabolic disorder in the basal portions of rice shoots caused by a lack of cytosolic glutamine synthetase1;2 (GS1;2) resulted in a severe reduction in the outgrowth of tillers. Rice mutants lacking GS1;2 (gs1;2 mutants) showed a remarkable reduction in the contents of both glutamine and asparagine in the basal portions of shoots. In the current study, we attempted to reveal the mechanisms for this decrease in asparagine content using rice mutants lacking either GS1;2 or asparagine synthetase 1 (AS1). The contributions of the availability of glutamine and asparagine to the outgrowth of rice tillers were investigated. Rice has two AS genes, and the enzymes catalyse asparagine synthesis from glutamine. In the basal portions of rice shoots, expression of OsAS1, the major species in this tissue, was reduced in gs1;2 mutants, whereas OsAS2 expression was relatively constant. OsAS1 was expressed in phloem companion cells of the nodal vascular anastomoses connected to the axillary bud vasculatures in the basal portions of wild-type shoots, whereas cell-specific expression was markedly reduced in gs1;2 mutants. OsAS1 was up-regulated significantly by NH 4 + supply in the wild type but not in gs1;2 mutants. When GS reactions were inhibited by methionine sulfoximine, OsAS1 was up-regulated by glutamine but not by NH 4 + . The rice mutants lacking AS1 (as1 mutants) showed a decrease in asparagine content in the basal portions of shoots. However, glutamine content and tiller number were less affected by the lack of AS1. These results indicate that in phloem companion cells of the nodal vascular anastomoses, asparagine synthesis is largely dependent on glutamine or its related metabolite-responsive AS1. Thus, the decrease in glutamine content caused by a lack of GS1;2 is suggested to result in low expression of OsAS1, decreasing asparagine content. However, the availability of asparagine generated from AS1 reactions is apparently less effective for the outgrowth of tillers. With respect to the tiller number and the contents of glutamine and asparagine in gs1;2 and as1 mutants, the availability of glutamine rather than asparagine in basal portions of rice shoots may be required for the outgrowth of rice tillers.
L-glutamine Induces Expression of Listeria monocytogenes Virulence Genes
Lobel, Lior; Burg-Golani, Tamar; Sigal, Nadejda; Rose, Jessica; Livnat-Levanon, Nurit; Lewinson, Oded; Herskovits, Anat A.
2017-01-01
The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature) and chemical (e.g., metabolite concentrations) factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism. PMID:28114430
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerchietti, Leandro C.A.; Navigante, Alfredo H.; Internal Medicine Department, Instituto de Oncologia Angel H. Roffo, Universidad de Buenos Aires, Buenos Aires
2006-08-01
Purpose: We performed this double-blinded, placebo-controlled study to determine the safety and efficacy of L-alanyl-L-glutamine in the prevention of mucositis in patients with head-and-neck cancer. Methods and Materials: Thirty-two patients with head-and-neck cancer were treated with chemoradiotherapy (CRT) (radiotherapy daily up to 70 Gy plus cisplatin/5-fluoruracil once a week) and were asked to participate. Twenty-nine patients received the CRT schedule and were double-blindly assigned to receive either intravenous L-alanyl-L-glutamine 0.4 g/kg weight/day or an equal volume of saline (placebo) during chemotherapy days. Results: Fourteen patients received L-alanyl-L-glutamine and 15 received placebo. Mucositis was assessed by the Objective Mucositis Score (OMS)more » and the World Health Organization (WHO) grading system. There was a significant difference in incidence of mucositis developed in patients receiving placebo compared with those who received L-alanyl-L-glutamine (p = 0.035). The number of patients with severe objective mucositis (OMS >1.49) was higher in the placebo group compared with the L-alanyl-L-glutamine group (67% vs. 14%, p 0.007). L-alanyl-L-glutamine patients experienced less pain (three highest Numeric Rating Scale scores of 1.3/10 vs. 6.3/10 respectively, p = 0.008) and need for feeding tubes (14% vs. 60% respectively, p = 0.020) compared with placebo patients. No adverse effects related to the drug or the infusions were noted in either group. Conclusion: For patients with head-and-neck cancer receiving CRT, intravenous L-alanyl-L-glutamine may be an effective preventive measure to decrease the severity of mucositis.« less
Beutheu, Stéphanie; Ouelaa, Wassila; Guérin, Charlène; Belmonte, Liliana; Aziz, Moutaz; Tennoune, Naouel; Bôle-Feysot, Christine; Galas, Ludovic; Déchelotte, Pierre; Coëffier, Moïse
2014-08-01
Increased intestinal permeability occurs during chemotherapy-induced intestinal mucositis. Previous data suggest that glutamine and arginine may have additive or synergic effects to limit intestinal damage. The present study aimed to evaluate the effects of glutamine and arginine, each alone or in combination, on gut barrier function during methotrexate (MTX)-induced mucositis in rats. Eighty Sprague Dawley rats received during 7 days (d) standard chow supplemented with protein powder (PP), glutamine (G, 2%), arginine (A, 1.2%) or glutamine plus arginine (GA). All diets were isonitrogenous. Rats received subcutaneous injections of MTX (2.5 mg/kg) from d0 to d2. The intestinal permeability and tight junction proteins were assessed at d4 and d9 in the jejunum by FITC-dextran and by western blot and immunohistochemistry, respectively. At d4, intestinal permeability was increased in MTX-PP, MTX-A and MTX-GA rats compared with controls but not in MTX-G rats. The expression of claudin-1, occludin and ZO-1 was decreased in MTX-PP group compared with controls but was restored in MTX-G and MTX-A rats. In MTX-GA rats, occludin expression remained decreased. These effects could be explained by an increase of erk phosphorylation and a decrease of IκBα expression in MTX-PP and MTX-GA rats. At d9, Intestinal permeability remained higher only in MTX-GA rats. This was associated with a persistent decrease of occludin expression. Glutamine prevents MTX-induced gut barrier disruption by regulating occludin and claudin-1 probably through erk and NF-κB pathways. In contrast, combined glutamine and arginine has no protective effect in this model. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Petry, Eder Ricardo; Cruzat, Vinicius Fernandes; Heck, Thiago Gomes; Leite, Jaqueline Santos Moreira; Homem de Bittencourt, Paulo Ivo; Tirapegui, Julio
2014-01-17
We hypothesized that oral l-glutamine supplementations could attenuate muscle damage and oxidative stress, mediated by glutathione (GSH) in high-intensity aerobic exercise by increasing the 70-kDa heat shock proteins (HSP70) and heat shock factor 1 (HSF1). Adult male Wistar rats were 8-week trained (60-min/day, 5 days/week) on a treadmill. During the last 21 days, the animals were supplemented with either l-alanyl-l-glutamine dipeptide (1.5 g/kg, DIP) or a solution containing the amino acids l-glutamine (1g/kg) and l-alanine (0.67 g/kg) in their free form (GLN+ALA) or water (controls). Plasma from both DIP- and GLN+ALA-treated animals showed higher l-glutamine concentrations and reduced ammonium, malondialdehyde, myoglobin and creatine kinase activity. In the soleus and gastrocnemius muscle of both supplemented groups, l-glutamine and GSH contents were increased and GSH disulfide (GSSG) to GSH ratio was attenuated (p<0.001). In the soleus muscle, cytosolic and nuclear HSP70 and HSF1 were increased by DIP supplementation. GLN+ALA group exhibited higher HSP70 (only in the nucleus) and HSF1 (cytosol and nucleus). In the gastrocnemius muscle, both supplementations were able to increase cytosolic HSP70 and cytosolic and nuclear HSF1. In trained rats, oral supplementation with DIP or GLN+ALA solution increased the expression of muscle HSP70, favored muscle l-glutamine/GSH status and improved redox defenses, which attenuate markers of muscle damage, thus improving the beneficial effects of high-intensity exercise training. Copyright © 2013 Elsevier Inc. All rights reserved.
Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes?
Torres-Santiago, Lournaris; Mauras, Nelly; Hossain, Jobayer; Weltman, Arthur L; Darmaun, Dominique
2017-02-01
The decline in insulin sensitivity (S I ) associated with puberty increases the difficulty of achieving glycemic control in adolescents with type 1 diabetes (T1D). The aim of this study was to determine whether glutamine supplementation affects blood glucose by enhancing S I in adolescents with T1D. Thirteen adolescents with T1D (HbA1C 8.2 ± 0.1%) were admitted to perform afternoon exercise (four 15-min treadmill/5-min rest cycles of exercise) on two occasions within a 4-wk period. They were randomized to receive a drink containing either glutamine (0.25 g/kg) or placebo before exercise, at bedtime, and early morning in a double-blind, crossover design. Blood glucose was monitored overnight, and a hyperinsulinemic-euglycemic clamp was performed the following morning. Blood glucose concentration dropped comparably during exercise on both days. However, the total number of nocturnal hypoglycemic events (17 versus 7, P = 0.045) and the cumulative probability of overnight hypoglycemia (50% versus 33%, P = 0.02) were higher on the glutamine day than on the placebo day. During clamp, glucose infusion rate was not affected by glutamine supplementation (7.7 ± 1 mg • kg -1 • min -1 versus 7.0 ± 1; glutamine versus placebo; P = 0.4). Oral glutamine supplementation decreases blood glucose in adolescents with T1D after exercise. Insulin sensitivity, however, was unaltered during the euglycemic clamp. Although the mechanisms involved remain to be elucidated, studies to explore the potential use of glutamine to improve blood glucose control are needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Oral L-glutamine administration attenuated cutaneous wound healing in Wistar rats.
Goswami, Saurabh; Kandhare, Amit; Zanwar, Anand A; Hegde, Mahabaleshwar V; Bodhankar, Subhash L; Shinde, Sudhir; Deshmukh, Shahaji; Kharat, Ravindran
2016-02-01
The objective of this study was to evaluate the wound healing potential of L-glutamine in laboratory rats using excision and incision wound models. Excision wounds of size 500 mm(2) and depth 2 mm were made on the dorsal portion of male Wistar rats (230-250 g) and were used for the study of oral L-glutamine (1 g/kg) treatment on the rate of contraction of wound and epithelisation. Histological evaluation of wound tissue was also performed. Six-centimetre-long two linear-paravertebral incisions in male Wistar rats (230-250 g) were used to study the effect of L-glutamine (1 g/kg, p.o.) treatment on tensile strength, total protein and hydroxyproline content in the incision model. Oral administration of L-glutamine (1 g/kg) significantly decreased wound area, epithelisation period and wound index, whereas the rate of wound contraction significantly increased (P < 0·001) when compared with vehicle control rats in the excision wound model. Tensile strength, hydroxyproline content and protein level were significantly increased (P < 0·001) in L-glutamine (1 g/kg, p.o.)-treated rats when compared with vehicle control rats in the incision wound model. Histological evaluation of wound tissue from L-glutamine (1 g/kg, p.o.)-treated rats showed complete epithelialisation with new blood vessel formation and high fibrous tissues in the excision wound model. In conclusion, oral administration of l-glutamine (1 g/kg) promotes wound healing by acting on various stages of wound healing such as collagen synthesis, wound contraction and epithelialisation. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Metabolic vulnerability of cisplatin-resistant cancers.
Obrist, Florine; Michels, Judith; Durand, Sylvere; Chery, Alexis; Pol, Jonathan; Levesque, Sarah; Joseph, Adrien; Astesana, Valentina; Pietrocola, Federico; Wu, Gen Sheng; Castedo, Maria; Kroemer, Guido
2018-06-06
Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin-resistant non-small human cell lung cancer and ovarian cancer cell lines. Cisplatin-resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin-sensitive controls. The susceptibility of cisplatin-resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin-resistant clones, and glutamine supplementation rescued cisplatin-resistant clones from starvation-induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin-resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatin-resistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism. © 2018 The Authors.
Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein
Twardzik, Daniel R.; Peterkofsky, Alan
1972-01-01
Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295
Glutamine--from conditionally essential to totally dispensable?
Wernerman, Jan
2014-07-02
Recently a large multicentre randomised controlled trial in critically ill patients reported harm to the patients given supplementary glutamine. In the original publication, no explanation was offered for why this result was obtained; a large number of studies have reported beneficial effects or no effect, but never before reported harm. These results have been commented upon in a number of communications. Now some of the authors of the multicentre randomised controlled trial present a review and meta-analysis of glutamine supplementation, and the discrepancy of results is suggested to relate to intravenous administration to patients of supplementary glutamine via parenteral nutrition or a combination of enteral and parenteral nutrition in contrast to enteral administration of supplementation or a combination of enteral and parenteral supplementation. To explain results by epidemiological means only, by combining results into a meta-analysis, is perhaps not the best way to explain mechanisms behind results. Meta-analyses are primarily hypothesis generating. Launching treatment without a solid mechanistic explanation is always risky. Glutamine supplementation of the critically ill comes into that category. Now we will all have to do our homework and try to understand whether supplementation or omission of glutamine for patients fed parenterally is a good idea or not.
Alves, Eder Paulo Belato; Alves, Angela Maria Pereira; Pereira, Renata Virginia Fernandes; de Miranda Neto, Marcílio Hubner; Zanoni, Jacqueline Nelisis
2010-02-01
The purpose of this work was to study the area of the varicosities of nerve fibers of myenteric neurons immunoreactive to vasoactive intestinal peptide (VIP-IR) and of the cell bodies of VIP-IR submucosal neurons of the jejunum of diabetic rats supplemented with 2% L-glutamine. Twenty male rats were divided into the following groups: normoglycemic (N), normoglycemic supplemented with L-glutamine (NG), diabetic (D) and diabetic supplemented with L-glutamine (DG). Whole-mounts of the muscle tunica and the submucosal layer were subjected to the immunohistochemical technique for neurotransmitter VIP identification. Morphometric analyses were carried out in 500 VIP-IR cell bodies of submucosal neurons and 2000 VIP-IR varicosities from each group. L-Glutamine supplementation to the normoglycemic animals caused an increase in the areas of the cell bodies (8.49%) and varicosities (21.3%) relative to the controls (P < 0.05). On the other hand, there was a decrease in the areas of the cell bodies (4.55%) and varicosities (28.9%) of group DG compared to those of group D (P < 0.05). It is concluded that L-glutamine supplementation was positive both to normoglycemic and diabetic animals.
Andrews, Peter J D; Avenell, Alison; Noble, David W; Campbell, Marion K; Battison, Claire G; Croal, Bernard L; Simpson, William G; Norrie, John; Vale, Luke D; Cook, Jonathon; de Verteuil, Robyn; Milne, Anne C
2007-09-20
Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2-3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. 2 x 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrollment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826.
Brinkmann, Saskia J H; Buijs, Nikki; Vermeulen, Mechteld A R; Oosterink, Efraim; Schierbeek, Henk; Beishuizen, Albertus; de Vries, Jean-Paul P M; Wisselink, Willem; van Leeuwen, Paul A M
2016-09-01
Postoperative renal failure is a common complication after open repair of an abdominal aortic aneurysm. The amino acid arginine is formed in the kidneys from its precursor citrulline, and citrulline is formed from glutamine in the intestines. Arginine enhances the function of the immune and cardiovascular systems, which is important for recovery after surgery. We hypothesized that renal arginine production is diminished after ischemia-reperfusion injury caused by clamping of the aorta during open abdominal aortic surgery and that parenteral glutamine supplementation might compensate for this impaired arginine synthesis. This open-label clinical trial randomized patients who underwent clamping of the aorta during open abdominal aortic surgery to receive a perioperative supplement of intravenous alanyl-glutamine (0.5 g·kg(-1)·day(-1); group A, n = 5) or no supplement (group B, n = 5). One day after surgery, stable isotopes and tracer methods were used to analyze the metabolism and conversion of glutamine, citrulline, and arginine. Whole body plasma flux of glutamine, citrulline, and arginine was significantly higher in group A than in group B (glutamine: 391 ± 34 vs. 258 ± 19 μmol·kg(-1)·h(-1), citrulline: 5.7 ± 0.4 vs. 2.8 ± 0.4 μmol·kg(-1)·h(-1), and arginine: 50 ± 4 vs. 26 ± 2 μmol·kg(-1)·h(-1), P < 0.01), as was the synthesis of citrulline from glutamine (4.8 ± 0.7 vs. 1.6 ± 0.3 μmol·kg(-1)·h(-1)), citrulline from arginine (2.3 ± 0.3 vs. 0.96 ± 0.1 μmol·kg(-1)·h(-1)), and arginine from glutamine (7.7 ± 0.4 vs. 2.8 ± 0.2 μmol·kg(-1)·h(-1)), respectively (P < 0.001 for all). In conclusion, the production of citrulline and arginine is severely reduced after clamping during aortic surgery. This study shows that an intravenous supplement of glutamine increases the production of citrulline and arginine and compensates for the inhibitory effect of ischemia-reperfusion injury. Copyright © 2016 the American Physiological Society.
Glutamine prevents oxidative stress in a model of portal hypertension.
Zabot, Gilmara Pandolfo; Carvalhal, Gustavo Franco; Marroni, Norma Possa; Licks, Francielli; Hartmann, Renata Minuzzo; da Silva, Vinícius Duval; Fillmann, Henrique Sarubbi
2017-07-07
To evaluate the protective effects of glutamine in a model of portal hypertension (PH) induced by partial portal vein ligation (PPVL). Male Wistar rats were housed in a controlled environment and were allowed access to food and water ad libitum . Twenty-four male Wistar rats were divided into four experimental groups: (1) control group (SO) - rats underwent exploratory laparotomy; (2) control + glutamine group (SO + G) - rats were subjected to laparotomy and were treated intraperitoneally with glutamine; (3) portal hypertension group (PPVL) - rats were subjected to PPVL; and (4) PPVL + glutamine group (PPVL + G) - rats were treated intraperitoneally with glutamine for seven days. Local injuries were determined by evaluating intestinal segments for oxidative stress using lipid peroxidation and the activities of glutathione peroxidase (GPx), endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) after PPVL. Lipid peroxidation of the membrane was increased in the animals subjected to PH ( P < 0.01). However, the group that received glutamine for seven days after the PPVL procedure showed levels of lipid peroxidation similar to those of the control groups ( P > 0.05). The activity of the antioxidant enzyme GTx was decreased in the gut of animals subjected to PH compared with that in the control group of animals not subjected to PH ( P < 0.01). However, the group that received glutamine for seven days after the PPVL showed similar GTx activity to both the control groups not subjected to PH ( P > 0.05). At least 10 random, non-overlapping images of each histological slide with 200 × magnification (44 pixel = 1 μm) were captured. The sum means of all areas, of each group were calculated. The mean areas of eNOS staining for both of the control groups were similar. The PPVL group showed the largest area of staining for eNOS. The PPVL + G group had the second highest amount of staining, but the mean value was much lower than that of the PPVL group ( P < 0.01). For iNOS, the control (SO) and control + G (SO + G) groups showed similar areas of staining. The PPVL group contained the largest area of iNOS staining, followed by the PPVL + G group; however, this area was significantly smaller than that of the group that underwent PH without glutamine ( P < 0.01). Treatment with glutamine prevents gut mucosal injury after PH in rats.
Andrews, Peter JD; Avenell, Alison; Noble, David W; Campbell, Marion K; Battison, Claire G; Croal, Bernard L; Simpson, William G; Norrie, John; Vale, Luke D; Cook, Jonathon; de Verteuil, Robyn; Milne, Anne C
2007-01-01
Background Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2–3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. Methods/design 2 × 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrolment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. Discussion To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. Trial registration This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826 PMID:17883854
Claisse, Gaëlle; Feller, Georges; Bonneau, Magalie; Da Lage, Jean-Luc
2016-08-01
In animals, most α-amylases are chloride-dependent enzymes. A chloride ion is required for allosteric activation and is coordinated by one asparagine and two arginine side chains. Whereas the asparagine and one arginine are strictly conserved, the main chloride binding arginine is replaced by a glutamine in some rare instances, resulting in the loss of chloride binding and activation. Amyrel is a distant paralogue of α-amylase in Diptera, which was not characterized biochemically to date. Amyrel shows both substitutions depending on the species. In Drosophila melanogaster, an arginine is present in the sequence but in Drosophila virilis, a glutamine occurs at this position. We have investigated basic enzymological parameters and the dependence to chloride of Amyrel of both species, produced in yeast, and in mutants substituting arginine to glutamine or glutamine to arginine. We found that the amylolytic activity of Amyrel is about thirty times weaker than the classical Drosophila α-amylase, and that the substitution of the arginine by a glutamine in D. melanogaster suppressed the chloride-dependence but was detrimental to activity. In contrast, changing the glutamine into an arginine rendered D. virilis Amyrel chloride-dependent, and interestingly, significantly increased its catalytic efficiency. These results show that the chloride ion is not mandatory for Amyrel but stimulates the reaction rate. The possible phylogenetic origin of the arginine/glutamine substitution is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Jiashun; Liu, Shaojuan; Yao, Kang; Yin, Yulong
2017-01-01
Intestinal absorption and barrier malfunctions are associated with endoplasmic reticulum stress (ERS) in the intestine. We induced ERS by exposing the intestinal porcine epithelial cell line J2 (IPEC-J2) to tunicamycin (TUNI) to explore the potential of l-glutamine to reduce ERS-induced apoptosis. Our experiments demonstrated that exposing cells to TUNI results in spontaneous ERS and encourages the upregulation of glucose-regulated protein 78 (GRP78). Prolonged TUNI-induced ERS was found to increase apoptosis mediated by C/enhancer binding protein homologous protein (CHOP), accompanied by GRP78 downregulation. Treatment with l-glutamine was found to promote cell proliferation within the growth medium but to have little effect in basic Dulbecco’s modified Eagle medium. Finally, in the milieu of TUNI-induced ERS, l-glutamine was found to maintain a high level of GRP78, alleviate CHOP-mediated apoptosis and activate the inositol requiring enzyme 1α (IRE1α)-X-box binding protein 1 (XBP1) axis. A specific inhibitor of the IRE1α-XBP1 axis reversed the protective effect of l-glutamine by blocking the expression of IRE1α/XBP1s. We propose that the functional effect of l-glutamine on intestinal health may be partly due to its modulation of ERS and CHOP-mediated apoptosis. PMID:29206200
de Souza Silva, Priscilla Mirian; de Sousa, Raimundo Vicente; Simão, Anderson Assaid; Cesar, Pedro Henrique Souza; Trento, Marcus Vinicius Cardoso; Marcussi, Silvana
2018-05-28
Prophylactic antibiotics and growth promoters have been substituted, mainly for livestock, by immunomodulators and intestinal health promoters - such as β-D-glucans and glutamine. The aim of this study was to verify the beneficial effects of β-D-glucans and glutamine against Cytarabine/Ara-C, evaluating the DNA damage in leukocytes, the leukogram, and the mitotic index of intestinal crypts cells. Balb/C mice received treatment with β-D-glucan (80 mg/Kg), glutamine (150 mg/Kg), or both, for 21 days. On the last two days of this period, Ara-C was administered (1.8 mg/animal) by intraperitoneal injection every 12 h. The animals submitted to the treatment with Ara-C presented the highest genotoxic index, a significant leukopenia, and a decrease in the mitotic index of the intestinal crypts cells. Treatment with β-D-glucan protected the leukocytes against DNA fragmentation induced by Ara-C. Glutamine alone promoted maintenance of the mitotic index and, in association with β-Dglucan, reduced leukopenia. Thus, the use of β-D-glucan and glutamine proved to be beneficial to intestinal tropism. This can happen once the damage to the genetic material, prevented by the treatments with β-D-glucan and glutamine, can result in genotoxicity. Not only this, but it might be capable of turning into a mutagenesis, with consequential physiopathological alterations. Copyright © 2018. Published by Elsevier B.V.
Lv, Dinghong; Xiong, Xia; Yang, Huansheng; Wang, Meiwei; He, Yijie; Liu, Yanhong; Yin, Yulong
2018-05-18
Weaning stress results in gastrointestinal dysfunction and depressed performance in pigs. This study aimed to investigate the effect of soy oil, glucose, and glutamine on the growth and health of weaned piglets. Compared with those in the glutamine group, piglets in the glucose and soy oil groups had greater average daily gain, average daily feed intake, and gain: feed ratio from day 0 to 14, and gain: feed ratio for the overall period. There were no differences with regard to serum amino acids among the three groups on day 14, except glycine and threonine. The serum concentration of histidine, serine, threonine, proline, and cysteine was the highest in the glutamine group, while the content of glycine and lysine in the soy oil group on day 28 was the highest among all groups. Piglets fed with glutamine had greater serum glucose and creatinine on day 14, high-density lipoprotein on day 28, and serum IgG and IgM on day 28. Piglets in the glutamine group demonstrated lower serum total superoxide dismutase on day 14 and 28; however, they demonstrated higher total superoxide dismutase and total antioxidant capacity in the duodenum and ileum on day 14. Weaned pigs supplemented with glucose or soy oil demonstrate better growth performance possibly due to their enhanced feed intake, whereas those supplemented with glutamine may have improved immunity and intestinal oxidative capacity.
Protective effects of l-glutamine against toxicity of deltamethrin in the cerebral tissue
Varol, Sefer; Özdemir, Hasan Hüseyin; Çevik, Mehmet Uğur; Altun, Yaşar; Ibiloğlu, Ibrahim; Ekinci, Aysun; Ibiloğlu, Aslıhan Okan; Balduz, Metin; Arslan, Demet; Tekin, Recep; Aktar, Fesih; Aluçlu, Mehmet Ufuk
2016-01-01
Background Deltamethrin (DLM) is a broad-spectrum synthetic dibromo-pyrethroid pesticide that is widely used for agricultural and veterinary purposes. However, human exposure to the pesticide leads to neurotoxicity. Glutamine is one of the principal, free intracellular amino acids and may also be an antioxidant. This study was undertaken in order to examine the neuroprotective and antioxidant potential of l-glutamine against DLM toxicity in female Wistar albino rats. Materials and methods The rats were divided into the following groups (n=10): Group I: control (distilled water; 10 mL/kg, po one dose), Group II: l-glutamine (1.5 g/kg, po one dose), Group III: DLM (35 mg/kg, po one dose), and Group IV: DLM (35 mg/kg, po one dose) and l-glutamine (1.5 g/kg, po one dose after 4 hours). Total oxidant status (TOS), total antioxidant status (TAS), tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels and apoptosis were evaluated in brain tissue. Results DLM-treated animals had a significant increase in brain biochemical parameters, as well as TOS and TAS. Furthermore, the histopathological examination showed neuronal cell degeneration in the cerebral tissue. l-Glutamine treatment decreased the elevated brain levels of TOS and neuronal cell degeneration. There was no difference in tumor necrosis factor-α, IL-1β, and IL-6 levels between the groups. Conclusion l-Glutamine may reduce the toxic effects of DLM in the cerebral tissue through antioxidant properties. PMID:27143900
Reitman, Zachary J.; Duncan, Christopher G.; Poteet, Ethan; Winters, Ali; Yan, Liang-Jun; Gooden, David M.; Spasojevic, Ivan; Boros, Laszlo G.; Yang, Shao-Hua; Yan, Hai
2014-01-01
Mutations in the cytosolic NADP+-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted 13C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers. PMID:24986863
Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress
Levitan, Orly; Dinamarca, Jorge; Zelzion, Ehud; Lun, Desmond S.; Guerra, L. Tiago; Kim, Min Kyung; Kim, Joomi; Van Mooy, Benjamin A. S.; Bhattacharya, Debashish; Falkowski, Paul G.
2015-01-01
Diatoms are unicellular algae that accumulate significant amounts of triacylglycerols as storage lipids when their growth is limited by nutrients. Using biochemical, physiological, bioinformatics, and reverse genetic approaches, we analyzed how the flux of carbon into lipids is influenced by nitrogen stress in a model diatom, Phaeodactylum tricornutum. Our results reveal that the accumulation of lipids is a consequence of remodeling of intermediate metabolism, especially reactions in the tricarboxylic acid and the urea cycles. Specifically, approximately one-half of the cellular proteins are cannibalized; whereas the nitrogen is scavenged by the urea and glutamine synthetase/glutamine 2-oxoglutarate aminotransferase pathways and redirected to the de novo synthesis of nitrogen assimilation machinery, simultaneously, the photobiological flux of carbon and reductants is used to synthesize lipids. To further examine how nitrogen stress triggers the remodeling process, we knocked down the gene encoding for nitrate reductase, a key enzyme required for the assimilation of nitrate. The strain exhibits 40–50% of the mRNA copy numbers, protein content, and enzymatic activity of the wild type, concomitant with a 43% increase in cellular lipid content. We suggest a negative feedback sensor that couples photosynthetic carbon fixation to lipid biosynthesis and is regulated by the nitrogen assimilation pathway. This metabolic feedback enables diatoms to rapidly respond to fluctuations in environmental nitrogen availability. PMID:25548193
Targeting MUC1 mediated tumor stromal metabolic interaction in Triple negative Breast Cancer
2016-11-01
biosynthesis, D- Glutamine and D-glutamate metabolism, Nicotinate and nicotinamide metabolism, and Nitrogen metabolism were amongst the redundant...pathways identified in MDA- MB-468 (Fig 3). Nitrogen metabolism and D- Glutamine and D-glutamate metabolism pathways were filtered out as potential...Figure 4. MUC1 alters TNBC metabolism. Representation of (A) D- Glutamine and D- glutamate metabolism and (B
Targeting MUC1-Mediated Tumor-Stromal Metabolic Interaction in Triple-Negative Breast Cancer
2016-11-01
biosynthesis, D- Glutamine and D-glutamate metabolism, Nicotinate and nicotinamide metabolism, and Nitrogen metabolism were amongst the redundant...pathways identified in MDA- MB-468 (Fig 3). Nitrogen metabolism and D- Glutamine and D-glutamate metabolism pathways were filtered out as potential...Figure 4. MUC1 alters TNBC metabolism. Representation of (A) D- Glutamine and D- glutamate metabolism and (B
Michelle J. Serapiglia; Rakesh Minocha; Subhash C. Minocha
2008-01-01
We analyzed effects of nitrogen availability and form on growth rates, concentrations of polyamines and inorganic ions and glutamine synthetase activity in in-vitro-cultured red spruce (Picea rubens Sarg.) cells. Growth rates, concentrations of polyamines and glutamine synthetase activity declined when either the amount of nitrate or the total amount...
Glutamine supplementation for young infants with severe gastrointestinal disease.
Brown, Jennifer V E; Moe-Byrne, Thirimon; McGuire, William
2014-12-15
Endogenous glutamine biosynthesis may be insufficient to meet the needs of people with severe gastrointestinal disease. Results from studies using experimental animal models of gastrointestinal disease have suggested that glutamine supplementation improves clinical outcomes. This review examines evidence on the effect of glutamine supplementation in young infants with severe gastrointestinal disease. To assess the effect of supplemental glutamine on mortality and morbidity in young infants with severe gastrointestinal disease. We searcheed the Cochrane Central Register of Controlled Trials (The Cochrane Library, 2014, Issue 8), MEDLINE, EMBASE, and CINAHL (from inception to September 2014), conference proceedings, and reference lists from previous reviews. Randomised or quasi-randomised controlled trials that compared glutamine supplementation versus no glutamine supplementation in infants up to three months old (corrected for preterm birth if necessary) with severe gastrointestinal disease defined as a congenital or acquired gastrointestinal condition that is likely to necessitate providing parenteral nutrition for at least 24 hours. Two review authors assessed trial eligibility and risk of bias and undertook data extraction independently. We analysed the treatment effects in the individual trials and reported the risk ratio (RR) and risk difference (RD) for dichotomous data and mean difference for continuous data, with 95% confidence intervals (CI). We used a fixed-effect model in meta-analyses and explored the potential causes of heterogeneity in sensitivity analyses. We found three trials in which a total of 274 infants participated. The trials were of good methodological quality but were too small to detect clinically important effects of glutamine supplementation. Meta-analyses did not reveal a statistically significant difference in the risk of death before hospital discharge (typical RR 0.79, 95% CI 0.19 to 3.20; typical RD -0.01, 95% CI -0.05 to 0.03) or in the rate of invasive infection (typical RR 1.37, 95% CI 0.89 to 2.11; typical RD 0.08, 95% CI -0.03 to 0.18]). The available data from randomised controlled trials do not suggest that glutamine supplementation has any important benefits for young infants with severe gastrointestinal disease.
Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.
Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer
2017-11-06
Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
miR-137 inhibits glutamine catabolism and growth of malignant melanoma by targeting glutaminase.
Luan, Wenkang; Zhou, Zhou; Zhu, Yan; Xia, Yun; Wang, Jinlong; Xu, Bin
2018-01-01
Glutamine catabolism is considered to be an important metabolic pathway for cancer cells. Glutaminase (GLS) is the important rate-limiting enzyme of glutamine catabolism. miR-137 functions as a tumor suppressor in many human malignant tumors. However, the role and molecular mechanism of miR-137 and GLS in malignant melanoma has not been reported. In this study, we showed that miR-137 was decreased in melanoma tissue, and the low miR-137 level and high GLS expression are independent risk factor in melanoma. miR-137 suppressed the proliferation and glutamine catabolism of melanoma cells. GLS is crucial for glutamine catabolism and growth of malignant melanoma. We also demonstrated that miR-137 acts as a tumor suppressor in melanoma by targeting GLS. This result elucidates a new mechanism for miR-137 in melanoma development and provides a survival indicator and potential therapeutic target for melanoma patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain MRS glutamine as a biomarker to guide therapy of hyperammonemic coma.
O'Donnell-Luria, Anne H; Lin, Alexander P; Merugumala, Sai K; Rohr, Frances; Waisbren, Susan E; Lynch, Rebecca; Tchekmedyian, Vatche; Goldberg, Aaron D; Bellinger, Andrew; McFaline-Figueroa, J Ricardo; Simon, Tracey; Gershanik, Esteban F; Levy, Bruce D; Cohen, David E; Samuels, Martin A; Berry, Gerard T; Frank, Natasha Y
2017-05-01
Acute idiopathic hyperammonemia in an adult patient is a life-threatening condition often resulting in a rapid progression to irreversible cerebral edema and death. While ammonia-scavenging therapies lower blood ammonia levels, in comparison, clearance of waste nitrogen from the brain may be delayed. Therefore, we used magnetic resonance spectroscopy (MRS) to monitor cerebral glutamine levels, the major reservoir of ammonia, in a gastric bypass patient with hyperammonemic coma undergoing therapy with N-carbamoyl glutamate and the ammonia-scavenging agents, sodium phenylacetate and sodium benzoate. Improvement in mental status mirrored brain glutamine levels, as coma persisted for 48h after plasma ammonia normalized. We hypothesize that the slower clearance for brain glutamine levels accounts for the delay in improvement following initiation of treatment in cases of chronic hyperammonemia. We propose MRS to monitor brain glutamine as a noninvasive approach to be utilized for diagnostic and therapeutic monitoring purposes in adult patients presenting with idiopathic hyperammonemia. Copyright © 2017 Elsevier Inc. All rights reserved.
Mulchandani, A; Bassi, A S
1996-01-01
Tetrathiafulvalene (TTF) mediated amperometric enzyme electrodes have been developed for the monitoring of L-glutamine and L-glutamic acid in growing mammalian cell cultures. The detection of glutamine was accomplished by a coupled enzyme system comprised of glutaminase plus glutamate oxidase, while the detection of glutamic acid was carried out by a single enzyme, glutamate oxidase. The appropriate enzyme(s) were immoblized on the Triton-X treated surface of tetrathiafulvalene modified carbon paste electrodes by adsorption, in conjunction with entrapment by an electrochemically deposited copolymer film of 1,3-phenylenediamine and resorcinol. Operating conditions for the glutamine enzyme electrode were optimized with respect to the amount of enzymes immoblized, pH, temperature and mobile phase flow rate for operation in a flow injection (FIA) system. When applied to glutamine and glutamic acid measurements in mammalian cell culture in FIA, the results obtained with enzyme electrodes were in excellent agreement with those determined by enzymatic analysis.
Zhao, Jing; Chen, Jing; Zhu, Haining; Xiong, Youling L.
2012-01-01
Antioxidative peptides in food systems are potential targets of lipid oxidation-generated reactive aldehydes, such as malonaldehyde (MDA) and 4-hydroxynonenal (HNE). In this study, covalent modifications on radical-scavenging peptides prepared from soy protein hydrolysate by MDA and HNE were characterized by liquid chromatography–electrospray ionization-mass spectrometry (LC-ESI-MS/MS). MS/MS analyses detected the formation of Schiff base type adducts of MDA on the side chain groups of lysine, histidine, arginine, glutamine, and asparagine residues as well as the N-termini of peptides. MDA also formed a fluorescent product with lysine residues. HNE adducted on lysine residues through Schiff base formation and on histidine, arginine, glutamine, and asparagine residues mainly through Michael addition. In spite of the extensive MDA modification, peptide cross-linking by this potential mechanism was undetectable. PMID:22946674
Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimers Disease
2017-09-01
mechanism (excitoxicity?) that results in increased cerebral glutamate and glutamine (Glx) levels by comparing glial metabolic rates in NFL athletes...reduces the proton glutamate signal. This reduction in signal can be tracked, to provide the rate of metabolism of 13C glutamate and glutamine as...disadvantage to this method is that the specificity of the glutamate and glutamine are impacted by the overlap between the two resonances. Thus the
Pardo, Beatriz; Rodrigues, Tiago B; Contreras, Laura; Garzón, Miguel; Llorente-Folch, Irene; Kobayashi, Keiko; Saheki, Takeyori; Cerdan, Sebastian; Satrústegui, Jorgina
2011-01-01
The glutamate-glutamine cycle faces a drain of glutamate by oxidation, which is balanced by the anaplerotic synthesis of glutamate and glutamine in astrocytes. De novo synthesis of glutamate by astrocytes requires an amino group whose origin is unknown. The deficiency in Aralar/AGC1, the main mitochondrial carrier for aspartate-glutamate expressed in brain, results in a drastic fall in brain glutamine production but a modest decrease in brain glutamate levels, which is not due to decreases in neuronal or synaptosomal glutamate content. In vivo (13)C nuclear magnetic resonance labeling with (13)C(2)acetate or (1-(13)C) glucose showed that the drop in brain glutamine is due to a failure in glial glutamate synthesis. Aralar deficiency induces a decrease in aspartate content, an increase in lactate production, and lactate-to-pyruvate ratio in cultured neurons but not in cultured astrocytes, indicating that Aralar is only functional in neurons. We find that aspartate, but not other amino acids, increases glutamate synthesis in both control and aralar-deficient astrocytes, mainly by serving as amino donor. These findings suggest the existence of a neuron-to-astrocyte aspartate transcellular pathway required for astrocyte glutamate synthesis and subsequent glutamine formation. This pathway may provide a mechanism to transfer neuronal-born redox equivalents to mitochondria in astrocytes.
Effect of total parenteral nutrition, systemic sepsis, and glutamine on gut mucosa in rats
NASA Technical Reports Server (NTRS)
Yoshida, S.; Leskiw, M. J.; Schluter, M. D.; Bush, K. T.; Nagele, R. G.; Lanza-Jacoby, S.; Stein, T. P.
1992-01-01
The effect of the combination of total parenteral nutrition (TPN) and systemic sepsis on mucosal morphology and protein synthesis was investigated. Rats were given a standard TPN mixture consisting of glucose (216 kcal.kg-1.day-1), lipid (24 kcal.kg-1.day-1), and amino acids (1.5 g N.kg-1.day-1) for 5 days. On the 5th day the rats (n = 37) were randomized into four groups according to diet as follows: 1) control nonseptic on standard TPN, 2) control nonseptic on TPN with glutamine, 3) septic on standard TPN, and 4) septic with the TPN supplemented with glutamine. Twenty hours after the injection of Escherichia coli, the rats were given a 4-h constant infusion of [U-14C]leucine to determine the mucosal fractional protein synthesis rates. The following results were obtained. 1) Histological examination showed that systemic sepsis caused tissue damage to the ileum and jejunum. 2) Glutamine supplementation attenuated these changes. 3) There were no visible changes to the colon either from glutamine supplementation or sepsis. 4) Sepsis was associated with an increase in mucosal protein synthesis and decreased muscle synthesis. 5) Addition of glutamine to the TPN mix further increased protein synthesis in the intestinal mucosa of septic rats.
Willems, Lise; Jacque, Nathalie; Jacquel, Arnaud; Neveux, Nathalie; Trovati Maciel, Thiago; Lambert, Mireille; Schmitt, Alain; Poulain, Laury; Green, Alexa S.; Uzunov, Madalina; Kosmider, Olivier; Radford-Weiss, Isabelle; Moura, Ivan Cruz; Auberger, Patrick; Ifrah, Norbert; Bardet, Valérie; Chapuis, Nicolas; Lacombe, Catherine; Mayeux, Patrick; Tamburini, Jérôme
2013-01-01
Cancer cells require nutrients and energy to adapt to increased biosynthetic activity, and protein synthesis inhibition downstream of mammalian target of rapamycin complex 1 (mTORC1) has shown promise as a possible therapy for acute myeloid leukemia (AML). Glutamine contributes to leucine import into cells, which controls the amino acid/Rag/mTORC1 signaling pathway. We show in our current study that glutamine removal inhibits mTORC1 and induces apoptosis in AML cells. The knockdown of the SLC1A5 high-affinity transporter for glutamine induces apoptosis and inhibits tumor formation in a mouse AML xenotransplantation model. l-asparaginase (l-ase) is an anticancer agent also harboring glutaminase activity. We show that l-ases from both Escherichia coli and Erwinia chrysanthemi profoundly inhibit mTORC1 and protein synthesis and that this inhibition correlates with their glutaminase activity levels and produces a strong apoptotic response in primary AML cells. We further show that l-ases upregulate glutamine synthase (GS) expression in leukemic cells and that a GS knockdown enhances l-ase–induced apoptosis in some AML cells. Finally, we observe a strong autophagic process upon l-ase treatment. These results suggest that l-ase anticancer activity and glutamine uptake inhibition are promising new therapeutic strategies for AML. PMID:24014241
Immune and cell modulation by amino acids.
Roth, Erich
2007-10-01
Sir David Cuthbertson was the first to define metabolic alterations in post-aggression syndrome (PAS). From basic measurements of nitrogen loss and total protein synthesis/degradation, the current research has moved to genomics, proteomics and metabolomics. In this respect, first evidence was accumulated for the influence of acute catabolism, immobilisation by bed rest and sarcopenia of old age on the muscle-cell genome and proteome. Moreover, in post-aggression syndrome specific amino acids such as glutamine, arginine, glycine, taurine, tryptophan and cysteine are used for cell and immune modulation. Our laboratory has focused on the regulative capacity of glutamine. Glutamine deficiency as found in post-aggression syndrome reduces lymphocyte proliferation, alters monocyte/macrophage activity, decreases the formation of heat-shock proteins, stimulates cell apoptosis, shifts the cellular redox potential by altering the glutathione synthesis and increases the activity of the AMPK system. Investigating the molecular effect of glutamine on Hsp 70 induction, we tested the glutamine dependence on the formation of transfer-RNA and of heat-shock factor 1 (HSF 1), and on transcription and translation of Hsp 70. We could demonstrate that glutamine stabilises the mRNA of Hsp 70 thereby prolonging its half-life. The lecture also discusses the principal molecular targets of administered arginine, glycine, cysteine, taurine and tryptophan.
Saha, Prosenjit; Arthur, Subha; Kekuda, Ramesh; Sundaram, Uma
2012-03-01
Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B(0)AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B(0)AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B(0)AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine. Copyright © 2011 Elsevier B.V. All rights reserved.
Yan, Hong; Zhang, Yong; Lv, Shang-jun; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi
2012-01-01
Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B) and a glutamine-treated group (G). Groups B and G were subjected to full thickness burns comprising 30% of total body surface area. Group G was administered 1.5 g/ (kg•d) glutamine and group B was given the same dose of alanine via intragastric administration for 3 days. Levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and blood lactic acid were measured, as well as myocardial ATP and glutathione (GSH) contents. Cardiac function indices and histopathological changes were analyzed at 12, 24, 48 and 72 post-burn hours. In both burned groups, levels of serum CK, LDH, AST and blood lactic acid increased significantly, while myocardial ATP and GSH contents decreased. Compared with group B, CK, LDH, and AST levels were lower and blood lactic acid, myocardial ATP and GSH levels were higher in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage were significantly reduced in group G compared to B. Taken together, these results show that glutamine supplementation protects myocardial structure and function after burn injury by improving energy metabolism and by promoted the synthesis of ATP and GSH in cardiac myocytes.
Effects of glutamine administration on inflammatory responses in chronic ethanol-fed rats.
Peng, Hsiang-Chi; Chen, Ya-Ling; Chen, Jiun-Rong; Yang, Sien-Sing; Huang, Kuan-Hsun; Wu, Yi-Chin; Lin, Yun-Ho; Yang, Suh-Ching
2011-03-01
The purpose of this study was to investigate the effects of glutamine supplementation on inflammatory responses in chronic ethanol-fed rats. Male Wistar rats weighing about 160 g were divided into five groups. Two groups were fed a normal liquid diet and three groups were fed a glutamine-containing liquid diet. After 1 week, one of the normal liquid diet groups was fed an ethanol-containing liquid diet (CE), and the other group served as the control (CC) group. At the same time, one of the glutamine-containing liquid diet groups was continually fed the same diet (GCG), but the other two groups were fed ethanol-containing diet supplemented with glutamine (GEG) or without glutamine (GE). The following items were analyzed: (1) liver function, (2) cytokine contents, and (3) hepatic oxidative stress. The activities of aspartate transaminase (AST) and alanine transaminase (ALT) and levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the CE group had significantly increased. In addition, hepatic cytochrome P450 2E1 (CYP2E1) expression had significantly increased in the CE, GE and GEG groups. However, the activities of AST and ALT and levels of TNF-α and IL-1β in the GE group were significantly lower than those of the CE group. The results suggest that the plasma inflammatory responses of rats fed an ethanol-containing liquid diet for 7 weeks significantly increased. However, pretreatment with glutamine improved the plasma inflammatory responses induced by ethanol. Copyright © 2011 Elsevier Inc. All rights reserved.
Dong, Jingmei; Chen, Peijie; Liu, Qing; Wang, Ru; Xiao, Weihua; Zhang, Yajun
2013-04-01
To examine the excessive reactive oxygen species (ROS) mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the combined effect of glutamine supplementation and diphenyleneiodonium (DPI) on the function of neutrophils induced by overtraining. Fifty male Wistar rats were randomly divided into 5 groups: control group (C), overtraining group (E), DPI-administration group (D), glutamine-supplementation group (G), and combined DPI and glutamine group (DG). Blood was sampled from the orbital vein after rats were trained on treadmill for 11 wk. Cytokine and lipid peroxidation in blood plasma were measured by enzyme-linked immunosorbent assay. The colocalization between gp91phox and p47phox of the NADPH oxidase was detected using immunocytochemistry and confocal microscopy. The activity of NADPH oxidase was assessed by chemiluminescence. Neutrophils' respiratory burst and phagocytosis function were measured by flow cytometry. NADPH oxidase was activated by overtraining. Cytokine and lipid peroxidation in blood plasma and the activity of NADPH oxidase were markedly increased in Group E compared with group C. Neutrophil function was lower in group E than group C. Both lower neutrophils function and higher ROS production were reversed in Group DG. The glutamine and DPI interference alone in group D and group G was less effective than DPI and glutamine combined in group DG. Activation of NADPH oxidase is responsible for the production of superoxide anions, which leads to excessive ROS and is related to the decrease in neutrophil function induced by overtraining. The combined DPI administration and glutamine supplementation reversed the decreased neutrophil function after overtraining.
Clemmesen, J O; Kondrup, J; Nielsen, L B; Larsen, F S; Ott, P
2001-04-01
In acute liver failure (ALF), urea production is severely impaired, and detoxification of ammonia by glutamine synthesis plays an important protective role. The aim of this study was to examine the effects of therapeutic high-volume plasmapheresis (HVP) on arterial concentrations and splanchnic exchange rates of ammonia, urea, and amino acids-in particular, glutamine. A quantity of 8 L of plasma was exchanged over the course of 7 h in 11 patients with ALF after development of hepatic encephalopathy grade III-IV. Splanchnic exchange rates of ammonia, urea, and amino acids were measured by use of liver vein catheterization. HVP removed ammonia and glutamine at a rate of 1 micromol/min and 27 micromol/min, respectively. Arterial ammonia decreased from 160 +/- 65 to 114 +/- 50 micromol/L (p < 0.001). In contrast, arterial glutamine was only minimally changed from 1791 +/- 1655 to 1764 +/- 1875 micromol/L (NS). This implied that the rate of systemic glutamine synthesis was increased by 27 micromol/min. Splanchnic exchange rates (before vs after HVP) were as follows: for ammonia, -93 +/- 101 versus -70 +/- 80 micromol/min (NS); urea-nitrogen, 0.08 +/- 1.64 versus -0.31 +/- 0.45 mmol/min (NS); alanine, -73 +/- 151 versus 12 +/- 83 micromol/min (p < 0.05); and glutamine: 132 +/- 246 versus 186 +/- 285 micromol/min (NS), with negative values denoting release. Arterial ammonia decreased during HVP in patients with ALF. The data suggest that this effect of HVP could be explained by increased hepatic urea synthesis and possibly by increased glutamine synthesis in muscle tissue.
NASA Astrophysics Data System (ADS)
Walsh, Patrick S.; Dean, Jacob C.; Zwier, Timothy S.
2014-06-01
Glutamine plays an important role in several neurodegenerative diseases including Huntington's disease (HD) and Alzheimer's disease (AD). An intriguing aspect of the structure of glutamine is its incorporation of an amide group in its side chain, thereby opening up the possibility of forming amide-amide H-bonds between the peptide backbone and side chain. In this study the conformational preferences of two capped gluatamines Z(carboxybenzyl)-Glutamine-X (X=OH, NHMe) are studied under jet-cooled conditions in the gas phase in order to unlock the intrinsic structural motifs that are favored by this flexible sidechain. Conformational assignments are made by comparing the hydride stretch ( 3100-3700 cm-1) and amide I and II ( 1400-1800 cm-1) resonant ion-dip infrared spectra with predictions from harmonic frequency calculations. Assigned structures will be compared to previously published results on both natural and unnatural residues. Particular emphasis will be placed on the comparison between glutamine and unconstrained γ-peptides due to the similar three-carbon spacing between backbone and side chain in glutamine to the backbone spacing in γ-peptides. The ability of the glutamine side-chain to form amide stacked conformations will be a main focus, along with the prevalence of extended backbone type structures. W. H. James, III, C W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2009, 131(40), 14243-14245.
Zhang, Yong; Yan, Hong; Lv, Shang-Gun; Wang, Lin; Liang, Guang-Ping; Wan, Qian-Xue; Peng, Xi
2013-01-01
Glutamine decreases myocardial damage in ischemia/reperfusion injury. However, the cardioprotective effect of glutamine after burn injury remains unclear. Present study was to explore the protective effect of glycyl-glutamine dipeptide on myocardial damage in severe burn rats. Seventy-two Wistar rats were randomly divided into three groups: normal control (C), burned control (B) and glycyl-glutamine dipeptide-treated (GG) groups. B and GG groups were inflicted with 30% total body surface area of full thickness burn. The GG group was given 1.5 g/kg glycyl-glutamine dipeptide per day and the B group was given the same dose of alanine via intraperitoneal injection for 3 days. The serum CK, LDH, AST, and, blood lactic acid levels, as well as the myocardium ATP and GSH contents, were measured. The indices of cardiac contractile function and histopathological change were analyzed at 12, 24, 48, and 72 post-burn hours (PBH). The serum CK, LDH, AST and blood lactic acid levels increased, and the myocardium ATP and GSH content decreased in both burned groups. Compared with B group, the CK, LDH, AST and blood lactic acid levels reduced, myocardium ATP and GSH content increased in GG group. Moreover, the inhibition of cardiac contractile function and myocardial histopathological damage were reduced significantly in GG group. We conclude that myocardial histological structure and function were damaged significantly after burn injury, glycyl-glutamine dipeptide supplementation is beneficial to myocardial preservation by improving cardiocyte energy metabolism, increasing ATP and glutathione synthesis. PMID:23638213
Yan, Hong; Zhang, Yong; Lv, Shang-jun; Wang, Lin; Liang, Guang-ping; Wan, Qian-xue; Peng, Xi
2012-01-01
Treatment with glutamine has been shown to reduce myocardial damage associated with ischemia/reperfusion injury. However, the cardioprotective effect of glutamine specifically after burn injury remains unclear. The present study explores the ability of glutamine to protect against myocardial damage in rats that have been severely burned. Seventy-two Wistar rats were randomly divided into three groups: normal controls (C), burned controls (B) and a glutamine-treated group (G). Groups B and G were subjected to full thickness burns comprising 30% of total body surface area. Group G was administered 1.5 g/ (kg•d) glutamine and group B was given the same dose of alanine via intragastric administration for 3 days. Levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), aspartate transaminase (AST) and blood lactic acid were measured, as well as myocardial ATP and glutathione (GSH) contents. Cardiac function indices and histopathological changes were analyzed at 12, 24, 48 and 72 post-burn hours. In both burned groups, levels of serum CK, LDH, AST and blood lactic acid increased significantly, while myocardial ATP and GSH contents decreased. Compared with group B, CK, LDH, and AST levels were lower and blood lactic acid, myocardial ATP and GSH levels were higher in group G. Moreover, cardiac contractile function inhibition and myocardial histopathological damage were significantly reduced in group G compared to B. Taken together, these results show that glutamine supplementation protects myocardial structure and function after burn injury by improving energy metabolism and by promotedthe synthesis of ATP and GSH in cardiac myocytes. PMID:22977661
Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity.
Stelmashook, E V; Lozier, E R; Goryacheva, E S; Mergenthaler, P; Novikova, S V; Zorov, D B; Isaev, N K
2010-09-27
The specific aim of this study was to elucidate the role of mitochondria in a neuronal death caused by different metabolic effectors and possible role of intracellular calcium ions ([Ca(2+)](i)) and glutamine in mitochondria- and non-mitochondria-mediated cell death. Inhibition of mitochondrial complex I by rotenone was found to cause intensive death of cultured cerebellar granule neurons (CGNs) that was preceded by an increase in intracellular calcium concentration ([Ca(2+)](i)). The neuronal death induced by rotenone was significantly potentiated by glutamine. In addition, inhibition of Na/K-ATPase by ouabain also caused [Ca(2+)](i) increase, but it induced neuronal cell death only in the absence of glucose. Treatment with glutamine prevented the toxic effect of ouabain and decreased [Ca(2+)](i). Blockade of ionotropic glutamate receptors prevented neuronal death and significantly decreased [Ca(2+)](i), demonstrating that toxicity of rotenone and ouabain was at least partially mediated by activation of these receptors. Activation of glutamate receptors by NMDA increased [Ca(2+)](i) and decreased mitochondrial membrane potential leading to markedly decreased neuronal survival under glucose deprivation. Glutamine treatment under these conditions prevented cell death and significantly decreased the disturbances of [Ca(2+)](i) and changes in mitochondrial membrane potential caused by NMDA during hypoglycemia. Our results indicate that glutamine stimulates glutamate-dependent neuronal damage when mitochondrial respiration is impaired. However, when mitochondria are functionally active, glutamine can be used by mitochondria as an alternative substrate to maintain cellular energy levels and promote cell survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Reitman, Zachary J; Duncan, Christopher G; Poteet, Ethan; Winters, Ali; Yan, Liang-Jun; Gooden, David M; Spasojevic, Ivan; Boros, Laszlo G; Yang, Shao-Hua; Yan, Hai
2014-08-22
Mutations in the cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDH1) occur in several types of cancer, and altered cellular metabolism associated with IDH1 mutations presents unique therapeutic opportunities. By altering IDH1, these mutations target a critical step in reductive glutamine metabolism, the metabolic pathway that converts glutamine ultimately to acetyl-CoA for biosynthetic processes. While IDH1-mutated cells are sensitive to therapies that target glutamine metabolism, the effect of IDH1 mutations on reductive glutamine metabolism remains poorly understood. To explore this issue, we investigated the effect of a knock-in, single-codon IDH1-R132H mutation on the metabolism of the HCT116 colorectal adenocarcinoma cell line. Here we report the R132H-isobolome by using targeted (13)C isotopomer tracer fate analysis to trace the metabolic fate of glucose and glutamine in this system. We show that introduction of the R132H mutation into IDH1 up-regulates the contribution of glutamine to lipogenesis in hypoxia, but not in normoxia. Treatment of cells with a d-2-hydroxyglutarate (d-2HG) ester recapitulated these changes, indicating that the alterations observed in the knocked-in cells were mediated by d-2HG produced by the IDH1 mutant. These studies provide a dynamic mechanistic basis for metabolic alterations observed in IDH1-mutated tumors and uncover potential therapeutic targets in IDH1-mutated cancers. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Gong, Zhen-Yu; Yuan, Zhi-Qiang; Dong, Zhi-Wei; Peng, Yi-Zhi
2017-01-01
Severe burns may lead to intestinal inflammation and oxidative stress resulting in intestinal barrier damage and gut dysfunction. In the management of severe burns, therapies are needed to attenuate whole-body inflammatory responses and control the burden of oxidative stress. In this study, we evaluated the effects of oral glutamine (Gln) with probiotics on burn-induced intestinal inflammation and oxidative stress using a Wistar rat burn injury model. We then explored potential molecular mechanisms for the effects of glutamine and probiotics on intestinal tissue inflammation and oxidative stress. We found that glutamine and probiotics together significantly inhibited nitric oxide (NO) content; reduced levels of the inflammatory factors TNF-α, IL-6, and IL-8; and altered expression of oxidative stress factors including reactive oxygen species and superoxide dismutase. We found that the apoptotic proportion of intestinal epithelial cells in severely burned subjects was notably decreased following treatment with glutamine plus probiotics. We also found that glutamine and probiotics given together markedly reduced NO content by down-regulating the expression of iNOS in blood and intestinal tissue. These findings indicate that regulation of the iNOS gene plays a pivotal role in inflammation and oxidative stress in the response to severe burns in the Wistar rat. We then further investigated the mechanism by which combined therapy with glutamine and probiotics might reduce expression of iNOS and found that this treatment resulted in increased methylation of the iNOS gene. The methylation level of the iNOS gene was found to be regulated via differential expression of DNMT1 and Tet1. Collectively, our results suggest that combined therapy with glutamine and probiotics can markedly reduce the synthesis of NO, suppressing intestinal inflammation and oxidative stress in the Wistar rat burn injury model. PMID:28560003
Byun, Jun-Kyu; Choi, Yeon-Kyung; Kang, Yu Na; Jang, Byoung Kuk; Kang, Koo Jeong; Jeon, Yong Hyun; Lee, Ho-Won; Jeon, Jae-Han; Koo, Seung-Hoi; Jeong, Won-Il; Harris, Robert A; Lee, In-Kyu; Park, Keun-Gyu
2015-03-01
The metabolism of glutamine and glucose is recognized as a promising therapeutic target for the treatment of cancer; however, targeted molecules that mediate glutamine and glucose metabolism in cancer cells have not been addressed. Here, we show that restricting the supply of glutamine in hepatoma cells, including HepG2 and Hep3B cells, markedly increased the expression of retinoic acid-related orphan receptor alpha (RORα). Up-regulation of RORα in glutamine-deficient hepatoma cells resulted from an increase in the level of cellular reactive oxygen species and in the nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide phosphate reduced (NADP+ /NADPH) ratio, which was consistent with a reduction in the glutathione/glutathione disulfide (GSH/GSSG) ratio. Adenovirus (Ad)-mediated overexpression of RORα (Ad-RORα) or treatment with the RORα activator, SR1078, reduced aerobic glycolysis and down-regulated biosynthetic pathways in hepatoma cells. Ad-RORα and SR1078 reduced the expression of pyruvate dehydrogenase kinase 2 (PDK2) and inhibited the phosphorylation of pyruvate dehydrogenase and subsequently shifted pyruvate to complete oxidation. The RORα-mediated decrease in PDK2 levels was caused by up-regulation of p21, rather than p53. Furthermore, RORα inhibited hepatoma growth both in vitro and in a xenograft model in vivo. We also found that suppression of PDK2 inhibited hepatoma growth in a xenograft model. These findings mimic the altered glucose utilization and hepatoma growth caused by glutamine deprivation. Finally, tumor tissue from 187 hepatocellular carcinoma patients expressed lower levels of RORα than adjacent nontumor tissue, supporting a potential beneficial effect of RORα activation in the treatment of liver cancer. RORα mediates reprogramming of glucose metabolism in hepatoma cells in response to glutamine deficiency. The relationships established here between glutamine metabolism, RORα expression and signaling, and aerobic glycolysis have implications for therapeutic targeting of liver cancer metabolism. © 2014 by the American Association for the Study of Liver Diseases.
Xue, Hongyu; Sawyer, Michael B; Field, Catherine J; Dieleman, Levinus A; Murray, David; Baracos, Vickie E
2008-04-01
Dietary glutamine has been suggested to preserve structural and functional integrity of the gut and high dose bolus glutamine has been hypothesized to protect against potentially fatal endotoxic shock, hyperthermic stress, and side effects of chemotherapy. In this study, we aimed to relate the ability of high dose oral bolus glutamine to mitigate the severe diarrhea induced by 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11) chemotherapy to specific cytoprotective mechanisms [heat shock response, glutathione (GSH)] in gut and tumor tissues. Female rats bearing Ward colon tumor received CPT-11 (125 mg x kg(-1) x d(-1)x 3 d) with or without an oral glutamine bolus (0.75 g/kg) administered 30 min prior to each CPT-11 dose. Glutamine reduced incidence and severity of late-onset diarrhea following CPT-11 treatment (P < 0.05) and was associated with potentially beneficial and protective responses in the colon: 1) a 3.1- to 7.2-fold increase of heat shock protein (Hsp)25,-70, and -90alpha (P < 0.05); 2) increased reduced GSH (rGSH):oxidized GSH ratio (P < 0.05); 3) prevention of upregulated activity of a key bacterial enzyme (beta-glucuronidase) in the cecal content that mediates CPT-11 intestinal toxicity (P < 0.05); and 4) increased proportions of CD3+CD8+ lymphocytes and memory CD8+ subset in mesenteric lymph nodes following CPT-11 therapy. By contrast, glutamine treatment did not alter CPT-11's antitumor activity, the amino acid concentrations, Hsp expression, or the ratio of rGSH:oxidized GSH in the tumor. Our data demonstrate a striking dichotomy in the response of tumor and host to oral glutamine administration, concurring with the concept that this nutrient may favorably alter the balance between the host and tumor.
Yoshinaga, Naoko; Abe, Hiroaki; Morita, Sayo; Yoshida, Tetsuya; Aboshi, Takako; Fukui, Masao; Tumlinson, James H.; Mori, Naoki
2013-01-01
Fatty acid amino acid conjugates (FACs), first identified in lepidopteran caterpillar spit as elicitors of plant volatile emission, also have been reported as major components in gut tracts of Drosophila melanogaster and cricket Teleogryllus taiwanemma. The profile of FAC analogs in these two insects was similar to that of tobacco hornworm Manduca sexta, showing glutamic acid conjugates predominantly over glutamine conjugates. The physiological function of FACs is presumably to enhance nitrogen assimilation in Spodoptera litura larvae, but in other insects it is totally unknown. Whether these insects share a common synthetic mechanism of FACs is also unclear. In this study, the biosynthesis of FACs was examined in vitro in five lepidopteran species (M. sexta, Cephonodes hylas, silkworm, S. litura, and Mythimna separata), fruit fly larvae and T. taiwanemma. The fresh midgut tissues of all of the tested insects showed the ability to synthesize glutamine conjugates in vitro when incubated with glutamine and sodium linolenate. Such direct conjugation was also observed for glutamic acid conjugates in all the insects but the product amount was very small and did not reflect the in vivo FAC patterns in each species. In fruit fly larvae, the predominance of glutamic acid conjugates could be explained by a shortage of substrate glutamine in midgut tissues, and in M. sexta, a rapid hydrolysis of glutamine conjugates has been reported. In crickets, we found an additional unique biosynthetic pathway for glutamic acid conjugates. T. taiwanemma converted glutamine conjugates to glutamic acid conjugates by deaminating the side chain of the glutamine moiety. Considering these findings together with previous results, a possibility that FACs in these insects are results of convergent evolution cannot be ruled out, but it is more likely that the ancestral insects had the glutamine conjugates and crickets and other insects developed glutamic acid conjugates in a different way. PMID:24744735
Liu, Wei; Le, Anne; Hancock, Chad; Lane, Andrew N.; Dang, Chi V.; Fan, Teresa W.-M.; Phang, James M.
2012-01-01
In addition to glycolysis, the oncogenic transcription factor c-MYC (MYC) stimulates glutamine catabolism to fuel growth and proliferation of cancer cells through up-regulating glutaminase (GLS). Glutamine is converted to glutamate by GLS, entering the tricarboxylic acid cycle as an important energy source. Less well-recognized, glutamate can also be converted to proline through Δ1-pyrroline-5-carboxylate (P5C) and vice versa. This study suggests that some MYC-induced cellular effects are due to MYC regulation of proline metabolism. Proline oxidase, also known as proline dehydrogenase (POX/PRODH), the first enzyme in proline catabolism, is a mitochondrial tumor suppressor that inhibits proliferation and induces apoptosis. MiR-23b* mediates POX/PRODH down-regulation in human kidney tumors. MiR-23b* is processed from the same transcript as miR-23b; the latter inhibits the translation of GLS. Using MYC-inducible human Burkitt lymphoma model P493 and PC3 human prostate cancer cells, we showed that MYC suppressed POX/PRODH expression primarily through up-regulating miR-23b*. The growth inhibition in the absence of MYC was partially reversed by POX/PRODH knockdown, indicating the importance of suppression of POX/PRODH in MYC-mediated cellular effects. Interestingly, MYC not only inhibited POX/PRODH, but also markedly increased the enzymes of proline biosynthesis from glutamine, including P5C synthase and P5C reductase 1. MYC-induced proline biosynthesis from glutamine was directly confirmed using 13C,15N-glutamine as a tracer. The metabolic link between glutamine and proline afforded by MYC emphasizes the complexity of tumor metabolism. Further studies of the relationship between glutamine and proline metabolism should provide a deeper understanding of tumor metabolism while enabling the development of novel therapeutic strategies. PMID:22615405
Cheng, Zhihui; Lin, Mingqun
2014-01-01
ABSTRACT How the obligatory intracellular bacterium Ehrlichia chaffeensis begins to replicate upon entry into human monocytes is poorly understood. Here, we examined the potential role of amino acids in initiating intracellular replication. PutA converts proline to glutamate, and GlnA converts glutamate to glutamine. E. chaffeensis PutA and GlnA complemented Escherichia coli putA and glnA mutants. Methionine sulfoximine, a glutamine synthetase inhibitor, inhibited E. chaffeensis GlnA activity and E. chaffeensis infection of human cells. Incubation of E. chaffeensis with human cells rapidly induced putA and glnA expression that peaked at 24 h postincubation. E. chaffeensis took up proline and glutamine but not glutamate. Pretreatment of E. chaffeensis with a proline transporter inhibitor (protamine), a glutamine transporter inhibitor (histidine), or proline analogs inhibited E. chaffeensis infection, whereas pretreatment with proline or glutamine enhanced infection and upregulated putA and glnA faster than no treatment or glutamate pretreatment. The temporal response of putA and glnA expression was similar to that of NtrY and NtrX, a two-component system, and electrophoretic mobility shift assays showed specific binding of recombinant E. chaffeensis NtrX (rNtrX) to the promoter regions of E. chaffeensis putA and glnA. Furthermore, rNtrX transactivated E. chaffeensis putA and glnA promoter-lacZ fusions in E. coli. Growth-promoting activities of proline and glutamine were also accompanied by rapid degradation of the DNA-binding protein CtrA. Our results suggest that proline and glutamine uptake regulates putA and glnA expression through NtrY/NtrX and facilitates degradation of CtrA to initiate a new cycle of E. chaffeensis growth. PMID:25425236
Mendonça, Ronaldo Z; Arrózio, Sara J; Antoniazzi, Marta M; Ferreira, Jorge M C; Pereira, Carlos A
2002-07-17
The control of cell death occurring in high density cultures performed in bioreactors is an important factor in production processes. In this work, medium nutrient removal or feeding was used to determine at which extension apoptosis could be, respectively, involved or prevented in VERO cell cultures on microcarriers. Glutamine and galactose present in the VERO cell culture medium was consumed after, respectively, 6 and 12 days of culture. Kinetics studies showed that fresh medium replacement and, to some extent, galactose or glutamine depleted-fresh medium replacement provided a nutritional environment, allowing the VERO cell cultures to attain high densities. Galactose was shown to be a more critical nutrient when cultures reached a high density. In agreement with that, VERO cell cultures supplemented with galactose and/or glutamine were shown to confirm previous findings and, again at high densities, galactose was shown to be a critical nutrient for VERO cell growth. These observations also indicated that in VERO cell cultures, for feeding purposes, the glutamine could be replaced by galactose. The inverse was not true and led, at high densities, to a decrease of cell viability. In the absence of glutamine and galactose, apoptosis was observed in VERO cell cultures by cytofluorometry, Acridine orange staining or light and electron microscopy, reaching high levels when compared to cultures performed with complete medium. VERO cells apoptosis process could be prevented by the galactose and/or glutamine feeding and, at high densities, galactose was more efficient in protecting the cultures. These cultures, prevented from apoptosis, were shown to synthesize high levels of measles virus following infection. Our data show that apoptosis prevention by glutamine/galactose feeding, led to high productive and metabolic active VERO cell cultures, as indicated by the high cell density obtained and the virus multiplication leading to higher virus titers.
Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang
2006-08-01
Glutamine is an important energy source for immune cells. It is a necessary nutrient for cell proliferation, and serves as specific fuel for lymphocytes, macrophages, and enterocytes when it is present in appropriate concentrations. The purpose of this clinical study was to observe the effects of enteral nutrition supplemented with glutamine granules on immunologic function in severely burned patients. Forty-eight severely burned patients (total burn surface area 30-75%, full thickness burn area 20-58%) who met the requirements of the protocol joined this double-blind randomized controlled clinical trail. Patients were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). There was isonitrogenous and isocaloric intake in both groups, Gln and B group patents were given glutamine granules or placebo (glycine) at 0.5 g/kgd for 14 days with oral feeding or tube feeding, respectively. The plasma level of glutamine and several indices of immunologic function including lymphocyte transformation ratio, neutrophil phagocytosis index (NPI), CD4/CD8 ratio, the content of immunoglobulin, complement C3, C4 and IL-2 levels were determined. Moreover, wound healing rate of burn area was observed and then hospital stay was recorded. The results showed significantly reduced plasma glutamine and damaged immunological function after severe burn Indices of cellular immunity function were remarkably decreased from normal controls. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 micromol/L versus 447.63+/-132.38 micromol/L, P<0.01). On the other hand, cellular immunity functions were improved in Gln group, such as lymphocyte transformation ratio, NPI, CD4/CD8 ratio and IL-2 compared those in the B group (P<0.05-0.01). However, for humoral immunity function such as the concentration of IgG, IgM, C3, C4, no marked changes were seen compared with the B group (P>0.05). In addition, wound healing was better and hospital stay days were reduced in Gln group (46.59+/-12.98 days versus 55.68+/-17.36 days, P<0.05). These indicated that immunological function damage is present after severe burn; supplemented glutamine granules with oral feeding or tube feeding abate the degree of immunosuppression, improve immunological function especially cellular immunity function, ameliorate wound healing and reduce hospital stay.
[Effect of sodium and calcium ions on glutamate and glutamine oxidation by rat brain synaptosomes].
Nilova, N S
1978-08-01
5 mM oxidative substrates and 0.15 mM Ca(2+) being used, different effects of Ca(2+) on the oxidation are possible, such as an additional inhibition of glutamine oxidation and an additional activation of glutamate oxidation. A decreased Na+-ion concentration in the medium inhibited synaptosomal respiration with glutamate as a substrate. With glutamine as a substrate oxygen consumption does not change.
Glutamic acid as anticancer agent: An overview
Dutta, Satyajit; Ray, Supratim; Nagarajan, K.
2013-01-01
The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed. PMID:24227952
Glutamic acid as anticancer agent: An overview.
Dutta, Satyajit; Ray, Supratim; Nagarajan, K
2013-10-01
The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.
Bringhurst, Ryan M.; Dominguez, Antonia A.; Schaffer, Priscilla A.
2008-01-01
Isoleucine deprivation of cellular monolayers prior to infection has been reported to result in partial complementation of a herpes simplex virus type 1 (HSV-1) ICP0 null (ICP0−) mutant. We now report that glutamine deprivation alone is able to enhance the plating efficiency of an ICP0− virus and that isoleucine deprivation has little or no effect. Because a low glutamine level is associated with stress and because stress is known to induce reactivation, low levels of glutamine may be relevant to the reactivation of HSV-1 from latency. Additionally, we demonstrate that arginine and methionine deprivation result in partial complementation of the ICP0− virus. PMID:18768961
Ocheja, Ohiemi Benjamin; Ayo, Joseph Olusegun; Aluwong, Tagang; Minka, Ndazo Salka
2017-08-01
The experiment investigated the ameliorative effects of L-glutamine administration on rectal temperature (RT), erythrocyte osmotic fragility (EOF), serum antioxidant enzyme activities and malondialdehyde (MDA) concentration in Red Sokoto goats during the hot-dry season. Twenty eight healthy Red Sokoto goats, comprising 14 experimental (administered 0.2 g/kg of L-glutamine dissolved in 10 mL of distilled water, once daily for 21 days) and 14 control (administered equivalent of distilled water) goats served as subjects. Rectal temperature (measured at 6:00, 13:00 and 18:00 h) and blood samples (taken at 8:00 h) were obtained from all subjects weekly, before, during and after L-glutamine administration. Data obtained were compared using one-way repeated-measures ANOVA, followed by Tukey's post-hoc test. The dry-bulb temperature, relative humidity and temperature-humidity index for the study period ranged between 24.0 and 37.5 °C, 26.0 and 84.0% and 73.0 and 86.3, respectively. L-glutamine administration decreased (P < 0.05) RT, EOF and MDA and increased superoxide dismutase (SOD) activity in experimental group, compared to controls during weeks 1, 2 and 3. Glutathione peroxidase (GPx) and catalase activities were higher (P < 0.05) in the experimental group than in the controls only during week 1 of L-glutamine administration. In conclusion, L-glutamine administration mitigated increases in RT, EOF and serum MDA concentration and enhanced serum SOD, GPx and catalase activities and may be beneficial in heat-stressed goats during the hot-dry season.
Bosoi, Cristina R; Zwingmann, Claudia; Marin, Helen; Parent-Robitaille, Christian; Huynh, Jimmy; Tremblay, Mélanie; Rose, Christopher F
2014-03-01
The pathogenesis of brain edema in patients with chronic liver disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol and taurine, in the development of brain edema in a rat model of cirrhosis. Six-week bile-duct ligated (BDL) rats were injected with (13)C-glucose and de novo synthesis of lactate, and glutamine in the brain was quantified using (13)C nuclear magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were measured using (1)H NMR or high performance liquid chromatography. To further define the interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 (engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis inhibitor). Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two treatments did not lead to similar reductions in brain glutamine. Increased brain lactate, and not glutamine, is a primary player in the pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new potential target for the treatment of HE. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Fox, R E; Hopkins, I B; Cabacungan, E T; Tildon, J T
1996-07-01
Glucose has been thought to be the primary substrate for energy metabolism in the developing lung; however, alternate substrates are used for energy metabolism in other organs. To examine the role of alternate substrates in the lung, we measured rates of oxidation of glutamine, glucose, lactate, and 3-hydroxybutyrate in type II pneumocytes isolated from d 19 fetal rat lungs by measuring the production of 14CO2 from labeled substrates. Glutamine had a rate of 24.36 +/- 4.51 nmol 14CO2 produced/ h/mg of protein (mean +/- SEM), whereas lactate had a significantly higher rate, 40.29 +/- 4.42. 3-Hydroxybutyrate had a rate of 14.91 +/- 1.93. The rate of glucose oxidation was 2.13 +/- 0.36, significantly lower than that of glutamine. To examine the interactions of substrates normally found in the intracellular milieu, we measured the effect of unlabeled substrates as competitors on labeled substrate. This identifies multiple metabolic compartments of energy metabolism. Glucose, but not lactate, inhibited the oxidation of glutamine, suggesting a compartmentation of tricarboxylic acid cycle activity, rather than simple dilution by glucose. Glucose and lactate had reciprocal inhibition. Our data suggest at least two separate compartments in the type II cells for substrate oxidation, one for glutamine metabolism and a second for glucose metabolism. In summary, we have documented that glutamine and other alternate substrates are oxidized preferentially over glucose for energy metabolism in the d 19 fetal rat lung type II pneumocyte. In addition, we have delineated some of the compartmentation that occurs within the developing type II cell, which may determine how these substrates are used.
Bajpai, R; Matulis, S M; Wei, C; Nooka, A K; Von Hollen, H E; Lonial, S; Boise, L H; Shanmugam, M
2016-07-28
Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM.
Bajpai, R; Matulis, SM; Wei, C; Nooka, AK; Von Hollen, HE; Lonial, S; Boise, LH; Shanmugam, M
2016-01-01
Multiple myeloma (MM) is a plasma cell malignancy that is largely incurable due to development of resistance to therapy-elicited cell death. Nutrients are intricately connected to maintenance of cellular viability in part by inhibition of apoptosis. We were interested to determine if examination of metabolic regulation of BCL-2 proteins may provide insight on alternative routes to engage apoptosis. MM cells are reliant on glucose and glutamine and withdrawal of either nutrient is associated with varying levels of apoptosis. We and others have demonstrated that glucose maintains levels of key resistance-promoting BCL-2 family member, myeloid cell leukemic factor 1 (MCL-1). Cells continuing to survive in the absence of glucose or glutamine were found to maintain expression of MCL-1 but importantly induce pro-apoptotic BIM expression. One potential mechanism for continued survival despite induction of BIM could be due to binding and sequestration of BIM to alternate pro-survival BCL-2 members. Our investigation revealed that cells surviving glutamine withdrawal in particular, enhance expression and binding of BIM to BCL-2, consequently sensitizing these cells to the BH3 mimetic venetoclax. Glutamine deprivation-driven sensitization to venetoclax can be reversed by metabolic supplementation with TCA cycle intermediate α-ketoglutarate. Inhibition of glucose metabolism with the GLUT4 inhibitor ritonavir elicits variable cytotoxicity in MM that is marginally enhanced with venetoclax treatment, however, targeting glutamine metabolism with 6-diazo-5-oxo-l-norleucine uniformly sensitized MM cell lines and relapse/refractory patient samples to venetoclax. Our studies reveal a potent therapeutic strategy of metabolically driven synthetic lethality involving targeting glutamine metabolism for sensitization to venetoclax in MM. PMID:26640142
Panizzon, Cynthia Priscilla do Nascimento Bonato; Zanoni, Jacqueline Nelisis; Hermes-Uliana, Catchia; Trevizan, Aline Rosa; Sehaber, Camila Caviquioli; Pereira, Renata Virginia Fernandes; Linden, David Robert; Neto, Marcílio Hubner de Miranda
2016-07-01
Enteric neuropathy associated with Diabetes Mellitus causes dysfunction in the digestive system, such as: nausea, diarrhea, constipation, vomiting, among others. The aim of this study was to compare the effects of supplementation with 2% l-glutamine and 1% l-glutathione on neurons and enteric glial cells of ileum of diabetic rats. Thirty male Wistar rats have been used according to these group distributions: Normoglycemic (N), Normoglycemic supplemented with l-glutamine (NG), Normoglycemic supplemented with l-glutathione (NGO), Diabetic (D), Diabetic supplemented with l-glutamine (DG) and Diabetic supplemented with l-glutathione (DGO). After 120days, the ileum was processed for immunohistochemistry of HuC/D and S100β. Quantitative and morphometric analysis have been performed. Diabetic rats presented a decrease in the number of neurons when compared to normoglycemic animals. However, diabetes was not associated with a change in glial density. l-Glutathione prevented the neuronal death in diabetic rats. l-Glutathione increased a glial proliferation in diabetic rats. The neuronal area in diabetic rats increased in relation to the normoglycemics. The diabetic rats supplemented with l-glutamine and l-glutathione showed a smaller neuronal area in comparison to diabetic group. The glial cell area was a decreased in the diabetics. The diabetic rats supplemented with l-glutamine and l-glutathione did not have significant difference in the glial cell body area when compared to diabetic rats. It is concluded that the usage of l-glutamine and l-glutathione as supplements presents both desired and side effects that are different for the same substance in considering normoglycemic or diabetic animals. Copyright © 2016 Elsevier GmbH. All rights reserved.
Jordan, Iolanda; Balaguer, Mònica; Esteban, M Esther; Cambra, Francisco José; Felipe, Aida; Hernández, Lluïsa; Alsina, Laia; Molero, Marta; Villaronga, Miquel; Esteban, Elisabeth
2016-02-01
To determine whether glutamine (Gln) supplementation would have a role modifying both the oxidative stress and the inflammatory response of critically ill children. Prospective, randomized, double-blind, interventional clinical trial. Selection criteria were children requiring parenteral nutrition for at least 5 days diagnosed with severe sepsis or post major surgery. Patients were randomly assigned to standard parenteral nutrition (SPN, 49 subjects) or standard parenteral nutrition with glutamine supplementation (SPN + Gln, 49 subjects). Glutamine levels failed to show statistical differences between groups. At day 5, patients in the SPN + Gln group had significantly higher levels of HSP-70 (heat shock protein 70) as compared with the SPN group (68.6 vs 5.4, p = 0.014). In both groups, IL-6 (interleukine 6) levels showed a remarkable descent from baseline and day 2 (SPN: 42.24 vs 9.39, p < 0.001; SPN + Gln: 35.20 vs 13.80, p < 0.001) but only the treatment group showed a statistically significant decrease between day 2 and day 5 (13.80 vs 10.55, p = 0.013). Levels of IL-10 (interleukine 10) did not vary among visits except in the SPN between baseline and day 2 (9.55 vs 5.356, p < 0.001). At the end of the study, no significant differences between groups for PICU and hospital stay were observed. No adverse events were detected in any group. Glutamine supplementation in critically-ill children contributed to maintain high HSP-70 levels for longer. Glutamine supplementation had no influence on IL-10 and failed to show a significant reduction of IL-6 levels. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Cavalcante, Ana Augusta Monteiro; Campelo, Márcio Wilker Soares; de Vasconcelos, Marcelo Pinho Pessoa; Ferreira, Camila Marques; Guimarães, Sergio Botelho; Garcia, José Huygens Parente; de Vasconcelos, Paulo Roberto Leitão
2012-04-01
To evaluate the effect of enteral nutrition (EN) supplemented with l-glutamine on glycolytic parameters, inflammation, immune function, and oxidative stress in moderately ill intensive care patients with sepsis. Thirty patients received EN. Fifteen patients received EN supplemented with glutamine (30 g; GLN group) for 2 d followed by EN supplemented with calcium caseinate (30 g, CAS group), also over 2 d. The other 15 patients received EN with calcium caseinate (30 g; CAS group) for 2 d followed by EN with glutamine (30 g; GLN group), also over 2 days. One washout day with only EN was provided between every 2-d period of EN plus supplementation to all patients. Blood samples were taken before and after supplementation. There were no changes in glycolytic parameters in either group. Leukocytes decreased in the two groups (from 13 650 to 11 500 in the CAS group, P = 0.019; from 12.850 to 11.000 in the GLN group, P = 0.046). Lymphocytes increased in the GLN group (from 954 to 1916, P < 0.0001) and were more numerous after glutamine supplementation (from 1916 to 1085, P < 0.0001, GLN versus CAS). No significant changes were observed in interleukin levels, but urea levels were higher in the GLN compared with the CAS group (50.0-47.0, P = 0.030). Glutathione plasma concentrations did not differ significantly between the groups. No significant changes were observed in the plasma glutamine and glutamate concentrations. The EN supplemented with glutamine increased the lymphocyte count and helped to decrease lipid peroxidation but presented no effect on the antioxidant glutathione capacity and on cytokine concentrations or glycolytic parameters. Copyright © 2012 Elsevier Inc. All rights reserved.
Borges Dock-Nascimento, D; Aguilar-Nascimento, J E D; Caporossi, C; Sepulveda Magalhães Faria, M; Bragagnolo, R; Caporossi, F Stephan; Linetzky Waitzberg, D
2011-01-01
No study so far has tested a beverage containing glutamine 2 h before anesthesia in patients undergoing surgery. The aim of the study was to investigate: 1) the safety of the abbreviation of preoperative fasting to 2 h with a carbohydrate-L-glutamine-rich drink; and 2) the residual gastric volume (RGV) measured after the induction of anesthesia for laparoscopic cholecystectomies. Randomized controlled trial with 56 women (42 (17-65) years-old) submitted to elective laparoscopic cholecystectomy. Patients were randomized to receive either conventional preoperative fasting of 8 hours (fasted group, n = 12) or one of three different beverages drunk in the evening before surgery (400 mL) and 2 hours before the initiation of anesthesia (200 mL). The beverages were water (placebo group, n = 12), 12.5% (240 mOsm/L) maltodextrine (carbohydrate group, n = 12) or the latter in addition to 50 g (40 g in the evening drink and 10 g in the morning drink) of L-glutamine (glutamine group, n = 14). A 20 F nasogastric tube was inserted immediately after the induction of general anesthesia to aspirate and measure the RGV. Fifty patients completed the study. None of the patients had either regurgitation during the induction of anesthesia or postoperative complications. The median (range) of RGV was 6 (0-80) mL. The RGV was similar (p = 0.29) between glutamine group (4.5 [0-15] mL), carbohydrate group (7.0 [0-80] mL), placebo group (8.5 [0-50] mL), and fasted group (5.0 [0-50] mL). The abbreviation of preoperative fasting to 2 h with carbohydrate and L-glutamine is safe and does not increase the RGV during induction of anesthesia.
Li, Meng; Demenescu, Liliana Ramona; Colic, Lejla; Metzger, Coraline Danielle; Heinze, Hans-Jochen; Steiner, Johann; Speck, Oliver; Fejtova, Anna; Salvadore, Giacomo; Walter, Martin
2017-05-01
The anterior cingulate cortex (ACC) has shown decreased glutamate levels in patients with major depressive disorder. Subanesthetic doses of ketamine were repeatedly shown to improve depressive symptoms within 24 h after infusion and this antidepressant effect was attributed to increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) throughput. To elucidate ketamine's mechanism of action, we tested whether the clinical time course of the improvement is mirrored by the change of glutamine/glutamate ratio and if such effects show a regional and temporal specificity in two distinct subdivisions of ACC with different AMPA/N-methyl-D-aspartate receptor profiles. In a double-blind, placebo-controlled intravenous infusion study of ketamine, we measured glutamate and glutamine in the pregenual ACC (pgACC) and the anterior midcingulate cortex at 1 and 24 h post infusion with magnetic resonance spectroscopy at 7 T. A significant interaction of time, region, and treatment was found for the glutamine/glutamate ratios (placebo, n=14; ketamine, n=12). Post-hoc analyses revealed that the glutamine/glutamate ratio increased significantly in the ketamine group, compared with placebo, specifically in the pgACC after 24 h. The glutamine/glutamate increase in the pgACC caused by ketamine at 24 h post infusion was reproduced in an enlarged sample (placebo, n=24; ketamine, n=20). Our results support a significant temporal and regional response in glutamine/glutamate ratios to a single subanesthetic dose of ketamine, which mirrors the time course of the antidepressant response and reversal of the molecular deficits in patients and which may be associated with the histoarchitectonical receptor fingerprints of the ACC subregions.
Li, Meng; Demenescu, Liliana Ramona; Colic, Lejla; Metzger, Coraline Danielle; Heinze, Hans-Jochen; Steiner, Johann; Speck, Oliver; Fejtova, Anna; Salvadore, Giacomo; Walter, Martin
2017-01-01
The anterior cingulate cortex (ACC) has shown decreased glutamate levels in patients with major depressive disorder. Subanesthetic doses of ketamine were repeatedly shown to improve depressive symptoms within 24 h after infusion and this antidepressant effect was attributed to increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) throughput. To elucidate ketamine's mechanism of action, we tested whether the clinical time course of the improvement is mirrored by the change of glutamine/glutamate ratio and if such effects show a regional and temporal specificity in two distinct subdivisions of ACC with different AMPA/N-methyl-D-aspartate receptor profiles. In a double-blind, placebo-controlled intravenous infusion study of ketamine, we measured glutamate and glutamine in the pregenual ACC (pgACC) and the anterior midcingulate cortex at 1 and 24 h post infusion with magnetic resonance spectroscopy at 7 T. A significant interaction of time, region, and treatment was found for the glutamine/glutamate ratios (placebo, n=14; ketamine, n=12). Post-hoc analyses revealed that the glutamine/glutamate ratio increased significantly in the ketamine group, compared with placebo, specifically in the pgACC after 24 h. The glutamine/glutamate increase in the pgACC caused by ketamine at 24 h post infusion was reproduced in an enlarged sample (placebo, n=24; ketamine, n=20). Our results support a significant temporal and regional response in glutamine/glutamate ratios to a single subanesthetic dose of ketamine, which mirrors the time course of the antidepressant response and reversal of the molecular deficits in patients and which may be associated with the histoarchitectonical receptor fingerprints of the ACC subregions. PMID:27604568
Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E.
2015-01-01
Background Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Methods Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Results Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Conclusions Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. PMID:25888676
Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E
2016-01-01
Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. © 2015 American Society for Parenteral and Enteral Nutrition.
Thakkar, Katharine N; Rösler, Lara; Wijnen, Jannie P; Boer, Vincent O; Klomp, Dennis W J; Cahn, Wiepke; Kahn, René S; Neggers, Sebastiaan F W
2017-03-15
The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives. Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex. Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia. Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Lactate promotes glutamine uptake and metabolism in oxidative cancer cells
Pérez-Escuredo, Jhudit; Dadhich, Rajesh K; Dhup, Suveera; Cacace, Andrea; Van Hée, Vincent F; De Saedeleer, Christophe J; Sboarina, Martina; Rodriguez, Fabien; Fontenille, Marie-Joséphine; Brisson, Lucie; Porporato, Paolo E; Sonveaux, Pierre
2016-01-01
ABSTRACT Oxygenated cancer cells have a high metabolic plasticity as they can use glucose, glutamine and lactate as main substrates to support their bioenergetic and biosynthetic activities. Metabolic optimization requires integration. While glycolysis and glutaminolysis can cooperate to support cellular proliferation, oxidative lactate metabolism opposes glycolysis in oxidative cancer cells engaged in a symbiotic relation with their hypoxic/glycolytic neighbors. However, little is known concerning the relationship between oxidative lactate metabolism and glutamine metabolism. Using SiHa and HeLa human cancer cells, this study reports that intracellular lactate signaling promotes glutamine uptake and metabolism in oxidative cancer cells. It depends on the uptake of extracellular lactate by monocarboxylate transporter 1 (MCT1). Lactate first stabilizes hypoxia-inducible factor-2α (HIF-2α), and HIF-2α then transactivates c-Myc in a pathway that mimics a response to hypoxia. Consequently, lactate-induced c-Myc activation triggers the expression of glutamine transporter ASCT2 and of glutaminase 1 (GLS1), resulting in improved glutamine uptake and catabolism. Elucidation of this metabolic dependence could be of therapeutic interest. First, inhibitors of lactate uptake targeting MCT1 are currently entering clinical trials. They have the potential to indirectly repress glutaminolysis. Second, in oxidative cancer cells, resistance to glutaminolysis inhibition could arise from compensation by oxidative lactate metabolism and increased lactate signaling. PMID:26636483
Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer.
Yu, Yang; Yu, Xiaohui; Fan, Chenling; Wang, Hong; Wang, Renee; Feng, Chen; Guan, Haixia
2018-06-25
Papillary thyroid cancer is a prevalent endocrine malignancy. Although alterations in glutamine metabolism have been reported in several types of hematological and solid tumors, little is known about the functions of glutamine and glutaminolysis-associated proteins in papillary thyroid cancer. Here, we demonstrated the glutamine dependence of papillary thyroid cancer cells, and with the use of RT 2 -PCR arrays, we screened for the aberrant overexpression of glutaminase in human papillary thyroid cancer tissues and cells. These results were later confirmed via real-time PCR, Western blots, and immunohistochemical staining. We found that the levels of glutaminase were significantly correlated with extrathyroidal extension. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. The proliferative, viable, migratory, and invasive abilities of papillary thyroid cancer cells were impaired by both the pharmacological inhibition and the genetic knockdown of glutaminase. Additionally, the inhibition of glutaminase deactivated the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, promoting autophagy and apoptosis. Collectively, these findings show that glutaminase-mediated glutamine dependence may be a potential therapeutic target for papillary thyroid cancer. PTC cells are glutamine-dependent, and GLS is aberrantly overexpressed in PTC. Inhibition of GLS suppressed glutaminolysis and reduced mitochondrial respiration. Inhibition of GLS impairs the viability of PTC cells. GLS blockade causes deactivation of mTORC1 and induction of autophagy and apoptosis. GLS may be a potential therapeutic target for PTC.
Prevention of Radiochemotherapy-Induced Esophagitis With Glutamine: Results of a Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Algara, Manuel; Universitat Pompeu Fabra, Barcelona; Rodriguez, Nuria
2007-10-01
Purpose: To assess the usefulness of oral glutamine to prevent radiochemotherapy-induced esophagitis in patients with lung cancer, and to determine the dosimetric parameter predictive of esophagitis. Methods and Materials: Seventy-five patients were enrolled; 34.7% received sequential radiochemotherapy, and 65.3% received concomitant radiochemotherapy. Every patient received prophylactic glutamine powder in doses of 10 g/8 h. Prescribed radiation doses were 45-50 Gy to planning target volume (PTV)1 (gross tumor volume plus wide margins) and 65-70 Gy to PTV2 (reduced margins). The primary endpoint was the incidence of Grade 2 or greater acute esophagitis. Results: No patient experienced glutamine intolerance or glutamine-related toxicity.more » Seventy-three percent of patients who received sequential chemotherapy and 49% of those who received concomitant chemotherapy did not present any form of esophagitis. V50 was the dosimetric parameter with better correlation between esophagitis and its duration. A V50 of {<=}30% had a 22% risk of esophagitis Grade {>=}2, which increased to 71% with a V50 of >30% (p = 0.0009). Conclusions: The use of oral glutamine may have an important role in the prevention of esophageal complications of concomitant radiochemotherapy in lung cancer patients. However, randomized trials are needed to corroborate that effect. V50 is the dosimetric parameter with better correlation with esophagitis grade and duration.« less
Aydoğmuş, Meltem Türkay; Tomak, Yakup; Tekin, Murat; Katı, Ismail; Hüseyinoğlu, Urfettin
2012-12-01
Ventilator-associated pneumonia (VAP) is a form of nosocomial pneumonia that increases patient morbidity and mortality, length of hospital stay, and healthcare costs. Glutamine preserves the intestinal mucosal structure, increases immune function, and reduces harmful changes in gut permeability in patients receiving total parenteral nutrition (TPN). We hypothesized that TPN supplemented by glutamine might prevent the development of VAP in patients on mechanical ventilator support in the intensive care unit (ICU). With the approval of the ethics committee and informed consent from relatives, 60 patients who were followed in the ICU with mechanical ventilator support were included in our study. Patients were divided into three groups. The first group received enteral nutrition (n=20), and the second was prescribed TPN (n=20) while the third group was given glutamine-supplemented TPN (n=20). C-reactive protein (CRP), sedimentation rate, body temperature, development of purulent secretions, increase in the amount of secretions, changes in the characteristics of secretions and an increase in requirement of deep tracheal aspiration were monitored for seven days by daily examination and radiographs. No statistically significant difference was found among groups in terms of development of VAP (p=0.622). Although VAP developed at a lower rate in the glutamine-supplemented TPN group, no statistically significant difference was found among any of the groups. Glutamine-supplemented TPN may have no superiority over unsupplemented enteral and TPN in preventing VAP.
Is glutamine deficiency the link between inflammation, malnutrition, and fatigue in cancer patients?
Schlemmer, Marcus; Suchner, Ulrich; Schäpers, Barbara; Duerr, Eva-Maria; Alteheld, Birgit; Zwingers, Thomas; Stehle, Peter; Zimmer, Heinz-Gerd
2015-12-01
Evaluation of potential associations between plasma glutamine levels and the incidence of cancer related fatigue, physical performance, poor nutritional status, and inflammation in patients with solid tumors. Mono-center cross-sectional study recruiting 100 (34 women) consecutive patients (September 2009-March 2011; ≥18 y) with solid tumors and causal tumor therapy. Fasting venous blood was harvested for routine clinical chemistry, amino acid (HPLC) and inflammation marker analyses. Clinical assessments included global, physical, affective and cognitive fatigue (questionnaire) and Karnofsky performance status. Nutritional status was evaluated using bioelectrical impedance analysis, the Prognostic Inflammatory and Nutritional Index and plasma protein levels. Regression analyses were performed to correlate continuous variables with plasma glutamine (95% confidence intervals). Nutritional status was impaired in 19% of the patients. Average plasma glutamine concentration (574.0 ± 189.6 μmol/L) was within normal range but decreased with impaired physical function. Plasma glutamine was linked to the ratio extracellular to body cell mass (p < 0.044), CRP (p < 0.001), physical (p = 0.014), affective (p = 0.041), and global fatigue (p = 0.030). Markers of inflammation increased with low physical performance. The data support our working hypothesis that in cancer patients systemic inflammation maintains a catabolic situation leading to malnutrition symptoms and glutamine deprivation, the latter being associated with cancer related fatigue. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
TAp73 is a marker of glutamine addiction in medulloblastoma
Niklison-Chirou, Maria Victoria; Erngren, Ida; Engskog, Mikael; Haglöf, Jakob; Picard, Daniel; Remke, Marc; McPolin, Phelim Hugh Redmond; Selby, Matthew; Williamson, Daniel; Clifford, Steven C.; Michod, David; Hadjiandreou, Michalis; Arvidsson, Torbjörn; Pettersson, Curt; Melino, Gerry; Marino, Silvia
2017-01-01
Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma. PMID:28971956
Chowdhury, Fahmida A.; O’Gorman, Ruth L.; Nashef, Lina; Elwes, Robert D.; Edden, Richard A.; Murdoch, James B.; Barker, Gareth J.; Richardson, Mark P.
2015-01-01
Purpose Idiopathic generalized epilepsies (IGE) comprise a group of clinical syndromes associated with spike wave discharges, putatively linked to alterations in neurotransmission. The purpose of this study was to investigate whether patients with IGE have altered glutamine and γ-aminobutyric acid (GABA) levels indicative of altered excitatory and inhibitory neurotransmission in frontal regions. Materials and Methods Single-voxel MEGA-edited PRESS magnetic resonance imaging (MRI) spectra were acquired from a 30-mL voxel in the dorsolateral prefrontal cortex in 13 patients with IGE (8 female) and 16 controls (9 female) at 3T. Metabolite concentrations were derived using LCModel. Differences between groups were investigated using an unpaired t-test. Results Patients with IGE were found to have significantly higher glutamine than controls (P = 0.02). GABA levels were also elevated in patients with IGE (P = 0.03). Conclusion Patients with IGE have increased frontal glutamine and GABA compared with controls. Since glutamine has been suggested to act as a surrogate for metabolically active glutamate, it may represent a marker for excitatory neurotransmission. PMID:24585443
TAp73 is a marker of glutamine addiction in medulloblastoma.
Niklison-Chirou, Maria Victoria; Erngren, Ida; Engskog, Mikael; Haglöf, Jakob; Picard, Daniel; Remke, Marc; McPolin, Phelim Hugh Redmond; Selby, Matthew; Williamson, Daniel; Clifford, Steven C; Michod, David; Hadjiandreou, Michalis; Arvidsson, Torbjörn; Pettersson, Curt; Melino, Gerry; Marino, Silvia
2017-09-01
Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma. © 2017 Niklison-Chirou et al.; Published by Cold Spring Harbor Laboratory Press.
Schumacher, Jörg; Behrends, Volker; Pan, Zhensheng; Brown, Dan R.; Heydenreich, Franziska; Lewis, Matthew R.; Bennett, Mark H.; Razzaghi, Banafsheh; Komorowski, Michal; Barahona, Mauricio; Stumpf, Michael P. H.; Wigneshweraraj, Sivaramesh; Bundy, Jacob G.; Buck, Martin
2013-01-01
ABSTRACT Nitrogen regulation in Escherichia coli is a model system for gene regulation in bacteria. Growth on glutamine as a sole nitrogen source is assumed to be nitrogen limiting, inferred from slow growth and strong NtrB/NtrC-dependent gene activation. However, we show that under these conditions, the intracellular glutamine concentration is not limiting but 5.6-fold higher than in ammonium-replete conditions; in addition, α-ketoglutarate concentrations are elevated. We address this glutamine paradox from a systems perspective. We show that the dominant role of NtrC is to regulate glnA transcription and its own expression, indicating that the glutamine paradox is not due to NtrC-independent gene regulation. The absolute intracellular NtrC and GS concentrations reveal molecular control parameters, where NtrC-specific activities were highest in nitrogen-starved cells, while under glutamine growth, NtrC showed intermediate specific activity. We propose an in vivo model in which α-ketoglutarate can derepress nitrogen regulation despite nitrogen sufficiency. PMID:24255125
... infections as taking a combination of zinc, selenium, glutamine, and metoclopramide. Muscular disease (mitochondrial myopathies). Early research ... or 42-84 grams per day in a glutamine-enriched formula. For red, scaly skin (plaque psoriasis): ...
How to understand the results of studies of glutamine supplementation.
Wernerman, Jan
2015-11-03
The lack of understanding of the mechanisms behind possible beneficial and possible harmful effects of glutamine supplementation makes the design of interventional studies of glutamine supplementations difficult, perhaps even hazardous. What is the interventional target, and how might it relate to outcomes? Taking one step further and aggregating results from interventional studies into meta-analyses does not diminish the difficulties. Therefore, conducting basic research seems to be a better idea than groping in the dark and exposing patients to potential harm in this darkness.
Hu, H; Bai, X; Shah, A A; Wen, A Y; Hua, J L; Che, C Y; He, S J; Jiang, J P; Cai, Z H; Dai, S F
2016-04-01
This study was designed using 360 21-day-old chicks to determine the influences of diet supplementation with glutamine (5 g/kg), γ-aminobutyric acid (GABA, 100 mg/kg) or their combinations on performance and serum parameters exposed to cycling high temperatures. From 22 to 35 days, the experimental groups (2 × 2) were subjected to circular heat stress by exposing them to 30-34 °C cycling, while the positive control group was exposed to 23 °C constant. The blood of broilers was collected to detect serum parameters on days 28 and 35. Compared with the positive control group, the cycling high temperature decreased (p < 0.05) the feed consumption, weight gain and serum total protein (TP), glucose, thyroxine (T4), insulin, alkaline phosphatase (ALP), glutamine, GABA and glutamate levels, while increased (p < 0.05) the serum triglyceride (TG), corticosterone (CS), glucagon (GN), creatine kinase (CK), glutamic oxaloacetic transaminase (GOT), nitric oxide synthase (NOS), glutamate pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) levels during 22-35 days. However, dietary glutamine (5 g/kg) increased (p < 0.05) the feed consumption, weight gain and serum levels of glutamine, TP, insulin and ALP, but decreased (p < 0.05) the serum TG, CK, GOT, NOS and GPT levels. Diet supplemented with GABA also increased (p < 0.05) weight gain and the serum levels of TP, T4, ALP, GABA and glutamine. In addition, the significant interactions (p < 0.05) between glutamine and GABA were found in the feed consumption, weight gain and the serum ALP, CK, LDH, GABA, T3 and T4 levels of heat-stressed chickens. This research indicated that dietary glutamine and GABA improved the antistress ability in performance and serum parameters of broilers under hot environment. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert
2017-02-01
Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H δ21 and H ε21 , respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.
Ye, Bang-Ce; Zhang, Yan; Yu, Hui; Yu, Wen-Bang; Liu, Bao-Hong; Yin, Bin-Cheng; Yin, Chun-Yun; Li, Yuan-Yuan; Chu, Ju; Zhang, Si-Liang
2009-01-01
Microorganisms can restructure their transcriptional output to adapt to environmental conditions by sensing endogenous metabolite pools. In this paper, an Agilent customized microarray representing 4,106 genes was used to study temporal transcript profiles of Bacillus subtilis in response to valine, glutamate and glutamine pulses over 24 h. A total of 673, 835, and 1135 amino-acid-regulated genes were identified having significantly changed expression at one or more time points in response to valine, glutamate, and glutamine, respectively, including genes involved in cell wall, cellular import, metabolism of amino-acids and nucleotides, transcriptional regulation, flagellar motility, chemotaxis, phage proteins, sporulation, and many genes of unknown function. Different amino acid treatments were compared in terms of both the global temporal profiles and the 5-minute quick regulations, and between-experiment differential genes were identified. The highlighted genes were analyzed based on diverse sources of gene functions using a variety of computational tools, including T-profiler analysis, and hierarchical clustering. The results revealed the common and distinct modes of action of these three amino acids, and should help to elucidate the specific signaling mechanism of each amino acid as an effector. PMID:19763274
Selenium and glutamine supplements: where are we heading? A critical care perspective.
Andrews, Peter J D
2010-03-01
There is considerable interest in glutamine and selenium in critical care as both offer the potential to enhance host defences, through different but complimentary mechanisms and may reduce subsequent infections and mortality. The SIGNET trial (randomized controlled factorial trial) is the largest, critical care study of both supplements. The data have been presented publicly, but the data are not published or available for review and will therefore not be discussed fully in this update. In the present review I will explore the recently available (past 1-2 years) published literature. The current literature demonstrates that there are currently insufficient data to enable confident recommendations on the optimal route, timing, duration and dosage of each of these nutritional supplements. The pending results of SIGNET, the largest critical care trial of parenteral nutrition supplemented by glutamine and or selenium promises to clarify some of the current ambiguities and inform future practice. To be able to confidently establish or refute the hypothesis that either glutamine or selenium alone or in combination improves outcome in critical care requires a well designed prospective randomized controlled trial. To design such a trial we require the optimal dose and duration of the nutritional supplement (balancing efficacy and toxicity, ease of administration and cost) and then conduct an adequately powered trial. Such a trial is still lacking for these two agents. There are some supportive data for selenium but the case is less strong for parenteral glutamine and weakest for enteral glutamine.
Ren, Wenkai; Duan, Jielin; Yin, Jie; Liu, Gang; Cao, Zhong; Xiong, Xia; Chen, Shuai; Li, Tiejun; Yin, Yulong; Hou, Yongqing; Wu, Guoyao
2014-10-01
This study was conducted to determine effects of dietary supplementation with 1 % L-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.
Cooper, Arthur J. L.; Kuhara, Tomiko
2013-01-01
Glutamine metabolism is generally regarded as proceeding via glutaminase-catalyzed hydrolysis to glutamate and ammonia, followed by conversion of glutamate to α-ketoglutarate catalyzed by glutamate dehydrogenase or by a glutamate-linked aminotransferase (transaminase). However, another pathway exists for the conversion of glutamine to α-ketoglutarate that is often overlooked, but is widely distributed in nature. This pathway, referred to as the glutaminase II pathway, consists of a glutamine transaminase coupled to ω-amidase. Transamination of glutamine results in formation of the corresponding α-keto acid, namely, α-ketoglutaramate (KGM). KGM is hydrolyzed by ω-amidase to α-ketoglutarate and ammonia. The net glutaminase II reaction is: L-Glutamine + α-keto acid + H2O → α-ketoglutarate + L-amino acid + ammonia. In this mini-review the biochemical importance of the glutaminase II pathway is summarized, with emphasis on the key component KGM. Forty years ago it was noted that the concentration of KGM is increased in the cerebrospinal fluid (CSF) of patients with hepatic encephalopathy (HE) and that the level of KGM in the CSF correlates well with the degree of encephalopathy. In more recent work, we have shown that KGM is markedly elevated in the urine of patients with inborn errors of the urea cycle. It is suggested that KGM may be a useful biomarker for many hyperammonemic diseases including hepatic encephalopathy, inborn errors of the urea cycle, citrin deficiency and lysinuric protein intolerance. PMID:24234505
TAKEUTI, Tharsus Dias; TERRA, Guilherme Azevedo; da SILVA, Alex Augusto; TERRA-JÚNIOR, Júverson Alves; da SILVA, Luci Mara; CREMA, Eduardo
2014-01-01
Background Incretins are hormones produced by the intestine and can stimulate the secretion of insulin, helping to diminish the post-prandial glycemia. The administration of an emulsion of palm oil can help in the maintenance of the weight, and can increase circulating incretins levels. Glutamine increases the concentration of incretins in diabetic people. Both can help in metabolic syndrome. Aim To analyze the effects of ingestion of palm oil and glutamine in glycemia and in incretins in patients with diabetes submitted to surgical duodenojejunal exclusion with ileal interposition without gastrectomy. Methods Eleven diabetic type 2 patients were included and were operated. They were called to laboratory follow-up without eating anything between eight and 12 hours. They had there blood collected after the stimulus of the palm oil and glutamine taken in different days. For the hormonal doses were used ELISA kits. Results The glycemia showed a meaningful fall between the fast and two hours after the stimulus of the palm oil (p=0,018). With the glutamine the GLP-1 showed an increase between the fast and one hour (p=0,32), the PYY showed an important increase between the fast and one hour after the stimulus (p=0,06), the glycemia showed a meaningful fall after two hours of the administration of the stimulus (p=0,03). Conclusion Palm oil and glutamine can influence intestinal peptides and glucose PMID:25409967
Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism
Dong, J; Xiao, D; Zhao, Z; Ren, P; Li, C; Hu, Y; Shi, J; Su, H; Wang, L; Liu, H; Li, B; Gao, P; Qing, G
2017-01-01
Tumor cells must activate specific transporters to meet their increased glutamine metabolic demands. Relative to other glutamine transporters, the ASC family transporter 2 (ASCT2, also called SLC1A5) is profoundly elevated in a wide spectrum of human cancers to coordinate metabolic reprogramming and malignant transformation. Understanding the molecular mechanisms whereby tumor cells frequently upregulate this transporter is therefore vital to develop potential strategies for transporter-targeted therapies. Combining in-silico algorithms with systemic experimental screening, we herein identify the tumor suppressor microRNA, miR-137, as an essential regulator that targets ASCT2 and cancer cell glutamine metabolism. Metabolic analysis shows that miR-137 derepression, similar to ASCT2 inactivation, significantly inhibits glutamine consumption and TCA cycle anaplerosis. Mechanistically, methyl-CpG-binding protein 2 (MeCP2) and DNA methyltransferases (DNMTs) cooperate to promote active methylation of the miR-137 promoter and inhibit its transcription, conversely reactivating ASCT2 expression and glutamine metabolism. Moreover, expression between miR-137 and ASCT2 is inversely correlated in tumor specimens from multiple cancer types, and ectopic ASCT2 expression markedly rescued miR-137 suppression of tumorigenesis. These findings thus elucidate a previously unreported mechanism responsible for ASCT2 deregulation in human cancers and identify ASCT2 as a critical downstream effector of miR-137, revealing a molecular link between DNA methylation, microRNA and tumor metabolism. PMID:28692032
Acute depletion of plasma glutamine increases leucine oxidation in prednisone-treated humans
Le Bacquer, Olivier; Mauras, Nelly; Welch, Susan; Haymond, Morey; Darmaun, Dominique
2007-01-01
Background, aims & methods To determine whether depletion in plasma glutamine worsens the catabolic response to corticosteroids, 7 healthy volunteers received oral prednisone for 6 days on 2 separate occasions, at least 2 weeks apart, and in random order. On the 6th day of each treatment course, they received 5h intravenous infusions of L-[1-14C]-leucine and L-[1-13C]-glutamine in the postabsorptive state 1) under baseline conditions (prednisone only day), and 2) after 24h of treatment with phenylbutyrate (prednisone+phenylbutyrate day), a glutamine chelating agent. Results Phenylbutyrate treatment was associated with 1) an ≈15% decline in plasma glutamine concentration (627±39 vs. 530±31 μmol.L-1; P<0.05), 2) no change in leucine appearance rate, an index of protein breakdown (124±9 vs. 128±9 μmol.kg-1.h-1; NS) nor in non oxidative leucine disposal, an index of whole body protein synthesis (94±9 vs. 91±7 μmol.kg -1.h-1; NS); and 3) a ≈25% rise in leucine oxidation (30±1 vs. 38±2 μmol.kg-1.h-1, P<0.05), despite an ≈25% decline (p<0.05) in leucine concentration. Conclusions In a model of mild, stress-induced protein catabolism, depletion of plasma glutamine per se may worsen branched chain amino acid and protein wasting. PMID:17097772
Takeuti, Tharsus Dias; Terra, Guilherme Azevedo; da Silva, Alex Augusto; Terra, Júverson Alves; da Silva, Luci Mara; Crema, Eduardo
2014-01-01
Incretins are hormones produced by the intestine and can stimulate the secretion of insulin, helping to diminish the post-prandial glycemia. The administration of an emulsion of palm oil can help in the maintenance of the weight, and can increase circulating incretins levels. Glutamine increases the concentration of incretins in diabetic people. Both can help in metabolic syndrome. To analyze the effects of ingestion of palm oil and glutamine in glycemia and in incretins in patients with diabetes submitted to surgical duodenojejunal exclusion with ileal interposition without gastrectomy. Eleven diabetic type 2 patients were included and were operated. They were called to laboratory follow-up without eating anything between eight and 12 hours. They had there blood collected after the stimulus of the palm oil and glutamine taken in different days. For the hormonal doses were used ELISA kits. The glycemia showed a meaningful fall between the fast and two hours after the stimulus of the palm oil (p=0,018). With the glutamine the GLP-1 showed an increase between the fast and one hour (p=0,32), the PYY showed an important increase between the fast and one hour after the stimulus (p=0,06), the glycemia showed a meaningful fall after two hours of the administration of the stimulus (p=0,03). Palm oil and glutamine can influence intestinal peptides and glucose.
Fadel, Fatina I; Elshamaa, Manal F; Essam, Rascha G; Elghoroury, Eman A; El-Saeed, Gamila S M; El-Toukhy, Safinaz E; Ibrahim, Mona Hamed
2014-03-01
The high prevalence of protein-energy malnutrition is a critical issue for patients with chronic kidney disease (CKD). Serum albumin is the most commonly used nutritional marker. Another index is plasma amino acid (AA) profile. Of these, the plasma levels of glutamine, glutamate and homocysteine, correlate well with nutritional status. We measured some plasma AAs in children with different stages CKD to provide information in monitoring the therapeutic strategy, particularly in AA supplementary therapy or protein restriction. Three amino acids were evaluated along with albumin and high sensitivity C-reactive protein (hs-CRP) in 30 patients with advanced CKD stages 4 and 5. They were divided into two groups undergoing conservative treatment (CT) (n=15) or hemodialysis (HD) (n=15). An additional group of patients with nephrotic syndrome [CKD stage 2] was also studied to assess the alterations of plasma free amino acids with the early stage of CKD. Another 30 age- and sex-matched healthy children served as controls. A significant increase in plasma concentration of amino acid glutamine was observed in children with advanced CKD stages 4 and 5 when compared with controls (P=0.02).Plasma glutamine level was significantly higher in ESRD children on HD than in children with nephrotic syndrome (P=0.02). We did not find a significant difference between HD children and CT children as regard to glutamine level. Notable differences were in the plasma homocysteine level detected in the CKD groups patients, which was greater than that in controls (P=0.0001). Plasma homocysteine level was significantly higher in children on HD than in children with nephrotic syndrome (P=0.01). A significant differences was observed in hs-CRP levels between the CKD groups and the controls (P=0.04). Albumin levels were lower in CKD groups than in controls (p=0.01). Glutamine showed significant positive correlations with blood urea level (r=0.84, P=0.002) and blood ammonia level (r=0.72, P=0.0001). On multiple linear regression, urea was the only variable independently associated with an elevated plasma glutamine level (Beta=0.77, P=0.02). This study indicates that the advanced stages of CKD are associated with increased plasma concentrations of glutamine and homocysteine. Glutamine retained in the plasma of children with CRF, possibly producing higher levels of the waste products (urea and NH3). Dialysis alone is insufficient to redress completely the abnormalities in AA metabolism in ESRD children. Careful consideration of dialysis and dietary measures are necessary.
The Effect of Cisplatin on Blood Ammonia Elevation by Alanyl-Glutamine Supplementation.
Obayashi, Yoko; Kajiwara, Kenta; Nakamura, Eiji
2018-01-01
Although there are many clinical studies in which the beneficial effect of glutamine formulation on mucositis induced by chemo/radiotherapy was evaluated, the results are sometimes conflicting with the report of clinical deterioration. Then, we hypothesized that chemotherapy may increase the incidence of hyperammonemia without comparable change of major parameters of hepatic/renal disorder. To verify our hypothesis, we examined the increase in blood ammonia level with 1-h intravenous infusion of alanyl-glutamine on day 1-4 after cisplatin (CDDP) administration in rats and assessed the correlation with hepatic/renal parameters. Hepatic parameters (glutamate-oxaloacetic transaminase [GOT] and glutamic-pyruvic transaminase [GPT]) with CDDP did not change until day 3 and only GOT increased on day 4. Renal parameters (plasma creatinine, blood urea nitrogen) with CDDP continuously increased up to day 4. Alanyl-glutamine infusion significantly elevated blood ammonia level of CDDP rats with the peak on day 3, although the same dose did not change that of control rats. These results indicates that CDDP enhances the increase in blood ammonia level by glutamine supplementation without correlating with primary parameters for hepatic/renal dysfunction. © 2018 S. Karger AG, Basel.
Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino
2016-06-27
This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Walsh, Patrick S.; Blodgett, Karl N.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.
Glutamine is vitally important to a class of neurodegenerative diseases called poly-glutamine (poly-Q) repeat diseases such as Huntington's Disease (HD). Recent studies have revealed a pathogenic pathway that proceeds through misfolding of poly-Q regions into characteristic β-turn/ β-hairpin structures that are highly correlated with toxicity. The inherent conformational preferences of small glutamine containing peptides (Ac-Q-Q-NHBn and Ac-A-Q-NHBn) were studied using conformation-specific IR and UV spectroscopies, with the goal of probing the delicate interplay between three competitive hydrogen bonding motifs: backbone-backbone, sidechain-backbone, and sidechain-sidechain hydrogen bonds. Laser desorption, coupled with a supersonic expansion, was used to introduce the non-thermally labile sample into the gas-phase. Resonant ion-dip infrared (RIDIR) spectroscopy is a powerful tool for recording the vibrational spectra of single conformational isomers and was used here to reveal the innate structural preferences of the glutamine containing peptides. Experimental results are compared against density functional calculations to arrive at firm conformational assignments. Our results demonstrate a striking preference for β-turn formation in the non-polar environment of the gas-phase. Previous Affiliation: Purdue University, Department of Chemistry.
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing. PMID:29556497
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing.
l-Glutamine as a Substrate for l-Asparaginase from Serratia marcescens
Novak, Edward K.; Phillips, Arthur W.
1974-01-01
l-Asparaginase from Serratia marcescens was found to hydrolyze l-glutamine at 5% of the rate of l-asparagine hydrolysis. The ratio of the two activities did not change through several stages of purification, anionic and cationic polyacrylamide disk gel electrophoresis, and partial thermal inactivation. The two activities had parallel blood clearance rates in mice. l-glutamine was found to be a competitive inhibitor of l-asparagine hydrolysis. A separate l-glutaminase enzyme free of l-asparaginase activity was separated by diethylaminoethyl-cellulose chromatography. PMID:4590479
Vorontsova, E N; Okunev, V N
1976-01-01
In tests conducted with albino rats subject to investigation was the effect of sodium glutamate, or glutamine, daily introduced into the stomach in doses of 300 and 150 mg/kg, on the nucleic acids content in the splenic cell nuclei. All the animals taken in the experiment demonstrated a clearcut quantity of nucleonic RNA. By using a maximum dose of sodium glutamate and minimal one of glutamine a rise in the amount of DNA occurs in the nuclei of the splenic cells.
Lee, Yun Mi; Kim, Mi Jung; Kim, Youngha; Kim, Hyeyoung
2015-01-01
Background: The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. Methods: We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. Results: Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. Conclusions: In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation. PMID:26473156
Joseph, Nancy M; Ferrell, Linda D; Jain, Dhanpat; Torbenson, Michael S; Wu, Tsung-Teh; Yeh, Matthew M; Kakar, Sanjay
2014-01-01
Inflammatory hepatocellular adenoma can show overlapping histological features with focal nodular hyperplasia, including inflammation, fibrous stroma, and ductular reaction. Expression of serum amyloid-associated protein in inflammatory hepatocellular adenoma and map-like pattern of glutamine synthetase in focal nodular hyperplasia can be helpful in this distinction, but the pitfalls and limitations of these markers have not been established. Morphology and immunohistochemistry were analyzed in 54 inflammatory hepatocellular adenomas, 40 focal nodular hyperplasia, and 3 indeterminate lesions. Morphological analysis demonstrated that nodularity, fibrous stroma, dystrophic blood vessels, and ductular reaction were more common in focal nodular hyperplasia, while telangiectasia, hemorrhage, and steatosis were more common in inflammatory hepatocellular adenoma, but there was frequent overlap of morphological features. The majority of inflammatory hepatocellular adenomas demonstrated perivascular and/or patchy glutamine synthetase staining (73.6%), while the remaining cases had diffuse (7.5%), negative (3.8%), or patchy pattern of staining (15%) that showed subtle differences from the classic map-like staining pattern and was designated as pseudo map-like staining. Positive staining for serum amyloid-associated protein was seen in the majority of inflammatory hepatocellular adenomas (92.6%) and in the minority of focal nodular hyperplasia (17.5%). The glutamine synthetase staining pattern was map-like in 90% of focal nodular hyperplasia cases, with the remaining 10% of cases showing pseudo map-like staining. Three cases were labeled as indeterminate and showed focal nodular hyperplasia-like morphology but lacked map-like glutamine synthetase staining pattern; these cases demonstrated a patchy pseudo map-like glutamine synthetase pattern along with the expression of serum amyloid-associated protein. Our results highlight the diagnostic errors that can be caused by variant patterns of staining with glutamine synthetase and serum amyloid-associated protein in inflammatory hepatocellular adenoma and focal nodular hyperplasia.
Caris, Aline V; Lira, Fábio S; de Mello, Marco T; Oyama, Lila M; dos Santos, Ronaldo V T
2014-01-01
The aim of this study was to evaluate the effect of carbohydrate or glutamine supplementation, or a combination of the two, on the immune system and inflammatory parameters after exercise in simulated hypoxic conditions at 4500 m. Nine men underwent three sessions of exercise at 70% VO2peak until exhaustion as follows: 1) hypoxia with a placebo; 2) hypoxia with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after; and 3) hypoxia after 6 d of glutamine supplementation (20 g/d) and supplementation with 8% maltodextrin (200 mL/20 min) during exercise and for 2 h after. All procedures were randomized and double blind. Blood was collected at rest, immediately before exercise, after the completion of exercise, and 2 h after recovery. Glutamine, cortisol, cytokines, glucose, heat shock protein-70, and erythropoietin were measured in serum, and the cytokine production from lymphocytes was measured. Erythropoietin and interleukin (IL)-6 increased after exercise in the hypoxia group compared with baseline. IL-6 was higher in the hypoxia group than pre-exercise after exercise and after 2 h recovery. Cortisol did not change, whereas glucose was elevated post-exercise in the three groups compared with baseline and pre-exercise. Glutamine increased in the hypoxia + carbohydrate + glutamine group after exercise compared with baseline. Heat shock protein-70 increased post-exercise compared with baseline and pre-exercise and after recovery compared with pre-exercise, in the hypoxia + carbohydrate group. No difference was observed in IL-2 and IL-6 production from lymphocytes. IL-4 was reduced in the supplemented groups. Carbohydrate or glutamine supplementation shifts the T helper (Th)1/Th2 balance toward Th1 responses after exercise at a simulated altitude of 4500 m. The nutritional strategies increased in IL-6, suggesting an important anti-inflammatory effect. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oppedisano, Francesca; Catto, Marco; Koutentis, Panayiotis A.
2012-11-15
The ASCT2 transport system catalyses a sodium-dependent antiport of glutamine and other neutral amino acids which is involved in amino acid metabolism. A library of 1,2,3-dithiazoles was designed, synthesized and evaluated as inhibitors of the glutamine/amino acid ASCT2 transporter in the model system of proteoliposomes reconstituted with the rat liver transporter. Fifteen of the tested compounds at concentration of 20 μM or below, inhibited more than 50% the glutamine/glutamine antiport catalysed by the reconstituted transporter. These good inhibitors bear a phenyl ring with electron withdrawing substituents. The inhibition was reversed by 1,4-dithioerythritol indicating that the effect was likely owed tomore » the formation of mixed sulfides with the protein's Cys residue(s). A dose–response analysis of the most active compounds gave IC{sub 50} values in the range of 3–30 μM. Kinetic inhibition studies indicated a non-competitive inhibition, presumably because of a potential covalent interaction of the dithiazoles with cysteine thiol groups that are not located at the substrate binding site. Indeed, computational studies using a homology structural model of ASCT2 transporter, suggested as possible binding targets, Cys-207 or Cys-210, that belong to the CXXC motif of the protein. -- Highlights: ► Non‐competitive inhibition of ASCT2 by 1,2,3-dithiazoles was studied in proteoliposomes. ► Different 1,2,3-dithiazoles were synthesized and evaluated as transporter inhibitors. ► Many compounds potently inhibited the glutamine/glutamine antiport catalyzed by ASCT2. ► The inhibition was reversed by DTE indicating reaction with protein Cys. ► The most active compounds gave IC{sub 50} in the range of 3–30 μM.« less
Lambertucci, Adriana C; Lambertucci, Rafael H; Hirabara, Sandro M; Curi, Rui; Moriscot, Anselmo S; Alba-Loureiro, Tatiana C; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C; Vasconcelos, Diogo A A; Sellitti, Donald F; Pithon-Curi, Tania C
2012-01-01
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.
Lambertucci, Adriana C.; Lambertucci, Rafael H.; Hirabara, Sandro M.; Curi, Rui; Moriscot, Anselmo S.; Alba-Loureiro, Tatiana C.; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C.; Vasconcelos, Diogo A. A.; Sellitti, Donald F.; Pithon-Curi, Tania C.
2012-01-01
In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes. PMID:23239980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, J.; Meeks, J.C.; Wolk, C.P.
A method is described for the isolation of metabolically active heterocysts from Anabaena cylindrica. These isolated heterocysts accounted for up to 34% of the acetylene-reducing activity of whole filaments and had a specific activity of up to 1,560 nmol of C/sub 2/H/sub 4/ formed per mg of heterocyst chlorophyll per min. Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of (/sup 13/N)NH/sub 3/ and of amide-labeled (/sup 13/N)glutamine from (/sup 13/N)N/sub 2/. A method is also described for the production of 6-mCi amounts of (/sup 13/N)NH/sub 3/. Isolated heterocysts formedmore » (/sup 13/N)glutamine from (/sup 13/N)NH/sub 3/ and glutamate, and (/sup 14/C)glutamine from NH/sub 3/ and (/sup 14/C)glutamate, in the presence of magnesium adenosine 5'-triphosphate. Methionine sulfoximine strongly inhibited these syntheses. Glutamate synthase is, after nitrogenase and glutamine synthetase, the third sequential enzyme involved in the assimilation of N/sub 2/ by intact filaments. However, the kinetics of solubilization of the activity of glutamate synthase during cavitation of suspensions of A. cylindrica indicated that very little, if any, of the activity of that enzyme was located in heterocysts. Concordantly, isolated heterocysts failed to form substantial amounts of radioactive glutamate from either (/sup 13/N)glutamine or ..cap alpha..-(/sup 14/C)ketoglutarate in the presence of other substrates and cofactors of the glutamate synthase reaction. However, they formed (/sup 14/C)glutamate rapidly from ..cap alpha..-(/sup 14/C)ketoglutarate by aminotransferase reactions, with various amino acids as the nitrogen donor. The implications of these findings with regard to the identities of the substances moving between heterocysts and vegetative cells are discussed.« less
Bock, Patricia Martins; Krause, Mauricio; Schroeder, Helena Trevisan; Hahn, Gabriela Fernandes; Takahashi, Hilton Kenji; Schöler, Cinthia Maria; Nicoletti, Graziella; Neto, Luiz Domingos Zavarize; Rodrigues, Maria Inês Lavina; Bruxel, Maciel Alencar; Homem de Bittencourt, Paulo Ivo
2016-01-01
In this work, we aimed to investigate the effects of long-term supplementations with L-glutamine or L-alanyl-L-glutamine in the high-fat diet (HFD)-fed B6.129SF2/J mouse model over insulin sensitivity response and signaling, oxidative stress markers, metabolism and HSP70 expression. Mice were fed in a standard low-fat diet (STA) or a HFD for 20 weeks. In the 21th week, mice from the HFD group were allocated in five groups and supplemented for additional 8 weeks with different amino acids: HFD control group (HFD-Con), HFD + dipeptide L-alanyl-L-glutamine group (HFD-Dip), HFD + L-alanine group (HFD-Ala), HFD + L-glutamine group (HFD-Gln), or the HFD + L-alanine + L-glutamine (in their free forms) group (HFD-Ala + Gln). HFD induced higher body weight, fat pad, fasted glucose, and total cholesterol in comparison with STA group. Amino acid supplementations did not induce any modifications in these parameters. Although insulin tolerance tests indicated insulin resistance in all HFD groups, amino acid supplementations did not improve insulin sensitivity in the present model. There were also no significant differences in the immunocontents of insulin receptor, Akt, and Toll-like receptor-4. Notably, total 70 kDa heat shock protein (HSP72 + HSP73) contents in the liver was markedly increased in HFD-Con group as compared to STA group, which might suggest that insulin resistance is only in the beginning. Apparently, B6.129SF2/J mice are more resistant to the harmful effects of HFD through a mechanism that may include gut adaptation, reducing the absorption of nutrients, including amino acids, which may explain the lack of improvements in our intervention.
Mouse Sperm Cryopreservation Using Cryoprotectant Containing l-Glutamine.
Takeo, Toru; Nakagata, Naomi
2018-06-01
Efforts to advance sperm cryopreservation are ongoing and include modifications in the cryoprotective agents. The addition of l-glutamine maintains post-thaw motility and reduces plasma membrane damage to sperm. © 2018 Cold Spring Harbor Laboratory Press.
Smulski, Dana R.; Huang, Lixuan L.; McCluskey, Michael P.; Reeve, Mary Jane Gladnick; Vollmer, Amy C.; Van Dyk, Tina K.; LaRossa, Robert A.
2001-01-01
Acivicin, a modified amino acid natural product, is a glutamine analog. Thus, it might interfere with metabolism by hindering glutamine transport, formation, or usage in processes such as transamidation and translation. This molecule prevented the growth of Escherichia coli in minimal medium unless the medium was supplemented with a purine or histidine, suggesting that the HisHF enzyme, a glutamine amidotransferase, was the target of acivicin action. This enzyme, purified from E. coli, was inhibited by low concentrations of acivicin. Acivicin inhibition was overcome by the presence of three distinct genetic regions when harbored on multicopy plasmids. Comprehensive transcript profiling using DNA microarrays indicated that histidine biosynthesis was the predominant process blocked by acivicin. The response to acivicin, however, was quite complex, suggesting that acivicin inhibition resonated through more than a single cellular process. PMID:11344143
Novel antibiofilm chemotherapies target nitrogen from glutamate and glutamine.
Hassanov, Tal; Karunker, Iris; Steinberg, Nitai; Erez, Ayelet; Kolodkin-Gal, Ilana
2018-05-08
Bacteria in nature often reside in differentiated communities termed biofilms, which are an active interphase between uni-cellular and multicellular life states for bacteria. Here we demonstrate that the development of B. subtilis biofilms is dependent on the use of glutamine or glutamate as a nitrogen source. We show a differential metabolic requirement within the biofilm; while glutamine is necessary for the dividing cells at the edges, the inner cell mass utilizes lactic acid. Our results indicate that biofilm cells preserve a short-term memory of glutamate metabolism. Finally, we establish that drugs that target glutamine and glutamate utilization restrict biofilm development. Overall, our work reveals a spatial regulation of nitrogen and carbon metabolism within the biofilm, which contributes to the fitness of bacterial complex communities. This acquired metabolic division of labor within biofilm can serve as a target for novel anti-biofilm chemotherapies.
Hosios, Aaron M.; Hecht, Vivian C.; Danai, Laura V.; Johnson, Marc O.; Rathmell, Jeffrey C.; Steinhauser, Matthew L.; Manalis, Scott R.; Vander Heiden, Matthew G.
2016-01-01
Cells must duplicate their mass in order to proliferate. Glucose and glutamine are the major nutrients consumed by proliferating mammalian cells, but the extent to which these and other nutrients contribute to cell mass is unknown. We quantified the fraction of cell mass derived from different nutrients and find that the majority of carbon mass in cells is derived from other amino acids, which are consumed at much lower rates than glucose and glutamine. While glucose carbon has diverse fates, glutamine contributes most to protein, and this suggests that glutamine’s ability to replenish TCA cycle intermediates (anaplerosis) is primarily used for amino acid biosynthesis. These findings demonstrate that rates of nutrient consumption are indirectly associated with mass accumulation and suggest that high rates of glucose and glutamine consumption support rapid cell proliferation beyond providing carbon for biosynthesis. PMID:26954548
Shank, R P; Campbell, G L
1984-04-01
The uptake of alpha-ketoglutarate and malate by rat brain synaptosomal preparations was found to be affected by a variety of substances at physiologically relevant concentrations. Glutamine altered the uptake of alpha-ketoglutarate by causing an apparent reduction in the substrate-carrier affinity and an increase in Vmax. In contrast, glutamine did not appear to affect the Vmax of malate uptake, but it did increase markedly the uptake velocity at low concentrations of malate. L-Glutamate and L-aspartate were comparatively strong inhibitors of alpha-ketoglutarate and malate uptake. N-Acetylaspartate was a weak inhibitor of alpha-ketoglutarate uptake, a finding that contrasts with our previous observation that this compound potently inhibited alpha-ketoglutarate uptake by synaptosomes obtained from the cerebellum of 8- to 14-day-old mice. Ca2+ exhibited a variable effect but usually enhanced the uptake of alpha-ketoglutarate. The addition of small amounts of postmicrosomal supernatant to the incubation medium enhanced the uptake of alpha-ketoglutarate by low-density synaptosomes. By comparison, the uptake of glutamate, glutamine, gamma-aminobutyric acid, and several other amino acids was not affected. The enhancement of alpha-ketoglutarate uptake by the supernatant was due to a heat labile substance that was retained by dialysis tubing (MW cutoff = 8,000) and Amicon filter cones (CF 25), and was precipitated by ammonium sulfate at 60% saturation. In experiments in which the metabolic conversion of [U-14C] alpha-ketoglutarate to glutamate, aspartate, glutamine, and gamma-aminobutyric acid was determined, the presence of glutamine and glutamate in the incubation medium did not affect the pattern of labelling appreciably.
Grintescu, Ioana Marina; Luca Vasiliu, Irina; Cucereanu Badica, Ioana; Mirea, Liliana; Pavelescu, Daniela; Balanescu, Andreea; Grintescu, Ioana Cristina
2015-06-01
Rapid onset of resistance to insulin is a prominent component of stress metabolism in multiple trauma patients. Recent studies have clarified the role of amino acids (especially glutamine) in glucose transportation and the benefits of parenteral alanyl-glutamine supplementation (0.3-0.6 g/kg/day) in glucose homeostasis. The aims of this study are to evaluate the incidence of hyperglycemic episodes and the need for exogenous insulin to maintain stable glucose levels in critically ill polytrauma patients supplemented with parenteral glutamine dipeptide (Dipeptiven(®)) versus standard nutritional support. This was an open-label randomized-controlled trial of 82 polytrauma patients aged 20-60 years old, randomly assigned into two equal groups independent of sex, age and Injury Severity Score. We excluded patients with diabetes mellitus, or renal or hepatic failure. One group received parenteral Dipeptiven(®) supplementation of 0.5 g/kg/day and the other received standard isocaloric isoproteinic nutritional support. We found that 63% of patients in the glutamine-supplemented group had no hyperglycemic episodes; only 37% required exogenous insulin (mean daily requirement of 44 units/day). In the control group, 51% of patients required insulin (mean daily requirement 63 unit/day; p = 0.0407). The effect of glutamine supplementation on glucose homeostasis is associated with a lower incidence of hyperglycemia among critically ill polytrauma patients, and leads to a lower mean daily dose of insulin. Controlled-trials.com Identifier: ISRCTN71592366 (http://www.controlled-trials.com/ISRCTN71592366/ISRCTN71592366). Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Houdijk, A P; Nijveldt, R J; van Leeuwen, P A
1999-01-01
Recently we have shown that glutamine-enriched enteral nutrition in trauma patients reduced the occurrence of pneumonia, bacteremia, and sepsis. In that study, no clear explanation for these results was found except for lower tumor necrosis factor (TNF)-soluble receptors, suggesting immunomodulation. Here we present data on the course of endocrine and metabolic plasma mediators that were analyzed to provide more insight into the working mechanism of glutamine. Endocrine and metabolic mediators were measured in plasma samples taken on admission (day 0) and on days 1, 2, 3, 7, and 10. Glucose, prealbumin, albumin, alanine, C-reactive protein, alpha1-antitrypsin, complement factors, cortisol, glucagon, insulin, and growth hormone were assessed by standard techniques. The rate of feeding, demography, and injury severity did not differ between the glutamine and control group. There was a sustained hyperglycemic response in both groups. Insulin levels rose in the second phase of the period of observation. A moderate cortisol and glucagon response was seen in both groups. There was no alteration in growth hormone levels in either group. C-reactive protein, alpha1-antitrypsin, and complement factors showed similar increases in both groups but levels remained in the normal range. The course of alanine, albumin, and prealbumin also showed no difference between the groups. Glutamine-enriched enteral nutrition had no influence on the endocrine and metabolic response in trauma patients. Therefore, the reduction in infectious morbidity seen in glutamine-supplemented trauma patients is most likely not explained by a modulation of the humoral stress response and its metabolic consequences.
Pacheco, Rodrigo Goulart; Esposito, Christiano Costa; Müller, Lucas CM; Castelo-Branco, Morgana TL; Quintella, Leonardo Pereira; Chagas, Vera Lucia A; de Souza, Heitor Siffert P; Schanaider, Alberto
2012-01-01
AIM: To investigate whether butyrate or glutamine enemas could diminish inflammation in experimental diversion colitis. METHODS: Wistar specific pathogen-free rats were submitted to a Hartmann’s end colostomy and treated with enemas containing glutamine, butyrate, or saline. Enemas were administered twice a week in the excluded segment of the colon from 4 to 12 wk after the surgical procedure. Follow-up colonoscopy was performed every 4 wk for 12 wk. The effect of treatment was evaluated using video-endoscopic and histologic scores and measuring interleukin-1β, tumor necrosis factor-alpha, and transforming growth factor beta production in organ cultures by enzyme linked immunosorbent assay. RESULTS: Colonoscopies of the diverted segment showed mucosa with hyperemia, increased number of vessels, bleeding and mucus discharge. Treatment with either glutamine or butyrate induced significant reductions in both colonoscopic (P < 0.02) and histological scores (P < 0.01) and restored the densities of collagen fibers in tissue (P = 0.015; P = 0.001), the number of goblet cells (P = 0.021; P = 0.029), and the rate of apoptosis within the epithelium (P = 0.043; P = 0.011) to normal values. The high levels of cytokines in colon explants from rats with diversion colitis significantly decreased to normal values after treatment with butyrate or glutamine. CONCLUSION: The improvement of experimental diversion colitis following glutamine or butyrate enemas highlights the importance of specific luminal nutrients in the homeostasis of the colonic mucosa and supports their utilization for the treatment of human diversion colitis. PMID:22969190
Lin, Jiun-Jie; Chung, Xiu-Juan; Yang, Chung-Yih; Lau, Hui-Ling
2013-06-01
During critical illness, the demand for glutamine may exceed that which can be mobilized from muscle stores. Infections increase mortality, morbidity, length-of-stay, antibiotic usage and the cost of care. This is a major health care issue. RCTs were identified from the electronic databases: the Cochrane Library, MEDLINE, PubMed web of knowledge and hand searching journals. The trials compared the supplementation with glutamine and non-supplementation in burn. Statistical analysis was performed using RevMan5.1 software, from Cochrane Collaboration. 216 papers showed a match, in the keyword search. Upon screening the title, reading the abstract and the entire article, only four RCTs, involving 155 patients, were included. For both the glutamine group and control group, total burn surface area (TBSA) (MD=2.02, 95% CI -2.17, 6.21, p=0.34) was similar. Glutamine supplementation was associated with a statistically significant decrease in the number of patients with gram-negative bacteremia (OR 0.27, 95% CI 0.08-0.92, p=0.04) and hospital mortality (OR=0.13, 95% CI 0.03, 0.51, p=0.004), however, no statistical difference was noted between groups, for the other results. Glutamine supplemented nutrition can be associated with a reduction in mortality in hospital, complications due to gram-negative bacteremia in burn patients. Further larger and better quality trials are required, in order to determine whether any differences are statistically and clinically important. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.
Lee, I-Ping; Works, Melissa G.; Kumar, Vineet; De Miguel, Zurine; Manley, Nathan C.; Sapolsky, Robert M.
2014-01-01
The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1) T. gondii relies on glutamine for optimal infection, replication and viability, and 2) T. gondii-infected bone marrow-derived dendritic cells (DCs) display both “hypermotility” and “enhanced migration” to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2) is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1) in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1) blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS)-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility. PMID:25299045
Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.
2015-01-01
A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This component is highly sensitive to the function of the rare glutamine tRNACUG, which cannot be replaced by the predominant glutamine tRNACAA. Our observations also demonstrate distinct mechanistic differences between the responses of Gln3 and Gat1 to rapamycin inhibition of TorC1 and nitrogen starvation. PMID:25527290
Kristiansen, Rune Gangsoy
2016-12-01
Alterations in interorgan metabolism of ammonia play an important role in the onset of hyperammonemia in liver failure. Glutamine synthetase (GS) in muscle is an important target for ammonia removal strategies in hyperammonemia. Ornithine Phenylacetate (OP) is hypothesized to remove ammonia by providing glutamate as a substrate for increased GS activity and hence glutamine production. The newly generated glutamine conjugates with phenylacetate forming phenylacetylglutamine which can be excreted in the urine, providing an excretion pathway for ammonia. We have also shown that OP targets glycine metabolism, providing an additional ammonia reducing effect.
Guo, Mingxiao; Lu, Chunlei; Li, Yousheng
2016-12-01
In the management of short bowel syndrome (SBS), the benefits of treatment with growth hormone (GH), glutamine, and enteral nutrition (EN) on intestinal adaptation among children patients is still controversial. The aim of present study is to determine whether GH, glutamine, and EN have positive effect on intestinal adaptation in children with SBS. Sixteen children with SBS (small bowel remnant length, 56.75 ± 8.09 cm; mean ± SE) were treated with GH (0.05 mg/kg/d), glutamine (0.45 mg/kg/d), plus EN-enriched fiber diet for four weeks. After four weeks of treatment, patients were discharged home; GH was discontinued, but the EN with glutamine was continued. Repeated treatment was performed if there were lose weight, dysplasia, or severe diarrhea. All patients completed the treatment. Body weight, intestinal absorptive capacity, and plasma levels of proteins were significantly improved after complete treatment, without any major adverse effects. On follow-up, no death was reported. Treatment with GH, glutamine, and EN in early stage significantly improved intestinal adaptation in pediatric patients with SBS. Furthermore, the positive effect of the treatment does not seem to be sustained once GH discontinued until the residual intestinal adaptation reaches its maximum.
Kenealy, W R; Thompson, T E; Schubert, K R; Zeikus, J G
1982-01-01
The mechanism of ammonia assimilation in Methanosarcina barkeri and Methanobacterium thermoautotrophicum was documented by analysis of enzyme activities, 13NH3 incorporation studies, and comparison of growth and enzyme activity levels in continuous culture. Glutamate accounted for 65 and 52% of the total amino acids in the soluble pools of M. barkeri and M. thermoautotrophicum. Both organisms contained significant activities of glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase, and glutamate pyruvate transaminase. Hydrogen-reduced deazaflavin-factor 420 or flavin mononucleotide but not NAD, NADP, or ferredoxin was used as the electron donor for glutamate synthase in M. barkeri. Glutamate dehydrogenase activity was not detected in either organism, but alanine dehydrogenase activity was present in M. thermoautotrophicum. The in vivo activity of the glutamine synthetase was verified in M. thermoautotrophicum by analysis of 13NH3 incorporation into glutamine, glutamate, and alanine. Alanine dehydrogenase and glutamine synthetase activity varied in response to [NH4+] when M. thermoautotrophicum was cultured in a chemostat with cysteine as the sulfur source. Alanine dehydrogenase activity and growth yield (grams of cells/mole of methane) were highest when the organism was cultured with excess ammonia, whereas growth yield was lower and glutamine synthetase was maximal when ammonia was limiting. PMID:6122678
Development of an Improved Mammalian Overexpression Method for Human CD62L
Brown, Haley A.; Roth, Gwynne; Holzapfel, Genevieve; Shen, Sarek; Rahbari, Kate; Ireland, Joanna; Zou, Zhongcheng; Sun, Peter D.
2014-01-01
We have previously developed a glutamine synthetase (GS)-based mammalian recombinant protein expression system that is capable of producing 5 to 30 mg/L recombinant proteins. The over expression is based on multiple rounds of target gene amplification driven by methionine sulfoximine (MSX), an inhibitor of glutamine synthetase. However, like other stable mammalian over expression systems, a major shortcoming of the GS-based expression system is its lengthy turn-around time, typically taking 4–6 months to produce. To shorten the construction time, we replaced the muti-round target gene amplifications with single-round in situ amplifications, thereby shortening the cell line construction to 2 months. The single-round in situ amplification method resulted in highest recombinant CD62L expressing CHO cell lines producing ~5mg/L soluble CD62L, similar to those derived from the multi-round amplification and selection method. In addition, we developed a MSX resistance assay as an alternative to utilizing ELISA for evaluating the expression level of stable recombinant CHO cell lines. PMID:25286402
Renal ammonium production--une vue canadienne.
Brosnan, J T; Lowry, M; Vinay, P; Gougoux, A; Halperin, M L
1987-04-01
The purpose of this review is to examine the factors regulating ammonium production in the kidney and to place these factors in the perspective of acid-base balance. Renal ammonium production and excretion are required to maintain acid-base balance. However, only a portion of renal ammonium production is specifically stimulated by metabolic acidosis. One should examine urinary ammonium excretion at three levels: distribution of ammonium between blood and urine, augmented glutamine metabolism, and an energy constraint due to ATP balance considerations. With respect to the biochemical regulation of acid-base renal ammonium production, an acute stimulation of alpha-ketoglutarate dehydrogenase by a fall in pH seems to be important but this may not be the entire story. In chronic metabolic acidosis augmented glutamine entry into mitochondria (dog) or increased phosphate-dependent glutaminase activity (rat) become critical to support a high flux rate. Metabolic alterations, which diminish the rate of oxidation of alternate fuels, might also be important. The above principles are discussed in the ketoacidosis of fasting, the clinically important situation of high rates of renal ammonium production.
Gu, Min; Bai, Nan; Xu, Bingying; Xu, Xiaojie; Jia, Qian; Zhang, Zhiyu
2017-11-01
Soybean meal can induce enteritis in the distal intestine (DI) and decrease the immunity of several cultured fish species, including turbot Scophthalmus maximus. Glutamine and arginine supplementation have been used to improve immunity and intestinal morphology in fish. This study was conducted to investigate the effects of these two amino acids on the immunity and intestinal health of turbot suffering from soybean meal-induced enteritis. Turbots (initial weight 7.6 g) were fed one of three isonitrogenous and isolipidic diets for 8 weeks: SBM (control diet), with 40% soybean meal; GLN, SBM diet plus 1.5% glutamine; ARG, the SBM diet plus 1.5% arginine. Symptoms that are typical of soybean meal-induced enteritis, including swelling of the lamina propria and subepithelial mucosa and a strong infiltration of various inflammatory cells was observed in fish that fed the SBM diet. Glutamine and arginine supplementation significantly increased (1) the weight gain and feed efficiency ratio; (2) the height and vacuolization of villi and the integrity of microvilli in DI; (3) serum lysozyme activity, and the concentrations of C3, C4, and IgM. These two amino acids also significantly decreased the infiltration of leucocytes in the lamina propria and submucosa and the expression of inflammatory cytokines including il-8, tnf-α, and tgf-β. For the mucosal microbiota, arginine supplementation significantly increased microbiota community richness and diversity, and glutamine supplementation significantly increased the relative abundance of Lactobacillus and Bacillus. These results indicate that dietary glutamine and arginine improved the growth performance, feed utilization, and distal intestinal morphology, activated the innate and adaptive immune systems, changed the intestinal mucosal microbiota community, and relieved SBMIE possibly by suppression of the inflammation response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Glutamatergic neurometabolites during early abstinence from chronic methamphetamine abuse.
O'Neill, Joseph; Tobias, Marc C; Hudkins, Matthew; London, Edythe D
2014-10-31
The acute phase of abstinence from methamphetamine abuse is critical for rehabilitation success. Proton magnetic resonance spectroscopy has detected below-normal levels of glutamate+glutamine in anterior middle cingulate of chronic methamphetamine abusers during early abstinence, attributed to abstinence-induced downregulation of the glutamatergic systems in the brain. This study further explored this phenomenon. We measured glutamate+glutamine in additional cortical regions (midline posterior cingulate, midline precuneus, and bilateral inferior frontal cortex) putatively affected by methamphetamine. We examined the relationship between glutamate+glutamine in each region with duration of methamphetamine abuse as well as the depressive symptoms of early abstinence. Magnetic resonance spectroscopic imaging was acquired at 1.5 T from a methamphetamine group of 44 adults who had chronically abused methamphetamine and a control group of 23 age-, sex-, and tobacco smoking-matched healthy volunteers. Participants in the methamphetamine group were studied as inpatients during the first week of abstinence from the drug and were not receiving treatment. In the methamphetamine group, small but significant (5-15%, P<.05) decrements (vs control) in glutamate+glutamine were observed in posterior cingulate, precuneus, and right inferior frontal cortex; glutamate+glutamine in posterior cingulate was negatively correlated (P<.05) with years of methamphetamine abuse. The Beck Depression Inventory score was negatively correlated (P<.005) with glutamate+glutamine in right inferior frontal cortex. Our findings support the idea that glutamatergic metabolism is downregulated in early abstinence in multiple cortical regions. The extent of downregulation may vary with length of abuse and may be associated with severity of depressive symptoms emergent in early recovery. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Bartnik-Olson, Brenda L; Oyoyo, Udochukwu; Hovda, David A; Sutton, Richard L
2010-12-01
Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo ¹³C NMR spectroscopy following an infusion of [1-¹³C] glucose and [1,2-¹³C₂] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the ¹³C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the ¹³C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The ¹³C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism.
Waldron, Mark; Ralph, Cameron; Jeffries, Owen; Tallent, Jamie; Theis, Nicola; Patterson, Stephen David
2018-05-16
This study investigated the effects of leucine or leucine + glutamine supplementation on recovery from eccentric exercise. In a double-blind independent groups design, 23 men were randomly assigned to a leucine (0.087 g/kg; n = 8), leucine + glutamine (0.087 g/kg + glutamine 0.3 g/kg; n = 8) or placebo (0.3 g/kg maltodextrin; n = 7) group. Participants performed 5 sets of drop jumps, with each set comprising 20 repetitions. Isometric knee-extensor strength, counter-movement jump (CMJ) height, delayed-onset muscle soreness (DOMS) and creatine kinase (CK) were measured at baseline, 1, 24, 48 h and 72 h post-exercise. There was a time × group interaction for isometric strength, CMJ and CK (P < 0.05), with differences between the leucine + glutamine and placebo group at 48 h and 72 h for strength (P = 0.013; d = 1.43 and P < 0.001; d = 2.06), CMJ (P = 0.008; d = 0.87 and P = 0.019; d = 1.17) and CK at 24 h (P = 0.012; d = 0.54) and 48 h (P = 0.010; d = 1.37). The leucine group produced higher strength at 72 h compared to placebo (P = 0.007; d = 1.65) and lower CK at 24 h (P = 0.039; d = 0.63) and 48 h (P = 0.022; d = 1.03). Oral leucine or leucine + glutamine increased the rate of recovery compared to placebo after eccentric exercise. These findings highlight potential benefits of co-ingesting these amino acids to ameliorate recovery.
Xiao, Weihua; Chen, Peijie; Dong, Jingmei; Wang, Ru; Luo, Beibei
2015-04-01
The aim of this study was to evaluate the effect of overload training on the function of peritoneal macrophages in rats, and to test the hypothesis that glutamine in vivo supplementation would partly reverse the eventual functional alterations induced by overload training in these cells. Forty male Wistar rats were randomly divided into 5 groups: control group (C), overload training group (E1), overload training and restore one week group (E2), glutamine-supplementation group (EG1), and glutamine-supplementation and restore 1-week group (EG2). All rats, except those placed on sedentary control were subjected to 11 weeks of overload training protocol. Blood hemoglobin, serum testosterone, and corticosterone of rats were measured. Moreover, the functions (chemotaxis, phagocytosis, cytokines synthesis, reactive oxygen species generation) of peritoneal macrophages were determined. Data showed that blood hemoglobin, serum testosterone, corticosterone and body weight in the overload training group decreased significantly as compared with the control group. Meanwhile, the chemotaxis capacity (decreased by 31%, p = .003), the phagocytosis capacity (decreased by 27%, p = .005), the reactive oxygen species (ROS) generation (decreased by 35%, p = .003) and the cytokines response capability of macrophages were inhibited by overload training. However, the hindering of phagocytosis and the cytokines response capability of macrophages induced by overload training could be ameliorated and reversed respectively, by dietary glutamine supplementation. These results suggest that overload training impairs the function of peritoneal macrophages, which is essential for the microbicidal actions of macrophages. This may represent a novel mechanism of immunodepression induced by overload training. Nonetheless, dietary glutamine supplementation could partly reverse the impaired macrophage function resulting from overload training.
Blass, Sandra C; Goost, Hans; Tolba, René H; Stoffel-Wagner, Birgit; Kabir, Koroush; Burger, Christof; Stehle, Peter; Ellinger, Sabine
2012-08-01
: We hypothesize that wound closure in trauma patients with disorders in wound healing is accelerated by supplementation of antioxidant micronutrients and glutamine. In a randomized, double-blind, placebo-controlled trial, 20 trauma patients with disorders in wound healing were orally supplemented with antioxidant micronutrients (ascorbic acid, α-tocopherol, β-carotene, zinc, selenium) and glutamine (verum) or they received isoenergetic amounts of maltodextrine (placebo) for 14 days. Plasma/serum levels of micronutrients, glutamine, and vascular endothelial growth factor-A (VEGF-A) were determined before and after supplementation. In the wound, several parameters of microcirculation were measured. Time from study entry to wound closure was recorded. Micronutrients in plasma/serum did not change except for selenium which increased in the verum group (1.1 ± 0.2 vs. 1.4 ± 0.2 μmol/l; P = 0.009). Glutamine decreased only in the placebo group (562 ± 68 vs. 526 ± 55 μmol/l; P = 0.047). The prevalence of hypovitaminoses and the concentration of VEGF-A did not change. Considering microcirculation, only O(2)-saturation decreased in the placebo group (56.7 ± 23.4 vs. 44.0 ± 24.0 [arbitrary units]; P = 0.043). Wound closure occurred more rapidly in the verum than in the placebo group (35 ± 22 vs. 70 ± 35 d; P = 0.01). Time to wound closure can be shortened by oral antioxidant and glutamine containing supplements in trauma patients with disorders in wound healing. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Martins, Heber Amilcar; Sehaber, Camila Caviquioli; Hermes-Uliana, Catchia; Mariani, Fernando Augusto; Guarnier, Flavia Alessandra; Vicentini, Geraldo Emílio; Bossolani, Gleison Daion Piovezana; Jussani, Laraine Almeida; Lima, Mariana Machado; Bazotte, Roberto Barbosa; Zanoni, Jacqueline Nelisis
2016-12-01
This study aimed to evaluate the intestinal mucosa of the duodenum and jejunum of Walker-256 tumor-bearing rats supplemented with L-glutamine. Thirty-two male 50-day-old Wistar rats (Rattus norvegicus) were randomly divided into four groups: control (C), control supplemented with 2 % L-glutamine (GC), Walker-256 tumor (WT), and Walker-256 tumor supplemented with 2 % L-glutamine (TWG). Walker-256 tumor was induced by inoculation viable tumor cells in the right rear flank. After 10 days, celiotomy was performed and duodenal and jejunal tissues were removed and processed. We evaluated the cachexia index, proliferation index, villus height, crypt depth, total height of the intestinal wall, and number of goblet cells by the technique of periodic acid-Schiff (PAS). Induction of Walker-256 tumor promoted a reduction of metaphase index in the TW group animals, which was accompanied by a reduction in the villous height and crypt depths, resulting in atrophy of the intestinal wall as well as increased PAS-positive goblet cells. Supplementation with L-glutamine reduced the tumor growth and inhibited the development of the cachectic syndrome in animals of the TWG group. Furthermore, amino acid supplementation promoted beneficial effects on the intestinal mucosa in the TWG animals through restoration of the number of PAS-positive goblet cells. Therefore, supplementation with 2 % L-glutamine exhibited a promising role in the prevention of tumor growth and cancer-associated cachexia as well as restoring the intestinal mucosa in the duodenum and jejunum of Walker-256 tumor-bearing rats.
Williams, Elizabeth A; Elia, Marinos; Lunn, Peter G
2007-08-01
Growth faltering during infancy is a characteristic of life in developing countries. Previous studies have shown that small-intestine mucosal enteropathy, accompanied by endotoxemia and a persistent systemic inflammatory response, accounts for up to 64% of the growth faltering in Gambian infants. The objective was to test whether glutamine, with its putative trophic effects on enterocytes, immune cells, and intestinal integrity, can accelerate the repair of the intestine, lower immunostimulation, and reduce growth faltering. Ninety-three infants aged 4-10 mo from the West Kiang region of The Gambia were studied in a double-blind, double-placebo, controlled trial. Glutamine (0.25 mg/kg body wt) or a placebo that contained an isonitrogenous, isoenergetic mix of nonessential amino acids was orally administered twice daily throughout the 5-mo rainy season. Anthropometric measurements were made monthly during the supplementation period and for 6 mo after supplementation. Intestinal permeability was measured monthly (by determining the ratio of lactulose to mannitol), and finger-prick blood samples were collected for the analysis of plasma proteins on 3 occasions. Gambian infants showed a seasonal deterioration in growth and persistently elevated acute phase protein concentrations and intestinal permeability. Oral supplementation with glutamine did not improve growth (x +/- SE: weight gain, 60 +/- 19 and 69 +/- 20 g/mo; length gain, 1.01 +/- 0.05 and 0.95 +/- 0.03 cm/mo) or intestinal permeability [lactulose:mannitol ratio: 0.29 (95% CI: 0.23, 0.35) and 0.26 (95% CI: 0.21, 0.32)] in the glutamine and placebo groups, respectively. It also had no effect on infant morbidity or on plasma concentrations of immunoglobulins or acute phase proteins. Glutamine supplementation failed to improve growth or intestinal status in malnourished Gambian infants.
Oyoyo, Udochukwu; Hovda, David A.; Sutton, Richard L.
2010-01-01
Abstract Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo 13C NMR spectroscopy following an infusion of [1-13C] glucose and [1,2-13C2] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the 13C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the 13C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The 13C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism. PMID:20939699
de Aguilar-Nascimento, J E; Caporossi, C; Dock-Nascimento, D Borges; de Arruda, I S; Moreno, K; Moreno, W
2007-01-01
Anastomotic leakage is one of the most important causes of morbidity and mortality in gastrointestinal surgery. We investigated the effect of oral glutamine on the healing of high-output intestinal fistula. A tertiary Universitary Hospital of the University of Mato Grosso, Cuiaba, Brazil. 28 patients (25 males and 3 females; median age = 45 [18-71] years old) admitted with high output post-operative small bowel fistulas (median volume in 24 h: 850 [600-2,200] mL) during a 4 years period were retrospectively studied. In the first two years 19 (67.9%) patients received only TPN as the initial nutritional support. In the last two years however, due to a change in the protocol for the nutritional support in cases of intestinal fistula 9 patients (32.1%) received oral glutamine (0.3 g/kg/day; 150 mL/day) in addition to TPN. Endpoints of the study were mortality, resolution of the fistula, and length of hospital stay (LOS). The overall mortality was 46.4% (13 patients). Fistula closure was observed in all other 15 patients (53.6%) that survived. In the subset of survived patients LOS was similar in those who received or not received glutamine. The multivariate regression analysis showed that resolution of the fistula was 13 times greater in patients that received oral glutamine (OR = 13.2 (95% CI = 1.1-160.5); p = 0.04) and 15 times greater in non-malnourished patients (OR = 15.4 [95% CI = 1.1-215.5]; p = 0.04). We conclude that oral glutamine accelerated the healing and diminished the mortality in this series of patients with post-operative high-output intestinal fistula receiving TPN.
Yoon, Sujung J; Lyoo, In Kyoon; Haws, Charlotte; Kim, Tae-Suk; Cohen, Bruce M; Renshaw, Perry F
2009-06-01
Targeting the glutamatergic system has been suggested as a promising new option for developing treatment strategies for bipolar depression. Cytidine, a pyrimidine, may exert therapeutic effects through a pathway that leads to altered neuronal-glial glutamate cycling. Pyrimidines are also known to exert beneficial effects on cerebral phospholipid metabolism, catecholamine synthesis, and mitochondrial function, which have each been linked to the pathophysiology of bipolar depression. This study was aimed at determining cytidine's efficacy in bipolar depression and at assessing the longitudinal effects of cytidine on cerebral glutamate/glutamine levels. Thirty-five patients with bipolar depression were randomly assigned to receive the mood-stabilizing drug valproate plus either cytidine or placebo for 12 weeks. Midfrontal cerebral glutamate/glutamine levels were measured using proton magnetic resonance spectroscopy before and after 2, 4, and 12 weeks of oral cytidine administration. Cytidine supplementation was associated with an earlier improvement in depressive symptoms (weeks 1-4; p=0.02, 0.001, 0.002, and 0.004, respectively) and also produced a greater reduction in cerebral glutamate/glutamine levels in patients with bipolar depression (weeks 2, 4, and 12; p=0.004, 0.004, and 0.02, respectively). Cytidine-related glutamate/glutamine decrements correlated with a reduction in depressive symptoms (p=0.001). In contrast, these relationships were not observed in the placebo add-on group. The study results suggest that cytidine supplementation of valproate is associated with an earlier treatment response in bipolar depression. Furthermore, cytidine's efficacy in bipolar depression may be mediated by decreased levels of cerebral glutamate and/or glutamine, consistent with alterations in excitatory neurotransmission.
The Role of Glutamine Synthetase and Glutamate Dehydrogenase in Cerebral Ammonia Homeostasis
Cooper, Arthur J. L.
2012-01-01
In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: L-Aspartate + GTP + H2O → Fumarate + GDP + Pi + NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research. PMID:22618691
Weigert, Cora; Thamer, Claus; Brodbeck, Katrin; Guirguis, Alke; Machicao, Fausto; Machann, Jürgen; Schick, Fritz; Stumvoll, Michael; Fritsche, Andreas; Häring, Hans U; Schleicher, Erwin D
2005-03-01
Increases in glutamine:fructose-6-phosphate aminotransferase (GFAT) protein levels directly activate flux through the hexosamine biosynthetic pathway. This pathway has been involved as a fuel sensor in energy metabolism and development of insulin resistance. We screened the 5'-flanking region of the human GFAT gene for polymorphisms and subsequently genotyped 412 nondiabetic, metabolically characterized Caucasians for the two single-nucleotide polymorphisms (SNP) at positions -913 (G/A) and -1412 (C/G) with rare allele frequencies of 42% and 16%, respectively. The -913 G SNP was associated with significantly higher body mass index and percent body fat in men (P = 0.02 and 0.004, respectively), but not in women (P = 0.47 and 0.26, respectively). In the subgroup of individuals (n = 193) who underwent hyperinsulinemic-euglycemic clamp, an association of the -913 G SNP with insulin sensitivity independent of body mass index was not detected. Moreover, the -913 G allele in a group of 71 individuals who had undergone magnetic resonance spectroscopy was associated with higher intramyocellular lipid content (IMCL) in tibialis anterior muscle (4.21 +/- 0.31 vs. 3.36 +/- 0.35; P = 0.04) independent of percent body fat and maximal aerobic power. The -1412 SNP had no effect on percent body fat, insulin sensitivity, or IMCL. In conclusion, we identified two polymorphisms in the 5'-flanking region of GFAT, of which the -913 SNP seems to alter the risk for obesity and IMCL accumulation in male subjects.
Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars
USDA-ARS?s Scientific Manuscript database
Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...
Mérida, A; Flores, E; Florencio, F J
1992-01-01
The glnA gene from Synechocystis sp. strain PCC 6803 was cloned by hybridization with the glnA gene from Anabaena sp. strain PCC 7120, and a deletion-insertion mutation of the Synechocystis gene was generated in vitro. A strain derived from Synechocystis sp. strain PCC 6803 which contained integrated into the chromosome, in addition to its own glnA gene, the Anabaena glnA gene was constructed. From that strain, a Synechocystis sp. glnA mutant could be obtained by transformation with the inactivated Synechocystis glnA gene; this mutant grew by using Anabaena glutamine synthetase and was not a glutamine auxotroph. A Synechocystis sp. glnA mutant could not be obtained, however, from the wild-type Synechocystis sp. The Anabaena glutamine synthetase enzyme was subject to ammonium-promoted inactivation when expressed in the Synechocystis strain but not in the Anabaena strain itself. Images PMID:1345914
Rosenberg, David R; Macmaster, Frank P; Mirza, Yousha; Smith, Janet M; Easter, Phillip C; Banerjee, S Preeya; Bhandari, Rashmi; Boyd, Courtney; Lynch, Michelle; Rose, Michelle; Ivey, Jennifer; Villafuerte, Rosemond A; Moore, Gregory J; Renshaw, Perry
2005-11-01
Anterior cingulate cortex has been implicated in the pathogenesis of major depressive disorder (MDD). With single voxel proton magnetic resonance spectroscopy, we reported reductions in anterior cingulate glutamatergic concentrations (grouped value of glutamate and glutamine) in 14 pediatric MDD patients versus 14 case-matched healthy control subjects. These changes might reflect a change in glutamate, glutamine, or their combination. Fitting to individually quantify anterior cingulate glutamate and glutamine was performed in these subjects with a new basis set created from data acquired on a 1.5 Tesla General Electric Signa (GE Healthcare, Waukesha, Wisconsin) magnetic resonance imaging scanner with LCModel (Version 6.1-0; Max-Planck-Institute, Gottingen, Germany). Reduced anterior cingulate glutamate was observed in MDD patients versus control subjects (8.79 +/- 1.68 vs. 11.46 +/- 1.55, respectively, p = .0002; 23% decrease). Anterior cingulate glutamine did not differ significantly between patients with MDD and control subjects. These findings provide confirmatory evidence of anterior cingulate glutamate alterations in pediatric MDD.
Glutamine-utilizing transaminases are a metabolic vulnerability of TAZ/YAP-activated cancer cells.
Yang, Chih-Sheng; Stampouloglou, Eleni; Kingston, Nathan M; Zhang, Liye; Monti, Stefano; Varelas, Xaralabos
2018-06-01
The transcriptional regulators TAZ and YAP (TAZ/YAP) have emerged as pro-tumorigenic factors that drive many oncogenic traits, including induction of cell growth, resistance to cell death, and activation of processes that promote migration and invasion. Here, we report that TAZ/YAP reprogram cellular energetics to promote the dependence of breast cancer cell growth on exogenous glutamine. Rescue experiments with glutamine-derived metabolites suggest an essential role for glutamate and α-ketoglutarate (AKG) in TAZ/YAP-driven cell growth in the absence of glutamine. Analysis of enzymes that mediate the conversion of glutamate to AKG shows that TAZ/YAP induce glutamic-oxaloacetic transaminase (GOT1) and phosphoserine aminotransferase (PSAT1) expression and that TAZ/YAP activity positively correlates with transaminase expression in breast cancer patients. Notably, we find that the transaminase inhibitor aminooxyacetate (AOA) represses cell growth in a TAZ/YAP-dependent manner, identifying transamination as a potential vulnerable metabolic requirement for TAZ/YAP-driven breast cancer. © 2018 The Authors.
Ryu, J-E; Park, H-K; Choi, H-J; Lee, H-B; Lee, H-J; Lee, H; Yu, E-S; Son, W-C
2018-06-01
Glutamine metabolism is an important metabolic pathway for cancer cell survival, and there is a critical connection between tumour growth and glutamine metabolism. Because of their similarities, canine mammary carcinomas are useful for studying human breast cancer. Accordingly, we investigated the correlations between the expression of glutamine metabolism-related proteins and the pathological features of canine mammary tumours. We performed immunohistochemical and western blot analysis of 39 mammary tumour tissues. In immunohistochemical analysis, the expression of glutaminase 1 (GLS1) in the epithelial region increased according to the histological grade (P < .005). In the stromal region, complex-type tumours displayed significantly higher GLS1 intensity than simple-type tumours. However, glutamate dehydrogenase expression did not show the same tendencies as GLS1. The western blot results were consistent with the immunohistochemical findings. These results suggest that the expression of GLS1 is correlates with clinicopathological factors in canine mammary tumours and shows a similar pattern to human breast cancer. © 2017 John Wiley & Sons Ltd.
p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates
Nguyen, Thang Van; Li, Jing; Lu, Chin-Chun (Jean); Mamrosh, Jennifer L.; Lu, Gang; Cathers, Brian E.; Deshaies, Raymond J.
2017-01-01
Glutamine synthetase (GS) plays an essential role in metabolism by catalyzing the synthesis of glutamine from glutamate and ammonia. Our recent study showed that CRBN, a direct protein target for the teratogenic and antitumor activities of immunomodulatory drugs such as thalidomide, lenalidomide, and pomalidomide, recognizes an acetyl degron of GS, resulting in ubiquitylation and degradation of GS in response to glutamine. Here, we report that valosin-containing protein (VCP)/p97 promotes the degradation of ubiquitylated GS, resulting in its accumulation in cells with compromised p97 function. Notably, p97 is also required for the degradation of all four known CRBN neo-substrates [Ikaros family zinc finger proteins 1 (IKZF1) and 3 (IKZF3), casein kinase 1α (CK1α), and the translation termination factor GSPT1] whose ubiquitylation is induced by immunomodulatory drugs. Together, these data point to an unexpectedly intimate relationship between the E3 ubiquitin ligase CRL4CRBN and p97 pathways. PMID:28320958
Azman, Mawaddah; Mohd Yunus, Mohd Razif; Sulaiman, Suhaina; Syed Omar, Syed Nabil
2015-12-01
Glutamine supplementation is a novel approach to perioperative nutritional management. This study was a prospective randomized clinical trial of effects of enteral glutamine supplementation in surgical patients with head and neck malignancy in a tertiary center. This study measured the effects of supplementation within 4 weeks of the postoncologic surgical period in relation to fat-free mass, serum albumin, and quality of life scores. The study population consisted of 44 patients. There was significant difference in serum albumin (p < .001), fat-free mass (p < .001), and quality of life scores (p < .05) between control and interventional groups. Significant correlation exists between fat-free mass and quality of life score difference in our study population (p < .05). Enteral glutamine supplementation significantly improves fat-free mass, serum albumin, and quality of life scores postoperatively and maintenance of lean body mass correlated with improved postoperative outcomes in terms of the patient's quality of life. © 2014 Wiley Periodicals, Inc.
Immune response and milk production of dairy cows fed graded levels of rumen-protected glutamine.
Caroprese, M; Albenzio, M; Marino, R; Santillo, A; Sevi, A
2012-08-01
The objective of the study was to determine the effects of dietary supplementation with glutamine on the immune function and milk production of dairy cows. The experiment involved 24 Friesian cows, divided into three groups of eight each, according to the level of rumen-protected glutamine supplementation: a diet with no supplementation (Control), a diet supplemented with 160 g/day/cow (G160) and a diet supplemented with 320 g/day/cow (G320). At 0, 30, and 60 days of the experiment, lymphocyte response to phytohemoagglutinin (PHA) was determined in vivo for each animal. Humoral response to chicken egg albumin (OVA) and interleukin - (IL)-1β, IL-6 and IL-10 plasma levels were measured at 0, 15, 30, 45, and 60 days. Results demonstrate that supplementing 160 g/day/cow of glutamine can modulate immune responses of dairy cows and enhance the amino acid profile of cow milk. Copyright © 2011. Published by Elsevier India Pvt Ltd.
Yang, Chendong; Ko, Bookyung; Hensley, Christopher T; Jiang, Lei; Wasti, Ajla T; Kim, Jiyeon; Sudderth, Jessica; Calvaruso, Maria Antonietta; Lumata, Lloyd; Mitsche, Matthew; Rutter, Jared; Merritt, Matthew E; DeBerardinis, Ralph J
2014-11-06
Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria. Copyright © 2014 Elsevier Inc. All rights reserved.
Yang, Chendong; Ko, Bookyung; Hensley, Christopher T.; Jiang, Lei; Wasti, Ajla T.; Kim, Jiyeon; Sudderth, Jessica; Calvaruso, Maria Antonietta; Lumata, Lloyd; Mitsche, Matthew; Rutter, Jared; Merritt, Matthew E.; DeBerardinis, Ralph J.
2014-01-01
Summary Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and re-routes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria. PMID:25458842
Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth.
Cox, Andrew G; Hwang, Katie L; Brown, Kristin K; Evason, Kimberley; Beltz, Sebastian; Tsomides, Allison; O'Connor, Keelin; Galli, Giorgio G; Yimlamai, Dean; Chhangawala, Sagar; Yuan, Min; Lien, Evan C; Wucherpfennig, Julia; Nissim, Sahar; Minami, Akihiro; Cohen, David E; Camargo, Fernando D; Asara, John M; Houvras, Yariv; Stainier, Didier Y R; Goessling, Wolfram
2016-08-01
The Hippo pathway is an important regulator of organ size and tumorigenesis. It is unclear, however, how Hippo signalling provides the cellular building blocks required for rapid growth. Here, we demonstrate that transgenic zebrafish expressing an activated form of the Hippo pathway effector Yap1 (also known as YAP) develop enlarged livers and are prone to liver tumour formation. Transcriptomic and metabolomic profiling identify that Yap1 reprograms glutamine metabolism. Yap1 directly enhances glutamine synthetase (glul) expression and activity, elevating steady-state levels of glutamine and enhancing the relative isotopic enrichment of nitrogen during de novo purine and pyrimidine biosynthesis. Genetic or pharmacological inhibition of GLUL diminishes the isotopic enrichment of nitrogen into nucleotides, suppressing hepatomegaly and the growth of liver cancer cells. Consequently, Yap-driven liver growth is susceptible to nucleotide inhibition. Together, our findings demonstrate that Yap1 integrates the anabolic demands of tissue growth during development and tumorigenesis by reprogramming nitrogen metabolism to stimulate nucleotide biosynthesis.
Azolla-Anabaena Relationship 1
Meeks, John C.; Steinberg, Nisan A.; Enderlin, Carol S.; Joseph, Cecillia M.; Peters, Gerald A.
1987-01-01
The major radioactive products of the fixation of [13N]N2 by Azolla caroliniana Willd.-Anabaena azollae Stras. were ammonium, glutamine, and glutamate, plus a small amount of alanine. Ammonium accounted for 70 and 32% of the total radioactivity recovered after fixation for 1 and 10 minutes, respectively. The presence of a substantial pool of [13N]N2-derived 13NH4+ after longer incubation periods was attributed to the spatial separation between the site of N2-fixation (Anabaena) and a second, major site of assimilation (Azolla). Initially, glutamine was the most highly radioactive organic product formed from [13N]N2, but after 10 minutes of fixation glutamate had 1.5 times more radiolabel than glutamine. These kinetics of radiolabeling, along with the effects of inhibitors of glutamine synthetase and glutamate synthase on assimilation of exogenous and [13N]N2-derived 13NH4+, indicate that ammonium assimilation occurred by the glutamate synthase cycle and that glutamate dehydrogenase played little or no role in the synthesis of glutamate by Azolla-Anabaena. PMID:16665538
Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth
Brown, Kristin K.; Evason, Kimberley; Beltz, Sebastian; Tsomides, Allison; O'Connor, Keelin; Galli, Giorgio G.; Yimlamai, Dean; Chhangawala, Sagar; Yuan, Min; Lien, Evan C.; Wucherpfennig, Julia; Nissim, Sahar; Minami, Akihiro; Cohen, David E.; Camargo, Fernando D.; Asara, John M.; Houvras, Yariv; Stainier, Didier Y.R.; Goessling, Wolfram
2016-01-01
The Hippo pathway is an important regulator of organ size and tumorigenesis. It is unclear, however, how Hippo signaling provides the cellular building blocks required for rapid growth. Here, we demonstrate that transgenic zebrafish expressing an activated form of the Hippo pathway effector Yap1 (also known as YAP) develop enlarged livers and are prone to liver tumor formation. Transcriptomic and metabolomic profiling identify that Yap1 reprograms glutamine metabolism. Yap1 directly enhances glutamine synthetase (glul) expression and activity, elevating steady-state levels of glutamine and enhancing the relative isotopic enrichment of nitrogen during de novo purine and pyrimidine biosynthesis. Genetic or pharmacological inhibition of GLUL diminishes the isotopic enrichment of nitrogen into nucleotides, suppresses hepatomegaly and the growth of liver cancer cells. Consequently, Yap-driven liver growth is susceptible to nucleotide inhibition. Together, our findings demonstrate that Yap1 integrates the anabolic demands of tissue growth during development and tumorigenesis by reprogramming nitrogen metabolism to stimulate nucleotide biosynthesis. PMID:27428308
Extracellular metabolites in the cortex and hippocampus of epileptic patients.
Cavus, Idil; Kasoff, Willard S; Cassaday, Michael P; Jacob, Ralph; Gueorguieva, Ralitza; Sherwin, Robert S; Krystal, John H; Spencer, Dennis D; Abi-Saab, Walid M
2005-02-01
Interictal brain energy metabolism and glutamate-glutamine cycling are impaired in epilepsy and may contribute to seizure generation. We used the zero-flow microdialysis method to measure the extracellular levels of glutamate, glutamine, and the major energy substrates glucose and lactate in the epileptogenic and the nonepileptogenic cortex and hippocampus of 38 awake epileptic patients during the interictal period. Depth electrodes attached to microdialysis probes were used to identify the epileptogenic and the nonepileptogenic sites. The epileptogenic hippocampus had surprisingly high basal glutamate levels, low glutamine/glutamate ratio, high lactate levels, and indication for poor glucose utilization. The epileptogenic cortex had only marginally increased glutamate levels. We propose that interictal energetic deficiency in the epileptogenic hippocampus could contribute to impaired glutamate reuptake and glutamate-glutamine cycling, resulting in persistently increased extracellular glutamate, glial and neuronal toxicity, increased lactate production together with poor lactate and glucose utilization, and ultimately worsening energy metabolism. Our data suggest that a different neurometabolic process underlies the neocortical epilepsies.
[Effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea].
Huang, Zu-xiong; Ye, Li-yan; Zheng, Zhi-yong; Chen, Xin-min; Ren, Rong-na; Tong, Guo-yuan
2005-05-01
To investigate the nutrient effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea. Forty 21-day-old wistar rats were randomly divided into five groups (8 in each). Animal model of chronic diarrhea was induced by a lactose enriched diet in the weanling Wistar rat, normal control group was fed with a standard semipurified diet, and after 14 days the rats in both groups were killed to test the establishment of the model. After the establishment of the model, the other groups were fed with the standard semipurified diet to recover for 7 days, and were randomly divided into three groups: non-intervention group, glutamine (Gln)-intervention group and control group. Glutamine concentrations in blood was detected by high-performance liquid chromatography (HPLC). Morphological changes including villus height and villus surface area of the jejunum were measured under a light microscope and electron microscope, expression of proliferating cell nuclear antigen (PCNA) as an index of cell proliferation was observed using immunohistochemical staining and image analysis. The diarrhea rate in model group was 100 percent, average diarrhea index was 1.16 +/- 0.06, but both diarrhea rate and average diarrhea index in control group were 0 (P < 0.01), which affirmed establishment of the model. There was significant decrease of body weight, plasma Gln concentration, villus height, villus surface area and expression of PCNA in non-intervened group compared with the control group (P < 0.01). There was still significant decrease of body weight, villus height and villus surface area in Gln-intervened group compared with control group (P < 0.01), but plasma Gln concentration and expression of PCNA in Gln-intervened group had recovered to normal (P > 0.05). And compared with non-intervened group, except for body weight (P > 0.05), plasma glutamine, villus height, villus surface area and expression of PCNA were all significantly increased in Gln-intervened group. Chronic diarrhea can induce malnutrition and reduce the villus height, villus surface area, expression of PCNA and plasm glutamine concentration. Oral glutamine could improve the proliferation of crypt cell and promote repair of intestinal mucosa after chronic diarrhea.
Cruzat, Vinicius Fernandes; Bittencourt, Aline; Scomazzon, Sofia Pizzato; Leite, Jaqueline Santos Moreira; de Bittencourt, Paulo Ivo Homem; Tirapegui, Julio
2014-05-01
The aim of the present study was to determine the effects of oral supplementation with L-glutamine plus L-alanine (GLN+ALA), both in the free form and L-alanyl-L-glutamine dipeptide (DIP) in endotoxemic mice. B6.129 F2/J mice were subjected to endotoxemia (Escherichia coli lipopolysaccharide [LPS], 5 mg/kg, LPS group) and orally supplemented for 48 h with either L-glutamine (1 g/kg) plus L-alanine (0.61 g/kg) (GLN+ALA-LPS group) or 1.49 g/kg DIP (DIP-LPS group). Plasma glutamine, cytokines, and lymphocyte proliferation were measured. Liver and skeletal muscle glutamine, glutathione (GSH), oxidized GSH (GSSG), tissue lipoperoxidation (TBARS), and nuclear factor (NF)-κB-interleukin-1 receptor-associated kinase 1 (IRAK1)-Myeloid differentiation primary response gene 88 pathway also were determined. Endotoxemia depleted plasma (by 71%), muscle (by 44%), and liver (by 49%) glutamine concentrations (relative to the control group), which were restored in both GLN+ALA-LPS and DIP-LPS groups (P < 0.05). Supplemented groups reestablished GSH content, intracellular redox status (GSSG/GSH ratio), and TBARS concentration in muscle and liver (P < 0.05). T- and B-lymphocyte proliferation increased in supplemented groups compared with controls and LPS group (P < 0.05). Tumor necrosis factor-α, interleukin (IL)-6, IL-1 β, and IL-10 increased in LPS group but were attenuated by the supplements (P < 0.05). Endotoxemic mice exhibited higher muscle gene expression of components of the NF-κB pathway, with the phosphorylation of IκB kinase-α/β. These returned to basal levels (relative to the control group) in both GLN+ALA-LPS and DIP-LPS groups (P < 0.05). Higher mRNA of IRAK1 and MyD88 were observed in muscle of LPS group compared with the control and supplemented groups (P < 0.05). Oral supplementations with GLN+ALA or DIP are effective in attenuating oxidative stress and the proinflammatory responses induced by endotoxemia in mice. Copyright © 2014 Elsevier Inc. All rights reserved.
Andrews, Peter J D; Avenell, Alison; Noble, David W; Campbell, Marion K; Croal, Bernard L; Simpson, William G; Vale, Luke D; Battison, Claire G; Jenkinson, David J; Cook, Jonathan A
2011-03-17
To determine whether inclusion of glutamine, selenium, or both in a standard isonitrogenous, isocaloric preparation of parenteral nutrition influenced new infections and mortality among critically ill patients. Randomised, double blinded, factorial, controlled trial. Level 2 and 3 (or combined) critical care units in Scotland. All 22 units were invited, and 10 participated. 502 adults in intensive care units and high dependency units for ≥ 48 hours, with gastrointestinal failure and requiring parenteral nutrition. Parenteral glutamine (20.2 g/day) or selenium (500 μg/day), or both, for up to seven days. Primary outcomes were participants with new infections in the first 14 days and mortality. An intention to treat analysis and a prespecified analysis of patients who received ≥ 5 days of the trial intervention are presented. Secondary outcomes included critical care unit and acute hospital lengths of stay, days of antibiotic use, and modified SOFA (Sepsis-related Organ Failure Assessment) score. Selenium supplementation did not significantly affect patients developing a new infection (126/251 v 139/251, odds ratio 0.81 (95% CI 0.57 to 1.15)), except for those who had received ≥ 5 days of supplementation (odds ratio 0.53 (0.30 to 0.93)). There was no overall effect of glutamine on new infections (134/250 v 131/252, odds ratio 1.07 (0.75 to 1.53)), even if patients received ≥ 5 days of supplementation (odds ratio 0.99 (0.56 to 1.75)). Six month mortality was not significantly different for selenium (107/251 v 114/251, odds ratio 0.89 (0.62 to 1.29)) or glutamine (115/250 v 106/252, 1.18 (0.82 to 1.70)). Length of stay, days of antibiotic use, and modified SOFA score were not significantly affected by selenium or glutamine supplementation. The primary (intention to treat) analysis showed no effect on new infections or on mortality when parenteral nutrition was supplemented with glutamine or selenium. Patients who received parenteral nutrition supplemented with selenium for ≥ 5 days did show a reduction in new infections. This finding requires confirmation. Trial registration Current Controlled Trials ISRCTN87144826.
Seguy, David; Darmaun, Dominique; Duhamel, Alain; Thuillier, François; Cynober, Luc; Cortot, Antoine; Gottrand, Frédéric; Messing, Bernard
2014-09-01
Benefits of recombinant human growth hormone (rhGH) alone or combined with glutamine in patients with intestinal failure because of short-bowel syndrome remain controversial. We explored effects of rhGH on whole-body protein metabolism in patients with short-bowel syndrome with intestinal failure (SBS-IF) to gain insight into its mechanism of action. Eight stable hyperphagic patients with severe SBS-IF received, in a double-blind, randomized crossover study, low-dose rhGH (0.05 mg · kg⁻¹ · d⁻¹) and a placebo for two 3-wk periods. Leucine and glutamine kinetics under fasting and fed conditions, fat-free mass (FFM), and serum insulin were determined on the final day of each treatment. rhGH increased FFM and nonoxidative leucine disposal (NOLD; an index of protein synthesis) (P < 0.02), whereas FFM and NOLD were correlated in the fed state (r = 0.81, P = 0.015). With rhGH administration, leucine release from protein breakdown (an index of proteolysis) decreased in the fed compared with fasting states (P = 0.012), which was not observed with the placebo. However, the fast-to-fed difference in leucine release from protein breakdown was not significantly different between rhGH and placebo (P = 0.093). With rhGH, the intestinal absorption of leucine and glutamine increased (P = 0.036) and correlated with serum insulin (r = 0.91, P = 0.002). rhGH increased glutamine de novo synthesis (P < 0.02) and plasma concentrations (P < 0.03) in both fasting and fed states. In SBS-IF patients, feeding fails to decrease proteolysis in contrast to what is physiologically observed in healthy subjects. rhGH enhances FFM through the stimulation of protein synthesis and might decrease proteolysis in response to feeding. Improvements in de novo synthesis and intestinal absorption increase glutamine availability over the physiologic range, suggesting that beneficial effects of rhGH in hyperphagic patients might be achieved without glutamine supplementation. © 2014 American Society for Nutrition.
Problems in analysis of data from muscles of rats flow in space
NASA Technical Reports Server (NTRS)
Tischler, Marc E.; Henriksen, Erik; Jacob, Stephan; Satarug, Soisungwan; Cook, Paul
1988-01-01
Comparison of hind-limb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading postflight might have altered the results. Soleus atrophied; plantaris, gastrocnemius, and extensor digitorum longus grew slower; and tibialis anteiror grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that 12 h of reloading after flight is characterized by reversal, to varying extents, of the effects of unloading.
Problems in analysis of data from muscles of rats flown in space
NASA Technical Reports Server (NTRS)
Tischler, M. E.; Henriksen, E.; Jacob, S.; Satarug, S.; Cook, P.
1988-01-01
Comparison of hindlimb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading post-flight might have altered the results. Soleus atrophied, plantaris, gastrocnemius and extensor digitorum longus grew slower, and tibialis anterior grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that at 12 h of reloading after flight is characterized by reversal to varying extents of effects of unloading.
EFFECT OF INTERFERON-α ON CORTICAL GLUTAMATE IN PATIENTS WITH HEPATITIS C: A PROTON MRS STUDY
Taylor, Matthew J; Godlewska, Beata; Near, Jamie; Christmas, David; Potokar, John; Collier, Jane; Klenerman, Paul; Barnes, Eleanor; Cowen, Philip J
2013-01-01
Background The development of depressive symptomatology is a recognised complication of treatment with the cytokine, interferon-α, and has been seen as supporting inflammatory theories of the pathophysiology of major depression. Major depression has been associated with changes in glutamatergic activity and recent formulations of interferon-induced depression have implicated neurotoxic influences which could also lead to changes in glutamate function. The present study used magnetic resonance spectroscopy (MRS) to measure both glutamate and its major metabolite, glutamine in patients with hepatitis C who received treatment with pegylated-interferon-α and ribavirin. Methods MRS measurements of glutamate and glutamine were taken from a 25×20×20mm voxel including pregenual anterior cingulate cortex in 12 patients before and after 4-6 weeks treatment with interferon. Results Interferon treatment led to an increase in cortical levels of glutamine (p= 0.02) and a significant elevation in the ratio of glutamine to glutamate (p<.01). Further, changes in glutamine level correlated significantly with ratings of depression and anxiety at the time of the second scan. Conclusions We conclude that treatment with interferon-α is associated with MRS-visible changes in glutamatergic metabolism. However, the changes seen differ from those reported in major depression which suggests that the pathophysiology of interferon-induced depression may be distinct from that of major depression more generally. PMID:23659574
Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses.
Mucchetti, G; Locci, F; Massara, P; Vitale, R; Neviani, E
2002-10-01
Pyroglutamic acid is present in high amounts (0.5g/ 100g) in many cheese varieties-and particularly in extensively ripened Italian cheeses such as Grana Padano and Parmigiano Reggiano. An in vivo model system for cooked mini-cheese production and ripening acceleration was set up to demonstrate the ability of thermophilic lactic acid bacteria, used as a starter, to produce pyroglutamic acid (pGlu). In mini-cheeses stored at 38 and 30 degrees C for up to 45 d, all starters tested produced different amounts of pGlu. In descending order of pGlu production, the bacteria analyzed were: Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. lactis. Evidence for the presence of glutamine to pGlu cyclase activity in lactic acid bacteria was provided. Cell lysates obtained from cultures of L. helveticus, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, and S. thermophilus showed the ability to cyclize glutamine to pGlu, resulting in processing yields from 1.4 to 30.3%, depending on the subspecies. Formation of pGlu from free glutamine appeared to be similar to that observed using a glutamine-glutamine dipeptide substrate. Under the experimental conditions applied, pGlu aminopeptidase activity was only detected in L. helveticus. Thus, pGlu formation in long-ripened cooked cheese may depend on the activity of thermophilic lactic acid bacteria.
CTP synthase forms cytoophidia in the cytoplasm and nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, Ke-Mian; State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193; Chang, Chia-Chun
2014-04-15
CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthasemore » 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.« less
Girgin, Sadullah; Gedik, Ercan; Ozturk, Hayrettin; Akpolat, Veysi; Akbulut, Veysi; Kale, Ebru; Buyukbayram, Huseyin; Celik, Salih
2009-04-01
An experimental study was designed to investigate the effect of combined pulse electromagnetic field (PEMF) stimulation plus glutamine administration on colonic anastomosis. Anastomosis of the left colon was performed in 28 rats, which were divided into four groups; Group 1: normal resection anastomosis plus oral 50 mg/kg/day glutamine; Group 2: normal resection anastomosis plus PEMF stimulation plus oral 50 mg/kg/day glutamine; Group 3: normal resection anastomosis plus PEMF stimulation; Group 4: normal resection anastomosis. On the seventh postoperative day, the animals were killed and the bursting pressure and tissue hydroxyproline concentration of the anastomosis were analyzed and compared. The mean anastomotic bursting pressure in Group 2 was significantly higher than in Groups 1 and 4. On the other hand, the mean anastomotic bursting pressure in Group 1 was significantly higher than in Group 4. The collagen deposition and the fibroblast infiltration were significantly increased on the seventh day in Group 3 compared the other groups. On the other hand, Groups 1 and 2 had higher scores for collagen deposition and fibroblast infiltration than Group 4. In conclusion, burst pressures, hydroxyproline, and histologic features (fibroblast infiltration and collagen deposition) were improved in the PEMF group, and both PEMF and glutamine-enriched nutrition provide a significant gain in the strength of colonic anastomoses in rats.
Gonsalves, Wilson I.; Hitosugi, Taro; Ghosh, Toshi; Jevremovic, Dragan; Petterson, Xuan-Mai; Wellik, Linda; Kumar, Shaji K.; Nair, K. Sreekumaran
2018-01-01
The production of the oncometabolite 2-hydroxyglutarate (2-HG) has been associated with c-MYC overexpression. c-MYC also regulates glutamine metabolism and drives progression of asymptomatic precursor plasma cell (PC) malignancies to symptomatic multiple myeloma (MM). However, the presence of 2-HG and its clinical significance in PC malignancies is unknown. By performing 13C stable isotope resolved metabolomics (SIRM) using U[13C6]Glucose and U[13C5]Glutamine in human myeloma cell lines (HMCLs), we show that 2-HG is produced in clonal PCs and is derived predominantly from glutamine anaplerosis into the TCA cycle. Furthermore, the 13C SIRM studies in HMCLs also demonstrate that glutamine is preferentially utilized by the TCA cycle compared with glucose. Finally, measuring the levels of 2-HG in the BM supernatant and peripheral blood plasma from patients with precursor PC malignancies such as smoldering MM (SMM) demonstrates that relatively elevated levels of 2-HG are associated with higher levels of c-MYC expression in the BM clonal PCs and with a subsequent shorter time to progression (TTP) to MM. Thus, measuring 2-HG levels in BM supernatant or peripheral blood plasma of SMM patients offers potential early identification of those patients at high risk of progression to MM, who could benefit from early therapeutic intervention. PMID:29321378
Glutamine: precursor or nitrogen donor for citrulline synthesis?
USDA-ARS?s Scientific Manuscript database
Glutamine (Gln) is considered the main precursor for citrulline (Cit) synthesis, but no attempts have been made to differentiate the contribution of Gln carbon (Gln-C) skeleton vs. the nonspecific contribution through NH3 and CO2. To study the contribution of dietary Gln-N to the synthesis of Cit, t...
USDA-ARS?s Scientific Manuscript database
We would like to comment on the recent publications by Buijs et al. The authors hypothesized that a parenteral supplement of glutamine stimulates citrulline formation and enhances de novo arginine synthesis. To test this hypothesis, they conducted an experiment with stable isotopes in patients under...
Ogura, Y; Yuki, N; Sukegane, A; Nishi, T; Miyake, Y; Sato, H; Miyamoto, C; Mihara, C
2015-10-01
The aim of this study is to examine the efficacy on healing pressure ulcers (PU) of using a supplement combination containing arginine, glutamine and ß-hydroxy-ß-methylbutyrate, which was given to two elderly patients with renal dysfunction. The PU was surgically opened, decompressed and treated by drugs. A half quantity of the defined dose of the supplement combination, with an enteral nutrition product, was administered to the patients twice a day. This combination improved the PUs, with no effect on renal function. This novel finding may provide a nutritional rationale of arginine, glutamine and ß-hydroxy-ß-methylbutyrate for PUs associated with renal dysfunction.
Hechtman, Jaclyn F; Raoufi, Mohammad; Fiel, M Isabel; Taouli, Bachir; Facciuto, Marcelo; Schiano, Thomas D; Blouin, Amanda G; Thung, Swan N
2011-06-01
Telangiectatic hepatocellular adenoma is a rare, recently recognized subtype of hepatocellular adenoma that is often underrecognized by pathologists. We report a case of hepatocellular carcinoma arising within a pigmented telangiectatic hepatocellular adenoma in a noncirrhotic man with diffuse glutamine synthetase and nuclear β-catenin positivity. This case highlights malignant transformation of telangiectatic adenomas, and describes a previously unreported association between pigment deposition and telangiectatic adenoma. Radiology, gross pathology, and histopathology are shown. Review of the literature with attention to β-catenin and glutamine synthetase staining, malignant transformation, patient characteristics, the presence of Dubin-Johnson-like pigment, and genetic characteristics of telangiectatic adenomas are discussed.
Varón-Castellanos, R; Havsteen, B H; García-Moreno, M; Valero-Ruiz, E; Molina-Alarcón, M; García-Cánovas, F
1993-01-01
A kinetic analysis of the glutamine synthetase bicyclic cascade is presented. It includes the dependence on time from the onset of the reaction of both the uridylylation of Shapiro's regulatory protein and the adenylylation of the glutamine synthetase. The transient phase equations obtained allow an estimation of the time elapsed until the states of uridylylation and adenylylation reach their steady-states, and therefore an evaluation of the effective sensitivity of the system. The contribution of the uridylylation cycle to the adenylylation cycle has been studied, and an equation relating the state of adenylylation at any time to the state of uridylylation at the same instant has been derived. PMID:8104399
Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective.
Massucci, Francesco A; DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Castillo, Isaac Perez; Marinari, Enzo; De Martino, Andrea
2013-10-10
The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange.
Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective
2013-01-01
Background The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange. PMID:24112710
Efficient Mitochondrial Glutamine Targeting Prevails Over Glioblastoma Metabolic Plasticity.
Oizel, Kristell; Chauvin, Cynthia; Oliver, Lisa; Gratas, Catherine; Geraldo, Fanny; Jarry, Ulrich; Scotet, Emmanuel; Rabe, Marion; Alves-Guerra, Marie-Clotilde; Teusan, Raluca; Gautier, Fabien; Loussouarn, Delphine; Compan, Vincent; Martinou, Jean-Claude; Vallette, François M; Pecqueur, Claire
2017-10-15
Purpose: Glioblastoma (GBM) is the most common and malignant form of primary human brain tumor in adults, with an average survival at diagnosis of 18 months. Metabolism is a new attractive therapeutic target in cancer; however, little is known about metabolic heterogeneity and plasticity within GBM tumors. We therefore aimed to investigate metabolic phenotyping of primary cultures in the context of molecular tumor heterogeneity to provide a proof of concept for personalized metabolic targeting of GBM. Experimental Design: We have analyzed extensively several primary GBM cultures using transcriptomics, metabolic phenotyping assays, and mitochondrial respirometry. Results: We found that metabolic phenotyping clearly identifies 2 clusters, GLN High and GLN Low , mainly based on metabolic plasticity and glutamine (GLN) utilization. Inhibition of glutamine metabolism slows the in vitro and in vivo growth of GLN High GBM cultures despite metabolic adaptation to nutrient availability, in particular by increasing pyruvate shuttling into mitochondria. Furthermore, phenotypic and molecular analyses show that highly proliferative GLN High cultures are CD133 neg and display a mesenchymal signature in contrast to CD133 pos GLN Low GBM cells. Conclusions: Our results show that metabolic phenotyping identified an essential metabolic pathway in a GBM cell subtype, and provide a proof of concept for theranostic metabolic targeting. Clin Cancer Res; 23(20); 6292-304. ©2017 AACR . ©2017 American Association for Cancer Research.
Vijayakumari, Anupa A; Thomas, Bejoy; Menon, Ramshekhar N; Kesavadas, Chandrasekharan
2018-04-11
Functional MRI (fMRI) has provided much insight into the changes in the neuronal activity on the basis of blood oxygen level dependent (BOLD) phenomenon. The dynamic changes in the metabolites can be detected using functional proton magnetic resonance spectroscopy (H-fMRS). The strategy of combining fMRI and H-fMRS would facilitate the understanding of the neurochemical interpretation of the BOLD signal. The dorsolateral prefrontal region is critically involved in the processing of working memory (WM), as demonstrated by the studies involving the neuroimaging, neuropsychological, and electrophysiological experiments. In this study, we tested the association between BOLD signal and changes in brain metabolites in the left dorsolateral prefrontal region using N-back verbal WM task. We used single-voxel task-based H-MRS acquired in the left dorsolateral prefrontal region and fMRI during the performance of N-back verbal WM task to investigate the association between changes in metabolites and BOLD response in 10 healthy participants. The correlation between changes in metabolites and percent signal change was examined by the Pearson correlation. The Pearson correlation analysis revealed a significant positive correlation between the BOLD signal and glutamate/glutamine in the left dorsolateral prefrontal region during the verbal WM. Our finding suggests that glutamate/glutamine cycle plays a critical role in the neuronal activation as reflected by the changes in the BOLD response.
Glycoside hydrolases having multiple hydrolase activities
Chen, Zhiwei; Friedland, Gregory D.; Chhabra, Swapnil R.; Chivian, Dylan C.; Simmons, Blake A
2017-08-08
Glycoside hydrolases having at least two different hydrolytic activities are provided. In one embodiment, an isolated recombinant hydrolase having at least two activities selected from a group including asparagine derivatives, glutamine derivatives, and histidine derivatives is provided. Further, a method of generating free sugars from a mixture comprising asparagine derivatives, glutamine derivatives, and histidine derivatives is provided.
USDA-ARS?s Scientific Manuscript database
Nitrogen uptake and the efficient absorption and metabolism of nitrogen are essential elements in attempts to breed improved cereal cultivars for grain or silage production. One of the enzymes related to nitrogen metabolism is glutamine-2-oxoglutarate amidotransferase (GOGAT). Together with glutami...
Influence of Nutritional Conditions on Production of l-Glutamine by Flavobacterium rigense
Nabe, Koichi; Ujimaru, Toshihiko; Yamada, Shigeki; Chibata, Ichiro
1981-01-01
The nutritional conditions for the production of l-glutamine by Flavobacterium rigense strain 703 were investigated. The optimum concentration of ammonia for achieving the highest yield of l-glutamine (25 mg/ml of broth) was relatively broad, from 0.9 to 1.6%, whereas fumaric acid had a narrow optimum range, near 5.5%. High concentration of inorganic ions such as chloride or sulfate ion clearly inhibited cell growth. Therefore, ammonium salts other than (NH4)2-fumarate were unsuitable for the highest production. The optimum concentration of (NH4)2-fumarate was 7%. To reduce the concentration of fumaric acid in the medium, many substances were evaluated as substitutes. The fumaric acid concentration required for highest l-glutamine yield could not be replaced by any one of the compounds tested. However, part of fumaric acid could be replaced with succinic acid and cupric ion; 4% (NH4)2-fumarate plus 2.5% succinic acid or 5% (NH4)2-fumarate plus 1 mM cupric ion produced results similar to 7% (NH4)2-fumarate in the fermentation medium. PMID:16345682
Taylor, Zane W; Raushel, Frank M
2018-04-17
Campylobacter jejuni, a leading cause of gastroenteritis, produces a capsular polysaccharide that is derivatized with a unique O-methyl phosphoramidate (MeOPN) modification. This modification contributes to serum resistance and invasion of epithelial cells. Previously, the first three biosynthetic steps for the formation of MeOPN were elucidated. The first step is catalyzed by a novel glutamine kinase (Cj1418), which catalyzes the adenosine triphosphate (ATP)-dependent phosphorylation of the amide nitrogen of l-glutamine. l-Glutamine phosphate is used by cytidine triphosphate (CTP):phosphoglutamine cytidylyltransferase (Cj1416) to displace pyrophosphate from CTP to generate cytidine diphosphate (CDP)-l-glutamine, which is then hydrolyzed by γ-glutamyl-CDP-amidate hydrolase (Cj1417) to form cytidine diphosphoramidate (CDP-NH 2 ). Here, we show that Cj1415 catalyzes the ATP-dependent phosphorylation of CDP-NH 2 to form 3'-phospho-cytidine-5'-diphosphoramidate. Cj1415 will also catalyze the phosphorylation of adenosine diphosphoramidate (ADP-NH 2 ) and uridine diphosphoramidate (UDP-NH 2 ) but at significantly reduced rates. It is proposed that Cj1415 be named cytidine diphosphoramidate kinase.
Kitajima, Shojiro; Lee, Kian Leong; Hikasa, Hiroki; Sun, Wendi; Huang, Ruby Yun-Ju; Yang, Henry; Matsunaga, Shinji; Yamaguchi, Takehiro; Araki, Marito; Kato, Hiroyuki
2017-01-01
Ammonia is a toxic by-product of metabolism that causes cellular stresses. Although a number of proteins are involved in adaptive stress response, specific factors that counteract ammonia-induced cellular stress and regulate cell metabolism to survive against its toxicity have yet to be identified. We demonstrated that the hypoxia-inducible factor-1α (HIF-1α) is stabilized and activated by ammonia stress. HIF-1α activated by ammonium chloride compromises ammonia-induced apoptosis. Furthermore, we identified glutamine synthetase (GS) as a key driver of cancer cell proliferation under ammonia stress and glutamine-dependent metabolism in ovarian cancer stem-like cells expressing CD90. Interestingly, activated HIF-1α counteracts glutamine synthetase function in glutamine metabolism by facilitating glycolysis and elevating glucose dependency. Our studies reveal the hitherto unknown functions of HIF-1α in a biphasic ammonia stress management in the cancer stem-like cells where GS facilitates cell proliferation and HIF-1α contributes to the metabolic remodeling in energy fuel usage resulting in attenuated proliferation but conversely promoting cell survival. PMID:29383096
[Effect of glutamine and growth hormone on adaptation in short bowel syndrome].
Wu, Guo-hao; Wu, Zhao-han; Wu, Zhao-guang
2005-09-01
To assess the effects of parenteral glutamine and growth hormone supplementation on gut adaptation for patients with short bowel syndrome. Twenty-six patients [male 15, female 11, aged (39 +/- 23) years] with short bowel syndrome received parenteral nutrition (PN) 3-52 months after surgical resection. The median length of remnant small intestine was 42.5(0-100)cm. All patients received growth hormone (0.10+/- 0.06) mg.kg(-1).d(-1) plus glutamine (0.30 +/- 0.17) mg.kg(-1).d(-1) for two or three weeks. Among the 26 patients, PN was not required soon after treatment in 34.6% (n=9) of the patients, the frequency and volume of PN decreased from (6.0 +/- 1.0) d to (4.2 +/- 1.0) d, from (13.6 +/- 5.2) L per week to (8.2 +/- 3.3) L per week respectively in 30.8% (n=8) of the patients,while 34.6% (n=9) still required PN after treatment. The combined administration of glutamine and growth hormone can promote remnant intestinal adaptation in short bowel patients.
[2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.
Eloqayli, Haytham; Melø, Torun M; Haukvik, Anne; Sonnewald, Ursula
2011-08-01
This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-(13)C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by (1)H magnetic resonance spectroscopy and HPLC. Using [2,4-(13)C]BHB and [1-(13)C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by (13)C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate.
Marin-Valencia, Isaac; Hooshyar, M Ali; Pichumani, Kumar; Sherry, A Dean; Malloy, Craig R
2015-01-01
The (13) C-labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of (13) C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single (13) C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-(13) C]acetate and [1,6-(13) C]glucose, and proton decoupled (13) C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that (13) C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. As this method relies on a single (13) C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. Differences in (13) C labeling of brain glutamate and glutamine have been attributed to metabolic compartmentation. The acetate:glucose ratio, introduced for description of a (13) C NMR (nuclear magnetic resonance) spectrum, is an index of glucose and acetate oxidation in brain tissue. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes from a single NMR spectrum. As kinetic analysis is not required, the method is readily applicable to analysis of tissue extracts. α-KG = alpha-ketoglutarate; CAC = citric acid cycle; GLN = glutamine; GLU = glutamate. © 2014 International Society for Neurochemistry.
van Barneveld, Kevin W Y; Smeets, Boudewijn J J; Heesakkers, Fanny F B M; Bosmans, Joanna W A M; Luyer, Misha D; Wasowicz, Dareczka; Bakker, Jaap A; Roos, Arnout N; Rutten, Harm J T; Bouvy, Nicole D; Boelens, Petra G
2016-06-01
To investigate direct postoperative outcome and plasma amino acid concentrations in a study comparing early enteral nutrition versus early parenteral nutrition after major rectal surgery. Previously, it was shown that a low plasma glutamine concentration represents poor prognosis in ICU patients. A preplanned substudy of a previous prospective, randomized, open-label, single-centre study, comparing early enteral nutrition versus early parenteral nutrition in patients at high risk of postoperative ileus after surgery for locally advanced or locally recurrent rectal cancer. Early enteral nutrition reduced postoperative ileus, anastomotic leakage, and hospital stay. Tertiary referral centre for locally advanced and recurrent rectal cancer. A total of 123 patients with locally advanced or recurrent rectal carcinoma requiring major rectal surgery. Patients were randomized (ALEA web-based external randomization) preoperatively into two groups: early enteral nutrition (early enteral nutrition, intervention) by nasojejunal tube (n = 61) or early parenteral nutrition (early parenteral nutrition, control) by jugular vein catheter (n = 62). Eight hours after the surgical procedure artificial nutrition was started in hemodynamically stable patients, stimulating oral intake in both groups. Blood samples were collected to measure plasma glutamine, citrulline, and arginine concentrations using a validated ultra performance liquid chromatography-tandem mass spectrometric method. Baseline concentrations were comparable for both groups. Directly after rectal surgery, a decrease in plasma amino acids was observed. Plasma glutamine concentrations were higher in the parenteral group than in the enteral group on postoperative day 1 (p = 0.027) and day 5 (p = 0.008). Arginine concentrations were also significantly increased in the parenteral group at day 1 (p < 0.001) and day 5 (p = 0.001). Lower plasma glutamine and arginine concentrations were measured in the enteral group, whereas a better clinical outcome was observed. We conclude that plasma amino acids do not provide a causal explanation for the observed beneficial effects of early enteral feeding after major rectal surgery.
Pertinent plasma indicators of the ability of chickens to synthesize and store lipids.
Baéza, E; Jégou, M; Gondret, F; Lalande-Martin, J; Tea, I; Le Bihan-Duval, E; Berri, C; Collin, A; Métayer-Coustard, S; Louveau, I; Lagarrigue, S; Duclos, M J
2015-01-01
Excessive deposition of body fat is detrimental to production efficiency. The aim of this study was to provide plasma indicators of chickens' ability to store fat. From 3 to 9 wk of age, chickens from 2 experimental lines exhibiting a 2.5-fold difference in abdominal fat content and fed experimental diets with contrasted feed energy sources were compared. The diets contained 80 vs. 20 g of lipids and 379 vs. 514 g of starch per kg of feed, respectively, but had the same ME and total protein contents. Cellulose was used to dilute energy in the high-fat diet. At 9 wk of age, the body composition was analyzed and blood samples were collected. A metabolome-wide approach based on proton nuclear magnetic resonance spectroscopy was associated with conventional measurements of plasma parameters. A metabolomics approach showed that betaine, glutamine, and histidine were the most discriminating metabolites between groups. Betaine, uric acid, triglycerides, and phospholipids were positively correlated (r > 0.3; P < 0.05) and glutamine, histidine, triiodothyronine, homocysteine, and β-hydroxybutyrate were negatively correlated (r < -0.3; P < 0.05) with relative weight of abdominal fat and/or fat situated at the top of external face of the thigh. The combination of plasma free fatty acids, total cholesterol, phospholipid, β-hydroxybutyrate, glutamine, and methionine levels accounted for 74% of the variability of the relative weight of abdominal fat. On the other hand, the combination of plasma triglyceride and homocysteine levels accounted for 37% of the variability of fat situated at the top of external face of the thigh. The variations in plasma levels of betaine, homocysteine, uric acid, glutamine, and histidine suggest the implication of methyl donors in the control of hepatic lipid synthesis and illustrate the interplay between AA, glucose, and lipid metabolisms in growing chickens.
Konishi, Noriyuki; Ishiyama, Keiki; Beier, Marcel Pascal; Inoue, Eri; Kanno, Keiichi; Yamaya, Tomoyuki; Takahashi, Hideki
2017-01-01
Abstract Glutamine synthetase (GS) catalyzes a reaction that incorporates ammonium into glutamate and yields glutamine in the cytosol and chloroplasts. Although the enzymatic characteristics of the GS1 isozymes are well known, their physiological functions in ammonium assimilation and regulation in roots remain unclear. In this study we show evidence that two cytosolic GS1 isozymes (GLN1;2 and GLN1;3) contribute to ammonium assimilation in Arabidopsis roots. Arabidopsis T-DNA insertion lines for GLN1;2 and GLN1;3 (i.e. gln1;2 and gln1;3 single-mutants), the gln1;2:gln1;3 double-mutant, and the wild-type accession (Col-0) were grown in hydroponic culture with variable concentrations of ammonium to compare their growth, and their content of nitrogen, carbon, ammonium, and amino acids. GLN1;2 and GLN1;3 promoter-dependent green fluorescent protein was observed under conditions with or without ammonium supply. Loss of GLN1;2 caused significant suppression of plant growth and glutamine biosynthesis under ammonium-replete conditions. In contrast, loss of GLN1;3 caused slight defects in growth and Gln biosynthesis that were only visible based on a comparison of the gln1;2 single- and gln1;2:gln1;3 double-mutants. GLN1;2, being the most abundantly expressed GS1 isozyme, markedly increased following ammonium supply and its promoter activity was localized at the cortex and epidermis, while GLN1;3 showed only low expression at the pericycle, suggesting their different physiological contributions to ammonium assimilation in roots. The GLN1;2 promoter-deletion analysis identified regulatory sequences required for controlling ammonium-responsive gene expression of GLN1;2 in Arabidopsis roots. These results shed light on GLN1 isozyme-specific regulatory mechanisms in Arabidopsis that allow adaptation to an ammonium-replete environment. PMID:28007952
Huang, Tongling; Liu, Renzhong; Fu, Xuekun; Yao, Dongsheng; Yang, Meng; Liu, Qingli; Lu, William W; Wu, Chuanyue; Guan, Min
2017-02-01
Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424. © 2016 AlphaMed Press.
Takayama, Kazuya; Muto, Akihiko; Kikuchi, Yutaka
2018-05-29
In animal regeneration, control of position-dependent cell proliferation is crucial for the complete restoration of patterned appendages in terms of both, shape and size. However, detailed mechanisms of this process are largely unknown. In this study, we identified leucine/glutamine and v-ATPase/lysosomal acidification, via mechanistic target of rapamycin complex 1 (mTORC1) activation, as effectors of amputation plane-dependent zebrafish caudal fin regeneration. mTORC1 activation, which functions in cell proliferation, was regulated by lysosomal acidification possibly via v-ATPase activity at 3 h post amputation (hpa). Inhibition of lysosomal acidification resulted in reduced growth factor-related gene expression and suppression of blastema formation at 24 and 48 hpa, respectively. Along the proximal-distal axis, position-dependent lysosomal acidification and mTORC1 activation were observed from 3 hpa. We also report that Slc7a5 (L-type amino acid transporter), whose gene expression is position-dependent, is necessary for mTORC1 activation upstream of lysosomal acidification during fin regeneration. Furthermore, treatment with leucine and glutamine, for both proximal and distal fin stumps, led to an up-regulation in cell proliferation via mTORC1 activation, indicating that leucine/glutamine signaling possesses the ability to change the position-dependent regeneration. Our findings reveal that leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent zebrafish fin regeneration.
Tanigawa, Mirai
2017-01-01
ABSTRACT Evolutionarily conserved target of rapamycin (TOR) complex 1 (TORC1) responds to nutrients, especially amino acids, to promote cell growth. In the yeast Saccharomyces cerevisiae, various nitrogen sources activate TORC1 with different efficiencies, although the mechanism remains elusive. Leucine, and perhaps other amino acids, was reported to activate TORC1 via the heterodimeric small GTPases Gtr1-Gtr2, the orthologues of the mammalian Rag GTPases. More recently, an alternative Gtr-independent TORC1 activation mechanism that may respond to glutamine was reported, although its molecular mechanism is not clear. In studying the nutrient-responsive TORC1 activation mechanism, the lack of an in vitro assay hinders associating particular nutrient compounds with the TORC1 activation status, whereas no in vitro assay that shows nutrient responsiveness has been reported. In this study, we have developed a new in vitro TORC1 kinase assay that reproduces, for the first time, the nutrient-responsive TORC1 activation. This in vitro TORC1 assay recapitulates the previously predicted Gtr-independent glutamine-responsive TORC1 activation mechanism. Using this system, we found that this mechanism specifically responds to l-glutamine, resides on the vacuolar membranes, and involves a previously uncharacterized Vps34-Vps15 phosphatidylinositol (PI) 3-kinase complex and the PI-3-phosphate [PI(3)P]-binding FYVE domain-containing vacuolar protein Pib2. Thus, this system was proved to be useful for dissecting the glutamine-responsive TORC1 activation mechanism. PMID:28483912
Konopaske, Glenn T.; Bolo, Nicolas R.; Basu, Alo C.; Renshaw, Perry F.; Coyle, Joseph T.
2013-01-01
Rationale Schizophrenia is a severe, persistent, and fairly common mental illness. Haloperidol is widely used and is effective against the symptoms of psychosis seen in schizophrenia. Chronic oral haloperidol administration decreased the number of astrocytes in the parietal cortex of macaque monkeys (Konopaske et al. Biol Psych, 2008). Since astrocytes play a key role in glutamate metabolism, chronic haloperidol administration was hypothesized to modulate astrocyte metabolic function and glutamate homeostasis. Objectives This study investigated the effects of chronic haloperidol administration on astrocyte metabolic activity and glutamate, glutamine, and GABA homeostasis. Methods We used ex vivo 13C magnetic resonance spectroscopy along with high performance liquid chromatography after [1-13C]glucose and [1,2-13C]acetate administration to analyze forebrain tissue from rats administered oral haloperidol for 1 or 6 months. Results Administration of haloperidol for 1 month produced no changes in 13C labeling of glutamate, glutamine, or GABA, or in their total levels. However, a 6 month haloperidol administration increased 13C labeling of glutamine by [1,2-13C]acetate. Moreover, total GABA levels were also increased. Haloperidol administration also increased the acetate/glucose utilization ratio for glutamine in the 6 month cohort. Conclusions Chronic haloperidol administration in rats appears to increase forebrain GABA production along with astrocyte metabolic activity. Studies exploring these processes in subjects with schizophrenia should take into account the potential confounding effects of antipsychotic medication treatment. PMID:23660600
Rapin, Jean Robert; Wiernsperger, Nicolas
2010-01-01
Increased intestinal permeability is a likely cause of various pathologies, such as allergies and metabolic or even cardiovascular disturbances. Intestinal permeability is found in many severe clinical situations and in common disorders such as irritable bowel syndrome. In these conditions, substances that are normally unable to cross the epithelial barrier gain access to the systemic circulation. To illustrate the potential harmfulness of leaky gut, we present an argument based on examples linked to protein or lipid glycation induced by modern food processing. Increased intestinal permeability should be largely improved by dietary addition of compounds, such as glutamine or curcumin, which both have the mechanistic potential to inhibit the inflammation and oxidative stress linked to tight junction opening. This brief review aims to increase physician awareness of this common, albeit largely unrecognized, pathology, which may be easily prevented or improved by means of simple nutritional changes. PMID:20613941
Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy?
DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico
2014-01-01
Epilepsy is a family of brain disorders with a largely unknown etiology and high percentage of pharmacoresistance. The clinical manifestations of epilepsy are seizures, which originate from aberrant neuronal synchronization and hyperexcitability. Reactive astrocytosis, a hallmark of the epileptic tissue, develops into loss-of-function of glutamine synthetase, impairment of glutamate-glutamine cycle and increase in extracellular and astrocytic glutamate concentration. Here, we argue that chronically elevated intracellular glutamate level in astrocytes is instrumental to alterations in the metabolism of glycogen and leads to the synthesis of polyglucosans. Unaccessibility of glycogen-degrading enzymes to these insoluble molecules compromises the glycogenolysis-dependent reuptake of extracellular K+ by astrocytes, thereby leading to increased extracellular K+ and associated membrane depolarization. Based on current knowledge, we propose that the deterioration in structural homogeneity of glycogen particles is relevant to disruption of brain K+ homeostasis and increased susceptibility to seizures in epilepsy. PMID:24643875
Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy?
DiNuzzo, Mauro; Mangia, Silvia; Maraviglia, Bruno; Giove, Federico
2015-02-01
Epilepsy is a family of brain disorders with a largely unknown etiology and high percentage of pharmacoresistance. The clinical manifestations of epilepsy are seizures, which originate from aberrant neuronal synchronization and hyperexcitability. Reactive astrocytosis, a hallmark of the epileptic tissue, develops into loss-of-function of glutamine synthetase, impairment of glutamate-glutamine cycle and increase in extracellular and astrocytic glutamate concentration. Here, we argue that chronically elevated intracellular glutamate level in astrocytes is instrumental to alterations in the metabolism of glycogen and leads to the synthesis of polyglucosans. Unaccessibility of glycogen-degrading enzymes to these insoluble molecules compromises the glycogenolysis-dependent reuptake of extracellular K(+) by astrocytes, thereby leading to increased extracellular K(+) and associated membrane depolarization. Based on current knowledge, we propose that the deterioration in structural homogeneity of glycogen particles is relevant to disruption of brain K(+) homeostasis and increased susceptibility to seizures in epilepsy.
Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula
2014-01-01
Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.
Edwards, Deanna N; Ngwa, Verra M; Wang, Shan; Shiuan, Eileen; Brantley-Sieders, Dana M; Kim, Laura C; Reynolds, Albert B; Chen, Jin
2017-12-05
Malignant tumors reprogram cellular metabolism to support cancer cell proliferation and survival. Although most cancers depend on a high rate of aerobic glycolysis, many cancer cells also display addiction to glutamine. Glutamine transporters and glutaminase activity are critical for glutamine metabolism in tumor cells. We found that the receptor tyrosine kinase EphA2 activated the TEAD family transcriptional coactivators YAP and TAZ (YAP/TAZ), likely in a ligand-independent manner, to promote glutamine metabolism in cells and mouse models of HER2-positive breast cancer. Overexpression of EphA2 induced the nuclear accumulation of YAP and TAZ and increased the expression of YAP/TAZ target genes. Inhibition of the GTPase Rho or the kinase ROCK abolished EphA2-dependent YAP/TAZ nuclear localization. Silencing YAP or TAZ substantially reduced the amount of intracellular glutamate through decreased expression of SLC1A5 and GLS , respectively, genes that encode proteins that promote glutamine uptake and metabolism. The regulatory DNA elements of both SLC1A5 and GLS contain TEAD binding sites and were bound by TEAD4 in an EphA2-dependent manner. In patient breast cancer tissues, EphA2 expression positively correlated with that of YAP and TAZ , as well as that of GLS and SLC1A5 Although high expression of EphA2 predicted enhanced metastatic potential and poor patient survival, it also rendered HER2-positive breast cancer cells more sensitive to glutaminase inhibition. The findings define a previously unknown mechanism of EphA2-mediated glutaminolysis through YAP/TAZ activation in HER2-positive breast cancer and identify potential therapeutic targets in patients. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Berry, G T; Bridges, N D; Nathanson, K L; Kaplan, P; Clancy, R R; Lichtenstein, G R; Spray, T L
1999-04-01
Lethal hyperammonemic coma has been reported in 2 adults after lung transplantation. It was associated with a massive elevation of brain glutamine levels, while plasma glutamine levels were normal or only slightly elevated. In liver tissue, glutamine synthetase activity was markedly reduced, and the histologic findings resembled those of Reye syndrome. The adequacy of therapy commonly used for inherited disorders of the urea cycle has not been adequately evaluated in patients with this form of secondary hyperammonemia. To determine whether hemodialysis, in conjunction with intravenous sodium phenylacetate, sodium benzoate, and arginine hydrochloride therapy, would be efficacious in a patient with hyperammonemic coma after solid-organ transplantation. Case report. A children's hospital. A 41-year-old woman with congenital heart disease developed a hyperammonemic coma with brain edema 19 days after undergoing a combined heart and lung transplantation. Ammonium was measured in plasma. Amino acids were quantitated in plasma and cerebrospinal fluid by column chromatography. The effectiveness of therapy was assessed by measuring plasma ammonium levels and intracranial pressure and performing sequential neurological examinations. The patient had the anomalous combination of increased cerebrospinal fluid and decreased plasma glutamine levels. To our knowledge, she is the first patient with this complication after solid-organ transplantation to survive after combined therapy with sodium phenylacetate, sodium benzoate, arginine hydrochloride, and hemodialysis. Complications of the acute coma included focal motor seizures, which were controlled with carbamazepine, and difficulty with short-term memory. The aggressive use of hemodialysis in conjunction with intravenous sodium phenylacetate, sodium benzoate, and arginine hydrochloride therapy may allow survival in patients after solid-organ transplantation. An acute acquired derangement in extra-central nervous system glutamine metabolism may play a role in the production of hyperammonemia in this illness that resembles Reye syndrome, and, as in other hyperammonemic disorders, the duration and degree of elevation of brain glutamine levels may be the important determining factors in responsiveness to therapy.
Miller, Christopher B; Rae, Caroline D; Green, Michael A; Yee, Brendon J; Gordon, Christopher J; D'Rozario, Angela L; Kyle, Simon D; Espie, Colin A; Grunstein, Ronald R; Bartlett, Delwyn J
2017-11-01
To evaluate brain metabolites in objective insomnia subtypes defined from polysomnography (PSG): insomnia with short sleep duration (I-SSD) and insomnia with normal sleep duration (I-NSD), relative to good sleeping controls (GSCs). PSG empirically grouped insomnia patients into I-SSD (n = 12: mean [SD] total sleep time [TST] = 294.7 minutes [30.5]) or I-NSD (n = 19: TST = 394.4 minutes [34.9]). 1H magnetic resonance spectroscopy (MRS) acquired in the left occipital cortex (LOCC), left prefrontal cortex, and anterior cingulate cortex was used to determine levels of creatine, aspartate, glutamate, and glutamine (referenced to water). Glutathione, glycerophosphocholine, lactate, myoinositol, and N-acetylaspartate measurements were also obtained. Sixteen GSCs were included for comparison. Multivariate analysis of variance was used to evaluate differences in creatine, aspartate, glutamate, and glutamine. Aspartate and glutamine concentrations were reduced in the LOCC in I-SSD compared with I-NSD (both p < .05, d = .80-.99). Creatine displayed a nonsignificant mean reduction in I-SSD compared with I-NSD (p = .05, d = .58). Glutamine was reduced in I-SSD compared with controls (p < .05, d = .93). There were no differences in metabolites between all (I-SSD and I-NSD) insomnia patients and controls. In patients with insomnia, LOCC glutamine concentrations were found to be positively correlated with TST (r = .43, p < .05) and negatively correlated with wake-time after sleep onset (r = -.40, p < .05). Results indicate that I-SSD is associated with reduced brain metabolites in the LOCC compared with I-NSD and control concentrations of aspartate, glutamine, and creatine. Insomnia MRS imaging sleep study: Australia New Zealand Clinical Trials Registry (ANZCTR): https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12612000050853. 12612000050853. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Świątkiewicz, Maciej; Fiedorowicz, Michał; Orzeł, Jarosław; Wełniak-Kamińska, Marlena; Bogorodzki, Piotr; Langfort, Józef; Grieb, Paweł
2017-01-01
Objective: Proton magnetic resonance spectroscopy (1H-MRS) in ultra-high magnetic field can be used for non-invasive quantitative assessment of brain glutamate (Glu) and glutamine (Gln) in vivo. Glu, the main excitatory neurotransmitter in the central nervous system, is efficiently recycled between synapses and presynaptic terminals through Glu-Gln cycle which involves glutamine synthase confined to astrocytes, and uses 60–80% of energy in the resting human and rat brain. During voluntary or involuntary exercise many brain areas are significantly activated, which certainly intensifies Glu-Gln cycle. However, studies on the effects of exercise on 1H-MRS Glu and/or Gln signals from the brain provided divergent results. The present study on rats was performed to determine changes in 1H-MRS signals from three brain regions engaged in motor activity consequential to forced acute exercise to exhaustion. Method: After habituation to treadmill running, rats were subjected to acute treadmill exercise continued to exhaustion. Each animal participating in the study was subject to two identical imaging sessions performed under light isoflurane anesthesia, prior to, and following the exercise bout. In control experiments, two imaging sessions separated by the period of rest instead of exercise were performed. 1H-NMR spectra were recorded from the cerebellum, striatum, and hippocampus using a 7T small animal MR scanner. Results: Following exhaustive exercise statistically significant increases in the Gln and Glx signals were found in all three locations, whereas increases in the Glu signal were found in the cerebellum and hippocampus. In control experiments, no changes in 1H-MRS signals were found. Conclusion: Increase in glutamine signals from the brain areas engaged in motor activity may reflect a disequilibrium caused by increased turnover in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons. Increased turnover of Glu-Gln cycle may be a result of functional activation caused by forced endurance exercise; the increased rate of ammonia detoxification may also contribute. Increases in glutamate in the cerebellum and hippocampus are suggestive of an anaplerotic increase in glutamate synthesis due to exercise-related stimulation of brain glucose uptake. The disequilibrium in the glutamate-glutamine cycle in brain areas activated during exercise may be a significant contributor to the central fatigue phenomenon. PMID:28197103
Recent development of small molecule glutaminase inhibitors.
Song, Minsoo; Kim, Soong-Hyun; Im, Chun Young; Hwang, Hee-Jong
2018-05-24
Glutaminase (GLS) which is responsible for the conversion of glutamine to glutamate plays vital role in up-regulating cell metabolism for tumor cell growth, and is considered as a valuable therapeutic target for cancer treatment. Based on this important function of glutaminase in cancer, several GLS inhibitors have been developed from both academia and industries. Most importantly, Calithera Biosciences Inc. is actively developing glutaminase inhibitor CB-839 for the treatment of various cancers in phase 1 and 2 clinical trials at present. In this review, it is discussed about recent efforts to develop small molecule glutaminase inhibitors targeting glutamine metabolism both in the preclinical and clinical studies. In particular, more emphasis is placed on CB-839 since it is the only small molecule GLS inhibitor being studied in clinical setting. Inhibition mechanism is discussed based on x-ray structure study of thiadiazole derivatives as well. Finally, recent medicinal chemistry efforts to develop a new class of GLS inhibitors are given herein in the hope of providing useful information for GLS inhibitors of the next generation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Stehle, Peter; Ellger, Björn; Kojic, Dubravka; Feuersenger, Astrid; Schneid, Christina; Stover, John; Scheiner, Daniela; Westphal, Martin
2017-02-01
Early randomised controlled trials (RCTs) testing whether parenteral nutrition regimens that include glutamine dipeptides improves the outcomes of critically ill patients demonstrated convincingly that this regimen associates with reduced mortality, infections, and hospital stays. However, several new RCTs on the same question challenged this. To resolve this controversy, the present meta-analysis was performed. Stringent eligibility criteria were used to select only those RCTs that tested the outcomes of critically ill adult patients without hepatic and/or renal failure who were haemodynamically and metabolically stabilised and who were administered glutamine dipeptide strictly according to current clinical guidelines (via the parenteral route at 0.3-0.5 g/kg/day; max. 30% of the prescribed nitrogen supply) in combination with adequate nutrition. The literature research (PubMed, Embase, Cochrane Central Register of Controlled Trials) searched for English and German articles that had been published in peer-review journals (last entry March 31, 2015) and reported the results of RCTs in critically ill adult patients (major surgery, trauma, infection, or organ failure) who received parenteral glutamine dipeptide as part of an isoenergetic and isonitrogenous nutrition therapy. The following data were extracted: infectious complications, lengths of stay (LOS) in the hospital and intensive care unit (ICU), duration of mechanical ventilation, days on inotropic support, and ICU and hospital mortality rates. The selection of and data extraction from studies were performed by two independent reviewers. Fifteen RCTs (16 publications) fulfilled all selection criteria. They involved 842 critically ill patients. None had renal and/or hepatic failure. The average study quality (Jadad score: 3.8 points) was well above the predefined cut-off of 3.0. Common effect estimates indicated that parenteral glutamine dipeptide supplementation significantly reduced infectious complications (relative risk [RR] = 0.70, 95% CI 0.60, 0.83, p < 0.0001), ICU LOS (common mean difference [MD] -1.61 days, 95% CI -3.17, -0.05, p = 0.04), hospital LOS (MD -2.30 days, 95% CI -4.14, -0.45, p = 0.01), and mechanical ventilation duration (MD -1.56 days, 95% CI -2.88, -0.24, p = 0.02). It also lowered the hospital mortality rate by 45% (RR = 0.55, 95% CI 0.32, 0.94, p = 0.03) but had no effect on ICU mortality. Visual inspection of funnel plots did not reveal any potential selective reporting of studies. This meta-analysis clearly confirms that when critically ill patients are supplemented with parenteral glutamine dipeptide according to clinical guidelines as part of a balanced nutrition regimen, it significantly reduces hospital mortality, infectious complication rates, and hospital LOS. The latter two effects indicate that glutamine dipeptide supplementation also confers economic benefits in this setting. The present analysis indicates the importance of delivering glutamine dipeptides together with adequate parenteral energy and nitrogen so that the administered glutamine serves as precursor in various biosynthetic pathways rather than simply as a fuel. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
Soares, Anne D N; Costa, Kátia A; Wanner, Samuel P; Santos, Rosana G C; Fernandes, Simone O A; Martins, Flaviano S; Nicoli, Jacques R; Coimbra, Cândido C; Cardoso, Valbert N
2014-11-28
Dietary glutamine (Gln) supplementation improves intestinal function in several stressful conditions. Therefore, in the present study, the effects of dietary Gln supplementation on the core body temperature (T core), bacterial translocation (BT) and intestinal permeability of mice subjected to acute heat stress were evaluated. Male Swiss mice (4 weeks old) were implanted with an abdominal temperature sensor and randomly assigned to one of the following groups fed isoenergetic and isoproteic diets for 7 d before the experimental trials: group fed the standard AIN-93G diet and exposed to a high ambient temperature (39°C) for 2 h (H-NS); group fed the AIN-93G diet supplemented with l-Gln and exposed to a high temperature (H-Gln); group fed the standard AIN-93G diet and not exposed to a high temperature (control, C-NS). Mice were orally administered diethylenetriaminepentaacetic acid radiolabelled with technetium (99mTc) for the assessment of intestinal permeability or 99mTc-Escherichia coli for the assessment of BT. Heat exposure increased T core (approximately 41°C during the experimental trial), intestinal permeability and BT to the blood and liver (3 h after the experimental trial) in mice from the H-NS group relative to those from the C-NS group. Dietary Gln supplementation attenuated hyperthermia and prevented the increases in intestinal permeability and BT induced by heat exposure. No correlations were observed between the improvements in gastrointestinal function and the attenuation of hyperthermia by Gln. Our findings indicate that dietary Gln supplementation preserved the integrity of the intestinal barrier and reduced the severity of hyperthermia during heat exposure. The findings also indicate that these Gln-mediated effects occurred through independent mechanisms.
Asparagine and Glutamine: Co-conspirators Fueling Metastasis.
Luo, Ming; Brooks, Michael; Wicha, Max S
2018-05-01
Cancer cells frequently hijack normal metabolic pathways to promote their growth and metastasis. Two recent papers by Knott et al. (2018) and Pavlova et al. (2018) demonstrate that asparagine and glutamine work in concert to drive tumor growth and metastasis through modulation of cell survival, growth, and EMT regulatory pathways. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, S.P.
1994-12-31
Hexsoamine synthetic pathway (HexNSP) controls the supply of essential substrates for glycoprotein synthesis. In vitro studies suggest that increased flux of glucose via the hexsoamine synthetic pathway may play a role in glucose induced insulin resistance of glucose transport. Glutamine: fructose-6-phosphate amindotransferase (GFAT) controls flux into the hexsoamine synthetic pathway; the major products are UDPN-acetylhexosamines (UDP.HexNac=UDP.GlcNAc= UDP.GalNac). I examined whether diabetes ({approximately} 7 days post intravenous streptozotocin, and genetically linked) affects the activity of glutamine: fructose-6-phosphate in rat and mouse skeletal muscle in vivo. Nucleotide linked HexNAc were analyzed by high pressure liquid chromatography(HPLC) in deproteinized hind limb muscle extracts.
Sanli, Aydin; Onen, Ahmet; Sarioglu, Sulen; Sis, Banu; Guneli, Ensari; Gokcen, Banu; Karapolat, Sami; Acikel, Unal
2006-11-01
Beneficial effects of glutamine on wound healing are well known. Parenchymal injuries in the lung cause air leakage that resolves with wound healing. We aimed to determine the effect of glutamine on the healing of lung injuries. Wistar albino female rats were randomized in three groups. One group (control, n = 7) received intraperitoneal injection of 0.9% sodium chloride (1.5 ml /day), while other group (GLN, n = 7) received glutamine (1.5 g/kg/day), beginning two days prior to the operation for total four days. After thoracotomy, a lung parenchymal lesion was made with a scalpel in the right upper lobe. Only thoracotomy was performed to sham group (n = 4). Air leakage was observed in the isolated lungs of control group, but not GLN and sham groups, at 5 cm H(2)O of positive airway pressure (p < 0.001). The threshold of positive airway pressure for air leakage was 4.85 +/- 0.37 and 19.42 +/- 4.54 cm H(2)O for control and GLN groups, respectively (p < 0.001). For measurement of collagen content in the healing parenchyma, digital images were processed to calculate the stained area percentage (SAP). SAP for immature collagen, a marker for wound healing, was 0.36 +/- 0.18% and 1.48 +/- 0.83% (p = 0.02) in control and GLN groups, respectively, but no significant difference was noted in SAP for mature collagen. The grade of inflammation was not significantly different between control and GLN groups. We conclude that glutamine enhances lung parenchymal healing by increasing immature collagen secretion.
Moison, Michael; Marmagne, Anne; Dinant, Sylvie; Soulay, Fabienne; Azzopardi, Marianne; Lothier, Jérémy; Citerne, Sylvie; Morin, Halima; Legay, Nicolas; Chardon, Fabien; Avice, Jean-Christophe; Reisdorf-Cren, Michèle; Masclaux-Daubresse, Céline
2018-06-05
Glutamine synthetase (GS) is central for ammonium assimilation and consists of cytosolic (GS1) and chloroplastic (GS2) isoenzymes. During plant ageing, GS2 protein decreases due to chloroplast degradation, and GS1 activity increases to support glutamine biosynthesis and N remobilization from senescing leaves. The role of the different Arabidopsis GS1 isoforms in nitrogen remobilization was examined using 15N tracing experiments. Only the triple gln1;1-gln1;2-gln1;3 mutation affecting the three GLN1;1, GLN1;2 and GLN1;3 genes reduced significantly N remobilization, seed yield, seed weight, harvest index and vegetative biomass. The triple gln1;1-gln1;2-gln1;3 mutant accumulated large amount of ammonium that cannot be assimilated by GS1. Alternative ammonium assimilation through asparagine biosynthesis was increased and related to higher ASN2 asparagine synthetase transcript levels. The GS2 transcript, protein and activity levels were also increased to compensate for the lack of GS1-related glutamine biosynthesis. Localization of the different GLN1 genes showed that they are all expressed in the phloem companion cells but in different order veins. In conclusion, our study shows that glutamine biosynthesis for N-remobilization occurs in all the order veins (major and minor) in leaves, is mainly catalysed by the three major GS1 isoforms (GLN1;1, GLN1;2 and GLN1;3) and is alternatively supported by AS2 in the veins and GS2 in the mesophyll cells.
Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Risso, Eder Muller; Amaya-Farfan, Jaime
2017-09-20
Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, and glutamine supplementation is known to increase HSP expression during intense exercise. Since few studies have addressed the possibility that supplementation with other amino acids could have similar effects to that of glutamine, our objective was to evaluate the effects of leucine, valine, isoleucine and arginine as potential stimulators of HSPs 25, 60, 70 and 90 in rats subjected to acute exercise as a stressing factor. The immune markers, antioxidant system, blood parameters, glycogen and amino acid profile responses were also assessed. Male Wistar rats were divided into seven groups: control (rest, without gavage), vehicle (water), l-leucine, l-isoleucine, l-valine, l-arginine and l-glutamine. Except for the control, all animals were exercised and received every amino acid by oral gavage. Arginine supplementation up-regulated muscle HSP70 and HSP90 and serum HSP70, however, none of the amino acids affected the HSP25. All amino acids increased exercise-induced HSP60 expression, except for valine. Antioxidant enzymes were reduced by exercise, but both glutamine and arginine restored glutathione peroxidase, while isoleucine and valine restored superoxide dismutase. Exercise reduced monocyte, platelet, lymphocyte and erythrocyte levels, while leucine stimulated immune response, preserved the levels of the lymphocytes and increased leukocytes and maintained platelets at control levels. Plasma and muscle amino acid profiles showed specific metabolic features. The data suggest that the tissue-protecting effects of arginine could proceed by enhancing specific HSPs in the body.
Pradelli, L; Povero, M; Muscaritoli, M; Eandi, M
2015-01-01
Background/Objectives: Intravenous (i.v.) glutamine supplementation of parenteral nutrition (PN) can improve clinical outcomes, reduce mortality and infection rates and shorten the length of hospital and/or intensive care unit (ICU) stays compared with standard PN. This study is a pharmacoeconomic analysis to determine whether i.v. glutamine supplementation of PN remains both a highly favourable and cost-effective option for Italian ICU patients. Subjects/Methods: A previously published discrete event simulation model was updated by incorporating the most up-to-date and clinically relevant efficacy data (a clinically realistic subgroup analysis from a published meta-analysis), recent cost data from the Italian health-care system and the latest epidemiology data from a large Italian ICU database (covering 230 Italian ICUs and more than 77 000 patients). Sensitivity analyses were performed to test the robustness of the results. Results: Parenteral glutamine supplementation can significantly improve ICU efficiency in Italy, as the additional cost of supplemented treatment is more than completely offset by cost savings in hospital care. Supplementation was more cost-effective (cost-effectiveness ratio (CER)=€35 165 per patient discharged alive) than standard, non-supplemented PN (CER=€40 156 per patient discharged alive), and it resulted in mean cost savings of €4991 per patient discharged alive or €1047 per patient admitted to the hospital. Sensitivity analyses confirmed the robustness of these results. Conclusions: Alanyl-glutamine supplementation of PN is a clinically and economically attractive strategy for ICU patients in Italy and may be applicable to selected ICU patient populations in other countries. PMID:25469466
Pradelli, L; Povero, M; Muscaritoli, M; Eandi, M
2015-05-01
Intravenous (i.v.) glutamine supplementation of parenteral nutrition (PN) can improve clinical outcomes, reduce mortality and infection rates and shorten the length of hospital and/or intensive care unit (ICU) stays compared with standard PN. This study is a pharmacoeconomic analysis to determine whether i.v. glutamine supplementation of PN remains both a highly favourable and cost-effective option for Italian ICU patients. A previously published discrete event simulation model was updated by incorporating the most up-to-date and clinically relevant efficacy data (a clinically realistic subgroup analysis from a published meta-analysis), recent cost data from the Italian health-care system and the latest epidemiology data from a large Italian ICU database (covering 230 Italian ICUs and more than 77,000 patients). Sensitivity analyses were performed to test the robustness of the results. Parenteral glutamine supplementation can significantly improve ICU efficiency in Italy, as the additional cost of supplemented treatment is more than completely offset by cost savings in hospital care. Supplementation was more cost-effective (cost-effectiveness ratio (CER)=[euro ]35,165 per patient discharged alive) than standard, non-supplemented PN (CER=[euro ]40,156 per patient discharged alive), and it resulted in mean cost savings of [euro ]4991 per patient discharged alive or [euro ]1047 per patient admitted to the hospital. Sensitivity analyses confirmed the robustness of these results. Alanyl-glutamine supplementation of PN is a clinically and economically attractive strategy for ICU patients in Italy and may be applicable to selected ICU patient populations in other countries.
OXPHOS Defects Due to mtDNA Mutations: Glutamine to the Rescue!
Chinopoulos, Christos
2018-06-05
Mutations in mtDNA associated with OXPHOS defects preclude energy harnessing by OXPHOS. The work of Chen et al. (2018) is previewed, reporting flux pathways of glutamine catabolism in mtDNA mutant cells yielding high-energy phosphates through substrate-level phosphorylation and the influence exerted by the severity of OXPHOS impairment. Copyright © 2018 Elsevier Inc. All rights reserved.
Targeting Therapy Resistance: When Glutamine Catabolism Becomes Essential.
Lukey, Michael J; Katt, William P; Cerione, Richard A
2018-05-14
Identifying contexts in which cancer cells become addicted to specific nutrients is critical for developing targeted metabolic therapies. In this issue of Cancer Cell, Momcilovic et al. report that suppressed glycolysis following mTOR inhibition is countered by adaptive glutamine catabolism in lung squamous cell carcinoma, sensitizing tumors to glutaminase inhibition. Copyright © 2018 Elsevier Inc. All rights reserved.
Leke, Renata; Bak, Lasse K; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S
2011-04-01
Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.
Li, Yaqing; Li, Xiaoran; Li, Xiaoli; Zhong, Yali; Ji, Yasai; Yu, Dandan; Zhang, Mingzhi; Wen, Jian-Guo; Zhang, Hongquan; Goscinski, Mariusz Adam; Nesland, Jahn M.; Suo, Zhenhe
2016-01-01
Alternative pathways of metabolism endowed cancer cells with metabolic stress. Inhibiting the related compensatory pathways might achieve synergistic anticancer results. This study demonstrated that pyruvate dehydrogenase E1α gene knockout (PDHA1 KO) resulted in alterations in tumor cell metabolism by rendering the cells with increased expression of glutaminase1 (GLS1) and glutamate dehydrogenase1 (GLUD1), leading to an increase in glutamine-dependent cell survival. Deprivation of glutamine induced cell growth inhibition, increased reactive oxygen species and decreased ATP production. Pharmacological blockade of the glutaminolysis pathway resulted in massive tumor cells apoptosis and dysfunction of ROS scavenge in the LNCaP PDHA1 KO cells. Further examination of the key glutaminolysis enzymes in human prostate cancer samples also revealed that higher levels of GLS1 and GLUD1 expression were significantly associated with aggressive clinicopathological features and poor clinical outcome. These insights supply evidence that glutaminolysis plays a compensatory role for cell survival upon alternative energy metabolism and targeting the glutamine anaplerosis of energy metabolism via GLS1 and GLUD1 in cancer cells may offer a potential novel therapeutic strategy. PMID:27462778
Gebhardt, R; Mecke, D
1983-01-01
The distribution of glutamine synthetase [L-glutamate: ammonia ligase (ADP-forming), EC 6.3.1.1)] among rat liver parenchymal cells in situ and in primary culture was investigated by indirect immunofluorescence using a specific antiserum. In intact liver, the enzyme was found to be localized exclusively within a very small population of the parenchymal cells surrounding the terminal hepatic venules. Other parts of the parenchyma including non-parenchymal cell types did not stain for this enzyme. Heterogeneity was preserved during isolation of liver parenchymal cells and persisted in cultured cells for at least 3 days. Despite alterations in enzyme activity due to the adaptation of the cells to the culture conditions or due to the hormonal stimulation of the enzyme activity, no change in the relative number of cells expressing this enzyme could be detected. This rather peculiar localization of glutamine synthetase demonstrates an interesting aspect of liver zonation and might have important implications for liver glutamine and, more generally, nitrogen metabolism. Furthermore, it raises the question of whether there might be a phenotypic difference among liver parenchymal cells. Images Fig. 1. PMID:6138251
Polysaccharide-based hydrogels with tunable composition as 3D cell culture systems.
Gentilini, Roberta; Munarin, Fabiola; Bloise, Nora; Secchi, Eleonora; Visai, Livia; Tanzi, Maria Cristina; Petrini, Paola
2018-04-01
To date, cell cultures have been created either on 2-dimensional (2D) polystyrene surfaces or in 3-dimensional (3D) systems, which do not offer a controlled chemical composition, and which lack the soft environment encountered in vivo and the chemical stimuli that promote cell proliferation and allow complex cellular behavior. In this study, pectin-based hydrogels were developed and are proposed as versatile cell culture systems. Pectin-based hydrogels were produced by internally crosslinking pectin with calcium carbonate at different initial pH, aiming to control crosslinking kinetics and degree. Additionally, glucose and glutamine were added as additives, and their effects on the viscoelastic properties of the hydrogels and on cell viability were investigated. Pectin hydrogels showed in high cell viability and shear-thinning behavior. Independently of hydrogel composition, an initial swelling was observed, followed by a low percentage of weight variation and a steady-state stage. The addition of glucose and glutamine to pectin-based hydrogels rendered higher cell viability up to 90%-98% after 1 hour of incubation, and these hydrogels were maintained for up to 7 days of culture, yet no effect on viscoelastic properties was detected. Pectin-based hydrogels that offer tunable composition were developed successfully. They are envisioned as synthetic extracellular matrix (ECM) either to study complex cellular behaviors or to be applied as tissue engineering substitutes.
Kim, Dohyup; Minhas, Bushra F; Li-Byarlay, Hongmei; Hansen, Allison K
2018-05-25
Microbes are known to influence insect-plant interactions; however, it is unclear if host-plant diet influences the regulation of nutritional insect symbioses. The pea aphid, Acyrthosiphon pisum , requires its nutritional endosymbiont, Buchnera , for the production of essential amino acids. We hypothesize that key aphid genes that regulate the nutritional symbioses respond to host-plant diet when aphids feed on a specialized (alfalfa) compared to a universal host-plant diet (fava), which vary in amino acid profiles. Using RNA-Seq and whole genome bisulfite sequencing, we measured gene expression and DNA methylation profiles for such genes when aphids fed on either their specialized or universal host-plant diets. Our results reveal that when aphids feed on their specialized host-plant they significantly up-regulate and/or hypo-methylate key aphid genes in bacteriocytes related to the amino acid metabolism, including glutamine synthetase in the GOGAT cycle that recycles ammonia into glutamine and the glutamine transporter ApGLNT1 Moreover, regardless of what host-plant aphids feed on we observed significant up-regulation and differential methylation of key genes involved in the amino acid metabolism and the glycine/serine metabolism, a metabolic program observed in proliferating cancer cells potentially to combat oxidative stress. Based on our results, we suggest that this regulatory response of key symbiosis genes in bacteriocytes allows aphids to feed on a suboptimal host-plant that they specialize on. Copyright © 2018, G3: Genes, Genomes, Genetics.
Multi-objective experimental design for (13)C-based metabolic flux analysis.
Bouvin, Jeroen; Cajot, Simon; D'Huys, Pieter-Jan; Ampofo-Asiama, Jerry; Anné, Jozef; Van Impe, Jan; Geeraerd, Annemie; Bernaerts, Kristel
2015-10-01
(13)C-based metabolic flux analysis is an excellent technique to resolve fluxes in the central carbon metabolism but costs can be significant when using specialized tracers. This work presents a framework for cost-effective design of (13)C-tracer experiments, illustrated on two different networks. Linear and non-linear optimal input mixtures are computed for networks for Streptomyces lividans and a carcinoma cell line. If only glucose tracers are considered as labeled substrate for a carcinoma cell line or S. lividans, the best parameter estimation accuracy is obtained by mixtures containing high amounts of 1,2-(13)C2 glucose combined with uniformly labeled glucose. Experimental designs are evaluated based on a linear (D-criterion) and non-linear approach (S-criterion). Both approaches generate almost the same input mixture, however, the linear approach is favored due to its low computational effort. The high amount of 1,2-(13)C2 glucose in the optimal designs coincides with a high experimental cost, which is further enhanced when labeling is introduced in glutamine and aspartate tracers. Multi-objective optimization gives the possibility to assess experimental quality and cost at the same time and can reveal excellent compromise experiments. For example, the combination of 100% 1,2-(13)C2 glucose with 100% position one labeled glutamine and the combination of 100% 1,2-(13)C2 glucose with 100% uniformly labeled glutamine perform equally well for the carcinoma cell line, but the first mixture offers a decrease in cost of $ 120 per ml-scale cell culture experiment. We demonstrated the validity of a multi-objective linear approach to perform optimal experimental designs for the non-linear problem of (13)C-metabolic flux analysis. Tools and a workflow are provided to perform multi-objective design. The effortless calculation of the D-criterion can be exploited to perform high-throughput screening of possible (13)C-tracers, while the illustrated benefit of multi-objective design should stimulate its application within the field of (13)C-based metabolic flux analysis. Copyright © 2015 Elsevier Inc. All rights reserved.
Rocha, Beatriz Rodrigues; Gombar, Flavia Meirelles; Barcellos, Leilane Maria; Costa, Waldemar Silva; Barcellos Sampaio, Francisco Jose; Ramos, Cristiane Fonte
2011-01-01
Patients who have had pelvic radiotherapy as part of their cancer therapy may develop subsequent urinary bladder effects such as hyperactive bladder, incontinence, and dysuria. Therefore, the goal of this study was to evaluate whether glutamine supplementation could prevent collagen expression damage in healthy urinary bladder caused by radiotherapy. Fifteen adult Wistar rats were separated into a control group that received food and water ad libitum (C group), an irradiated group that received a single pelvic radiation dose of 1164 cGy (I group), and an irradiated group supplemented with l-glutamine every day during the entire experimental period (0.65 g/kg of body weight; I+G group). All animals were sacrificed 15 d after irradiation. The extracellular matrix and muscle were quantified by a morphometric method. Picro Sirius Red was used to visualize the different collagen types. Reverse transcription-polymerase chain reaction and immunohistochemistry were used to determine collagen type I and III expressions. The extracellular matrix (C group 36.84±4.37, I group 31.64±5.00, I+G group 35.53±2.60, P=0.0001), muscle (C group 36.43±6.15, I group 29.39±7.08, I+G group 31.38±3.14, P=0.0001), and gene expressions of collagen type I (C group 1.067±0.31, I group 0.579±0.17, I+G group 1.816±0.66, P=0.0009) and type III (C group 0.99±0.28, I group 0.54±0.13, I+G group 1.07±0.28, P=0.0080) were decreased in the I group. Apart from muscle, glutamine supplementation prevented these alterations. Immunohistochemistry and Picro Sirius Red showed similar results. Supplementation with l-glutamine seems to prevent bladder wall damage in relation to extracellular matrix volumetric density and collagen expression. These results suggest that glutamine supplementation could be efficient in protecting healthy tissues from the adverse effects of radiotherapy. Copyright © 2011. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Narayanan, Jayanthi; Carlos-Alberto, Aguilar H.; Arturo, Lazarini M.; Höpfl, Herbert; Enrique-Fernando, Velazquez C.; Fernando, Rocha A.; Fernando-Toyohiko, Wakida K.; Velazquez-Lopez, José E.; Lesli, Arroyo O.
2018-03-01
Chromium (III) complex [Cr (hq)3;C2H5OH] of 8-hydroxyquinoline (hq) was prepared and its structure was resolved by X-ray diffraction analysis at low-temperature, showing that Cr3+ ion presents in distorted octahedral geometry, and it is consistent with the DFT optimized structure. It was observed that solvent ethanol is involved a hydrogen bond with 8-hydroxyquinoline anion. Furthermore, the molecular orbital contributions to spectral bands observed for the complex were determined by TD-DFT. The interaction of [Cr (hq)3;C2H5OH] with glutamine (Gln) or asparagine (Asn) shows that the complex binds effectively with glutamine through hydrogen bonding (H2N+-HṡṡṡOethanol) to form a possible stable adduct [Cr (hq)3;C2H5OH)Gln], yielding its binding constant 10,000 times greater (1.4315 M-1) than that for Asn (5.0 × 10-4 M-1). This is apparently due to the formation of stable secondary coordination sphere through the hydrogen bond between the metal complex with Gln. This observation is good agreement with the total molecular energy as well as with the molecular orbital study, i.e. in the DFT calculation, a lower total molecular energy (-8299,549.441 kcal/mmol) for [Cr (hq)3;C2H5OH) Gln] was obtained than that resulted for [Cr (hq)3;C2H5OH)Asn] (-8194,799.867 kcal/mmol), establishing ethanol effectively stabilizes the interaction between glutamine and the complex. Finally, antibacterial properties of [Cr (hq)3;C2H5OH] against Gram positive Bacillus cereus and Gram negative Escherichia coli was also studied, and compared its bacterial growths for its adducts of glutamine or of asparagine.
Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith
2016-01-01
Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith
2016-01-01
Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells. PMID:26518878
Scheibe, R; Schade, M; Grundling, M; Pavlovic, D; Starke, K; Wendt, M; Retter, S; Murphy, M; Suchner, U; Spassov, A; Gedrange, T; Lehmann, Ch
2009-12-01
Glutamine (GLN) appears to be an essential nutrient during organism development and critical illness. The aim of our study was to evaluate the effects of GLN and its generic preparation alanyl-glutamine-dipeptide (DIP) on the microcirculation in endotoxemia in rats and its effects on tonus or aortal rings in vitro. Male Lewis rats (n=40) were separated in 4 groups. Group 1 (CON) served as healthy control group while the other groups received an endotoxin bolus i.v. (5 mg/kg lipopolysaccharide, LPS i.v.). In group 3 (LPS+GLN) 0.75 g/kg-1 GLN i.v. before LPS challenge was administered. In group 4 (LPS+DIP) DIP containing 0.75 g/kg GLN was given. Leukocyte-endothelial interactions and mesenteric plasma extravasation were determined at 0, 1 and 2 hours during the experiment by intravital fluorescence microscopy (IVM). Cytokine release (TNF-alpha, IL-1 beta, IL-6, IL-10) was measured by ELISA. GLN treatment reduced leukocyte adherence (-49.7% vs. LPS group, p<0.05) and plasma extravasation (-12.3% vs. LPS group, p<0.05) significantly during endotoxemia compared to untreated LPS animals. In group 4 (DIP+LPS), a decrease of leukocyte adherence (-56.0%) and mesenteric plasma extravasation (-18.8% vs. LPS group, p<0.05) was also found. TNF-alpha levels were reduced in both GLN and DIP (p<0.05). In vitro experiments demonstrated that glutamine agents could attenuate the response to contracting agents in presence of the vascular endothelium, implying nitric oxide pathway. In vivo, GLN as well as DIP pre-treatment diminish the detrimental impact of endotoxemia on the mesenteric microcirculation and the TNF-alpha release, the effects whose clinical importance should be further examined.
Al-Otaish, Hanoof; Al-Ayadhi, Laila; Bjørklund, Geir; Chirumbolo, Salvatore; Urbina, Mauricio A; El-Ansary, Afaf
2018-06-01
Autism spectrum disorder (ASD) is a neurodevelopmental pathology characterized by an impairment in social interaction, communication difficulties, and repetitive behaviors. Glutamate signaling abnormalities are thought to be considered as major etiological mechanisms leading to ASD. The search for amino-acidic catabolytes related to glutamate in patients with different levels of ASD might help current research to clarify the mechanisms underlying glutamate signaling and its disorders, particularly in relation to ASD. In the present study, plasma levels of the amino acids and their derivatives glutamate, glutamine, and γ-aminobutyric acid (GABA), associated with their relative ratios, were evaluated using an enzyme-linked immunosorbent assay (ELISA) technique in 40 male children with ASD and in 38 age- and gender-matched neurotypical health controls. The Social Responsiveness Scale (SRS) was used to evaluate social cognition, and the Childhood Autism Rating Scale (CARS) was used to assess subjects' behaviors. Children with ASD exhibited a significant elevation of plasma GABA and glutamate/glutamine ratio, as well as significantly lower levels of plasma glutamine and glutamate/GABA ratios compared to controls. No significant correlation was found between glutamate levels and the severity of autism, measured by CARS and SRS. In receiver operating characteristic (ROC) curve analysis, the area under the curve for GABA compared to other parameters was close to one, indicating its potential use as a biomarker. Glutamine appeared as the best predictive prognostic markers in the present study. The results of the present study indicate a disturbed balance between GABAergic and glutamatergic neurotransmission in ASD. The study also indicates that an increased plasma level of GABA can be potentially used as an early diagnostic biomarker for ASD.
Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao
2014-01-01
This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)- myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases. PMID:24505477
The role of glutamine supplemented total parenteral nutrition (TPN) in severe acute pancreatitis.
Liu, X; Sun, X F; Ge, Q X
2016-10-01
To evaluate the role of glutamine-supplemented total parenteral nutrition (TPN) in severe acute pancreatitis. Forty-seven patients with severe acute pancreatitis were admitted to Huaihe Hospital, China, over a period of one year (July 2013 to June 2014) were randomly divided into two therapeutic groups. Patients in group 1 (24 patients in total) and group 2 (23 patient in total) were treated with glutamine-supplemented TPN and standard TPN respectively. Patients were assessed for nutritional parameters, the prevalence of complications, mortality, length of hospital stay (LOS) and length of TPN. The majority of patients were male in both groups (62.5% in group 1 and 60.9% in group 2) and the average age was similar (39.13±4.46 years in group 1 and 40±3.96 years in group 2). The major causative factor was also similar in both groups, i.e. gall stones. The prevalence of complications in the group 2 was much higher (47.85%) than those in the group 1 (25%). The mortality rate for group 1 and 2 were 4.2% (1/24) and 17.4% (4/23), respectively. The length of hospital stay in the group 2 (23.08 ± 2.02 days) was longer than those of the group 1 (20.33 ± 2.40 days). The length of TPN was also longer in the group 2 (16.47 ± 2.72 days) than those of the group 1 (10.56 ± 2.21 days). Glutamine was also associated with significant increase in serum albumin level. Glutamine-supplemented TPN can reduce the mortality and the occurrence of complications, shorten the length of stay and improve the nutritional status of the patients with severe acute pancreatitis.
Ren, Wenkai; Yin, Jie; Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao
2014-01-01
This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)-myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases.
Effect of glutamine supplementation on splanchnic metabolism in lactating dairy cows.
Doepel, L; Lobley, G E; Bernier, J F; Dubreuil, P; Lapierre, H
2007-09-01
The suggestion that glutamine (Gln) might become conditionally essential postpartum in dairy cows has been examined through increased postruminal supply of Gln. Net nutrient flux through the splanchnic tissues and mammary gland was measured in 7 multiparous Holstein cows receiving abomasal infusions of water or 300 g/d of Gln for 21 d in a crossover design. Milk yield increased significantly (by 3%) in response to Gln supplementation, but the 2.4% increase in milk protein yield was not statistically significant. Glutamine treatment had no effect on portal or hepatic venous blood flows. Net portal appearance of Gln and Glu was increased by Gln supplementation, accounting for 83% of the infused dose with, therefore, only limited amounts available to provide additional energy to fuel metabolism of the portal-drained viscera. The extra net portal appearance of Gln was offset, however, by a corresponding increase in hepatic removal such that net Gln splanchnic release was not different between treatments. Nonetheless, the Gln treatment resulted in a 43% increase in plasma Gln concentration. Infusions of Gln did not affect splanchnic flux of other nonessential amino acids or of essential amino acids. Glutamine supplementation increased plasma urea-N concentration and tended to increase net hepatic urea flux, with a numerical increase in liver hepatic O2 consumption. There were no effects on glucose in terms of plasma concentration, net portal appearance, net liver release, or postliver supply, suggesting that Gln supplementation had no sparing effect on glucose metabolism. Furthermore, mammary uptake of glucose and amino acids, including Gln, was not affected by Gln supplementation. In conclusion, this study did not support the hypothesis that supplemental Gln would reduce glucose utilization across the gut or increase liver gluconeogenesis or mammary glutamine uptake to increase milk protein synthesis.
Krajewski, Wojciech W; Collins, Ruairi; Holmberg-Schiavone, Lovisa; Jones, T Alwyn; Karlberg, Tobias; Mowbray, Sherry L
2008-01-04
Glutamine synthetase (GS) catalyzes the ligation of glutamate and ammonia to form glutamine, with concomitant hydrolysis of ATP. In mammals, the activity eliminates cytotoxic ammonia, at the same time converting neurotoxic glutamate to harmless glutamine; there are a number of links between changes in GS activity and neurodegenerative disorders, such as Alzheimer's disease. In plants, because of its importance in the assimilation and re-assimilation of ammonia, the enzyme is a target of some herbicides. GS is also a central component of bacterial nitrogen metabolism and a potential drug target. Previous studies had investigated the structures of bacterial and plant GSs. In the present publication, we report the first structures of mammalian GSs. The apo form of the canine enzyme was solved by molecular replacement and refined at a resolution of 3 A. Two structures of human glutamine synthetase represent complexes with: a) phosphate, ADP, and manganese, and b) a phosphorylated form of the inhibitor methionine sulfoximine, ADP and manganese; these structures were refined to resolutions of 2.05 A and 2.6 A, respectively. Loop movements near the active site generate more closed forms of the eukaryotic enzymes when substrates are bound; the largest changes are associated with the binding of the nucleotide. Comparisons with earlier structures provide a basis for the design of drugs that are specifically directed at either human or bacterial enzymes. The site of binding the amino acid substrate is highly conserved in bacterial and eukaryotic GSs, whereas the nucleotide binding site varies to a much larger degree. Thus, the latter site offers the best target for specific drug design. Differences between mammalian and plant enzymes are much more subtle, suggesting that herbicides targeting GS must be designed with caution.
Marroquin-Guzman, Margarita; Wilson, Richard A.
2015-01-01
Fungal plant pathogens are persistent and global food security threats. To invade their hosts they often form highly specialized infection structures, known as appressoria. The cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as positive-acting pathways required for appressorium development. Negative-acting regulatory pathways that block appressorial development are not known. Here, we present the first detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a powerful inhibitor of appressorium formation by the rice blast fungus Magnaporthe oryzae. We determined TOR signaling was activated in an M. oryzae mutant strain lacking a functional copy of the GATA transcription factor-encoding gene ASD4. Δasd4 mutant strains could not form appressoria and expressed GLN1, a glutamine synthetase-encoding orthologue silenced in wild type. Inappropriate expression of GLN1 increased the intracellular steady-state levels of glutamine in Δasd4 mutant strains during axenic growth when compared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4 mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium development. Rapamycin was also shown to induce appressorium formation by wild type and Δcpka mutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP kinase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glutamine levels in order to modulate TOR inhibition of appressorium formation downstream of cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin the highly regulated process of appressorium development. PMID:25901357
Anderson, Carl W.; Connelly, Margery A.
2004-10-12
The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.
Hashimoto, K; Bruno, D; Nierenberg, J; Marmar, C R; Zetterberg, H; Blennow, K; Pomara, N
2016-03-01
Major depressive disorder (MDD), common in the elderly, is a risk factor for dementia. Abnormalities in glutamatergic neurotransmission via the N-methyl-D-aspartate receptor (NMDA-R) have a key role in the pathophysiology of depression. This study examined whether depression was associated with cerebrospinal fluid (CSF) levels of NMDA-R neurotransmission-associated amino acids in cognitively intact elderly individuals with MDD and age- and gender-matched healthy controls. CSF was obtained from 47 volunteers (MDD group, N=28; age- and gender-matched comparison group, N=19) at baseline and 3-year follow-up (MDD group, N=19; comparison group, N=17). CSF levels of glutamine, glutamate, glycine, L-serine and D-serine were measured by high-performance liquid chromatography. CSF levels of amino acids did not differ across MDD and comparison groups. However, the ratio of glutamine to glutamate was significantly higher at baseline in subjects with MDD than in controls. The ratio decreased in individuals with MDD over the 3-year follow-up, and this decrease correlated with a decrease in the severity of depression. No correlations between absolute amino-acid levels and clinical variables were observed, nor were correlations between amino acids and other biomarkers (for example, amyloid-β42, amyloid-β40, and total and phosphorylated tau protein) detected. These results suggest that abnormalities in the glutamine-glutamate cycle in the communication between glia and neurons may have a role in the pathophysiology of depression in the elderly. Furthermore, the glutamine/glutamate ratio in CSF may be a state biomarker for depression.
Xue, Hongyu; Sawyer, Michael B; Field, Catherine J; Dieleman, Levinus A; Baracos, Vickie E
2007-12-01
To evaluate and compare the influence of dietary elements on cancer progression, chemotherapy efficacy, and toxicity, particularly severe, late-onset diarrhea related to irinotecan (CPT-11) treatment. We used laboratory rats fed a standardized basal diet, Ward colon tumor, and CPT-11 therapy for the study of CPT-11-induced diarrhea. Dietary interventions were selected from nutrients already established to modify other forms of colitis and which have been hypothesized to mitigate chemotherapy-induced gastrointestinal injury (glutamine, n-3 fatty acids, prebiotic oligosaccharides). Animals adapted to test diets were treated with CPT-11 at the maximum tolerated dose (125 mg/kg x 3 days) and diarrhea was followed continuously for 1 week. The inclusion of n-3 fatty acids in the diet (5%, w/w of total fat) suppressed tumor growth and enhanced CPT-11's efficacy; this treatment did not affect the incidence or severity of diarrhea. By contrast, oral glutamine bolus (0.75 g/kg) administered prior to each CPT-11 treatment reduced the incidence of severe diarrhea (34.1 +/- 4.7% versus 53.8 +/- 4.2%, P < 0.005) and decreased the area under the curve of diarrhea score (16.5 +/- 1.0 versus 18.8 +/- 0.5, P < 0.05). Identical results were obtained with i.v. bolus glutamine administration. Glutamine treatment did not alter CPT-11's antitumor efficacy. The addition of prebiotic oligosaccharides to the diet (8%, w/w of diet) did not mitigate the severity of diarrhea, and it raised the activity of beta-glucuronidase in cecal contents, a key bacterial enzyme mediating CPT-11-related intestinal toxicity. Our experiments suggest that glutamine and n-3 fatty acids might be potentially useful adjuncts to CPT-11 treatment.
2014-01-01
Toll-like receptor 4 (TLR-4) is crucial in maintaining intestinal epithelial homeostasis, participates in a vigorous signaling process and heightens inflammatory cytokine output. The objective of this study was to determine the effects of glutamine (GLN) on TLR-4 signaling in intestinal mucosa during methotrexate (MTX)-induced mucositis in a rat. Male Sprague–Dawley rats were randomly assigned to one of four experimental groups of 8 rats each: 1) control rats; 2) CONTR-GLN animals were treated with oral glutamine given in drinking water (2%) 48 hours before and 72 hours following vehicle injection; 3) MTX-rats were treated with a single IP injection of MTX (20 mg/kg); and 4) MTX-GLN rats were pre-treated with oral glutamine similar to group B, 48 hours before and 72 hours after MTX injection. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. The expression of TLR-4, MyD88 and TRAF6 in the intestinal mucosa was determined using real time PCR, Western blot and immunohistochemistry. MTX-GLN rats demonstrated a greater jejunal and ileal mucosal weight and mucosal DNA, greater villus height in ileum and crypt depth and index of proliferation in jejunum and ileum, compared to MTX animals. The expression of TLR-4 and MyD88 mRNA and protein in the mucosa was significantly lower in MTX rats versus controls animals. The administration of GLN increased significantly the expression of TLR-4 and MyD88 (vs the MTX group). In conclusion, treatment with glutamine was associated with up-regulation of TLR-4 and MyD88 expression and a concomitant decrease in intestinal mucosal injury caused by MTX-induced mucositis in a rat. PMID:24742067
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neil, J.D.J.; Sykes, B.D.
M13 coat protein is a small (50 amino acids) lipid-soluble protein that becomes an integral membrane protein during the infection stage of the life cycle of the M13 phage and is therefore used as a model membrane protein. To study side-chain dynamics in the protein, the authors have measured individual hydrogen-exchange rates for a primary amide in the side chain of glutamine-15 and for the indole amine of tryptophan-26. The protein was solubilized with the use of perdeuteriated sodium dodecyl sulfate (SDS), and hydrogen-exchange rates were measured by using {sup 1}H nuclear magnetic resonance spectroscopy. The glutamine-15 syn proton exchangedmore » at a rate identical with that in glutamine model peptides except that the pH corresponding to minimum exchange was elevated by about 1.5 pH units. The tryptophan-26 indole amine proton exchange was biphasic, suggesting that two populations of tryptophan-26 exist. It is suggested that the two populations may reflect protein dimerization or aggregation in the SDS micelles. The pH values of minimum exchange for tryptophan-26 in both environments were also elevated by 1.3-1.9 pH units. This phenomenon is reproduced when small tryptophan- and glutamine-containing hydrophobic peptides are dissolved in the presence of SDS micelles. The electrostatic nature of this phenomenon is proven by showing that the minimum pH for exchange can be reduced by dissolving the hydrophobic peptides in the positively charged detergent micelle dodecyltrimethylammonium bromide.« less
D'Alessandro, Angelo; Amelio, Ivano; Berkers, Celia R.; Antonov, Alexey; Vousden, Karen H.; Melino, Gerry; Zolla, Lello
2014-01-01
TAp63α is a member of the p53 family, which plays a central role in epithelial cancers. Recently, a role has emerged for p53 family members in cancer metabolic modulation. In order to assess whether TAp63α plays a role in cancer metabolism, we exploited p53-null osteosarcoma Tet-On Saos-2 cells, in which the expression of TAp63α was dependent on doxycycline supplementation to the medium. Metabolomics labeling experiments were performed by incubating the cells in 13C-glucose or 13C15N-glutamine-labeled culture media, as to monitor metabolic fluxes upon induced expression of TAp63α. Induced expression of TAp63α resulted in cell cycle arrest at the G1 phase. From a metabolic standpoint, expression of Tap63α promoted glycolysis and the pentose phosphate pathway, which was uncoupled from nucleotide biosynthesis, albeit prevented oxidative stress in the form of oxidized glutathione. Double 13C-glucose and 13C15N-glutamine metabolic labeling confirmed that induced expression of TAp63α corresponded to a decreased flux of pyruvate to the Krebs cycle and decreased utilization of glutamine for catabolic purposes in the TCA cycle. Results were not conclusive in relation to anabolic utilization of labeled glutamine, since it is unclear to what extent the observed minor TAp63α-dependent increases of glutamine-derived labeling in palmitate could be tied to increased rates of reductive carboxylation and de novo synthesis of fatty acids. Finally, bioinformatics elaborations highlighted a link between patient survival rates and the co-expression of p63 and rate limiting enzymes of the pentose phosphate pathway, G6PD and PGD. PMID:25229745
Marini, Juan C; Lanpher, Brendan C; Scaglia, Fernando; O'Brien, William E; Sun, Qin; Garlick, Peter J; Jahoor, Farook
2011-01-01
Background: Phenylbutyrate is a drug used in patients with urea cycle disorder to elicit alternative pathways for nitrogen disposal. However, phenylbutyrate administration decreases plasma branched-chain amino acid (BCAA) concentrations, and previous research suggests that phenylbutyrate administration may increase leucine oxidation, which would indicate increased protein degradation and net protein loss. Objective: We investigated the effects of phenylbutyrate administration on whole-body protein metabolism, glutamine, leucine, and urea kinetics in healthy and ornithine transcarbamylase–deficient (OTCD) subjects and the possible benefits of BCAA supplementation during phenylbutyrate therapy. Design: Seven healthy control and 7 partial-OTCD subjects received either phenylbutyrate or no treatment in a crossover design. In addition, the partial-OTCD and 3 null-OTCD subjects received phenylbutyrate and phenylbutyrate plus BCAA supplementation. A multitracer protocol was used to determine the whole-body fluxes of urea and amino acids of interest. Results: Phenylbutyrate administration reduced ureagenesis by ≈15% without affecting the fluxes of leucine, tyrosine, phenylalanine, or glutamine and the oxidation of leucine or phenylalanine. The transfer of 15N from glutamine to urea was reduced by 35%. However, a reduction in plasma concentrations of BCAAs due to phenylbutyrate treatment was observed. BCAA supplementation did not alter the respective baseline fluxes. Conclusions: Prolonged phenylbutyrate administration reduced ureagenesis and the transfer of 15N from glutamine to urea without parallel reductions in glutamine flux and concentration. There were no changes in total-body protein breakdown and amino acid catabolism, which suggests that phenylbutyrate can be used to dispose of nitrogen effectively without adverse effects on body protein economy. PMID:21490144
Targeting hepatic glutaminase activity to ameliorate hyperglycemia.
Miller, Russell A; Shi, Yuji; Lu, Wenyun; Pirman, David A; Jatkar, Aditi; Blatnik, Matthew; Wu, Hong; Cárdenas, César; Wan, Min; Foskett, J Kevin; Park, Junyoung O; Zhang, Yiyi; Holland, William L; Rabinowitz, Joshua D; Birnbaum, Morris J
2018-05-01
Glucagon levels increase under homeostatic, fasting conditions, promoting the release of glucose from the liver by accelerating the breakdown of glycogen (also known as glycogenolysis). Glucagon also enhances gluconeogenic flux, including from an increase in the hepatic consumption of amino acids. In type 2 diabetes, dysregulated glucagon signaling contributes to the elevated hepatic glucose output and fasting hyperglycemia that occur in this condition. Yet, the mechanism by which glucagon stimulates gluconeogenesis remains incompletely understood. Contrary to the prevailing belief that glucagon acts primarily on cytoplasmic and nuclear targets, we find glucagon-dependent stimulation of mitochondrial anaplerotic flux from glutamine that increases the contribution of this amino acid to the carbons of glucose generated during gluconeogenesis. This enhanced glucose production is dependent on protein kinase A (PKA) and is associated with glucagon-stimulated calcium release from the endoplasmic reticulum, activation of mitochondrial α-ketoglutarate dehydrogenase, and increased glutaminolysis. Mice with reduced levels of hepatic glutaminase 2 (GLS2), the enzyme that catalyzes the first step in glutamine metabolism, show lower glucagon-stimulated glutamine-to-glucose flux in vivo, and GLS2 knockout results in higher fasting plasma glucagon and glutamine levels with lower fasting blood glucose levels in insulin-resistant conditions. As found in genome-wide association studies (GWAS), human genetic variation in the region of GLS2 is associated with higher fasting plasma glucose; here we show in human cryopreserved primary hepatocytes in vitro that these natural gain-of-function missense mutations in GLS2 result in higher glutaminolysis and glucose production. These data emphasize the importance of gluconeogenesis from glutamine, particularly in pathological states of increased glucagon signaling, while suggesting a possible new therapeutic avenue to treat hyperglycemia.
Koo, Ga Hee; Woo, Jinhee; Kang, Sungwhun; Shin, Ki Ok
2014-08-01
[Purpose] This study was conducted to understand the impacts of BCAA (branched-chain amino acid) and glutamine supplementation on the degree of blood fatigue factor stimulation and cytokines along with performance of exercise at the maximal intensity. [Subjects] Five male juvenile elite rowing athletes participated in this study as the subjects; they took 3 tests and received placebo supplementation (PS), BCAA supplementation (BS), and glutamine supplementation (GS). [Methods] The exercise applied in the tests was 2,000 m of rowing at the maximal intensity using an indoor rowing machine, and blood samples were collected 3 times, while resting, at the end of exercise, and after 30 min of recovery, to analyze the blood fatigue factors (lactate, phosphorous, ammonia, creatine kinase (CK)) and blood cytokines (IL (interleukin)-6, 8, 15). [Results] The results of the analysis showed that the levels of blood phosphorous in the BS and GS groups at the recovery stage were decreased significantly compared with at the end of exercise, and the level of CK appeared lower in the GS group alone at recovery stage than at the end of exercise. The level of blood IL-15 in the PS and BS groups appeared higher at the end of exercise compared with the resting stage. [Conclusion] It seemed that glutamine supplementation had a positive effect on the decrease in fatigue factor stimulation at the recovery stage after maximal intensity exercise compared with supplementation with the placebo or BCAA. Besides, pre-exercise glutamine supplementation seemed to help enhance immune function and the defensive inflammatory reaction.
Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo
2003-03-14
Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.
Molchanova, Svetlana M; Oja, Simos S; Saransaari, Pirjo
2007-01-01
Taurine, a non-protein amino acid, acts as an osmoregulator and inhibitory neuromodulator in the brain. Here we studied the effects of intraperitoneal injections of taurine on the concentrations of glutamate and GABA, and their precursors, glutamine and alanine, in the rat striatum and hippocampus. Injections of 0.25, 0.5 and 1 g/kg taurine led to a gradual increase in taurine tissue concentrations in both hippocampus and striatum. Glutamate and GABA also increased in the hippocampus, but not in the striatum. Glutamine increased and alanine decreased markedly in both brain structures. The results corroborate the neuromodulatory role of taurine in the brain. Taurine administration results in an imbalance in inhibitory and excitatory neurotransmission in the glutamatergic (hippocampus) and GABAergic (striatum) brain structures, affecting more markedly the neurotransmitter precursors.
Hirao, Yoshinori; Mihara, Yasuhiro; Kira, Ikuo; Abe, Isao; Yokozeki, Kenzo
2013-01-01
An enzymatic production method for synthesizing L-alanyl-L-glutamine (Ala-Gln) from L-alanine methyl ester hydrochloride (AlaOMe) and L-glutamine (Gln) was developed in this study. The cultivation conditions for an Escherichia coli strain overexpressing α-amino acid ester acyltransferase from Sphingobacterium siyangensis AJ 2458 (SAET) and reaction conditions for Ala-Gln production were optimized. A high cell density culture broth prepared by fed-batch cultivation showed 440 units/mL of Ala-Gln-producing activity. In addition, an Ala-Gln-producing reaction using intact E. coli cells overexpressing SAET under optimum conditions was conducted. A total Ala-Gln yield of 69.7 g/L was produced in 40 min. The molar yield was 67% against both AlaOMe and Gln.
Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa
2016-01-01
In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2) > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. Copyright © 2015 John Wiley & Sons, Ltd.
The betaine profile of cereal flours unveils new and uncommon betaines.
Servillo, Luigi; D'Onofrio, Nunzia; Giovane, Alfonso; Casale, Rosario; Cautela, Domenico; Ferrari, Giovanna; Castaldo, Domenico; Balestrieri, Maria Luisa
2018-01-15
We report the LC-ESI-MS/MS determination of betaines in commercial flours of cereals and pseudocereals most utilized in human nutrition. Results showed that glycine betaine, trigonelline, proline betaine, N ε -trimethyllysine were metabolites common to all examined flours, whereas an uncommon betaine, valine betaine, and glutamine betaine were present only in flours of barley, rye, oat, durum wheat, winter wheat, Triticum dicoccum and Triticum monococcum. Valine betaine and glutamine betaine, the latter never reported before in plants and animals, are not evenly distributed in the Poaceae family, but their presence or absence in flours depends on the subfamily to which the plant belongs. Interestingly, we also report for the first time the occurrence of pipecolic acid betaine (homostachydrine) and its precursor 1,2-N-methylpipecolic acid in rye flour. These two metabolites were not detected in any other cereal or pseudocereal flour, suggesting their potential role as markers of rye flour occurrence in cereal-based foods. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela
2016-10-01
Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.
Glutamine synthetase immunor present in oligodendroglia of regions of the central nervous system
NASA Technical Reports Server (NTRS)
D'Amelio, Fernando; Eng, Lawrence F.; Gibbs, Michael A.
1990-01-01
Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.
ERIC Educational Resources Information Center
Moore, Constance M.; Frazier, Jean A.; Glod, Carol A.; Breeze, Janis L.; Dieterich, Megan; Finn, Chelsea T.; deB. Frederick, Blaise; Renshaw, Perry F.
2007-01-01
Objective: The purpose of this study was to use proton magnetic resonance spectroscopy, at 4.0 T, to explore the glutamine and glutamate levels in the anterior cingulate cortex of children and adolescents with bipolar disorder (BPD; medicated and unmedicated) and healthy comparison subjects (HCSs). We hypothesized that unmedicated children with…
Targeting Metabolic Survival Pathways in Lung Cancer via Combination Therapy
2014-06-01
B1, non-small cell lung cancer, glutamine metabolism, biguanides 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF...combination therapy (months 15-16) Task 5. In vivo testing of biguanide and glutamine metabolism inhibitors in xenograft models of LKB1-proficient and...combination therapies in xenograft mice (months 12-15) IACUC and ACURO approval have been granted for in vivo xenograft studies, which will commence in
Guo, Jing; Man, Zaiwei; Rao, Zhiming; Xu, Meijuan; Yang, Taowei; Zhang, Xian; Xu, Zhenghong
2017-03-01
There are four nitrogen atoms in L-arginine molecule and the nitrogen content is 32.1%. By now, metabolic engineering for L-arginine production strain improvement was focused on carbon flux optimization. In previous work, we obtained an L-arginine-producing Corynebacterium crenatum SDNN403 (ARG) through screening and mutation breeding. In this paper, a strain engineering strategy focusing on nitrogen supply and ammonium assimilation for L-arginine production was performed. Firstly, the effects of nitrogen atom donor (L-glutamate, L-glutamine and L-aspartate) addition on L-arginine production of ARG were studied, and the addition of L-glutamine and L-aspartate was beneficial for L-arginine production. Then, the glutamine synthetase gene glnA and aspartase gene aspA from E. coli were overexpressed in ARG for increasing the L-glutamine and L-aspartate synthesis, and the L-arginine production was effectively increased. In addition, the L-glutamate supply re-emerged as a limiting factor for L-arginine biosynthesis. Finally, the glutamate dehydrogenase gene gdh was co-overexpressed for further enhancement of L-arginine production. The final strain could produce 53.2 g l -1 of L-arginine, which was increased by 41.5% compared to ARG in fed-batch fermentation.
Sorting nexin 27 (SNX27) regulates the trafficking and activity of the glutamine transporter ASCT2.
Yang, Zhe; Follett, Jordan; Kerr, Markus C; Clairfeuille, Thomas; Chandra, Mintu; Collins, Brett M; Teasdale, Rohan D
2018-05-04
Alanine-, serine-, cysteine-preferring transporter 2 (ASCT2, SLC1A5) is responsible for the uptake of glutamine into cells, a major source of cellular energy and a key regulator of mammalian target of rapamycin (mTOR) activation. Furthermore, ASCT2 expression has been reported in several human cancers, making it a potential target for both diagnostic and therapeutic purposes. Here we identify ASCT2 as a membrane-trafficked cargo molecule, sorted through a direct interaction with the PDZ domain of sorting nexin 27 (SNX27). Using both membrane fractionation and subcellular localization approaches, we demonstrate that the majority of ASCT2 resides at the plasma membrane. This is significantly reduced within CrispR-mediated SNX27 knockout (KO) cell lines, as it is missorted into the lysosomal degradation pathway. The reduction of ASCT2 levels in SNX27 KO cells leads to decreased glutamine uptake, which, in turn, inhibits cellular proliferation. SNX27 KO cells also present impaired activation of the mTOR complex 1 (mTORC1) pathway and enhanced autophagy. Taken together, our data reveal a role for SNX27 in glutamine uptake and amino acid-stimulated mTORC1 activation via modulation of ASCT2 intracellular trafficking. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Minguetti-Câmara, Vania C; Marques, Any de C R; Schiavon, Fabiana P M; Vilela, Vanessa R; Bruschi, Marcos L; Bazotte, Roberto Barbosa
2014-10-21
We compared the effects of oral administration of high-dose or low-dose glutamine dipeptide (GDP), alanine (ALA), glutamine (GLN), and ALA + GLN on the blood availability of amino acids in rats submitted to insulin-induced hypoglycemia (IIH). Insulin detemir (1 U/kg) was intraperitoneally injected to produce IIH; this was followed by oral administration of GDP, GLN + ALA, GLN, or ALA. We observed higher blood levels of GLN, 30 min after oral administration of high-dose GDP (1000 mg/kg) than after administration of ALA (381 mg/kg) + GLN (619 mg/kg), GLN (619 mg/kg), or ALA (381 mg/kg). However, we did not observe the same differences after oral administration of low-dose GDP (100 mg/kg) compared with ALA (38.1 mg/kg) + GLN (61.9 mg/kg), GLN (61.9 mg/kg), or ALA (38.1 mg/kg). We also observed less liver catabolism of GDP compared to ALA and GLN. In conclusion, high-dose GDP promoted higher blood levels of GLN than oral ALA + GLN, GLN, or ALA. Moreover, the lower levels of liver catabolism of GDP, compared to ALA or GLN, contributed to the superior performance of high-dose GDP in terms of blood availability of GLN.
Alt, Jesse; Potter, Michelle C.; Rojas, Camilo; Slusher, Barbara S.
2015-01-01
Glutamine is an abundant amino acid that plays pivotal roles in cell growth, cell metabolism and neurotransmission. Dysregulation of glutamine-utilizing pathways has been associated with pathological conditions such as cancer and neurodegenerative diseases. 6-Diazo-5-Oxo-L-Norleucine (DON) is a reactive glutamine analog that inhibits enzymes affecting glutamine metabolism such as glutaminase, 2-N-amidotransferase, L-asparaginase and several enzymes involved in pyrimidine and purine de novo synthesis. As a result, DON is actively used in preclinical models of cancer and neurodegenerative disease. Moreover, there have been several clinical trials using DON to treat a variety of cancers. Considerations of dose and exposure are especially important with DON treatment due to its narrow therapeutic window and significant side effects. Consequently, a robust quantification bioassay is of interest. DON is a polar unstable molecule which has made quantification challenging. Here we report on the characterization of a bioanalytical method to quantify DON in tissue samples involving DON derivatization with 3N HCl in butanol. The derivatized product is lipophilic and stable. Detection of this analyte by mass spectrometry is fast, specific and can be used to quantify DON in plasma and brain tissue with a limit of detection in the low nanomolar level. PMID:25584882
Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification
NASA Astrophysics Data System (ADS)
Tessarz, Peter; Santos-Rosa, Helena; Robson, Sam C.; Sylvestersen, Kathrine B.; Nelson, Christopher J.; Nielsen, Michael L.; Kouzarides, Tony
2014-01-01
Nucleosomes are decorated with numerous post-translational modifications capable of influencing many DNA processes. Here we describe a new class of histone modification, methylation of glutamine, occurring on yeast histone H2A at position 105 (Q105) and human H2A at Q104. We identify Nop1 as the methyltransferase in yeast and demonstrate that fibrillarin is the orthologue enzyme in human cells. Glutamine methylation of H2A is restricted to the nucleolus. Global analysis in yeast, using an H2AQ105me-specific antibody, shows that this modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. We show that the Q105 residue is part of the binding site for the histone chaperone FACT (facilitator of chromatin transcription) complex. Methylation of Q105 or its substitution to alanine disrupts binding to FACT in vitro. A yeast strain mutated at Q105 shows reduced histone incorporation and increased transcription at the ribosomal DNA locus. These features are phenocopied by mutations in FACT complex components. Together these data identify glutamine methylation of H2A as the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes.
Beyl, Stanislav; Depil, Katrin; Hohaus, Annette; Stary-Weinzinger, Anna; Linder, Tobias; Timin, Eugen; Hering, Steffen
2012-10-01
Voltage sensors trigger the closed-open transitions in the pore of voltage-gated ion channels. To probe the transmission of voltage sensor signalling to the channel pore of Ca(V)1.2, we investigated how elimination of positive charges in the S4 segments (charged residues were replaced by neutral glutamine) modulates gating perturbations induced by mutations in pore-lining S6 segments. Neutralisation of all positively charged residues in IIS4 produced a functional channel (IIS4(N)), while replacement of the charged residues in IS4, IIIS4 and IVS4 segments resulted in nonfunctional channels. The IIS4(N) channel displayed activation kinetics similar to wild type. Mutations in a highly conserved structure motif on S6 segments ("GAGA ring": G432W in IS6, A780T in IIS6, G1193T in IIIS6 and A1503G in IVS6) induce strong left-shifted activation curves and decelerated channel deactivation kinetics. When IIS4(N) was combined with these mutations, the activation curves were shifted back towards wild type and current kinetics were accelerated. In contrast, 12 other mutations adjacent to the GAGA ring in IS6-IVS6, which also affect activation gating, were not rescued by IIS4(N). Thus, the rescue of gating distortions in segments IS6-IVS6 by IIS4(N) is highly position-specific. Thermodynamic cycle analysis supports the hypothesis that IIS4 is energetically coupled with the distantly located GAGA residues. We speculate that conformational changes caused by neutralisation of IIS4 are not restricted to domain II (IIS6) but are transmitted to gating structures in domains I, III and IV via the GAGA ring.
Chen, Yi-Yu; Lo, Huei-Fen; Wang, Tzu-Fan; Lin, Min-Guan; Lin, Long-Liu; Chi, Meng-Chun
2015-01-01
In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris-HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT. Copyright © 2015 Elsevier Inc. All rights reserved.
Magnetic resonance spectroscopy metabolite profiles predict survival in paediatric brain tumours.
Wilson, Martin; Cummins, Carole L; Macpherson, Lesley; Sun, Yu; Natarajan, Kal; Grundy, Richard G; Arvanitis, Theodoros N; Kauppinen, Risto A; Peet, Andrew C
2013-01-01
Brain tumours cause the highest mortality and morbidity rate of all childhood tumour groups and new methods are required to improve clinical management. (1)H magnetic resonance spectroscopy (MRS) allows non-invasive concentration measurements of small molecules present in tumour tissue, providing clinically useful imaging biomarkers. The primary aim of this study was to investigate whether MRS detectable molecules can predict the survival of paediatric brain tumour patients. Short echo time (30ms) single voxel (1)H MRS was performed on children attending Birmingham Children's Hospital with a suspected brain tumour and 115 patients were included in the survival analysis. Patients were followed-up for a median period of 35 months and Cox-Regression was used to establish the prognostic value of individual MRS detectable molecules. A multivariate model of survival was also investigated to improve prognostic power. Lipids and scyllo-inositol predicted poor survival whilst glutamine and N-acetyl aspartate predicted improved survival (p<0.05). A multivariate model of survival based on three MRS biomarkers predicted survival with a similar accuracy to histologic grading (p<5e-5). A negative correlation between lipids and glutamine was found, suggesting a functional link between these molecules. MRS detectable biomolecules have been identified that predict survival of paediatric brain tumour patients across a range of tumour types. The evaluation of these biomarkers in large prospective studies of specific tumour types should be undertaken. The correlation between lipids and glutamine provides new insight into paediatric brain tumour metabolism that may present novel targets for therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
D'Amelio, F.; Eng, L. F.; Gibbs, M. A.
1990-01-01
Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.
Glycyl-L-Glutamine: A Dipeptide Neurotransmitter Derived from Beta- Endorphin
1994-03-31
pentobarbital anesthetized rats 15 min after 8-endorphin injection. S-Endorphin (0.5 nmol) followed by saline injection produced a rapid and sustained reduction ...glutamine did not influence the reduction in plasma pH caused by B-endorphin, however. When administered icy to rats that had not been pretreated...into specific thermoregulatory sites the medial preoptic area (mPOA) of the hypothalamus (Resch and Simpson, 1991). This finding provided us with an
Amino acid metabolism in tumour-bearing mice.
Rivera, S; Azcón-Bieto, J; López-Soriano, F J; Miralpeix, M; Argilés, J M
1988-01-01
Mice bearing the Lewis lung carcinoma showed a high tumour glutaminase activity and significantly higher concentrations of most amino acids than in both the liver and the skeletal muscle of the host. Tumour tissue slices showed a marked preference for glutamine, especially for oxidation of its skeleton to CO2. It is proposed that the metabolism of this particular carcinoma is focused on amino acid degradation, glutamine being its preferred substrate. PMID:3342022
Saum, Stephan H; Müller, Volker
2008-01-01
The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a glutamine synthetase) as well as the glutamine synthetase activity were identified as chloride dependent steps. Halobacillus halophilus switches its osmolyte strategy and produces proline as the main compatible solute at high salinities. Furthermore, Halobacillus halophilus also shifts its osmolyte strategy at the transition from the exponential to the stationary phase where proline is exchanged by ectoine. Glutamate was found as a “second messenger” essential for proline production. This observation leads to a new model of sensing salinity by sensing the physico-chemical properties of different anions. PMID:18442383
Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer
Davidson, Shawn M.; Papagiannakopoulos, Thales; Olenchock, Benjamin A.; Heyman, Julia E.; Keibler, Mark A.; Luengo, Alba; Bauer, Matthew R.; Jha, Abhishek K.; O’Brien, James P.; Pierce, Kerry A.; Gui, Dan Y.; Sullivan, Lucas B.; Wasylenko, Thomas M.; Subbaraj, Lakshmipriya; Chin, Christopher R.; Stephanopolous, Gregory; Mott, Bryan T.; Jacks, Tyler; Clish, Clary B.; Vander Heiden, Matthew G.
2016-01-01
SUMMARY Cultured cells convert glucose to lactate and glutamine is the major source of tricarboxylic acid (TCA) cycle carbon, but whether the same metabolic phenotype is found in tumors is less studied. We infused mice with lung cancers with isotope-labeled glucose or glutamine and compared the fate of these nutrients in tumor and normal tissue. As expected, lung tumors exhibit increased lactate production from glucose. However, glutamine utilization by both lung tumors and normal lung was minimal, with lung tumors showing increased glucose contribution to the TCA cycle relative to normal lung tissue. Deletion of enzymes involved in glucose oxidation demonstrates that glucose carbon contribution to the TCA cycle is required for tumor formation. These data suggest that understanding nutrient utilization by tumors can predict metabolic dependencies of cancers in vivo. Furthermore, these data argue that the in vivo environment is an important determinant of the metabolic phenotype of cancer cells. PMID:26853747