Science.gov

Sample records for glutathione s-conjugate hydrolysis1woa

  1. Overexpression of the Gene Encoding the Multidrug Resistance-Associated Protein Results in Increased ATP-Dependent Glutathione S-Conjugate Transport

    NASA Astrophysics Data System (ADS)

    Muller, Michael; Meijer, Coby; Zaman, Guido J. R.; Borst, Piet; Scheper, Rik J.; Mulder, Nanno H.; de Vries, Elisabeth G. E.; Jansen, Peter L. M.

    1994-12-01

    The multidrug resistance-associated protein (MRP) is a 180- to 195-kDa glycoprotein associated with multidrug resistance of human tumor cells. MRP is mainly located in the plasma membrane and it confers resistance by exporting natural product drugs out of the cell. Here we demonstrate that overexpression of the MRP gene in human cancer cells increases the ATP-dependent glutathione S-conjugate carrier activity in plasma membrane vesicles isolated from these cells. The glutathione S-conjugate export carrier is known to mediate excretion of bivalent anionic conjugates from mammalian cells and is thought to play a role in the elimination of conjugated xenobiotics. Our results suggest that MRP can cause multidrug resistance by promoting the export of drug modification products from cells and they shed light on the reported link between drug resistance and cellular glutathione and glutathione S-transferase levels.

  2. Mutagenicity of the glutathione and cysteine S-conjugates of the haloalkenes 1,1,2-trichloro-3,3,3-trifluoro-1-propene and trichlorofluoroethene in the Ames test in comparison with the tetrachloroethene-analogues.

    PubMed

    Dreessen, Birte; Westphal, Götz; Bünger, Jürgen; Hallier, Ernst; Müller, Michael

    2003-08-05

    The nephrotoxic and nephrocarcinogenic potential of the haloalkenes is associated with the conjugation of the chemicals to L-glutathione. Subsequent processing of the haloalkene glutathione S-conjugates via the cysteine conjugate beta-lyase pathway in the mammalian kidney yields nephrotoxic and mutagenic species. To investigate whether S-conjugates of the model chlorofluoroalkenes 1,1,2-trichloro-3,3,3-trifluoro-1-propene (CAS # 431-52-7) and trichlorofluoroethene (CAS # 359-29-5) show comparable effects, we have synthesised the respective cysteine and glutathione S-conjugates and subjected them to the Ames test. The cysteine and glutathione S-conjugates of tetrachloroethene (CAS # 127-18-4), S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC) and S-(1,2,2-trichlorovinyl)glutathione (TCVG) were used as positive controls and reference substances. S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)-L-cysteine (DCTFPC) and S-(2,2-dichloro-1-fluorovinyl)-L-cysteine (DCFVC) showed clear dose-dependent mutagenic effects with the Salmonella typhimurium tester strains TA100 and TA98. Using TCVC as a reference substance the following ranking in mutagenic response was established: TCVC>DCTFPC>DCFVC. S-(1,2-dichloro-3,3,3-trifluoro-1-propenyl)glutathione (DCTFPG) and S-(2,2-dichloro-1-fluorovinyl)glutathione (DCFVG) showed potent dose-dependent mutagenic effects with the S. typhimurium tester strain TA100 in the presence of a rat kidney S9-protein fraction; tests carried out in the absence of the bioactivation system resulted only in background rates of revertants. Using TCVG as a reference substance the following ranking in mutagenic response was established: TCVG=DCTFPG>DCFVG. The data obtained provide a basis for further studies on the mutagenic and presumable carcinogenic potential of the substances.

  3. AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with Atmrp1.

    PubMed Central

    Lu, Y P; Li, Z S; Drozdowicz, Y M; Hortensteiner, S; Martinoia, E; Rea, P A

    1998-01-01

    Three ATP binding cassette (ABC) transporter-like activities directed toward large amphipathic organic anions have recently been identified on the vacuolar membrane of plant cells. These are the Mg-ATP-energized, vanadate-inhibitable vacuolar accumulation of glutathione S-conjugates (GS conjugates), chlorophyll catabolites, and bile acids, respectively. Although each of these activities previously had been assigned to distinct pumps in native plant membranes, we describe here the molecular cloning, physical mapping, and heterologous expression of a gene, AtMRP2, from Arabidopsis thaliana that encodes a multispecific ABC transporter competent in the transport of both GS conjugates and chlorophyll catabolites. Unlike its isoform, AtMRP1, which transports the model Brassica napus chlorophyll catabolite transporter substrate Bn-NCC-1 at low efficiency, heterologously expressed AtMRP2 has the facility for simultaneous high-efficiency parallel transport of GS conjugates and Bn-NCC-1. The properties of AtMRP2 therefore establish a basis for the manipulation of two previously identified plant ABC transporter activities and provide an explanation for how the comparable transporter in native plant membranes would be systematically mistaken for two distinct transporters. These findings are discussed with respect to the functional organization of AtMRP2, the inability of AtMRP2 and AtMRP1 to transport the model bile acid transporter substrate taurocholate (despite the pronounced sensitivity of both to direct inhibition by this agent), the differential patterns of expression of their genes in the intact plant, and the high capacity of AtMRP2 for the transport of glutathionated herbicides and anthocyanins. PMID:9490749

  4. 3-Sulfanyl-4-methylpentan-1-ol in Dry-Hopped Beers: First Evidence of Glutathione S-Conjugates in Hop (Humulus lupulus L.).

    PubMed

    Kankolongo Cibaka, Marie-Lucie; Decourrière, Laura; Lorenzo-Alonso, Celso-José; Bodart, Etienne; Robiette, Raphaël; Collin, Sonia

    2016-11-16

    Monovarietal dry-hopped beers were produced with the dual-purpose hop cultivars Amarillo, Hallertau Blanc, and Mosaic. The grapefruit-like 3-sulfanyl-4-methylpentan-1-ol was found in all three beers at concentrations much higher than expected on the basis of the free thiol content in hop. Even cysteinylated precursors proved unable to explain our results. As observed in wine, the occurrence of S-glutathione precursors was therefore suspected in hop. The analytical standards of S-3-(4-methyl-1-hydroxypentyl)glutathione, never described before, and of S-3-(1-hydroxyhexyl)glutathione, previously evidenced in grapes, were chemically synthesized. An optimized extraction of glutathionylated precursors was then applied to Amarillo, Hallertau Blanc, and Mosaic hop samples. HPLC-ESI(+)MS/MS revealed, for the first time, the occurrence of S-3-(1-hydroxyhexyl)glutathione and S-3-(4-methyl-1-hydroxypentyl)glutathione in hop, at levels well above those reported for their cysteinylated counterparts. S-3-(1-Hydroxyhexyl)glutathione emerged in all cases as the major adduct in hop. Yet, although 3-sulfanylhexan-1-ol seems relatively ubiquitous in free, cysteinylated, and glutathionylated forms, the glutathione adduct of 3-sulfanyl-4-methylpentan-1-ol, never evidenced in other plants up to now, was found only in the Hallertau Blanc variety.

  5. Glutathione-S-conjugate transport in plants

    DOEpatents

    Rea, Philip A.; Lu, Yu-Ping; Li, Ze-Sheng

    2000-01-01

    The invention includes an isolated DNA encoding a plant GS-X pump polypeptide and an isolated preparation of a plant GS-X pump polypeptide. Also included is an isolated preparation of a nucleic acid which is antisense in orientation to a portion or all of a plant GS-X pump gene. The invention also includes a cells, vectors and transgenic plants having an isolated DNA encoding a plant GS-X pump and methods of use thereof. In addition, the invention relates to plant GS-X pump promoter sequences and the uses thereof.

  6. Glutathione

    PubMed Central

    Noctor, Graham; Queval, Guillaume; Mhamdi, Amna; Chaouch, Sejir; Foyer, Christine H.

    2011-01-01

    Glutathione is a simple sulfur compound composed of three amino acids and the major non-protein thiol in many organisms, including plants. The functions of glutathione are manifold but notably include redox-homeostatic buffering. Glutathione status is modulated by oxidants as well as by nutritional and other factors, and can influence protein structure and activity through changes in thiol-disulfide balance. For these reasons, glutathione is a transducer that integrates environmental information into the cellular network. While the mechanistic details of this function remain to be fully elucidated, accumulating evidence points to important roles for glutathione and glutathione-dependent proteins in phytohormone signaling and in defense against biotic stress. Work in Arabidopsis is beginning to identify the processes that govern glutathione status and that link it to signaling pathways. As well as providing an overview of the components that regulate glutathione homeostasis (synthesis, degradation, transport, and redox turnover), the present discussion considers the roles of this metabolite in physiological processes such as light signaling, cell death, and defense against microbial pathogen and herbivores. PMID:22303267

  7. Identification of selenium-containing glutathione S-conjugates in a yeast extract by two-dimensional liquid chromatography with inductively coupled plasma MS and nanoelectrospray MS/MS detection.

    PubMed

    Lindemann, Torsten; Hintelmann, Holger

    2002-09-15

    An approach for the identification of unknown selenium-containing biomolecules was developed, enabling the identification of selenodiglutathione (GS-Se-SG) and the mixed selenotrisulfide of glutathione and cysteinylglycine (GS-Se-SCG) in aqueous yeast extracts. The method consists of two-dimensional liquid chromatography, inductively coupled plasma mass spectrometry (ICPMS) and nanoelectrospray tandem mass spectrometry. Analytes were separated by size-exclusion chromatography followed by preconcentration and separation on a porous graphitic carbon HPLC column. The HPLC effluent was monitored for selenium by ICPMS, and two selenium-containing fractions were isolated and analyzed by nanoelectrospray MS. The nanoelectrospray technique has a low sample consumption of approximately 80 nL/min, enabling a preconcentration of the sample to a few microliters. Mass spectra of the two fractions showed the characteristic Se isotopic pattern centered at m/z 693.1 and 564.0 for the [M + H]+ 80Se ions. MS/MS spectra of adjacent parent ions confirmed the presence of Se. The two selenium species were identified as GS-Se-SG and GS-Se-SCG by collision induced dissociation (CID). The accurately measured masses of the most abundant 691 and 693 u parent ions are in good agreement (differences = 3 ppm) with the theoretical masses. To our knowledge, this is the first identification of GS-Se-SG and GS-Se-SCG in biological matrixes by MS/MS.

  8. Cysteine S-conjugate β-lyases

    PubMed Central

    Cooper, Arthur J. L.; Krasnikov, Boris F.; Pinto, John T.; Bruschi, Sam A.

    2010-01-01

    Cysteine S-conjugate β-lyases are pyridoxal 5′-phosphate (PLP)-containing enzymes that catalyze the conversion of cysteine S-conjugates [RSCH2CH(NH3+)CO2−] and selenium Se-conjugates [RSeCH2CH(NH3+)CO2−] that contain a leaving group in the β position to pyruvate, ammonium and a sulfur-containing fragment (RSH) or selenium-containing fragment (RSeH), respectively. At least ten PLP enzymes catalyze β-elimination reactions with such cysteine S-conjugates. All are enzymes involved in amino acid metabolism that do not normally catalyze a β-lyase reaction, but catalyze a non-physiological β-lyase side reaction that depends on the electron-withdrawing properties of the –SR or –SeR moiety. In the case of the cysteine S-conjugates, if the eliminated RSH is stable the compound may be S-thiomethylated and excreted (thiomethyl shunt) or S-glucuronidated and harmlessly excreted [the possibility that RSeH compounds may be similarly metabolized has not been extensively studied]. If, however, RSH is chemically reactive the cysteine S-conjugate may be toxic as a result of the β-lyase reaction. The cysteine S-conjugate β-lyase pathway is of particular interest to toxicologists because it is involved in the bioactivation (toxification) of halogenated alkenes and certain drugs. PMID:20949433

  9. Bioactivation mechanism of cytotoxic homocysteine S-conjugates.

    PubMed

    Lash, L H; Elfarra, A A; Rakiewicz-Nemeth, D; Anders, M W

    1990-02-01

    S-(1,2-Dichlorovinyl)-L-homocysteine is a much more potent nephrotoxin than the corresponding cysteine S-conjugate S-(1,2-dichlorovinyl)-L-cysteine (A. A. Elfarra, L. H. Lash, and M. W. Anders (1986) Proc. Natl. Acad. Sci. USA 83, 2667-2671). The objective of the present experiments was to test the hypothesis that the increased toxicity of homocysteine S-conjugates may be associated with the formation of the reactive metabolite 2-oxo-3-butenoic acid, which may arise via a nonenzymatic retro-Michael elimination reaction from the 2-oxo acid metabolites of homocysteine S-conjugates. S-(2-Benzothiazolyl)-L-homocysteine, which was a substrate for purified bovine kidney cysteine conjugate beta-lyase (glutamine transaminase K) and whose metabolism was dependent on the presence of a 2-oxo acid, was cytotoxic in isolated rat kidney cells and was toxic to rat renal mitochondria, whereas the cysteine S-conjugate S-(2-benzothiazolyl)-L-cysteine had little effect. L-Methionine sulfoximine, L-canavanine, and the Michael acceptor methyl vinyl ketone were cytotoxic. The 2-hydroxy acid analogs of S-(1,2-dichlorovinyl)-L-homocysteine and 2-oxo-3-butenoic acid, S-(1,2-dichlorovinyl)-2-hydroxy-4-mercaptobutanoic acid and 2-hydroxy-3-butenoic acid, respectively, which are expected to be metabolized by rat renal L-2-hydroxy (L-amino) acid oxidase to yield 2-oxo-3-butenoic acid, were also cytotoxic. To obtain evidence for the formation of 2-oxo-3-butenoic acid as a product of the metabolism of L-homocysteine S-conjugates and analogs, trapping experiments were conducted. S-(2-Benzothiazolyl)-L-homocysteine, S-(1,2-dichlorovinyl)-L-homocysteine, L-methionine sulfoximine, and L-canavanine were converted by snake venom L-amino acid oxidase to 2-oxo-3-butenoic acid, which was trapped by the nucleophile methanethiol to yield 4-methylthio-2-oxobutanoic acid; the trapped product was derivatized with 2,4-dinitrophenylhydrazine and was identified by its electronic absorption spectrum and by high

  10. Nephrotoxicity of halogenated alkenyl cysteine-S-conjugates.

    PubMed

    Nagelkerke, J F; Boogaard, P J

    1991-01-01

    In 1916 a relationship was postulated between the occurrence of aplastic anaemia in cattle and the soy bean meal that they had been fed, which had been extracted with trichloroethylene. The toxic compound was later identified as S-(1,2-dichlorovinyl)-L-cysteine (DCV-Cys). In addition to effects on the hemopoietic system it also produced nephrotoxicity in calves. In rats only renal tubular necrosis was found. Further research demonstrated that other halogenated hydrocarbons produced similar nephrotoxicity. The haloalkenyl cysteine-S-conjugates (Cys-S-conjugates) have extensively been studied; this has provided new insight into the biochemical processes that lead to nephrotoxicity. It has been shown that a combination of transport processes and specific metabolic pathways, resulting in reactive intermediates that bind to cellular macromolecules, makes the kidney vulnerable to the noxious effects of the haloalkenyl Cys-S-conjugates. The first part of this review gives a brief overview of the bioactivation of the haloalkenes; in the second part the present knowledge of the underlying mechanisms of cytotoxicity will be outlined.

  11. Functional Characterization of Corynebacterium glutamicum Mycothiol S-Conjugate Amidase

    PubMed Central

    Si, Meiru; Long, Mingxiu; Chaudhry, Muhammad Tausif; Xu, Yixiang; Zhang, Pan; Zhang, Lei; Shen, Xihui

    2014-01-01

    The present study focuses on the genetic and biochemical characterization of mycothiol S-conjugate amidase (Mca) of Corynebacterium glutamicum. Recombinant C. glutamicum Mca was heterologously expressed in Escherichia coli and purified to apparent homogeneity. The molecular weight of native Mca protein determined by gel filtration chromatography was 35 kDa, indicating that Mca exists as monomers in the purification condition. Mca showed amidase activity with mycothiol S-conjugate of monobromobimane (MSmB) in vivo while mca mutant lost the ability to cleave MSmB. In addition, Mca showed limited deacetylase activity with N-acetyl-D-glucosamine (GlcNAc) as substrate. Optimum pH for amidase activity was between 7.5 and 8.5, while the highest activity in the presence of Zn2+ confirmed Mca as a zinc metalloprotein. Amino acid residues conserved among Mca family members were located in C. glutamicum Mca and site-directed mutagenesis of these residues indicated that Asp14, Tyr137, His139 and Asp141 were important for activity. The mca deletion mutant showed decreased resistance to antibiotics, alkylating agents, oxidants and heavy metals, and these sensitive phenotypes were recovered in the complementary strain to a great extent. The physiological roles of Mca in resistance to various toxins were further supported by the induced expression of Mca in C. glutamicum under various stress conditions, directly under the control of the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH. PMID:25514023

  12. Nephrotoxicity of halogenated alkenyl cysteine-S-conjugates

    SciTech Connect

    Nagelkerke, J.F.; Boogaard, P.J. )

    1991-01-01

    In 1916 a relationship was postulated between the occurrence of aplastic anemia in cattle and the soy bean meal that they had been fed, which had been extracted with trichloroethylene. The toxic compound was later identified as S-(1,2-dichlorovinyl)-L-cysteine (DCV-Cys). In addition to effects on the hemopoietic system it also produced nephrotoxicity in calves. In rats only renal tubular necrosis was found. Further research demonstrated that other halogenated hydrocarbons produced similar nephrotoxicity. The haloalkenyl cysteine-S-conjugates (Cys-D-conjugates) have extensively been studied; this has provided new insight into the biochemical processes that lead to nephrotoxicity. It has been shown that a combination of transport processes and specific metabolic pathways, resulting in reactive intermediates that bind to cellular macromolecules, makes the kidney vulnerable to the noxious effects of the haloakenyl Cys-S-conjugates. The first part of this review gives a brief overview of the bioactivation of the haloalkenes; in the second part the present knowledge of the underlying mechanisms of cytotoxicity is outlined.

  13. Glutathione Transferases

    PubMed Central

    Dixon, David P.; Edwards, Robert

    2010-01-01

    The 55 Arabidopsis glutathione transferases (GSTs) are, with one microsomal exception, a monophyletic group of soluble enzymes that can be divided into phi, tau, theta, zeta, lambda, dehydroascorbate reductase (DHAR) and TCHQD classes. The populous phi and tau classes are often highly stress inducible and regularly crop up in proteomic and transcriptomic studies. Despite much study on their xenobiotic-detoxifying activities their natural roles are unclear, although roles in defence-related secondary metabolism are likely. The smaller DHAR and lambda classes are likely glutathione-dependent reductases, the zeta class functions in tyrosine catabolism and the theta class has a putative role in detoxifying oxidised lipids. This review describes the evidence for the functional roles of GSTs and the potential for these enzymes to perform diverse functions that in many cases are not “glutathione transferase” activities. As well as biochemical data, expression data from proteomic and transcriptomic studies are included, along with subcellular localisation experiments and the results of functional genomic studies. PMID:22303257

  14. Enzymatic conjugation of hexachloro-1,3-butadiene with glutathione. Formation of 1-(glutathion-S-yl)-1,2,3,4,4-pentachlorobuta-1,3-diene and 1,4-bis(glutathion-S-yl)-1,2,3,4-tetrachlorobuta-1,3-diene.

    PubMed

    Dekant, W; Vamvakas, S; Henschler, D; Anders, M W

    1988-01-01

    The glutathione-dependent metabolism of the nephrotoxin and nephrocarcinogen hexachloro-1,3-butadiene (HCBD) was investigated in subcellular fractions from rat liver and kidney. HCBD was metabolized by hepatic glutathione S-transferases to (E)- and (Z)-1-(glutathion-S-yl)-pentachlorobuta-1,3-diene (GPCB) in a ratio of 20:1, which were identified by secondary ion MS and by GC-MS after acid hydrolysis. The formation of GPCB was dependent on time and on protein and glutathione concentrations. Microsomal glutathione S-transferases from rat liver catalyzed GPCB formation more efficiently than did cytosolic glutathione S-transferases; very low rates of GPCB formation were observed in kidney subcellular fractions. GPCB is also a substrate for glutathione S-transferases and is metabolized to a diglutathione conjugate, which was identified by secondary ion MS and 13C NMR spectrometry as 1,4-bis(glutathion-S-yl)-1,2,3,4-tetrachlorobuta-1,3-diene (BTCB). BTCB formation from GPCB was dependent on time and on protein, glutathione, and GPCB concentrations. Hepatic cytosol catalyzed BTCB formation more efficiently than did hepatic microsomes; significant amounts of BTCB were also formed in kidney cytosol. Hepatic formation of glutathione S-conjugates, translocation of the S-conjugates to the kidney, and renal processing to form reactive intermediates may be the cause of HCBD-induced nephrotoxicity and, perhaps, nephrocarcinogenicity.

  15. Role of cytochrome P4503A in cysteine S-conjugates sulfoxidation and the nephrotoxicity of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A) in rats.

    PubMed

    Sheffels, Pam; Schroeder, Jesara L; Altuntas, T Gul; Liggitt, H Denny; Kharasch, Evan D

    2004-09-01

    The volatile anesthetic sevoflurane is degraded to fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE) in anesthesia machines. FDVE is nephrotoxic in rats. FDVE undergoes glutathione conjugation, subsequent conversion to cysteine and mercapturic acid conjugates, and cysteine conjugate metabolism by renal beta-lyase, which is a bioactivation pathway mediating nephrotoxicity in rats. Recent in vitro studies revealed cytochrome P4503A-catalyzed formation of novel sulfoxide metabolites of FDVE cysteine-S and mercapturic acid conjugates in rat liver and kidney microsomes. FDVE-mercapturic acid sulfoxides were more toxic than other FDVE conjugates to renal proximal tubular cells in culture. Nevertheless, the occurrence and toxicological significance of FDVE sulfoxides formation in vivo remain unknown. This investigation determined, in rats in vivo, the existence, role of P4503A, and nephrotoxic consequence of FDVE conjugates sulfoxidation. Rats were pretreated with dexamethasone, phenobarbital, troleandomycin, or nothing (controls) before FDVE, and then, nephrotoxicity, FDVE-mercapturate sulfoxide urinary excretion, and FDVE-mercapturate sulfoxidation by liver microsomes were assessed. The formation of FDVE-mercapturic acid sulfoxide metabolites in vivo and their urinary excretion were unambiguously established by mass spectrometry. Dexamethasone and phenobarbital increased, and troleandomycin decreased (i) liver microsomal FDVE-mercapturic acid sulfoxidation in vitro, (ii) FDVE-mercapturic acid sulfoxide urinary excretion in vivo, and (iii) FDVE nephrotoxicity in vivo assessed by renal histology, blood urea nitrogen concentrations, and urine volume and protein excretion. Urine 3,3,3-trifluoro-2-(fluoromethoxy)propanoic acid, reflecting beta-lyase-dependent FDVE-cysteine S-conjugates metabolism, was minimally affected by the pretreatments. These results demonstrate that FDVE S-conjugates undergo P4503A-catalyzed sulfoxidation in rats in vivo, and this

  16. Glutathione in cyanobacteria

    NASA Technical Reports Server (NTRS)

    Bermudes, D.

    1985-01-01

    The effects of light and O2 on glutathione production were determined. Results of light and dark studies under normal and reduced oxygen tensions were compared to determine the effect of reduction in oxygen tension on glutathione levels. The growth rate of Anacystis nidulans and concurrent production of glutathione is presented. The generation of time of Anacystis nidulans was approximately 12 hours. Results of light and dark incubation of Aphanothece halophytica dominated planktonic microbial community from Pond 4 and Anacystis nidulans under high and low oxygen tension is also presented. It appears that light grown Anacystis nidulans cells have equal amounts of glutathione while dark grown cells produce more glutathione in the presence of increased O2.

  17. A Mitochondria-Targeted Nitroxide/Hemigramicidin S Conjugate Protects Mouse Embryonic Cells Against Gamma Irradiation

    SciTech Connect

    Jiang Jianfei; Belikova, Natalia A.; Hoye, Adam T.; Zhao Qing; Epperly, Michael W.; Greenberger, Joel S.; Wipf, Peter; Kagan, Valerian E.

    2008-03-01

    Purpose: To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in {gamma}-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. Methods and Materials: Cells were incubated with 5-125 before (10 minutes) or after (1 hour) {gamma}-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. Results: Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 {mu}M) effectively suppressed {gamma}-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of {gamma}-irradiated cells. In addition, 5-125 enhanced and prolonged {gamma}-irradiation-induced G{sub 2}/M phase arrest. Conclusions: Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G{sub 2}/M phase, may contribute to the protection.

  18. Quantitative analysis of glutathione and cysteine S-conjugates of microcystin-LR in the liver, kidney and muscle of common carp (Cyprinus carpio) in Lake Taihu.

    PubMed

    Wu, Laiyan; Wang, Songbo; Tao, Min; Xie, Ping; Chen, Jun

    2017-04-01

    Tissue distribution of microcystin (MC)-LR-GSH, MC-LR-Cys and MC-LR of omnivorous fish in Lake Taihu was investigated. MC-LR and MC-LR-Cys were detected in liver, kidney and muscle. The concentration of MC-LR in liver and kidney was 0.052 μg g(-1) DW and 0.067 μg g(-1) DW, respectively. MC-LR-Cys appeared to be an important metabolite with average contents of 1.104 μg g(-1) DW and 0.724 μg g(-1) DW in liver and kidney, and the MC-LR-Cys/MC-LR ratio in liver and kidney reaching as high as 21.4 and 10.8. High MC-LR-Cys/MC-LR ratio and a significant correlation between MC-LR-Cys and MC-LR concentration in liver, suggest that liver is more active in detoxification of MC-LR by formation of MC-LR-Cys for omnivorous fish. Furthermore, there might be a balance between the accumulation and depuration/metabolism of MC-LR-Cys in kidney. The MC-LR-Cys can be formed in kidney directly, or transported from liver or other tissues, while the MC-LR-Cys in kidney might be dissociated to MC-LR or excreted. Although MC-LR and its metabolites were scarcely detected in muscle, it is necessary to investigate the distribution of toxic metabolites in edible muscle.

  19. Glutathione Levels in Human Tumors

    PubMed Central

    Gamcsik, Michael P.; Kasibhatla, Mohit S.; Teeter, Stephanie D.; Colvin, O. Michael

    2013-01-01

    This review summarizes clinical studies in which glutathione was measured in tumor tissue from patients with brain, breast, gastrointestinal, gynecological, head and neck and lung cancer. Glutathione tends to be elevated in breast, ovarian, head and neck and lung cancer and lower in brain and liver tumors compared to disease-free tissue. Cervical, colorectal, gastric and esophageal cancers show both higher and lower levels of tumor glutathione. Some studies show an inverse relationship between patient survival and tumor glutathione. Based on this survey, we recommend approaches that may improve the clinical value of glutathione as a biomarker. PMID:22900535

  20. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology

    PubMed Central

    Ballatori, Nazzareno; Krance, Suzanne M.; Marchan, Rosemarie; Hammond, Christine L.

    2009-01-01

    Reduced glutathione (GSH) is critical for many cellular processes, and both its intracellular and extracellular concentrations are tightly regulated. Intracellular GSH levels are regulated by two main mechanisms: by adjusting the rates of synthesis and of export from cells. Some of the proteins responsible for GSH export from mammalian cells have recently been identified, and there is increasing evidence that these GSH exporters are multispecific and multifunctional, regulating a number of key biological processes. In particular, the multidrug resistance-associated proteins (Mrp/Abcc) appear to mediate GSH export and homeostasis. The Mrp proteins mediate not only GSH efflux, but they also export oxidized glutathione derivatives (e.g., glutathione disulfide (GSSG), S-nitrosoglutathione (GS-NO), and glutathione-metal complexes), as well as other glutathione S-conjugates. The ability to export both GSH and oxidized derivatives of GSH, endows these transporters with the capacity to directly regulate the cellular thiol-redox status, and therefore the ability to influence many key signaling and biochemical pathways. Among the many processes that are influenced by the GSH transporters are apoptosis, cell proliferation, and cell differentiation. This report summarizes the evidence that Mrps contribute to the regulation of cellular GSH levels and the thiol redox state, and thus to the many biochemical processes that are influenced by this tripeptide. PMID:18786560

  1. Glutathione conjugation and contaminant transformation

    USGS Publications Warehouse

    Field, Jennifer A.; Thurman, E.M.

    1996-01-01

    The recent identification of a novel sulfonated metabolite of alachlor in groundwater and metolachlor in soil is likely the result of glutathione conjugation. Glutathione conjugation is an important biochemical reaction that leads, in the case of alachlor, to the formation of a rather difficult to detect, water-soluble, and therefore highly mobile, sulfonated metabolite. Research from weed science, toxicology, and biochemistry is discussed to support the hypothesis that glutathione conjugation is a potentially important detoxification pathway carried out by aquatic and terrestrial plants and soil microorganisms. A brief review of the biochemical basis for glutathione conjugation is presented. We recommend that multidisciplinary research focus on the occurrence and expression of glutathione and its attendant enzymes in plants and microorganisms, relationships between electrophilic substrate structure and enzyme activity, and the potential exploitation of plants and microorganisms that are competent in glutathione conjugation for phytoremediation and bioremediation.

  2. Plant glutathione transferases

    PubMed Central

    Dixon, David P; Lapthorn, Adrian; Edwards, Robert

    2002-01-01

    The soluble glutathione transferases (GSTs, EC 2.5.1.18) are encoded by a large and diverse gene family in plants, which can be divided on the basis of sequence identity into the phi, tau, theta, zeta and lambda classes. The theta and zeta GSTs have counterparts in animals but the other classes are plant-specific and form the focus of this article. The genome of Arabidopsis thaliana contains 48 GST genes, with the tau and phi classes being the most numerous. The GST proteins have evolved by gene duplication to perform a range of functional roles using the tripeptide glutathione (GSH) as a cosubstrate or coenzyme. GSTs are predominantly expressed in the cytosol, where their GSH-dependent catalytic functions include the conjugation and resulting detoxification of herbicides, the reduction of organic hydroperoxides formed during oxidative stress and the isomerization of maleylacetoacetate to fumarylacetoacetate, a key step in the catabolism of tyrosine. GSTs also have non-catalytic roles, binding flavonoid natural products in the cytosol prior to their deposition in the vacuole. Recent studies have also implicated GSTs as components of ultraviolet-inducible cell signaling pathways and as potential regulators of apoptosis. Although sequence diversification has produced GSTs with multiple functions, the structure of these proteins has been highly conserved. The GSTs thus represent an excellent example of how protein families can diversify to fulfill multiple functions while conserving form and structure. PMID:11897031

  3. Glutathione and apoptosis

    PubMed Central

    Circu, Magdalena L.; Yee Aw, Tak

    2011-01-01

    Apoptosis or programmed cell death represents a physiologically conserved mechanism of cell death that is pivotal in normal development and tissue homeostasis in all organisms. As a key modulator of cell functions, the most abundant non-protein thiol, glutathione (GSH), has important roles in cellular defense against oxidant aggression, redox regulation of proteins thiols and maintaining redox homeostasis that is critical for proper function of cellular processes, including apoptosis. Thus, a shift in the cellular GSH-to-GSSG redox balance in favour of the oxidized species, GSSG, constitutes an important signal that could decide the fate of a cell. The current review will focus on three main areas: (1) general description of cellular apoptotic pathways, (2) cellular compartmentation of GSH and the contribution of mitochondrial GSH and redox proteins to apoptotic signalling and (3) role of redox mechanisms in the initiation and execution phases of apoptosis. PMID:18671159

  4. Glutathione transferases and neurodegenerative diseases.

    PubMed

    Mazzetti, Anna Paola; Fiorile, Maria Carmela; Primavera, Alessandra; Lo Bello, Mario

    2015-03-01

    There is substantial agreement that the unbalance between oxidant and antioxidant species may affect the onset and/or the course of a number of common diseases including Parkinson's and Alzheimer's diseases. Many studies suggest a crucial role for oxidative stress in the first phase of aging, or in the pathogenesis of various diseases including neurological ones. Particularly, the role exerted by glutathione and glutathione-related enzymes (Glutathione Transferases) in the nervous system appears more relevant, this latter tissue being much more vulnerable to toxins and oxidative stress than other tissues such as liver, kidney or muscle. The present review addresses the question by focusing on the results obtained by specimens from patients or by in vitro studies using cells or animal models related to Parkinson's and Alzheimer's diseases. In general, there is an association between glutathione depletion and Parkinson's or Alzheimer's disease. In addition, a significant decrease of glutathione transferase activity in selected areas of brain and in ventricular cerebrospinal fluid was found. For some glutathione transferase genes there is also a correlation between polymorphisms and onset/outcome of neurodegenerative diseases. Thus, there is a general agreement about the protective effect exerted by glutathione and glutathione transferases but no clear answer about the mechanisms underlying this crucial role in the insurgence of neurodegenerative diseases.

  5. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

    PubMed Central

    Hoffmann, Christina; Dietrich, Michael; Herrmann, Ann-Kathrin; Schacht, Teresa

    2017-01-01

    Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase. PMID:28116039

  6. Comparison of inhibitory effects between acetaminophen-glutathione conjugate and reduced glutathione in human glutathione reductase.

    PubMed

    Nýdlová, Erika; Vrbová, Martina; Cesla, Petr; Jankovičová, Barbora; Ventura, Karel; Roušar, Tomáš

    2014-09-01

    Acetaminophen overdose is the most frequent cause of acute liver injury. The main mechanism of acetaminophen toxicity has been attributed to oxidation of acetaminophen. The oxidation product is very reactive and reacts with glutathione generating acetaminophen-glutathione conjugate (APAP-SG). Although this conjugate has been recognized to be generally nontoxic, we have found recently that APAP-SG could produce a toxic effect. Therefore, the aim of our study was to estimate the toxicity of purified APAP-SG by characterizing the inhibitory effect in human glutathione reductase (GR) and comparing that to the inhibitory effect of the natural inhibitor reduced glutathione. We used two types of human GR: recombinant and freshly purified from red blood cells. Our results show that GR was significantly inhibited in the presence of both APAP-SG and reduced glutathione. For example, the enzyme activity of recombinant and purified GR was reduced in the presence of 4 mm APAP-SG (with 0.5 mm glutathione disulfide) by 28% and 22%, respectively. The type of enzyme inhibition was observed to be competitive in the cases of both APAP-SG and glutathione. As glutathione inhibits GR activity in cells under physiological conditions, the rate of enzyme inhibition ought to be weaker in the case of glutathione depletion that is typical of acetaminophen overdose. Notably, however, enzyme activity likely remains inhibited due to the presence of APAP-SG, which might enhance the pro-oxidative status in the cell. We conclude that our finding could reflect some other pathological mechanism that may contribute to the toxicity of acetaminophen.

  7. Role of hydrogen sulfide (H/sub 2/S) in metabolism and toxicity of cysteine S-conjugates in rat kidney

    SciTech Connect

    Banki, K.; Elfarra, A.A.; Lash, L.H.; Anders, M.W.

    1986-05-01

    Several nephrotoxic cysteine S-conjugates are metabolized by renal cysteine conjugate ..beta..-lyase to thiols, which may release H/sub 2/S. The authors measured the rate of H/sub 2/S formation from S-conjugates with a colorimetric assay and compared the mitochondrial toxicity of H/sub 2/S and S-conjugates. H/sub 2/S formation from S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine (CTFC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) was time- and concentration-dependent in cytosolic and mitochondrial fractions of rat kidney cortex. With 5 mM substrate, the rate of H/sub 2/S formation from CTFC was 3.9 +/- 0.5 and 12.7 +/- 3.0 nmol/min per mg protein in mitochondria and cytosol, respectively; the corresponding rates with DCVC were 1.1 +/- 0.1 and 3.7 +/- 1.3. With S-(1,2-dichlorovinyl)-L-homocysteine (DCVHC), an extremely potent nephrotoxin, no H/sub 2/S formation was detected. Incubation of mitochondria with 1 mM DCVC or DCVHC for 2 h produced 60% and 70% inhibition, respectively, of state 3 respiration with succinate as the electron donor; with glutamate + malate or ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine as respiratory substrates, less than 20% inhibition was observed. Addition of Na/sub 2/S to respiring mitochrondria produced rapid and potent inhibition of state 3 respiration with all the above electron donors. These results show that H/sub 2/S is not a major metabolite of S-conjugates and that H/sub 2/S formation does not play a major role in S-conjugate-induced nephrotoxicity.

  8. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  9. The importance and regulation of hepatic glutathione.

    PubMed Central

    Kaplowitz, N.

    1981-01-01

    Glutathione plays a key role in the liver in detoxification reactions and in regulating the thiol-disulfide status of the cell. Glutathione synthesis is regulated mainly by the availability of precursor cysteine and the concentration of glutathione itself which feeds back to regulate its own synthesis. Degradation of hepatic glutathione is principally regulated by the efflux of reduced and oxidized glutathione into both sinusoidal plasma and bile. In addition, glutathione may be consumed in conjugation reactions. Under conditions of oxidative stress, the liver exports oxidized glutathione into bile in a concentrative fashion, whereas under basal conditions, mainly reduced glutathione is exported into bile and blood. The mechanism of export of reduced glutathione into bile and sinusoidal blood is poorly understood. PMID:7342494

  10. Glutathione metabolism and Parkinson's disease.

    PubMed

    Smeyne, Michelle; Smeyne, Richard Jay

    2013-09-01

    It has been established that oxidative stress, defined as the condition in which the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson disease. Glutathione is a ubiquitous thiol tripeptide that acts alone or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals, and peroxynitrites. In this review, we examine the synthesis, metabolism, and functional interactions of glutathione and discuss how these relate to the protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson disease.

  11. Inactivation of mouse liver glutathione S-transferase YfYf (Pi class) by ethacrynic acid and 5,5'-dithiobis-(2-nitrobenzoic acid).

    PubMed Central

    Phillips, M F; Mantle, T J

    1993-01-01

    Mouse liver glutathione S-transferase YfYf (Pi class) reacts with [14C]ethacrynic acid to form a covalent adduct with a stoichiometry of 1 mol per mol of subunit. Proteolytic digestion of the enzyme-[14C]ethacrynic acid adduct with V8 protease produced an 11 kDa fragment containing radioactivity. Sequencing revealed this to be an N-terminal peptide (minus the first 15 residues, terminating at Glu-112) which contains only one cysteine residue (Cys-47). This is tentatively identified as the site of ethacrynic attachment. Kinetic studies reveal that glutathione S-conjugates protect against inactivation by ethacrynic acid, but the level of protection is not consistent with their potency as product inhibitors. A model is proposed in which glutathione S-conjugates and ethacrynic acid compete for the free enzyme, and a second molecule of ethacrynic acid reacts covalently with the enzyme-ethacrynic acid complex. The native protein contains one thiol reactive with 5,5'-dithiobis-(2-nitrobenzoic acid) at neutral pH. The resultant mixed disulphide, like the ethacrynic acid adduct, is inactive, but treatment with cyanide (which incorporates on a mol for mol basis) restores activity to 35% of that of the native enzyme. Images Figure 4 PMID:8363586

  12. Genetics Home Reference: glutathione synthetase deficiency

    MedlinePlus

    ... Facebook Share on Twitter Your Guide to Understanding Genetic Conditions Search MENU Toggle navigation Home Page Search ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Health Conditions glutathione synthetase deficiency glutathione synthetase ...

  13. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs.

    PubMed

    Erden, M; Bor, N M

    1984-04-01

    In this series of experiments the protective action of reduced glutathion due to ionizing radiation has been studied. In the experimental group 18 guinea pigs were exposed to successive radiations of 150 rad 3 or 4 days apart. Total dose given amounted to 750 rad which is the LD50 for guinea pigs. Blood samples were taken 30 min after each exposure. The control series were sham radiated but otherwise treated identically. The cells of the removed blood samples were separated by centrifugation and were subjected to the reduced glutathion stability test. GSSGR, GPer, and LDH enzyme activities were also measured of which the latter served as a marked enzyme. It was found that LDH did not show any alteration after radiation. The reduced glutathion stability test showed a consistent but minor reduction (P greater than 0.05), in the experimental group. GSSGR enzyme activity on the other hand was reduced significantly (from 176.48 +/- 11.32 to 41.34 +/- 1.17 IU/ml of packed erythrocytes, P less than 0.001) in the same group. GPer activity showed a consistent but minor elevation during the early phase of the experimental group. It was later increased significantly beginning after 600 rad total radiation on the fourth session (P less than 0.050).

  14. Kynurenine Aminotransferase III and Glutamine Transaminase L Are Identical Enzymes that have Cysteine S-Conjugate β-Lyase Activity and Can Transaminate l-Selenomethionine*

    PubMed Central

    Pinto, John T.; Krasnikov, Boris F.; Alcutt, Steven; Jones, Melanie E.; Dorai, Thambi; Villar, Maria T.; Artigues, Antonio; Li, Jianyong; Cooper, Arthur J. L.

    2014-01-01

    Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-l-selenocysteine (MSC) and l-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites. PMID:25231977

  15. MRP2 and the DMPS- and DMSA-mediated elimination of mercury in TR(-) and control rats exposed to thiol S-conjugates of inorganic mercury.

    PubMed

    Bridges, Christy C; Joshee, Lucy; Zalups, Rudolfs K

    2008-09-01

    Cysteine (Cys) and homocysteine (Hcy)-S-conjugates of inorganic mercury (Hg2+) are transportable species of Hg2+ that are taken up readily by proximal tubular cells. The metal chelators, 2,3-dimercaptopropane-1-sulfonic acid (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA), have been used successfully to extract Hg2+ from these cells, presumably via the multidrug resistance protein (Mrp2). In the current study, we tested the hypothesis that Mrp2 is involved in the DMPS- and DMSA-mediated extraction of Hg2+ following administration of Hg2+ as an S-conjugate of Cys or Hcy. To test this hypothesis, control and TR(-) (Mrp2-deficient) rats were injected with 0.5 micromol/kg HgCl2 (containing 203Hg2+) conjugated to 1.25 micromol/kg Cys or Hcy. After 24 and 28 h, rats were treated with saline or 100 mg/kg DMPS or DMSA. Tissues were harvested 48 h after Hg2+ exposure. The renal and hepatic burden of Hg2+ was greater in saline-injected TR- rats than in corresponding controls. Accordingly, the content of Hg2+ in the urine and feces was less in TR- rats than in controls. Following treatment with DMPS or DMSA, the renal content of Hg2+ in both groups of rats was reduced significantly and the urinary excretion of Hg2+ was increased. In liver, the effect of each chelator appeared to be dependent upon the form in which Hg2+ was administered. In vitro experiments provide direct evidence indicating that DMPS and DMSA-S-conjugates of Hg2+ are substrates for Mrp2. Overall, these data support our hypothesis that Mrp2 is involved in the DMPS and DMSA-mediated extraction of the body burden of Hg2+.

  16. The role of glutathione in cancer.

    PubMed

    Balendiran, Ganesaratnam K; Dabur, Rajesh; Fraser, Deborah

    2004-01-01

    Glutathione is an abundant natural tripeptide found within almost all cells. Glutathione is highly reactive and is often found conjugated to other molecules via its sulfhydryl moiety. It instils several vital roles within a cell including antioxidation, maintenance of the redox state, modulation of the immune response and detoxification of xenobiotics. With respect to cancer, glutathione metabolism is able to play both protective and pathogenic roles. It is crucial in the removal and detoxification of carcinogens, and alterations in this pathway, can have a profound effect on cell survival. However, by conferring resistance to a number of chemotherapeutic drugs, elevated levels of glutathione in tumour cells are able to protect such cells in bone marrow, breast, colon, larynx and lung cancers. Here we present a number of studies investigating the role of glutathione in promoting cancer, impeding chemotherapy, and the use of glutathione modulation to enhance anti-neoplastic therapy.

  17. Subcellular compartmentation of glutathione in dicotyledonous plants

    PubMed Central

    Müller, Maria

    2010-01-01

    This study describes the subcellular distribution of glutathione in roots and leaves of different plant species (Arabidopsis, Cucurbita, and Nicotiana). Glutathione is an important antioxidant and redox buffer which is involved in many metabolic processes including plant defense. Thus information on the subcellular distribution in these model plants especially during stress situations provides a deeper insight into compartment specific defense reactions and reflects the occurrence of compartment specific oxidative stress. With immunogold cytochemistry and computer-supported transmission electron microscopy glutathione could be localized in highest contents in mitochondria, followed by nuclei, peroxisomes, the cytosol, and plastids. Within chloroplasts and mitochondria, glutathione was restricted to the stroma and matrix, respectively, and did not occur in the lumen of cristae and thylakoids. Glutathione was also found at the membrane and in the lumen of the endoplasmic reticulum. It was also associated with the trans and cis side of dictyosomes. None or only very little glutathione was detected in vacuoles and the apoplast of mesophyll and root cells. Additionally, glutathione was found in all cell compartments of phloem vessels, vascular parenchyma cells (including vacuoles) but was absent in xylem vessels. The specificity of this method was supported by the reduction of glutathione labeling in all cell compartments (up to 98%) of the glutathione-deficient Arabidopsis thaliana rml1 mutant. Additionally, we found a similar distribution of glutathione in samples after conventional fixation and rapid microwave-supported fixation. Thus, indicating that a redistribution of glutathione does not occur during sample preparation. Summing up, this study gives a detailed insight into the subcellular distribution of glutathione in plants and presents solid evidence for the accuracy and specificity of the applied method. PMID:20186447

  18. Expression of glutathione, glutathione peroxidase and glutathione S-transferase pi in canine mammary tumors

    PubMed Central

    2014-01-01

    Background Glutathione (GSH) is one of the most important agents of the antioxidant defense system of the cell because, in conjunction with the enzymes glutathione peroxidase (GSH-Px) and glutathione S transferase pi (GSTpi), it plays a central role in the detoxification and biotransformation of chemotherapeutic drugs. This study evaluated the expression of GSH and the GSH-Px and GSTpi enzymes by immunohistochemistry in 30 canine mammary tumors, relating the clinicopathological parameters, clinical outcome and survival of the bitches. In an in vitro study, the expression of the genes glutamate cysteine ligase (GCLC) and glutathione synthetase (GSS) that synthesize GSH and GSH-Px gene were verified by qPCR and subjected to treatment with doxorubicin, to check the resistance of cancer cells to chemotherapy. Results The immunohistochemical expression of GSH, GSH-Px and GSTpi was compared with the clinical and pathological characteristics and the clinical outcome in the bitches, including metastasis and death. The results showed that high immunoexpression of GSH was correlated to the absence of tumor ulceration and was present in dogs without metastasis (P < 0.05). There was significant correlation of survival with the increase of GSH (P < 0.05). The expression of the GSH-Px and GSTpi enzymes showed no statistically significant correlation with the analyzed variables (p > 0.05). The analysis of the relative expression of genes responsible for the synthesis of GSH (GCLC and GSS) and GSH-Px by quantitative PCR was done with cultured cells of 10 tumor fragments from dogs with mammary tumors. The culture cells showed a decrease in GCLC and GSS expression when compared with no treated cells (P < 0.05). High GSH immunoexpression was associated with better clinical outcomes. Conclusion Therefore, high expression of the GSH seems to play an important role in the clinical outcome of patients with mammary tumors and suggest its use as prognostic marker. The in

  19. Linked thioredoxin-glutathione systems in platyhelminths.

    PubMed

    Salinas, Gustavo; Selkirk, Murray E; Chalar, Cora; Maizels, Rick M; Fernández, Cecilia

    2004-07-01

    The thioredoxin and glutathione systems play a central role in thiol-disulfide redox homeostasis in many organisms by providing electrons to essential enzymes, and defence against oxidative stress. These systems have recently been characterized in platyhelminth parasites, and the emerging biochemical scenario is the existence of linked processes with the enzyme thioredoxin glutathione reductase supplying reducing equivalents to both pathways. In contrast to their hosts, conventional thioredoxin reductase and glutathione reductase enzymes appear to be absent. Analysis of published data and expressed-sequence tag databases indicates the presence of linked thioredoxin-glutathione systems in the cytosolic and mitochondrial compartments of these parasites.

  20. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  1. Hepatitis viral load correlates to glutathione levels.

    PubMed

    1998-01-01

    Several recent scientific articles have found a direct correlation between Glutathione levels and viral activity for hepatitis B and C. When viral load increases, Glutathione decreases. Researchers from Germany report that adding NAC (N-acetyl cysteine) to HBV producing cells lines can reduce hepatitis viral load 50 fold. Glutathione is used by the liver to help break down toxins. Patients who have chronic infection for more than 90 days should ask their physicians to check their Glutathione levels. A test kit is available from ImmunoSciences Labs; contact information is included. An amino acid, L-Glutamine, can be used with Alpha Lipoic Acid and NAC to increase Glutathione levels. Chlorophyll also offers benefits to people with hepatitis and other infections. Instructions on how to use a special retention enema containing chlorophyll, water, and apple cider vinegar are provided.

  2. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?

    PubMed Central

    Cooper, Arthur J L; Krasnikov, Boris F; Okuno, Etsuo; Jeitner, Thomas M

    2003-01-01

    Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate beta-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate beta-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriarte and Martinez-Carrion (2002) Biochem. J. 368, 253-261] and mitochondrial branched-chain aminotransferase [Cooper, Bruschi, Conway and Hutson (2003) Biochem. Pharmacol. 65, 181-192] exhibit beta-lyase activity toward S -(1,2-dichlorovinyl)-L-cysteine (the cysteine S-conjugate of trichloroethylene) and S -(1,1,2,2-tetrafluoroethyl)-L-cysteine (the cysteine S-conjugate of tetrafluoroethylene). Turnover leads to eventual inactivation of these enzymes. Here we report that mitochondrial L-alanine-glyoxylate aminotransferase II, which, in the rat, is most active in kidney, catalyses cysteine S-conjugate beta-lyase reactions with S -(1,1,2,2-tetrafluoroethyl)-L-cysteine, S -(1,2-dichlorovinyl)-L-cysteine and S -(benzothiazolyl-L-cysteine); turnover leads to inactivation. Previous workers showed that the reactive-sulphur-containing fragment released from S -(1,1,2,2-tetrafluoroethyl)-L-cysteine and S -(1,2-dichlorovinyl)-L-cysteine is toxic by acting as a thioacylating agent - particularly of lysine residues in nearby proteins. Toxicity, however, may also involve 'self-inactivation' of key enzymes. The present findings suggest that alanine-glyoxylate aminotransferase II may be an important factor in the well-established targeting of rat kidney mitochondria by toxic halogenated cysteine S-conjugates. Previous reports suggest that alanine-glyoxylate aminotransferase II is absent

  3. Rhythms of glutathione peroxidase and glutathione reductase in brain of chick and their inhibition by light.

    PubMed

    Pablos, M I; Reiter, R J; Ortiz, G G; Guerrero, J M; Agapito, M T; Chuang, J I; Sewerynek, E

    1998-01-01

    Melatonin was recently shown to be a component of the antioxidative defense system of organisms due to its free radical scavenging and antioxidant activities. Pharmacologically, melatonin stimulates the activity of the peroxide detoxifying enzyme glutathione peroxidase in rat brain and in several tissues of chicks. In this report, we studied the endogenous rhythm of two antioxidant enzymes, glutathione peroxidase and glutathione reductase, in five regions (hippocampus, hypothalamus, striatum, cortex and cerebellum) of chick brain and correlated them with physiological blood melatonin concentrations. Glutathione peroxidase exhibited a marked 24 h rhythm with peak activity in each brain region which had acrophases about 8 h after lights off and about 4 h after the serum melatonin peak was detected. Glutathione reductase activity exhibited similar robust rhythms with the peaks occurring roughly 2 h after those of glutathione peroxidase. We suggest that neural glutathione peroxidase increases due to the rise of nocturnal melatonin levels while glutathione reductase activity rises slightly later possibly due to an increase of its substrate, oxidized glutathione. The exposure of chicks to constant light for 6 days eliminated the melatonin rhythm as well as the peaks in both glutathione peroxidase and glutathione reductase activities. These findings suggest that the melatonin rhythm may be related to the nighttime increases in the enzyme activities, although other explanations cannot be excluded.

  4. Glutathione, glutathione-related enzymes, and oxidative stress in individuals with subacute occupational exposure to lead.

    PubMed

    Dobrakowski, Michał; Pawlas, Natalia; Hudziec, Edyta; Kozłowska, Agnieszka; Mikołajczyk, Agnieszka; Birkner, Ewa; Kasperczyk, Sławomir

    2016-07-01

    The aim of the study was to investigate the influence of subacute exposure to lead on the glutathione-related antioxidant defense and oxidative stress parameters in 36 males occupationally exposed to lead for 40±3.2days. Blood lead level in the examined population increased significantly by 359% due to lead exposure. Simultaneously, erythrocyte glutathione level decreased by 16%, whereas the activity of glutathione-6-phosphate dehydrogenase in erythrocytes and leukocytes decreased by 28% and 10%, respectively. Similarly, the activity of glutathione-S-transferase in erythrocytes decreased by 45%. However, the activity of glutathione reductase in erythrocytes and leukocytes increased by 26% and 6%, respectively, whereas the total oxidant status value in leukocytes increased by 37%. Subacute exposure to lead results in glutathione pool depletion and accumulation of lipid peroxidation products; however, it does not cause DNA damage. Besides, subacute exposure to lead modifies the activity of glutathione-related enzymes.

  5. Biotransformation of the hexachlorobutadiene metabolites 1-(glutathion-S-yl)-pentachlorobutadiene and 1-(cystein-S-yl)-pentachlorobutadiene in the isolated perfused rat liver.

    PubMed

    Koob, M; Dekant, W

    1992-01-01

    1. The first step in the bioactivation of the nephrotoxin hexachlorobutadiene is the biosynthesis of 1-(glutathion-S-yl)-1,2,3,4,4-pentachloro-1,3-butadiene (GPCB). GPCB formed in the liver is secreted into bile, may be reabsorbed in the gut, intact or after hydrolysis to 1-(cystein-S-yl)-1,2,3,4,4-pentachloro-1,3-butadiene (CPCB), and undergo enterohepatic circulation or translocation to the kidney. Hepatic uptake and metabolism of GPCB and CPCB may thus influence the disposition of these S-conjugates. We therefore studied the metabolism and uptake of CPCB and GPCB in the isolated perfused rat liver. 2. Dose-dependent uptake of GPCB and CPCB from the perfusion medium by isolated perfused liver was demonstrated; CPCB is cleared from the perfusion medium to a much higher extent than GPCB. 3. GPCB and CPCB are intensively biotransformed to biliary metabolites. These metabolites were identified by thermospray mass spectrometry as products of the conjugation reaction of GPCB and CPCB with glutathione and subsequent hydrolysis of the glutathione moieties. 4. Hepatic biosynthesis of 1-(N-acetyl-L-cystein-S-yl)-1,2,3,4,4-pentachloro- 1,3-butadiene from CPCB was only a very minor pathway in GPCB and CPCB metabolism in liver. 5. The results indicate that hepatic biosynthesis of mercapturic acids may not contribute to the disposition of S-conjugates formed from hexachlorobutadiene in vivo and that GPCB may be, at least in part, delivered intact to the kidney.

  6. Selenium, glutathione peroxidase and other selenoproteins

    SciTech Connect

    Wilhelmsen, E.C.

    1983-01-01

    Selenium, as essential trace element, has long been associated with protein. The essentiality of selenium is partially understood as glutathione peroxidase contains an essential selenocysteine. Glutathione peroxidase has been purified from many tissues including rat liver. An estimated molecular weight of 105,000 was obtained for glutathione peroxidase by comparison to standards. A subunit size of 26,000 was obtained by SDS-gel electrophoresis. Glutathione peroxidase is not the only selenoprotein in the rat. In seven rat tissues examined, there were many different subunit sizes and change groups representing between 9 and 23 selenoproteins. Selenocysteine in glutathione peroxidase accounts for ca. 36% of the selenium in the rat. The mode of synthesis of glutathione peroxidase and the other selenoproteins is not understood. Glutathione peroxidase is strongly and reversibly inhibited by mercaptocarboxylic acids and other mercaptans, including some used as slow-acting drugs for the symtomatic treatment of rheumatoid arthritis. The mechanism and chemistry of this inhibition is discussed. This inhibition may provide a link between selenium and arthritis.

  7. Corneal endothelial glutathione after photodynamic change

    SciTech Connect

    Hull, D.S.; Riley, M.V.; Csukas, S.; Green, K.

    1982-03-01

    Rabbit corneal endothelial cells perfused with 5 X 10(-6)M rose bengal and exposed to incandescent light demonstrated no alteration of either total of or percent oxidized glutathione after 1 hr. Addition of 5400 U/ml catalase to the perfusing solution had no effect on total glutathione levels but caused a marked reduction in percent oxidized glutathione in corneas exposed to light as well as in those not exposed to light. Substitution of sucrose for glucose in the perfusing solution had no effect on total or percent oxidized glutathione. Perfusion of rabbit corneal endothelium with 0.5 mM chlorpromazine and exposure to ultraviolet (UV) light resulted in no change in total glutathione content. A marked reduction in percent oxidized glutathione occurred, however, in corneas perfused with 0.5 mM chlorpromazine both in the presence and absence of UV light. It is concluded that photodynamically induced swelling of corneas is not the result of a failure of the glutathione redox system.

  8. Impaired glutathione synthesis in neurodegeneration.

    PubMed

    Aoyama, Koji; Nakaki, Toshio

    2013-10-18

    Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed.

  9. Impaired Glutathione Synthesis in Neurodegeneration

    PubMed Central

    Aoyama, Koji; Nakaki, Toshio

    2013-01-01

    Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed. PMID:24145751

  10. The antioxidant master glutathione and periodontal health

    PubMed Central

    Bains, Vivek Kumar; Bains, Rhythm

    2015-01-01

    Glutathione, considered to be the master antioxidant (AO), is the most-important redox regulator that controls inflammatory processes, and thus damage to the periodontium. Periodontitis patients have reduced total AO capacity in whole saliva, and lower concentrations of reduced glutathione (GSH) in serum and gingival crevicular fluid, and periodontal therapy restores the redox balance. Therapeutic considerations for the adjunctive use of glutathione in management of periodontitis, in limiting the tissue damage associated with oxidative stress, and enhancing wound healing cannot be underestimated, but need to be evaluated further through multi-centered randomized controlled trials. PMID:26604952

  11. The Glutathione System of Aspergillus nidulans Involves a Fungus-specific Glutathione S-Transferase*S⃞

    PubMed Central

    Sato, Ikuo; Shimizu, Motoyuki; Hoshino, Takayuki; Takaya, Naoki

    2009-01-01

    The tripeptide glutathione is involved in cellular defense mechanisms for xenobiotics and reactive oxygen species. This study investigated glutathione-dependent mechanisms in the model organism Aspergillus nidulans. A recombinant dimeric protein of A. nidulans glutathione reductase (GR) contained FAD and reduced oxidized glutathione (GSSG) using NADPH as an electron donor. A deletion strain of the GR gene (glrA) accumulated less intracellular reduced glutathione (GSH), indicating that the fungal GR contributes to GSSG reduction in vivo. Growth of the deletion strain of glrA was temperature-sensitive, and this phenotype was suppressed by adding GSH to the medium. The strain subsequently accumulated more intracellular superoxide, and cell-free respiration activity was partly defective. Growth of the strain decreased in the presence of oxidants, which induced glrA expression 1.5-6-fold. These results indicated that the fungal glutathione system functions as an antioxidant mechanism in A. nidulans. Our findings further revealed an initial proteomic differential display on GR-depleted and wild type strains. Up-regulation of thioredoxin reductase, peroxiredoxins, catalases, and cytochrome c peroxidase in the glrA-deletion strain revealed interplay between the glutathione system and both the thioredoxin system and hydrogen peroxide defense mechanisms. We also identified a hypothetical, up-regulated protein in the GR-depleted strains as glutathione S-transferase, which is unique among Ascomycetes fungi. PMID:19171936

  12. Glutathione: a key player in autoimmunity.

    PubMed

    Perricone, Carlo; De Carolis, Caterina; Perricone, Roberto

    2009-07-01

    Increasing attention in the physiopathology of inflammatory/immunomediated diseases has been focused on the role of reactive oxygen species (ROS), oxygen-based molecules possessing high chemical reactivity and produced by activated neutrophils during the inflammatory response. During chronic inflammation, when sustained production of ROS occurs, antioxidant defences can weaken, resulting in a situation termed oxidative stress. Moreover, antioxidant defence systems have been demonstrated to be constitutively lacking in patients affected with chronic degenerative diseases, especially inflammatory/immunomediated. Glutathione, a tripeptide, is the principal component of the antioxidant defence system in the living cells. Glutathione has been demonstrated to have diverse effects on the immune system, either stimulating or inhibiting the immunological response in order to control inflammation. The study of interactions between glutathione and the immune system has attracted many investigators. Altered glutathione concentrations may play an important role in many autoimmune pathological conditions prevalently elicited, detrimed and maintained by inflammatory/immune response mediated by oxidative stress reactions. The role of glutathione in autoimmunity will be reviewed herein.

  13. Glutathione Metabolism and Parkinson’s Disease

    PubMed Central

    Smeyne, Michelle

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395

  14. Glutathione-Binding Site of a Bombyx mori Theta-Class Glutathione Transferase

    PubMed Central

    Hossain, M. D. Tofazzal; Yamada, Naotaka; Yamamoto, Kohji

    2014-01-01

    The glutathione transferase (GST) superfamily plays key roles in the detoxification of various xenobiotics. Here, we report the isolation and characterization of a silkworm protein belonging to a previously reported theta-class GST family. The enzyme (bmGSTT) catalyzes the reaction of glutathione with 1-chloro-2,4-dinitrobenzene, 1,2-epoxy-3-(4-nitrophenoxy)-propane, and 4-nitrophenethyl bromide. Mutagenesis of highly conserved residues in the catalytic site revealed that Glu66 and Ser67 are important for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTT and into the metabolism of exogenous chemical agents. PMID:24848539

  15. Five decades with glutathione and the GSTome.

    PubMed

    Mannervik, Bengt

    2012-02-24

    Uncle Folke inspired me to become a biochemist by demonstrating electrophoresis experiments on butterfly hemolymph in his kitchen. Glutathione became the subject for my undergraduate project in 1964 and has remained a focal point in my research owing to its multifarious roles in the cell. Since the 1960s, the multiple forms of glutathione transferase (GST), the GSTome, were isolated and characterized, some of which were discovered in our laboratory. Products of oxidative processes were found to be natural GST substrates. Examples of toxic compounds against which particular GSTs provide protection include 4-hydroxynonenal and ortho-quinones, with possible links to the etiology of Alzheimer and Parkinson diseases and other degenerative conditions. The role of thioltransferase and glutathione reductase in the cellular reduction of disulfides and other oxidized forms of thiols was clarified. Glyoxalase I catalyzes still another glutathione-dependent detoxication reaction. The unusual steady-state kinetics of this zinc-containing enzyme initiated model discrimination by regression analysis. Functional properties of the enzymes have been altered by stochastic mutations based on DNA shuffling and rationally tailored by structure-based redesign. We found it useful to represent promiscuous enzymes by vectors or points in multidimensional substrate-activity space and visualize them by multivariate analysis. Adopting the concept "molecular quasi-species," we describe clusters of functionally related enzyme variants that may emerge in natural as well as directed evolution.

  16. Five Decades with Glutathione and the GSTome

    PubMed Central

    Mannervik, Bengt

    2012-01-01

    Uncle Folke inspired me to become a biochemist by demonstrating electrophoresis experiments on butterfly hemolymph in his kitchen. Glutathione became the subject for my undergraduate project in 1964 and has remained a focal point in my research owing to its multifarious roles in the cell. Since the 1960s, the multiple forms of glutathione transferase (GST), the GSTome, were isolated and characterized, some of which were discovered in our laboratory. Products of oxidative processes were found to be natural GST substrates. Examples of toxic compounds against which particular GSTs provide protection include 4-hydroxynonenal and ortho-quinones, with possible links to the etiology of Alzheimer and Parkinson diseases and other degenerative conditions. The role of thioltransferase and glutathione reductase in the cellular reduction of disulfides and other oxidized forms of thiols was clarified. Glyoxalase I catalyzes still another glutathione-dependent detoxication reaction. The unusual steady-state kinetics of this zinc-containing enzyme initiated model discrimination by regression analysis. Functional properties of the enzymes have been altered by stochastic mutations based on DNA shuffling and rationally tailored by structure-based redesign. We found it useful to represent promiscuous enzymes by vectors or points in multidimensional substrate-activity space and visualize them by multivariate analysis. Adopting the concept “molecular quasi-species,” we describe clusters of functionally related enzyme variants that may emerge in natural as well as directed evolution. PMID:22247548

  17. Glutathione synthesis is essential for pollen germination in vitro

    PubMed Central

    2011-01-01

    Background The antioxidant glutathione fulfills many important roles during plant development, growth and defense in the sporophyte, however the role of this important molecule in the gametophyte generation is largely unclear. Bioinformatic data indicate that critical control enzymes are negligibly transcribed in pollen and sperm cells. Therefore, we decided to investigate the role of glutathione synthesis for pollen germination in vitro in Arabidopsis thaliana accession Col-0 and in the glutathione deficient mutant pad2-1 and link it with glutathione status on the subcellular level. Results The depletion of glutathione by buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, reduced pollen germination rates to 2-5% compared to 71% germination in wildtype controls. The application of reduced glutathione (GSH), together with BSO, restored pollen germination and glutathione contents to control values, demonstrating that inhibition of glutathione synthesis is responsible for the decrease of pollen germination in vitro. The addition of indole-3-acetic acid (IAA) to media containing BSO restored pollen germination to control values, which demonstrated that glutathione depletion in pollen grains triggered disturbances in auxin metabolism which led to inhibition of pollen germination. Conclusions This study demonstrates that glutathione synthesis is essential for pollen germination in vitro and that glutathione depletion and auxin metabolism are linked in pollen germination and early elongation of the pollen tube, as IAA addition rescues glutathione deficient pollen. PMID:21439079

  18. Effects of mercury on glutathione and glutathione-dependent enzymes in hares (Lepus europaeus Pallas).

    PubMed

    Linšak, Željko; Linšak, Dijana Tomić; Špirić, Zdravko; Srebočan, Emil; Glad, Marin; Milin, Čedomila

    2013-01-01

    The aim of this study was to analyze and evaluate risks of long-term exposure to mercury in hares (Lepus europaeus Pallas), with a chemical-analytical approach evaluating median mass fraction of toxic mercury in the hares organs (liver, kidney, muscle and brain). To obtain better insight into possible effects of mercury, the study included screening of the oxidative status after long term exposure to low concentrations of mercury. Hares organs were analyzed for total mercury concentration by AAS. Glutathione and glutathione-dependent enzymes status was also investigated. The median mercury concentrations (wet weight) in the liver, kidney, muscle and brain of the hares ranged from 0.058-0.189, 0.138-0.406, 0.013-0.046 and 0.022-0.102 μg/g respectively. Concentration of the glutathione (GSH), glutathione-peroxidase (GPx), and glutathione-reductase (GR) activity increased with the mercury concentration. However, glutathione S-transferase (GST) and superoxide-dismutase (SOD) activity decreased with the mercury concentration. The results of this study show the impact of environmentally absorbed mercury on the antioxidant status of the examined hares. Further research on long-term exposure to low concentrations of mercury is needed.

  19. [Effect of chloditan on the changes of activity of glutathione transferase, glutathione reductase and glutathione content in the adrenal glands and liver in rats].

    PubMed

    Zorich, P A; Tronko, N D; Mikosha, A S

    1994-01-01

    The chloditan (o.p-DDD, mitotane), which causes the destruction of the human and dog adrenal cortex, on the most essential system of xenobiotic metabolism: glutathione-S-transferase--glutathione has been studied. The effect of o,p-DDD on GSH level and activity of glutathione-S-transferase and glutathione reductase which maintain the level of reduced glutathione was analyzed in the adrenal and liver tissue of rats. This species is resistant to adrenocorticolytic action of o,p-DDD. It was shown that feeding of rats weighting 200-240 g with oil solution of o,p-DDD (75 mg daily) for 3 days causes the decrease in activity of glutathione-S-transferase and content of oxidazed glutathione in the adrenals with simultaneous increase of the content of reduced glutathione. The glutathione-S-transferase and glutathione reductase activity in the liver rises under the effect of o,p-DDD, the decrease of the GSH level being observed. The revealed changes may explain the species sensitivity of animals to o,p-DDD.

  20. Subcellular Distribution of Glutathione Precursors in Arabidopsis thaliana

    PubMed Central

    Koffler, Barbara Eva; Maier, Romana; Zechmann, Bernd

    2011-01-01

    Abstract Glutathione is an important antioxidant and has many important functions in plant development, growth and defense. Glutathione synthesis and degradation is highly compartment-specific and relies on the subcellular availability of its precursors, cysteine, glutamate, glycine and γ-glutamylcysteine especially in plastids and the cytosol which are considered as the main centers for glutathione synthesis. The availability of glutathione precursors within these cell compartments is therefore of great importance for successful plant development and defense. The aim of this study was to investigate the compartment-specific importance of glutathione precursors in Arabidopsis thaliana. The subcellular distribution was compared between wild type plants (Col-0), plants with impaired glutathione synthesis (glutathione deficient pad2-1 mutant, wild type plants treated with buthionine sulfoximine), and one complemented line (OE3) with restored glutathione synthesis. Immunocytohistochemistry revealed that the inhibition of glutathione synthesis induced the accumulation of the glutathione precursors cysteine, glutamate and glycine in most cell compartments including plastids and the cytosol. A strong decrease could be observed in γ-glutamylcysteine (γ-EC) contents in these cell compartments. These experiments demonstrated that the inhibition of γ-glutamylcysteine synthetase (GSH1) – the first enzyme of glutathione synthesis – causes a reduction of γ-EC levels and an accumulation of all other glutathione precursors within the cells. PMID:22050910

  1. Glutathione conjugation: atrazine detoxication mechanism in corn.

    PubMed

    Shimabukuro, R H; Swanson, H R; Walsh, W C

    1970-07-01

    Glutathione conjugation (GS-atrazine) of the herbicide, 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) is another major detoxication mechanism in leaf tissue of corn (Zea mays, L.). The identification of GS-atrazine is the first example of glutathione conjugation as a biotransformation mechanism of a pesticide in plants. Recovery of atrazine-inhibited photosynthesis was accompanied by a rapid conversion of atrazine to GS-atrazine when the herbicide was introduced directly into leaf tissue. N-De-alkylation pathway is relatively inactive in both roots and shoots. The nonenzymatic detoxication of atrazine to hydroxyatrazine is negligible in leaf tissue. The hydroxylation pathway contributed significantly to the total detoxication of atrazine only when the herbicide was introduced into the plant through the roots. The metabolism of atrazine to GS-atrazine may be the primary factor in the resistance of corn to atrazine.

  2. Effect of glutathione addition in sparkling wine.

    PubMed

    Webber, Vanessa; Dutra, Sandra Valduga; Spinelli, Fernanda Rodrigues; Marcon, Ângela Rossi; Carnieli, Gilberto João; Vanderlinde, Regina

    2014-09-15

    This study aims to evaluate the effect of the addition of glutathione (GSH) on secondary aromas and on the phenolic compounds of sparkling wine elaborated by traditional method. It was added 10 and 20 mg L(-1) of GSH to must and to base wine. The determination of aroma compounds was performed by gas chromatography. Phenolic compounds and glutathione content were analyzed by high performance liquid chromatography. Sparkling wines with addition of GSH to must showed lower levels of total phenolic compounds and hydroxycinnamic acids. Furthermore, the sparkling wine with addition of GSH to must showed higher levels of 2-phenylethanol, 3-methyl-1-butanol and diethyl succinate, and lower concentrations of ethyl decanoate, octanoic and decanoic acids. The GSH addition to the must show a greater influence on sparkling wine than to base wine, however GSH addition to base wine seems retain higher SO2 free levels. The concentration of GSH added showed no significant difference.

  3. Inhibition of glutathione conjugation in the rat in vivo by analogues of glutathione conjugates.

    PubMed

    Ouwerkerk-Mahadevan, S; Mulder, G J

    1998-04-24

    Glutathione (GSH) conjugation plays an important role in (de-)toxification of its substrates in vivo. We have developed inhibitors of GSH conjugation that are active in the rat in vivo which are derived from the structure of GSH conjugates: they contain a backbone of gamma-L-Glu-D-2-aminoadipic acid that is virtually isosteric with the gamma-L-Glu-L-Cys-Gly structure of GSH. In addition, a hydrophobic alkyl group is attached such that it may interact with the H-site of the enzyme. Finally, the carboxyl groups were esterified with alcohols of varying chain length. The results show that all these compounds preferentially inhibit alpha-GST's 1-1 and 2-2, have less effect on mu isoenzymes 3-3 and 4-4, and finally, have little effect on rat theta (G.J. Mulder, S. Ouwerkerk-Mahadevan, Modulation of glutathione conjugation in vivo: How to decrease glutathione conjugation in vivo or in intact cellular systems in vitro, Chem. Biol. Interact. 105 (1997) 17-34) and pi (S. Ouwerkerk-Mahadevan, J.H. van Boom, M.C. Dreef-Tromp, J.H.T.M. Ploemen, D.J. Meyer, G.J. Mulder, Glutathione analogues as novel inhibitors of rat and human glutathione S-transferase isoenzymes, as well as of glutathione conjugation in isolated rat hepatocytes and the rat in vivo, Bioche. J., 308 (1995) 283-290). Several of the compounds inhibit the GSH conjugation of bromsulfophthalein and (S)-2-bromisovalerylurea in hepatocytes, in the situ recirculating rat liver perfusion and in the rat in vivo (after i.v. administration). The most effective compound contains a 2-heptylamine group linked as an amide to the 1-carboxyl group of the aminoadipic acid moiety at the H-site, and an ethyl ester at the 5-carboxylic acid group of aminoadipic acid.

  4. Catabolism of Glutathione Conjugates in Arabidopsis thaliana

    PubMed Central

    Brazier-Hicks, Melissa; Evans, Kathryn M.; Cunningham, Oliver D.; Hodgson, David R. W.; Steel, Patrick G.; Edwards, Robert

    2008-01-01

    The safener fenclorim (4,6-dichloro-2-phenylpyrimidine) increases tolerance to chloroacetanilide herbicides in rice by enhancing the expression of detoxifying glutathione S-transferases (GSTs). Fenclorim also enhances GSTs in Arabidopsis thaliana, and while investigating the functional significance of this induction in suspension cultures, we determined that these enzymes glutathionylated the safener. The resulting S-(fenclorim)-glutathione conjugate was sequentially processed to S-(fenclorim)-γ-glutamyl-cysteine and S-(fenclorim)-cysteine (FC), the latter accumulating in both the cells and the medium. FC was then either catabolized to 4-chloro-6-(methylthio)-phenylpyrimidine (CMTP) or N-acylated with malonic acid. These cysteine derivatives had distinct fates, with the enzymes responsible for their formation being induced by fenclorim and FC. Fenclorim-N-malonylcysteine was formed from FC by the action of a malonyl-CoA-dependent N-malonyltransferase. A small proportion of the fenclorim-N-malonylcysteine then underwent decarboxylation to yield a putative S-fenclorim-N-acetylcysteine intermediate, which underwent a second round of GST-mediated S-glutathionylation and subsequent proteolytic processing. The formation of CMTP was catalyzed by the concerted action of a cysteine conjugate β-lyase and an S-methyltransferase, with the two activities being coordinately regulated. Although the fenclorim conjugates tested showed little GST-inducing activity in Arabidopsis, the formation of CMTP resulted in metabolic reactivation, with the product showing good enhancing activity. In addition, CMTP induced GSTs and herbicide-safening activity in rice. The bioactivated CMTP was in turn glutathione-conjugated and processed to a malonyl cysteine derivative. These results reveal the surprisingly complex set of competing catabolic reactions acting on xenobiotics entering the S-glutathionylation pathway in plants, which can result in both detoxification and bioactivation. PMID

  5. Blood glutathione status following distance running.

    PubMed

    Dufaux, B; Heine, O; Kothe, A; Prinz, U; Rost, R

    1997-02-01

    In 12 moderately trained subjects reduced glutathione (GSH) and oxidized glutathione (GSSG) as well as thiobarbituric acid reactive substances (TBARS) were measured in the blood before and during the first two hours and first two days after a 2.5-h run. The participants covered between 19 and 26 km (20.8 +/- 2.5 km, mean +/- SD). The running speed was between 53 and 82% of the speed at which blood lactate concentration reached 4 mmol/L lactate (67.9 +/- 8.2%, mean +/- SD) assessed during a previously performed treadmill test. Blood samples were collected 1 h before, immediately before, immediately after, 1 and 2 h after, as well as 1 and 2 days after the run. Immediately after exercise GSH was significantly decreased (p < 0.01) and GSSG significantly increased (p < 0.01). In all subjects the ratio of GSH to GSSG showed a marked decline to 18 +/- 4% (mean +/- SD) of the pre-exercise values (p < 0.01). One hour later the mean GSH and GSSG values returned to baseline. However, there were considerable inter-individual differences. In some subjects the GSH/ GSSG ratio overshot the pre-exercise levels, in others the ratio remained low even two hours after exercise. Compared with the pre-exercise values TBARS concentrations did not change significantly at any time point after exercise. The findings suggest that after prolonged exercise in moderately trained subjects a critical shift in the blood glutathione redox status may be reached. The changes observed were generally short-lived, the duration of which may have depended on the relative importance of reactive oxygen species generation by the capillary endothelial cells and neutrophil and eosinophil granulocytes after the end of exercise.

  6. Effects of concentrated drinking water injection on glutathione and glutathione-dependent enzymes in liver of Cyprinus carpio L.

    PubMed

    Elia, Antonia Concetta; Fanetti, Alessia; Dörr, Ambrosius Josef Martin; Taticchi, Maria I

    2008-06-01

    Two drinking water production plants located in North Italy, collecting water from the River Po (Plants 1 and 2) were chosen for this study. Water samples were collected before and after the disinfection process and at two points along the piping system. Water samples were concentrated by the solid-phase extraction system and injected intraperitoneally into specimens of Cyprinus carpio. The concentration of water samples was 3 l/equiv. In order to assess the effects of the water samples on carp liver, total glutathione and glutathione-dependent enzymes, such as glutathione S-transferase, glutathione peroxidase, glutathione reductase and glyoxalase I, were measured following this treatment for 6 days at two experimental times (3 and 6 days). Both water plant-treated carp showed a general increase of the enzymatic activities of glutathione S-transferase, and glutathione reductase which might be employed as potential biomarkers of oxidative stress induced by disinfected river water. Plant 1-treated carp showed higher glyoxalase I and glutathione levels and lower glutathione peroxidase activity. A depleted level of total glutathione and of glyoxalase I for specimens of water plant 2 (for both experimental times), without correlation with the distances in the pipeline, suggests that river plant water can also lead to potentially adverse effects on selected biochemical parameters in C. carpio.

  7. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cells). Glutathione measurements are used in the diagnosis and treatment of certain drug-induced hemolytic (erythrocyte destroying) anemias due to an inherited enzyme deficiency. (b) Classification....

  8. Mathematical modeling of the effects of glutathione on arsenic methylation

    PubMed Central

    2014-01-01

    Background Arsenic is a major environmental toxin that is detoxified in the liver by biochemical mechanisms that are still under study. In the traditional metabolic pathway, arsenic undergoes two methylation reactions, each followed by a reduction, after which it is exported and released in the urine. Recent experiments show that glutathione plays an important role in arsenic detoxification and an alternative biochemical pathway has been proposed in which arsenic is first conjugated by glutathione after which the conjugates are methylated. In addition, in rats arsenic-glutathione conjugates can be exported into the plasma and removed by the liver in the bile. Methods We have developed a mathematical model for arsenic biochemistry that includes three mechanisms by which glutathione affects arsenic methylation: glutathione increases the speed of the reduction steps; glutathione affects the activity of arsenic methyltranferase; glutathione sequesters inorganic arsenic and its methylated downstream products. The model is based as much as possible on the known biochemistry of arsenic methylation derived from cellular and experimental studies. Results We show that the model predicts and helps explain recent experimental data on the effects of glutathione on arsenic methylation. We explain why the experimental data imply that monomethyl arsonic acid inhibits the second methylation step. The model predicts time course data from recent experimental studies. We explain why increasing glutathione when it is low increases arsenic methylation and that at very high concentrations increasing glutathione decreases methylation. We explain why the possible temporal variation of the glutathione concentration affects the interpretation of experimental studies that last hours. Conclusions The mathematical model aids in the interpretation of data from recent experimental studies and shows that the Challenger pathway of arsenic methylation, supplemented by the glutathione effects

  9. Maintenance of glutathione content is isolated hepatocyctes.

    PubMed Central

    Nińa, J; Hems, R; Krebs, H A

    1978-01-01

    1. During the standard procedure for the preparation of rat hepatocytes, about half of the cellular GSH (reduced glutathione) is lost. 2. This loss is prevented by the addition of 0.1 mM-EGTA (but no EDTA) to the perfusion medium. 3. On incubation with and without EGTA, isolated hepatocytes prepared in the presence of EGTA lose GSH. This loss is prevented by near-physiological concentrations of methionine or homocysteine, but not of cysteine. 4. Cysteine, at concentrations above 0.2 mM, causes a loss of GSH probably by non-enzymic formation of a mixed disulphide. 5. Serine together with methionine or homocystein increases GSH above the value in cells from starved rats in vivo. This is taken to suggest that cystathionine may be a cysteine donor in the synthesis of gamma-glutamylcysteine, the precursor of GSH. PMID:646804

  10. Quantitation of protein S-glutathionylation by liquid chromatograph-tandem mass spectrometry: Correction for contaminating glutathione and glutathione disulfide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfides (PSSG) are commonly quantified by the reduction of the disulfide and detection of the resultant glutathione species. This met...

  11. Cellular glutathione peroxidase deficiency and endothelial dysfunction.

    PubMed

    Forgione, Marc A; Weiss, Norbert; Heydrick, Stanley; Cap, André; Klings, Elizabeth S; Bierl, Charlene; Eberhardt, Robert T; Farber, Harrison W; Loscalzo, Joseph

    2002-04-01

    Cellular glutathione peroxidase (GPx-1) is the most abundant intracellular isoform of the GPx antioxidant enzyme family. In this study, we hypothesized that GPx-1 deficiency directly induces an increase in vascular oxidant stress, with resulting endothelial dysfunction. We studied vascular function in a murine model of homozygous deficiency of GPx-1 (GPx-1(-/-)). Mesenteric arterioles of GPx-1(-/-) mice demonstrated paradoxical vasoconstriction to beta-methacholine and bradykinin, whereas wild-type (WT) mice showed dose-dependent vasodilation in response to both agonists. One week of treatment of GPx-1(-/-) mice with L-2-oxothiazolidine-4-carboxylic acid (OTC), which increases intracellular thiol pools, resulted in restoration of normal vascular reactivity in the mesenteric bed of GPx-1(-/-) mice. We observed an increase of the isoprostane iPF(2alpha)-III, a marker of oxidant stress, in the plasma and aortas of GPx-1(-/-) mice compared with WT mice, which returned toward normal after OTC treatment. Aortic sections from GPx-1(-/-) mice showed increased binding of an anti-3-nitrotyrosine antibody in the absence of frank vascular lesions. These findings demonstrate that homozygous deficiency of GPx-1 leads to impaired endothelium-dependent vasodilator function presumably due to a decrease in bioavailable nitric oxide and to increased vascular oxidant stress. These vascular abnormalities can be attenuated by increasing bioavailable intracellular thiol pools.

  12. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  13. Glutathione and glutathione-related enzymes in rats exposed to dimethoate and/or pyrantel.

    PubMed

    Spodniewska, A

    2014-01-01

    The study was undertaken to examine the effect of single and combined administration of dimethoate (an OP insecticide) and pyrantel embonate (an anthelmintic agent) on the concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GPx) and glutathione reductase (GR) in rats. Dimethoate (Group I) was administered to rats at a dose of 1/10 LD50 for 5 consecutive days and pyrantel embonate (Group II) at a dose of 1/5 LD50 for 3 consecutive days. The animals of group III were given both of the mentioned above compounds in the same manner as group I and II, but pyrantel embonate was applied on day 3, 4, and 5 from the beginning of dimethoate intoxication. Material from 6 rats randomly selected from each group was obtained after 3, 6 and 12 hours and 2, 7 and 14 days following the last applied dose of the compounds under study. It was found that application of pyrantel embonate caused only slight changes in the analysed parameters i.e. GSH, GPx and GR. Dimethoate administration caused disturbances in the antioxidative system manifested as a decrease in GSH concentration in the liver (max.--37.7% after 6 hours) and an increase of GPx and GR activities in erythrocytes (max.--21.7% and 29.6% after 3 hours, respectively), compared to the control group. The profile of changes after combined intoxication was similar, but their intensity was higher compared to the group of animals exposed to dimethoate only. Based on current studies, it was concluded that both dimethoate and pyrantel embonate at the applied doses showed a pro-oxidative activity.

  14. Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo

    PubMed Central

    Timme-Laragy, Alicia R.; Goldstone, Jared V.; Imhoff, Barry R.; Stegeman, John J.; Hahn, Mark E.; Hansen, Jason M.

    2013-01-01

    Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous non-protein antioxidant defense molecule is the tri-peptide glutathione (γ-glutamyl-cysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0–5 days post-fertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione (GSH, GSSG) using HPLC, and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0–120 hours of zebrafish development (including mature oocytes, fertilization, mid-blastula transition, gastrulation, somitogenesis, pharyngula, pre-hatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12 hours post fertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12 h, and then oscillated around −190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (−220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study

  15. Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo.

    PubMed

    Timme-Laragy, Alicia R; Goldstone, Jared V; Imhoff, Barry R; Stegeman, John J; Hahn, Mark E; Hansen, Jason M

    2013-12-01

    Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0-5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0-120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12h, and then oscillated around -190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (-220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding

  16. Quantitation of protein S-glutathionylation by liquid chromatography-tandem mass spectrometry: correction for contaminating glutathione and glutathione disulfide.

    PubMed

    Bukowski, Michael R; Bucklin, Christopher; Picklo, Matthew J

    2015-01-15

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfide (PSSG) is commonly quantified by reduction of the disulfide and detection of the resultant glutathione species. This methodology is susceptible to contamination by free unreacted cellular glutathione (GSH) species, which are present in 1000-fold greater concentration. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method was developed for quantification of glutathione and glutathione disulfide (GSSG), which was used for the determination of PSSG in biological samples. Analysis of rat liver samples demonstrated that GSH and GSSG coprecipitated with proteins similar to the range for PSSG in the sample. The use of [(13)C2,(5)N]GSH and [(13)C4,(5)N2]GSSG validated these results and demonstrated that the release of GSH from PSSG did not occur during sample preparation and analysis. These data demonstrate that GSH and GSSG contamination must be accounted for when determining PSSG content in cellular/tissue preparations. A protocol for rinsing samples to remove the adventitious glutathione species is demonstrated. The fragmentation patterns for glutathione were determined by high-resolution mass spectrometry, and candidate ions for detection of PSSG on protein and protein fragments were identified.

  17. Inhibition of Glutathione Biosynthesis Sensitizes Plasmodium berghei to Antifolates

    PubMed Central

    Koonyosying, Pongpisid; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee

    2016-01-01

    Glutathione plays a central role in maintaining cellular redox homeostasis, and modulations to this status may affect malaria parasite sensitivity to certain types of antimalarials. In this study, we demonstrate that inhibition of glutathione biosynthesis in the Plasmodium berghei ANKA strain through disruption of the γ-glutamylcysteine synthetase (γ-GCS) gene, which encodes the first and rate-limiting enzyme in the glutathione biosynthetic pathway, significantly sensitizes parasites in vivo to pyrimethamine and sulfadoxine, but not to chloroquine, artesunate, or primaquine, compared with control parasites containing the same pyrimethamine-resistant marker cassette. Treatment of mice infected with an antifolate-resistant P. berghei control line with a γ-GCS inhibitor, buthionine sulfoximine, could partially abrogate pyrimethamine and sulfadoxine resistance. The role of glutathione in modulating the malaria parasite's response to antifolates suggests that development of specific inhibitors against Plasmodium γ-GCS may offer a new approach to counter Plasmodium antifolate resistance. PMID:26953195

  18. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease,...

  19. Effect of glutathione during bottle storage of sparkling wine.

    PubMed

    Webber, Vanessa; Dutra, Sandra Valduga; Spinelli, Fernanda Rodrigues; Carnieli, Gilberto João; Cardozo, Alejandro; Vanderlinde, Regina

    2017-02-01

    Reduced glutathione (GSH) is an efficient antioxidant on limiting browning, losing varietal aromas and off-flavor formation. Therefore, this study aims to evaluate the effect of GSH addition (10, 20 and 30mgL(-1)) after the disgorging of the sparkling wine during storage. The sparkling wines were analyzed at 1, 6, 12 and 18months of storage according to the color index, concentration of the free SO2, phenolic compounds, catechin, epicatechin, caffeic acid, coumaric acid, acetaldehyde, total and reduced glutathione. The results show that GSH concentration decreased to the level of the control sparkling wine during the first 6months, and the total glutathione gradually declined up to 12months. The GSH reduces browning and acetaldehyde formation for up to 12months. However, the presence of glutathione had low or no influence on the concentration of free SO2, total phenolics, catechin, epicatechin, caffeic and coumaric acids.

  20. N-->S phosphoryl migration in phosphoryl glutathion.

    PubMed

    Yang, H J; Liu, J; Zhao, Y F

    1993-07-01

    It was found that in the case of N-(diisopropylphosphoryl) glutathion (reduced form), 2, N-->S phosphoryl migration took place, but not for N,N-bis(diisopropylphosphoryl) glutathion (oxidized form) or N-diisopropylphosphoryl cysteine. These results were deduced by 31P-NMR tracing experiments. It was shown that phosphoryl migration was catalyzed by an intramolecular carboxyl group, and a mechanism involving a mixed carboxyl-phosphoric anhydride was proposed. A competitive reaction between the amino and thiol group toward diisopropyl phosphite indicated that the phospho-thiol derived from N-(diisopropylphosphoryl) glutathion (reduced form), 2, did not result from direct phosphorylation of the thiol group. N,S-Bis(diisopropylphosphoryl) glutathion provides an authentic sample to confirm the migrated phosphoryl thiol product.

  1. Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana

    PubMed Central

    Øverby, Anders; Stokland, Ragni A.; Åsberg, Signe E.; Sporsheim, Bjørnar; Bones, Atle M.

    2015-01-01

    Allyl isothiocyanate (AITC) is a phytochemical associated with plant defense in plants from the Brassicaceae family. AITC has long been recognized as a countermeasure against external threats, but recent reports suggest that AITC is also involved in the onset of defense-related mechanisms such as the regulation of stomatal aperture. However, the underlying cellular modes of action in plants remain scarcely investigated. Here we report evidence of an AITC-induced depletion of glutathione (GSH) and the effect on gene expression of the detoxification enzyme family glutathione S-transferases (GSTs) in Arabidopsis thaliana. Treatment of A. thaliana wild-type with AITC resulted in a time- and dose-dependent depletion of cellular GSH. AITC-exposure of mutant lines vtc1 and pad2-1 with elevated and reduced GSH-levels, displayed enhanced and decreased AITC-tolerance, respectively. AITC-exposure also led to increased ROS-levels in the roots and loss of chlorophyll which are symptoms of oxidative stress. Following exposure to AITC, we found that GSH rapidly recovered to the same level as in the control plant, suggesting an effective route for replenishment of GSH or a rapid detoxification of AITC. Transcriptional analysis of genes encoding GSTs showed an upregulation in response to AITC. These findings demonstrate cellular effects by AITC involving a reversible depletion of the GSH-pool, induced oxidative stress, and elevated expression of GST-encoding genes. PMID:25954298

  2. Amodiaquine failure associated with erythrocytic glutathione in Plasmodium falciparum malaria

    PubMed Central

    Zuluaga, Lina; Pabón, Adriana; López, Carlos; Ochoa, Aleida; Blair, Silvia

    2007-01-01

    Objective To establish the relationship between production of glutathione and the therapeutic response to amodiaquine (AQ) monotherapy in Plasmodium falciparum non-complicated malaria patients. Methodology Therapeutic response to AQ was evaluated in 32 patients with falciparum malaria in two townships of Antioquia, Colombia, and followed-up for 28 days. For every patient, total glutathione and enzymatic activity (glutathione reductase, GR, and γ-glutamylcysteine synthetase, γ-GCS) were determined in parasitized erythrocytes, non-infected erythrocytes and free parasites, on the starting day (day zero, before ingestion of AQ) and on the day of failure (in case of occurrence). Results There was found an AQ failure of 31.25%. Independent of the therapeutic response, on the starting day and on the day of failure, lower total glutathione concentration and higher GR activities in parasitized erythrocytes were found, compared with non-infected erythrocytes (p < 0.003). In addition, only on the day of failure, γ-GCS activity of parasitized erythrocytes was higher, compared with that of healthy erythrocytes (p = 0.01). Parasitized and non-parasitized erythrocytes in therapeutic failure patients (TF) had higher total glutathione on the starting day compared with those of adequate clinical response (ACR) (p < 0.02). Parasitized erythrocytes of TF patients showed lower total glutathione on the failure day, compared with starting day (p = 0.017). No differences was seen in the GR and γ-GCS activities by compartment, neither between the two therapeutic response groups nor between the two treatment days. Conclusion This study is a first approach to explaining P. falciparum therapeutic failure in humans through differences in glutathione metabolism in TF and ACR patients. These results suggest a role for glutathione in the therapeutic failure to antimalarials. PMID:17451604

  3. Nanofiltration concentration of extracellular glutathione produced by engineered Saccharomyces cerevisiae.

    PubMed

    Sasaki, Kengo; Hara, Kiyotaka Y; Kawaguchi, Hideo; Sazuka, Takashi; Ogino, Chiaki; Kondo, Akihiko

    2016-01-01

    This study aimed to optimize extracellular glutathione production by a Saccharomyces cerevisiae engineered strain and to concentrate the extracellular glutathione by membrane separation processes, including ultrafiltration (UF) and nanofiltration (NF). Synthetic defined (SD) medium containing 20 g L(-1) glucose was fermented for 48 h; the fermentation liquid was passed through an UF membrane to remove macromolecules. Glutathione in this permeate was concentrated for 48 h to 545.1 ± 33.6 mg L(-1) using the NF membrane; this was a significantly higher concentration than that obtained with yeast extract peptone dextrose (YPD) medium following 96 h NF concentration (217.9 ± 57.4 mg L(-1)). This higher glutathione concentration results from lower cellular growth in SD medium (final OD600 = 6.9 ± 0.1) than in YPD medium (final OD600 = 11.0 ± 0.6) and thus higher production of extracellular glutathione (16.0 ± 1.3 compared to 9.2 ± 2.1 mg L(-1) in YPD medium, respectively). Similar fermentation and membrane processing of sweet sorghum juice containing 20 g L(-1) total sugars provided 240.3 ± 60.6 mg L(-1) glutathione. Increased extracellular production of glutathione by this engineered strain in SD medium and subsequent UF permeation and NF concentration in shortend time may help realize industrial recovery of extracellular glutathione.

  4. Uterine glutathione reductase activity: modulation by estrogens and progesterone.

    PubMed

    Díaz-Flores, M; Baiza-Gutman, L A; Pedrón, N N; Hicks, J J

    1999-10-29

    The aim of this study was to determine whether glutathione reductase activity in uterine tissue is regulated by sex hormones. In spayed rats uterine glutathione reductase was significantly increased by exogenous estrogen (P< 0.01), progesterone (P< 0.01) or estrogen plus progesterone (P<0.01). When enzyme activity is expressed per mg protein, daily administration of estrogen or progesterone induces a progressive increase of this enzyme between 24 to 48 h or 24 to 72 h of treatment, respectively. Whereas the combination of both steroids causes an earlier and higher increase in glutathione reductase activity at 24 h of treatment. Estradiol singly or in combination with progesterone induced the highest protein concentration in the uterus. Whereas uterine DNA concentration is only significantly affected by estradiol. Our results suggest that uterine glutathione reductase is regulated by estradiol and progesterone and may be involved in maintaining levels of reduced glutathione in the uterus. This compound may be required for control of the redox state of thiol groups and in detoxification reactions involving H2O2 and electrophylic substances. The antioxidant action of estrogens is partially due to the stimulation of glutathione reductase.

  5. Do glutathione levels decline in aging human brain?

    PubMed

    Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J

    2016-04-01

    For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain.

  6. Hepatic glutathione and glutathione S-transferase in selenium deficiency and toxicity in the chick

    SciTech Connect

    Kim, Y. S.

    1989-01-01

    First, the hepatic activity of GSH-T{sub CDNB} was increased only under conditions of severe oxidative stress produced by combined Se- and vitamin E (VE)-deficiency, indicating that VE also affects GSH metabolism. Second, the incorporation of {sup 35}S-methionine into GSH and protein was about 4- and 2-fold higher, respectively, in Se- and VE-deficient chick hepatocytes as compared to controls. Third, chicks injected with the glutathione peroxidase (SeGSHpx) inhibitor, aurothioglucose (AuTG), showed increase hepatic GSH-T{sub CDNB} activity and plasma GSH concentration regardless of their Se status. Fourth, the effect of ascorbic acid (AA), on GSH metabolism was studied. Chicks fed 1000 ppm AA showed decreased hepatic GSH concentration compared to chicks fed no AA in a Se- and VE-deficient diet. Fifth, chicks fed excess Se showed increase hepatic activity of GSH-T{sub CDNB} and GSH concentration regardless of VE status.

  7. Metabolic synthesis of clickable glutathione for chemoselective detection of glutathionylation.

    PubMed

    Samarasinghe, Kusal T G; Munkanatta Godage, Dhanushka N P; VanHecke, Garrett C; Ahn, Young-Hoon

    2014-08-20

    Glutathionylation involves reversible protein cysteine modification that regulates the function of numerous proteins in response to redox stimuli, thereby altering cellular processes. Herein we developed a selective and versatile approach to identifying glutathionylation by using a mutant of glutathione synthetase (GS). GS wild-type catalyzes coupling of γGlu-Cys to Gly to form glutathione. We generated a GS mutant that catalyzes azido-Ala in place of Gly with high catalytic efficiency and selectivity. Transfection of this GS mutant (F152A/S151G) and incubation of azido-Ala in cells efficiently afford the azide-containing glutathione derivative, γGlu-Cys-azido-Ala. Upon H2O2 treatment, clickable glutathione allowed for selective and sensitive detection of glutathionylated proteins by Western blotting or fluorescence after click reaction with biotin-alkyne or rhodamine-alkyne. This approach affords the efficient metabolic tagging of intracellular glutathione with small clickable functionality, providing a versatile handle for characterizing glutathionylation.

  8. Glutathione is required for efficient production of infectious picornavirus virions

    SciTech Connect

    Smith, Allen D. . E-mail: smitha@ba.ars.usda.gov; Dawson, Harry . E-mail: dawsonh@ba.ars.usda.gov

    2006-09-30

    Glutathione is an intracellular reducing agent that helps maintain the redox potential of the cell and is important for immune function. The drug L-buthionine sulfoximine (BSO) selectively inhibits glutathione synthesis. Glutathione has been reported to block replication of HIV, HSV-1, and influenza virus, whereas cells treated with BSO exhibit increased replication of Sendai virus. Pre-treatment of HeLa cell monolayers with BSO inhibited replication of CVB3, CVB4, and HRV14 with viral titers reduced by approximately 6, 5, and 3 log{sub 1}, respectively. The addition of glutathione ethyl ester, but not dithiothreitol or 2-mercaptoethanol, to the culture medium reversed the inhibitory effect of BSO. Viral RNA and protein synthesis were not inhibited by BSO treatment. Fractionation of lysates from CVB3-infected BSO-treated cells on cesium chloride and sucrose gradients revealed that empty capsids but not mature virions were being produced. The levels of the 5S and 14S assembly intermediates, however, were not affected by BSO treatment. These results demonstrate that glutathione is important for production of mature infectious picornavirus virions.

  9. Feasible Relation between Glutathione Peroxidase and Febrile Seizure

    PubMed Central

    MAHYAR, Abolfazl; AYAZI, Parviz; DALIRANI, Reza; MOHAMMAD HOSEINI, Behzad; SAROOKHANI, Mohammad Reza; JAVADI, Amir; ESMAEILY, Shiva

    2017-01-01

    Objective We aimed to determine the relationship between serum glutathione peroxidase and febrile seizure. Materials & Methods In this case-control study, 43 children with simple febrile seizure (case group) were compared with 43 febrile children without seizure (control group) in terms of serum glutathione peroxidase level, measured by ELISA method. This study was conducted in Qazvin Children Hospital, Qazvin University of Medical Sciences in Qazvin, Iran in 2012-2013. The results were analyzed and compared in two groups. Results From 43 children 24 (53%) were male and 19 (47%) were female in children with simple febrile seizure, and 26 (60%) were male and 17 (40%) were female in febrile children without seizure (control group) (P=0.827). Serum glutathione peroxidase level was 166 U/ml (SD=107) in the case group and 141 U/ml (SD=90.5) in the control group of no significant difference. Conclusion There was no significant relationship between serum glutathione peroxidase and simple febrile seizure. Thus, it seems that glutathione peroxidase, an essential component of antioxidant system, does not play any role in the pathogenesis of simple febrile seizure. PMID:28277558

  10. Glutathione peroxidase in early and advanced Parkinson's disease.

    PubMed Central

    Johannsen, P; Velander, G; Mai, J; Thorling, E B; Dupont, E

    1991-01-01

    A defective antioxidant scavenging system plays a major role in one of the theories of the pathogenesis of Parkinson's disease. The aim of this study was to investigate whether there is a general difference in antioxidant activity between early and advanced cases of Parkinson's disease. Twenty five recently diagnosed patients, without any clinical fluctuations (group A), and 25 patients in a late phase of the disease with severe fluctuations in response to levodopa therapy (group B) were included in the study. Erythrocyte glutathione peroxidase was determined as a measure of antioxidant activity and significantly lower values were found in group B than in group A. Regression analyses in groups A and B showed significant correlation between glutathione peroxidase and duration of disease, but not between glutathione peroxidase and age of patients. Images PMID:1940936

  11. Glutathione synthesis is compromised in erythrocytes from individuals with HIV

    PubMed Central

    Morris, Devin; Ly, Judy; Chi, Po-Ting; Daliva, John; Nguyen, Truongson; Soofer, Charleen; Chen, Yung C.; Lagman, Minette; Venketaraman, Vishwanath

    2014-01-01

    We demonstrated that the levels of enzymes responsible for the synthesis of glutathione (GSH) such as glutathione synthase (GSS), glutamate-cysteine ligase-catalytic subunit (GCLC), and glutathione reductase (GSR) were significantly reduced in the red blood cells (RBCs) isolated from individuals with human immunodeficiency virus (HIV) infection and this reduction correlated with decreased levels of intracellular GSH. GSH content in RBCs can be used as a marker for increased overall oxidative stress and immune dysfunctions caused by HIV infection. Our data supports our hypothesis that compromised levels of GSH in HIV infected individuals’ is due to decreased levels of GSH-synthetic enzymes. The role of GSH in combating oxidative stress and improving the functions of immune cells in HIV patients’ indicates the benefit of an antioxidant supplement which can reduce the cellular damage and promote the functions of immune cells. PMID:24782776

  12. Glutathione synthesis is compromised in erythrocytes from individuals with HIV.

    PubMed

    Morris, Devin; Ly, Judy; Chi, Po-Ting; Daliva, John; Nguyen, Truongson; Soofer, Charleen; Chen, Yung C; Lagman, Minette; Venketaraman, Vishwanath

    2014-01-01

    We demonstrated that the levels of enzymes responsible for the synthesis of glutathione (GSH) such as glutathione synthase (GSS), glutamate-cysteine ligase-catalytic subunit (GCLC), and glutathione reductase (GSR) were significantly reduced in the red blood cells (RBCs) isolated from individuals with human immunodeficiency virus (HIV) infection and this reduction correlated with decreased levels of intracellular GSH. GSH content in RBCs can be used as a marker for increased overall oxidative stress and immune dysfunctions caused by HIV infection. Our data supports our hypothesis that compromised levels of GSH in HIV infected individuals' is due to decreased levels of GSH-synthetic enzymes. The role of GSH in combating oxidative stress and improving the functions of immune cells in HIV patients' indicates the benefit of an antioxidant supplement which can reduce the cellular damage and promote the functions of immune cells.

  13. Glutathione Homeostasis and Functions: Potential Targets for Medical Interventions

    PubMed Central

    Lushchak, Volodymyr I.

    2012-01-01

    Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health. PMID:22500213

  14. Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids.

    PubMed

    Zechmann, B; Mauch, F; Sticher, L; Müller, M

    2008-01-01

    The tripeptide glutathione is a major antioxidant and redox buffer with multiple roles in plant metabolism. Glutathione biosynthesis is restricted to the cytosol and the plastids and the product is distributed to the various organelles by unknown mechanisms. In the present study immunogold cytochemistry based on anti-glutathione antisera and transmission electron microscopy was used to determine the relative concentration of glutathione in different organelles of Arabidopsis thaliana leaf and root cells. Glutathione-specific labelling was detected in all cellular compartments except the apoplast and the vacuole. The highest glutathione content was surprisingly not found in plastids, which have been described before as a major site of glutathione accumulation, but in mitochondria which lack the capacity for glutathione biosynthesis. Mitochondria of both leaf and root cells contained 7-fold and 4-fold, respectively, higher glutathione levels than plastids while the density of glutathione labelling in the cytosol, nuclei, and peroxisomes was intermediate. The accuracy of the glutathione labelling is supported by two observations. First, pre-adsorption of the anti-glutathione antisera with glutathione reduced the density of the gold particles in all organelles to background levels. Second, the overall glutathione-labelling density was reduced by about 90% in leaves of the glutathione-deficient Arabidopsis mutant pad2-1 and increased in transgenic plants with enhanced glutathione accumulation. Hence, there was a strong correlation between immunocytochemical and biochemical data of glutathione accumulation. Interestingly, the glutathione labelling of mitochondria in pad2-1 remained very similar to wild-type plants thus suggesting that the high mitochondrial glutathione content is maintained in a situation of permanent glutathione-deficiency at the expense of other glutathione pools. High and constant levels of glutathione in mitochondria appear to be particularly

  15. Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids

    PubMed Central

    Zechmann, B.; Mauch, F.; Sticher, L.; Müller, M.

    2008-01-01

    The tripeptide glutathione is a major antioxidant and redox buffer with multiple roles in plant metabolism. Glutathione biosynthesis is restricted to the cytosol and the plastids and the product is distributed to the various organelles by unknown mechanisms. In the present study immunogold cytochemistry based on anti-glutathione antisera and transmission electron microscopy was used to determine the relative concentration of glutathione in different organelles of Arabidopsis thaliana leaf and root cells. Glutathione-specific labelling was detected in all cellular compartments except the apoplast and the vacuole. The highest glutathione content was surprisingly not found in plastids, which have been described before as a major site of glutathione accumulation, but in mitochondria which lack the capacity for glutathione biosynthesis. Mitochondria of both leaf and root cells contained 7-fold and 4-fold, respectively, higher glutathione levels than plastids while the density of glutathione labelling in the cytosol, nuclei, and peroxisomes was intermediate. The accuracy of the glutathione labelling is supported by two observations. First, pre-adsorption of the anti-glutathione antisera with glutathione reduced the density of the gold particles in all organelles to background levels. Second, the overall glutathione-labelling density was reduced by about 90% in leaves of the glutathione-deficient Arabidopsis mutant pad2-1 and increased in transgenic plants with enhanced glutathione accumulation. Hence, there was a strong correlation between immunocytochemical and biochemical data of glutathione accumulation. Interestingly, the glutathione labelling of mitochondria in pad2-1 remained very similar to wild-type plants thus suggesting that the high mitochondrial glutathione content is maintained in a situation of permanent glutathione-deficiency at the expense of other glutathione pools. High and constant levels of glutathione in mitochondria appear to be particularly

  16. Analysis of glutathione, glutathione disulfide, cysteine, homocysteine, and other biological thiols by high-performance liquid chromatography following derivatization by n-(1-pyrenyl)maleimide.

    PubMed

    Winters, R A; Zukowski, J; Ercal, N; Matthews, R H; Spitz, D R

    1995-05-01

    The compound N-(1-pyrenyl)maleimide (NPM) reacts with free sulfhydryl groups to form fluorescent derivatives. A new method for measurement of glutathione and other biological thiols utilizing reverse-phase high-performance liquid chromatography to separate and quantify these derivatives is described. Separation and quantification of glutathione, cysteine, homocysteine, cysteinylglycine, and gamma-glutamylcysteine derivatives are achieved. The method allows for the measurement of glutathione disulfide by masking free glutathione with 2-vinylpyridine, reducing glutathione disulfide with glutathione reductase, and measuring the resulting glutathione. Coefficient of variations for the various thiols measured by the NPM method range from 1.5 to 8.8%. The lower detection limit is around 50 fmol of glutathione. NPM derivatives are shown to be stable for 2 months at 4 degrees C. Between 94.2 and 97.2% of glutathione and/or glutathione disulfide added to a sample is recovered using the NPM method. The NPM method is compared to the monobromobimane high-performance liquid chromatography method and the Tietze assay by measuring glutathione in homogenates from five different cell lines. The newly developed method offers some advantages over the currently accepted techniques, including specificity, speed, sensitivity, and ease of use.

  17. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  18. Characterization of glutathione S-transferase of Taenia solium.

    PubMed

    Vibanco-Pérez, N; Jiménez, L; Merchant, M T; Landa, A

    1999-06-01

    A Taenia solium glutathione-S-transferase fraction (SGSTF) was isolated from a metacestode crude extract by affinity chromatography on reduced glutathione (GSH)-sepharose. The purified fraction displayed a specific glutathione S-transferase (GST) activity of 2.8 micromol/min/mg and glutathione peroxidase selenium-independent activity of 0.22 micromol/min/mg. Enzymatic characterization of the fraction suggested that the activity was closer to the mammalian mu-class GSTs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and enzyme activity analysis showed that the fraction was composed of a major band of Mr = 26 kd and that the active enzyme was dimeric. Immunohistochemical studies using specific antibodies against the major 26-kd band of the SGSTF indicated that GST protein was present in the tegument, parenchyma, protonephridial, and tegumentary cytons of the T. solium metacestode. Antibodies generated against the SGSTF tested in western blot showed cross-reactivity against GSTs purified from Taenia saginata, T. taeniaeformis, and T. crassiceps, but did not react with GSTs from Schistosoma mansoni, or mice, rabbit, and pig liver tissue. Furthermore, immunization of mice with SGSTF reduced the metacestode burden up to 74.2%. Our findings argue in favor of GST having an important role in the survival of T. solium in its hosts.

  19. Developmental Changes in the Biliary Excretion of Methylmercury and Glutathione

    NASA Astrophysics Data System (ADS)

    Ballatori, Nazzareno; Clarkson, Thomas W.

    1982-04-01

    The long half-time for methylmercury in the neonatal rat is explained by the neonatal liver's inability to secrete the toxin into bile, which in adults is the main route of elimination. The ability to secrete mercury into bile develops between 2 and 4 weeks of age and is correlated with the increasing ability of the developing liver to secrete glutathione into bile.

  20. The effects of exogenous glutathione on reduced glutathione level, glutathione peroxidase and glutathione reductase activities of rats with different ages and gender after whole-body Γ-irradiation.

    PubMed

    Erden Inal, Mine; Akgün, Asiye; Kahraman, Ahmet

    2003-07-01

    Age-and gender-related changes on reduced glutathione (GSH) level, glutathione peroxidase (GPx) and glutathione reductase (GR) activities in the liver of rat exposed to different dose of whole-body g-ray irradiation were determined. In addition, the effect of administration of exogenous GSH on endogenous GSH levels, GPx and GR activities was investigated. For this aim, male and female rats aged 1 and 5 moths were divided into two groups as g-ray and g-ray+GSH. Both groups were again divided into four groups as irradiated with 2, 4, 6 and 8 Gy doses. GSH level and GPx activity did not change with age while GR activity was decreased with age. Gender-dependent changes in GPx and GR activities were observed, but GSH values were not affect by sex. GSH levels, GPx and GR activities were not observed dose-associated changes of g-irradiation. GSH level and GPx activity in the 8Gy group were increased by GSH. GR activities of old male rats were found to be increased by glutathione in the 6 and 8Gy groups. These results indicate that radiation and administration of exogenous GSH affect gender-and age-dependent GSH level, GPx and GR activities in the rats.

  1. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  2. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  3. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  4. Characterization of two Arabidopsis thaliana glutathione S-transferases.

    PubMed

    Nutricati, Eliana; Miceli, Antonio; Blando, Federica; De Bellis, Luigi

    2006-09-01

    Glutathione S-transferases (GST) are multifunctional proteins encoded by a large gene family, divided on the basis of sequence identity into phi, tau, theta, zeta and lambda classes. The phi and tau classes are present only in plants. GSTs appear to be ubiquitous in plants and are involved in herbicide detoxification and stress response, but little is known about the precise role of GSTs in normal plant physiology and during biotic and abiotic stress response. Two cDNAs representing the two plant classes tau and phi, AtGSTF9 and AtGSTU26, were expressed in vitro and the corresponding proteins were analysed. Both GSTs were able to catalyse a glutathione conjugation to 1-chloro-2,4-dinitrobenzene (CDNB), but they were inactive as transferases towards p-nitrobenzylchloride (pNBC). AtGSTF9 showed activity towards benzyl isothiocyanate (BITC) and an activity as glutathione peroxidase with cumene hydroperoxide (CumHPO). AtGSTU26 was not active as glutathione peroxidase and towards BITC. RT-PCR analysis was used to evaluate the expression of the two genes in response to treatment with herbicides and safeners, chemicals, low and high temperature. Our results reveal that AtGSTU26 is induced by the chloroacetanilide herbicides alachlor and metolachlor and the safener benoxacor, and after exposure to low temperatures. In contrast, AtGSTF9 seems not to be influenced by the treatments employed.

  5. REACTION OF BENZENE OXIDE WITH THIOLS INCLUDING GLUTATHIONE

    EPA Science Inventory

    This study accounts for the observations that the metabolism of benzene is dominated by the formation of phenol. As demonstrated here, the pathway leading to S-phenylmercapturic acid is necessarily minor on account of the low efficiency of benzene oxide capture by glutathione at ...

  6. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  7. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  8. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  9. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  10. 21 CFR 862.1365 - Glutathione test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione test system. 862.1365 Section 862.1365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  11. GLUTATHIONE S-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE

    EPA Science Inventory

    GLUTATHIONE s-TRANSFERASE-MEDIATED METABOLISM OF BROMODICHLOROMETHANE. M K Ross1 and R A Pegram2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill; 2Experimental Toxicology Division, NHEERL/ORD, United States Environmental Protection Agency, Research Triangl...

  12. Balneotherapy and platelet glutathione metabolism in type II diabetic patients

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Agishi, Yuko

    1996-09-01

    Effects of balneotherapy on platelet glutathione metabolism were investigated in 12 type II (non-insulin-dependent) diabetic patients. Levels of the reduced form of glutathione (GSH) on admission were well correlated with those of fasting plasma glucose (FPG; r=0.692, P<0.02). After 4 weeks of balneotherapy, the mean level of GSH showed no changes; however, in well-controlled patients (FPG <150 mg/dl), the level increased ( P<0.01) and in poorly controlled patients (FPG >150 mg/dl), the value decreased ( P<0.05). There was a negative correlation between glutathione peroxidase (GPX) activities and the levels of FPG ( r=-0.430, P<0.05). After balneotherapy, the activity increased in 5 patients, decreased in 3 patients and showed no changes (alteration within ±3%) in all the other patients. From these findings in diabetic patients we concluded: (1) platelet GSH synthesis appeared to be induced in response to oxidative stress; (2) lowered GPX activities indicated that the antioxidative defense system was impaired; and (3) platelet glutathione metabolism was partially improved by 4 weeks balneotherapy, an effect thought to be dependent on the control status of plasma glucose levels. It is suggested that balneotherapy is beneficial for patients whose platelet antioxidative defense system is damaged, such as those with diabetes mellitus and coronary heart disease.

  13. Mechanism-based biomarker gene sets for glutathione depletion-related hepatotoxicity in rats

    SciTech Connect

    Gao Weihua; Mizukawa, Yumiko; Nakatsu, Noriyuki; Minowa, Yosuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2010-09-15

    Chemical-induced glutathione depletion is thought to be caused by two types of toxicological mechanisms: PHO-type glutathione depletion [glutathione conjugated with chemicals such as phorone (PHO) or diethyl maleate (DEM)], and BSO-type glutathione depletion [i.e., glutathione synthesis inhibited by chemicals such as L-buthionine-sulfoximine (BSO)]. In order to identify mechanism-based biomarker gene sets for glutathione depletion in rat liver, male SD rats were treated with various chemicals including PHO (40, 120 and 400 mg/kg), DEM (80, 240 and 800 mg/kg), BSO (150, 450 and 1500 mg/kg), and bromobenzene (BBZ, 10, 100 and 300 mg/kg). Liver samples were taken 3, 6, 9 and 24 h after administration and examined for hepatic glutathione content, physiological and pathological changes, and gene expression changes using Affymetrix GeneChip Arrays. To identify differentially expressed probe sets in response to glutathione depletion, we focused on the following two courses of events for the two types of mechanisms of glutathione depletion: a) gene expression changes occurring simultaneously in response to glutathione depletion, and b) gene expression changes after glutathione was depleted. The gene expression profiles of the identified probe sets for the two types of glutathione depletion differed markedly at times during and after glutathione depletion, whereas Srxn1 was markedly increased for both types as glutathione was depleted, suggesting that Srxn1 is a key molecule in oxidative stress related to glutathione. The extracted probe sets were refined and verified using various compounds including 13 additional positive or negative compounds, and they established two useful marker sets. One contained three probe sets (Akr7a3, Trib3 and Gstp1) that could detect conjugation-type glutathione depletors any time within 24 h after dosing, and the other contained 14 probe sets that could detect glutathione depletors by any mechanism. These two sets, with appropriate scoring

  14. Glutathione level after long-term occupational elemental mercury exposure

    SciTech Connect

    Kobal, Alfred Bogomir Prezelj, Marija; Horvat, Milena; Krsnik, Mladen; Gibicar, Darija; Osredkar, Josko

    2008-05-15

    Many in vitro and in vivo studies have elucidated the interaction of inorganic mercury (Hg) and glutathione. However, human studies are limited. In this study, we investigated the potential effects of remote long-term intermittent occupational elemental Hg vapour (Hg{sup o}) exposure on erythrocyte glutathione levels and some antioxidative enzyme activities in ex-mercury miners in the period after exposure. The study included 49 ex-mercury miners divided into subgroups of 28 still active, Hg{sup o}-not-exposed miners and 21 elderly retired miners, and 41 controls, age-matched to the miners subgroup. The control workers were taken from 'mercury-free works'. Reduced glutathione (GSH) and oxidized disulphide glutathione (GSSG) concentrations in haemolysed erythrocytes were determined by capillary electrophoresis, while total glutathione (total GSH) and the GSH/GSSG ratio were calculated from the determined values. Catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in erythrocytes were measured using commercially available reagent kits, while urine Hg (U-Hg) concentrations were determined by cold vapour atomic absorption (CVAAS). No correlation of present U-Hg levels, GSH, GSSG, and antioxidative enzymes with remote occupational biological exposure indices were found. The mean CAT activity in miners and retired miners was significantly higher (p<0.05) than in the controls. No differences in mean GPx activity among the three groups were found, whereas the mean GR activity was significantly higher (p<0.05) in miners than in retired miners. The mean concentrations of GSH (mmol/g Hb) in miners (13.03{+-}3.71) were significantly higher (p<0.05) than in the control group (11.68{+-}2.66). No differences in mean total GSH, GSSG levels, and GSH/GSSG ratio between miners and controls were found. A positive correlation between GSSG and present U-Hg excretion (r=0.41, p=0.001) in the whole group of ex-mercury miners was observed. The

  15. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals.

    PubMed

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E; Ortiz, Rudy M

    2011-04-15

    Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin-angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40-50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals.

  16. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.

    PubMed

    Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio

    2007-09-01

    Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.

  17. [Effect of tobacco smoking on glutathione concentration in the blood].

    PubMed

    Bizoń, Anna; Milnerowicz, Halina

    2012-01-01

    The aim of present study was to determine the influence of tobacco smoking and age on reduced glutathione concentration in the blood. The study was performed in the blood of 65 subjects. The data on smoking which had been obtained from a direct personal interview were verified by determination of serum cotinine concentrations. Biological material was divided into groups of non-smokers and smokers. Malonylodialdehyde concentration in the plasma was measured by reaction with thiobarbituric acid. Concentration of cadmium was measured using graphite furnace atomic absorption spectrometry with Zeeman background correction. Reduced glutathione in the blood was measured using a previously developed method [11]. A significant increase of malonylodialdehyde concentration was observed in the blood of smokers > or = 20 cigarettes per day compared to nonsmoking person. Malonylodialdehyde level in the plasma of smokers <20 cigarettes per day did not differ with non-smokers. The highest cadmium concentration was observed in the whole blood of smokers > or = 20 cigarettes per day and it was about 4-fold higher compared to non-smoking people. Also smokers <20 cigarettes per day have higher cadmium concentration in the blood in comparison to non-smokers. Analyzing the impact of smoking intensity on reduced glutathione concentration it was a statistically significant increase in the blood of smokers > or = 20 cigarettes per day compared to nonsmoking person. Non-smoking and smokers <20 cigarettes per day had comparable levels of this antioxidant in the blood. A significant elevation in reduced glutathione concentration was observed in the blood of smokers < 30 years of age in comparison to nonsmoking persons < 30 and > 30 years of age. Our study confirmed that the reduced glutathione concentration in the body affects tobacco smoking and aging.

  18. The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate.

    PubMed

    Oakley, A J; Rossjohn, J; Lo Bello, M; Caccuri, A M; Federici, G; Parker, M W

    1997-01-21

    The potent diuretic drug ethacrynic acid has been tested in clinical trials as an adjuvant in chemotherapy. Its target is the detoxifying enzyme glutathione transferase which is often found overexpressed in cancer tissues. We have solved the crystal structures of human pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Ethacrynic acid is found to bind in a nonproductive mode to one of the ligand binding sites of the enzyme (the H site) while the glutathione binding site (G site) is occupied by solvent molecules. There are no structural rearrangements of the G site in the absence of ligand. The structure indicates that bound glutathione is required for ethacrynic acid to dock into the H site in a productive binding mode. The binding of the ethacrynic acid-glutathione conjugate shows that the contacts of the glutathione moiety with the protein are identical to those observed in crystal structures of the enzyme with other glutathione-based substrates and inhibitors. The ethacrynic acid moiety of the conjugate binds in the H site in a fashion that has not been observed in crystal structures of other glutathione-based inhibitor complexes. The crystal structures implicate Tyr 108 as an electrophilic participant in the Michael addition of glutathione to ethacrynic acid.

  19. Value of glutathion-S transferase pi as a prognostic factor in epithelial ovarian carcinoma.

    PubMed

    Saip, P; Tuzlali, S; Demir, K; Sakar, B; Yavuz, E; Berkman, S; Bengisu, E; Topuz, E

    2005-01-01

    The association between glutathione S-transferase pi (GSTpi) and other clinicopathological parameters, response to chemotherapy and clinical outcome were investigated in chemotherapy naive epithelial ovarian cancer patients. Paraffin-embedded material from 55 patients were used for immunohistochemical analysis. All patients had received six cycles of cisplatinum-based chemotherapy and 41 of them were revalued by laparotomy. Pre- and post-chemotherapy GSTpi staining were detected in the cancer tissues of 18/55 (32.7%) and 5/14 (35.7%) patients, respectively. GSTpi expression was not associated with other clinicopathologic parameters. Of 17 patients with postoperative measurable residual disease clinical response was observed in 4/7 of GSTpi positive and in 9/10 GSTpi negative patients (p = 0.25). Pathologic complete response (pCR) was achieved in 5/8 of GSTpi positive and 11/22 of GSTpi negative cases (p = 0.69). There was no significant difference in overall survival and progression-free survival (PFS) according to initial GSTpi status. However the PFS of the five patients (median 22 +/- 5.9 months) who had postchemotherapy positive GSTpi was significantly shorter than the nine patients (10.0 +/- 2.19 months) who had negative GSTpi (p = 0.006). This difference was not observed in overall survival. These results suggest that initial immunohistochemical staining of GSTpi does not aid in the prediction of pCR and clinical outcome in patients with epithelial ovarian cancer. Nonetheless investigation of GSTpi expression after chemotherapy needs further evaluation.

  20. CHARACTERIZATION OF DANSYLATED CYSTEINE, CYSTINE, GLUTATHIONE, AND GLUTATHIONE DISULFIDE BY NARROW BORE LIQUID CHROMATOGRAPHY - ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    EPA Science Inventory

    A method using reversed phase high performance liquid chromtography/electrospray ionization-mass spectrometry (RP-LC/ESI-MS) has been developed to confirm the dientity of dansylated derivatives of cysteine (C) and glutathione (GSH), and their respective dimers, cystine (CSSC) and...

  1. Co-Induction of a Glutathione-S-transferase, a Glutathione Transporter and an ABC Transporter in Maize by Xenobiotics

    PubMed Central

    Liu, Zhiqian; Song, Xiaoyu; Li, Xuefeng; Wang, Chengju

    2012-01-01

    Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by four herbicides (2,4-D, atrazine, metolachlor and primisulfuron) and a herbicide safener (dichlormid) on the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect on gene expression varies with both chemicals and genes. The expression of ZmGST27 and ZmMRP1 was up-regulated by all five compounds, whereas that of ZmGT1 was increased by atrazine, metolachlor, primisulfuron and dichlormid, but not by 2,4-D. For all chemicals, the inducing effect was first detected on ZmGST27. The finding that ZmGT1 is activated alongside ZmGST27 and ZmMRP1 suggests that glutathione transporters are an important component in the xenobiotic detoxification system of plants. PMID:22792398

  2. Serum Glutathione in Patients with Schizophrenia in Dynamics of Antipsychotic Therapy.

    PubMed

    Ivanova, S A; Smirnova, L P; Shchigoreva, Yu G; Semke, A V; Bokhan, N A

    2015-12-01

    Serum concentrations of oxidized and reduced glutathione were measured in 73 patients with schizophrenia at admission and in dynamics of therapy with traditional and atypical antipsychotic drugs. The level of reduced glutathione in patients with schizophrenia with manifest clinical symptoms was lower than in normal subjects. Atypical neuroleptics produced virtually no effects on the glutathione system, while therapy with typical antipsychotics led to further decrease in the levels of reduced glutathione, thus aggravating the imbalance of metabolic processes typical of schizophrenia.

  3. Glutathione S-transferase class {pi} polymorphism in baboons

    SciTech Connect

    Aivaliotis, M.J.; Cantu, T.; Gilligan, R.

    1995-02-01

    Glutathione S-transferase (GST) comprises a family of isozymes with broad substrate specificities. One or more GST isozymes are present in most animal tissues and function in several detoxification pathways through the conjugation of reduced glutathione with various electrophiles, thereby reducing their potential toxicity. Four soluble GST isozymes encoded by genes on different chromosomes have been identified in humans. The acidic class pi GST, GSTP (previously designated GST-3), is widely distributed in adult tissues and appears to be the only GST isozyme present in leukocytes and placenta. Previously reported electrophoretic analyses of erythrocyte and leukocyte extracts revealed single bands of activity, which differed slightly in mobility between the two cell types, or under other conditions, a two-banded pattern. To our knowledge, no genetically determined polymorphisms have previously been reported in GSTP from any species. We now report a polymorphism of GSTP in baboon leukocytes, and present family data that verifies autosomal codominant inheritance. 14 refs., 2 figs., 1 tab.

  4. Zn and Cu complexes with glutathione in ricinis phloem sap

    SciTech Connect

    Albrigo, L.G.; Taylor, K.C. )

    1989-04-01

    To characterize phloem Cu and Zn carriers, phloem sap was collected from native stands of Ricinis communis. The sap was separated by DEAE-Sephadex ion exchange chromatography. Two peaks were resolved from subsequent Zorbax CN-HPLC (isocratic elution: 0.25% MeOH, 0.025% TFA). Both peaks contained Cu and Zn. Further assessment by Mono Q-FPLC showed that these peaks were approximately 90% homogeneous, with similar retention times. The amino acid compositions of the HPLC eluted Cu- and Zn-containing fractions were determined. Both peaks contained glutathione (cysteic acid: glutamic acid: glycine, 1:1:1). Further work is underway to verify a complexing association of these metals with glutathione.

  5. [Glutathione S-transferase of alpha class from pike liver].

    PubMed

    Borvinskaia, E V; Smirnov, L P; Nemova, N N

    2013-01-01

    In this study, glutathione S-transferase (GST) was isolated from the liver of pike Esox lucius, which was homogenous according to SDS-PAGE and isoelectrofocusing. It is a homodimer with subunits mass 25235.36 Da (according to HPLC-MS/MS) and pI about 6.4. Substrate specificity, thermostability, some kinetic characteristics and optimum pH were determined. The enzyme was identified as Alpha class GST.

  6. Thioredoxin Glutathione Reductase-Dependent Redox Networks in Platyhelminth Parasites

    PubMed Central

    Bonilla, Mariana; Gladyshev, Vadim N.

    2013-01-01

    Abstract Significance: Platyhelminth parasites cause chronic infections that are a major cause of disability, mortality, and economic losses in developing countries. Maintaining redox homeostasis is a major adaptive problem faced by parasites and its disruption can shift the biochemical balance toward the host. Platyhelminth parasites possess a streamlined thiol-based redox system in which a single enzyme, thioredoxin glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase (TR) domains, supplies electrons to oxidized glutathione (GSSG) and thioredoxin (Trx). TGR has been validated as a drug target for schistosomiasis. Recent Advances: In addition to glutathione (GSH) and Trx reduction, TGR supports GSH-independent deglutathionylation conferring an additional advantage to the TGR redox array. Biochemical and structural studies have shown that the TR activity does not require the Grx domain, while the glutathione reductase and deglutathionylase activities depend on the Grx domain, which receives electrons from the TR domains. The search for TGR inhibitors has identified promising drug leads, notably oxadiazole N-oxides. Critical Issues: A conspicuous feature of platyhelminth TGRs is that their Grx-dependent activities are temporarily inhibited at high GSSG concentrations. The mechanism underlying the phenomenon and its biological relevance are not completely understood. Future Directions: The functional diversity of Trxs and Grxs encoded in platyhelminth genomes remains to be further assessed to thoroughly understand the TGR-dependent redox network. Optimization of TGR inhibitors and identification of compounds targeting other parasite redox enzymes are good options to clinically develop relevant drugs for these neglected, but important diseases. Antioxid. Redox Signal. 19, 735–745. PMID:22909029

  7. Influence of changes in glutathione concentration on body temperature and tolerance to cerebral ischemia.

    PubMed

    Kolesnichenko, L S; Kulinsky, V I; Sotnikova, G V; Kovtun, V Yu

    2003-05-01

    Two compounds that deplete glutathione (buthionine sulfoximine and diethyl maleate) with different mechanisms of action decrease body temperature and increase tolerance to complete global cerebral ischemia, both correlating closely with the glutathione concentration decrease. Glutathione apparently participates in the regulations of these functional parameters. GSH diethyl ester does not influence the latter, though it increases moderately the GSH concentration. Injection of GSH ester into the cerebral ventricles or subcutaneously selectively increases the GSH level in the brain and liver. An influence of the brain on the glutathione system in the liver was revealed. Diethyl maleate and GSH ester increase the activity of glutathione metabolizing enzymes under certain conditions.

  8. [Glutathione system in erythrocytes and blood plasma in strokes and dyscirculatory encephalopathy].

    PubMed

    Kolesnichenko, L S; Kulinski, V I; Shprakh, V V; Bardymov, V V; Verlan, N V; Gubina, L P; Pensionerova, G A; Sergeeva, M P; Stanevich, L M; Filippova, G T

    2007-01-01

    In dyscirculatory encephalopathy and moderate ischemic stroke there are single changes of components of glutathione metabolism. In moderate and severe ischemic stroke frequent and considerable changes have been revealed. Changes in hemorrhagic stroke are also expressed. An increase of activities of glutathione peroxidase and glutathione transferase is the most typical, rarely the increase of glutathione reductase and GSH is observed. The increase of enzymes activity was absent at the delayed oneset of treatment (more than 3 days) and in severe cases patients who died later. Glutathione system is important in the tolerance to cerebral ischemia.

  9. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level.

  10. Preclinical pharmacokinetic analysis of NOV-002, a glutathione disulfide mimetic.

    PubMed

    Uys, J D; Manevich, Y; Devane, L C; He, L; Garret, T E; Pazoles, C J; Tew, K D; Townsend, D M

    2010-09-01

    NOV-002 is a glutathione disulfide (GSSG) mimetic that is the subject of clinical investigation in oncology indications. GSSG is reduced by glutathione reductase (GR) to form glutathione (GSH), thereby maintaining redox homeostasis. The purpose of the study was to report the pharmacokinetic properties of NOV-002 and evaluate the effect that NOV-002 elicits in redox homeostasis. The pharmacokinetic analysis and tissue distribution of NOV-002 and GSH was evaluated in mice following a dose of 250 mg/kg, i.p. The redox potential and total protein thiol status was calculated. Here we show that NOV-002 is a substrate for GR and that GSH is a primary metabolite. Non-linear pharmacokinetic modeling predicted that the estimated absorption and elimination rate constants correspond to a half-life of approximately 13 min with an AUC of 1.18 μgh/mL, a C(max) of 2.16 μg/ml and a volume of distribution of 42.61 L/kg. In addition, measurement of the redox potential and total protein thiol status indicated the generation of a transient oxidative signal in the plasma compartment after administration of NOV-002. These results indicate that NOV-002 exerts kinetic and dynamic effects in mice consistent with the GSSG component as the active pharmacological constituent of the drug. A longer-lasting decrease in total plasma free thiol content was also seen, suggesting that the oxidative effect of the GSSG from NOV-002 was impacting redox homeostasis.

  11. Glutamine: a precursor of glutathione and its effect on liver

    PubMed Central

    Yu, Jian-Chun; Jiang, Zhu-Ming; Li, De-Min

    1999-01-01

    AIM To investigate the relationship between alanyl-glutamine (ALA-GLN) and glutathione (GSH) biosynthesis in hepatic protection. METHODS Twenty male Wistar rats were randomly divided into two groups: one receiving standard parenteral nutrition (STD) and the other supplemented with or without ALA-GLN for 7 days. The blood and liver tissue samples were examined after 5-fluorouracil (5-FU) was injected peritoneally. RESULTS The concentration measurements were significantly highe r in ALA-GLN group than in STD group in serum GLN (687 μmol/ L ± 50 μmol/L vs 505 μmol/L ± 39 μmol/L,P < 0.05), serum GSH (14 μmol/L ± 5 μmol/L vs 7 μmol/L ± 3 μmol/L, P < 0.01) and in liver GSH content (6.9 μmol/g ± 2.5 μmol/g vs 4.4 μmol/ g ± 1.6 μmol/g liver tissue, P < 0.05). Rats in ALA-GLN group had lesser elevations in hepatic enzymes after 5-FU administration. CONCLUSION The supplemented nutrition ALA-GLN can protect the liver function through increasing the glutathione biosynthesis and pre-serving the glutathione stores in hepatic tissue. PMID:11819414

  12. The effect of quercetin and galangin on glutathione reductase.

    PubMed

    Paulíková, Helena; Berczeliová, Elena

    2005-12-01

    Quercetin and galangin can change the activity of glutathione reductase. Quercetin (a catechol structure in the B-ring) and galangin (any hydroxyl group in the B-ring) have different biological activities but, both possess high antioxidant abilities. Quercetin during the antioxidative action, is converted into an oxidized products (o-semiquinone and o-quinone), and subsequently glutathionyl adducts may be formed or SH-enzyme can be inhibited. We have tried to see whether inhibition of glutathione reductase (GR) can be influenced by preincubation of enzyme with NADPH (a creation of reduced form of enzyme, GRH(2)) and whether diaphorase activity of the enzyme is decreased by these flavonoids. The results confirmed that quercetin inhibits GRH(2) and inhibition is reduced by addition of EDTA or N-acetylcysteine. Both of flavonoids have no effect on diaphorase activity of glutathione reductase and this enzyme could increase the production of free radicals by catalysis of reduction of o-quinone during action of quercetin in vivo.

  13. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.

  14. Novel physiological roles for glutathione in sequestering acetaldehyde to confer acetaldehyde tolerance in Saccharomyces cerevisiae.

    PubMed

    Matsufuji, Yoshimi; Yamamoto, Kohei; Yamauchi, Kosei; Mitsunaga, Tohru; Hayakawa, Takashi; Nakagawa, Tomoyuki

    2013-01-01

    In this work, we identified novel physiological functions of glutathione in acetaldehyde tolerance in Saccharomyces cerevisiae. Strains deleted in the genes encoding the enzymes involved in glutathione synthesis and reduction, GSH1, GSH2 and GLR1, exhibited severe growth defects compared to wild-type under acetaldehyde stress, although strains deleted in the genes encoding glutathione peroxidases or glutathione transferases did not show any growth defects. On the other hand, intracellular levels of reduced glutathione decreased in the presence of acetaldehyde in response to acetaldehyde concentration. Moreover, we show that glutathione can trap a maximum of four acetaldehyde molecules within its molecule in a non-enzymatic manner. Taken together, these findings suggest that glutathione has an important role in acetaldehyde tolerance, as a direct scavenger of acetaldehyde in the cell.

  15. Mechanism of 3-(glutathion-S-yl)-benzidine formation.

    PubMed

    Lakshmi, V M; Zenser, T V; Davis, B B

    1994-04-01

    The formation of thioether conjugates is an important mechanism for inactivation of carcinogens. 3-(Glutathion-S-yl)-benzidine (BZ-SG) formation prevents benzidinediimine and peroxidase-mediated benzidine binding to DNA. Benzidinediimine is the two-electron oxidized product of benzidine thought to be the reactive intermediate involved in peroxidase-mediated binding of benzidine to DNA. Diimine interacts with benzidine to form a dimeric complex known as the charge-transfer complex. The latter is in equilibrium with the cation radical. This study evaluated the mechanism by which BZ-SG forms. Benzidinediimine was synthesized and used to study the formation of BZ-SG. With 0.05 mM benzidinediimine, BZ-SG formation was optimum at pH 4.5 and with glutathione at 0.05 to 0.1 mM. By monitoring specific absorption spectra, the reduction of benzidinediimine at pH 4.5 was evaluated. The t1/2 for diimine decay (425 nm) and maximum absorbance of the charge-transfer complex (600 nm) were each at approximately 5 min. Within 10 min, the maximum amount of benzidine had formed from diimine. BZ-SG formation followed the decay of diimine. The relationship between benzidinediimine and benzidine, with respect to BZ-SG formation, was assessed at a fixed concentration of glutathione (0.05 mM) and a fixed total concentration of amine and diimine (0.05 mM). In three separate experiments, each of these three components was radiolabeled independent of the other two components. Experiments with [3H]glutathione indicated that conjugate formation was dependent upon diimine, and not benzidine. With [3H]benzidinediimine or [3H]benzidine, two different calculations were necessary to assess conjugate formation. For [3H]benzidinediimine, the calculation considered that only the radiolabeled diimine formed conjugate, while with [3H]benzidine, a specific activity calculation was necessary to demonstrate that conjugate formation was dependent upon diimine. With 0.05 mM [3H]benzidine, horseradish

  16. Does the detoxification of penicillin side-chain precursors depend on microsomal monooxygenase and glutathione S-transferase in Penicillium chrysogenum?

    PubMed

    Emri, Tamás; Oláh, Brigitta; Sámi, László; Pócsi, István

    2003-01-01

    The glutathione (GSH) S-conjugation of 1,2-epoxy-3-(4'-nitrophenoxy)propane was catalysed predominantly by microsomal glutathione S-transferase (mGST) in Penicillium chrysogenum. The specific mGST activity unlike the cytosolic GST (cGST) activity increased substantially when the penicillin side-chain precursor phenoxyacetic acid (POA) was included in the culture medium. Therefore, a microsomal monooxygenase (causing possible release of epoxide intermediates) and mGST-dependent detoxification pathway may exist for the side-chain precursors as an alternative to microsomal activation to acyl-CoA and subsequent transfer to beta-lactam molecules. The P. chrysogenum pahA and Aspergillus nidulans phacA gene products, which are cytochrome p450 monooxygenases and are able to hydroxylate phenylacetic acid (PA) at position 2 on the aromatic ring, are unlikely to release toxic epoxide intermediates but epoxidation of PA and POA due to the action of other microsomal monooxygenases cannot be excluded. The GSH-dependent detoxification of POA was provoked by a well-controlled transient lowering of pH (down to 5.0) at the beginning of the production phase in a fed-batch fermentation system. Both the specific GST and gammaGT activities were increased but the intracellular GSH concentrations remained unaltered unless the pH of the feed was transiently lowered below 5.0. At pH 4.6, the GSH pool was depleted rapidly but no antibiotic production was observed. Although sucrose was taken up effectively by the cells, cell death and autolysis were progressing. Therefore, the industrial exploitation of the GSH-dependent detoxification of penicillin side-chain precursors to reduce intracellular GSH-levels in order to avoid the GSH inhibition of the beta-lactam biosynthetic enzymes seems to be rather unlikely. P. chrysogenum mGST and cGST were separated using GSH-Sepharose 6B affinity chromatography. The purified cGST possessed a homodimer (alpha(2)) tertiary structure with M(r) (, alpha

  17. Intestinal barrier function in response to abundant or depleted mucosal glutathione in Salmonella-infected rats

    PubMed Central

    van Ampting, Marleen TJ; Schonewille, Arjan J; Vink, Carolien; Brummer, Robert Jan M; Meer, Roelof van der; Bovee-Oudenhoven, Ingeborg MJ

    2009-01-01

    Background Glutathione, the main antioxidant of intestinal epithelial cells, is suggested to play an important role in gut barrier function and prevention of inflammation-related oxidative damage as induced by acute bacterial infection. Most studies on intestinal glutathione focus on oxidative stress reduction without considering functional disease outcome. Our aim was to determine whether depletion or maintenance of intestinal glutathione changes susceptibility of rats to Salmonella infection and associated inflammation. Rats were fed a control diet or the same diet supplemented with buthionine sulfoximine (BSO; glutathione depletion) or cystine (glutathione maintenance). Inert chromium ethylenediamine-tetraacetic acid (CrEDTA) was added to the diets to quantify intestinal permeability. At day 4 after oral gavage with Salmonella enteritidis (or saline for non-infected controls), Salmonella translocation was determined by culturing extra-intestinal organs. Liver and ileal mucosa were collected for analyses of glutathione, inflammation markers and oxidative damage. Faeces was collected to quantify diarrhoea. Results Glutathione depletion aggravated ileal inflammation after infection as indicated by increased levels of mucosal myeloperoxidase and interleukin-1β. Remarkably, intestinal permeability and Salmonella translocation were not increased. Cystine supplementation maintained glutathione in the intestinal mucosa but inflammation and oxidative damage were not diminished. Nevertheless, cystine reduced intestinal permeability and Salmonella translocation. Conclusion Despite increased infection-induced mucosal inflammation upon glutathione depletion, this tripeptide does not play a role in intestinal permeability, bacterial translocation and diarrhoea. On the other hand, cystine enhances gut barrier function by a mechanism unlikely to be related to glutathione. PMID:19374741

  18. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    PubMed Central

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  19. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy.

    PubMed

    Rae, Caroline D; Williams, Stephen R

    2016-12-26

    We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease.

  20. Plasmodium spp. membrane glutathione S-transferases: detoxification units and drug targets

    PubMed Central

    Lisewski, Andreas M.

    2014-01-01

    Membrane glutathione S-transferases from the class of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) form a superfamily of detoxification enzymes that catalyze the conjugation of reduced glutathione (GSH) to a broad spectrum of xenobiotics and hydrophobic electrophiles. Evolutionarily unrelated to the cytosolic glutathione S-transferases, they are found across bacterial and eukaryotic domains, for example in mammals, plants, fungi and bacteria in which significant levels of glutathione are maintained. Species of genus Plasmodium, the unicellular protozoa that are commonly known as malaria parasites, do actively support glutathione homeostasis and maintain its metabolism throughout their complex parasitic life cycle. In humans and in other mammals, the asexual intraerythrocytic stage of malaria, when the parasite feeds on hemoglobin, grows and eventually asexually replicates inside infected red blood cells (RBCs), is directly associated with host disease symptoms and during this critical stage GSH protects the host RBC and the parasite against oxidative stress from parasite-induced hemoglobin catabolism. In line with these observations, several GSH-dependent Plasmodium enzymes have been characterized including glutathione reductases, thioredoxins, glyoxalases, glutaredoxins and glutathione S-transferases (GSTs); furthermore, GSH itself have been found to associate spontaneously and to degrade free heme and its hydroxide, hematin, which are the main cytotoxic byproducts of hemoglobin catabolism. However, despite the apparent importance of glutathione metabolism for the parasite, no membrane associated glutathione S-transferases of genus Plasmodium have been previously described. We recently reported the first examples of MAPEG members among Plasmodium spp. PMID:28357217

  1. Subcellular distribution of glutathione and its dynamic changes under oxidative stress in the yeast Saccharomyces cerevisiae.

    PubMed

    Zechmann, Bernd; Liou, Liang-Chun; Koffler, Barbara E; Horvat, Lucija; Tomašić, Ana; Fulgosi, Hrvoje; Zhang, Zhaojie

    2011-12-01

    Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H(2) O(2) ) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress.

  2. Changes in glutathione redox cycle during diapause determination and termination in the bivoltine silkworm, Bombyx mori.

    PubMed

    Zhao, Lin-Chuan; Hou, Yi-Sheng; Sima, Yang-Hu

    2014-02-01

    To explore whether glutathione regulates diapause determination and termination in the bivoltine silkworm Bombyx mori, we monitored the changes in glutathione redox cycle in the ovary of both diapause- and nondiapause-egg producers, as well as those in diapause eggs incubated at different temperatures. The activity of thioredoxin reductase (TrxR) was detected in ovaries but not in eggs, while neither ovaries nor eggs showed activity of glutathione peroxidase. A lower reduced glutathione/oxidized glutathione (GSH/GSSG) ratio was observed in the ovary of diapause-egg producers, due to weaker reduction of oxidized glutathione (GSSG) to the reduced glutathione (GSH) catalyzed by glutathione reductase (GR) and TrxR. This indicates an oxidative shift in the glutathione redox cycle during diapause determination. Compared with the 25°C-treated diapause eggs, the 5°C-treated diapause eggs showed lower GSH/GSSG ratio, a result of stronger oxidation of GSH catalyzed by thioredoxin peroxidase and weaker reduction of GSSG catalyzed by GR. Our study demonstrated the important regulatory role of glutathione in diapause determination and termination of the bivoltine silkworm.

  3. The Roles of Glutathione Peroxidases during Embryo Development.

    PubMed

    Ufer, Christoph; Wang, Chi Chiu

    2011-01-01

    Embryo development relies on the complex interplay of the basic cellular processes including proliferation, differentiation, and apoptotic cell death. Precise regulation of these events is the basis for the establishment of embryonic structures and the organ development. Beginning with fertilization of the oocyte until delivery the developing embryo encounters changing environmental conditions such as varying levels of oxygen, which can give rise to reactive oxygen species (ROS). These challenges are met by the embryo with metabolic adaptations and by an array of anti-oxidative mechanisms. ROS can be deleterious by modifying biological molecules including lipids, proteins, and nucleic acids and may induce abnormal development or even embryonic lethality. On the other hand ROS are vital players of various signaling cascades that affect the balance between cell growth, differentiation, and death. An imbalance or dysregulation of these biological processes may generate cells with abnormal growth and is therefore potentially teratogenic and tumorigenic. Thus, a precise balance between processes generating ROS and those decomposing ROS is critical for normal embryo development. One tier of the cellular protective system against ROS constitutes the family of selenium-dependent glutathione peroxidases (GPx). These enzymes reduce hydroperoxides to the corresponding alcohols at the expense of reduced glutathione. Of special interest within this protein family is the moonlighting enzyme glutathione peroxidase 4 (Gpx4). This enzyme is a scavenger of lipophilic hydroperoxides on one hand, but on the other hand can be transformed into an enzymatically inactive cellular structural component. GPx4 deficiency - in contrast to all other GPx family members - leads to abnormal embryo development and finally produces a lethal phenotype in mice. This review is aimed at summarizing the current knowledge on GPx isoforms during embryo development and tumor development with an emphasis on

  4. Preclinical Pharmacokinetic Analysis of NOV-002, a Glutathione Disulfide Mimetic

    PubMed Central

    Uys, Joachim D.; Manevich, Yefim; DeVane, Lindsay C.; He, Lin; Garret, Tracy E.; Pazoles, Christopher J.; Tew, Kenneth D.; Townsend, Danyelle M.

    2010-01-01

    Summary NOV-002 is a glutathione disulfide (GSSG) mimetic that is in Phase III clinical trials for the treatment of advanced non-small cell lung cancer and other oncology indications. GSSG is reduced by glutathione reductase (GR) to form glutathione (GSH), thereby maintaining redox homeostasis. The purpose of the study was to report the pharmacokinetic properties of NOV-002 and evaluate the effect that NOV-002 elicits in redox homeostasis. The pharmacokinetic analysis and tissue distribution of NOV-002 and GSH was evaluated in mice following a dose of 250 mg/kg, i.p. The redox potential and total protein thiol status was calculated. Here we show that NOV-002 is a substrate for GR and that GSH is a primary metabolite. Nonlinear pharmacokinetic modeling predicted that the estimated absorption and elimination rate constants correspond to a half-life of ~13 mins with an AUC of 1.18 μg.h/ml, a Cmax of 2.16 μg/ml and a volume of distribution of 42.61 L/kg. In addition, measurement of the redox potential and total protein thiol status indicated the generation of a transient oxidative signal in the plasma compartment after administration of NOV-002. These results indicate that NOV-002 exerts kinetic and dynamic effects in mice consistent with the GSSG component as the active pharmacological constituent of the drug. A longer-lasting decrease in total plasma free thiol content was also seen, suggesting that the oxidative effect of the GSSG from NOV-002 was impacting redox homeostasis. PMID:20359856

  5. Sensitivity of cerebellar glutathione system to neonatal ionizing radiation exposure.

    PubMed

    Di Toro, C G; Di Toro, P A; Zieher, L M; Guelman, L R

    2007-05-01

    Reactive oxygen species (ROS) are relevant components of living organisms that, besides their role in the regulation of different important physiological functions, when present in excess are capable to affect cell oxidative status, leading to damage of cellular molecules and disturbance of normal cell function. ROS accumulation has been associated with a variety of conditions such as neurodegenerative diseases and ionizing radiation exposure. Cell ability to counteract ROS overproduction depends on the capacity of the endogenous antioxidant defenses--which includes the glutathione (GSH) system--to cope with. Since developing central nervous system (CNS) is especially sensitive to ROS-induced damage, the aim of the present work was to evaluate ROS, reduced GSH and oxidized glutathione (GSSG) levels in the cerebellum at different developmental ages after irradiation, in order to test if any changes were induced on these key oxidative stress-related cellular markers that might explain the high cerebellar vulnerability to radiation-induced injury. Since intracellular levels of GSH are maintained by glutathione reductase (GSHr), this enzymatic activity was also evaluated. Newborn Wistar rats were irradiated in their cephalic ends and the different parameters were measured, from 1h to 90 days post-irradiation. Results showed that an early transient increase in ROS levels followed by a decrease in cerebellar weight at 3-5 days post-irradiation were induced. An increase in cerebellar GSH levels was induced at 30 days after irradiation, together with a decrease in GSHr activity. These results support the hypothesis that ROS may represent a marker of damage prior to radiation-induced cell death. In contrast, it would be suggested that GSH system might play a role in the compensatory mechanisms triggered to counteract radiation-induced cerebellar damage.

  6. Role of tissue glutathione in prevention of surgical trauma.

    PubMed

    Liu, P T; Ioannides, C; Symons, A M; Parke, D V

    1993-08-01

    1. Surgical trauma has been associated with pre-anaesthesia fasting, anaesthetic toxicity, haemorrhage, hypovolaemic shock, and other pathological phenomena. Tissue glutathione (GSH), thiobarbituric acid-reacting substances (TBAR), and radical-trapping activity (RTA) have been determined at various time intervals after fasting, anaesthesia, and also after hepatic ischaemia and reperfusion as a model for haemorrhage and hypovolaemic shock. 2. Light ether anaesthesia of rats resulted in an immediate (5 min) and progressive decrease in liver and kidney total glutathione (GSH and GSSG), which was much greater in animals that had been fasted for 20 h. TBARs, a measure of lipid peroxidation, in rat liver and kidney increased as total GSH decreased. Fasting (20 h) alone decreased tissue GSH by 50%, and increased TBAR 100%; fasting plus 30 min of ether anaesthesia decreased tissue glutathione by 80 to 85%, and increased TBAR by some 600%. 3. Liver ischaemia alone decreased total liver GSH by 20% in the fed rat, and 50% in the fasted rat. Ischaemia, followed by reperfusion, decreased liver total GSH by 70% in the fed rat, and 90% in the fasted rat. The ratio of GSH/GSSG decreased from 16 in control animals to 7 in the fasted ischaemic rat, then to 1 in the fasted, ischaemic rat reperfused for 90 min. RTA of liver closely paralleled liver total GSH levels. TBAR was increased by ischaemia alone (50-100%), but more (400%) by 90 min reperfusion. 4. A complex series of molecular mechanisms including: (1) GSH depletion; (2) induction of CYP2E1 activity; (3) generation of reactive oxygen species; (4) lipid peroxidation; (5) cytokine release; and (6) leucocyte activation, are advanced to account for the toxic phenomena of surgical trauma and multiple system organ failure.

  7. Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean ( Vicia faba L.)

    NASA Astrophysics Data System (ADS)

    Anjum, Naser A.; Singh, Neetu; Singh, Manoj K.; Shah, Zahoor A.; Duarte, Armando C.; Pereira, Eduarda; Ahmad, Iqbal

    2013-07-01

    Adsorbents based on single-bilayer graphene oxide sheet (hereafter termed "graphene oxide") are widely used in contaminated environments cleanup which may easily open the avenues for their entry to different environmental compartments, exposure to organisms and their subsequent transfer to human/animal food chain. Considering a common food crop—faba bean ( Vicia faba L.) germinating seedlings as a model plant system, this study assesses the V. faba-tolerance to different concentrations (0, 100, 200, 400, 800, and 1600 mg L-1) of graphene oxide (0.5-5 μm) and evaluates glutathione (γ-glutamyl-cysteinyl-glycine) redox system significance in this context. The results showed significantly increased V. faba sensitivity under three graphene oxide concentrations (in order of impact: 1,600 > 200 > 100 mg graphene oxide L-1), which was accompanied by decreased glutathione redox (reduced glutathione-to-oxidized glutathione) ratio, reduced glutathione pool, as well as significant and equally elevated activities of glutathione-regenerating (glutathione reductase) and glutathione-metabolizing (glutathione peroxidase; glutathione sulfo-transferase) enzymes. Contrarily, the two graphene oxide concentrations (in order of impact: 800 > 400 graphene oxide mg L-1) yielded promising results; where, significant improvements in V. faba health status (measured as increased graphene oxide tolerance) were clearly perceptible with increased ratio of the reduced glutathione-to-oxidized glutathione, reduced glutathione pool and glutathione reductase activity but decreased activities of glutathione-metabolizing enzymes. It is inferred that V. faba seedlings-sensitivity and/or tolerance to graphene oxide concentrations depends on both the cellular redox state (reduced glutathione-to-oxidized glutathione ratio) and the reduced glutathione pool which in turn are controlled by a finely tuned modulation of the coordination between glutathione-regenerating and glutathione-metabolizing enzymes.

  8. Effects of glutathione depletion on copper cytotoxicity in oysters (Crassostrea virginica).

    PubMed

    Conners; Ringwood

    2000-10-01

    Glutathione is a tripeptide that plays an important role in ameliorating metal toxicity. Depletion of glutathione has been associated with an increased risk of metal toxicity in mammals. An understanding of the toxicological significance of glutathione depletion in oysters would be of considerable importance given the widespread use of bivalves in biological monitoring. Laboratory studies were conducted by using an inhibitor of glutathione synthesis (buthionine sulfoximine) to investigate the effects of glutathione depletion on metallothionein expression, lysosomal membrane destabilization, and lipid peroxidation in Cu-exposed oysters. In oysters exposed to Cu (20 and 80 µg/l) and buthionine sulfoximine (20 mg/l), metallothionein induction was suppressed and cellular stress responses were frequently higher than those observed in oysters exposed singly to Cu. Together, these results suggest that environmental conditions that cause glutathione depletion may increase the potential for adverse effects to pollutants during in situ exposures.

  9. [The activity of glutathione antioxidant system at melaksen and valdoxan action under experimental hyperthyroidism in rats].

    PubMed

    Gorbenko, M V; Popova, T N; Shul'gin, K K; Popov, S S

    2013-01-01

    Investigation of glutathione antioxidant system activity and diene conjugates content in rats liver and blood serum at the influence of melaksen and valdoxan under experimental hyperthyroidism (EG) has been revealed. It has been established that the activities of glutathione reductase (GR), glutathione peroxidase (GP) and glutathione transferase (GT), growing at pathological conditions, change to the side of control value at these substunces introduction. Reduced glutathione content (GSH) at melaxen and valdoxan action increased compared with values under the pathology, that, obviously, could be associated with a reduction of its spending on the detoxication of free radical oxidation (FRO) toxic products. Diene conjugates level in rats liver and blood serum, increasing at experimental hyperthyroidism conditions, under introduction of melatonin level correcting drugs, also approached to the control meaning. Results of the study indicate on positive effect of melaxen and valdoxan on free radical homeostasis, that appears to be accompanied by decrease of load on the glutathione antioxidant system in comparison with the pathology.

  10. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass.

    PubMed

    Cummins, I; Cole, D J; Edwards, R

    1999-05-01

    Black-grass (Alopecurus myosuroides) is a major weed of wheat in Europe, with several populations having acquired resistance to multiple herbicides of differing modes of action. As compared with herbicide-susceptible black-grass, populations showing herbicide cross-resistance contained greatly elevated levels of a specific type I glutathione transferase (GST), termed AmGST2, but similar levels of a type III GST termed AmGST1. Following cloning and expression of the respective cDNAs, AmGST2 differed from AmGST1 in showing limited activity in detoxifying herbicides but high activities as a glutathione peroxidase (GPOX) capable of reducing organic hydroperoxides. In contrast to AmGST2, other GPOXs were not enhanced in the herbicide-resistant populations. Treatment with a range of herbicides used to control grass weeds in wheat resulted in increased levels of hydroperoxides in herbicide-susceptible populations but not in herbicide-resistant plants, consistent with AmGST2 functioning to prevent oxidative injury caused as a primary or secondary effect of herbicide action. Increased AmGST2 expression in black-grass was associated with partial tolerance to the peroxidizing herbicide paraquat. The selective enhancement of AmGST2 expression resulted from a constitutively high expression of the respective gene, which was activated in herbicide-susceptible black-grass in response to herbicide safeners, dehydration and chemical treatments imposing oxidative stress. Our results provide strong evidence that GSTs can contribute to resistance to multiple herbicides by playing a role in oxidative stress tolerance in addition to detoxifying herbicides by catalysing their conjugation with glutathione.

  11. Increase in Blood Glutathione and Erythrocyte Proteins Related to Glutathione Generation, Reduction and Utilization in African-American Old Women with Diabetes

    PubMed Central

    Shan, Guang; Yang, Fang; Zhou, LiChun; Tang, Tian; Okoro, Emmanuel U.; Yang, Hong; Guo, ZhongMao

    2015-01-01

    Data from this report demonstrate that the plasma and erythrocyte levels of total glutathione (TGSH) are significantly lower in nondiabetic old women than in their young counterparts, and significantly higher in diabetic patients than in age-matched nondiabetic controls. The ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) declines with age and diabetes, and shows an order as follows: nondiabetic young > nondiabetic old > diabetic old women. In addition, advanced glycation end-products (AGEs) accumulates in RBCs obtained from diabetic patients but not in those from young and old nondiabetic controls. The erythrocyte levels of glutamate cysteine ligase catalytic subunit (GCLC), glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutathione peroxidase-1 (GPx1), glutathione S-transferase-ρ1 (GST-ρ1) and glyoxalase I (Glo1) are comparable in nondiabetic young and old women, but significantly higher in diabetic patients than in age-matched nondiabetic controls. Oxidative stress has been suggested to upregulate the expression of these proteins. It is possible that increase in oxidative stress in diabetes, reflected by reduced GSH/GSSG ratio and accumulation of AGEs, upregulates the expression of proteins involved in glutathione synthesis, reduction and utilization in erythrocyte precursor cells, and that overexpression of GCLC is, at least partially, responsible for the increased TGSH in diabetes. PMID:26770888

  12. Glutathione and Homoglutathione Synthesis in Legume Root Nodules1

    PubMed Central

    Matamoros, Manuel A.; Moran, Jose F.; Iturbe-Ormaetxe, Iñaki; Rubio, Maria C.; Becana, Manuel

    1999-01-01

    High-performance liquid chromatography (HPLC) with fluorescence detection was used to study thiol metabolism in legume nodules. Glutathione (GSH) was the major non-protein thiol in all indeterminate nodules examined, as well as in the determinate nodules of cowpea (Vigna unguiculata), whereas homoglutathione (hGSH) predominated in soybean (Glycine max), bean (Phaseolus vulgaris), and mungbean (Vigna radiata) nodules. All nodules had greater thiol concentrations than the leaves and roots of the same plants because of active thiol synthesis in nodule tissue. The correlation between thiol tripeptides and the activities of glutathione synthetase (GSHS) and homoglutathione synthetase (hGSHS) in the nodules of eight legumes, and the contrasting thiol contents and activities in alfalfa (Medicago sativa) leaves (98% hGSH, 100% hGSHS) and nodules (72% GSH, 80% GSHS) indicated that the distribution of GSH and hGSH is determined by specific synthetases. Thiol contents and synthesis decreased with both natural and induced nodule senescence, and were also reduced in the senescent zone of indeterminate nodules. Thiols and GSHS were especially abundant in the meristematic and infected zones of pea (Pisum sativum) nodules. Thiols and γ-glutamylcysteinyl synthetase were also more abundant in the infected zone of bean nodules, but hGSHS was predominant in the cortex. Isolation of full-length cDNA sequences coding for γ-glutamylcysteinyl synthetase from legume nodules revealed that they are highly homologous to those from other higher plants. PMID:10557236

  13. Bioavailability Study of an Innovative Orobuccal Formulation of Glutathione

    PubMed Central

    Buonocore, Daniela; Grosini, Matteo; Giardina, Silvana; Michelotti, Angela; Carrabetta, Mariaelena; Seneci, Antonio; Verri, Manuela; Dossena, Maurizia; Marzatico, Fulvio

    2016-01-01

    Alteration of the ubiquitous thiol tripeptide glutathione (GSH) is involved in oxidative stress, which plays a role in ageing; consequently, GSH is closely related to this process characterized by progressive decline in the efficiency of physiological function and increased susceptibility to disease. When circulating GSH decreases, oral administration might be considered a therapeutic benefit. Unfortunately, due to the hydrolysis of the tripeptide by intestinal γ-glutamyltransferase, dietary glutathione is not a major determinant for its increase. Aim of this work was to evaluate improvement of GSH systemic availability testing, in vitro and in vivo, an optimized orobuccal fast-slow release formulation tablet containing pure stabilized GSH. In vitro evaluation of the penetration capability of the innovative GSH-release formulation showed that GSH was well absorbed by the reconstructed oral epithelium and its absorption has features of time-dependence. In addition, in vivo results, obtained from 15 healthy volunteers, were in favor of GSH level improvement in blood showing fast (after 30 and 60 minutes) absorption through oral mucosa. In conclusion, the intake of GSH formulated through optimized orobuccal fast-slow release tablets gave positive results in raising GSH blood concentration. PMID:26649136

  14. Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling.

    PubMed

    Gupta, Ankita; Kesherwani, Manish; Velmurugan, Devadasan; Tripathi, Timir

    2016-08-01

    Platyhelminth thioredoxin glutathione reductase (TGR) is a multifunctional enzyme that crosstalk between the conventional thioredoxin (Trx) and glutathione (GSH) system. It has been validated as a potential drug target in blood flukes. In the present study, we have performed a biochemical study on Fasciola gigantica TGR with substrates DTNB and GSSG. The Michaelis constant (Km) with DTNB was found to be 4.34±0.12μM while it was 61.15±1.50μM with GSSG. The kinetic results were compared with the TGR activities of other helminths. FgTGR showed typical hysteretic behavior with GSSG as other TGRs. We also described a homology-based structure of FgTGR. The cofactors (NADPH and FAD) and substrates (GSSG and DTNB) were docked, and two possible binding sites for substrates were identified in a single chain. The substrates were found to bind more favorably in the second site of TrxR domains. We also presented the first report on binding interaction of DTNB with a TGR. DTNB forms H-bond with His204 and Arg450 of chain A, Sec597, and Gly598 from chain B, salt-bridge with Lys124, and numerous other hydrophobic interactions. Helminth TGR represents an important enzyme in the redox and antioxidant system; hence, its inhibition can be used as an effective strategy against liver flukes.

  15. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration.

    PubMed

    Carlson, Bradley A; Tobe, Ryuta; Yefremova, Elena; Tsuji, Petra A; Hoffmann, Victoria J; Schweizer, Ulrich; Gladyshev, Vadim N; Hatfield, Dolph L; Conrad, Marcus

    2016-10-01

    The selenoenzyme glutathione peroxidase 4 (Gpx4) is an essential mammalian glutathione peroxidase, which protects cells against detrimental lipid peroxidation and governs a novel form of regulated necrotic cell death, called ferroptosis. To study the relevance of Gpx4 and of another vitally important selenoprotein, cytosolic thioredoxin reductase (Txnrd1), for liver function, mice with conditional deletion of Gpx4 in hepatocytes were studied, along with those lacking Txnrd1 and selenocysteine (Sec) tRNA (Trsp) in hepatocytes. Unlike Txnrd1- and Trsp-deficient mice, Gpx4(-/-) mice died shortly after birth and presented extensive hepatocyte degeneration. Similar to Txnrd1-deficient livers, Gpx4(-/-) livers manifested upregulation of nuclear factor (erythroid-derived)-like 2 (Nrf2) response genes. Remarkably, Gpx4(-/-) pups born from mothers fed a vitamin E-enriched diet survived, yet this protection was reversible as subsequent vitamin E deprivation caused death of Gpx4-deficient mice ~4 weeks thereafter. Abrogation of selenoprotein expression in Gpx4(-/-) mice did not result in viable mice, indicating that the combined deficiency aggravated the loss of Gpx4 in liver. By contrast, combined Trsp/Txnrd1-deficient mice were born, but had significantly shorter lifespans than either single knockout, suggesting that Txnrd1 plays an important role in supporting liver function of mice lacking Trsp. In sum our study demonstrates that the ferroptosis regulator Gpx4 is critical for hepatocyte survival and proper liver function, and that vitamin E can compensate for its loss by protecting cells against deleterious lipid peroxidation.

  16. -SH groups and glutathione in cancer patient's blood.

    PubMed

    della Rovere, F; Granata, A; Saija, A; Broccio, M; Tomaino, A; Zirilli, A; De Caridi, G; Broccio, G

    2000-01-01

    As reported in previous investigations, erythrocytes are the elements of peripheral blood most affected by free radical activity in the pathogenesis of cancer. In these studies, the level of sulphydrilic groups and reduced glutathione were assayed in the erythrocytes and plasma, while their successful scavenger activity against cell membrane oxidation and peroxidation has already been established. In subjects with cancer, the levels of -SH groups (p < 0.002) and reduced glutathione in both plasma and erythrocytes (p < 0.0001) were shown be a statistically significantly decreased compared to healthy controls. These differences were related to the defence of the hematic tissue against free radical activity. A similar pattern has also been reported when studying vitamin A and E content in the peripheral blood of cancer patients. The role of oxido-reduction phenomena in this disease is discussed, as well as the importance of reducing the oxido-peroxidation involvement of tissues and cell elements. The study of the GSH/GSSG ratio in order to determine the stage of the disease would be useful and might represent a systemic marker for cancerous lesions.

  17. Age dependent changes in tissue glutathione depleting activity of ethanol

    SciTech Connect

    Makar, A.B.; Currie, R.B.

    1986-03-01

    Hepatic glutathione (GSH) plays a major role in protecting the liver against the toxic effects of a variety of chemicals. Decreased GSH can increase liver susceptibility to the toxic actions of such agents. The purpose of this study was to examine whether age or the feeding status of animals alter the steady-state hepatic GSH concentrations. The authors also tested the ability of ethanol to lower GSH under these conditions. Male Sprague-Dawley rats between 3 and 34 weeks of age were used. Animals designed fasted were allowed water, but no food for the 24 hours preceding sacrifice. Six hours before sacrifice, ethanol or saline was injected i.p. The rats were always sacrificed between 12:00 noon and 1:00 P.M. to avoid the effects of diurnal variation of tissue GSH. Glutathione concentrations were determined in the liver using Ellman's reagent. Results indicated that the steady-state hepatic GSH in fed rats increased as a function of age, whereas fasted rats showed minimal changes. The ability of ethanol to lower hepatic GSH also increased with age. In 3 week old rats, GSH decreased 22% while in 34 week old rats it decreased 52%. The authors conclude that both the steady-state concentration of GSH and the GSH-lowering ability of ethanol are highly dependent on the age of as well as on the feeding status of rats.

  18. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid

    2016-07-01

    This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA.

  19. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione.

    PubMed

    Han, Yi; Mhamdi, Amna; Chaouch, Sejir; Noctor, Graham

    2013-06-01

    Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA-related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up-regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2 O2 -induced expression of JA-linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol-regulated protein NPR1, a comparison of JA-linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione-dependent control points that regulate JA signalling in response to intracellular oxidation.

  20. Protection by exogenous glutathione against hypoxic and cyanide-induced damage to isolated perfused rat livers.

    PubMed

    Younes, M; Strubelt, O

    1990-02-01

    In experiments with isolated perfused livers from fasted rats, addition of 2 mmol/l glutathione (GSH) to the perfusion medium protected against hepatic damage induced by cyanide or hypoxia and reoxygenation as evidenced by leakage of lactate dehydrogenase and hepatic calcium accumulation. In control experiments as well as in experiments with cyanide or hypoxia and reoxygenation, exogenous glutathione resulted in an augmentation of cellular glutathione content, indicating either direct uptake of GSH or stimulation of its intracellular synthesis. The protective effects of glutathione against hypoxic and cyanide-induced hepatotoxicity substantiate the role of oxidative stress in both types of injury.

  1. Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism.

    PubMed

    Eroglu, A; Dogan, Z; Kanak, E G; Atli, G; Canli, M

    2015-03-01

    The glutathione metabolism contains crucial antioxidant molecules to defend the organisms against oxidants. Thus, the aim of this study was to investigate the response of the glutathione metabolism in the liver of freshwater fish Oreochromis niloticus exposed to metals (Cu, Cd, Cr, Pb, Zn) in different periods. Fish were exposed to metals (as 1 μg/mL) individually for 1, 7, and 14 days and subsequently antioxidant enzymes (glutathione peroxidase, GPX; glutathione reductase, GR and glutathione S-transferase, GST) and glutathione levels (total glutathione, tGSH; reduced glutathione, rGSH; oxidized glutathione, GSSG and GSH/GSSG ratios) in the liver were measured. There was no fish mortality during the experiments, except Cu exposure. The antioxidant enzymes responded differently to metal exposures depending on metal types and exposure durations. GPX activity increased only after Cd exposure, while GST activity increased following 7 days of all metal exposures. However, GR activity did not alter in most cases. Total GSH and GSH/GSSG levels generally decreased, especially after 7 days. Data showed that metal exposures significantly altered the response of antioxidant system parameters, particularly at day 7 and some recovery occurred after 14 days. This study suggests that the response of antioxidant system could help to predict metal toxicity in the aquatic environments and be useful as an "early warning tool" in natural monitoring studies.

  2. Peroxidase-catalyzed-3-(glutathion-S-yl)-p,p'-biphenol formation.

    PubMed

    McGirr, L G; Subrahmanyam, V V; Moore, G A; O'Brien, P J

    1986-10-15

    Oxidation of p,p'-biphenol with horseradish peroxidase (HRP)-hydrogen peroxide in the presence of bovine serum albumin or with bone marrow cell homogenate-hydrogen peroxide resulted in the formation of reactive products that conjugate with protein. Glutathione prevented the protein binding. Glutathione readily reacted with p,p'-biphenoquinone, the principal oxidation product of p,p'-biphenol in the HRP-hydrogen peroxide system and resulted in the formation of several glutathione conjugates, p,p'-biphenol and small amounts of oxidized glutathione. The major glutathione conjugate was identified as 3-(glutathion-S-yl)-p,p'-biphenol by high field nuclear magnetic resonance and fast atom bombardment mass spectrometry. The same conjugate was formed in the bone marrow homogenate-hydrogen peroxide system. p,p'-Biphenoquinone reduction by glutathione to p,p'-biphenol without glutathione oxidation was explained by the rapid reduction of p,p'-biphenoquinone by 3-(glutathion-S-yl)-p,p'-biphenol.

  3. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus

    SciTech Connect

    Ric De Vos, C.H.; Vonk, M.J.; Vooijs, R.; Schat, H. )

    1992-03-01

    The relation between loss of glutathione due to metal-induced phytochelatin synthesis and oxidative stress was studied in the roots of copper-sensitive and tolerant Silene cucubalus (L.) Wib., resistant to 1 and 40 micromolar Cu, respectively. The amount of nonprotein sulfhydryl compounds other then glutathione was taken as a measure of phytochelatins. At a supply of 20 micromolar Cu, which is toxic for sensitive plants only, phytochelatin synthesis and loss of total glutathione were observed only in sensitive plants within 6 h of exposure. When the plants were exposed to a range of copper concentrations for 3 d, a marked production of phytochelatins in sensitive plants was already observed at 0.5 micromolar Cu, whereas the production in tolerant plants was negligible at 40 micromolar or lower. The highest production in tolerant plants was only 40% of that in sensitive plants. In both varieties, the synthesis of phytochelatins was coupled to a loss of glutathione. Copper at toxic concentrations caused oxidative stress, as was evidenced by both the accumulation of lipid peroxidation products and a shift in the glutathione redox couple to a more oxidized state. Depletion of glutathione by pretreatment with buthionine sulfoximine significantly increased the oxidative damage by copper. At a comparably low glutathione level, cadmium had no effect on either lipid peroxidation or the glutathione redox couple in buthionine sulfoximine-treated plants. These results indicate that copper may specifically cause oxidative stress by depletion of the antioxidant glutathione due to phytochelatin synthesis.

  4. Epsilon glutathione transferases possess a unique class-conserved subunit interface motif that directly interacts with glutathione in the active site

    PubMed Central

    Wongsantichon, Jantana; Robinson, Robert C.; Ketterman, Albert J.

    2015-01-01

    Epsilon class glutathione transferases (GSTs) have been shown to contribute significantly to insecticide resistance. We report a new Epsilon class protein crystal structure from Drosophila melanogaster for the glutathione transferase DmGSTE6. The structure reveals a novel Epsilon clasp motif that is conserved across hundreds of millions of years of evolution of the insect Diptera order. This histidine-serine motif lies in the subunit interface and appears to contribute to quaternary stability as well as directly connecting the two glutathiones in the active sites of this dimeric enzyme. PMID:26487708

  5. The glutathione conjugate of ethacrynic acid can bind to human pi class glutathione transferase P1-1 in two different modes.

    PubMed

    Oakley, A J; Lo Bello, M; Mazzetti, A P; Federici, G; Parker, M W

    1997-12-08

    The diuretic drug ethacrynic acid, an inhibitor of pi class glutathione S-transferase, has been tested in clinical trials as an adjuvant in chemotherapy. We recently solved the crystal structure of this enzyme in complex with ethacrynic acid and its glutathione conjugate. Here we present a new structure of the ethacrynic-glutathione conjugate complex. In this structure the ethacrynic moiety of the complex is shown to bind in a completely different orientation to that previously observed. Thus there are at least two binding modes possible, an observation of great importance to the design of second generation inhibitors of the enzyme.

  6. Superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the heart of hypergravity-treated and aging rats

    NASA Astrophysics Data System (ADS)

    Utko, Natalie

    2005-08-01

    Activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GP), and glutathione reductase (GR) were determined in the heart of young and old control and hypergravity (HG) treated male Wistar rats. Relatively small and insignificant changes were observed when comparing enzyme activities in the heart of young and old control rats, whereas HG induced significant decline of SOD and GP in the group of old rats and GR in young animals. Statistically highly significant positive correlation found for SOD and downstream acting catalase in young (r=0.72; P<0.00001) and old rats (r=0,86; P<0.00001) was preserved in HG- treated young animals as well (r=0.66; P<0.02), assuming that SOD-catalase pair could remain functionally related in both aging and HG. However, three-dimensional (3D) non- linear plotting and cluster analysis revealed significant alterations in enzyme relations in the heart of both aging and HG-treated animals.

  7. Surface display of a bifunctional glutathione synthetase on Saccharomyces cerevisiae for converting chicken feather hydrolysate into glutathione.

    PubMed

    Qiu, Zhiqi; Tan, Hongming; Zhou, Shining; Cao, Lixiang

    2014-08-01

    The low economic profits of feather recycling lead that the large amount of feathers is currently discarded in China. To convert feather hydrolysates into GSH with high values, surface display of the bifunctional glutathione synthetase encoded by gcsgs from Streptococcus thermophilus on Saccharomyces cerevisiae and the potential in glutathione (GSH) production from feather hydrolysates were studied. The surface-displayed GCSGS could be used to convert feather hydrolysates into GSH. Results showed that 10 g/l of feather was converted into 321.8 mg/l GSH by the Trichoderma atroviride F6 and surface-displayed GCSGS in the study. Compared with production of intracellular GSH by S. cerevisiae from amino acids or feather hydrolysate, the concentration of GSH in the study was higher, and purification of GSH was more feasible. Due to the glycolytic pathway, the S. cerevisiae was used to generate ATP and cheap feather hydrolysate as precursors, the process for GSH production based on surface-displayed GCSGS is cheap and feasible. The process showed the potential to convert feather hydrolysates into GSH on an industrial scale.

  8. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  9. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.

    PubMed

    Hara, Kiyotaka Y; Aoki, Naoko; Kobayashi, Jyumpei; Kiriyama, Kentaro; Nishida, Keiji; Araki, Michihiro; Kondo, Akihiko

    2015-11-01

    Glutathione is a valuable tripeptide widely used in the pharmaceutical, food, and cosmetic industries. In industrial fermentation, glutathione is currently produced primarily using the yeast Saccharomyces cerevisiae. Intracellular glutathione exists in two forms; the majority is present as reduced glutathione (GSH) and a small amount is present as oxidized glutathione (GSSG). However, GSSG is more stable than GSH and is a more attractive form for the storage of glutathione extracted from yeast cells after fermentation. In this study, intracellular GSSG content was improved by engineering thiol oxidization metabolism in yeast. An engineered strain producing high amounts of glutathione from over-expression of glutathione synthases and lacking glutathione reductase was used as a platform strain. Additional over-expression of thiol oxidase (1.8.3.2) genes ERV1 or ERO1 increased the GSSG content by 2.9-fold and 2.0-fold, respectively, compared with the platform strain, without decreasing cell growth. However, over-expression of thiol oxidase gene ERV2 showed almost no effect on the GSSG content. Interestingly, ERO1 over-expression did not decrease the GSH content, raising the total glutathione content of the cell, but ERV1 over-expression decreased the GSH content, balancing the increase in the GSSG content. Furthermore, the increase in the GSSG content due to ERO1 over-expression was enhanced by additional over-expression of the gene encoding Pdi1, whose reduced form activates Ero1 in the endoplasmic reticulum. These results indicate that engineering the thiol redox metabolism of S. cerevisiae improves GSSG and is critical to increasing the total productivity and stability of glutathione.

  10. [35S]-LABELING OF THE SALMONELLA TYPHIMURIUM GLUTATHIONE POOL TO ASSESS GLUTATHIONE-MEDIATED DNA BINDING BY 1,2-DIBROMOETHANE

    EPA Science Inventory

    Biotransformation of drugs and environmental chemicals to reactive intermediates is often studied with the use of radiolabeled compounds that are synthesized by expensive and technically difficult procedures. In general, glutathione (GSH) conjugation serves as a detoxification m...

  11. Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors

    PubMed Central

    Canli, Özge; Alankuş, Yasemin B.; Grootjans, Sasker; Vegi, Naidu; Hültner, Lothar; Hoppe, Philipp S.; Schroeder, Timm; Vandenabeele, Peter; Bornkamm, Georg W.

    2016-01-01

    Maintaining cellular redox balance is vital for cell survival and tissue homoeostasis because imbalanced production of reactive oxygen species (ROS) may lead to oxidative stress and cell death. The antioxidant enzyme glutathione peroxidase 4 (Gpx4) is a key regulator of oxidative stress–induced cell death. We show that mice with deletion of Gpx4 in hematopoietic cells develop anemia and that Gpx4 is essential for preventing receptor-interacting protein 3 (RIP3)-dependent necroptosis in erythroid precursor cells. Absence of Gpx4 leads to functional inactivation of caspase 8 by glutathionylation, resulting in necroptosis, which occurs independently of tumor necrosis factor α activation. Although genetic ablation of Rip3 normalizes reticulocyte maturation and prevents anemia, ROS accumulation and lipid peroxidation in Gpx4-deficient cells remain high. Our results demonstrate that ROS and lipid hydroperoxides function as not-yet-recognized unconventional upstream signaling activators of RIP3-dependent necroptosis. PMID:26463424

  12. Fumarate induces redox-dependent senescence by modifying glutathione metabolism.

    PubMed

    Zheng, Liang; Cardaci, Simone; Jerby, Livnat; MacKenzie, Elaine D; Sciacovelli, Marco; Johnson, T Isaac; Gaude, Edoardo; King, Ayala; Leach, Joshua D G; Edrada-Ebel, RuAngelie; Hedley, Ann; Morrice, Nicholas A; Kalna, Gabriela; Blyth, Karen; Ruppin, Eytan; Frezza, Christian; Gottlieb, Eyal

    2015-01-23

    Mutations in the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of fumarate caused by the inactivation of FH leads to oxidative stress that is mediated by the formation of succinicGSH, a covalent adduct between fumarate and glutathione. Chronic succination of GSH, caused by the loss of FH, or by exogenous fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of p21, a key mediator of senescence, in Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that fumarate-induced senescence needs to be bypassed for the initiation of renal cancers.

  13. Acute acetaminophen toxicity in transgenic mice with elevated hepatic glutathione.

    PubMed

    Rzucidlo, S J; Bounous, D I; Jones, D P; Brackett, B G

    2000-06-01

    Previous studies demonstrated that elevation of hepatic glutathione (GSH) concentrations protect against acetaminophen (APAP) hepatotoxicity in mice. Employing transgenic mice overexpressing glutathione synthetase, this study was conducted to determine if sustained elevation of hepatic GSH concentrations could ameliorate or prevent APAP toxicity. International Cancer Research transgenic mouse males and matched (ie same strain, sex, and age) control nontransgenic mice were pretreated ip with GSH synthetase substrate gamma-glutamylcysteinyl ethyl ester (gamma-GCE) or with saline. After a 16-h fast, mice received a single dose of 500 mg APAP/kg bw in saline ip and were sacrificed 4 h later. Other mice similarly pretreated were killed without APAP challenge. The elevated GSH concentrations in transgenic mice livers did not lessen APAP hepatotoxicity. Instead higher degrees of hepatotoxicity and nephrotoxicity were observed in transgenic mice than in controls as indicated by higher serum alanine aminotransferase activity and more severe histopathological lesions in transgenic mice livers and kidneys. Pretreatment with gamma-GCE did not affect either initial or post-APAP treatment tissue GSH concentrations or observed degrees of toxicity. Detection of a higher level of serum APAP in transgenic mice and the histopathological lesions found in transgenic mice kidneys together with no observable nephrotoxicity in control mice indicated early kidney damage in transgenic mice. Our findings suggest that high levels of GSH-APAP conjugates resulting from increased GSH concentrations in the livers of transgenic mice caused rapid kidney damage. Compromised excretory ability may have caused retention of APAP, which, in effect, elicited higher hepatotoxicity than that observed in nontransgenic mice.

  14. Molecular characterization of a glutathione transferase from Pinus tabulaeformis (Pinaceae).

    PubMed

    Zeng, Qing-Yin; Lu, Hai; Wang, Xiao-Ru

    2005-05-01

    Glutathione transferases (GSTs) play important roles in stress tolerance and detoxification metabolism in plants. To date, studies on GSTs in higher plants have focused largely on agricultural plants. In contrast, there is virtually no information on the molecular characteristics of GSTs in gymnosperms. The present study reports for the first time the cloning, expression and characteristics of a GST gene (PtGSTU1) from a pine, Pinus tabulaeformis, which is widely distributed from northern to central China covering cold temperate and drought regions. The PtGSTU1 gene encodes a protein of 228 amino acid residues with a calculated molecular mass of 26.37 kDa. Reverse transcription PCR revealed that PtGSTU1 was expressed in different tissues, both above and below ground, of P. tabulaeformis. The over-expressed recombinant PtGSTU1 showed high activity towards the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a Km of 0.47 mM and Vmax of 169.1 micromol/min per mg of protein. The recombinant PtGSTU1 retained more than 60% of its maximum enzymatic activity from 15 degrees C to 45 degrees C with a broad optimum Tm range of 25 degrees C - 35 degrees C. The enzyme had a maximum activity at approximately pH 8.5 - 9.0. Site-directed mutagenesis revealed that Ser13 in the N-terminal domain is a critical catalytic residue, responsible for stabilisation of the thiolate anion of enzyme-bound glutathione. Based on comparative analyses of its amino acid sequence, phylogeny and predicted three-dimensional structure, the PtGSTU1 should be classified as a tau class GST.

  15. Computational Modeling of the Catalytic Cycle of Glutathione Peroxidase Nanomimic.

    PubMed

    Kheirabadi, Ramesh; Izadyar, Mohammad

    2016-12-29

    To elucidate the role of a derivative of ebselen as a mimic of the antioxidant selenoenzyme glutathione peroxidase, density functional theory and solvent-assisted proton exchange (SAPE) were applied to model the reaction mechanism in a catalytic cycle. This mimic plays the role of glutathione peroxidase through a four-step catalytic cycle. The first step is described as the oxidation of 1 in the presence of hydrogen peroxide, while selenoxide is reduced by methanthiol at the second step. In the third step of the reaction, the reduction of selenenylsulfide occurs by methanthiol, and the selenenic acid is dehydrated at the final step. Based on the kinetic parameters, step 4 is the rate-determining step (RDS) of the reaction. The bond strength of the atoms involved in the RDS is discussed with the quantum theory of atoms in molecules (QTAIM). Low value of electron density, ρ(r), and positive Laplacian values are the evidence for the covalent nature of the hydrogen bonds rupture (O30-H31, O33-H34). A change in the sign of the Laplacian, L(r), from the positive value in the reactant to a negative character at the transition state indicates the depletion of the charge density, confirming the N5-H10 and O11-Se1 bond breaking. The analysis of electron location function (ELF) and localized orbital locator (LOL) of the Se1-N5 and Se1-O11 bonds have been done by multi-WFN program. High values of ELF and LOL at the transition state regions between the Se, N, and O atoms display the bond formation. Finally, the main donor-acceptor interaction energies were analyzed using the natural bond orbital analysis for investigation of their stabilization effects on the critical bonds at the RDS.

  16. Glutathione dysregulation and the etiology and progression of human diseases

    PubMed Central

    Ballatori, Nazzareno; Krance, Suzanne M.; Notenboom, Sylvia; Shi, Shujie; Tieu, Kim; Hammond, Christine L.

    2009-01-01

    Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Because of GSH’s pleiotropic effects on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates and/or oxidation state can be compromised by inherited or aquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide (GSSG) ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases such as cancer, Parkinson’s disease, and Alzheimer’s disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases

  17. Confocal imaging of glutathione redox potential in living plant cells.

    PubMed

    Schwarzländer, M; Fricker, M D; Müller, C; Marty, L; Brach, T; Novak, J; Sweetlove, L J; Hell, R; Meyer, A J

    2008-08-01

    Reduction-oxidation-sensitive green fluorescent protein (roGFP1 and roGFP2) were expressed in different sub-cellular compartments of Arabidopsis and tobacco leaves to empirically determine their performance as ratiometric redox sensors for confocal imaging in planta. A lower redox-dependent change in fluorescence in combination with reduced excitation efficiency at 488 nm resulted in a significantly lower dynamic range of roGFP1 than for roGFP2. Nevertheless, when targeted to the cytosol and mitochondria of Arabidopsis leaves both roGFPs consistently indicated redox potentials of about -320 mV in the cytosol and -360 mV in the mitochondria after pH correction for the more alkaline matrix pH. Ratio measurements were consistent throughout the epidermal cell layer, but results might be attenuated deeper within the leaf tissue. Specific interaction of both roGFPs with glutaredoxin in vitro strongly suggests that in situ both variants preferentially act as sensors for the glutathione redox potential. roGFP2 targeted to plastids and peroxisomes in epidermal cells of tobacco leaves was slightly less reduced than in other plasmatic compartments, but still indicated a highly reduced glutathione pool. The only oxidizing compartment was the lumen of the endoplasmic reticulum, in which roGFP2 was almost completely oxidized. In all compartments tested, roGFP2 reversibly responded to perfusion with H(2)O(2) and DTT, further emphasizing that roGFP2 is a reliable probe for dynamic redox imaging in planta. Reliability of roGFP1 measurements might be obscured though in extended time courses as it was observed that intense irradiation of roGFP1 at 405 nm can lead to progressive photoisomerization and thus a redox-independent change of fluorescence excitation ratios.

  18. Identification of a novel glutathione adduct of diclofenac, 4'-hydroxy-2'-glutathion-deschloro-diclofenac, upon incubation with human liver microsomes.

    PubMed

    Yu, Li J; Chen, Yue; Deninno, Michael P; O'Connell, Thomas N; Hop, Cornelis E C A

    2005-04-01

    Clinical use of the nonsteroidal anti-inflammatory drug diclofenac (DF) is associated with an incidence of idiosyncratic hepatoxicity. The formation of reactive metabolites of DF in vivo has been proposed to be responsible for such toxicity. One type of reactive metabolite, a benzoquinone imine of DF formed through oxidation by cytochromes P450, can be trapped by glutathione in vitro in liver microsomes to form glutathione (GS) adducts. Three GS adducts from DF were reported in the literature, namely, 5-hydroxy (OH)-4-glutathione-DF, 4'-OH-3'-glutathione-DF and 5-OH-6-glutathione-DF, and they all have the same molecular weight of 616. Recently, we developed a sensitive and high throughput method for the detection of GS adducts from liver microsome incubation. This method uses a constant neutral loss scan of m/z 129, a "structure-characteristic" fragment for GS adduct, on an automated chip-based nanoelectrospray (Advion NanoMate 100) attached to a tandem mass spectrometer (Sciex API 3000). The analysis of GS adducts from human liver microsome incubation with DF by the NanoMate 100-API 3000 method unambiguously revealed a new adduct ion with m/z 583 (MH+), in addition to the known adduct peak with m/z 617 (MH+). This new adduct was further confirmed to be 4'-OH-2'-glutathion-deschloro-diclofenac by liquid chromatography (LC) tandem mass spectrometry (MS), LC/MS-NMR, and comparison to a synthetic standard.

  19. Chronic depletion of glutathione (GSH) and minimal modification of LDL in vivo: its prevention by glutathione mono ester (GME) therapy.

    PubMed

    Rajasekaran, Namakkal Soorappan; Sathyanarayanan, Srinivasan; Devaraj, Niranjali S; Devaraj, Halagowder

    2005-06-30

    A decline in reduced glutathione (GSH) level is associated with aging and free radical mediated diseases. The objective of this study was to determine whether the chronic depletion of extra cellular GSH causes oxidative damage to the circulating macromolecules such as lipoproteins. Decreased concentrations of plasma glutathione, vitamin E and ascorbic acid were recorded in the rats treated with buthionine sulfoximine (BSO), a selective GSH inhibitor. In LDL isolated from BSO-treated animals, the concentration of malondialdehyde (MDA) and conjugated dienes were significantly increased (P<0.01), whereas the levels of vitamin E were decreased (P<0.01). The analysis of total and LDL cholesterol revealed significant changes between the control and experimental groups. Of interest, altered concentrations of lyso-phosphatidyl choline (Lyso-PC) and phosphatidyl choline (PC) were recorded from the BSO mediated minimally modified LDL. A negative correlation between LDL-BDC/MDA and its antioxidant capacity was noted. Upon in vitro oxidation with CuSO(4), the electrophoretic behavior of purified LDL-apoprotein-B on agarose gel showed an increased mobility in BSO-treated rats, indicative of in vivo modification of LDL to become susceptible for in vitro oxidation. The increased mobility of LDL (after in vitro oxidation) isolated from the BSO-treated animals correlates with a decrease in its amino groups, as determined by the trinitrobenzene sulfonic acid (TNBS) reactants. However, the mobility of LDL molecule was not altered due to BSO treatment in vivo. Interestingly, the minimal modification on LDL does not lead to any vascular damage in the dorsal aorta of the rats injected with BSO. The administration of glutathione monoester (GME), at a dose of 5 mmol/kg body weight, twice a day, for 30 days, to animals treated with l-buthionine-SR-sulfoximine (BSO, 4 mmol/kg body weight, twice a day, for 30 days) normalized the antioxidant status and prevented the minimal modifications on

  20. Regression of Aflatoxin B1-Induced Hepatocellular Carcinomas by Reduced Glutathione

    NASA Astrophysics Data System (ADS)

    Novi, Anna M.

    1981-05-01

    Reduced glutathione administered to rats bearing aflatoxin B1-induced liver tumors caused regression of tumor growth and resulted in survival of the animals. Since glutathione is a harmless natural product, it merits further investigation as a potential antitumor drug for humans.

  1. Studies on the Glutathione-Dependent Formaldehyde-Activating Enzyme from Paracoccus denitrificans

    PubMed Central

    Hopkinson, Richard J.; Leung, Ivanhoe K. H.; Smart, Tristan J.; Rose, Nathan R.; Henry, Luc; Claridge, Timothy D. W.; Schofield, Christopher J.

    2015-01-01

    Formaldehyde is a toxin and carcinogen that is both an environmental pollutant and an endogenous metabolite. Formaldehyde metabolism, which is probably essential for all aerobic cells, likely proceeds via multiple mechanisms, including via a glutathione-dependent pathway that is widely conserved in bacteria, plants and animals. However, it is unclear whether the first step in the glutathione-dependent pathway (i.e. formation of S-hydroxymethylglutathione (HMG)) is enzyme-catalysed. We report studies on glutathione-dependent formaldehyde-activating enzyme (GFA) from Paracoccus denitrificans, which has been proposed to catalyse HMG formation from glutathione and formaldehyde on the basis of studies using NMR exchange spectroscopy (EXSY). Although we were able to replicate the EXSY results, time course experiments unexpectedly imply that GFA does not catalyse HMG formation under standard conditions. However, GFA was observed to bind glutathione using NMR and mass spectrometry. Overall, the results reveal that GFA binds glutathione but does not directly catalyse HMG formation under standard conditions. Thus, it is possible that GFA acts as a glutathione carrier that acts to co-localise glutathione and formaldehyde in a cellular context. PMID:26675168

  2. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it?

    PubMed

    Conrad, Marcus; Friedmann Angeli, José Pedro

    2015-01-01

    The system XC (-)/glutathione/glutathione peroxidase 4 (Gpx4) axis pivotally controls ferroptosis, a recently described form of regulated non-apoptotic cell death. Compelling evidence has established that this route of cell death is not only of high relevance for triggering cancer cell death, but also proves to be amenable for therapeutic intervention to halt ischemia/reperfusion-related diseases.

  3. METABOLISM OF 1,1- AND 1,3- DICHLOROPROPENE: A MECHANISM OF BIOACTIVATION BY GLUTATHIONE

    EPA Science Inventory

    Glutathione transferases (GST) catalyze the reaction of glutathione (GSH) with haloalkenes via a nucleophilic vinylic substitution mechanism (SNV reaction). The source water contaminants 1,1-dichloropropene and 1,3-dichloropropene, which are under scrutiny by the U.S.EPA, were...

  4. Compartment-specific importance of glutathione during abiotic and biotic stress

    PubMed Central

    Zechmann, Bernd

    2014-01-01

    The tripeptide thiol glutathione (γ-L-glutamyl-L-cysteinyl-glycine) is the most important sulfur containing antioxidant in plants and essential for plant defense against abiotic and biotic stress conditions. It is involved in the detoxification of reactive oxygen species (ROS), redox signaling, the modulation of defense gene expression, and the regulation of enzymatic activities. Even though changes in glutathione contents are well documented in plants and its roles in plant defense are well established, still too little is known about its compartment-specific importance during abiotic and biotic stress conditions. Due to technical advances in the visualization of glutathione and the redox state through microscopical methods some progress was made in the last few years in studying the importance of subcellular glutathione contents during stress conditions in plants. This review summarizes the data available on compartment-specific importance of glutathione in the protection against abiotic and biotic stress conditions such as high light stress, exposure to cadmium, drought, and pathogen attack (Pseudomonas, Botrytis, tobacco mosaic virus). The data will be discussed in connection with the subcellular accumulation of ROS during these conditions and glutathione synthesis which are both highly compartment specific (e.g., glutathione synthesis takes place in chloroplasts and the cytosol). Thus this review will reveal the compartment-specific importance of glutathione during abiotic and biotic stress conditions. PMID:25368627

  5. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly.

    PubMed

    Schaedler, Theresia A; Thornton, Jeremy D; Kruse, Inga; Schwarzländer, Markus; Meyer, Andreas J; van Veen, Hendrik W; Balk, Janneke

    2014-08-22

    An ATP-binding cassette transporter located in the inner mitochondrial membrane is involved in iron-sulfur cluster and molybdenum cofactor assembly in the cytosol, but the transported substrate is unknown. ATM3 (ABCB25) from Arabidopsis thaliana and its functional orthologue Atm1 from Saccharomyces cerevisiae were expressed in Lactococcus lactis and studied in inside-out membrane vesicles and in purified form. Both proteins selectively transported glutathione disulfide (GSSG) but not reduced glutathione in agreement with a 3-fold stimulation of ATPase activity by GSSG. By contrast, Fe(2+) alone or in combination with glutathione did not stimulate ATPase activity. Arabidopsis atm3 mutants were hypersensitive to an inhibitor of glutathione biosynthesis and accumulated GSSG in the mitochondria. The growth phenotype of atm3-1 was strongly enhanced by depletion of the mitochondrion-localized, GSH-dependent persulfide oxygenase ETHE1, suggesting that the physiological substrate of ATM3 contains persulfide in addition to glutathione. Consistent with this idea, a transportomics approach using mass spectrometry showed that glutathione trisulfide (GS-S-SG) was transported by Atm1. We propose that mitochondria export glutathione polysulfide, containing glutathione and persulfide, for iron-sulfur cluster assembly in the cytosol.

  6. A Hg(II)-mediated "signal-on" electrochemical glutathione sensor.

    PubMed

    Lotfi Zadeh Zhad, Hamid R; Lai, Rebecca Y

    2014-08-07

    We report the design and fabrication of a DNA-based electrochemical sensor for detection of glutathione. Sensor signaling relies on glutathione's ability to chelate mercury Hg(II), displacing it from the thymine-Hg(II)-thymine complex formed between the surface-immobilized DNA probes. Our results show that this sensor is sensitive and selective enough to be employed in saliva.

  7. Glutathione transferases are structural and functional outliers in the thioredoxin fold.

    PubMed

    Atkinson, Holly J; Babbitt, Patricia C

    2009-11-24

    Glutathione transferases (GSTs) are ubiquitous scavengers of toxic compounds that fall, structurally and functionally, within the thioredoxin fold suprafamily. The fundamental catalytic capability of GSTs is catalysis of the nucleophilic addition or substitution of glutathione at electrophilic centers in a wide range of small electrophilic compounds. While specific GSTs have been studied in detail, little else is known about the structural and functional relationships between different groupings of GSTs. Through a global analysis of sequence and structural similarity, it was determined that variation in the binding of glutathione between the two major subgroups of cytosolic (soluble) GSTs results in a different mode of glutathione activation. Additionally, the convergent features of glutathione binding between cytosolic GSTs and mitochondrial GST kappa are described. The identification of these structural and functional themes helps to illuminate some of the fundamental contributions of the thioredoxin fold to catalysis in the GSTs and clarify how the thioredoxin fold can be modified to enable new functions.

  8. Effect of aluminium metal on glutathione (GSH) level in plasma and cytosolic fraction of human blood.

    PubMed

    Khan, Haroon; Khan, M Farid; Jan, Syed Umer; Ullah, Naseem

    2011-01-01

    Aluminium is being used in the medicines in the form of antacids. The Aluminium metal can be leached from our utensils and can harm the body for its side effects, if become available to the systemic circulation. So it is important to check the effect of Aluminum on the Glutathione in vivo condition. Ellman method was used to determine the effect of Aluminum on GSH level in whole blood spectrophotometerically. 5,5-Dithiobis, 2-Nitrobenzoic Acid, Glutathione, Aluminium sulphate, phosphate buffer, HCl (Hydrochloric acid) and other laboratory instruments were used to conduct the research work. Time dependent effect of Aluminum on Glutathione level in whole blood was also checked and decrease was observed. This study also shows the effect of Aluminum as helping agent for the Glutathione to enhance the antioxidant system of the body or a cause for depletion of reduced Glutathione.

  9. Identification of a diazinon-metabolizing glutathione S-transferase in the silkworm, Bombyx mori

    PubMed Central

    Yamamoto, Kohji; Yamada, Naotaka

    2016-01-01

    The glutathione S-transferase superfamily play key roles in the metabolism of numerous xenobiotics. We report herein the identification and characterization of a novel glutathione S-transferase in the silkworm, Bombyx mori. The enzyme (bmGSTu2) conjugates glutathione to 1-chloro-2,4-dinitrobenzene, as well as metabolizing diazinon, one of the organophosphate insecticides. Quantitative reverse transcription–polymerase chain reaction analysis of transcripts demonstrated that bmGSTu2 expression was induced 1.7-fold in a resistant strain of B. mori. Mutagenesis of putative amino acid residues in the glutathione-binding site revealed that Ile54, Glu66, Ser67, and Asn68 are crucial for enzymatic function. These results provide insights into the catalysis of glutathione conjugation in silkworm by bmGSTu2 and into the detoxification of organophosphate insecticides. PMID:27440377

  10. Uptake and glutathione conjugation of ethacrynic acid and efflux of the glutathione adduct by periportal and perivenous rat hepatocytes.

    PubMed

    Tirona, R G; Tan, E; Meier, G; Pang, K S

    1999-12-01

    We assessed the impact of zonal factors on the hepatic reduced glutathione (GSH) conjugation of ethacrynic acid (EA). Uptake of EA by enriched periportal (PP) and perivenous (PV) rat hepatocytes was characterized by both saturable (V(max)(uptake) = 3.4 +/- 1.7 and 3. 2 +/- 0.8 nmol/min/mg protein and K(m)(uptake) = 51 +/- 13 and 44 +/- 15 microM) and nonsaturable (12 +/- 5 and 12 +/- 3 microl/min/mg protein) components. Values for the overall GSH conjugation rates of EA (200 microM) were similar among the zonal hepatocytes and resembled those for the influx transport rates. In the absence of the hepatocyte membrane, GSH conjugation in PV and PP hepatocyte cytosol was similar, but a higher perivenous GSH conjugation activity toward EA (PV/PP of 2.4) that mirrored the higher PV/PP ratios of immunodetectable GSTs Ya (1.7) and Yb2 (2.5) was found in cell lysates obtained by the dual-digitonin-pulse perfusion technique. The GSH conjugation rates in the subcellular fragments were, however, much greater than those observed for intact hepatocytes. Efflux rates of the glutathione conjugate EA-SG from zonal hepatocytes were similar, as were levels of the immunodetectable multidrug-resistance protein 2/canalicular multispecific organic anion transporter (Mrp2/cMoat) in the 100,000g pellets. The composite results suggest that the GSTs responsible for EA metabolism are more abundant in the PV region, albeit that the gradient of enzymatic activities is shallow. Despite the existence of zonal metabolic activity, the overall GSH conjugation rate of EA is homogeneous among cells because the reaction is rate limited by uptake, which occurs evenly. Results on EA-SG efflux suggest the acinar homogeneity in Mrp2/cMoat function for canalicular transport.

  11. Dynamics of glutathione regulation in Schistosoma mansoni: correlations with the acute effects of oltipraz

    SciTech Connect

    Morrison, D.D.

    1984-01-01

    Glutathione is present in adult Schistosoma mansoni (0.336 +/- 0.012 nmol/mg protein) at significantly lower levels than uninfected host tissues (1.051 +/- 0.013 nmol/mg protein, liver; 0.627 +/- 0.013 nmol/mg protein, kidney). Host hepatic glutathione levels decline significantly during the course of infection, while renal cortical glutathione levels are unaffected. Of the enzymes regulating glutathione utilization, glutathione reductase in the male parasite exhibits a specific activity of 10.3 +/- 4.2 nmol/mg protein, 15% of hepatic values. The apparent glutathione S-transferase activity was 26 +/- 7 ..mu..mol conjugate formed/min/mg protein with p-nitrobenzyl chloride as substrate (13% of hepatic values) and 526 +/- 18 ..mu..mol conjugate formed/min/mg protein with 1-chloro-2,4-dinitrobenzene as substrate (43% of hepatic values). Male schistosomes exhibited negligible glutathione peroxidase activity. Oltipraz, an antischistosomal compound, effected a significant depletion of parasite and host glutathione levels within 1 h of exposure in vivo and in vitro (at 250 mg/kg and 10 ..mu..M, respectively). Host tissue glutathionine levels returned to, or above, control levels by 6 h after oltipraz administration, while parasite glutathione levels remained significantly depressed. Uptake of (/sup 35/S) cysteine or (/sup 35/S) cystine by schistosomes was inhibited by oltipraz. However, the drug did not alter the relative distribution of label once incorporated into the parasite, indicating that the enzymes of glutathione synthesis were not directly inhibited.

  12. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  13. Unbalanced activation of glutathione metabolic pathways suggests potential involvement in plant defense against the gall midge mayetiola destructor in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutathione, a thiol tripeptide of '-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. In this study, we found that the abundance of total glutathion...

  14. Purification and Biochemical Characterization of Glutathione S-Transferase from Down Syndrome and Normal Children Erythrocytes: A Comparative Study

    ERIC Educational Resources Information Center

    Hamed, Ragaa R.; Maharem, Tahany M.; Abdel-Meguid, Nagwa; Sabry, Gilane M.; Abdalla, Abdel-Monem; Guneidy, Rasha A.

    2011-01-01

    Down syndrome (DS) is the phenotypic manifestation of trisomy 21. Our study was concerned with the characterization and purification of glutathione S-transferase enzyme (GST) from normal and Down syndrome (DS) erythrocytes to illustrate the difference in the role of this enzyme in the cell. Glutathione S-transferase and glutathione (GSH) was…

  15. Evaluation of the interaction of vanadium with glutathione in human blood components.

    PubMed

    Mukhtiar, Muhammad; Khan, Muhammad Farid; Jan, Syed Umer; Khan, Haroon; Ullah, Naseem; Asim-ur-Rehman

    2012-07-01

    Metallo-elements including Vanadium (V) have strong affinity for sulfhydryl (-SH) groups in biological molecules including Glutathione (GSH) in tissues. Because of this fact it was of interest to further investigate the interaction of Ammonium Vanadate [NH(4)VO(3)] with Glutathione as a biomarker of toxicity and the role of Glutathione in the detoxification and conjugation pr(o)Cesses in whole blood components including plasma and cytosolic fraction. Effects of different concentrations of Ammonium Vanadate [NH(4)VO(3)] on the level of reduced Glutathione in whole blood components (Plasma and Cytosolic fraction) were examined. GSH depletion in plasma and cytosolic fraction was Ammonium Vanadate's concentration-dependent. Depleted GSH level was more pronounced with more incubation time period. These findings show that changes in the GSH status produced by Ammonium Vanadate could be due to either by adduct formation of Vanadium and glutathione i.e. (V-SG) or by increased production of oxidized Glutathione (2GSH +V(+5) → GSSG). This change in GSH metabolic status provides some information regarding the mechanism of toxicity by Ammonium Vanadate and the protective role of glutathione.

  16. Effect of fish oil on glutathione redox system in multiple sclerosis

    PubMed Central

    Sorto-Gomez, Tania E; Ortiz, Genaro G; Pacheco-Moises, Fermín P; Torres-Sanchez, Erandis D; Ramirez-Ramirez, Viridiana; Macias-Islas, Miguel A; de la Rosa, Alfredo Celis; Velázquez-Brizuela, Irma E

    2016-01-01

    Multiple sclerosis (MS) is a chronic, inflammatory and autoimmune disease of the central nervous system. Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are implicated in the induction and progression of MS. Evidence suggests that Omega-3 polyunsaturated fatty acids (PUFAs) have anti-inflammatory, antioxidant and neuroprotective effects. The aim of the present work was to evaluate the effect of fish oil on the activity of glutathione reductase (GR), content of reduced and oxidized glutathione, and GSH/GSSG ratio in MS. 50 patients with relapsing-remitting MS were enrolled. The experimental group received orally 4 g/day of fish oil for 12 months. Fish oil supplementation resulted in a significant increase in n-3 fatty acids and a decrease n-6 fatty acids. No differences in glutathione reductase activity, content of reduced and oxidized glutathione, and GSH/GSSG ratio were found. Conclusion: Glutathione reductase activity was not significantly different between the groups; however, fish oil supplementation resulted in smaller increase in GR compared with control group, suggesting a possible effect on antioxidant defence mechanisms. PMID:27335704

  17. Effect of dietary selenium concentration and duration of selenium feeding on hepatic glutathione concentrations in rats

    SciTech Connect

    LeBoeuf, R.A.; Zentner, K.L.; Hoekstra, W.G.

    1985-11-01

    Studies were conducted in rats to determine the effect of dietary selenium (Se) concentration on hepatic glutathione concentrations and enzyme activities associated with the maintenance of the cellular glutathione status. Male rats were fed 0.1, 3.0, or 6.0 ppm Se as Na/sub 2/SeO/sub 3/ for 2, 4, or 6 weeks at which time they were killed and analyses were performed. Both 3.0 and 6.0 ppm Se caused a significant dose-dependent increase in hepatic-reduced glutathione (GSH) by 4 weeks of feeding compared to 0.1 ppm Se. The increase in GSH was preceded by significant, dose-dependent increases in oxidized glutathione (GSSG) as well as the GSSG to GSH ratio. Increases in GSSG and the GSSG to GSH ratio as well as in glutathione reductase and glucose-6-phosphate dehydrogenase activities were observed by 2 weeks of high Se feeding. The current findings substantiate previous results demonstrating effects of high Se on hepatic glutathione concentrations and further suggest that increased cellular GSSG concentrations or the GSSG to GSH ratio caused by 3.0 and 6.0 ppm dietary Se signals for adaptive changes in hepatic glutathione metabolism.

  18. 1-3-A Resolution Structure of Human Glutathione S-Transferase With S-Hexyl Glutathione Bound Reveals Possible Extended Ligandin Binding Site

    SciTech Connect

    Trong, I.Le; Stenkamp, R.E.; Ibarra, C.; Atkins, W.M.; Adman, E.T.

    2005-08-22

    Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathione binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.

  19. Changes in the subcellular distribution of glutathione during virus infection in Cucurbita pepo (L.).

    PubMed

    Zechmann, B; Zellnig, G; Müller, M

    2005-01-01

    Changes in the subcellular distribution and quantification of glutathione were studied with electron microscopic immunogold cytochemistry in Zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants (Cucurbita pepo L. ssp. pepo var. styriaca Greb.) two weeks after inoculation. The amount of gold particles bound to glutathione was statistically evaluated for different cell structures, including mitochondria, plastids, nuclei, peroxisomes, and cytosol. In general, ZYMV-infected plants showed higher gold labelling density in intact mesophyll cells of the 5th (older leaves) and the youngest fully developed leaves (younger leaves), and decreased levels of glutathione within root tip cells when compared to the control. In general, within older and younger leaves the highest amount of gold particles was found in mitochondria and the lowest amount in plastids. In ZYMV-infected older leaves, an increase in glutathione was found in peroxisomes (1.7-fold), the cytosol (1.6-fold), mitochondria (1.4-fold), and nuclei (1.2-fold), whereas glutathione levels in plastids did not differ significantly when compared to control cells. In ZYMV-infected younger leaves elevated glutathione contents were found in the cytosol (3-fold), nuclei (2.1-fold), peroxisomes (1.8-fold), and plastids (1.5-fold), whereas mitochondria showed an insignificant decrease in glutathione levels in comparison to the control. In root tip cells of ZYMV-infected plants the amount of gold particles bound to glutathione was decreased in all investigated cell structures by between 0.7- to 0.8-fold. Additionally, total glutathione contents were determined in older and younger leaves using high-performance liquid chromatography (HPLC), which revealed no significant differences between control and ZYMV-infected leaves. The relevance of the results of both methods were compared and are discussed.

  20. Catalytic cycle of human glutathione reductase near 1 Å resolution

    PubMed Central

    Berkholz, Donald S.; Faber, H. Richard; Savvides, Savvas N.; Karplus, P. Andrew

    2008-01-01

    Summary Efficient enzyme catalysis depends on exquisite details of structure beyond those resolvable in typical medium- and high-resolution crystallographic analyses. Here we report synchrotron-based cryocrystallographic studies of natural substrate complexes of the flavoenzyme human glutathione reductase (GR) at nominal resolutions between 1.1 and 0.95 Å that reveal new aspects of its mechanism. Compression in the active site causes overlapping van der Waals radii and distortion in the nicotinamide ring of the NADPH substrate, which enhances catalysis via stereoelectronic effects. The bound NADPH and redox-active disulfide are positioned optimally on opposite sides of the flavin for a 1,2-addition across a flavin double bond. The new structures extend earlier observations to reveal that the redox-active disulfide loop in GR is an extreme case of sequential peptide bonds systematically deviating from planarity, a net deviation of 53° across 5 residues. But this apparent strain is not a factor in catalysis as it is present in both oxidized and reduced structures. Intriguingly, the flavin bond lengths in oxidized GR are intermediate between those expected for oxidized and reduced flavin, but we present evidence that this may not be due to the protein environment but instead to partial synchrotron reduction of the flavin by the synchrotron beam. Finally, of more general relevance, we present evidence that the structures of synchrotron-reduced disulfide bonds cannot generally be used as reliable models for naturally reduced disulfide bonds. PMID:18638483

  1. Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells

    PubMed Central

    Starheim, K K; Holien, T; Misund, K; Johansson, I; Baranowska, K A; Sponaas, A-M; Hella, H; Buene, G; Waage, A; Sundan, A; Bjørkøy, G

    2016-01-01

    Multiple myeloma (myeloma in short) is an incurable cancer of antibody-producing plasma cells that comprise 13% of all hematological malignancies. The proteasome inhibitor bortezomib has improved treatment significantly, but inherent and acquired resistance to the drug remains a problem. We here show that bortezomib-induced cytotoxicity was completely dampened when cells were supplemented with cysteine or its derivative, glutathione (GSH) in ANBL-6 and INA-6 myeloma cell lines. GSH is a major component of the antioxidative defense in eukaryotic cells. Increasing intracellular GSH levels fully abolished bortezomib-induced cytotoxicity and transcriptional changes. Elevated intracellular GSH levels blocked bortezomib-induced nuclear factor erythroid 2-related factor 2 (NFE2L2, NRF2)-associated stress responses, including upregulation of the xCT subunit of the Xc- cystine-glutamate antiporter. INA-6 cells conditioned to increasing bortezomib doses displayed reduced bortezomib sensitivity and elevated xCT levels. Inhibiting Xc- activity potentiated bortezomib-induced cytotoxicity in myeloma cell lines and primary cells, and re-established sensitivity to bortezomib in bortezomib-conditioned cells. We propose that intracellular GSH level is the main determinant of bortezomib-induced cytotoxicity in a subset of myeloma cells, and that combined targeting of the proteasome and the Xc- cystine-glutamate antiporter can circumvent bortezomib resistance. PMID:27421095

  2. Whey protein concentrate (WPC) and glutathione modulation in cancer treatment.

    PubMed

    Bounous, G

    2000-01-01

    The glutathione (GSH) antioxidant system is foremost among the cellular protective mechanisms. Depletion of this small molecule is a common consequence of increased formation of reactive oxygen species during increased cellular activities. This phenomenon can occur in the lymphocytes during the development of the immune response and in the muscular cells during strenuous exercise. It is not surprising that so much research has been done, and is still being done on this small tripeptide molecule. Whey protein concentrate has been shown to represent an effective and safe cysteine donor for GSH replenishment during GSH depletion in immune deficiency states. Cysteine is the crucial limiting amino acid for intracellular GSH synthesis. Animal experiments showed that the concentrates of whey proteins also exhibit anti-carcinogenesis and anticancer activity. They do this via their effect on increasing GSH concentration in relevant tissues, and may have anti-tumor effect on low volume of tumor via stimulation of immunity through the GSH pathway. It is considered that oxygen radical generation is frequently a critical step in carcinogenesis, hence the effect of GSH on free radicals as well as carcinogen detoxification, could be important in inhibiting carcinogenesis induced by a number of different mechanisms. Case reports are presented which strongly suggest an anti-tumor effect of a whey protein dietary supplement in some urogenital cancers. This non toxic dietary intervention, which is not based on the principles of current cancer chemotherapy, will hopefully attract the attention of laboratory and clinical oncologists.

  3. Modification of photosynthetic regulation in tomato overexpressing glutathione peroxidase.

    PubMed

    Herbette, Stephane; Menn, Aline Le; Rousselle, Patrick; Ameglio, Thierry; Faltin, Zehava; Branlard, Gérard; Eshdat, Yuval; Julien, Jean-Louis; Drevet, Joël R; Roeckel-Drevet, Patricia

    2005-06-20

    To investigate the function of glutathione peroxidase (GPX) in plants, we produced transgenic tomato plants overexpressing an eukaryotic selenium-independent GPX (GPX5). We show here that total GPX activity was increased by 50% in transgenic plants, when compared to control plants transformed with the binary vector without the insert (PZP111). A preliminary two-dimensional electrophoretic protein analysis of the GPX overexpressing plants showed notably a decrease in the accumulation of proteins identified as rubisco small subunit 1 and fructose-1,6-bisphosphate aldolase, two proteins involved in photosynthesis. These observations, together with the fact that in standard culture conditions, GPX-overexpressing plants were not phenotypically distinct from control plants prompted us to challenge the plants with a chilling treatment that is known to affect photosynthesis activity. We found that upon chilling treatment with low light level, photosynthesis was not affected in GPX-overexpressing plants while it was in control plants, as revealed by chlorophyll fluorescence parameters and fructose-1,6-biphosphatase activity. These results suggest that overexpression of a selenium-independent GPX in tomato plants modifies specifically gene expression and leads to modifications of photosynthetic regulation processes.

  4. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Buschbacher, Ralph M.; Newton, Gerald L.

    1988-01-01

    The low molecular weight thiol composition of a variety of phototropic microorganisms is examined in order to ascertain how evolution of glutathione (GSH) production is related to the evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols (RSH) to fluorescent derivatives (RSmB) which were analyzed by high performance liquid chromatography (HPLC). Significant levels of GSH were not found in green sulfur bacteria. Substantial levels were present in purple bacteria, cyanobacteria, and eukaryotic algae. Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide. Many of the organisms also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability which was quenched by treatment with 2-pyridyl disulfide or 5,5 prime-bisdithio - (2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of reactive disulfides. The distribution of GSH in phototropic eubacteria indicates that GSH synthesis evolved at or around the time that oxygenic photosynthesis evolved.

  5. Influence of culture conditions on glutathione production by Saccharomyces cerevisiae.

    PubMed

    Santos, Lucielen Oliveira; Gonzales, Tatiane Araujo; Ubeda, Beatriz Torsani; Monte Alegre, Ranulfo

    2007-12-01

    A strategy of experimental design using a fractional factorial design (FFD) and a central composite rotatable design (CCRD) were carried out with the aim to obtain the best conditions of temperature (20-30 degrees C), agitation rate (100-300 rpm), initial pH (5.0-7.0), inoculum concentration (5-15%), and glucose concentration (30-70 g/l) for glutathione (GSH) production in shake-flask culture by Saccharomyces cerevisiae ATCC 7754. By a FFD (2(5-2)), the agitation rate, temperature, and pH were found to be significant factors for GSH production. In CCRD (2(2)) was obtained a second-order model equation, and the percent of variation explained by the model was 95%. The results showed that the optimal culture conditions were agitation rate, 300 rpm; temperature, 20 degrees C; initial pH, 5; glucose, 54 g/l; and inoculum concentration, 5%. The highest GSH concentration (154.5 mg/l) was obtained after 72 h of fermentation.

  6. Measuring Glutathione-induced Feeding Response in Hydra

    PubMed Central

    Kulkarni, Ram; Galande, Sanjeev

    2014-01-01

    Hydra is among the most primitive organisms possessing a nervous system and chemosensation for detecting reduced glutathione (GSH) for capturing the prey. The movement of prey organisms causes mechanosensory discharge of the stinging cells called nematocysts from hydra, which are inserted into the prey. The feeding response in hydra, which includes curling of the tentacles to bring the prey towards the mouth, opening of the mouth and consequent engulfing of the prey, is triggered by GSH present in the fluid released from the injured prey. To be able to identify the molecular mechanism of the feeding response in hydra which is unknown to date, it is necessary to establish an assay to measure the feeding response. Here, we describe a simple method for the quantitation of the feeding response in which the distance between the apical end of the tentacle and mouth of hydra is measured and the ratio of such distance before and after the addition of GSH is determined. The ratio, called the relative tentacle spread, was found to give a measure of the feeding response. This assay was validated using a starvation model in which starved hydra show an enhanced feeding response in comparison with daily fed hydra. PMID:25490534

  7. Mitochondrial glutathione peroxidase 4 disruption causes male infertility.

    PubMed

    Schneider, Manuela; Förster, Heidi; Boersma, Auke; Seiler, Alexander; Wehnes, Helga; Sinowatz, Fred; Neumüller, Christine; Deutsch, Manuel J; Walch, Axel; Hrabé de Angelis, Martin; Wurst, Wolfgang; Ursini, Fulvio; Roveri, Antonella; Maleszewski, Marek; Maiorino, Matilde; Conrad, Marcus

    2009-09-01

    Selenium is linked to male fertility. Glutathione peroxidase 4 (GPx4), first described as an antioxidant enzyme, is the predominant selenoenzyme in testis and has been suspected of being vital for spermatogenesis. Cytosolic, mitochondrial, and nuclear isoforms are all encoded by the same gene. While disruption of entire GPx4 causes early embryonic lethality in mice, inactivation of nuclear GPx4 does not impair embryonic development or fertility. Here, we show that deletion of mitochondrial GPx4 (mGPx4) allows both normal embryogenesis and postnatal development, but causes male infertility. Infertility was associated with impaired sperm quality and severe structural abnormalities in the midpiece of spermatozoa. Knockout sperm display higher protein thiol content and recapitulate features typical of severe selenodeficiency. Interestingly, male infertility induced by mGPx4 depletion could be bypassed by intracytoplasmic sperm injection. We also show for the first time that mGPx4 is the prevailing GPx4 product in male germ cells and that mGPx4 disruption has no effect on proliferation or apoptosis of germinal or somatic tissue. Our study finally establishes that mitochondrial GPx4 confers the vital role of selenium in mammalian male fertility and identifies cytosolic GPx4 as the only GPx4 isoform being essential for embryonic development and apoptosis regulation.

  8. A Synthetic Chalcone as a Potent Inducer of Glutathione Biosynthesis

    PubMed Central

    Kachadourian, Remy; Day, Brian J.; Pugazhenti, Subbiah; Franklin, Christopher C.; Genoux-Bastide, Estelle; Mahaffey, Gregory; Gauthier, Charlotte; Di Pietro, Attilio; Boumendjel, Ahcène

    2014-01-01

    Chalcones continue to attract considerable interest due to their anti-inflammatory and antiangiogenic properties. We recently reported the ability of 2′,5′-dihydroxychalcone (2′,5′-DHC) to induce both breast cancer resistance protein-mediated export of glutathione (GSH) and c-Jun N-terminal kinase-mediated increased intracellular GSH levels. Herein, we report a structure–activity relationship study of a series of 30 synthetic chalcone derivatives with hydroxyl, methoxyl, and halogen (F and Cl) substituents and their ability to increase intracellular GSH levels. This effect was drastically improved with one or two electrowithdrawing groups on phenyl ring B and up to three methoxyl and/or hydroxyl groups on phenyl ring A. The optimal structure, 2-chloro-4′,6′-dimethoxy-2′-hydroxychalcone, induced both a potent NF-E2-related factor 2-mediated transcriptional response and an increased formation of glutamate cysteine ligase holoenzyme, as shown using a human breast cancer cell line stably expressing a luciferase reporter gene driven by antioxidant response elements. PMID:22239485

  9. A novel glutathione modified chitosan conjugate for efficient gene delivery.

    PubMed

    Li, Congxin; Guo, Tianying; Zhou, Dezhong; Hu, Yuling; Zhou, Hao; Wang, Shufang; Chen, Jiatong; Zhang, Zhengpu

    2011-09-05

    A novel non-viral gene vector based on poly[poly(ethylene glycol) methacrylate] (PMPEG) and l-glutathione (GSH) grafted chitosan (CS) has been fabricated. First, well-defined brush-like PMPEG living polymers with dithioester residues were prepared by the reversible addition-fragmentation chain transfer (RAFT) polymerization and grafted onto the allylchitosan via radical coupling method. Then, the tripeptide GSH was introduced onto the end of PMPEG chain to give a CS-PMPEG-GSH conjugate. In comparison with pristine chitosan, CS-PMPEG-GSH conjugate could not only condense plasmid DNA (pDNA) and prevent the condensed CS-PMPEG-GSH/pDNA nanoparticle self-aggregation, but also increase the binding ability to cell membrane efficiently and improve decondensed ability of pDNA from the nanoparticles in cytoplasm which thus has resulted in the higher transfection efficiency in mouse embryonic fibroblast cells (NIH3T3). In addition, cytotoxicity assays showed that the conjugate is less cytotoxic than CS, and still retain the cationic polyelectrolyte characteristic as chitosan. These results indicate that the non-viral vector is a promising candidate for gene therapy in clinical application.

  10. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  11. Arachidonic acid metabolism in glutathione-deficient macrophages.

    PubMed Central

    Rouzer, C A; Scott, W A; Griffith, O W; Hamill, A L; Cohn, Z A

    1982-01-01

    Mouse resident peritoneal macrophages were treated with the glutathione (GSH) synthesis inhibitor buthionine sulfoximine to deplete intracellular GSH. The arachidonic acid metabolites released by the GSH-depleted macrophages in response to a zymosan challenge were analyzed by HPLC. Buthionine sulfoximine treatment resulted in inhibition of both prostaglandin E2 and leukotriene C synthesis that was directly related to the degree of GSH depletion. Macrophages in which GSH levels were reduced to 3% of normal exhibited reductions to 4% and 1%, respectively, in PGE2 and LTC formation. The total quantity of cyclooxygenase metabolites secreted by GSH-deficient macrophages was identical to that of control cells as a result of increased synthesis of prostacyclin and, to a lesser extent, 12-L-hydroxy-5,8,10-heptadecatrienoic acid. Total lipoxygenase products were decreased, however; increased formation of hydroxyicosatetraenoic acids only partially compensated for the deficit in leukotriene C production. These findings extent our earlier observations on the inhibition of leukotriene C synthesis in GSH-depleted macrophages and confirm with intact cells the previously suggested role of GSH in prostaglandin E2 formation. PMID:6803245

  12. Microglial self-defence mediated through GLT-1 and glutathione.

    PubMed

    Persson, Mikael; Rönnbäck, Lars

    2012-01-01

    Glutamate is stored in synaptic vesicles in presynaptic neurons. It is released into the synaptic cleft to provide signalling to postsynaptic neurons. Normally, the astroglial glutamate transporters GLT-1 and GLAST take up glutamate to mediate a high signal-to-noise ratio in the synaptic signalling, and also to prevent excitotoxic effects by glutamate. In astrocytes, glutamate is transformed into glutamine, which is safely transported back to neurons. However, in pathological conditions, such as an ischemia or virus infection, astroglial transporters are down-regulated which could lead to excitotoxicity. Lately, it was shown that even microglia can express glutamate transporters during pathological events. Microglia have two systems for glutamate transport: GLT-1 for transport into the cells and the x (c) (-) system for transport out of the cells. We here review results from our work and others, which demonstrate that microglia in culture express GLT-1, but not GLAST, and transport glutamate from the extracellular space. We also show that TNF-α can induce increased microglial GLT-1 expression, possibly associating the expression with inflammatory systems. Furthermore, glutamate taken up through GLT-1 may be used for direct incorporation into glutathione and to fuel the intracellular glutamate pool to allow cystine uptake through the x (c) (-) system. This can lead to a defence against oxidative stress and have an antiviral function.

  13. Effect of glutathion pretreatment on hypothermic ischemic cardioplegia.

    PubMed

    Amano, J; Sunamori, M; Okamura, T; Suzuki, A

    1982-01-01

    Glutathion (GSH) plays an important role in maintenance of the redox state of the myocardium and acts as the membrane stabilizer. Seventeen patients who underwent cardiac surgery were subjected to cardiopulmonary bypass (CPB) and ischemic cardioplegia. The effect of GSH on ischemic myocardium was evaluated by serum lysosomal enzymes (acid phosphatase, beta-glucuronidase), isoenzymes of creatine phosphokinase (MB-CPK) and aspartate aminotransferase (m-GOT). standard CPB was instituted and systemic hypothermia was employed. GSH was administered to 8 patients in a dose of 200 mg/kg i.v. prior to institution of CPB. Mixed venous blood was sampled before administration of GSH, 10 min after institution of CPB and 0, 1, 6, 24 and 48 hr of reperfusion period following cardioplegia. Activity of acid phosphatase and beta-glucuronidase were significantly suppressed in the GSH-treated group compared to the non-treated group at 24 hours of reperfusion and immediately after aortic unclamping, respectively. Serum MB-CPK levels remained stable during reperfusion, but in the non-treated group, the level increased significantly at 6 hours of reperfusion. Increment of serum m-GOT levels was significantly suppressed at 1, 6 and 24 hours of reperfusion, compared to the non-treated group. These data suggest that pretreatment of GSH can protect the myocardium subjected to CPB from ischemic insult.

  14. Hepatic mitochondrial glutathione: transport and role in disease and toxicity

    SciTech Connect

    Fernandez-Checa, Jose C. . E-mail: checa229@yahoo.com; Kaplowitz, Neil . E-mail: kaplowitz@hsc.usc.edu

    2005-05-01

    Synthesized in the cytosol of cells, a fraction of cytosolic glutathione (GSH) is then transported into the mitochondrial matrix where it reaches a high concentration and plays a critical role in defending mitochondria against oxidants and electrophiles. Evidence mainly from kidney and liver mitochondria indicated that the dicarboxylate and the 2-oxoglutarate carriers contribute to the transport of GSH across the mitochondrial inner membrane. However, differential features between kidney and liver mitochondrial GSH (mGSH) transport seem to suggest the existence of additional carriers the identity of which remains to be established. One of the characteristic features of the hepatic mitochondrial transport of GSH is its regulation by membrane fluidity. Conditions leading to increased cholesterol deposition in the mitochondrial inner membrane such as in alcohol-induced liver injury decrease membrane fluidity and impair the mitochondrial transport of GSH. Depletion of mitochondrial GSH by alcohol is believed to contribute to the sensitization of the liver to alcohol-induced injury through tumor necrosis factor (TNF)-mediated hepatocellular death. Through control of mitochondrial electron transport chain-generated oxidants, mitochondrial GSH modulates cell death and hence its regulation may be a key target to influence disease progression and drug-induced cell death.

  15. Inactivation of Anopheles gambiae Glutathione Transferase ε2 by Epiphyllocoumarin

    PubMed Central

    Marimo, Patience; Hayeshi, Rose; Mukanganyama, Stanley

    2016-01-01

    Glutathione transferases (GSTs) are part of a major family of detoxifying enzymes that can catalyze the reductive dehydrochlorination of dichlorodiphenyltrichloroethane (DDT). The delta and epsilon classes of insect GSTs have been implicated in conferring resistance to this insecticide. In this study, the inactivation of Anopheles gambiae GSTε2 by epiphyllocoumarin (Tral 1) was investigated. Recombinant AgGSTε2 was expressed in Escherichia coli cells containing a pET3a-AGSTε2 plasmid and purified by affinity chromatography. Tral 1 was shown to inactivate GSTε2 both in a time-dependent manner and in a concentration-dependent manner. The half-life of GSTε2 in the presence of 25 μM ethacrynic acid (ETA) was 22 minutes and with Tral 1 was 30 minutes, indicating that Tral 1 was not as efficient as ETA as an inactivator. The inactivation parameters kinact and KI were found to be 0.020 ± 0.001 min−1 and 7.5 ± 2.1 μM, respectively, after 90 minutes of incubation. Inactivation of GSTε2 by Tral 1 implies that Tral 1 covalently binds to this enzyme in vitro and would be expected to exhibit time-dependent effects on the enzyme in vivo. Tral 1, therefore, would produce irreversible effects when used together with dichlorodiphenyltrichloroethane (DDT) in malaria control programmes where resistance is mediated by GSTs. PMID:26925266

  16. Inhibition of murine AIDS by pro-glutathione (GSH) molecules.

    PubMed

    Fraternale, A; Paoletti, M F; Casabianca, A; Orlandi, C; Schiavano, G F; Chiarantini, L; Clayette, P; Oiry, J; Vogel, J-U; Cinatl, J; Magnani, M

    2008-02-01

    Antioxidant molecules can be used both to replenish the depletion of reduced glutathione (GSH) occurring during HIV infection, and to inhibit HIV replication. The purpose of this work was to assess the efficacy of two pro-GSH molecules able to cross the cell membrane more easily than GSH. We used an experimental animal model consisting of C57BL/6 mice infected with the LP-BM5 viral complex; the treatments were based on the intramuscular administration of I-152, a pro-drug of N-acetylcysteine and S-acetyl-beta-mercaptoethylamine, and S-acetylglutathione, an acetylated GSH derivative. The results show that I-152, at a concentration of 10.7 times lower than GSH, caused a reduction in lymph node and spleen weights of about 55% when compared to infected animals and an inhibition of about 66% in spleen and lymph node virus content. S-acetylglutathione, at half the concentration of GSH, caused a reduction in lymph node weight of about 17% and in spleen and lymph node virus content of about 70% and 30%, respectively. These results show that the administration of pro-GSH molecules may favorably substitute for the use of GSH as such.

  17. Glutathione Peroxidase 4 Is Required for Maturation of Photoreceptor Cells*

    PubMed Central

    Ueta, Takashi; Inoue, Tatsuya; Furukawa, Takahisa; Tamaki, Yasuhiro; Nakagawa, Yasuhito; Imai, Hirotaka; Yanagi, Yasuo

    2012-01-01

    Oxidative stress is implicated in the pathologies of photoreceptor cells, and the protective role of antioxidant enzymes for photoreceptor cells have been well understood. However, their essentiality has remained unknown. In this study we generated photoreceptor-specific conditional knock-out (CKO) mice of glutathione peroxidase 4 (GPx4) and showed the critical role of GPx4 for photoreceptor cells. In the wild-type retina the dominant GPx4 expression was in the mitochondria, indicating the mitochondrial variant was the major GPx4 in the retina. In the GPx4-CKO mice, although photoreceptor cells developed and differentiated into rod and cone cells by P12, they rapidly underwent drastic degeneration and completely disappeared by P21. The photoreceptor cell death in the GPx4-CKO mice was associated with the nuclear translocation of apoptosis-inducing factor (AIF) and TUNEL-positive cells. Photoreceptor cells before undergoing apoptosis (P11) exhibited decreased mitochondrial biomass, decreased number of connecting cilia, as well as disorganized structure of outer segments. These findings indicate that GPx4 is a critical antioxidant enzyme for the maturation and survival of photoreceptor cells. PMID:22207760

  18. Role of glutathione transport processes in kidney function

    SciTech Connect

    Lash, Lawrence H. . E-mail: l.h.lash@wayne.edu

    2005-05-01

    The kidneys are highly dependent on an adequate supply of glutathione (GSH) to maintain normal function. This is due, in part, to high rates of aerobic metabolism, particularly in the proximal tubules. Additionally, the kidneys are potentially exposed to high concentrations of oxidants and reactive electrophiles. Renal cellular concentrations of GSH are maintained by both intracellular synthesis and transport from outside the cell. Although function of specific carriers has not been definitively demonstrated, it is likely that multiple carriers are responsible for plasma membrane transport of GSH. Data suggest that the organic anion transporters OAT1 and OAT3 and the sodium-dicarboxylate 2 exchanger (SDCT2 or NaDC3) mediate uptake across the basolateral plasma membrane (BLM) and that the organic anion transporting polypeptide OATP1 and at least one of the multidrug resistance proteins mediate efflux across the brush-border plasma membrane (BBM). BLM transport may be used pharmacologically to provide renal proximal tubular cells with exogenous GSH to protect against oxidative stress whereas BBM transport functions physiologically in turnover of cellular GSH. The mitochondrial GSH pool is derived from cytoplasmic GSH by transport into the mitochondrial matrix and is mediated by the dicarboxylate and 2-oxoglutarate exchangers. Maintenance of the mitochondrial GSH pool is critical for cellular and mitochondrial redox homeostasis and is important in determining susceptibility to chemically induced apoptosis. Hence, membrane transport processes are critical to regulation of renal cellular and subcellular GSH pools and are determinants of susceptibility to cytotoxicity induced by oxidants and electrophiles.

  19. Glutathione conjugates of ochratoxin A as biomarkers of exposure.

    PubMed

    Tozlovanu, Mariana; Canadas, Delphine; Pfohl-Leszkowicz, Annie; Frenette, Christine; Paugh, Robert J; Manderville, Richard A

    2012-12-01

    In the present study the photoreactivity of the fungal carcinogen ochratoxin A (OTA) has been utilised to generate authentic samples of reduced glutathione (GSH) and N-acetylcysteine (NAC) conjugates of the parent toxin. These conjugates, along with the nontoxic OTα, which is generated through hydrolysis of the amide bond of OTA by carboxypeptidase A, were utilised as biomarkers to study the metabolism of OTA in the liver and kidney of male and female Dark Agouti rats. Male rats are more susceptible than female rats to OTA carcinogenesis with the kidney being the target organ. Our studies show that the distribution of OTA in male and female rat kidney is not significantly different. However, the extent of OTA metabolism was greater in male than female rats. Much higher levels of OTα were detected in the liver compared to the kidney, and formation of OTα is a detoxification pathway for OTA. These findings suggest that differences in metabolism between male and female rats could provide an explanation for the higher sensitivity of male rats to OTA toxicity.

  20. Glutathione S-transferase polymorphisms in thyroid cancer patients.

    PubMed

    Hernández, Alba; Céspedes, Walkiria; Xamena, Noel; Surrallés, Jordi; Creus, Amadeu; Galofré, Pere; Marcos, Ricardo

    2003-02-10

    Glutathione S-transferases (GST) are enzymes involved in the metabolism of many carcinogens and mutagens, also acting as important free-radical scavengers. The existence of different genetic polymorphisms in human populations has proven to be a susceptibility factor for different tumours. Nevertheless, as far as we know, for thyroid cancer no study has been conducted until now linking its incidence to genetic susceptibility biomarkers. The present investigation has been conducted to detect the possible association between polymorphism at the GSTM1, GSTT1 and GSTP1 genes and thyroid cancer incidence. Thus, 134 thyroid cancer patients and 116 controls, all from the urban district of Barcelona (Spain), have been included in this study. The results indicate that, according to the calculated odds ratio, the frequencies of the different genotypes found in the group of cancer patients do not significantly differ from those values obtained in the controls. This is true for the overall data as well as for the tumour characterization as follicular and papillar types. In addition, none of the possible combinations of mutant genotypes were shown to be risk factors. Finally, when the sex of the patients, the age of tumour onset, and life-style habits were also taken into account, no influence was observed related to the different genotypes. In conclusion, the results obtained in this study clearly suggest that those susceptibility factors related to the different GST polymorphic enzymes are not a predisposing factor in thyroid cancer disease.

  1. Oral glutathione supplementation drastically reduces Helicobacter-induced gastric pathologies

    PubMed Central

    De Bruyne, Ellen; Ducatelle, Richard; Foss, Dennis; Sanchez, Margaret; Joosten, Myrthe; Zhang, Guangzhi; Smet, Annemieke; Pasmans, Frank; Haesebrouck, Freddy; Flahou, Bram

    2016-01-01

    Helicobacter (H.) suis causes gastric pathologies in both pigs and humans. Very little is known on the metabolism of this bacterium and its impact on the host. In this study, we have revealed the importance of the glutamate-generating metabolism, as shown by a complete depletion of glutamine (Gln) in the medium during H. suis culture. Besides Gln, H. suis can also convert glutathione (GSH) to glutamate, and both reactions are catalyzed by the H. suis γ-glutamyltranspeptidase (GGT). Both for H. pylori and H. suis, it has been hypothesized that the degradation of Gln and GSH may lead to a deficiency for the host, possibly initiating or promoting several pathologies. Therefore the in vivo effect of oral supplementation with Gln and GSH was assessed. Oral supplementation with Gln was shown to temper H. suis induced gastritis and epithelial (hyper)proliferation in Mongolian gerbils. Astonishingly, supplementation of the feed with GSH, another GGT substrate, resulted in inflammation and epithelial proliferation levels returning to baseline levels of uninfected controls. This indicates that Gln and GSH supplementation may help reducing tissue damage caused by Helicobacter infection in both humans and pigs, highlighting their potential as a supportive therapy during and after Helicobacter eradication therapy. PMID:26833404

  2. [Kinetic models for the effect of temperature on batch glutathione fermentation by Candida utilis].

    PubMed

    Wei, Gong-Yuan; Li, Yin; Du, Guo-Cheng; Chen, Jian

    2003-05-01

    Glutathione (L-gamma-glutamyl-L-cysteinylglycine), one of the major non-protein thiol compounds, is widely distributed in living cells and plays an important role in maintaining the normal redox environment of cells as an antioxidant. In the production of glutathione by fermentation, temperature is one of the most important environmental factors that affect the yield and the productivity of glutathione. Here the effect of temperature, varied from 24 degrees C to 32 degrees C, on the batch fermentation of glutathione in a 7 L stirred fermenter by Candida utilis WSH 02-08 was investigated. It was found that cell growth was hastened along with the increase of temperature. The maximum dry cell weight was achieved approximately 16 g/L under various temperatures, as soon as the glucose was exhausted. The effect of temperature on glutathione production was different from that on cell growth: the lower the temperature, the higher the glutathione production, i.e. the maximum glutathione concentration at 32 degrees C (235 mg/L) was only 75% and 64% of that at 30 degrees C and 26 degrees C, respectively. The maximum average specific growth rate (0.13 h(-1)) was achieved at 30 degrees C while the maximum glutathione concentration (366 mg x L(-1)) and the maximum intracellular glutathione content (2.3%) were obtained at 26 degrees C. Therefore, the optimum temperatures for cell growth and glutathione production are quite different in the batch fermentation. A modified Logistic equation was successfully applied to estimate the kinetics of cell growth. The maximum specific growth rate and the substrate inhibition constant, calculated from this equation, were both increased along with the temperature. In addition, the glutathione fermentation by C. utilis WSH 02-08 under various temperatures was proven to be a partial growth-associated process by estimating the process with the Luedeking-Piret equation. Based on the estimated parameon the estimated parameters, the effect of

  3. Efficacy of free glutathione and niosomal glutathione in the treatment of acetaminophen-induced hepatotoxicity in cats

    PubMed Central

    Vulcano, L.A. Denzoin; Confalonieri, O.; Franci, R.; Tapia, M.O.; Soraci, A.L.

    2013-01-01

    Acetaminophen (APAP) administration results in hepatotoxicity and hematotoxicity in cats. The response to three different treatments against APAP poisoning was evaluated. Free glutathione (GSH) (200mg/kg), niosomal GSH (14 mg/kg) and free amino acids (180 mg/kg of N-acetylcysteine and 280 mg/kg of methionine) were administered to cats that were intoxicated with APAP (a single dose of 150 mg/kg, p.o.). Serum concentration of alanine aminotransferase (ALT) along with serum, liver and erythrocyte concentration of GSH and methemoglobin percentage were measured before and 4, 24 and 72 hours after APAP administration. Free GSH (200 mg/kg) and niosomal GSH (14 mg/kg) were effective in reducing hepatotoxicity and hematotoxicity in cats intoxicated with a dose of 150 mg/kg APAP. We conclude that both types of treatments can protect the liver and haemoglobin against oxidative stress in APAP intoxicated cats. Furthermore, our results showed that treatment with niosomal GSH represents an effective therapeutic approach for APAP poisoning. PMID:26623313

  4. A Simple Colorimetric Assay for Specific Detection of Glutathione-S Transferase Activity Associated with DDT Resistance in Mosquitoes

    PubMed Central

    Rajatileka, Shavanti; Steven, Andrew; Hemingway, Janet; Ranson, Hilary; Paine, Mark; Vontas, John

    2010-01-01

    Background Insecticide-based methods represent the most effective means of blocking the transmission of vector borne diseases. However, insecticide resistance poses a serious threat and there is a need for tools, such as diagnostic tests for resistance detection, that will improve the sustainability of control interventions. The development of such tools for metabolism-based resistance in mosquito vectors lags behind those for target site resistance mutations. Methodology/Principal Findings We have developed and validated a simple colorimetric assay for the detection of Epsilon class Glutathione transferases (GST)-based DDT resistance in mosquito species, such as Aedes aegypti, the major vector of dengue and yellow fever worldwide. The colorimetric assay is based on the specific alkyl transferase activity of Epsilon GSTs for the haloalkene substrate iodoethane, which produces a dark blue colour highly correlated with AaGSTE2-2-overexpression in individual mosquitoes. The colour can be measured visually and spectrophotometrically. Conclusions/Significance The novel assay is substantially more sensitive compared to the gold standard CDNB assay and allows the discrimination of moderate resistance phenotypes. We anticipate that it will have direct application in routine vector monitoring as a resistance indicator and possibly an important impact on disease vector control. PMID:20824165

  5. Development of roGFP2-derived redox probes for measurement of the glutathione redox potential in the cytosol of severely glutathione-deficient rml1 seedlings

    PubMed Central

    Aller, Isabel; Rouhier, Nicolas; Meyer, Andreas J.

    2013-01-01

    Glutathione is important for detoxification, as a cofactor in biochemical reactions and as a thiol-redox buffer. The cytosolic glutathione buffer is normally highly reduced with glutathione redox potentials (EGSH) of more negative than −310 mV. Maintenance of such negative redox potential is achieved through continuous reduction of glutathione disulfide by glutathione reductase (GR). Deviations from steady state glutathione redox homeostasis have been discussed as a possible mean to alter the activity of redox-sensitive proteins through switching of critical thiol residues. To better understand such signaling mechanisms it is essential to be able to measure EGSH over a wide range from highly negative redox potentials down to potentials found in mutants that show already severe phenotypes. With the advent of redox-sensitive GFPs (roGFPs), understanding the in vivo dynamics of the thiol-based redox buffer system became within reach. The original roGFP versions, roGFP1 and roGFP2, however, have midpoint potentials between −280 and −290 mV rendering them fully oxidized in the ER and almost fully reduced in the cytosol, plastids, mitochondria, and peroxisomes. To extend the range of suitable probes we have engineered a roGFP2 derivative, roGFP2-iL, with a midpoint potential of about −238 mV. This value is within the range of redox potentials reported for homologous roGFP1-iX probes, albeit with different excitation properties. To allow rapid and specific equilibration with the glutathione pool, fusion constructs with human glutaredoxin 1 (GRX1) were generated and characterized in vitro. GRX1-roGFP2-iL proved to be suitable for in vivo redox potential measurements and extends the range of EGSH values that can be measured in vivo with roGFP2-based probes from about −320 mV for GRX1-roGFP2 down to about −210 mV for GRX1-roGFP2-iL. Using both probes in the cytosol of severely glutathione-deficient rml1 seedlings revealed an EGSH of about −260 mV in this mutant

  6. Unbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat

    PubMed Central

    Liu, Xuming; Zhang, Shize; Whitworth, R. Jeff; Stuart, Jeffrey J.; Chen, Ming-Shun

    2015-01-01

    Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly. The increase in total glutathione abundance, however, is coupled with an unbalanced activation of glutathione metabolic pathways. The activity and transcript abundance of glutathione peroxidases, which convert reduced glutathione (GSH) to oxidized glutathione (GSSG), increased in infested resistant plants. However, the enzymatic activity and transcript abundance of glutathione reductases, which convert GSSG back to GSH, did not change. This unbalanced regulation of the glutathione oxidation/reduction cycle indicates the existence of an alternative pathway to regenerate GSH from GSSG to maintain a stable GSSG/GSH ratio. Our data suggest the possibility that GSSG is transported from cytosol to apoplast to serve as an oxidant for class III peroxidases to generate reactive oxygen species for plant defense against Hessian fly larvae. Our results provide a foundation for elucidating the molecular processes involved in glutathione-mediated plant resistance to Hessian fly and potentially other pests as well. PMID:25627558

  7. Silver(I) complex formation with cysteine, penicillamine, and glutathione.

    PubMed

    Leung, Bonnie O; Jalilehvand, Farideh; Mah, Vicky; Parvez, Masood; Wu, Qiao

    2013-04-15

    The complex formation between silver(I) and cysteine (H2Cys), penicillamine (H2Pen), and glutathione (H3Glu) in alkaline aqueous solution was examined using extended X-ray absorption fine structure (EXAFS) and (109)Ag NMR spectroscopic techniques. The complexes formed in 0.1 mol dm(-3) Ag(I) solutions with cysteine and penicillamine were investigated for ligand/Ag(I) (L/Ag) mole ratios increasing from 2.0 to 10.0. For the series of cysteine solutions (pH 10-11) a mean Ag-S bond distance of 2.45 ± 0.02 Å consistently emerged, while for penicillamine (pH 9) the average Ag-S bond distance gradually increased from 2.40 to 2.44 ± 0.02 Å. EXAFS and (109)Ag NMR spectra of a concentrated Ag(I)-cysteine solution (C(Ag(I)) = 0.8 mol dm(-3), L/Ag = 2.2) showed a mean Ag-S bond distance of 2.47 ± 0.02 Å and δ((109)Ag) 1103 ppm, consistent with prevailing, partially oligomeric AgS3 coordinated species, while for penicillamine (C(Ag(I)) = 0.5 mol dm(-3), L/Ag = 2.0) the mean Ag-S bond distance of 2.40 ± 0.02 Å and δ((109)Ag) 922 ppm indicate that mononuclear AgS2 coordinated complexes dominate. For Ag(I)-glutathione solutions (C(Ag(I)) = 0.01 mol dm(-3), pH ∼11), mononuclear AgS2 coordinated species with a mean Ag-S bond distance of 2.36 ± 0.02 Å dominate for L/Ag mole ratios from 2.0 to 10.0. The crystal structure of the silver(I)-cysteine compound (NH4)Ag2(HCys)(Cys)·H2O (1) precipitating at pH ∼10 was solved and showed a layer structure with both AgS3 and AgS3N coordination to the cysteinate ligands. A redetermination of the crystal structure of Ag(HPen)·H2O (2) confirmed the proposed digonal AgS2 coordination environment to bridging thiolate sulfur atoms in polymeric intertwining chains forming a double helix. A survey of Ag-S bond distances for crystalline Ag(I) complexes with S-donor ligands in different AgS2, AgS2(O/N), and AgS3 coordination environments was used, together with a survey of (109)Ag NMR chemical shifts, to assist assignments of the Ag

  8. Role of thiol compounds in mammalian melanin pigmentation: Part I. Reduced and oxidized glutathione.

    PubMed

    Benedetto, J P; Ortonne, J P; Voulot, C; Khatchadourian, C; Prota, G; Thivolet, J

    1981-11-01

    Evidence for the postulated role of glutathione reductase in melanin pigmentation has been obtained by determinations of the glutathione concentrations in Tortoiseshell guinea pig skin of different colors (black, yellow, red, and white). As expected, the lowest levels of reduced glutathione (GSH) were found associated with eumelanin type pigmentation, whereas the highest ones were found in the skin with phaeomelanin producing melanocytes. On the other hand, white skin of guinea pig having no active melanocytes showed GSH levels which were intermediate between those of the black and yellow areas. These results are consistent with the view that the activity of the enzyme glutathione reductase, though not primarily related to pigmentation, plays an important role in the regulation and control of the biosynthetic activity of melanocytes leading to various types of melanin pigments.

  9. A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione.

    PubMed

    Niu, Li-Ya; Guan, Ying-Shi; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-02-14

    We report a turn-on fluorescent sensor based on nitrothiophenolate boron dipyrromethene (BODIPY) derivatives for the discrimination of cystein (Cys) from homocystein (Hcy) and glutathione (GSH). The sensor was applied for detection of Cys in living cells.

  10. Measuring protein-bound glutathioine (PSSG): Critical correction for cytosolic glutathione species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Protein glutathionylation is gaining recognition as an important posttranslational protein modification. The common first step in measuring protein glutathionylation is the denaturation and precipitation of protein away from soluble, millimolar quantities of glutathione (GSH) and glut...

  11. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation

    EPA Science Inventory

    A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...

  12. Activation of glutathione peroxidase via Nrf1 mediates genistein's protection against oxidative endothelial cell injury

    SciTech Connect

    Hernandez-Montes, Eva; Pollard, Susan E.; Vauzour, David; Jofre-Montseny, Laia; Rota, Cristina; Rimbach, Gerald; Weinberg, Peter D.; Spencer, Jeremy P.E. . E-mail: j.p.e.spencer@reading.ac.uk

    2006-08-04

    Cellular actions of isoflavones may mediate the beneficial health effects associated with high soy consumption. We have investigated protection by genistein and daidzein against oxidative stress-induced endothelial injury. Genistein but not daidzein protected endothelial cells from damage induced by oxidative stress. This protection was accompanied by decreases in intracellular glutathione levels that could be explained by the generation of glutathionyl conjugates of the oxidised genistein metabolite, 5,7,3',4'-tetrahydroxyisoflavone. Both isoflavones evoked increased protein expression of {gamma}-glutamylcysteine synthetase-heavy subunit ({gamma}-GCS-HS) and increased cytosolic accumulation and nuclear translocation of Nrf2. However, only genistein led to increases in the cytosolic accumulation and nuclear translocation of Nrf1 and the increased expression of and activity of glutathione peroxidase. These results suggest that genistein-induced protective effects depend primarily on the activation of glutathione peroxidase mediated by Nrf1 activation, and not on Nrf2 activation or increases in glutathione synthesis.

  13. Mechanisms of cellular adaptation to quantum dots--the role of glutathione and transcription factor EB.

    PubMed

    Neibert, Kevin D; Maysinger, Dusica

    2012-05-01

    Cellular adaptation is the dynamic response of a cell to adverse changes in its intra/extra cellular environment. The aims of this study were to investigate the role of: (i) the glutathione antioxidant system, and (ii) the transcription factor EB (TFEB), a newly revealed master regulator of lysosome biogenesis, in cellular adaptation to nanoparticle-induced oxidative stress. Intracellular concentrations of glutathione species and activation of TFEB were assessed in rat pheochromocytoma (PC12) cells following treatment with uncapped CdTe quantum dots (QDs), using biochemical, live cell fluorescence and immunocytochemical techniques. Exposure to toxic concentrations of QDs resulted in a significant enhancement of intracellular glutathione concentrations, redistribution of glutathione species and a progressive translocation and activation of TFEB. These changes were associated with an enlargement of the cellular lysosomal compartment. Together, these processes appear to have an adaptive character, and thereby participate in the adaptive cellular response to toxic nanoparticles.

  14. High performance liquid chromatographic assay for the quantitation of total glutathione in plasma

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; Silvestrov, Natalia A.; Menter, Julian M.; von Deutsch, Daniel A.; Bayorh, Mohamed A.; Socci, Robin R.; Ganafa, Agaba A.

    2002-01-01

    A simple and widely used homocysteine HPLC procedure was applied for the HPLC identification and quantitation of glutathione in plasma. The method, which utilizes SBDF as a derivatizing agent utilizes only 50 microl of sample volume. Linear quantitative response curve was generated for glutathione over a concentration range of 0.3125-62.50 micromol/l. Linear regression analysis of the standard curve exhibited correlation coefficient of 0.999. Limit of detection (LOD) and limit of quantitation (LOQ) values were 5.0 and 15 pmol, respectively. Glutathione recovery using this method was nearly complete (above 96%). Intra-assay and inter-assay precision studies reflected a high level of reliability and reproducibility of the method. The applicability of the method for the quantitation of glutathione was demonstrated successfully using human and rat plasma samples.

  15. Evaluation of Glutathione Peroxidase 4 role in Preeclampsia

    PubMed Central

    Peng, Xinguo; Lin, Yan; Li, Jinling; Liu, Mengchun; Wang, Jingli; Li, Xueying; Liu, Jingjing; Jia, Xuewen; Jing, Zhongcui; Huang, Zuzhou; Chu, Kaiqiu; Liu, Shiguo

    2016-01-01

    Preeclampsia (PE) is a pregnancy-specific syndrome that may be lifethreatening to pregnancies and fetus. Glutathione Peroxidase 4 (GPx4) is a powerful antioxidant enzyme that can provide protection from oxidative stress damage which plays a pivotal role in the pathology of PE. Therefore, this study aims to investigate the association between Gpx4 polymorphisms and the susceptibility to PE in Chinese Han women. TaqMan allelic discrimination real-time PCR was used to perform the genotyping of rs713041 and rs4807542 in 1008 PE patients and 1386 normotensive pregnancies. Obviously statistical difference of genotypic and allelic frequencies were found of rs713041 in GPx4 between PE patients and controls and the C allele has the higher risk for pathogenesis of PE (χ2 = 12.292, P = 0.002 by genotype; χ2 = 11.035, P = 0.001, OR = 1.216, 95% CI 1.084–1.365 by allele). Additionally, when subdividing these samples into CC + CT and TT groups, we found a significant difference between the two groups (χ2 = 11.241, P = 0.001, OR = 1.417, 95% CI 1.155–1.738). Furthermore, the genotype of rs713041 was found to be associated with the mild, severe and early-onset PE. Our results suggest that rs713041 in GPx4 may play a key role in the pathogenesis of PE. PMID:27641822

  16. Glutathione-mediated transfer of Cu(I) into phytochelatins.

    PubMed Central

    Mehra, R K; Mulchandani, P

    1995-01-01

    Room temperature luminescence attributable to Cu(I)-thiolate clusters has been used to probe the transfer of Cu(I) from Cu(I)-glutathione complex to rabbit liver thionein-II and plant metal-binding peptides phytochelatins (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly and (gamma-Glu-Cys)4Gly. Reconstitutions were also performed using CuC1. The Cu(I)-binding stoichiometry of metallothionein or phytochelatins was generally independent of the Cu(I) donor. However, the luminescence of the reconstituted metallothionein or phytochelatins was higher when Cu(I)-GSH was the donor. This higher luminescence is presumably due to the stabilizing effect of GSH on Cu(I)-thiolate clusters. As expected, 12 Cu(I) ions were bound per molecule of metallothionein. The Cu(I) binding to phytochelatins depended on their chain length; the binding stoichiometries being 1.25, 2.0 and 2.5 for (gamma-Glu-Cys)2Gly, (gamma-Glu-Cys)3Gly and (gamma-Glu-Cys)4Gly respectively at neutral pH. A reduced stoichiometry for the longer phytochelatins was observed at alkaline pH. No GSH was found to associate with phytochelatins by a gel-filtration assay. The Cu(I) binding to (gamma-Glu-Cys)2Gly and (gamma-Glu-Cys)3Gly occurred in a biphasic manner in the sense that the relative luminescence increased approximately linearly with the amount of Cu(I) up to a certain molar ratio whereafter luminescence increased dramatically upon the binding of additional Cu(I). The luminescence intensity declined once the metal-binding sites were saturated. In analogy with the studies on metallothioneins, biphasic luminescence suggests the formation of two types of Cu(I) clusters in phytochelatins. PMID:7741699

  17. Beta-amyloidolysis and glutathione in Alzheimer’s disease

    PubMed Central

    Lasierra-Cirujeda, J; Coronel, P; Aza, MJ; Gimeno, M

    2013-01-01

    In this review, we hypothesized the importance of the interaction between the brain glutathione (GSH) system, the proteolytic tissue plasminogen activator (t-PA)/plasminogen/ plasmin system, regulated by plasminogen activator inhibitor (PAI-1), and neuroserpin in the pathogenesis of Alzheimer’s disease. The histopathological characteristic hallmark that gives personality to the diagnosis of Alzheimer’s disease is the accumulation of neurofibroid tangles located intracellularly in the brain, such as the protein tau and extracellular senile plaques made primarily of amyloidal substance. These formations of complex etiology are intimately related to GSH, brain protective antioxidants, and the proteolytic system, in which t-PA plays a key role. There is scientific evidence that suggests a relationship between aging, a number of neurodegenerative disorders, and the excessive production of reactive oxygen species and accompanying decreased brain proteolysis. The plasminogen system in the brain is an essential proteolytic mechanism that effectively degrades amyloid peptides (“beta-amyloidolysis”) through action of the plasmin, and this physiologic process may be considered to be a means of prevention of neurodegenerative disorders. In parallel to the decrease in GSH levels seen in aging, there is also a decrease in plasmin brain activity and a progressive decrease of t-PA activity, caused by a decrease in the expression of the t-PA together with an increase of the PAI-1 levels, which rise to an increment in the production of amyloid peptides and a lesser clearance of them. Better knowledge of the GSH mechanism and cerebral proteolysis will allow us to hypothesize about therapeutic practices. PMID:23650462

  18. Genetic and transcriptional study of glutathione metabolism in Oenococcus oeni.

    PubMed

    Margalef-Català, Mar; Araque, Isabel; Bordons, Albert; Reguant, Cristina

    2017-02-02

    Although Oenococcus oeni is the main species that is responsible for malolactic fermentation (MLF), harsh wine conditions can limit its performance. Although several mechanisms underlying the response to stress have been studied in this species, little is known regarding the cellular systems that protect against oxidative stress in other bacteria, such as glutathione (GSH). O. oeni cannot synthesize GSH but contains several genes related to its utilization. In this study, the relative expression (RE) of the seven genes involved in the GSH redox system found in O. oeni PSU-1 (gshR, gpo, three glutaredoxin-like genes and two subunits of an hypothetical transporter) has been measured. The study was performed using three strains, with each exhibiting a different GSH uptake capacity. The strains were grown in a stress-adaptation medium supplemented with 5mM GSH and under different adaptation stress conditions (pH4 and 6% ethanol). The RE showed that only some of these genes, including one for a possible glutaredoxin (OEOE_RS04215) and cydC for a subunit of a putative GSH transporter (OEOE_RS1995), responded to the addition of GSH. The presence of ethanol had a relevant effect on gene expression. Among the studied genes, the one for a NrdH-redoxin (OEOE_RS00645) showed a common response to ethanol in the strains, being over-expressed when grown with GSH. In most cases, the transcriptional changes were more evident for the strain with a higher capacity of GSH uptake. Malolactic performance of the three strains after pre-adaptation was evaluated in wine-like media (12% ethanol and pH3.4). It was observed that the addition of GSH during pre-adaptation growth had a protective role in the cells exposed to low pH and ethanol, resulting in a quicker MLF.

  19. Determinants of human plasma glutathione peroxidase (GPx-3) expression.

    PubMed

    Bierl, Charlene; Voetsch, Barbara; Jin, Richard C; Handy, Diane E; Loscalzo, Joseph

    2004-06-25

    Plasma glutathione peroxidase (GPx-3) is a selenocysteine-containing protein with antioxidant properties. GPx-3 deficiency has been associated with cardiovascular disease and stroke. The regulation of GPx-3 expression remains largely uncharacterized, however, and we studied its transcriptional and translational determinants in a cultured cell system. In transient transfections of a renal cell line (Caki-2), the published sequence cloned upstream of a luciferase reporter gene produced minimal activity (relative luminescence (RL) = 0.6 +/- 0.4). Rapid amplification of cDNA ends was used to identify a novel transcription start site that is located 233 bp downstream (3') of the published site and that produced a >25-fold increase in transcriptional activity (RL = 16.8 +/- 1.9; p < 0.0001). Analysis of the novel GPx-3 promoter identified Sp-1- and hypoxia-inducible factor-1-binding sites, as well as the redox-sensitive metal response element and antioxidant response element. Hypoxia was identified as a strong transcriptional regulator of GPx-3 expression, in part through the presence of the hypoxia-inducible factor-1-binding site, leading to an almost 3-fold increase in expression levels after 24 h compared with normoxic conditions (normalized RL = 3.5 +/- 0.3 versus 1.2 +/- 0.1; p < 0.001). We also investigated the role of the translational cofactors tRNA(Sec), SECIS-binding protein-2, and SelD (selenophosphate synthetase D) in GPx-3 protein expression. tRNA(Sec) and SelD significantly enhanced GPx-3 expression, whereas SECIS-binding protein-2 showed a trend toward increased expression. These results demonstrate the presence of a novel functional transcription start site for the human GPx-3 gene with a promoter regulated by hypoxia, and identify unique translational determinants of GPx-3 expression.

  20. Function of glutathione peroxidases in legume root nodules

    PubMed Central

    Matamoros, Manuel A.; Saiz, Ana; Peñuelas, Maria; Bustos-Sanmamed, Pilar; Mulet, Jose M.; Barja, Maria V.; Rouhier, Nicolas; Moore, Marten; James, Euan K.; Dietz, Karl-Josef; Becana, Manuel

    2015-01-01

    Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function. PMID:25740929

  1. Characterization of thioredoxin glutathione reductase in Schiotosoma japonicum.

    PubMed

    Han, Yanhui; Zhang, Min; Hong, Yang; Zhu, Zhu; Li, Dong; Li, Xiangrui; Fu, Zhiqiang; Lin, Jiaojiao

    2012-09-01

    Schistosomiasis is one of the most prevalent and serious parasitic diseases in the world and remains an important public health problem in China. Screening and discovery of an effective vaccine candidate or new drug target is crucial for the control of this disease. In this study, we cloned a cDNA encoding Schistosoma japonicum (S. japonicum) thioredoxin glutathione reductase (SjTGR) from the cDNA of 42-day-old adult worms. The open reading frame (ORF) of the gene was 1791 base pairs (bp) encoding a protein of 596 amino acids. SjTGR was subcloned into pET-32a (+) and expressed in Escherichia coli (E. coli) BL21 (DE3). The recombinant protein rSjTGR exhibited enzymatic activity of 5.13U/mg with DTNB as the substrate, and showed strong immunogenecity. Real-time PCR results indicated that SjTGR was expressed at a higher level in 35-day-old schistosome worms in transcript. We vaccinated BALB/c mice with rSjTGR in combination with MONTANIDE™ ISA 206 VG (ISA 206) and observed a 33.50% to 36.51% (P<0.01) decrease in the adult worm burden and a 33.73%to 43.44% (P<0.01) decrease in the number of eggs counted compared to the ISA 206 or blank control groups in two independent vaccination tests. ELISA analysis demonstrated that rSjTGR induced a high level of SjTGR-specific IgG, IgG1, and IgG 2a antibodies and induced elevated production of IFN-γ. This study provides the basis for further investigations into the biological function of SjTGR and further evaluation of the potential use of this molecule as a vaccine candidate or new drug target is warranted.

  2. Function of glutathione peroxidases in legume root nodules.

    PubMed

    Matamoros, Manuel A; Saiz, Ana; Peñuelas, Maria; Bustos-Sanmamed, Pilar; Mulet, Jose M; Barja, Maria V; Rouhier, Nicolas; Moore, Marten; James, Euan K; Dietz, Karl-Josef; Becana, Manuel

    2015-05-01

    Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function.

  3. Determination of configuration of arsenite-glutathione complexes using ECSTM.

    PubMed

    Han, Mei-Juan; Meng, Xiaoguang; Lippincott, Lee

    2007-12-10

    Inorganic arsenicals such as arsenite [As(III)] and arsenate [As(V)] are known human carcinogens. The interactions of As(III) with sulfhydryl groups of peptides and proteins are very important mechanisms for the toxicity and metabolism of arsenic in mammals. The present study was designed to explore the application of electrochemical scanning tunneling microscopy (ECSTM) for determining the configuration of complexes formed between As(III) and glutathione (GSH) in solution. The configurations of GSH and As(III)-GSH complexes were imaged on the Au(111) surface in a 0.1M NaClO(4) solution. High-resolution STM images revealed that the As(III) and GSH formed a As(GS)(3) complex. The orientation and packing arrangement of the molecular adlayers were also seen clearly from the images and molecular models constructed using the Chemical Window and Hyperchem software package. The configuration of GSH in As(GS)(3) was found to be different from single GSH. UV-vis spectra indicated the emergence of an absorption shoulder in the range 250-280 nm for the aged As(III)-GSH solution, compared to the spectra of single As(III) and GSH solutions. MS spectra showed the presence of a new peak for the aged As(III)-GSH solution at m/z 992 corresponding to the As(GS)(3) complex. The results obtained by the last two methods verify the compound imaged by using STM is As(GS)(3). Studying the interactions of As(III) and peptides and knowing the structure details of the complexes are a significant step toward a better understanding of the interactions between As(III) and proteins and the mechanism of arsenic toxicology. ECSTM will be especially valuable for the determination of competitive interactions of GSH and proteins with arsenic.

  4. The evolution of glutathione metabolism in phototrophic microorganisms

    NASA Technical Reports Server (NTRS)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of

  5. Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process.

    PubMed

    Ookhtens, M; Hobdy, K; Corvasce, M C; Aw, T Y; Kaplowitz, N

    1985-01-01

    Turnover of hepatic glutathione in vivo in the rat is almost entirely accounted for by cellular efflux, of which 80-90% is sinusoidal. Thus, sinusoidal efflux play a major quantitative role in homeostasis of hepatic glutathione. Som preliminary observations from our laboratory (1983. J. Pharmacol. Exp. Ther. 224:141-147.) and circumstantial evidence in the literature seemed to imply that the raising of the hepatic glutathione concentration above normal was not accompanied by a rise in the rate of sinusoidal efflux. Based on these observations, we hypothesized that the sinusoidal efflux was probably a saturable process and that at normal levels of hepatic glutathione the efflux behaved as a zero-order process (near-saturation). We tested our hypothesis by the use of isolated rat livers perfused in situ, single pass, with hemoglobin-free, oxygenated buffer medium at pH 7.4 and 37 degrees C. Preliminary experiments established a range of perfusion rates (3-4 ml/min per g) for adequacy of oxygenation, lack of cell injury, and minimization of variability contributed by perfusion rates. Hepatic glutathione was lowered to below normal by a 48-h fast, diethylmaleate (0.1-1.0 ml/kg i.p.), and buthionine sulfoximine (8 mmol/kg i.p.), and raised to above normal by 3-methylcholanthrene (20 mg/kg x 3 d i.p.) and cobalt chloride (0.05-0.27 g/kg-1 subcutaneously). Steady state sinusoidal efflux from each liver was measured over a 1-h perfusion, during which the coefficient of variation of glutathione in perfusates stayed within 10%. Hepatic glutathione efflux as a function of hepatic concentration was characterized by saturable kinetics with sigmoidal (non-hyperbolic) features. The data were fitted best with the Hill model and the following parameter values were estimated: Vmax = 20 nmol/min per g, Km = 3.2 mumol/g, and n = 3 binding/transport sites. The efflux could be inhibited reversibly by sulfobromophthalein-glutathione conjugate but was not affected by the addition of

  6. Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process.

    PubMed Central

    Ookhtens, M; Hobdy, K; Corvasce, M C; Aw, T Y; Kaplowitz, N

    1985-01-01

    Turnover of hepatic glutathione in vivo in the rat is almost entirely accounted for by cellular efflux, of which 80-90% is sinusoidal. Thus, sinusoidal efflux play a major quantitative role in homeostasis of hepatic glutathione. Som preliminary observations from our laboratory (1983. J. Pharmacol. Exp. Ther. 224:141-147.) and circumstantial evidence in the literature seemed to imply that the raising of the hepatic glutathione concentration above normal was not accompanied by a rise in the rate of sinusoidal efflux. Based on these observations, we hypothesized that the sinusoidal efflux was probably a saturable process and that at normal levels of hepatic glutathione the efflux behaved as a zero-order process (near-saturation). We tested our hypothesis by the use of isolated rat livers perfused in situ, single pass, with hemoglobin-free, oxygenated buffer medium at pH 7.4 and 37 degrees C. Preliminary experiments established a range of perfusion rates (3-4 ml/min per g) for adequacy of oxygenation, lack of cell injury, and minimization of variability contributed by perfusion rates. Hepatic glutathione was lowered to below normal by a 48-h fast, diethylmaleate (0.1-1.0 ml/kg i.p.), and buthionine sulfoximine (8 mmol/kg i.p.), and raised to above normal by 3-methylcholanthrene (20 mg/kg x 3 d i.p.) and cobalt chloride (0.05-0.27 g/kg-1 subcutaneously). Steady state sinusoidal efflux from each liver was measured over a 1-h perfusion, during which the coefficient of variation of glutathione in perfusates stayed within 10%. Hepatic glutathione efflux as a function of hepatic concentration was characterized by saturable kinetics with sigmoidal (non-hyperbolic) features. The data were fitted best with the Hill model and the following parameter values were estimated: Vmax = 20 nmol/min per g, Km = 3.2 mumol/g, and n = 3 binding/transport sites. The efflux could be inhibited reversibly by sulfobromophthalein-glutathione conjugate but was not affected by the addition of

  7. Virus-induced changes in the subcellular distribution of glutathione precursors in Cucurbita pepo (L.).

    PubMed

    Zechmann, B; Zellnig, G; Müller, M

    2007-05-01

    Changes in glutathione contents occur in plants during environmental stress situations, such as pathogen attack, as the formation of reactive oxygen species leads to the activation of the antioxidative defence system. As glutathione is synthesized out of its constituents cysteine, glycine, and glutamate the availability of these components will limit glutathione synthesis in plants especially during stress situations and therefore the ability of the plant to fight oxidative stress. To gain a deeper insight into possible limitations of glutathione synthesis during pathogen attack the present investigations were aimed to study how the subcellular distribution of glutathione precursors correlates with the subcellular distribution of glutathione during virus attack in plants. Selective antibodies against cysteine, glutamate, and glycine were used to study the impact of Zucchini yellow mosaic virus (ZYMV) infection on glutathione precursor contents within different cell compartments of cells from Cucurbita pepo (L.) plants with the transmission electron microscope (TEM). Generally, levels of cysteine and glutamate were found to be strongly decreased in most cell compartments of younger and older leaves including glutathione-producing cell compartments such as plastids and the cytosol. The strongest decrease of cysteine was found in plastids (- 54 %) and mitochondria (- 51 %) of younger leaves and in vacuoles (- 37 %) and plastids (- 29 %) of older leaves. The strongest decrease of glutamate in younger leaves occurred in peroxisomes (- 67 %) and nuclei (- 58 %) and in peroxisomes (- 64 %) and plastids (- 52 %) of the older ones. Glycine levels were found to be strongly decreased (- 63 % in mitochondria and - 53 % in plastids) in most cell compartments of older leaves and strongly increased (about 50 % in plastids and peroxisomes) in all cell compartments of the younger ones. These results indicate that low glycine contents in the older leaves were responsible for low

  8. Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots.

    PubMed

    Zaharieva, Tatiana B; Abadía, Javier

    2003-06-01

    The effects of Fe deficiency stress on the levels of ascorbate and glutathione, and on the activities of the enzymes ferric chelate reductase, glutathione reductase (EC 1.6.4.2), ascorbate free-radical reductase (EC 1.6.5.4) and ascorbate peroxidase (EC 1.11.1.11), have been investigated in sugar beet ( Beta vulgaris L.) roots. Plasma membrane vesicles and cytosolic fractions were isolated from the roots of the plants grown in nutrient solutions in the absence or presence of Fe for two weeks. Plants responded to Fe deficiency not only with a 20-fold increase in root ferric chelate reductase activity, but also with moderately increased levels of the general reductants ascorbate (2-fold) and glutathione (1.6-fold). The enzymes of the ascorbate-glutathione cycle in roots were also affected by Fe deficiency. Glutathione reductase activity was enhanced 1.4-fold with Fe deficiency, associated to an increased ratio of reduced to oxidized glutathione, from 3.1 to 5.2. The plasma membrane fraction from iron-deficient roots showed 1.7-fold higher ascorbate free-radical reductase activity, whereas in the cytosolic fraction the enzyme activity was not affected by Fe deficiency. The activity of the cytosolic hemoprotein ascorbate peroxidase decreased approximately by 50% with Fe deprivation. These results show that sugar beet responds to Fe deficiency with metabolic changes affecting components of the ascorbate-glutathione cycle in root cells. This suggests that the ascorbate-glutathione cycle would play certain roles in the general Fe deficiency stress responses in strategy I plants.

  9. Cysteamine restores glutathione redox status in cultured cystinotic proximal tubular epithelial cells.

    PubMed

    Wilmer, Martijn J; Kluijtmans, Leo A J; van der Velden, Thea J; Willems, Peter H; Scheffer, Peter G; Masereeuw, Rosalinde; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2011-06-01

    Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.

  10. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates.

    PubMed

    Sentürk, Murat; Talaz, Oktay; Ekinci, Deniz; Cavdar, Hüseyin; Küfrevioğlu, Omer Irfan

    2009-07-01

    Glutathione reductase (GR), is responsible for the existence of GSH molecule, a crucial antioxidant against oxidative stress reagents. The antimalarial activities of some redox active compounds are attributed to their inhibition of antioxidant flavoenzyme glutathione reductase, and inhibitors are therefore expected to be useful for the treatment of malaria. Twelve organic nitrate derivatives were synthesized and treated with human erythrocyte GR. The molecules were identified as strong GR inhibitors and novel antimalaria candidates.

  11. Identification of a CysB-regulated gene involved in glutathione transport in Escherichia coli.

    PubMed

    Parry, Jesse; Clark, David P

    2002-03-19

    Growth of Escherichia coli using the tripeptide glutathione as a sulfur source is well documented, but transport of glutathione into E. coli is uncharacterized. We have found that the ybiK gene, at 18.7 min, appears to be involved in the transport of glutathione and have therefore renamed ybiK as spt for sulfur peptide transport. The ybiK/spt gene is the first of what appear to be five cotranscribed genes, three of which show high homology to the peptide transport operon dpp. When the lacZ gene encoding beta-galactosidase was fused to the promoter of ybiK/spt, expression of the ybiK-lacZ fusion was repressed in rich media. This was shown to be due to the presence of exogenous cysteine. The ybiK-lacZ fusion was found to be regulated by cysB, the transcriptional activator for the cysteine regulon. Mutations in the cysB or ybiK genes led to severe growth inhibition when cells were given glutathione as the sole sulfur source. In particular, strains of E. coli containing mutations in both the ybiK and cysA genes were unable to grow when the sole sulfur source provided was glutathione whereas single cysA mutants grew well with glutathione. In contrast, no such defects were seen when L-djenkolic acid or cysteine were used as the sole sulfur source.

  12. A Glutathione-Nrf2-Thioredoxin Cross-Talk Ensures Keratinocyte Survival and Efficient Wound Repair

    PubMed Central

    Telorack, Michèle; Meyer, Michael; Ingold, Irina; Conrad, Marcus; Bloch, Wilhelm; Werner, Sabine

    2016-01-01

    The tripeptide glutathione is the most abundant cellular antioxidant with high medical relevance, and it is also required as a co-factor for various enzymes involved in the detoxification of reactive oxygen species and toxic compounds. However, its cell-type specific functions and its interaction with other cytoprotective molecules are largely unknown. Using a combination of mouse genetics, functional cell biology and pharmacology, we unraveled the function of glutathione in keratinocytes and its cross-talk with other antioxidant defense systems. Mice with keratinocyte-specific deficiency in glutamate cysteine ligase, which catalyzes the rate-limiting step in glutathione biosynthesis, showed a strong reduction in keratinocyte viability in vitro and in the skin in vivo. The cells died predominantly by apoptosis, but also showed features of ferroptosis and necroptosis. The increased cell death was associated with increased levels of reactive oxygen and nitrogen species, which caused DNA and mitochondrial damage. However, epidermal architecture, and even healing of excisional skin wounds were only mildly affected in the mutant mice. The cytoprotective transcription factor Nrf2 was strongly activated in glutathione-deficient keratinocytes, but additional loss of Nrf2 did not aggravate the phenotype, demonstrating that the cytoprotective effect of Nrf2 is glutathione dependent. However, we show that deficiency in glutathione biosynthesis is efficiently compensated in keratinocytes by the cysteine/cystine and thioredoxin systems. Therefore, our study highlights a remarkable antioxidant capacity of the epidermis that ensures skin integrity and efficient wound healing. PMID:26808544

  13. N-acetylcysteine Boosts Brain and Blood Glutathione in Gaucher and Parkinson’s Diseases

    PubMed Central

    Holmay, Mary J.; Terpstra, Melissa; Coles, Lisa D.; Mishra, Usha; Ahlskog, Matthew; Öz, Gülin; Cloyd, James C.; Tuite, Paul J.

    2013-01-01

    Objective To determine if the antioxidant N-acetylcysteine is able to alter peripheral and central redox capabilities in patients with Parkinson’s or Gaucher disease. Methods The study included non-demented adult subjects: 3 with Parkinson’s disease, 3 with Gaucher disease and 3 healthy controls. Baseline brain glutathione concentrations were measured using 7 Tesla magnetic resonance spectroscopy. Baseline blood reduced-to-oxidized glutathione ratios were determined for each subject. Brain glutathione concentrations and blood redox ratios were then determined during and at specified time points after a single, 150mg/kg N-acetylcysteine infusion. Results N-acetylcysteine increased blood glutathione redox ratios in those with Parkinson’s and Gaucher disease and healthy controls, which was followed by an increase in brain glutathione concentrations in all subjects. Conclusions This is the first demonstration that with magnetic resonance spectroscopy, it is possible to directly measure and monitor increases in brain glutathione levels in the human brain in response to a single, intravenous administration of N-acetylcysteine. This work shows the potential utility of magnetic resonance spectroscopy monitoring which could assist in determining dosing regimens for clinical trials of this potentially useful antioxidant therapy for Parkinson’s disease, Gaucher disease and other neurodegenerative disorders. PMID:23860343

  14. Blood selenium concentrations and enzyme activities related to glutathione metabolism in wild emperor geese

    USGS Publications Warehouse

    Franson, J. Christian; Hoffman, David J.; Schmutz, Joel A.

    2002-01-01

    In 1998, we collected blood samples from 63 emperor geese (Chen canagica) on their breeding grounds on the Yukon-Kuskokwim Delta (YKD) in western Alaska, USA. We studied the relationship between selenium concentrations in whole blood and the activities of glutathione peroxidase and glutathione reductase in plasma. Experimental studies have shown that plasma activities of these enzymes are useful biomarkers of selenium-induced oxidative stress, but little information is available on their relationship to selenium in the blood of wild birds. Adult female emperor geese incubating their eggs in mid-June had a higher mean concentration of selenium in their blood and a greater activity of glutathione peroxidase in their plasma than adult geese or goslings that were sampled during the adult flight feathermolting period in late July and early August. Glutathione peroxidase activity was positively correlated with the concentration of selenium in the blood of emperor geese, and the rate of increase relative to selenium was greater in goslings than in adults. The activity of glutathione reductase was greatest in the plasma of goslings and was greater in molting adults than incubating females but was not significantly correlated with selenium in the blood of adults or goslings. Incubating female emperor geese had high selenium concentrations in their blood, accompanied by increased glutathione peroxidase activity consistent with early oxidative stress. These findings indicate that further study of the effects of selenium exposure, particularly on reproductive success, is warranted in this species.

  15. Study of Linkage between Glutathione Pathway and the Antibiotic Resistance of Escherichia coli from Patients’ Swabs

    PubMed Central

    Kominkova, Marketa; Michalek, Petr; Cihalova, Kristyna; Guran, Roman; Cernei, Natalia; Nejdl, Lukas; Smerkova, Kristyna; Dostalova, Simona; Chudobova, Dagmar; Heger, Zbynek; Vesely, Radek; Gumulec, Jaromir; Kynicky, Jindrich; Xhaxhiu, Kledi; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    In this work, we focused on the differences between bacterial cultures of E. coli obtained from swabs of infectious wounds of patients compared to laboratory E. coli. In addition, blocking of the protein responsible for the synthesis of glutathione (γ-glutamylcysteine synthase—GCL) using 10 mM buthionine sulfoximine was investigated. Each E. coli showed significant differences in resistance to antibiotics. According to the determined resistance, E. coli were divided into experimental groups based on a statistical evaluation of their properties as more resistant and more sensitive. These groups were also used for finding the differences in a dependence of the glutathione pathway on resistance to antibiotics. More sensitive E. coli showed the same kinetics of glutathione synthesis while blocking GCL (Km 0.1 µM), as compared to non-blocking. In addition, the most frequent mutations in genes of glutathione synthetase, glutathione peroxidase and glutathione reductase were observed in this group compared to laboratory E.coli. The group of “more resistant” E. coli exhibited differences in Km between 0.3 and 0.8 µM. The number of mutations compared to the laboratory E. coli was substantially lower compared to the other group. PMID:25837469

  16. Study of linkage between glutathione pathway and the antibiotic resistance of Escherichia coli from patients' swabs.

    PubMed

    Kominkova, Marketa; Michalek, Petr; Cihalova, Kristyna; Guran, Roman; Cernei, Natalia; Nejdl, Lukas; Smerkova, Kristyna; Dostalova, Simona; Chudobova, Dagmar; Heger, Zbynek; Vesely, Radek; Gumulec, Jaromir; Kynicky, Jindrich; Xhaxhiu, Kledi; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-03-31

    In this work, we focused on the differences between bacterial cultures of E. coli obtained from swabs of infectious wounds of patients compared to laboratory E. coli. In addition, blocking of the protein responsible for the synthesis of glutathione (γ-glutamylcysteine synthase-GCL) using 10 mM buthionine sulfoximine was investigated. Each E. coli showed significant differences in resistance to antibiotics. According to the determined resistance, E. coli were divided into experimental groups based on a statistical evaluation of their properties as more resistant and more sensitive. These groups were also used for finding the differences in a dependence of the glutathione pathway on resistance to antibiotics. More sensitive E. coli showed the same kinetics of glutathione synthesis while blocking GCL (Km 0.1 µM), as compared to non-blocking. In addition, the most frequent mutations in genes of glutathione synthetase, glutathione peroxidase and glutathione reductase were observed in this group compared to laboratory E.coli. The group of "more resistant" E. coli exhibited differences in Km between 0.3 and 0.8 µM. The number of mutations compared to the laboratory E. coli was substantially lower compared to the other group.

  17. Analysis of protein-glutathione mixed disulfides by high performance liquid chromatography.

    PubMed

    Meredith, M J

    1983-06-01

    After precipitation of proteins; serum, hepatocytes, or glutathione-derivatized bovine serum albumin, by perchloric acid, dithiothreitol was used to reduce glutathione-protein mixed disulfides in the ether-washed, resuspended pellet. Following neutralization and S-carboxymethylation of free sulfhydral groups in the acid soluble fraction by iodoacetic acid. 2,4-dinitrophenyl derivatives of released compounds were produced by addition of ethanolic fluorodinitrobenzene. The 2,4-dinitrophenyl derivative of S-carboxymethylglutathione was measured by high-performance liquid chromatography. The method was found to be reproducible and limited only by the sensitivity of the glutathione analysis (about 10 pmol/sample). Quantitation of protein-bound glutathione was shown to be independent of the ratio of bound to soluble glutathione as well as the protein concentration in the sample. This method was found to produce glutathione values identical to those measured after borohydride reduction without the problems of foaming, sample loss, and the need of continuous pH adjustment during reduction.

  18. Binding of glutathione and melatonin to pepsin occurs via different binding mechanisms.

    PubMed

    Li, Xiangrong; Ni, Tianjun

    2016-03-01

    Glutathione is a hydrophilic antioxidant and melatonin is a hydrophobic antioxidant, thus, the binding mechanism of the two antioxidants interacting with protease may be different. In this study, binding of glutathione and melatonin to pepsin has been studied using isothermal titration calorimetry (ITC), equilibrium microdialysis, UV-Vis absorption spectroscopy, circular dichroism (CD) spectroscopy, and molecular modeling. Thermodynamic investigations reveal that the binding of glutathione/melatonin to pepsin is driven by favorable enthalpy and unfavorable entropy, and the major driving forces are hydrogen bond and van der Waals force. ITC, equilibrium microdialysis, and molecular modeling reveal that the binding of glutathione to pepsin is characterized by a high number of binding sites. For melatonin, one molecule of melatonin combines with one molecule of pepsin. These results confirm that glutathione/melatonin interact with pepsin through two different binding mechanisms. In addition, the UV-Vis absorption and CD experiments indicate that glutathione and melatonin may induce conformational and microenvironmental changes of pepsin. The conformational changes of pepsin may affect its biological function as protease.

  19. Downregulation of Glutathione Biosynthesis Contributes to Oxidative Stress and Liver Dysfunction in Acute Kidney Injury

    PubMed Central

    Siow, Yaw L.; Isaak, Cara K.

    2016-01-01

    Ischemia-reperfusion is a common cause for acute kidney injury and can lead to distant organ dysfunction. Glutathione is a major endogenous antioxidant and its depletion directly correlates to ischemia-reperfusion injury. The liver has high capacity for producing glutathione and is a key organ in modulating local and systemic redox balance. In the present study, we investigated the mechanism by which kidney ischemia-reperfusion led to glutathione depletion and oxidative stress. The left kidney of Sprague-Dawley rats was subjected to 45 min ischemia followed by 6 h reperfusion. Ischemia-reperfusion impaired kidney and liver function. This was accompanied by a decrease in glutathione levels in the liver and plasma and increased hepatic lipid peroxidation and plasma homocysteine levels. Ischemia-reperfusion caused a significant decrease in mRNA and protein levels of hepatic glutamate-cysteine ligase mediated through the inhibition of transcription factor Nrf2. Ischemia-reperfusion inhibited hepatic expression of cystathionine γ-lyase, an enzyme responsible for producing cysteine (an essential precursor for glutathione synthesis) through the transsulfuration pathway. These results suggest that inhibition of glutamate-cysteine ligase expression and downregulation of the transsulfuration pathway lead to reduced hepatic glutathione biosynthesis and elevation of plasma homocysteine levels, which, in turn, may contribute to oxidative stress and distant organ injury during renal ischemia-reperfusion. PMID:27872680

  20. Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci.

    PubMed

    Martínez-González, J J; Guevara-Flores, A; Rendón, J L; del Arenal, I P

    2015-05-01

    Previously, we have studied the effect of the gold-compound auranofin (AF) on both thioredoxin-glutathione reductasa (TGR) activity and viability of Taenia crassiceps cysticerci. It was demonstrated that micromolar concentrations of AF were high enough to fully inhibit TGR and kill the parasites. In this work, the dynamics of changes in the glutathione pool of T. crassiceps cysticerci following the addition of AF, was analyzed. A dose-dependent decrease in the internal glutathione concentration, concomitant with an increase in ROS production was observed. These changes were simultaneous with the formation of glutathione-protein complexes and the export of glutathione disulfide (GSSG) to the culture medium. Incubation of cysticerci in the presence of both AF and N-acetyl cysteine (NAC) prevents all the above changes, maintaining cysticerci viability. By contrast, the presence of both AF and buthionine sulfoximine (BSO) resulted in a potentiation of the effects of the gold compound, jeopardizing cysticerci viability. These results suggest the lethal effect of AF on T. crassiceps cysticerci, observed at micromolar concentrations, can be explained as a consequence of major changes in the glutathione status, which results in a significant increase in the oxidative stress of the parasites.

  1. [The blood glutathione system in cerebral vascular diseases and its treatment with alpha-lipoic acid].

    PubMed

    Kolesnichenko, L S; Kulinskiĭ, V I; Shprakh, V V; Bardymov, V V; Verlan, N V; Gubina, L P; Pensionerova, G A; Sergeeva, M P; Stanevich, L M; Filippova, G T

    2008-01-01

    The changes of glutathione metabolism are rare in dyscirculatory encephalopathy and ischemic stroke (IS) of mild severity. The frequent and considerable changes have been revealed in IS of moderate and high severity as well as in hemorrhagic stroke. An increase of activities of glutathione peroxidase and glutathione transferase is the most typical. The increase of enzyme activity was not observed at the beginning of treatment after 3 days and in patients with severe degree of disease who died later. A standard therapy decreased the quantity and/or expression of changes of the glutathione metabolism in patients with IS of moderate and high severity while the addition of alpha-lipoic acid (alpha-LA) led to the complete normalization in IS of moderate severity and normalization of most parameters in IS of high severity. The increase of functional activity of the glutathione system at the early stage of treatment of IS and the favorable changes during the treatment, in particular after the addition of alpha-LA, were correlated with the improvement of neurological status assessed with the NIHSS. It has been confirmed that the glutathione system plays an important role in the tolerance to brain ischemia.

  2. Enzyme activity of α-chymotrypsin: Deactivation by gold nano-cluster and reactivation by glutathione.

    PubMed

    Ghosh, Catherine; Mondal, Tridib; Bhattacharyya, Kankan

    2017-05-15

    Effect of gold nanoclusters (Au-NCs) on the circular dichroism (CD) spectra and enzymatic activity of α-chymotrypsin (ChT) (towards hydrolysis of a substrate, N-succinyl-l-phenylalanine p-nitroanilide) are studied. The CD spectra indicate that on binding to Au-NC, ChT is completely unfolded, resulting in nearly zero ellipticity. α-chymotrypsin (ChT) coated gold nano-clusters exhibit almost no enzymatic activity. Addition of glutathione (GSH) or oxidized glutathione (GSSG) restore the enzyme activity of α-chymotrypsin by 30-45%. ChT coated Au-NC exhibits two emission maxima-one at 480nm (corresponding to Au10) and one at 640nm (Au25). On addition of glutathione (GSH) or oxidized glutathione (GSSG) the emission peak at 640nm vanishes and only one peak at 480nm (Au10) remains. MALDI mass spectrometry studies suggest addition of glutathione (GSH) to α-chymotrypsin capped Au-NCs results in the formation of glutathione-capped Au-NCs and α-chymotrypsin is released from Au-NCs. CD spectroscopy indicates that the conformation of the released α-chymotrypsin is different from that of the native α-chymotrypsin.

  3. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants

    PubMed Central

    Tsunoda, Satoshi; Avezov, Edward; Zyryanova, Alisa; Konno, Tasuku; Mendes-Silva, Leonardo; Pinho Melo, Eduardo; Harding, Heather P; Ron, David

    2014-01-01

    Protein folding homeostasis in the endoplasmic reticulum (ER) requires efficient protein thiol oxidation, but also relies on a parallel reductive process to edit disulfides during the maturation or degradation of secreted proteins. To critically examine the widely held assumption that reduced ER glutathione fuels disulfide reduction, we expressed a modified form of a cytosolic glutathione-degrading enzyme, ChaC1, in the ER lumen. ChaC1CtoS purged the ER of glutathione eliciting the expected kinetic defect in oxidation of an ER-localized glutathione-coupled Grx1-roGFP2 optical probe, but had no effect on the disulfide editing-dependent maturation of the LDL receptor or the reduction-dependent degradation of misfolded alpha-1 antitrypsin. Furthermore, glutathione depletion had no measurable effect on induction of the unfolded protein response (UPR); a sensitive measure of ER protein folding homeostasis. These findings challenge the importance of reduced ER glutathione and suggest the existence of alternative electron donor(s) that maintain the reductive capacity of the ER. DOI: http://dx.doi.org/10.7554/eLife.03421.001 PMID:25073928

  4. Glutathione-coordinated [2Fe-2S] cluster is stabilized by intramolecular salt bridges.

    PubMed

    Li, Jingwei; Pearson, Stephen A; Fenk, Kevin D; Cowan, J A

    2015-12-01

    Halide salts of alkali and alkaline earth metals were used to probe the contributions of intramolecular salt bridge formation on the stability of glutathione-coordinated [2Fe-2S] cluster toward hydrolysis. The effect of ionic strength on cluster stability was quantitatively investigated by application of Debye-Hückel theory to the rates of hydrolysis. Results from this study demonstrate that ionic strength influences the stability of the cluster, with the rate of cluster degradation depending on the charge density, hydrated ionic radius, and hydration energy. The identity of the salt ions was also observed to be correlated with the binding affinity toward the cluster. Based on the modified Debye-Hückel equation and counterion screening effect, these results suggest that interactions between glutathione molecules in the [2Fe-2S](GS)4 cluster is via salt bridges, in agreement with our previous results where modifications of glutathione carboxylates and amines prevented solution aggregation and cluster formation. These results not only provide a rationale for the stability of such clusters under physiological conditions, but also suggest that the formation of glutathione-complexed [2Fe-2S] cluster from a glutathione tetramer may be facilitated by salt bridge interactions between glutathione molecules prior to cluster assembly, in a manner consistent with Nature's equivalent of dynamic combinatorial chemistry.

  5. Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana.

    PubMed

    Zhang, Long-Bin; Tang, Li; Ying, Sheng-Hua; Feng, Ming-Guang

    2016-07-01

    Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2-4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx1-3 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe(3+)-inclusive medium perhaps due to elevated transcripts of two Fe(3+) transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen.

  6. Synthesis, characterization and cytotoxicity of glutathione- and PEG-glutathione-superparamagnetic iron oxide nanoparticles for nitric oxide delivery

    NASA Astrophysics Data System (ADS)

    Santos, M. C.; Seabra, A. B.; Pelegrino, M. T.; Haddad, P. S.

    2016-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs), with appropriate surface coatings, are commonly used for biomedical applications, such as drug delivery. For the successful application of SPIONs, it is necessary that the nanoparticles have well-defined morphological, structural and magnetic characteristics, in addition to high stability and biocompatibility in biological environments. The present work is focused on the synthesis and characterization of SPIONs, which were prepared using the co-precipitation method and have great potential for drug delivery. The surfaces of the SPIONs were functionalized with the tripeptide glutathione (GSH) and poly(ethylene glycol) (PEG) to form GSH-SPIONs and PEG-GSH-SPIONs. The structural, morphological, magnetic properties and the cytotoxicity of the obtained nanoparticles were characterized using different techniques. The results showed that the nanoparticles have a mean diameter of 10 nm in the solid state and are superparamagnetic at room temperature. No cytotoxicity was observed for either nanoparticle (up to 500 μg L-1) on mouse normal fibroblasts (3T3 cell line) or acute T cell leukemia (Jurkat cell line) after 24 h of incubation. Free thiol groups (SH) on the surfaces of GSH-SPIONs and PEG-GSH-SPIONs were nitrosated, leading to the formation of S-nitrosated SPIONs, which act as a nitric oxide (NO) donor. The amounts of NO released from GSNO-SPIONs and PEG-GSNO-SPIONs were (124.0 ± 1.0) μmol and (33.2 ± 5.1) μmol of NO per gram, respectively. This study highlights the successful capping of the SPION surfaces with antioxidant GSH and biocompatible PEG, which improved the dispersion and biocompatibility of the NPs in aqueous/biological environments, thereby enhancing the potential uses of SPIONs as drug delivery systems, such as a NO donor vehicle, in biomedical applications.

  7. Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants.

    PubMed

    Zechmann, B; Zellnig, G; Urbanek-Krajnc, A; Müller, M

    2007-01-01

    Styrian oil pumpkin seedlings (Cucurbita pepo L. subsp. pepo var. styriaca GREB: .) were treated for 48 h with 1 mM OTC (L-2-oxothiazolidine-4-carboxylic acid) in order to artificially increase cellular glutathione content. They were inoculated with zucchini yellow mosaic virus (ZYMV) 10 days later. The effects of OTC treatment and ZYMV infection on glutathione levels were examined at the subcellular level by immunogold labeling of glutathione using a transmission electron microscope (TEM). These effects were further tested at the whole-tissue level by high performance liquid chromatography (HPLC). Such tests were carried out a) on roots, cotyledons and the first true leaves immediately after OTC treatment in order to analyze to which extent OTC increases glutathione levels in different cell compartments as well as in the whole organ; and b) in older and younger leaves and in roots three weeks after ZYMV inoculation in order to study how possible effects of OTC on symptom development would correlate with glutathione levels at the subcellular level and in the whole organ. Immunocytological and biochemical investigations revealed that, 48 h after OTC treatment, glutathione content had increased in all investigated organs, up to 144% in peroxisomes of cotyledons. Three weeks after ZYMV inoculation, glutathione labeling density had significantly increased within intact cells of infected leaves, up to 124% in the cytosol of younger leaves. Roots showed decreased amounts of glutathione in the TEM. Biochemical studies revealed that OTC treatment resulted in 41 and 51% higher glutathione content in older and younger ZYMV-infected leaves, respectively, in comparison to untreated and ZYMV-infected plants. Evaluation of symptom development at this point revealed that all untreated ZYMV-infected plants had symptoms, whereas only 42% of OTC-treated ZYMV-infected plants showed signs of symptoms. Quantification of ZYMV particles revealed that all organs of OTC-treated and ZYMV

  8. Induction of Glutathione S-Transferase Isozymes in Sorghum by Herbicide Antidotes 1

    PubMed Central

    Dean, John V.; Gronwald, John W.; Eberlein, Charlotte V.

    1990-01-01

    Certain chemicals referred to as herbicide antidotes protect sorghum from injury by chloroacetanilide herbicides such as metolachlor. The effect of herbicide antidotes on the glutathione S-transferase isozyme complement of etiolated sorghum (Sorghum bicolor [L.] Moench) shoots was examined. Elution profiles of glutathione S-transferase isozymes from untreated and antidote-treated seedlings were generated by fast protein liquid chromatography utilizing an anion exchange (Mono Q) column. In untreated seedlings, there were two glutathione S-transferase isozymes, a major isozyme which exhibited activity toward 1-chloro-2,4-dinitrobenzene and a minor isozyme which exhibited activity toward metolachlor. Treating sorghum seedlings with various antidotes (flurazole, oxabetrinil, CGA-133205, naphthalic anhydride, dichlormid) resulted in the appearance of four to five additional glutathione S-transferase isozymes (de-pending on the particular antidote) which exhibited activity toward metolachlor as a substrate and little or no activity with 1-chloro-2,4-dinitrobenzene. Treating etiolated sorghum shoots with metolachlor was also found to induce at least four isozymes which exhibited activity toward the herbicide. An increase in glutathione S-transferase activity, measured with metolachlor as substrate, was detected within 4 h after treatment with 30 micromolar oxabetrinil, but 36 hours were required for maximum expression of activity. Addition of either the transcription inhibitor cordycepin or the translation inhibitor cycloheximide inhibited the appearance of glutathione S-transferase activity measured with metolachlor as substrate. The results are consistent with the hypothesis that antidotes confer protection against metolachlor injury in sorghum by inducing the de novo synthesis of glutathione S-transferase isozymes which catalyze the detoxification of the herbicide. PMID:16667299

  9. Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients.

    PubMed

    Raffa, Monia; Mechri, Anwar; Othman, Leila Ben; Fendri, Chiraz; Gaha, Lotfi; Kerkeni, Abdelhamid

    2009-10-01

    There is substantial evidence found in the literature that supports the fact that the presence of oxidative stress may play an important role in the physiopathology of schizophrenia. Previous studies have reported the occurrence of impairments in the glutathione levels and the activities of the antioxidant enzymes in patients suffering from schizophrenia. However, most of these studies were performed on treated patients. The present study evaluated treated schizophrenic patients (n=52) along with neuroleptic-free or untreated schizophrenic patients (n=36) and healthy controls (n=46). The blood glutathione levels: total glutathione (GSHt), reduced glutathione (GSHr), and oxidized glutathione (GSSG) as well as the activities of the antioxidant enzymes: superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) were measured. The psychopathology of the patients was assessed through the Clinical Global Impressions-severity (CGI-severity). The tests revealed that in comparison with the healthy controls, the schizophrenic patients showed significantly lower levels of GSHr, SOD, and CAT. Among the schizophrenic patients, the activities of the antioxidant enzymes SOD and CAT were recorded to be significantly lower in untreated patients than in the treated ones. In addition, the levels of both GSHt and GSHr were found to be inversely correlated with the obtained CGI-severity score. These results evidently suggest that a decrease in the glutathione levels and the activities of the antioxidant enzymes in patients diagnosed with schizophrenia is not related to neuroleptic treatment and could be considered as a biological indicator of the degree of severity of the symptoms of schizophrenia.

  10. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione

    PubMed Central

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R.

    2016-01-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10−8 M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. PMID:27449129

  11. Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise

    PubMed Central

    Hanafin, William P; Beaudoin, Jessica N; Bica, Denisa E; DiLiberto, Stephen J; Kenis, Paul JA; Gaskins, H Rex

    2014-01-01

    The glutathione couple GSH/GSSG is the most abundant cellular redox buffer and is not at equilibrium among intracellular compartments. Perturbation of glutathione poise has been associated with tumorigenesis; however, due to analytical limitations, the underlying mechanisms behind this relationship are poorly understood. In this regard, we have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real-time glutathione redox potentials in the cytosol and mitochondrial matrix of tumorigenic and non-tumorigenic cells. First, we demonstrated that recovery time in both compartments depended upon the length of exposure to oxidative challenge with diamide, a thiol-oxidizing agent. We then monitored changes in glutathione poise in cytosolic and mitochondrial matrices following inhibition of glutathione (GSH) synthesis with L-buthionine sulphoximine (BSO). The mitochondrial matrix showed higher oxidation in the BSO-treated cells indicating distinct compartmental alterations in redox poise. Finally, the contributory role of the p53 protein in supporting cytosolic redox poise was demonstrated. Inactivation of the p53 pathway by expression of a dominant-negative p53 protein sensitized the cytosol to oxidation in BSO-treated tumor cells. As a result, both compartments of PF161-T + 53DD cells were equally oxidized ≈20 mV by inhibition of GSH synthesis. Conversely, mitochondrial oxidation was independent of p53 status in GSH-deficient tumor cells. Taken together, these findings indicate different redox requirements for the glutathione thiol/disulfide redox couple within the cytosol and mitochondria of resting cells and reveal distinct regulation of their redox poise in response to inhibition of glutathione biosynthesis. PMID:24586100

  12. Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I.

    PubMed Central

    Labrou, N E; Mello, L V; Clonis, Y D

    2001-01-01

    The isoenzyme glutathione S-transferase (GST) I from maize (Zea mays) was cloned and expressed in Escherichia coli, and its catalytic mechanism was investigated by site-directed mutagenesis and dynamic studies. The results showed that the enzyme promotes proton dissociation from the GSH thiol and creates a thiolate anion with high nucleophilic reactivity by lowering the pK(a) of the thiol from 8.7 to 6.2. Steady-state kinetics fit well to a rapid equilibrium, random sequential Bi Bi mechanism, with intrasubunit modulation between the GSH binding site (G-site) and the electrophile binding site (H-site). The rate-limiting step of the reaction is viscosity-dependent, and thermodynamic data suggest that product release is rate-limiting. Five residues of GST I (Ser(11), His(40), Lys(41), Gln(53) and Ser(67)), which are located in the G-site, were individually replaced with alanine and their structural and functional roles in the 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction were investigated. On the basis of steady-state kinetics, difference spectroscopy and limited proteolysis studies it is concluded that these residues: (1) contribute to the affinity of the G-site for GSH, as they are involved in side-chain interaction with GSH; (2) influence GSH thiol ionization, and thus its reactivity; (3) participate in k(cat) regulation by affecting the rate-limiting step of the reaction; and (4) in the cases of His(40), Lys(41) and Gln(53) play an important role in the structural integrity of, and probably in the flexibility of, the highly mobile short 3(10)-helical segment of alpha-helix 2 (residues 35-46), as shown by limited proteolysis experiments. These structural perturbations are probably transmitted to the H-site through changes in Phe(35) conformation. This accounts for the modulation of K(CDNB)(m) by His(40), Lys(41) and Gln(53), and also for the intrasubunit communication between the G- and H-sites. Computer simulations using CONCOORD were applied to maize

  13. Feedback inhibition by thiols outranks glutathione depletion: a luciferase-based screen reveals glutathione-deficient γ-ECS and glutathione synthetase mutants impaired in cadmium-induced sulfate assimilation.

    PubMed

    Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2012-06-01

    Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion

  14. New family of glutathionyl-biomimetic ligands for affinity chromatography of glutathione-recognising enzymes.

    PubMed

    Melissis, S C; Rigden, D J; Clonis, Y D

    2001-05-11

    Three anthraquinone glutathionyl-biomimetic dye ligands, comprising as terminal biomimetic moiety glutathione analogues (glutathionesulfonic acid, S-methyl-glutathione and glutathione) were synthesised and characterised. The biomimetic ligands were immobilised on agarose gel and the affinity adsorbents, together with a nonbiomimetic adsorbent bearing Cibacron Blue 3GA, were studied for their purifying ability for the glutathione-recognising enzymes, NAD+-dependent formaldehyde dehydrogenase (FaDH) from Candida boidinii, NAD(P)+-dependent glutathione reductase from S. cerevisiae (GSHR) and recombinant maize glutathione S-transferase I (GSTI). All biomimetic adsorbents showed higher purifying ability for the target enzymes compared to the nonbiomimetic adsorbent, thus demonstrating their superior effectiveness as affinity chromatography materials. In particular, the affinity adsorbent comprising as terminal biomimetic moiety glutathionesulfonic acid (BM1), exhibited the highest purifying ability for FaDH and GSTI, whereas, the affinity adsorbent comprising as terminal biomimetic moiety methyl-glutathione (BM2) exhibited the highest purifying ability for GSHR. The BM1 adsorbent was integrated in a facile two-step purification procedure for FaDH. The purified enzyme showed a specific activity equal to 79 U/mg and a single band after sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. Molecular modelling was employed to visualise the binding of BM1 with FaDH, indicating favourable positioning of the key structural features of the biomimetic dye. The anthraquinone moiety provides the driving force for the correct positioning of the glutathionyl-biomimetic moiety in the binding site. It is located deep in the active site cleft forming many favourable hydrophobic contacts with hydrophobic residues of the enzyme. The positioning of the glutathione-like biomimetic moiety is primarily achieved by the strong ionic interactions with the Zn2+ ion of FaDH and Arg

  15. Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism

    PubMed Central

    James, S. Jill; Rose, Shannon; Melnyk, Stepan; Jernigan, Stefanie; Blossom, Sarah; Pavliv, Oleksandra; Gaylor, David W.

    2009-01-01

    Research into the metabolic phenotype of autism has been relatively unexplored despite the fact that metabolic abnormalities have been implicated in the pathophysiology of several other neurobehavioral disorders. Plasma biomarkers of oxidative stress have been reported in autistic children; however, intracellular redox status has not yet been evaluated. Lymphoblastoid cells (LCLs) derived from autistic children and unaffected controls were used to assess relative concentrations of reduced glutathione (GSH) and oxidized disulfide glutathione (GSSG) in cell extracts and isolated mitochondria as a measure of intracellular redox capacity. The results indicated that the GSH/GSSG redox ratio was decreased and percentage oxidized glutathione increased in both cytosol and mitochondria in the autism LCLs. Exposure to oxidative stress via the sulfhydryl reagent thimerosal resulted in a greater decrease in the GSH/GSSG ratio and increase in free radical generation in autism compared to control cells. Acute exposure to physiological levels of nitric oxide decreased mitochondrial membrane potential to a greater extent in the autism LCLs, although GSH/GSSG and ATP concentrations were similarly decreased in both cell lines. These results suggest that the autism LCLs exhibit a reduced glutathione reserve capacity in both cytosol and mitochondria that may compromise antioxidant defense and detoxification capacity under prooxidant conditions.—James, S. J., Rose, S., Melnyk, S., Jernigan, S., Blossom, S., Pavliv, O., Gaylor, D. W. Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. PMID:19307255

  16. The systems V(IV)O(2+)-glutathione and related ligands: a potentiometric and spectroscopic study.

    PubMed

    Pessoa, João Costa; Tomaz, Isabel; Kiss, Tamás; Kiss, Erzsébet; Buglyó, Péter

    2002-03-01

    The equilibria in the system V(IV)O(2+)-glutathione in aqueous solution were studied in the pH range 2-11 by a combination of pH-potentiometry and spectroscopy (EPR, visible absorption and circular dichroism). The results of the various methods are consistent and the equilibrium model includes the species MLH(3), MLH(2), MLH, ML(2)H(2), MLH(-1), and MLH(-2) and several hydrolysis products (where H(4)L denotes totally protonated glutathione); individual formation constants and spectra are given. ML(2)H(2) is the predominant species at physiological pH. Plausible structures for each stoichiometry are discussed. The related V(IV)O(2+) systems of S-methylglutathione and gamma- L-glutamyl- L-cysteinyl ethyl ester were studied by means of the same spectroscopic techniques in order to support the established binding modes for the glutathione complexes. The importance of glutathione and oxidized glutathione in binding V(IV)O(2+) in cells is assessed.

  17. Reassessing cellular glutathione homoeostasis: novel insights revealed by genetically encoded redox probes.

    PubMed

    Morgan, Bruce

    2014-08-01

    Glutathione is the most abundant small molecule thiol in nearly all eukaryotes. Whole-cell levels of oxidized (GSSG) and reduced (GSH) glutathione are variable and responsive to genetic and chemical manipulations, which has led to their relative levels being widely used as a marker of the 'cellular redox state' and to indicate the level of 'oxidative stress' experienced by cells, tissues and organisms. However, the applicability of glutathione as a marker for a generalized 'cellular redox state' is questionable, especially in the light of recent observations in yeast cells. In yeast, whole-cell GSSG changes are almost completely dependent upon the activity of an ABC-C (ATP-binding cassette-C) transporter, Ycf1 (yeast cadmium factor 1), which mediates sequestration of GSSG to the vacuole. In the absence of Ycf1 whole-cell GSSG content is strongly decreased and extremely robust to perturbation. These observations are consistent with highly specific redox-sensitive GFP probe-based measurements of the cytosolic glutathione pool and indicate that cytosolic GSSG reductive systems are easily able to reduce nearly all GSSG formed, even following treatment with large concentrations of oxidant. In the present paper, I discuss the consequences of these new findings for our understanding of glutathione homoeostasis in the eukaryotic cell.

  18. Change in metabolic status of glutathione by palladium nitrate in blood components.

    PubMed

    Mukhtiar, Muhammad; Khan, Muhammad Farid; Jan, Syed Umer; Khan, Haroon; Ullah, Naseem; Badshah, Amir

    2013-01-01

    This piece of research work present the toxicological impact of varied concentrations of palladium nitrate [Pd (NO3)2] by changing the chemical status of glutathione and the way how glutathione plays its role in detoxification and conjugation processes of [Pd (NO(3))(2))] in whole blood components (plasma and cytosolic fraction). The impact of different concentration of [Pd (NO3)2] on reduced glutathione level in whole blood component (plasma and cytosolic fraction) were measured spectrophotometrically following Standard Ellman's method. Compared with control sample, significant decrease in the GSH content in whole blood components (plasma and cytosolic fraction) was obtained with various concentrations (100µM-1000µM) of palladium nitrate. Depleted GSH level was more pronounced with time incubation period (0-90) minutes. These finding shows that changes in the GSH status produced by palladium nitrate could either be due to palladium nitrate and glutathione( Pd-SG) complex formation or by conversion of reduce glutathione (2GSH + Pd(+2) - GSSG). This change in the GSH metabolic status provides information regarding the mechanism of palladium, in blood components.

  19. Reactivity of 9-aminoacridine drug quinacrine with glutathione limits its antiprion activity.

    PubMed

    Šafařík, Martin; Moško, Tibor; Zawada, Zbigniew; Šafaříková, Eva; Dračínský, Martin; Holada, Karel; Šebestík, Jaroslav

    2016-12-09

    Quinacrine-the drug based on 9-aminoacridine-failed in clinical trials for prion diseases, whereas it was active in in vitro studies. We hypothesize that aromatic nucleophilic substitution at C9 could be contributing factor responsible for this failure because of the transfer of acridine moiety from quinacrine to abundant glutathione. Here, we described the semi-large-scale synthesis of the acridinylated glutathione and the consequences of its formation on biological and biophysical activities. The acridinylated glutathione is one order of magnitude weaker prion protein binder than the parent quinacrine. Moreover, according to log DpH 7.4 , the glutathione conjugate is two orders of magnitude more hydrophilic than quinacrine. Its higher hydrophilicity and higher dsDNA binding potency will significantly decrease its bioavailability in membrane-like environment. The glutathione deactivates quinacrine not only directly but also decreases its bioavailability. Furthermore, the conjugate can spontaneously decompose to practically insoluble acridone, which is precipitated out from the living systems.

  20. Current status and emerging role of glutathione in food grade lactic acid bacteria

    PubMed Central

    2012-01-01

    Lactic acid bacteria (LAB) have taken centre stage in perspectives of modern fermented food industry and probiotic based therapeutics. These bacteria encounter various stress conditions during industrial processing or in the gastrointestinal environment. Such conditions are overcome by complex molecular assemblies capable of synthesizing and/or metabolizing molecules that play a specific role in stress adaptation. Thiols are important class of molecules which contribute towards stress management in cell. Glutathione, a low molecular weight thiol antioxidant distributed widely in eukaryotes and Gram negative organisms, is present sporadically in Gram positive bacteria. However, new insights on its occurrence and role in the latter group are coming to light. Some LAB and closely related Gram positive organisms are proposed to possess glutathione synthesis and/or utilization machinery. Also, supplementation of glutathione in food grade LAB is gaining attention for its role in stress protection and as a nutrient and sulfur source. Owing to the immense benefits of glutathione, its release by probiotic bacteria could also find important applications in health improvement. This review presents our current understanding about the status of glutathione and its role as an exogenously added molecule in food grade LAB and closely related organisms. PMID:22920585

  1. Survival of Escherichia coli Cells on Solid Copper Surfaces Is Increased by Glutathione

    PubMed Central

    Große, Cornelia; Schleuder, Grit; Schmole, Christin

    2014-01-01

    Bacteria are rapidly killed on solid copper surfaces, so this material could be useful to limit the spread of multiple-drug-resistant bacteria in hospitals. In Escherichia coli, the DNA-protecting Dps protein and the NADH:ubiquinone oxidoreductase II Ndh were not involved in tolerance to copper ions or survival on solid copper surfaces. Decreased copper tolerance under anaerobic growth conditions in the presence of ascorbate and with melibiose as the carbon source indicated that sodium-dependent symport systems may provide an import route for CuI into the cytoplasm. Glutathione-free ΔcopA ΔgshA double mutants of E. coli were more rapidly inactivated on solid copper surfaces than glutathione-containing wild-type cells. Therefore, while DNA protection by Dps was not required, glutathione was needed to protect the cytoplasm and the DNA against damage mediated by solid copper surfaces, which may explain the differences in the molecular mechanisms of killing between glutathione-containing Gram-negative and glutathione-free Gram-positive bacteria. PMID:25192999

  2. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development.

    PubMed

    Mora-Lorca, José Antonio; Sáenz-Narciso, Beatriz; Gaffney, Christopher J; Naranjo-Galindo, Francisco José; Pedrajas, José Rafael; Guerrero-Gómez, David; Dobrzynska, Agnieszka; Askjaer, Peter; Szewczyk, Nathaniel J; Cabello, Juan; Miranda-Vizuete, Antonio

    2016-07-01

    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode.

  3. Enhancement by glutathione depletion of ethanol-induced acute hepatotoxicity in vitro and in vivo.

    PubMed

    Strubelt, O; Younes, M; Pentz, R

    1987-08-01

    Ethanol at initial concentrations between 0.75 and 6 g/l produced a dose-dependent release of the enzymes glutamic-pyruvic-transaminase and sorbitol dehydrogenase (GPT, SDH) from the isolated perfused rat liver. At the concentration of 6 g/l, it also decreased the oxygen consumption and elevated the calcium content of the isolated livers. These toxic effects of ethanol were significantly enhanced in livers, the glutathione content of which had been depleted by pretreatment with phorone. Ethanol-induced toxicity in glutathione-depleted isolated livers could be prevented both by inhibition of alcohol dehydrogenase with 4-methylpyrazole and of xanthine oxidase with allopurinol. In rats, in vivo, 1.6 g/kg ethanol injected intravenously produced a small increase in serum GPT and SDH concentrations 4 h after its administration. This increase in enzyme activities was several-fold higher and longer lasting in rats pretreated with phorone. Glutathione depletion per se did not induce hepatotoxicity in vitro or in vivo. Since glutathione is involved in several lines of defense against oxidative damage, our results of an enhanced susceptibility of glutathione-depleted livers to ethanol toxicity favour the hypothesis that ethanol exerts its hepatotoxic action via an activation of molecular oxygen.

  4. Selenium proteins in ovine tissues: III. Distribution of selenium and glutathione peroxidases in tissue cytosols.

    PubMed

    Black, R S; Tripp, M J; Whanger, P D; Weswig, P H

    1978-01-01

    Three 6 week-old lambs were injected with carrier-free selenium-75 as sodium selenite initially and again after 6 days. One lamb received no further injections whereas the other two received injections of either vitamin E or unlabeled Na2SeO3 when the first selenium-75 injection was given. Selected tissues were removed at autopsy 10 days after the first injection. The cytosol from homogenates of these tissues was subjected to gel chromatography, and the elution profiles determined for radioactivity, protein content, and glutathione peroxidase activity using either hydrogen peroxide or cumene hydroperoxide as substrates. The selenium-75 was found to be distributed mainly between 2 different MW peaks. The larger MW seleno-peak (90,000) possessed both glutathione:hydrogen peroxide oxidoreductase, and glutathione:cumene hydroperoxide oxidoreductase activities, but the smaller MW seleno-peak (about 10,000) possessed no glutathione peroxidase activity. A peak of about 60,000 daltons containing only glutathione:cumene hydroperoxide oxidoreductase activity and no selenium-75 was found primarily in the liver and kidney. Vitamin E had no effect on the elution profiles. Selenium status of the animal had only a minor effect on the selenium-75 distribution in the cytosol, but had a marked effect on the absolute amount of the label taken up by tissues.

  5. Effect of transport on blood selenium and glutathione status in feeder lambs.

    PubMed

    Hall, J A; Bobe, G; Nixon, B K; Vorachek, W R; Hugejiletu; Nichols, T; Mosher, W D; Pirelli, G J

    2014-09-01

    Stress from transport may be linked to increased generation of reactive oxygen species, the removal of which requires reduced glutathione and selenium. The aim of this experiment was to examine the effect of transport on glutathione and Se status of feeder lambs. Recently weaned lambs (n = 40) were blocked by gender and BW on d 0 of the experiment and randomly assigned to 2 treatment groups: group 1, no transport and full access to feed and water (control), and group 2, 8-h road transport followed by another 16 h of feed deprivation (transport). After 24 h, both treatment groups were treated the same. All lambs were weighed, and blood samples were collected at 0, 8, 24, and 72 h and analyzed for whole-blood (WB) and serum Se concentrations, serum NEFA concentrations, and erythrocyte concentrations of glutathione. Transport of feeder lambs for 8 h followed by another 16 h of feed deprivation transiently (significant at 24 h but no longer different at 72 h) decreased BW and erythrocyte glutathione concentrations and increased serum NEFA and blood Se concentrations compared with control lambs. Our results suggest that 8 h of transport followed by another 16 h of feed deprivation results in fatty acid and Se mobilization from tissue stores with a coincident decrease in erythrocyte glutathione concentrations.

  6. Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis

    PubMed Central

    Ding, Shunhua; Wang, Liang; Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang

    2015-01-01

    Abstract Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) and participates in the ascorbate‐glutathione cycle, which scavenges H2O2. Here, we report that chloroplastic/mitochondrial GR2 is an important regulator of leaf senescence. Seed development of the homozygous gr2 knockout mutant was blocked at the globular stage. Therefore, to investigate the function of GR2 in leaf senescence, we generated transgenic Arabidopsis plants with decreased GR2 using RNAi. The GR2 RNAi plants displayed early onset of age‐dependent and dark‐ and H2O2‐induced leaf senescence, which was accompanied by the induction of the senescence‐related marker genes SAG12 and SAG13. Furthermore, transcriptome analysis revealed that genes related to leaf senescence, oxidative stress, and phytohormone pathways were upregulated directly before senescence in RNAi plants. In addition, H2O2 accumulated to higher levels in RNAi plants than in wild‐type plants and the levels of H2O2 peaked in RNAi plants directly before the early onset of leaf senescence. RNAi plants showed a greater decrease in GSH/GSSG levels than wild‐type plants during leaf development. Our results suggest that GR2 plays an important role in leaf senescence by modulating H2O2 and glutathione signaling in Arabidopsis. PMID:26031939

  7. Effect of different hydrolysates of whey protein on hepatic glutathione content in mice.

    PubMed

    Pacheco, Maria Teresa Bertoldo; Sgarbieri, Valdemiro Carlos

    2005-01-01

    This study was designed to compare the effects of diets prepared with enzymatic hydrolysate of a whey protein concentrate (WPC) by pancreatin, protamex (Novo Nordisk, Bagsvaerd, Denmark), and alcalase proteases on the hepatic glutathione content in mice. The undenatured WPC was produced in a pilot plant by membrane technology (microfiltration/diafiltration) after separation of the casein clot through a conventional process. All three hydrolysates with 20% degree of hydrolysis showed an amino acid profile similar to WPC. Male A/J mice were fed on diets containing 20% WPC or hydrolysates. Commercial casein was used as a reference protein in the biological assays. The glutathione content was determined after liver extraction through high-performance capillary electrophoresis. WPC and its pancreatin and protamex hydrolysates showed higher ability to stimulate liver glutathione synthesis than alcalase hydrolysate. This difference was probably related to an amino acid sequence in the peptides that were formed during hydrolysis of whey proteins. Commercial casein and WPC alcalase hydrolysate produced lower stimulation of liver glutathione synthesis (7.09 and 5.66 micromol/g of wet weight) compared with WPC and pancreatin and protamex hydrolysates (8.72, 8.71, and 8.45 micromol/g of wet weight, respectively). These results indicate that the hydrolysates obtained by treatment with pancreatin and protamex are good sources of peptides with activity to stimulate glutathione synthesis.

  8. 1-Methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons

    SciTech Connect

    Drechsel, Derek A.; Liang, L.-P.; Patel, Manisha . E-mail: manisha.patel@uchsc.edu

    2007-05-01

    Decreased glutathione levels associated with increased oxidative stress are a hallmark of numerous neurodegenerative diseases, including Parkinson's disease. GSH is an important molecule that serves as an anti-oxidant and is also a major determinant of cellular redox environment. Previous studies have demonstrated that neurotoxins can cause changes in reduced and oxidized GSH levels; however, information regarding steady state levels remains unexplored. The goal of this study was to characterize changes in cellular GSH levels and its regulatory enzymes in a dopaminergic cell line (N27) following treatment with the Parkinsonian toxin, 1-methyl-4-phenylpyridinium (MPP{sup +}). Cellular GSH levels were initially significantly decreased 12 h after treatment, but subsequently recovered to values greater than controls by 24 h. However, oxidized glutathione (GSSG) levels were increased 24 h following treatment, concomitant with a decrease in GSH/GSSG ratio prior to cell death. In accordance with these changes, ROS levels were also increased, confirming the presence of oxidative stress. Decreased enzymatic activities of glutathione reductase and glutamate-cysteine ligase by 20-25% were observed at early time points and partly account for changes in GSH levels after MPP{sup +} exposure. Additionally, glutathione peroxidase activity was increased 24 h following treatment. MPP{sup +} treatment was not associated with increased efflux of glutathione to the medium. These data further elucidate the mechanisms underlying GSH depletion in response to the Parkinsonian toxin, MPP{sup +}.

  9. tRNA synthase suppression activates de novo cysteine synthesis to compensate for cystine and glutathione deprivation during ferroptosis.

    PubMed

    Shimada, Kenichi; Stockwell, Brent R

    2016-03-01

    Glutathione is a major endogenous reducing agent in cells, and cysteine is a limiting factor in glutathione synthesis. Cysteine is obtained by uptake or biosynthesis, and mammalian cells often rely on either one or the other pathway. Because of the scarcity of glutathione, blockade of cysteine uptake causes oxidative cell death known as ferroptosis. A new study suggests that tRNA synthetase suppression activates the endogenous biosynthesis of cysteine, compensates such cysteine loss, and thus makes cells resistant to ferroptosis.

  10. Dietary selenium, glutathione peroxidase activity, and toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin

    SciTech Connect

    Hassan, M.Q.; Stohs, S.J.; Murray, W.J.; Birt, D.F.

    1985-01-01

    TCDD has been shown to inhibit selenium-dependent glutathione peroxidase activity. The role of selenium in TCDD toxicity is not known. The authors have therefore examined the effect of TCDD administration on hepatic glutathione peroxidase, aryl hydrocarbon hydroxlase, glutathione reductase, and glutathione S-transferase activities, glutathione content, and lipid peroxidation in rats fed 0, 0.10, and 2.0 ppm dietary selenium. TCDD treatment significantly inhibited selenium-dependent glutathione peroxidase in animals on diets containing 0.10 and 2.0 ppm selenium. The selenium-dependent glutathione peroxidase activities in rats on 0.10 and 2.0 ppm dietary selenium were 8.3- and 4.7-fold greater than in animals fed a diet containing 0 ppm selenium. TCDD administration enhanced hepatic microsomal lipid peroxidation by factors of 4.0, 4.9, and 9.8 in animals fed diets containing 0, 0.10, and 2.0 ppm selenium, respectively. The administration of a lethal dose of TCDD to rats fed diets containing 0, 0.10, and 2.0 ppm selenium, respectively. The administration of a lethal dose of TCDD to rats fed diets containing 0, 0.10, and 2.0 ppm selenium resulted in 0, 46, and 7% survival, respectively, after 66 d. Aryl hydrocarbon hydroxylase, glutathione S-transferase, and glutathione reductase activities were induced by TCDD. The results indicate that optimum dietary selenium provides partial protection from the toxic effects of TCDD.

  11. The gene encoding human glutathione synthetase (GSS) maps to the long arm of chromosome 20 at band 11.2

    SciTech Connect

    Webb, G.C.; Vaska, V.L.; Ford, J.H.

    1995-12-10

    Two forms of glutathione synthetase deficiency have been described. While one form is mild, causing hemolytic anemia, the other more severe form causes 5-oxoprolinuria with secondary neurological involvement. Despite the existence of two deficiency phenotypes, Southern blots hybridized with a glutathione synthetase cDNA suggest that there is a single glutathione synthetase gene in the human genome. Analysis of somatic cell hybrids showed the human glutathione synthetase gene (GSS) to be located on chromosome 20, and this assignment has been refined to subband 20q11.2 using in situ hybridization. 16 refs., 2 figs.

  12. Selenium concentrations and enzyme activities of glutathione metabolism in wild long-tailed ducks and common eiders

    USGS Publications Warehouse

    Franson, J. Christian; Hoffman, David J.; Flint, Paul L.

    2011-01-01

    The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 μg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.

  13. Selenium concentrations and enzyme activities of glutathione metabolism in wild long-tailed ducks and common eiders.

    PubMed

    Franson, J Christian; Hoffman, David J; Flint, Paul L

    2011-06-01

    The relationships of selenium (Se) concentrations in whole blood with plasma activities of total glutathione peroxidase, Se-dependent glutathione peroxidase, and glutathione reductase were studied in long-tailed ducks (Clangula hyemalis) and common eiders (Somateria mollissima) sampled along the Beaufort Sea coast of Alaska, USA. Blood Se concentrations were >8 µg/g wet weight in both species. Linear regression revealed that the activities of total and Se-dependent glutathione peroxidase were significantly related to Se concentrations only in long-tailed ducks, raising the possibility that these birds were experiencing early oxidative stress.

  14. A Selective Glutathione Probe based on AIE Fluorogen and its Application in Enzymatic Activity Assay

    NASA Astrophysics Data System (ADS)

    Lou, Xiaoding; Hong, Yuning; Chen, Sijie; Leung, Chris Wai Tung; Zhao, Na; Situ, Bo; Lam, Jacky Wing Yip; Tang, Ben Zhong

    2014-03-01

    In this work, we design and synthesize a malonitrile-functionalized TPE derivative (TPE-DCV), which can react with thiol group through thiol-ene click reaction, leading to the fluorescence change of the system. Combined with the unique AIE property, TPE-DCV can selectively detect glutathione (GSH) but not cysteine or homocysteine. As the cleavage of GSSG with the aid of glutathione reductase produces GSH, which turns on the fluorescence of TPE-DCV, the ensemble of TPE-DCV and GSSG can thus serve as a label-free sensor for enzymatic activity assay of glutathione reductase. We also apply TPE-DCV for the detection of intracellular GSH in living cells.

  15. Glutamine protects rabbit spermatozoa against oxidative stress via glutathione synthesis during cryopreservation.

    PubMed

    Zhu, Zhendong; Fan, Xiaoteng; Lv, Yinghua; Lin, Yan; Wu, De; Zeng, Wenxian

    2017-03-27

    Mammalian spermatozoa are extremely susceptible to high doses of reactive oxygen species (ROS). The aim of the present study was to investigate the potential role of glutamine in protecting rabbit spermatozoa against ROS stress during cryopreservation and post-thaw incubation. Freshly ejaculated semen was diluted with Tris-citrate-glucose extender supplemented with glutamine. The addition of 20mM glutamine significantly improved sperm motility, acrosome integrity, membrane integrity and mitochondrial activity. Meanwhile, 20mM glutamine addition decreased lipid peroxidation and DNA damage in frozen-thawed spermatozoa. Interestingly, supplementation with 20mM glutamine led to increases in glutathione content and γ-glutamyl cysteine synthetase and glutathione peroxidase activity, with concomitant decreases in ROS levels during cryopreservation and post-thaw incubation. In conclusion, the addition of glutamine to extender solutions protects rabbit spermatozoa from ROS attack by enhancing glutathione synthesis.

  16. Detoxication of the 2',3'-epoxide metabolites of allylbenzene and estragole. Conjugation with glutathione.

    PubMed

    Luo, G; Guenthner, T M

    1994-01-01

    The enzymatic detoxication in vitro of the 2',3'-epoxide derivatives of allylbenzene and estragole was examined, and the relative rates of enzymatic glutathione conjugation and epoxide hydrolysis were compared with those for styrene 1',2'-oxide. HPLC was used to determine the amounts of dihydrodiol and glutathione conjugate metabolites formed by cell extracts from several sources. Although some differences among species were observed, in general, the rates of epoxide inactivation by both pathways are similar. We conclude that one explanation for the apparent lack of genotoxicity of these allylic epoxides in vivo may be their rapid metabolic inactivation by both glutathione S-transferases and epoxide hydrolases, which occur to approximately equal degrees in vitro.

  17. (8S)-(glutathion-S-yl)dihydromorphinone, a novel metabolite of morphine from guinea pig bile.

    PubMed

    Ishida, T; Kumagai, Y; Ikeda, Y; Ito, K; Yano, M; Toki, S; Mihashi, K; Fujioka, T; Iwase, Y; Hachiyama, S

    1989-01-01

    A novel glutathione-conjugated metabolite of morphine has been isolated from the bile of guinea pigs given morphine. The metabolite was separated by preparative HPLC on a reverse phase column (YMC-GEL C18) using methanol/water (1:4, v/v) as eluate and purified by HPLC on another reverse phase column (mu-Bondapak phenyl) using water/acetonitrile/trimethylamine/acetic acid (150:3:2:1, v/v) as a mobile phase. The unambiguous structure assignment of the metabolite was performed by fast atom bombardment mass spectrometry and 400 MHz fourier transform NMR spectrometric analysis, and it was identified as (8S)-glutathion-S-yl)dihydromorphinone, in comparison with the synthetic morphinone-glutathione adduct.

  18. Letter: Mass spectrometric approach of high pH- and copper-induced glutathione oxidation.

    PubMed

    Drochioiu, Gabi; Ion, Laura; Ciobanu, Catalina; Habasescu, Laura; Mangalagiu, Ionel

    2013-01-01

    The interaction between copper ions and gamma-L-glutamyl-L-cysteinyl-glycine [glutathione (GSH)] molecules may lead to the formation of the physiologically occurring Cu[I)-[GSH]2 and Cu(II)-GSSG complexes. Since glutathione depletion in neurons and aberrant copper metabolism have been implicated in several neurodegenerative disorders, we studied here the interaction of GSH with copper ions (Cu2+) by electrospray ionization ion trap mass spectrometry (ESI-IT-MS). Besides, we extended this approach to pH in excess of 10 by adding ethanolamine to the solution being investigated. As a result, the ESI-IT-MS spectra revealed novel aspects regarding the speciation of copper-glutathione complex.

  19. Prevention of in vitro oxidant-mediated alveolar macrophage injury by cellular glutathione and precursors.

    PubMed

    Voisin, C; Aerts, C; Wallaert, B

    1987-01-01

    To evaluate the toxic effects of various oxidants on alveolar macrophages (O2, NO2, tobacco smoke and silica), we used an original method of cell culture in aerobiosis, which permitted direct contact between the atmosphere and the target cells. Our results demonstrated that the variations of cell sensitivity to the cytotoxic effects of oxidants were associated with various levels in cellular antioxidant equipment. A significant correlation was found between cytotoxicity and antioxidant enzymes (superoxide dismutase and catalase) and/or cellular glutathione. Addition of N-acetylcysteine, a polypeptide known to have an antioxidant activity and to be a precursor of glutathione, was responsible for a decrease of oxidant-mediated cytotoxicity. Whether this protective effect was due to an increase in glutathione cell content or to a scavenger effect of N-acetylcysteine still needs to be elucidated.

  20. Separation of glutathione transferase subunits from Proteus vulgaris by two-dimensional gel electrophoresis.

    PubMed

    Hong, Giaming; Chien, Yi-Chih; Chien, Cheng-I

    2003-10-01

    Cytosolic glutathione transferases of Proteus vulgaris were purified by affinity chromatography and characterized by two-dimensional gel electrophoresis. Four different subunits were identified, and each subunit contained a different molecular mass, ranging from 26.2 kDa to 28.5 kDa; a different pI value, ranging from 8.2 to 9.4; and a different amount of protein fraction, ranging from 10% to 56%. All four subunits existed as basic proteins (pI > 7.0). From these results, we concluded that multiple forms of glutathione transferase enzymes existed in Proteus vulgaris, and four different glutathione transferase subunits were separated by 2-D gel electrophoresis.

  1. The Biochemical Adaptations of Spotted Wing Drosophila (Diptera: Drosophilidae) to Fresh Fruits Reduced Fructose Concentrations and Glutathione-S Transferase Activities.

    PubMed

    Nguyen, Phuong; Kim, A-Young; Jung, Jin Kyo; Donahue, Kelly M; Jung, Chuleui; Choi, Man-Yeon; Koh, Young Ho

    2016-04-01

    Spotted wing drosophila, Drosophila suzukii Matsumura, is an invasive and economically damaging pest in Europe and North America. The females have a serrated ovipositor that enables them to infest almost all ripening small fruits. To understand the physiological and metabolic basis of spotted wing drosophila food preferences for healthy ripening fruits, we investigated the biological and biochemical characteristics of spotted wing drosophila and compared them with those of Drosophila melanogaster Meigen. We found that the susceptibility to oxidative stressors was significantly increased in spotted wing drosophila compared with those of D. melanogaster. In addition, we found that spotted wing drosophila had significantly reduced glutathione-S transferase (GST) activity and gene numbers. Furthermore, fructose concentrations found in spotted wing drosophila were significantly lower than those of D. melanogaster. Our data strongly suggest that the altered food preferences of spotted wing drosophila may stem from evolutionary adaptations to fresh foods accompanied by alterations in carbohydrate metabolism and GST activities.

  2. Bioaccumulation of 4-nonylphenol and effects on biomarkers, acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase, in Mytilus galloprovincialis mussel gilla.

    PubMed

    Vidal-Liñán, Leticia; Bellas, Juan; Salgueiro-González, Noelia; Muniategui, Soledad; Beiras, Ricardo

    2015-05-01

    Wild marine mussels, Mytilus galloprovincialis showed a moderate bioaccumulation ability when exposed to waterborne 4-nonylphenol (4-NP), with a bioconcentration factor (BCF) of 6850 L Kg(-1) (dry weight). Kinetic and concentration-response experiments were performed and three enzymatic biomarkers in mussel gills were measured: Glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE). Exposure of mussels to environmentally relevant concentrations (25-100 μg L(-1)) of 4-nonylphenol significantly inhibited the AChE activity and induced the GST and GPx activities. GST induction was dose dependent whilst GPx activity showed a less consistent pattern, but in both cases the induction remained after a 10 d depuration period. Mussels seem capable of eliminating 4-NP from their tissues through a mechanism involving GST induction.

  3. Bioaccumulation of PCB-153 and effects on molecular biomarkers acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels.

    PubMed

    Vidal-Liñán, Leticia; Bellas, Juan; Soriano, José Antonio; Concha-Graña, Estefanía; Muniategui, Soledad; Beiras, Ricardo

    2016-07-01

    In this study, PCB-153 bioaccumulation kinetics and concentration-response experiments were performed employing wild Mytilus galloprovincialis mussels. In addition, the activity of three enzymatic biomarkers: glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE), were measured in the mussel gills. The experimental data fitted well to an asymptotic accumulation model with a high bioconcentration factor (BCF) of 9324 L kg(-1) and a very limited depuration capacity, described by a low excretion rate coefficient (Kd = 0.083 d(-1)). This study reports by first time in mussels significant inhibition of GST activity and significant induction of GPx activity as a result of exposure to dissolved PCB-153. In contrast, AChE activity was unaffected at all concentrations and exposure times tested. The effects on both enzymes are time-dependent, which stresses the difficulties inherent to the use of these biomarkers in chemical pollution monitoring programs.

  4. The glutathione-related detoxication responses to juvenile and ecdysone hormones in Galleria mellonella.

    PubMed

    Tarhan, Leman; Kayalı, Hülya Ayar; Karacali, Sabire

    2013-08-01

    The effect of 20-hydroxyecdysone (20E) and juvenile hormone (JH) on the glutathione pathway of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) was determined by investigating glutathione peroxidase (GSH-Px), glutathione S-transferases (GST), and glutathione reductase (GR) activities as well as reduced and oxidized glutathione (GSH and GSSG) content with respect to developmental stage. The continuous decreases of GSH-Px and GST activities dependent on the growth period of G. mellonella occurred in JH and 20E groups over and under their controls, respectively. While the GR activities of G. mellonella showed increases in young pupa (YP) for both control and in old larvae (OL) for the 20E groups after the minimum at these periods, they also increased after old pupa (OP) for the JH group with a maximum in OL period. Although GR activity levels in the JH group were significantly higher compared with controls and 20E groups up to OP period, the activity levels for the control and 20E groups were higher than those of the JH group at adult (AD) and old pupa (OP) periods, respectively. In spite of increases in the GR activity of 20E and control groups of G. mellonella, decreased GSH and increased GSSG levels were observed at aging period. GSH levels in the JH group reached a maximum at prepupa (PP) and then decreased with non-significant changes from OL to AD period. According to the results, GSH and GSSG levels, as well as GSH/GSSG ratios, were below and over control levels in 20E and JH groups, respectively, during all of the investigated developmental stages. On the contrary, the LPO levels were higher than the control for 20E and lower for the JH groups during the developmental period. These results show that while ecdysone hormone has a negative effect on the glutathione-related detoxication capacity of G. mellonella, the juvenile hormone has a positive effect on this process.

  5. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study

    PubMed Central

    Salem, Heba F; Ahmed, Sayed M; Hassaballah, Ashraf E; Omar, Mahmoud M

    2015-01-01

    Background The blood–brain barrier prevents many drug moieties from reaching the central nervous system. Therefore, glutathione-modulated nanoliposomes have been engineered to enhance the targeting of flucytosine to the brain. Methods Glutathione-modulated nanoliposomes were prepared by thin-film hydration technique and evaluated in the primary brain cells of rats. Lecithin, cholesterol, and span 65 were mixed at 1:1:1 molar ratio. The molar percentage of PEGylated glutathione varied from 0 mol% to 0.75 mol%. The cellular binding and the uptake of the targeted liposomes were both monitored by epifluorescent microscope and flow cytometry techniques. A biodistribution and a pharmacokinetic study of flucytosine and flucytosine-loaded glutathione–modulated liposomes was carried out to evaluate the in vivo brain-targeting efficiency. Results The size of glutathione-modulated nanoliposomes was <100 nm and the zeta potential was more than −65 mV. The cumulative release reached 70% for certain formulations. The cellular uptake increased as molar percent of glutathione increased to reach the maximum at 0.75 mol%. The uptake of the targeted liposomes by brain cells of the rats was three times greater than that of the nontargeted liposomes. An in vivo study showed that the relative efficiency was 2.632±0.089 and the concentration efficiency was 1.590±0.049, and also, the drug-targeting index was 3.670±0.824. Conclusion Overall, these results revealed that glutathione-PEGylated nanoliposomes enhance the effective delivery of flucytosine to brain and could become a promising new therapeutic option for the treatment of the brain infections. PMID:26229435

  6. Glutathione as a skin whitening agent: Facts, myths, evidence and controversies.

    PubMed

    Sonthalia, Sidharth; Daulatabad, Deepashree; Sarkar, Rashmi

    2016-01-01

    Glutathione is a low molecular weight thiol-tripeptide that plays a prominent role in maintaining intracellular redox balance. In addition to its remarkable antioxidant properties, the discovery of its antimelanogenic properties has led to its promotion as a skin-lightening agent. It is widely used for this indication in some ethnic populations. However, there is a dichotomy between evidence to support its efficacy and safety. The hype around its depigmentary properties may be a marketing gimmick of pharma-cosmeceutical companies. This review focuses on the various aspects of glutathione: its metabolism, mechanism of action and the scientific evidence to evaluate its efficacy as a systemic skin-lightening agent. Glutathione is present intracellularly in its reduced form and plays an important role in various physiological functions. Its skin-lightening effects result from direct as well as indirect inhibition of the tyrosinase enzyme and switching from eumelanin to phaeomelanin production. It is available in oral, parenteral and topical forms. Although the use of intravenous glutathione injections is popular, there is no evidence to prove its efficacy. In fact, the adverse effects caused by intravenous glutathione have led the Food and Drug Administration of Philippines to issue a public warning condemning its use for off-label indications such as skin lightening. Currently, there are three randomized controlled trials that support the skin-lightening effect and good safety profile of topical and oral glutathione. However, key questions such as the duration of treatment, longevity of skin-lightening effect and maintenance protocols remain unanswered. More randomized, double-blind, placebo-controlled trials with larger sample size, long-term follow-up and well-defined efficacy outcomes are warranted to establish the relevance of this molecule in disorders of hyperpigmentation and skin lightening.

  7. Cytosolic Triosephosphate Isomerase from Arabidopsis thaliana Is Reversibly Modified by Glutathione on Cysteines 127 and 218

    PubMed Central

    Dumont, Sébastien; Bykova, Natalia V.; Pelletier, Guillaume; Dorion, Sonia; Rivoal, Jean

    2016-01-01

    In plant cells, an increase in cellular oxidants can have multiple effects, including the promotion of mixed disulfide bonds between glutathione and some proteins (S-glutathionylation). The present study focuses on the cytosolic isoform of the glycolytic enzyme triosephosphate isomerase (cTPI) from Arabidopsis thaliana and its reversible modification by glutathione. We used purified recombinant cTPI to demonstrate the enzyme sensitivity to inhibition by N-ethylmaleimide, hydrogen peroxide and diamide. Treatment of cTPI with diamide in the presence of reduced glutathione (GSH) led to a virtually complete inhibition of its enzymatic activity by S-glutathionylation. Recombinant cTPI was also sensitive to the oxidized form of glutathione (GSSG) in the micromolar range. Activity of cTPI was restored after reversion of S-glutathionylation by two purified recombinant A. thaliana cytosolic glutaredoxins (GRXs). GRXs-mediated deglutathionylation of cTPI was dependent on a GSH-regenerating system. Analysis of cTPI by mass spectrometry after S-glutathionylation by GSSG revealed that two Cys residues (Cys127 and Cys218) were modified by glutathione. The role of these two residues was assessed using site-directed mutagenesis. Mutation of Cys127 and Cys218 to Ser separately or together caused different levels of decrease in enzyme activity, loss of stability, as well as alteration of intrinsic fluorescence, underlining the importance of these Cys residues in protein conformation. Comparison of wild-type and mutant proteins modified with biotinyl glutathione ethyl ester (BioGEE) showed partial binding with single mutants and total loss of binding with the double mutant, demonstrating that both Cys residues were significantly S-glutathionylated. cTPI modification with BioGEE was reversed using DTT. Our study provides the first identification of the amino acid residues involved in cTPI S-glutathionylation and supports the hypothesis that this reversible modification could be part

  8. Impact of glutathione supplementation of parenteral nutrition on hepatic methionine adenosyltransferase activity

    PubMed Central

    Elremaly, Wesam; Mohamed, Ibrahim; Rouleau, Thérèse; Lavoie, Jean-Claude

    2015-01-01

    Background The oxidation of the methionine adenosyltransferase (MAT) by the combined impact of peroxides contaminating parenteral nutrition (PN) and oxidized redox potential of glutathione is suspected to explain its inhibition observed in animals. A modification of MAT activity is suspected to be at origin of the PN-associated liver disease as observed in newborns. We hypothesized that the correction of redox potential of glutathione by adding glutathione in PN protects the MAT activity. Aim To investigate whether the addition of glutathione to PN can reverse the inhibition of MAT observed in animal on PN. Methods Three days old guinea pigs received through a jugular vein catheter 2 series of solutions. First with methionine supplement, (1) Sham (no infusion); (2) PN: amino acids, dextrose, lipids and vitamins; (3) PN-GSSG: PN+10 μM GSSG. Second without methionine, (4) D: dextrose; (5) D+180 μM ascorbylperoxide; (6) D+350 μM H2O2. Four days later, liver was sampled for determination of redox potential of glutathione and MAT activity in the presence or absence of 1 mM DTT. Data were compared by ANOVA, p<0.05. Results MAT activity was 45±4% lower in animal infused with PN and 23±7% with peroxides generated in PN. The inhibition by peroxides was associated with oxidized redox potential and was reversible by DTT. Correction of redox potential (PN+GSSG) or DTT was without effect on the inhibition of MAT by PN. The slope of the linear relation between MAT activity and redox potential was two fold lower in animal infused with PN than in others groups. Conclusion The present study suggests that prevention of peroxide generation in PN and/or correction of the redox potential by adding glutathione in PN are not sufficient, at least in newborn guinea pigs, to restore normal MAT activity. PMID:26722840

  9. Investigation of electroacupuncture and manual acupuncture on carnitine and glutathione in muscle.

    PubMed

    Toda, Shizuo

    2011-01-01

    Electroacupuncture (EA) and manual acupuncture (MA) have therapeutic effects on muscle fatigue in muscle disease. The deficiencies of carnitine and glutathione induce muscle fatigue. This report investigated the effects of EA and MA on carnitine and glutathione in muscle. After the mice of EA group were fixed in the animal cage, right Zusanli (ST36) and Jiexi (ST41) were acupunctured and stimulated with uniform reinforcing and reducing method by twirling the acupuncture needle for 15 min. And then, the needle handles were connected to an electric stimulator for stimulating the acupoint with dense-sparse waves. After the mice of MA group were fixed in an animal cage, right ST36 and ST41 were acupunctured and allowed for 15 min. The mice of normal control group were not acupunctured and stimulated for 15 min. The mice of all groups were killed for collecting muscle tissue 1 h after the final treatment. Carnitine and glutathione in homogenate of muscle tissue were determined with carnitine (Kainos Laboratories Co., Tokyo, Japan) and glutathione assay kit (Dojin Chemicals Co., Kumamoto, Japan). Carnitine level in muscle tissue of MA group was significantly higher than those of EA group and normal control group. Carnitine level in muscle tissue of EA group was not significantly different from that of normal control group. Glutathione levels in muscle tissue of EA group and MA group were significantly higher than that of normal control group. This report presented that carnitine in muscle is increased by MA, and not increased by EA, and that glutathione in muscle is increased by EA and MA.

  10. Depletion of a discrete nuclear glutathione pool by oxidative stress, but not by buthionine sulfoximine. Correlation with enhanced alkylating agent cytotoxicity to human melanoma cells in vitro.

    PubMed

    Jevtović-Todorović, V; Guenthner, T M

    1992-10-06

    The existence of a distinct pool of glutathione in the nucleus of cultured human melanoma cells was demonstrated. Melanoma cell nuclei contained 13-35 pmol of glutathione/10(6) nuclei, or approximately 0.4-1.3% of the total cellular glutathione. This nuclear glutathione pool resisted depletion by buthionine sulfoximine, an agent that inhibits glutathione synthesis, but was rapidly and reversibly depleted by subtoxic concentrations of Adriamycin plus carmustine, two agents that promote oxidation of glutathione without permitting its regeneration through enzymatic reduction of glutathione disulfide. The ability of Adriamycin plus carmustine to deplete this small but significant pool of glutathione in the cell nucleus may explain why these agents potentiate the cytotoxic effects of the DNA-alkylating agent melphalan to a much higher degree than does buthionine sulfoximine at concentrations that are equipotent in depleting cytosolic glutathione.

  11. Enantioselective induction of a glutathione-S-transferase, a glutathione transporter and an ABC transporter in maize by Metolachlor and its (S)-isomer.

    PubMed

    Pang, Sen; Ran, Zhaojin; Liu, Zhiqian; Song, Xiaoyu; Duan, Liusheng; Li, Xuefeng; Wang, Chengju

    2012-01-01

    The metabolism of chiral herbicides in plants remains poorly understood. Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by rac- and S-metolachlor of the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect of rac- and S-metolachlor on the expression of ZmGST27 and ZmGT1 is comparable. However, the inducing effect of rac-metolachlor on ZmMRP1 expression is more pronounced than that of S-metolachlor. Furthermore, vanadate, an ABC transporter inhibitor, could greatly reduce the difference in herbicidal activity between rac- and S-metolachlor. These results suggest that the ABC transporters may preferentially transport conjugates of rac-metolachlor, leading to a faster metabolism of the latter. Through comparing the expression of ZmGST27, ZmMRP1 and ZmGT1 after treatment by rac- and S-metolachlor, we provide novel insights into the metabolic processes of chiral herbicides in plants.

  12. Enantioselective Induction of a Glutathione-S-Transferase, a Glutathione Transporter and an ABC Transporter in Maize by Metolachlor and Its (S)-Isomer

    PubMed Central

    Liu, Zhiqian; Song, Xiaoyu; Duan, Liusheng; Li, Xuefeng; Wang, Chengju

    2012-01-01

    The metabolism of chiral herbicides in plants remains poorly understood. Glutathione conjugation reactions are one of the principal mechanisms that plants utilize to detoxify xenobiotics. The induction by rac- and S-metolachlor of the expression of three genes, ZmGST27, ZmGT1 and ZmMRP1, encoding respectively a glutathione-S-transferase, a glutathione transporter and an ATP-binding cassette (ABC) transporter was studied in maize. The results demonstrate that the inducing effect of rac- and S-metolachlor on the expression of ZmGST27 and ZmGT1 is comparable. However, the inducing effect of rac-metolachlor on ZmMRP1 expression is more pronounced than that of S-metolachlor. Furthermore, vanadate, an ABC transporter inhibitor, could greatly reduce the difference in herbicidal activity between rac- and S-metolachlor. These results suggest that the ABC transporters may preferentially transport conjugates of rac-metolachlor, leading to a faster metabolism of the latter. Through comparing the expression of ZmGST27, ZmMRP1 and ZmGT1 after treatment by rac- and S-metolachlor, we provide novel insights into the metabolic processes of chiral herbicides in plants. PMID:23144728

  13. Microplate quantification of enzymes of the plant ascorbate-glutathione cycle.

    PubMed

    Murshed, Ramzi; Lopez-Lauri, Félicie; Sallanon, Huguette

    2008-12-15

    Here, we describe microplate assays for determining the specific activities of four enzymes that constitute the ascorbate-glutathione cycle: APX, MDHAR, DHAR, and GR. In plants, these enzymes play a major role in detoxifying reactive oxygen species produced in cells under environmental stress. This work presents the development of plate reader assays to allow rapid analysis of the ascorbate-glutathione cycle activity using tomato fruits subjected to salt stress as a model. With this method, it is possible to analyze easily in one day the activities of the four enzymes for 30 experimental samples, all in triplicate and with blanks.

  14. Probing the binding of trypsin to glutathione-stabilized gold nanoparticles in aqueous solution.

    PubMed

    Wang, Gongke; Liu, Xingbing; Yan, Changling; Bai, Guangyue; Lu, Yan

    2015-11-01

    We investigate the interaction of trypsin with glutathione-stabilized Au nanoparticles (NPs) using fluorescence, synchronous fluorescence and ultraviolet (UV) absorption spectroscopy. We find that trypsin binds strongly to the Au NPs with a static quenching mechanism, and that the interaction is characteristic of positive cooperative binding. Furthermore, we determine the binding constants and the thermodynamic parameters, which suggest that the main binding forces between the glutathione-stabilized Au NPs and trypsin are electrostatic interactions and hydrogen bonding. Analysis of UV-vis absorption spectra suggests that aggregation of the Au NPs occurs in the trypsin/Au NPs system, which significantly alters the conformation of the protein.

  15. Crystal and solution structural studies of mouse phospholipid hydroperoxide glutathione peroxidase 4

    PubMed Central

    Janowski, Robert; Scanu, Sandra; Niessing, Dierk; Madl, Tobias

    2016-01-01

    The mammalian glutathione peroxidase (GPx) family is a key component of the cellular antioxidative defence system. Within this family, GPx4 has unique features as it accepts a large class of hydroperoxy lipid substrates and has a plethora of biological functions, including sperm maturation, regulation of apoptosis and cerebral embryogenesis. In this paper, the structure of the cytoplasmic isoform of mouse phospholipid hydroperoxide glutathione peroxidase (O70325-2 GPx4) with selenocysteine 46 mutated to cysteine is reported solved at 1.8 Å resolution using X-ray crystallography. Furthermore, solution data of an isotope-labelled GPx protein are presented. PMID:27710939

  16. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase.

    PubMed

    Govindarajan, Sridhar; Mannervik, Bengt; Silverman, Joshua A; Wright, Kathy; Regitsky, Drew; Hegazy, Usama; Purcell, Thomas J; Welch, Mark; Minshull, Jeremy; Gustafsson, Claes

    2015-03-20

    We have used design of experiments (DOE) and systematic variance to efficiently explore glutathione transferase substrate specificities caused by amino acid substitutions. Amino acid substitutions selected using phylogenetic analysis were synthetically combined using a DOE design to create an information-rich set of gene variants, termed infologs. We used machine learning to identify and quantify protein sequence-function relationships against 14 different substrates. The resulting models were quantitative and predictive, serving as a guide for engineering of glutathione transferase activity toward a diverse set of herbicides. Predictive quantitative models like those presented here have broad applicability for bioengineering.

  17. Covalent interaction of dehydroretronecine, a carcinogenic metabolite of the pyrrolizidine alkaloid monocrotaline, with cysteine and glutathione.

    PubMed

    Robertson, K A; Seymour, J L; Hsia, M T; Allen, J R

    1977-09-01

    The covalent interaction of dehydroretronecine, a carcinogenic metabolite of the pyrrolizidine alkaloid monocrotaline, with cysteine and glutathione, has been investigated. Dehydroretronecine was allowed to react with cysteine and glutathione in an in vitro system of phosphate buffer solutions. The reaction products were identified structurally by chromatographic, nuclear magnetic resonance, infrared, ultraviolet, and mass-spectral analysis. These data indicate that the reaction products are the sulfhydryl-linked 7-thiocysteine-dehydroretronecine and 7-thioglutathione-dehydroretronecine. Active alkylation of sulfhydryl groups is a possible mechanism by which these alkaloids interact with cellular components.

  18. Genetic Variations in Human Glutathione Transferase Enzymes: Significance for Pharmacology and Toxicology

    PubMed Central

    Josephy, P. David

    2010-01-01

    Glutathione transferase enzymes (GSTs) catalyze reactions in which electrophiles are conjugated to the tripeptide thiol glutathione. While many GST-catalyzed transformations result in the detoxication of xenobiotics, a few substrates, such as dihaloalkanes, undergo bioactivation to reactive intermediates. Many molecular epidemiological studies have tested associations between polymorphisms (especially, deletions) of human GST genes and disease susceptibility or response to therapy. This review presents a discussion of the biochemistry of GSTs, the sources—both genetic and environmental—of interindividual variation in GST activities, and their implications for pharmaco- and toxicogenetics; particular attention is paid to the Theta class GSTs. PMID:20981235

  19. Nuclear factor erythroid 2-related factor 2 facilitates neuronal glutathione synthesis by upregulating neuronal excitatory amino acid transporter 3 expression.

    PubMed

    Escartin, Carole; Won, Seok Joon; Malgorn, Carole; Auregan, Gwennaelle; Berman, Ari E; Chen, Pei-Chun; Déglon, Nicole; Johnson, Jeffrey A; Suh, Sang Won; Swanson, Raymond A

    2011-05-18

    Astrocytes support neuronal antioxidant capacity by releasing glutathione, which is cleaved to cysteine in brain extracellular space. Free cysteine is then taken up by neurons through excitatory amino acid transporter 3 [EAAT3; also termed Slc1a1 (solute carrier family 1 member 1)] to support de novo glutathione synthesis. Activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive element (ARE) pathway by oxidative stress promotes astrocyte release of glutathione, but it remains unknown how this release is coupled to neuronal glutathione synthesis. Here we evaluated transcriptional regulation of the neuronal cysteine transporter EAAT3 by the Nrf2-ARE pathway. Nrf2 activators and Nrf2 overexpression both produced EAAT3 transcriptional activation in C6 cells. A conserved ARE-related sequence was found in the EAAT3 promoter of several mammalian species. This ARE-related sequence was bound by Nrf2 in mouse neurons in vivo as observed by chromatin immunoprecipitation. Chemical activation of the Nrf2-ARE pathway in mouse brain increased both neuronal EAAT3 levels and neuronal glutathione content, and these effects were abrogated in mice genetically deficient in either Nrf2 or EAAT3. Selective overexpression of Nrf2 in brain neurons by lentiviral gene transfer was sufficient to upregulate both neuronal EAAT3 protein and glutathione content. These findings identify a mechanism whereby Nrf2 activation can coordinate astrocyte glutathione release with neuronal glutathione synthesis through transcriptional upregulation of neuronal EAAT3 expression.

  20. Oxidative-stress detoxification and signalling in cyanobacteria: the crucial glutathione synthesis pathway supports the production of ergothioneine and ophthalmate.

    PubMed

    Narainsamy, Kinsley; Farci, Sandrine; Braun, Emilie; Junot, Christophe; Cassier-Chauvat, Corinne; Chauvat, Franck

    2016-04-01

    Using genetics and metabolomics we investigated the synthesis (gshA and gshB genes) and catabolism (ggt) of the conserved antioxidant glutathione in the model cyanobacterium Synechocystis PCC6803. These three genes are crucial to Synechocystis, in agreement with the proposed invention of glutathione by ancient cyanobacteria to protect themselves against the toxicity of oxygen they produced through photosynthesis. Consistent with their indispensability, gshA and gshB also operate in the production of another antioxidant, ergothioneine, as well as of the glutathione analogues ophthalmate and norophthalmate. Furthermore, we show that glutathione, ophthalmate and norophthalmate are accumulated in cells stressed by glucose, and that the two glutathione-dependent glyoxalase enzymes operate in the protection against glucose and its catabolite methylglyoxal. These findings are interesting because ophthalmate and norophthalmate were observed only in mammals so far, where ophthalmate is regarded as a biomarker of glutathione depletion. Instead, our data suggest that ophthalmate and norophthalmate are stress-induced markers of cysteine depletion triggered by its accelerated incorporation into glutathione, to face its increased demand for detoxification purposes. Hence, Synechocystis is an attractive model for the analysis of the role of glutathione, ergothioneine, ophthalmate and norophthalmate, in signalling and detoxification of oxidants and metabolic by-products.

  1. Molecular mimicry between cockroach and helminth glutathione S-transferases promotes cross-reactivity and cross-sensitization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extensive similarities between helminth proteins and allergens are thought to contribute to helminth-driven allergic sensitization. We investigated the molecular and structural similarities between Bla g 5, a major glutathione-S transferase (GST) allergen of cockroaches, and the GST of Wucherer...

  2. Effect of cigarette smoke extract on the polymorphonuclear leukocytes chemiluminescence: influence of a filter containing glutathione.

    PubMed

    Zappacosta, B; Persichilli, S; Minucci, A; Fasanella, S; Scribano, D; Giardina, B; De Sole, P

    2005-01-01

    Cigarette smoking is known to be a risk factor for several chronic and neoplastic diseases. Many compounds formed by cigarette burning, ranging from particulate materials to water solutes and gaseous extracts, are considered to be noxious agents, and many biochemical and molecular mechanisms have been proposed for the toxic effects of cigarette smoke. The oral cavity and the upper respiratory tract represent the first contact areas for smoke compounds; even a single cigarette can produce marked effects on some components of the oral cavity, either chemical compounds, such as glutathione and enzymes, or cellular elements, such as polymorphonuclear leukocytes. Several studies suggest a protective role of glutathione against the noxious effects of tobacco smoke; the sulphydril groups of glutathione, in fact, could react with some smoke products, such as unsaturated aldehydes, leading to the formation of harmless intermediate compounds and simultaneously preventing the inactivation of metabolically essential molecules, such as some enzymes. In this paper we analyse the effect of a filter containing glutathione on the respiratory burst of polymorphonuclear leukocytes exposed to aqueous extract of cigarette smoke, measuring their chemiluminescence activity. The results of this paper indicate that the GSH-containing filter has a likely protective effect against the inhibition of cigarette smoke extract on polymorphonuclear leukocyte activity.

  3. Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi

    SciTech Connect

    Singh, Anchal; Rathaur, Sushma . E-mail: sushmarathaur@yahoo.com

    2005-06-17

    Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass {approx}20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/{mu}g of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite.

  4. Glutathione: A Benign Alternative for the Synthesis of Nanomaterials and Magnetically Separable Organocatalyst in Water

    EPA Science Inventory

    Glutathione, a completely benign ubiquitous tripeptide, has been used as a reducing agent for the expeditious synthesis of various metal nanoparticles including Ag, Au, Pd and Pt under microwave irradiation conditions in less than one minute. The particles sizes were found to be ...

  5. Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, Ascorbate (Asc) and glutathione (GSH) concentrations were non-invasively quantified using double edited 1H MRS at 4T in the occipital cortex of healthy young(age 18 – 22 years, N = 22) and elderly (age 70 – 89 years, N = 22) human subjects. Elderly subjects had a lower GSH concentrati...

  6. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system

    PubMed Central

    Baxter, Paul S.; Bell, Karen F.S.; Hasel, Philip; Kaindl, Angela M.; Fricker, Michael; Thomson, Derek; Cregan, Sean P.; Gillingwater, Thomas H.; Hardingham, Giles E.

    2015-01-01

    How the brain's antioxidant defenses adapt to changing demand is incompletely understood. Here we show that synaptic activity is coupled, via the NMDA receptor (NMDAR), to control of the glutathione antioxidant system. This tunes antioxidant capacity to reflect the elevated needs of an active neuron, guards against future increased demand and maintains redox balance in the brain. This control is mediated via a programme of gene expression changes that boosts the synthesis, recycling and utilization of glutathione, facilitating ROS detoxification and preventing Puma-dependent neuronal apoptosis. Of particular importance to the developing brain is the direct NMDAR-dependent transcriptional control of glutathione biosynthesis, disruption of which can lead to degeneration. Notably, these activity-dependent cell-autonomous mechanisms were found to cooperate with non-cell-autonomous Nrf2-driven support from astrocytes to maintain neuronal GSH levels in the face of oxidative insults. Thus, developmental NMDAR hypofunction and glutathione system deficits, separately implicated in several neurodevelopmental disorders, are mechanistically linked. PMID:25854456

  7. Preserving effects of melatonin on the levels of glutathione and malondialdehyde in rats exposed to irradiation.

    PubMed

    Yildirim, O; Comoğlu, S; Yardimci, S; Akmansu, M; Bozkurt, G; Sürücü, S

    2008-03-01

    In this study we investigated whether pretreatment with melatonin was protective against the injury of the central nervous system (CNS) in rats receiving LD(50) whole body irradiation. The wistar rats were randomized into four groups: i) the control group (CG), ii) melatonin-administered group (MG; 1 mg/kg body weight), iii) irradiated group (RG; 6.75 Gy, one dose), and iv) melatonin-administered and irradiated group (MRG). Blood samples were drawn from the rats 24 h after the treatment and plasma glutathione levels were assayed. Plasma glutathione level was significantly higher in RG than CG. The melatonin pretreatment prevented GSH increase induced by irradiation. Lipid peroxidation and glutathione levels of rat cerebral cortex were determined in all groups after 24 h. Cortical malondialdehyde (MDA) was significantly higher in the RG. The melatonin pretreatment prevented cortical MDA increase induced by irradiation. Cortical GSH was significantly lower in RG than the CG. The melatonin pretreatment prevented cortical GSH decrease induced by irradiation. Tissue samples were obtained from cerebral cortex and hypothalamus which also were affected by ionizing irradiation in the CNS and were evaluated with electron microscopy. Histopathological findings showed that LD(50) whole body irradiation resulted in damage of the neuronal cells of CNS. The results obtained from this study demonstrated that pretreatment with melatonin prevented the damage that develops in CNS following irradiation. The beneficial effect of melatonin can be related to protection of the CNS from oxidative injury and preventing the decrease in the level of cortical glutathione.

  8. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  9. Characterization of Affinity-Purified Isoforms of Acinetobacter calcoaceticus Y1 Glutathione Transferases

    PubMed Central

    Chee, Chin-Soon; Tan, Irene Kit-Ping; Alias, Zazali

    2014-01-01

    Glutathione transferases (GST) were purified from locally isolated bacteria, Acinetobacter calcoaceticus Y1, by glutathione-affinity chromatography and anion exchange, and their substrate specificities were investigated. SDS-polyacrylamide gel electrophoresis revealed that the purified GST resolved into a single band with a molecular weight (MW) of 23 kDa. 2-dimensional (2-D) gel electrophoresis showed the presence of two isoforms, GST1 (pI 4.5) and GST2 (pI 6.2) with identical MW. GST1 was reactive towards ethacrynic acid, hydrogen peroxide, 1-chloro-2,4-dinitrobenzene, and trans,trans-hepta-2,4-dienal while GST2 was active towards all substrates except hydrogen peroxide. This demonstrated that GST1 possessed peroxidase activity which was absent in GST2. This study also showed that only GST2 was able to conjugate GSH to isoproturon, a herbicide. GST1 and GST2 were suggested to be similar to F0KLY9 (putative glutathione S-transferase) and F0KKB0 (glutathione S-transferase III) of Acinetobacter calcoaceticus strain PHEA-2, respectively. PMID:24892084

  10. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glutathione (GSH) plays an important role in maintaining redox homeostasis inside cells. Currently, there are no methods available to quantitatively assess the GSH concentration in live cells. Live cell fluorescence imaging revolutionized the understanding of cell biology and has become an indispens...

  11. Glutathione Responsive Hyaluronic Acid Nanocapsules Obtained by Bioorthogonal Interfacial "Click" Reaction.

    PubMed

    Baier, Grit; Fichter, Michael; Kreyes, Andreas; Klein, Katja; Mailänder, Volker; Gehring, Stephan; Landfester, Katharina

    2016-01-11

    Azide-functionalized hyaluronic acid and disulfide dialkyne have been used for "click" reaction polymerization at the miniemulsion droplets interface leading to glutathione responsive nanocapsules (NCs). Inverse miniemulsion polymerization was chosen, due to its excellent performance properties, for example, tuning of size and size distribution, shell thickness/density, and high pay loading efficiency. The obtained size, size distribution, and encapsulation efficiency were checked via fluorescent spectroscopy, and the tripeptide glutathione was used to release an encapsulated fluorescent dye after cleavage of the nanocapsules shell. To show the glutathione-mediated intracellular cleavage of disulfide-containing NC shells, CellTracker was encapsulated into the nanocapsules. The cellular uptake in dendritic cells and the cleavage of the nanocapsules in the cells were studied using confocal laser scanning microscopy. Because of the mild reaction conditions used during the interfacial polymerization and the excellent cleavage properties, we believe that the synthesis of glutathione responsive hyaluronic acid NCs reported herein are of high interest for the encapsulation and release of sensitive compounds at high yields.

  12. Correlation between Glutathione Peroxidase Activity and Anthropometrical Parameters in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Ordonez, F. J.; Rosety-Rodriguez, M.

    2007-01-01

    Since we have recently found that regular exercise increased erythrocyte antioxidant enzyme activities such as glutathione peroxidase (GPX) in adolescents with Down syndrome, these programs may be recommended. This study was designed to assess the role of anthropometrical parameters as easy, economic and non-invasive biomarkers of GPX. Thirty-one…

  13. Identification of quinone imine containing glutathione conjugates of diclofenac in rat bile.

    PubMed

    Waldon, Daniel J; Teffera, Yohannes; Colletti, Adria E; Liu, Jingzhou; Zurcher, Danielle; Copeland, Katrina W; Zhao, Zhiyang

    2010-12-20

    High-resolution accurate MS with an LTQ-Orbitrap was used to identify quinone imine metabolites derived from the 5-hydroxy (5-OH) and 4 prime-hydroxy (4'-OH) glutathione conjugates of diclofenac in rat bile. The initial quinone imine metabolites formed by oxidation of diclofenac have been postulated to be reactive intermediates potentially involved in diclofenac-mediated hepatotoxicity; while these metabolites could be formed using in vitro systems, they have never been detected in vivo. This report describes the identification of secondary quinone imine metabolites derived from 5-OH and 4'-OH diclofenac glutathione conjugates in rat bile. To verify the proposed structures, the diclofenac quinone imine GSH conjugate standards were prepared synthetically and enzymatically. The novel metabolite peaks displayed the identical retention times, accurate mass MS/MS spectra, and the fragmentation patterns as the corresponding authentic standards. The formation of these secondary quinone metabolites occurs only under conditions where bile salt homeostasis was experimentally altered. Standard practice in biliary excretion experiments using bile duct-cannulated rats includes infusion of taurocholic acid and/or other bile acids to replace those lost due to continuous collection of bile; for this experiment, the rats received no replacement bile acid infusion. High-resolution accurate mass spectrometry data and comparison with chemically and enzymatically prepared quinone imines of diclofenac glutathione conjugates support the identification of these metabolites. A mechanism for the formation of these reactive quinone imine containing glutathione conjugates of diclofenac is proposed.

  14. Oxidative stress and glutathione response in tissue cultures from persons with major depression.

    PubMed

    Gibson, Sara A; Korade, Željka; Shelton, Richard C

    2012-10-01

    There is evidence that major depressive disorder (MDD) is associated with increased peripheral markers of oxidative stress. To explore oxidation and antioxidant response in MDD, we assayed human dermal fibroblast cultures derived from skin biopsies of age-, race-, and sex-matched individuals in depressed and normal control groups (n = 16 each group), cultured in glucose and galactose conditions, for relative protein carbonylation (a measure of oxidative stress), glutathione reductase (GR) expression, and total glutathione concentration. In control-group fibroblasts, galactose induced a significant increase from the glucose condition in both protein carbonylation and GR. The cells from the MDD group showed total protein carbonylation and GR expression in the glucose condition that was significantly higher than control cells in glucose and equivalent to controls in galactose. There was a small decrease in protein carbonylation in MDD cells from glucose to galactose and no significant change in GR. There was no difference in total glutathione among any of the groups. Increased protein carbonylation and GR expression, cellular responses to oxidative stress induced by galactose in control fibroblasts, are present in fibroblasts derived from MDD patients and are not explainable by reduced GR or total glutathione in the depressed patients. These studies support the role of oxidative stress in the pathophysiology of MDD. Further confirmation of these findings could lead to the development of novel antioxidant approaches for the treatment of depression.

  15. Biomimetic 'Green' Synthesis of Nanomaterials Using Antioxidants-Vitamins, Glutathione and Polyphenols from Tea and Wine

    EPA Science Inventory

    The presentation summarizes our recent activity in chemical synthesis of nanomaterials via benign biomimetic ‘greener’ alternatives,1 such as the use antioxidants present in a variety of natural products, and ubiquitous glutathione in aqueous media.2 Vitamins B1, B2, C, and tea ...

  16. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.

  17. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  18. [Pineal gland glutathione peroxidase activity in rats and its age-associated change].

    PubMed

    Razygraev, A V

    2010-01-01

    Glutathione peroxidase activity has been studied in the pineal gland (epiphysis) of young and aging female Wistar rats (2-4 and 17-19 month old). For comparison the same activity was studied in the pyramids of medulla oblongata and in the olfactory tubercle. These two brain structures represent white and gray matter respectively. The determination of the activity was performed with H2O2 as a substrate and with 5,5'-dithio-bis-(2-nitrobenzoic acid) for estimation of the decrease of restored form of glutathione concentration. The glutathione peroxidase activity was higher in the pineal gland than in the brain structures used. Pineal glutathione peroxidase activities (micromole of GSH per minute per milligram of protein, M +/- m) in young and old rats were 1,52 +/- 0,07 and 1,27 +/- 0,06 respectively (p<0,05). The potential reason for the declined enzymatic activity found in the aged rats is the age-associated decrease of the selenium content in the pineal gland. The decline found may be one of the reflections of the pineal gland functional involution.

  19. Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury.

    PubMed

    Heyob, Kathryn M; Rogers, Lynette K; Welty, Stephen E

    2008-12-01

    Exposure of the lung epithelium to reactive oxygen species without adequate antioxidant defenses leads to airway inflammation, and may contribute to lung injury. Glutathione peroxidase catalyzes the reduction of peroxides by oxidation of glutathione (GSH) to glutathione disulfide (GSSG), which can in turn be reduced by glutathione reductase (GR). Increased levels of GSSG have been shown to correlate negatively with outcome after oxidant exposure, and increased GR activity has been protective against hyperoxia in lung epithelial cells in vitro. We tested the hypothesis that increased GR expression targeted to type II alveolar epithelial cells would improve outcome in hyperoxia-induced lung injury. Human GR with a mitochondrial targeting sequence was targeted to mouse type II cells using the SPC promoter. Two transgenic lines were identified, with Line 2 having higher lung GR activities than Line 1. Both transgenic lines had lower lung GSSG levels and higher GSH/GSSG ratios than wild-type. Six-week-old wild-type and transgenic mice were exposed to greater than 95% O2 or room air (RA) for 84 hours. After exposure, Line 2 mice had higher right lung/body weight ratios and lavage protein concentrations than wild-type mice, and both lines 1 and 2 had lower GSSG levels than wild-type mice. These findings suggest that GSSG accumulation in the lung may not play a significant role in the development of hyperoxic lung injury, or that compensatory responses to unregulated GR expression render animals more susceptible to hyperoxic lung injury.

  20. Site Directed Mutagenesis of Schizosaccharomyces pombe Glutathione Synthetase Produces an Enzyme with Homoglutathione Synthetase Activity

    PubMed Central

    Dworeck, Tamara; Zimmermann, Martin

    2012-01-01

    Three different His-tagged, mutant forms of the fission yeast glutathione synthetase (GSH2) were derived by site-directed mutagenesis. The mutant and wild-type enzymes were expressed in E. coli DH5α and affinity purified in a two-step procedure. Analysis of enzyme activity showed that it was possible to shift the substrate specificity of GSH2 from Gly (km 0,19; wild-type) to β-Ala or Ser. One mutation (substitution of Ile471, Cy472 to Met and Val and Ala 485 and Thr486 to Leu and Pro) increased the affinity of GSH2 for β-Ala (km 0,07) and lowered the affinity for Gly (km 0,83), which is a characteristic of the enzyme homoglutathione synthetase found in plants. Substitution of Ala485 and Thr486 to Leu and Pro only, increased instead the affinity of GSH2 for Ser (km 0,23) as a substrate, while affinity to Gly was preserved (km 0,12). This provides a new biosynthetic pathway for hydroxymethyl glutathione, which is known to be synthesized from glutathione and Ser in a reaction catalysed by carboxypeptidase Y. The reported findings provide further insight into how specific amino acids positioned in the GSH2 active site facilitate the recognition of different amino acid substrates, furthermore they support the evolutionary theory that homoglutathione synthetase evolved from glutathione synthetase by a single gene duplication event. PMID:23091597

  1. Tc-Glutathione Complex (Tc -GSH) : Labelling, Chemical Characterization and Biodistribution in Rats

    PubMed Central

    Moretti, J. L.; Weinmann, P.; Senekowitsch-Schmidtke, R.; Ercan, M. T.

    1999-01-01

    The chemical structure of 99mTc-GSH has been estabilished using the 99Tc isotope. Labeling of glutathione with technetium in the presence of stanous chloride gave a high yield result. In a comparative study between 99Tc and 99Tc glutathione, the Tc-GSH complex obtained was purified and characterized by uv, visible spectroscopy, HPLC, Biogel chromatography, mass and NMR spectroscopy. Stoichiometric analysis showed a 2 : 1 molar ratio of GSH/Tc for the reaction. The molecular mass assessed by mass spectroscopy was 727 Da corresponding to an oxo(bis) glutathione technetate. NMR studies demonstrated that each glutathione molecule was coordinated to technetium via cysteinyl sulfur and nitrogen atoms. The biodistribution of the complex was studied in normal rats. Blood clearance was rapid during the first hour involving a biexponential curve ( t1/2 (1) : 50 min, t1/2 (2) : 400 min ). No radioactive accumulation was found in any specific organ except kidney and bladder. All the activity excreted was found unchanged in urine. In conclusion, Tc-GSH displayed an anionic dimer form as GSH-Tc-GSH. We assume that the complex is a tetradentate (2N,2S) complex containing a pentavalent technetium coordinated by two thiol and nitrogen atoms of both GSH ligands, and an apical oxo group. PMID:18475909

  2. Reactions of nitrosonitrobenzenes with biological thiols: identification and reactivity of glutathion-S-yl conjugates.

    PubMed

    Ellis, M K; Hill, S; Foster, P M

    1992-04-15

    1,3-Dinitrobenzene (1,3-DNB) but not 1,2-dinitrobenzene (1,2-DNB) or 1,4-dinitrobenzene (1,4-DNB) is a potent testicular toxicant in rats. In vitro metabolism studies have established that 1,3-DNB is reduced to 3-nitroso-nitrobenzene (3-NNB), 3-nitrophenylhydroxylamine (3-NP) and 3-nitroaniline (3-NA) in testicular cytosol and Sertoli cell cultures. To establish a potential role for endogenous glutathione (GSH) in the detoxification of the electrophilic metabolite 3-NNB, we examined the chemical reaction of this compound with biological thiols, including GSH. The effect of pH and thiol concentration upon the reaction were studied. The reaction of GSH with 3-NNB was complex and gave three distinct products. These were identified as 3-NP, 3-NA and a glutathionyl derivative containing a covalently linked S-N bond. The hydroxyl amine and the amine were isolated and fully characterised. The glutathion-S-yl derivative was characterised in solution by proton NMR (400 MHz), infra-red and mass spectroscopy to establish its structure as the semimercaptal, N-(glutathion-S-yl)-N-hydroxy-3-nitroaniline (GSNOH-3NA). Similar reactions were performed with 4-nitrosonitrobenzene (4-NNB) to ascertain the reactivity of this chemical towards thiols. The addition of GSH to 4-NNB resulted in the rapid formation of 4-nitrophenylhydroxylamine (4-NP) and an adduct that was identified as the semimercaptal N-(glutathion-S-yl)-N-hydroxy-4-nitroaniline (GSNOH-4NA).

  3. The concentration of ascorbic acid and glutathione in 13 provenances of Acacia melanoxylon.

    PubMed

    Wujeska-Klause, Agnieszka; Bossinger, Gerd; Tausz, Michael

    2016-04-01

    Climate change can negatively affect sensitive tree species, affecting their acclimation and adaptation strategies. A common garden experiment provides an opportunity to test whether responses of trees from different provenances are genetically driven and if this response is related to factors at the site of origin. We hypothesized that antioxidative defence systems and leaf mass area ofAcacia melanoxylonR. Br. samples collected from different provenances will vary depending on local rainfall. Thirteen provenances ofA. melanoxylonoriginating from different rainfall habitats (500-2000 mm) were grown for 5 years in a common garden. For 2 years, phyllode samples were collected during winter and summer, for measurements of leaf mass area and concentrations of glutathione and ascorbic acid. Leaf mass area varied between seasons, years and provenances ofA. melanoxylon, and an increase was associated with decreasing rainfall at the site of origin. Ascorbic acid and glutathione concentrations varied between seasons, years (i.e., environmental factors) and among provenances ofA. melanoxylon In general, glutathione and ascorbic acid concentrations were higher in winter compared with summer. Ascorbic acid and glutathione were different among provenances, but this was not associated with rainfall at the site of origin.

  4. Effects of commercial selenium products on glutathione peroxidase activity and semen quality in stud boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to determine how dietary supplementation of inorganic and organic selenium affects selenium concentration and glutathione peroxidase activity in blood and sperm of sexually mature stud boars. Twenty-four boars of the Large White, Landrace, Pietrain, and Duroc breeds of opt...

  5. [Change in glutathione content in rat thymocytes under apoptosis induced by H2O2 or irradiation].

    PubMed

    Koval', T V; Nazarova, O O; Matyshevs'ka, O P

    2008-01-01

    Glutathione (GSH) content as well as GSH-peroxidase and GSH-reductase activity in isolated rat thymocytes X-irradiated in a dose of 4.5 Gy or treated with 0.1 mM H2O2 were studied in a period preceding the appearance of apoptosis morphological symptoms. The early adaptive response of thymocytes to radiation - increase of both GSH content and glutathione peroxidase and glutathione reductase activity was revealed. On the contrary the rapid fall of GSH level in H2O2-treated thymocytes was observed simultaneousely with glutathione reductase inhibition and enhanced GSH consumption by glutathione peroxidase, this disbalance of GSH-dependent antioxidant system probably facilitates mitochondrial way of apoptosis.

  6. Responses of carp hepatopancreatic 7-ethoxyresorufin-O-deethylase and glutathione-dependent enzymes to organic pollutants -- a field study

    SciTech Connect

    Machala, M.; Nezveda, K.; Ulrich, R.; Petrivalsky, M.; Dusek, L.; Placka, V.; Svobodova, Z.

    1997-07-01

    Modulations of hepatopancreatic activities of cytochrome P450IA (CYPIA) and glutathione-dependent enzymes were investigated in carp collected in five ponds with different levels of contamination. The CYPIA-dependent 7-ethoxyresorufin-O-deethylase activity was markedly induced by polycyclic aromatic hydrocarbons present in the sediment at a total concentration of 0.9 mg/kg. Even a low organic contamination increased some of the glutathione-dependent enzymatic activities, namely cytosolic glutathione reductase, glutathione S-transferase toward 1-chloro-2,4-dinitrobenzene, ethacrynic acid and 1,2-epoxy-3-(p-nitrophenoxy)propane, and microsomal glutathione S-transferase. These parameters should be considered as potential tools for the biomonitoring of exposure to chemicals and/or impacts of exposure. An example of a multivariate cluster and discriminant analysis of the obtained analytical and biochemical data proved to be very effective tools for the characterization of the level of contamination.

  7. 1'-Acetoxychavicol acetate-induced cytotoxicity is accompanied by a rapid and drastic modulation of glutathione metabolism.

    PubMed

    Higashida, Mami; Xu, Shenghui; Kojima-Yuasa, Akiko; Kennedy, David Opare; Murakami, Akira; Ohigashi, Hajime; Matsui-Yuasa, Isao

    2009-01-01

    The effect of 1'-acetoxychavicol acetate (ACA), an anticarcinogenic compound naturally obtained from rhizomes and seeds of South East Asia plants, on the intracellular concentration of glutathione and the activities of enzymes related to glutathione metabolism was studied in Ehrlich ascites tumor cells. We showed in a previous study that ACA induced apoptosis in tumor cells and the cell death was reversed by the addition of N-acetlycysteine or glutathione ethylester. Here we found that ACA caused a rapid decrease in glutathione level in less than 10 min after ACA exposure. At the time, glutathione reductase activity was significantly inhibited and gamma-glutamyl cysteine increased by ACA exposure. These results show that ACA caused the decrease in the intracellular GSH levels in Ehrlich ascites tumor cells, suggesting that ACA-induced decrease of the cellular GSH levels can lead to growth arrest of cancer and enhancement of the efficacy other anticancer drugs.

  8. Inhibiting lung lining fluid glutathione metabolism with GGsTop as a novel treatment for asthma.

    PubMed

    Tuzova, Marina; Jean, Jyh-Chang; Hughey, Rebecca P; Brown, Lou Ann S; Cruikshank, William W; Hiratake, Jun; Joyce-Brady, Martin

    2014-01-01

    Asthma is characterized by airway inflammation. Inflammation is associated with oxidant stress. Airway epithelial cells are shielded from this stress by a thin layer of lung lining fluid (LLF) which contains an abundance of the antioxidant glutathione. LLF glutathione metabolism is regulated by γ-glutamyl transferase (GGT). Loss of LLF GGT activity in the mutant GGT(enu1) mouse causes an increase in baseline LLF glutathione content which is magnified in an IL-13 model of allergic airway inflammation and protective against asthma. Normal mice are susceptible to asthma in this model but can be protected with acivicin, a GGT inhibitor. GGT is a target to treat asthma but acivicin toxicity limits clinical use. GGsTop is a novel GGT inhibitor. GGsTop inhibits LLF GGT activity only when delivered through the airway. In the IL-13 model, mice treated with IL-13 and GGsTop exhibit a lung inflammatory response similar to that of mice treated with IL-13 alone. But mice treated with IL-13 and GGsTop show attenuation of methacholine-stimulated airway hyper-reactivity, inhibition of Muc5ac and Muc5b gene induction, decreased airway epithelial cell mucous accumulation and a fourfold increase in LLF glutathione content compared to mice treated with IL-13 alone. Mice treated with GGsTop alone are no different from that of mice treated with saline alone, and show no signs of toxicity. GGsTop could represent a valuable pharmacological tool to inhibit LLF GGT activity in pulmonary disease models. The associated increase in LLF glutathione can protect lung airway epithelial cells against oxidant injury associated with inflammation in asthma.

  9. Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2015-01-01

    Human mitochondrial outer membrane protein mitoNEET is a newly discovered target of type II diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane alpha helix tethered to mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters, indicating that the redox active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals. PMID:25645953

  10. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds.

    PubMed

    Tommasi, F; Paciolla, C; de Pinto, M C; De Gara, L

    2001-08-01

    The ascorbate and glutathione systems have been studied during the first stages of germination in orthodox seeds of the gymnosperm Pinus pinea L. (pine). The results indicate that remarkable changes in the content and redox balance of these metabolites occur in both the embryo and endosperm; even if with different patterns for the two redox pairs. Dry seeds are devoid of the ascorbate reduced form (ASC) and contain only dehydroascorbic acid (DHA). By contrast, glutathione is present both in the reduced (GSH) and in the oxidized (GSSG) forms. During imbibition the increase in ASC seems to be mainly caused by the reactivation of its biosynthesis. On the other hand, the GSH rise occurring during the first 24 h seems to be largely due to GSSG reduction, even if GSH biosynthesis is still active in the seeds. The enzymes of the ascorbate--glutathione cycle also change during germination, but in different ways. ASC peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) activities progressively rise both in the embryo and in endosperm. These changes are probably required for counteracting production of reactive oxygen species caused by recovery of oxidative metabolism. The two enzymes involved in the ascorbate recycling, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and DHA reductase (EC 1.8.5.1), show different behaviour: the DHA reductase activity decreases, while that of AFR reductase remains unchanged. The relationship between ascorbate and glutathione metabolism and their relevance in the germination of orthodox seeds are also discussed.

  11. Withanolide A Prevents Neurodegeneration by Modulating Hippocampal Glutathione Biosynthesis during Hypoxia

    PubMed Central

    Baitharu, Iswar; Jain, Vishal; Deep, Satya Narayan; Shroff, Sabita; Sahu, Jayanta Kumar; Naik, Pradeep Kumar; Ilavazhagan, Govindasamy

    2014-01-01

    Withania somnifera root extract has been used traditionally in ayurvedic system of medicine as a memory enhancer. Present study explores the ameliorative effect of withanolide A, a major component of withania root extract and its molecular mechanism against hypoxia induced memory impairment. Withanolide A was administered to male Sprague Dawley rats before a period of 21 days pre-exposure and during 07 days of exposure to a simulated altitude of 25,000 ft. Glutathione level and glutathione dependent free radicals scavenging enzyme system, ATP, NADPH level, γ-glutamylcysteinyl ligase (GCLC) activity and oxidative stress markers were assessed in the hippocampus. Expression of apoptotic marker caspase 3 in hippocampus was investigated by immunohistochemistry. Transcriptional alteration and expression of GCLC and Nuclear factor (erythroid-derived 2)–related factor 2 (Nrf2) were investigated by real time PCR and immunoblotting respectively. Exposure to hypobaric hypoxia decreased reduced glutathione (GSH) level and impaired reduced gluatathione dependent free radical scavenging system in hippocampus resulting in elevated oxidative stress. Supplementation of withanolide A during hypoxic exposure increased GSH level, augmented GSH dependent free radicals scavenging system and decreased the number of caspase and hoescht positive cells in hippocampus. While withanolide A reversed hypoxia mediated neurodegeneration, administration of buthionine sulfoximine along with withanolide A blunted its neuroprotective effects. Exogenous administration of corticosterone suppressed Nrf2 and GCLC expression whereas inhibition of corticosterone synthesis upregulated Nrf2 as well as GCLC. Thus present study infers that withanolide A reduces neurodegeneration by restoring hypoxia induced glutathione depletion in hippocampus. Further, Withanolide A increases glutathione biosynthesis in neuronal cells by upregulating GCLC level through Nrf2 pathway in a corticosterone dependenet manner

  12. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis.

    PubMed

    Lutgendorff, Femke; Trulsson, Lena M; van Minnen, L Paul; Rijkers, Ger T; Timmerman, Harro M; Franzén, Lennart E; Gooszen, Hein G; Akkermans, Louis M A; Söderholm, Johan D; Sandström, Per A

    2008-11-01

    Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress, inflammation, and acinar cell injury during the early phase of AP. Fifty-three male Sprague-Dawley rats were randomly allocated into groups: 1) control, 2) sham procedure, 3) AP with no treatment, 4) AP with probiotics, and 5) AP with placebo. AP was induced under general anesthesia by intraductal glycodeoxycholate infusion (15 mM) and intravenous cerulein (5 microg.kg(-1).h(-1), for 6 h). Daily probiotics or placebo were administered intragastrically, starting 5 days prior to AP. After cerulein infusion, pancreas samples were collected for analysis including lipid peroxidation, glutathione, glutamate-cysteine-ligase activity, histological grading of pancreatic injury, and NF-kappaB activation. The severity of pancreatic injury correlated to oxidative damage (r = 0.9) and was ameliorated by probiotics (1.5 vs. placebo 5.5; P = 0.014). AP-induced NF-kappaB activation was reduced by probiotics (0.20 vs. placebo 0.53 OD(450nm)/mg nuclear protein; P < 0.001). Probiotics attenuated AP-induced lipid peroxidation (0.25 vs. placebo 0.51 pmol malondialdehyde/mg protein; P < 0.001). Not only was AP-induced glutathione depletion prevented (8.81 vs. placebo 4.1 micromol/mg protein, P < 0.001), probiotic pretreatment even increased glutathione compared with sham rats (8.81 vs. sham 6.18 miccromol/mg protein, P < 0.001). Biosynthesis of glutathione (glutamate-cysteine-ligase activity) was enhanced in probiotic-pretreated animals. Probiotics enhanced the biosynthesis of glutathione, which may have reduced activation of inflammation and acinar cell injury and ameliorated experimental AP, via a reduction in oxidative stress.

  13. Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.

    1998-01-01

    Earlier studies reported on the toxicity and related oxidative stress of different forms of Se, including seleno-D,L-methionine, in mallards (Anas platyrhynchos). This study compares the effects of Se (seleno-D,L-methionine) and Hg (methylmercury chloride) separately and in combination. Mallard drakes received one of the following diets: untreated feed (controls), or feed containing 10 ppm Se, 10 ppm Hg, or 10 ppm Se in combination with 10 ppm Hg. After 10 weeks, blood, liver, and brain samples were collected for biochemical assays. The following clinical and biochemical alterations occurred in response to mercury exposure: hematocrit and hemoglobin concentrations decreased; activities of the enzymes glutathione (GSH) peroxidase (plasma and liver), glutathione-S-transferase (liver), and glucose-6-phosphate dehydrogenase (G-6-PDH) (liver and brain) decreased; hepatic oxidized glutathione (GSSG) concentration increased relative to reduced glutathione (GSH); and lipid peroxidation in the brain was evident as detected by increased thiobarbituric reactive substances (TBARS). Effects of Se alone included increased hepatic GSSG reductase activity and brain TBARS concentration. Se in combination with Hg partially or totally alleviated effects of Hg on GSH peroxidase, G-6-PDH, and GSSG. These findings are compared in relation to field observations for diving ducks and other aquatic birds. It is concluded that since both Hg and excess Se can affect thiol status, measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. The ability of Se to restore the activities of G-6-PDH, GSH peroxidase, and glutathione status involved in antioxidative defense mechanisms may be crucial to biological protection from the toxic effects of methyl mercury.

  14. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro.

    PubMed

    Dias, Irundika H K; Chapple, Ian L C; Milward, Mike; Grant, Melissa M; Hill, Eric; Brown, James; Griffiths, Helen R

    2013-01-01

    The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. -) by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. -) production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.

  15. Cooperative interaction between ascorbate and glutathione during mitochondrial impairment in mesencephalic cultures.

    PubMed

    Ehrhart, Julie; Zeevalk, Gail D

    2003-09-01

    A decrease in total glutathione, and aberrant mitochondrial bioenergetics have been implicated in the pathogenesis of Parkinson's disease. Our previous work exemplified the importance of glutathione (GSH) in the protection of mesencephalic neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. Additionally, reactive oxygen species (ROS) generation was an early, contributing event in malonate toxicity. Protection by ascorbate was found to correlate with a stimulated increase in protein-glutathione mixed disulfide (Pr-SSG) levels. The present study further examined ascorbate-glutathione interactions during mitochondrial impairment. Depletion of GSH in mesencephalic cells with buthionine sulfoximine potentiated both the malonate-induced toxicity and generation of ROS as monitored by dichlorofluorescein diacetate (DCF) fluorescence. Ascorbate completely ameliorated the increase in DCF fluorescence and toxicity in normal and GSH-depleted cultures, suggesting that protection by ascorbate was due in part to upstream removal of free radicals. Ascorbate stimulated Pr-SSG formation during mitochondrial impairment in normal and GSH-depleted cultures to a similar extent when expressed as a proportion of total GSH incorporated into mixed disulfides. Malonate increased the efflux of GSH and GSSG over time in cultures treated for 4, 6 or 8 h. The addition of ascorbate to malonate-treated cells prevented the efflux of GSH, attenuated the efflux of GSSG and regulated the intracellular GSSG/GSH ratio. Maintenance of GSSG/GSH with ascorbate plus malonate was accompanied by a stimulation of Pr-SSG formation. These findings indicate that ascorbate contributes to the maintenance of GSSG/GSH status during oxidative stress through scavenging of radical species, attenuation of GSH efflux and redistribution of GSSG to the formation of mixed disulfides. It is speculated that these events are linked by glutaredoxin, an enzyme shown to contain

  16. Evidence of Dual Mechanisms of Glutathione Uptake in the Rodent Lens: A Novel Role for Vitreous Humor in Lens Glutathione Homeostasis

    PubMed Central

    Whitson, Jeremy A.; Sell, David R.; Goodman, Michael C.; Monnier, Vincent M.; Fan, Xingjun

    2016-01-01

    Purpose Lens glutathione synthesis knockout (LEGSKO) mouse lenses lack de novo glutathione (GSH) synthesis but still maintain >1 mM GSH. We sought to determine the source of this residual GSH and the mechanism by which it accumulates in the lens. Methods Levels of GSH, glutathione disulfide (GSSG), and GSH-related compounds were measured in vitro and in vivo using isotope standards and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results Wild-type (WT) lenses could accumulate GSH from γ-glutamylcysteine and glycine or from intact GSH, but LEGSKO lenses could only accumulate GSH from intact GSH, indicating that LEGSKO lens GSH content is not due to synthesis by a salvage pathway. Uptake of GSH in cultured lenses occurred at the same rate for LEGSKO and WT lenses, could not be inhibited, and occurred primarily through cortical fiber cells. In contrast, uptake of GSH from aqueous humor could be competitively inhibited and showed an enhanced Km in LEGSKO lenses. Mouse vitreous had >1 mM GSH, whereas aqueous had <20 μM GSH. Testing physiologically relevant GSH concentrations for uptake in vivo, we found that both LEGSKO and WT lenses could obtain GSH from the vitreous but not from the aqueous. Vitreous rapidly accumulated GSH from the circulation, and depletion of circulating GSH reduced vitreous but not aqueous GSH. Conclusions The above data provide, for the first time, evidence for the existence of dual mechanisms of GSH uptake into the lens, one mechanism being a passive, high-flux transport through the vitreous exposed side of the lens versus an active, carrier-mediated uptake mechanism at the anterior of the lens. PMID:27472077

  17. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    PubMed Central

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  18. Identification of Wild Yeast Strains and Analysis of Their β-Glucan and Glutathione Levels for Use in Makgeolli Brewing

    PubMed Central

    Kang, Sun Hee; Kim, Hye Ryun; Kim, Jae Ho; Ahn, Byung Hak; Kim, Tae Wan

    2014-01-01

    Makgeolli, also known as Takju, is a non-filtered traditional Korean alcoholic beverage that contains various floating matter, including yeast cells, which contributes to its high physiological functionality. In the present study, we assessed the levels of β-glucan and glutathione in various yeast strains isolated from traditional Korean Nuruk and selected a β-glucan- and glutathione-rich yeast strain to add value to Makgeolli by enhancing its physiological functionality through increased levels of these compounds. Yeast β-glucan levels ranged from 6.26% to 32.69% (dry basis) and were strongly species-dependent. Dried Saccharomyces cerevisiae isolated from Nuruk contained 25.53 µg/mg glutathione, 0.70 µg/mg oxidized glutathione, and 11.69 µg/g and 47.85 µg/g spermidine and L-ornithine monohydrochloride, respectively. To produce functional Makgeolli, a β-glucan- and glutathione-rich yeast strain was selected in a screening analysis. Makgeolli fermented with the selected yeast strain contained higher β-glucan and glutathione levels than commercial Makgeolli. Using the selected yeast strain to produce Makgeolli with high β-glucan and glutathione content may enable the production of functional Makgeolli. PMID:25606008

  19. The significance of glutathione for photoprotection at contrasting temperatures in the alpine plant species Soldanella alpina and Ranunculus glacialis.

    PubMed

    Laureau, Constance; Bligny, Richard; Streb, Peter

    2011-11-01

    The significance of total glutathione content was investigated in two alpine plant species with highly differing antioxidative scavenging capacity. Leaves of Soldanella alpina and Ranunculus glacialis incubated for 48 h in the presence of buthionine-sulfoximine had 50% lower glutathione contents when compared with leaves incubated in water. The low leaf glutathione content was not compensated for by activation of other components involved in antioxidative protection or electron consumption. However, leaves with normal but not with low glutathione content increased their ascorbate content during high light (HL) treatment (S. alpina) or catalase activity at low temperature (LT) (R. glacialis), suggesting that the mere decline of the leaf glutathione content does not act as a signal to ameliorate antioxidative protection by alternative mechanisms. CO(2)-saturated oxygen evolution was not affected in glutathione-depleted leaves at various temperatures, except at 35°C, thereby increasing the high temperature (HT) sensitivity of both alpine species. Leaves with low and normal glutathione content were similarly resistant to photoinhibition and photodamage during HL treatment at ambient temperature in the presence and absence of paraquat or at LT. However, HL- and HT-induced photoinhibition increased in leaves with low compared to leaves with normal glutathione content, mainly because the recovery after heat inactivation was retarded in glutathione-depleted leaves. Differences in the response of photosystem II (PSII) activity and CO(2)-saturated photosynthesis suggest that PSII is not the primary target during HL inactivation at HT. The results are discussed with respect to the role of antioxidative protection as a safety valve for temperature extremes to which plants are not acclimated.

  20. Evaluation of aflatoxin B/sub 1/ mutagenesis: addition of glutathione and glutathione-S-transferase to the Salmonella mutagenicity assay

    SciTech Connect

    Jorgensen, K.V.; Clayton, J.W.; Price, R.L.

    1987-01-01

    The effects of glutathione (GSH) and the combination of GSH and glutathione-S-transferase (GST) on aflatoxin B/sub 1/ (AFB/sub 1/) mutagenesis in the Salmonella mutagenicity assay using Salmonella typhimurium strains TA98 and TA100 were tested. Ten concentrations of AFB/sub 1/ (0-1.0 ..mu..g/plate) were added to a liver microsomal homogenate (S9 mix) or to S9 mix containing GSH or S9 mix containing the combination of GSH + GST. One third of the samples were plated directly. Two-thirds were incubated for 30 min at 37/sup 0/C prior to plating, and of those, half included bacteria. The results show that the addition of GSH and GSH + GST affected AFB/sub 1/ mutagenesis by forming the AFB/sub 1/-GSH conjugate and decreasing the availability of AFB/sub 1/-8,9-epoxide. The effect of GST on GSH activity varied with the strain because of the different amounts of S9 mix used. The formation of the AFB/sub 1/-GSH conjugate was verified by using reverse-phase high-performance liquid chromatography for quantitation of AFB/sub 1/ and detection of AFB/sub 1/-GSH.

  1. Chelating efficacy of CaNa(2) EDTA on nickel-induced toxicity in Cirrhinus mrigala (Ham.) through its effects on glutathione peroxidase, reduced glutathione and lipid peroxidation.

    PubMed

    Gopal, Rengaswamy; Narmada, S; Vijayakumar, Remya; Jaleel, Cheruth Abdul

    2009-08-01

    In this age of modern biology, aquatic toxicological research has provided potential tools for ecotoxicologic investigations. Heavy metals primarily affect protein structures and induce a stress in the organisms. The present investigation was carried out to assess the effect of nickel chloride on the selected organs of the freshwater fish Cirrhinus mrigala and how CaNa(2) EDTA counters its effects as an antidote. Toxicity experiments were conducted for different exposure periods and also in certain tissues namely gill, liver, kidney and muscle. The total protein content, reduced glutathione, glutathione peroxidase and lipid peroxidation were found to be decreased in the nickel chloride treated tissues and the treatment with CaNa(2) EDTA+nickel chloride returned to near normal levels. Histopathological observations also revealed that after the administration of nickel chloride+CaNa(2) EDTA the chelator induced reduction in nickel toxicity. It has also contributed towards reduction in the pathological damage, thus enabling the organs to attain their near normal histological appearance. The present study shown that CaNa(2) EDTA is an effective chelating agent for the removal of nickel and it has proved efficient in restoring both the biochemical variables and pathological features immediately after a sub lethal exposure of nickel chloride in fish.

  2. The putative benzene metabolite 2,3, 5-tris(glutathion-S-yl)hydroquinone depletes glutathione, stimulates sphingomyelin turnover, and induces apoptosis in HL-60 cells.

    PubMed

    Bratton, S B; Lau, S S; Monks, T J

    2000-07-01

    In this study, we show that 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ), a putative metabolite of benzene, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Prior to the onset of apoptosis, TGHQ depletes intracellular glutathione (GSH) in a reactive oxygen species (ROS)-independent manner. Neutral, Mg(2+)-dependent sphingomyelinases, which are normally inhibited by GSH, are subsequently activated, as evidenced by increases in intracellular ceramide and depletion of sphingomyelin. As ceramide levels rise, effector caspase (DEVDase) activity steadily increases. Interestingly, while catalase has no effect on TGHQ-mediated depletion of GSH, this hydrogen peroxide (H(2)O(2)) scavenger does inhibit DEVDase activity and apoptosis, provided the enzyme is added to HL-60 cells before an increase in ceramide can be observed. Since ceramide analogues inhibit the mitochondrial respiratory chain, these data imply that ceramide-mediated generation of H(2)O(2) is necessary for the activation of effector caspases-3 and/or -7, and apoptosis. In summary, these studies indicate that TGHQ, and perhaps many quinol-based toxicants and chemotherapeutics, may induce apoptosis in hematopoietic cells by depleting GSH and inducing the proapoptotic ceramide-signaling pathway.

  3. A fluorescence enhancement probe based on BODIPY for the discrimination of cysteine from homocysteine and glutathione.

    PubMed

    Gong, Deyan; Tian, Yuejun; Yang, Chengduan; Iqbal, Anam; Wang, Zhiping; Liu, Weisheng; Qin, Wenwu; Zhu, Xiangtao; Guo, Huichen

    2016-11-15

    Herein, a fluorescent probe BODIPY-based glyoxal hydrazone (BODIPY-GH) (1) for cysteine based on inhibiting of intramolecular charge transfer (ICT) quenching process upon reaction with the unsaturated aldehyde has been synthesized, which exhibits longer excitation wavelength, selective and sensitive colorimetric and fluorimetric response toward cysteine in natural media. The probe shows highly selectivity towards cysteine over homocysteine and glutathione as well as other amino acids with a significant fluorescence enhancement response within 15min In the presence of 50 equiv. of homocysteine, the emission increased slightly within 15min and completed in 2.5h to reach its maximum intensity. Therefore, the discrimination of cysteine from homocysteine and glutathione can be achieved through detection of probe 1. It shows low cytotoxicity and excellent membrane permeability toward living cells, which was successfully applied to detect and image intracellular cysteine effectively by confocal fluorescence imaging.

  4. Glibenclamide impairs responses of neutrophils against Burkholderia pseudomallei by reduction of intracellular glutathione

    PubMed Central

    Kewcharoenwong, Chidchamai; Rinchai, Darawan; Nithichanon, Arnone; Bancroft, Gregory J.; Ato, Manabu; Lertmemongkolchai, Ganjana

    2016-01-01

    The major risk factor for melioidosis, an infectious disease caused by B. pseudomallei, is diabetes mellitus. More than half of diabetic melioidosis patients in Thailand were prescribed glibenclamide. Recent evidence demonstrates that glibenclamide reduces pro-inflammatory cytokine production by polymorphonuclear neutrophils (PMNs) of diabetic individuals in response to this bacterial infection. However, the mechanisms by which glibenclamide affects cytokine production are unknown. We found that PMNs from glibenclamide-treated diabetic individuals infected with live B. pseudomallei in vitro showed lower free glutathione (GSH) levels compared with those of healthy individuals. Glibenclamide decreased GSH levels and glutathione peroxidase (GPx) of PMNs after exposed to live B. pseudomallei. Moreover, glibenclamide reduced cytokine production and migration capacity of infected PMNs, whereas GSH could restore these functions. Taken together, our data show a link between the effect of glibenclamide on GSH and PMN functions in response to B. pseudomallei that may contribute to the susceptibility of diabetic individuals to B. pseudomallei infection. PMID:27713554

  5. Glutathione-functionalized graphene quantum dots as selective fluorescent probes for phosphate-containing metabolites

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Jing; Zhang, Xiao-Long; Cong, Zhong-Xiao; Chen, Zhi-Tao; Yang, Huang-Hao; Chen, Guo-Nan

    2013-02-01

    Bright blue fluorescent glutathione-functionalized graphene quantum dots (GQDs@GSH) were prepared by a one-step pyrolysis method with a fluorescence quantum yield as high as 33.6%. Futhermore, the obtained GQDs@GSH can be used as a probe to estimate the ATP level in cell lysates and human blood serum.Bright blue fluorescent glutathione-functionalized graphene quantum dots (GQDs@GSH) were prepared by a one-step pyrolysis method with a fluorescence quantum yield as high as 33.6%. Futhermore, the obtained GQDs@GSH can be used as a probe to estimate the ATP level in cell lysates and human blood serum. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33794d

  6. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg(II)-glutathione

  7. Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae.

    PubMed

    Hara, Kiyotaka Y; Kim, Songhee; Yoshida, Hideyo; Kiriyama, Kentaro; Kondo, Takashi; Okai, Naoko; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2012-02-01

    Glutathione is a valuable tri-peptide that is widely used in the pharmaceutical, food, and cosmetic industries. Glutathione is produced industrially by fermentation using Saccharomyces cerevisiae, and supplementation of fermentation with several amino acids can increase intracellular GSH content. More recently, however, focus has been given to protein as a resource for biofuel and fine chemical production. We demonstrate that expression of a protease on the cell surface of S. cerevisiae enables the direct use of keratin and soy protein as a source of amino acids and that these substrates enhanced intracellular GSH content. Furthermore, fermentation using soy protein also enhanced cell concentration. GSH fermentation from keratin and to a greater extent from soy protein using protease-displaying yeast yielded greater GSH productivity compared to GSH fermentation with amino acid supplementation. This protease-displaying yeast is potentially applicable to a variety of processes for the bio-production of value-added chemicals from proteinaceous biomass resources.

  8. A simple microfluidic integrated with an optical sensor for micro flow injection colorimetric determination of glutathione.

    PubMed

    Supharoek, Sam-ang; Youngvises, Napaporn; Jakmunee, Jaroon

    2012-01-01

    A simple and inexpensive method for fabricating a microfluidic platform was developed. A printed circuit board (PCB) was used to make a master mold for replicating a polydimethylsiloxane (PDMS) microchannel. The master mold was fabricated by a simple photolithographic method, employing a photoresist dry film. The process did not use hazardous chemicals, a clean room or any expensive instrument. The PDMS microchannel was clamped with polymethylmethacrylate (PMMA) plates, where a light emitting diode (LED) as a light source and a light dependent resistor (LDR) as a light sensor were attached to form a simple optical sensor. The system was successfully employed as a micro flow injection analysis for the determination of glutathione in dietary supplement samples. A linear calibration graph in the range of 5.0 - 60.0 mg L(-1) glutathione was obtained with a detection limit of 0.01 mg L(-1). The system provided a sample throughput of 48 h(-1), with microliter consumption of the reagent.

  9. Antiepileptogenic effects of glutathione against increased brain ADA in PTZ-induced epilepsy.

    PubMed

    Pence, Sadrettin; Erkutlu, Ibrahim; Kurtul, Naciye; Bosnak, Mehmet; Alptekin, Mehmet; Tan, Uner

    2009-01-01

    Adenosine has been shown to play a significant role as a modulator of neuronal activity in convulsive disorders, acting as an endogenous anticonvulsant agent. Any change in adenosine deaminase (ADA) levels will reflect to adenosine levels. In the present study, we have investigated the effect of glutathione on brain tissue ADA levels due to seizures induced by convulsive and subconvulsive dose of pentylenetetrazol (PTZ) in mice. ADA levels due to seizures induced by convulsive and subconvulsive pentylenetetrazol were measured using the Giusti method. ADA levels were higher in the experimental epilepsy groups than in the control and sham groups. ADA levels significantly decreased in the glutathione groups, which may have antiseizure effects. Decreased levels of ADA would be due to increased adenosine levels, protecting against oxidative stress.

  10. [The correlation of tolerance to cerebral ischemia and body temperature with glutathione concentration].

    PubMed

    Kulinskiĭ, V I; Kolesnichenko, L S; Kovtun, V Iu; Sotnikova, G V

    2003-01-01

    Methodic approaches for the purposeful changes of glutathione concentration in the brain and liver by administration of glutathione depletors and prodrugs have been modified. Two different depletors (diethylmaleate and buthionine sulfoximine) cause considerable increase of tolerance to the complete global cerebral ischemia and hypothermia development which correlate closely with the decrease of GSH concentration. Five GSH prodrugs (GSH esters and oxothiazolidine carboxilate) and GSH itself usually decrease slightly body temperature but do not influence tolerance to ischemia in the most of series. The increase of tolerance to the complete global cerebral ischemia is connected not with GSH accumulation, but with its decrease. Evidently one of the two opposite GSH effects, sensitizing or protecting one, can predominate in different forms of cerebral ischemia.

  11. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  12. Biochemical properties of an omega-class glutathione S-transferase of the silkmoth, Bombyx mori.

    PubMed

    Yamamoto, Kohji; Nagaoka, Sumiharu; Banno, Yutaka; Aso, Yoichi

    2009-05-01

    A cDNA encoding an omega-class glutathione S-transferase of the silkmoth, Bombyx mori (bmGSTO), was cloned by reverse transcriptase-polymerase chain reaction. The resulting clone was sequenced and deduced for amino acid sequence, which revealed 40, 40, and 39% identities to omega-class GSTs from human, pig, and mouse, respectively. A recombinant protein (rbmGSTO) was functionally overexpressed in Escherichia coli cells in a soluble form and purified to homogeneity. rbmGSTO was able to catalyze the biotranslation of glutathione with 1-chloro-2,4-dinitrobenzene, a model substrate for GST, as well as with 4-hydroxynonenal, a product of lipid peroxidation. This enzyme was shown to have high affinity for organophosphorus insecticide and was present abundantly in silkmoth strain exhibiting fenitrothion resistance. These results indicate that bmGSTO could be involved in the increase in level of insecticide resistance for lepidopteran insects.

  13. [The effect of gamma rays on glutathion and ascorbic acid content in rabbit lenses (author's transl)].

    PubMed

    Zygulska-Mach, H; Mach, Z

    1975-01-01

    It is pointed out that the partner non radiated eye is also influenced after employment of high radiation on an eye. The authors radiated rabbit eyes with gamma rays employing Stallard-applicators and determined the glutathion and ascorbic acid content in the lenses. The lenses of the partner eye were also examined for comparison. In those eyes which were directly radiated there was a fall of concentration of the two substances indirectly proportional to the dose of rays employed. In the partner eyes which were not directly subjected to direct radiation there were changes of similar character which were however not so much pronounced. The role of glutathion and ascorbic acid in lens metabolism is pointed out.

  14. A new role for glutathione: protection of vitamin B12 from depletion by xenobiotics.

    PubMed

    Watson, William P; Munter, Tony; Golding, Bernard T

    2004-12-01

    NADPH in microsomes reduces the hydroxocob(III)alamin form of vitamin B12 to cob(II)alamin and the supernucleophilic cob(I)alamin, which are both highly reactive toward xenobiotic epoxides formed by mammalian metabolism of dienes such as the industrially important chemicals chloroprene and 1,3-butadiene. With styrene, the metabolically formed styrene oxide is reactive toward cob(I)alamin but not cob(II)alamin. Such reactions in humans could lead to vitamin B12 deficiency, which is implicated in pernicious anemia, cancer, and degenerative diseases. However, glutathione inhibits the reduction of hydroxocob(III)alamin by formation of the 1:1 complex glutathionylcobalamin. This blocks reactions of the cobalamins with metabolically formed epoxides. The interaction between glutathione and vitamin B12 could protect against diseases related to vitamin B12 depletion.

  15. Irreversible Inhibition of Glutathione S-Transferase by Phenethyl Isothiocyanate (PEITC), a Dietary Cancer Chemopreventive Phytochemical

    PubMed Central

    Kumari, Vandana; Dyba, Marzena A.; Holland, Ryan J.; Liang, Yu-He; Singh, Shivendra V.

    2016-01-01

    Dietary isothiocyanates abundant as glucosinolate precursors in many edible cruciferous vegetables are effective for prevention of cancer in chemically-induced and transgenic rodent models. Some of these agents, including phenethyl isothiocyanate (PEITC), have already advanced to clinical investigations. The primary route of isothiocyanate metabolism is its conjugation with glutathione (GSH), a reaction catalyzed by glutathione S-transferase (GST). The pi class GST of subunit type 1 (hGSTP1) is much more effective than the alpha class GST of subunit type 1 (hGSTA1) in catalyzing the conjugation. Here, we report the crystal structures of hGSTP1 and hGSTA1 each in complex with the GSH adduct of PEITC. We find that PEITC also covalently modifies the cysteine side chains of GST, which irreversibly inhibits enzymatic activity. PMID:27684484

  16. GSTP1-1 stereospecifically catalyzes glutathione conjugation of ethacrynic acid.

    PubMed

    van Iersel, M L; van Lipzig, M M; Rietjens, I M; Vervoort, J; van Bladeren, P J

    1998-12-11

    Using 1H NMR two diastereoisomers of the ethacrynic acid glutathione conjugate (EASG) as well as ethacrynic acid (EA) could be distinguished and quantified individually. Chemically prepared EASG consists of equal amounts of both diastereoisomers. GSTP1-1 stereospecifically catalyzes formation of one of the diastereoisomers (A). The GSTP1-1 mutant C47S and GSTA1-1 preferentially form the same diastereoisomer of EASG as GSTP1-1. Glutathione conjugation of EA by GSTA1-2 and GSTA2-2 is not stereoselective. When human melanoma cells, expressing GSTP1-1, were exposed to ethacrynic acid, diastereoisomer A was the principal conjugate formed, indicating that even at physiological pH the enzyme catalyzed reaction dominates over the chemical conjugation.

  17. Enhanced success of Mexican bean beetle (coleoptera: Coccinellidae) on glutathione-enriched soybean leaves

    SciTech Connect

    Hughes, P.R.; Chiment, J.J. )

    1988-01-01

    Artificial augmentation of soybean leaves with reduced glutathione (GSH) elicited all of the same responses from Mexican bean beetle (MBB), Epilachna varivestis Mulsant, as did fumigation with the air pollutant sulfur dioxide. Larval growth, rate of development, and survivorship as well as adult fecundity and longevity were all significantly greater on excised leaves that had been allowed to imbibe a solution of the tripeptide. In addition, adults showed a strong preference for feeding on the treated leaves over nontreated leaves. Increased fecundity after feeding on treated leaves was a consequence of the earlier and longer period of egg laying rather than a change in the rate of egg production. The effects of GSH treatment were even more distinct than those produced by exposure of plants to the pollutant. These results establish the very close correlation between changes in foliar glutathione and alteration of MBB success on this plant in response to air pollution.

  18. Human glutathione S-transferases. Characterization of the anionic forms from lung and placenta.

    PubMed Central

    Dao, D D; Partridge, C A; Kurosky, A; Awasthi, Y C

    1984-01-01

    Anionic glutathione S-transferases were purified from human lung and placenta. Chemical and immunochemical characterization, including polyacrylamide-gel electrophoresis, gave strong evidence that the anionic lung and placental enzymes are chemically similar, if not identical, proteins. The electrophoretic mobilities of both proteins were identical in conventional alkaline gels as well as in gels containing sodium dodecyl sulphate. Gel filtration of the intact active enzyme established an Mr value of 45000; however, with sodium dodecyl sulphate/polyacrylamide-gel electrophoresis under dissociating conditions a subunit Mr of 22500 was obtained. Amino acid sequence analysis of the N-terminal region of the placental enzyme revealed a single polypeptide sequence identical with that of lung. Results obtained from immunoelectrophoresis, immunotitration, double immunodiffusion and rocket immunoelectrophoresis also indicated the anionic lung and placental enzymes to be closely similar. The chemical similarity of these two proteins was further supported by protein compositional analysis and fragment analysis after chemical hydrolysis. Immunochemical comparison of the anionic lung and placental enzymes with human liver glutathione S-transferases revealed cross-reactivity with the anionic omega enzyme, but no cross-reactivity was detectable with the cationic enzymes. Comparison of the N-terminal region of the human anionic enzyme with reported sequences of rat liver glutathione S-transferases gave strong evidence of chemical similarity, indicating that these enzymes are evolutionarily related. However, computer analysis of the 30-residue N-terminal sequence did not show any significant chemical similarity to any other reported protein sequence, pointing to the fact that the glutathione S-transferases represent a unique class of proteins. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:6466318

  19. Correlation Between Iron and alpha and pi Glutathione-S-Transferase Levels in Humans

    DTIC Science & Technology

    2012-09-01

    including duodenal crypt cells and macrophages . Several well characterized mutations in this gene have been shown to increase iron levels.16 Of...genotoxic products of lipid peroxication. (1998) Biochem. J. 330:174-179. 4Townsend DM, Tew KD. “The role of glutathione-S-transferase in anti- cancer ...and ferritin.” Semin Hematol. (1998) 35:35-54. 12Iancu TC. “ Ultrastructural aspects of iron storage, transport, and metabolism.” J Neural Transm

  20. MIF protein are theta-class glutathione S-transferase homologs.

    PubMed Central

    Blocki, F. A.; Ellis, L. B.; Wackett, L. P.

    1993-01-01

    MIF proteins are mammalian polypeptides of approximately 13,000 molecular weight. This class includes human macrophage migration inhibitory factor (MIF), a rat liver protein that has glutathione S-transferase (GST) activity (TRANSMIF), and the mouse delayed early response gene 6 (DER6) protein. MIF proteins were previously linked to GSTs by demonstrating transferase activity and observing N-terminal sequence homology with a mu-class GST (Blocki, F.A., Schlievert, P.M., & Wackett, L.P., 1992, Nature 360, 269-270). In this study, MIF proteins are shown to be structurally related to the theta class of GSTs. This is established in three ways. First, unique primary sequence patterns are developed for each of the GST gene classes. The patterns identify the three MIF proteins as theta-like transferase homologs. Second, pattern analysis indicates that GST members of the theta class contain a serine residue in place of the N-terminal tyrosine that is implicated in glutathione deprotonation and activation in GSTs of known structure (Liu, S., et al., 1992, J. Biol. Chem. 267, 4296-4299). The MIF proteins contain a threonine at this position. Third, polyclonal antibodies raised against recombinant human MIF cross-react on Western blots with rat theta GST but not with alpha and mu GSTs. That MIF proteins have glutathione-binding ability may provide a common structural key toward understanding the varied functions of this widely distributed emerging gene family. Because theta is thought to be the most ancient evolutionary GST class, MIF proteins may have diverged early in evolution but retained a glutathione-binding domain. PMID:8298459

  1. Efficient Esterification of Oxidized l-Glutathione and Other Small Peptides.

    PubMed

    Vogel, Emily R; Jackson, William; Masterson, Douglas S

    2015-06-08

    Oxidized l-glutathione was esterified to the tetra methyl ester using thionyl chloride in methanol solvent. Other alcohols were tested and the reaction progress was monitored via ESI-MS. This procedure proved to be compatible with other small peptides not containing serine and cysteine residues. In contrast to previously reported methods this procedure provided convenient access to esterified peptides requiring no purification, extended reaction times, or complicated reaction setups.

  2. Oxidized glutathione (GSSG) inhibits epithelial sodium channel activity in primary alveolar epithelial cells

    PubMed Central

    Downs, Charles A.; Kreiner, Lisa; Zhao, Xing-Ming; Trac, Phi; Johnson, Nicholle M.; Hansen, Jason M.; Brown, Lou Ann

    2015-01-01

    Amiloride-sensitive epithelial Na+ channels (ENaC) regulate fluid balance in the alveoli and are regulated by oxidative stress. Since glutathione (GSH) is the predominant antioxidant in the lungs, we proposed that changes in glutathione redox potential (Eh) would alter cell signaling and have an effect on ENaC open probability (Po). In the present study, we used single channel patch-clamp recordings to examine the effect of oxidative stress, via direct application of glutathione disulfide (GSSG), on ENaC activity. We found a linear decrease in ENaC activity as the GSH/GSSG Eh became less negative (n = 21; P < 0.05). Treatment of 400 μM GSSG to the cell bath significantly decreased ENaC Po from 0.39 ± 0.06 to 0.13 ± 0.05 (n = 8; P < 0.05). Likewise, back-filling recording electrodes with 400 μM GSSG reduced ENaC Po from 0.32 ± 0.08 to 0.17 ± 0.05 (n = 10; P < 0.05), thus implicating GSSG as an important regulatory factor. Biochemical assays indicated that oxidizing potentials promote S-glutathionylation of ENaC and irreversible oxidation of cysteine residues with N-ethylmaleimide blocked the effects of GSSG on ENaC Po. Additionally, real-time imaging studies showed that GSSG impairs alveolar fluid clearance in vivo as opposed to GSH, which did not impair clearance. Taken together, these data show that glutathione Eh is an important determinant of alveolar fluid clearance in vivo. PMID:25713321

  3. Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome.

    PubMed

    Basu, Arpita; Betts, Nancy M; Mulugeta, Afework; Tong, Capella; Newman, Emily; Lyons, Timothy J

    2013-03-01

    Green tea, a popular polyphenol-containing beverage, has been shown to alleviate clinical features of the metabolic syndrome. However, its effects in endogenous antioxidant biomarkers are not clearly understood. Thus, we tested the hypothesis that green tea supplementation will upregulate antioxidant parameters (enzymatic and nonenzymatic) in adults with the metabolic syndrome. Thirty-five obese participants with the metabolic syndrome were randomly assigned to receive one of the following for 8 weeks: green tea (4 cups per day), control (4 cups water per day), or green tea extract (2 capsules and 4 cups water per day). Blood samples and dietary information were collected at baseline (0 week) and 8 weeks of the study. Circulating carotenoids (α-carotene, β-carotene, lycopene) and tocopherols (α-tocopherol, γ-tocopherol) and trace elements were measured using high-performance liquid chromatography and inductively coupled plasma mass spectroscopy, respectively. Serum antioxidant enzymes (glutathione peroxidase, glutathione, catalase) and plasma antioxidant capacity were measured spectrophotometrically. Green tea beverage and green tea extract significantly increased plasma antioxidant capacity (1.5 to 2.3 μmol/L and 1.2 to 2.5 μmol/L, respectively; P < .05) and whole blood glutathione (1783 to 2395 μg/g hemoglobin and 1905 to 2751 μg/g hemoglobin, respectively; P < .05) vs controls at 8 weeks. No effects were noted in serum levels of carotenoids and tocopherols and glutathione peroxidase and catalase activities. Green tea extract significantly reduced plasma iron vs baseline (128 to 92 μg/dL, P < .02), whereas copper, zinc, and selenium were not affected. These results support the hypothesis that green tea may provide antioxidant protection in the metabolic syndrome.

  4. Photovoltaic properties of TiO2 loaded with glutathione-protected silver clusters.

    PubMed

    Sakai, Nobuyuki; Nakamura, Satoshi; Tatsuma, Tetsu

    2013-12-07

    Glutathione-protected Ag clusters (Ag15, Ag25 and Ag29) function as photosensitizers when they are adsorbed on TiO2 electrodes. [Co(bpy)3](2+) is the most appropriate electron donor among the cobalt complexes examined. Ag15 clusters yielded the highest internal quantum efficiency of 28% at 460 nm in the presence of [Co(bpy)3](2+) as a donor.

  5. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators.

    PubMed

    Freeman, John L; Persans, Michael W; Nieman, Ken; Albrecht, Carrie; Peer, Wendy; Pickering, Ingrid J; Salt, David E

    2004-08-01

    Worldwide more than 400 plant species are now known that hyperaccumulate various trace metals (Cd, Co, Cu, Mn, Ni, and Zn), metalloids (As) and nonmetals (Se) in their shoots. Of these, almost one-quarter are Brassicaceae family members, including numerous Thlaspi species that hyperaccumulate Ni up to 3% of there shoot dry weight. We observed that concentrations of glutathione, Cys, and O-acetyl-l-serine (OAS), in shoot tissue, are strongly correlated with the ability to hyperaccumulate Ni in various Thlaspi hyperaccumulators collected from serpentine soils, including Thlaspi goesingense, T. oxyceras, and T. rosulare, and nonaccumulator relatives, including T. perfoliatum, T. arvense, and Arabidopsis thaliana. Further analysis of the Austrian Ni hyperaccumulator T. goesingense revealed that the high concentrations of OAS, Cys, and GSH observed in this hyperaccumulator coincide with constitutively high activity of both serine acetyltransferase (SAT) and glutathione reductase. SAT catalyzes the acetylation of l-Ser to produce OAS, which acts as both a key positive regulator of sulfur assimilation and forms the carbon skeleton for Cys biosynthesis. These changes in Cys and GSH metabolism also coincide with the ability of T. goesingense to both hyperaccumulate Ni and resist its damaging oxidative effects. Overproduction of T. goesingense SAT in the nonaccumulator Brassicaceae family member Arabidopsis was found to cause accumulation of OAS, Cys, and glutathione, mimicking the biochemical changes observed in the Ni hyperaccumulators. In these transgenic Arabidopsis, glutathione concentrations strongly correlate with increased resistance to both the growth inhibitory and oxidative stress induced effects of Ni. Taken together, such evidence supports our conclusion that elevated GSH concentrations, driven by constitutively elevated SAT activity, are involved in conferring tolerance to Ni-induced oxidative stress in Thlaspi Ni hyperaccumulators.

  6. Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production: a correction using glutathione depletion

    PubMed Central

    TREBERG, Jason R.; QUINLAN, Casey L.; BRAND, Martin D.

    2010-01-01

    Summary The production of H2O2 by isolated mitochondria is frequently used as a measure of mitochondrial superoxide formation. Matrix superoxide dismutase quantitatively converts matrix superoxide to H2O2. However, matrix enzymes such as the glutathione peroxidases can consume H2O2 and compete with efflux of H2O2, causing an underestimate of superoxide production. To assess this underestimate we depleted matrix glutathione in rat skeletal muscle mitochondria by more than 90% by pretreatment with 1-chloro-2,4-dintrobenzene (CDNB). The pretreatment protocol strongly diminished the mitochondrial capacity to consume exogenous H2O2, consistent with decreased peroxidase capacity, but avoided direct stimulation of superoxide production from complex I. It elevated the observed rates of H2O2 formation from matrix-directed superoxide up to two-fold from several sites of production, defined by substrates and electron transport inhibitors, over a wide range of control rates, from 0.2 to 2.5 nmol H2O2 • min−1 • mg protein−1. Similar results were obtained when glutathione was depleted using monochlorobimane or when soluble matrix peroxidase activity was removed by preparation of submitochondrial particles. The data indicate that the increased H2O2 efflux observed with CDNB pretreatment was a result of glutathione depletion and compromised peroxidase activity. A hyperbolic correction curve was constructed, making H2O2 efflux a more quantitative measure of matrix superoxide production. For rat muscle mitochondria, the correction equation was: [CDNB pretreated rate = control rate + (1.43*(control rate))/(0.55+control rate)]. These results have significant ramifications for the rates and topology of superoxide production by isolated mitochondria. PMID:20491900

  7. Enalapril and captopril enhance glutathione-dependent antioxidant defenses in mouse tissues.

    PubMed

    de Cavanagh, E M; Inserra, F; Ferder, L; Fraga, C G

    2000-03-01

    The effect of enalapril and captopril on total glutathione content (GSSG + GSH) and selenium-dependent glutathione peroxidase (Se-GPx) and glutathione reductase (GSSG-Rd) activities was investigated in mouse tissues. CF-1 mice (4-mo-old females) received water containing enalapril (20 mg/l) or captopril (50 mg/l) for 11 wk. Enalapril increased GSSG + GSH content (P < 0.05) in erythrocytes (147%), brain (112%), and lung (67%), and captopril increased GSSG + GSH content in erythrocytes (190%) and brain (132%). Enalapril enhanced Se-GPx activity in kidney cortex (42%) and kidney medulla (23%) and captopril in kidney cortex (30%). GSSG-Rd activity was enhanced by enalapril in erythrocytes (21%), brain (21%), liver (18%), and kidney cortex (53%) and by captopril in erythrocytes (25%), brain (19%), and liver (34%). In vitro erythrocyte oxidant stress was evaluated by thiobarbituric acid-reactive substances (TBARS) production (control 365 +/- 11, enalapril 221 +/- 26, captopril 206 +/- 17 nmol TBARS x g Hb(-1) x h(-1); both P < 0.05 vs. control) and phenylhydrazine-induced methemoglobin (MetHb) formation (control 66.5 +/- 3.5, enalapril 52.9 +/- 0.4, captopril: 56.4 +/- 2.9 micromol MetHb/g Hb; both P < 0.05 vs. control). Both angiotensin-converting enzyme inhibitor treatments were associated with increased nitric oxide production, as assessed by plasma NO-(3) + NO-(2) level determination (control 9.22 +/- 0.64, enalapril 13.7 +/- 1.9, captopril 17.3 +/- 3.0 micromol NO-(3) + NO-(2)/l plasma; both P < 0.05 vs. control). These findings support our previous reports on the enalapril- and captopril-induced enhancement of endogenous antioxidant defenses and include new data on glutathione-dependent defenses, thus furthering current knowledge on the association of ACE inhibition and antioxidants.

  8. Exercise training with ageing protects against ethanol induced myocardial glutathione homeostasis.

    PubMed

    Kakarla, Pushpalatha; Kesireddy, Sathyavelureddy; Christiaan, Leeuwenburgh

    2008-05-01

    Glutathione plays a central role in the maintenance of cellular antioxidant defense. The alterations in the glutathione and associated recyclic enzymes caused by both exercise training and ethanol are well documented; however, their interactive effects with age are not well understood. Therefore, the influence of ageing and the interactive effects of exercise training and ethanol on the myocardial glutathione system in 3 months and 18 months old rats were examined. The results showed a significant (p<0.01) reduction in GSH content, Se and non-Se GSH-Px, GR and GST activities in the myocardium of rat with age. A significant increase (p<0.05) in the activities of these enzymes was observed in both age groups of rats in response to exercise training. This exercise-induced elevation of Se and non-Se GSH-Px and GR activities was more pronounced in the 18 months old rats when compared to 3 months old rats. Ethanol consumption significantly (p<0.05) reduced the GSH content, Se and non-Se GSH-Px and GR activities in both age groups of rats. In contrast, ethanol consumption significantly (p<0.05) increased the activity of GST. The combined action of exercise plus ethanol significantly (p<0.05) elevated the GSH content, Se and non-Se GSH-Px, GR and GST activities when compared to the ethanol treated rats in both age groups, indicating the suppression of ethanol-induced oxidative stress by exercise training. In conclusion, there was a compensatory myocardial response lessening ethanol-induced oxidative stress by exercise training, which seemed to result from the higher activity of glutathione recycling and utilizing enzymes, which may be critical for preventing chronic oxidative damage to the myocardium during ageing and even due to ethanol consumption.

  9. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases.

    PubMed Central

    Alfenito, M R; Souer, E; Goodman, C D; Buell, R; Mol, J; Koes, R; Walbot, V

    1998-01-01

    Glutathione S-transferases (GSTs) traditionally have been studied in plants and other organisms for their ability to detoxify chemically diverse herbicides and other toxic organic compounds. Anthocyanins are among the few endogenous substrates of plant GSTs that have been identified. The Bronze2 (Bz2) gene encodes a type III GST and performs the last genetically defined step of the maize anthocyanin pigment pathway. This step is the conjugation of glutathione to cyanidin 3-glucoside (C3G). Glutathionated C3G is transported to the vacuole via a tonoplast Mg-ATP-requiring glutathione pump (GS-X pump). Genetically, the comparable step in the petunia anthocyanin pathway is controlled by the Anthocyanin9 (An9) gene. An9 was cloned by transposon tagging and found to encode a type I plant GST. Bz2 and An9 have evolved independently from distinct types of GSTs, but each is regulated by the conserved transcriptional activators of the anthocyanin pathway. Here, a phylogenetic analysis is presented, with special consideration given to the origin of these genes and their relaxed substrate requirements. In particle bombardment tests, An9 and Bz2 functionally complement both mutants. Among several other GSTs tested, only soybean GmGST26A (previously called GmHsp26A and GH2/4) and maize GSTIII were found to confer vacuolar sequestration of anthocyanin. Previously, these genes had not been associated with the anthocyanin pathway. Requirements for An9 and Bz2 gene function were investigated by sequencing functional and nonfunctional germinal revertants of an9-T3529, bz2::Ds, and bz2::Mu1. PMID:9668133

  10. The biological importance of glutathione peroxidase and peroxiredoxin backup systems in bivalves during peroxide exposure.

    PubMed

    Trevisan, Rafael; Mello, Danielle Ferraz; Uliano-Silva, Marcela; Delapedra, Gabriel; Arl, Miriam; Dafre, Alcir Luiz

    2014-10-01

    Organic peroxide elimination in eukaryotes essentially depends on glutathione peroxidase (GPx) and peroxiredoxin (Prx) enzymes, which are supported by their respective electron donors, glutathione (GSH) and thioredoxin (Trx). This system depends on the ancillary enzymes glutathione reductase (GR) and thioredoxin reductase (TrxR) to maintain GSH and Trx in their reduced state. This study discusses the biological importance of GR and TrxR in supporting GPx and Prx during cumene hydroperoxide (CHP) exposure in brown mussel Perna perna. ZnCl2 or 1-chloro-2,4-dinitrobenze (CDNB) was used to decrease GR and TrxR activities in gills, as already reported with mammals and bivalves. ZnCl2 exposure lowered GR activity (28%), impaired the in vivo CHP decomposition and decreased the survival rates under CHP exposure. CDNB decreased GR (54%) and TrxR (73%) activities and induced glutathione depletion (99%), promoting diminished peroxide elimination and survival rates at a greater extent than ZnCl2. CDNB also increased the susceptibility of hemocytes to CHP toxicity. Despite being toxic and causing mortality at longer exposures, short (2 h) exposure to CHP promoted an up regulation of GSH (50 and 100 μM CHP) and protein-thiol (100 μM CHP) levels, which was blocked by ZnCl2 or CDNB pre-exposure. Results highlight the biological importance of GSH, GR and TrxR in supporting GPx and Prx activities, contributing to organic peroxides elimination and mussel survival under oxidative challenges. To our knowledge, this is the first work that demonstrates, albeit indirectly, the biological importance of GPx/GR/GSH and Prx/TrxR/Trx systems on in vivo organic peroxide elimination in bivalves.

  11. Glutathione-supported arsenate reduction coupled to arsenolysis catalyzed by ornithine carbamoyl transferase

    SciTech Connect

    Nemeti, Balazs; Gregus, Zoltan

    2009-09-01

    Three cytosolic phosphorolytic/arsenolytic enzymes, (purine nucleoside phosphorylase [PNP], glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase) have been shown to mediate reduction of arsenate (AsV) to the more toxic arsenite (AsIII) in a thiol-dependent manner. With unknown mechanism, hepatic mitochondria also reduce AsV. Mitochondria possess ornithine carbamoyl transferase (OCT), which catalyzes phosphorolytic or arsenolytic citrulline cleavage; therefore, we examined if mitochondrial OCT facilitated AsV reduction in presence of glutathione. Isolated rat liver mitochondria were incubated with AsV, and AsIII formed was quantified. Glutathione-supplemented permeabilized or solubilized mitochondria reduced AsV. Citrulline (substrate for OCT-catalyzed arsenolysis) increased AsV reduction. The citrulline-stimulated AsV reduction was abolished by ornithine (OCT substrate inhibiting citrulline cleavage), phosphate (OCT substrate competing with AsV), and the OCT inhibitor norvaline or PALO, indicating that AsV reduction is coupled to OCT-catalyzed arsenolysis of citrulline. Corroborating this conclusion, purified bacterial OCT mediated AsV reduction in presence of citrulline and glutathione with similar responsiveness to these agents. In contrast, AsIII formation by intact mitochondria was unaffected by PALO and slightly stimulated by citrulline, ornithine, and norvaline, suggesting minimal role for OCT in AsV reduction in intact mitochondria. In addition to OCT, mitochondrial PNP can also mediate AsIII formation; however, its role in AsV reduction appears severely limited by purine nucleoside supply. Collectively, mitochondrial and bacterial OCT promote glutathione-dependent AsV reduction with coupled arsenolysis of citrulline, supporting the hypothesis that AsV reduction is mediated by phosphorolytic/arsenolytic enzymes. Nevertheless, because citrulline cleavage is disfavored physiologically, OCT may have little role in AsV reduction in vivo.

  12. Measurements of Cell Physiology: Ionized Calcium, pH and Glutathione

    DTIC Science & Technology

    1993-01-01

    NO. NO. ACCESSION NO. 62233N MM33C30.005 1051 DN249507 11. TITLE (Include Security Classification) Measurements of cell physiology: ionized calcium, pH...PAGE II NTIS CRA&/ 3U lfllo nced Measurements of Cell Physiology: Ionized Calcium, o,.,______o__ pH, and Glutathione PETER S. RABINOVITCH, CARL H...intervening functional parameters that are of increasing interest to cell activation of a guanine nucleotdde binding (G) protein. Phos- biologists. The

  13. Glutathione Transferase from Trichoderma virens Enhances Cadmium Tolerance without Enhancing Its Accumulation in Transgenic Nicotiana tabacum

    PubMed Central

    Dixit, Prachy; Mukherjee, Prasun K.; Ramachandran, V.; Eapen, Susan

    2011-01-01

    Background Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. Vast agricultural areas worldwide are contaminated with Cd. Plants take up Cd and through the food chain it reaches humans and causes toxicity. It is ideal to develop plants tolerant to Cd, without enhanced accumulation in the edible parts for human consumption. Glutathione transferases (GST) are a family of multifunctional enzymes known to have important roles in combating oxidative stresses induced by various heavy metals including Cd. Some GSTs are also known to function as glutathione peroxidases. Overexpression/heterologous expression of GSTs is expected to result in plants tolerant to heavy metals such as Cd. Results Here, we report cloning of a glutathione transferase gene from Trichoderma virens, a biocontrol fungus and introducing it into Nicotiana tabacum plants by Agrobacterium-mediated gene transfer. Transgenic nature of the plants was confirmed by Southern blot hybridization and expression by reverse transcription PCR. Transgene (TvGST) showed single gene Mendelian inheritance. When transgenic plants expressing TvGST gene were exposed to different concentrations of Cd, they were found to be more tolerant compared to wild type plants, with transgenic plants showing lower levels of lipid peroxidation. Levels of different antioxidant enzymes such as glutathione transferase, superoxide dismutase, ascorbate peroxidase, guiacol peroxidase and catalase showed enhanced levels in transgenic plants expressing TvGST compared to control plants, when exposed to Cd. Cadmium accumulation in the plant biomass in transgenic plants were similar or lower than wild-type plants. Conclusion The results of the present study suggest that transgenic tobacco plants expressing a Trichoderma virens GST are more tolerant to Cd, without enhancing its accumulation in the plant biomass. It should be possible to extend the present results to crop plants for developing Cd tolerance and

  14. The synthesis of ethacrynic acid thiazole derivatives as glutathione S-transferase pi inhibitors.

    PubMed

    Li, Ting; Liu, Guyue; Li, Hongcai; Yang, Xinmei; Jing, Yongkui; Zhao, Guisen

    2012-04-01

    Glutathione S-transferase pi (GSTpi) is a phase II enzyme which protects cells from death and detoxifies chemotherapeutic agents in cancer cells. Ethacrynic acid (EA) is a weak GSTpi inhibitor. Structure modifications were done to improve the ability of EA to inhibit GSTpi activity. Eighteen EA thiazole derivatives were designed and synthesized. Compounds 9a, 9b and 9c with a replacement of carboxyl group of EA by a heterocyclic thiazole exhibited improvement over EA to inhibit GSTpi activity.

  15. Transcriptional activation of glutathione pathways and role of glucose homeostasis during copper imbalance.

    PubMed

    Quiroz, Natalia; Rivas, Nicole; del Pozo, Talía; Burkhead, Jason; Suazo, Miriam; González, Mauricio; Latorre, Mauricio

    2015-04-01

    Copper is an essential micronutrient for organism health. Dietary changes or pathologies linked to this metal induce changes in intracellular glutathione concentrations. Here, we studied the transcriptional activation of glutathione pathways in Jurkat cell lines, analyzing the effect of change in glucose homeostasis during a physiological and supra-physiological copper exposure. An immortalized line of human T lymphocyte cell line (Jurkat) was exposed to different copper and glucose conditions to mimic concentrations present in human blood. We applied treatments for 6 (acute) and 24 h (sustained) to 2 µM (physiological) or 20 µM (supra-physiological, Wilson disease scenario) of CuSO4 in combination with 25 mg/dL (hypoglycemia), 100 mg/dL (normal) and 200 mg/dL (hyperglycemia, diabetes scenario) of glucose. The results indicate that a physiological concentration of copper exposure does not induce transcriptional changes in the glutathione synthesis pathway after 6 or 24 h. The G6PDH gene (regeneration pathway), however, is induced during a supra-physiological copper condition. This data was correlated with the viability assays, where fluctuation in both glucose conditions (hypo and hyperglycemia scenario) affected Jurkat proliferation when 20 µM of CuSO4 was added to the culture media. Under a copper overload condition, the transcription of a component of glutathione regeneration pathway (G6PDH gene) is activated in cells chronically exposed to a hyperglycemia scenario, indicating that fluctuations in glucose concentration impact the resistance against the metal. Our findings illustrate the importance of glucose homeostasis during copper excess.

  16. Sulforaphane reduces the alterations induced by quinolinic acid: modulation of glutathione levels.

    PubMed

    Santana-Martínez, R A; Galván-Arzáte, S; Hernández-Pando, R; Chánez-Cárdenas, M E; Avila-Chávez, E; López-Acosta, G; Pedraza-Chaverrí, J; Santamaría, A; Maldonado, P D

    2014-07-11

    Glutamate-induced excitotoxicity involves a state of acute oxidative stress, which is a crucial event during neuronal degeneration and is part of the physiopathology of neurodegenerative diseases. In this work, we evaluated the ability of sulforaphane (SULF), a natural dietary isothiocyanate, to induce the activation of transcription factor Nrf2 (a master regulator of redox state in the cell) in a model of striatal degeneration in rats infused with quinolinic acid (QUIN). Male Wistar rats received SULF (5mg/kg, i.p.) 24h and 5min before the intrastriatal infusion of QUIN. SULF increased the reduced glutathione (GSH) levels 4h after QUIN infusion, which was associated with its ability to increase the activity of glutathione reductase (GR), an antioxidant enzyme capable to regenerate GSH levels at 24h. Moreover, SULF treatment increased glutathione peroxidase (GPx) activity, while no changes were observed in γ-glutamyl cysteine ligase (GCL) activity. SULF treatment also prevented QUIN-induced oxidative stress (measured by oxidized proteins levels), the histological damage and the circling behavior. These results suggest that the protective effect of SULF could be related to its ability to preserve GSH levels and increase GPx and GR activities.

  17. MYC-driven inhibition of the glutamate-cysteine ligase promotes glutathione depletion in liver cancer.

    PubMed

    Anderton, Brittany; Camarda, Roman; Balakrishnan, Sanjeev; Balakrishnan, Asha; Kohnz, Rebecca A; Lim, Lionel; Evason, Kimberley J; Momcilovic, Olga; Kruttwig, Klaus; Huang, Qiang; Xu, Guowang; Nomura, Daniel K; Goga, Andrei

    2017-04-01

    How MYC reprograms metabolism in primary tumors remains poorly understood. Using integrated gene expression and metabolite profiling, we identify six pathways that are coordinately deregulated in primary MYC-driven liver tumors: glutathione metabolism; glycine, serine, and threonine metabolism; aminoacyl-tRNA biosynthesis; cysteine and methionine metabolism; ABC transporters; and mineral absorption. We then focus our attention on glutathione (GSH) and glutathione disulfide (GSSG), as they are markedly decreased in MYC-driven tumors. We find that fewer glutamine-derived carbons are incorporated into GSH in tumor tissue relative to non-tumor tissue. Expression of GCLC, the rate-limiting enzyme of GSH synthesis, is attenuated by the MYC-induced microRNA miR-18a. Inhibition of miR-18a in vivo leads to increased GCLC protein expression and GSH abundance in tumor tissue. Finally, MYC-driven liver tumors exhibit increased sensitivity to acute oxidative stress. In summary, MYC-dependent attenuation of GCLC by miR-18a contributes to GSH depletion in vivo, and low GSH corresponds with increased sensitivity to oxidative stress in tumors. Our results identify new metabolic pathways deregulated in primary MYC tumors and implicate a role for MYC in regulating a major antioxidant pathway downstream of glutamine.

  18. Kinetics of the conjugation of aniline mustards with glutathione and thiosulfate.

    PubMed

    Gamcsik, M P; Millis, K K; Hamill, T G

    1997-06-06

    The rates of the non-enzymatic conjugation of the substituted aniline mustards, melphalan, chlorambucil and p-(N,N-bis(2-chloroethyl))toluidine with glutathione and thiosulfate were determined using nuclear magnetic resonance spectroscopy. Using this method, the disappearance of drug and the formation of both the mono-thioether and bis-thioether conjugates can be monitored directly. For glutathione conjugation, the rate constants for the formation of the first and second aziridinium intermediates were similar. With thiosulfate conjugation, the rate constant for the formation of the first aziridinium intermediate is greater than the rate constant for the formation of the second aziridinium. This demonstrates that the type of nucleophile has a significant influence on the overall alkylating activity of these bifunctional mustards. The bisthioether adduct formed from the reaction between p-(N,N-bis([2-13C]-2-chloroethyl))toluidine and glutathione and thiosulfate can be identified and scrambling of the 13C label in the product provides strong evidence that the alkylation must occur through an aziridinium intermediate.

  19. Possible modulating impact of glutathione disulfide mimetic on physiological changes in irradiated rats.

    PubMed

    Salama, S F; Montaser, S A

    2015-04-01

    Glutathione disulfide mimetic (NOV-002) is a complex of oxidized glutathione (GSSG) formulated with cisplatin at approximately 1000:1 molar ratio. Cisplatin serves to stabilize GSSG but does not assert any therapeutic effect. The objective of this study is to evaluate the impact of NOV-002 on hematological suppression, excessive free radical damage and DNA fragmentation in splenocytes, and metabolite disorders in whole-body γ-irradiated rats. The obtained data revealed that rats treated with 25 mg kg(-1) NOV-002 injected intraperitoneally (i.p.) for 5 days after whole-body γ-irradiation (IR) at 6.5 Gy attenuated the decrease of red blood cells, platelets, total white blood cells, absolute lymphocytes and neutrophils counts, hematocrit value, and hemoglobin content. NOV-002 treatment inhibits serum advanced oxidation protein products, malondialdehyde concentrations as well as cholesterol, triglycerides, urea, and creatinine levels, while enhances glutathione content and superoxide dismutase activity and improves DNA fragmentation in splenocytes. These findings provide a better understanding of the NOV-002 modulating impact in whole-body γ-rays-induced hematological toxicities, oxidative stress, and biological disturbances in γ-irradiated rats and could enhance the tolerance to high doses of ionizing IR utilized in radiotherapy.

  20. Glutathione--hydroxyl radical interaction: a theoretical study on radical recognition process.

    PubMed

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2 × 1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH(•), guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH(•) complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from -42.4 to -27.8 kJ/mol and from -21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels.

  1. Insights into ligand binding to a glutathione S-transferase from mango: Structure, thermodynamics and kinetics.

    PubMed

    Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A; Arvizu-Flores, Aldo A; Serrano-Posada, Hugo; Lopez-Zavala, Alonso A; García-Orozco, Karina D; Hernandez-Paredes, Javier; Rudiño-Piñera, Enrique; Stojanoff, Vivian; Sotelo-Mundo, Rogerio R; Islas-Osuna, Maria A

    2017-04-01

    We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM min(-1) and 68.49 s(-1) respectively and 0.693 mM, 105.32 mM min(-1) and 89.57 s(-1), for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes.

  2. Serum Malondialdehyde Concentration and Glutathione Peroxidase Activity in a Longitudinal Study of Gestational Diabetes

    PubMed Central

    Miranda, María; Muriach, María; Romero, Francisco J.; Villar, Vincent M.

    2016-01-01

    Aims The main goal of this study was to evaluate the presence of oxidative damage and to quantify its level in gestational diabetes. Methods Thirty-six healthy women and thirty-six women with gestational diabetes were studied in the three trimesters of pregnancy regarding their levels of oxidative stress markers. These women were diagnosed with diabetes in the second trimester of pregnancy. Blood glucose levels after 100g glucose tolerance test were higher than 190, 165 or 145 mg/dl, 1, 2 or 3 hours after glucose intake. Results The group of women with gestational diabetes had higher serum malondialdehyde levels, with significant differences between groups in the first and second trimester. The mean values of serum glutathione peroxidase activity in the diabetic women were significantly lower in the first trimester. In the group of women with gestational diabetes there was a negative linear correlation between serum malondialdehyde concentration and glutathione peroxidase activity in the second and third trimester. Conclusions In this observational and longitudinal study in pregnant women, the alterations attributable to oxidative stress were present before the biochemical detection of the HbA1c increase. Usual recommendations once GD is detected (adequate metabolic control, as well as any other normally proposed to these patients) lowered the concentration of malondialdehyde at the end of pregnancy to the same levels of the healthy controls. Serum glutathione peroxidase activity in women with gestational diabetes increased during the gestational period. PMID:27228087

  3. Protective effects of a glutathione disulfide mimetic (NOV-002) against cisplatin induced kidney toxicity

    PubMed Central

    Jenderny, Sara; Lin, He; Garrett, Tracy; Tew, Kenneth D.; Townsend, Danyelle M.

    2012-01-01

    NOV-002 is a glutathione disulfide (GSSG) mimetic with chemoprotective activity. Previous and ongoing clinical studies demonstrate a significantly improved 1-year survival and decreased tumor progression rates in non-small cell lung (NSCLC) and ovarian cancer patients when NOV-002 was included in cisplatin containing regimens. In order to understand this chemoprotective property, we employed as an animal model of kidney toxicity, 8-week-old Bl6 mice that were treated with a single nephrotoxic dose of cisplatin (15 mg/kg, ip) and sacrificed on Day 5. One group of animals was treated with NOV-002 (15 mg/kg, im) daily. NOV-002-treated mice had significantly lower levels of plasma creatinine compared to mice treated with cisplatin alone (4.7 vs 2.9 mg/dL, respectively). Moreover, NOV-002 protected the kidneys from cisplatin mediated proximal tubule damage, including dilation of tubules and the presence of protein casts. Since cisplatin-induced nephrotoxicity can be mediated by a glutathione-platinum conjugate catalyzed by γ-glutamyl-transpeptidase (GGT) and glutathione is an endogenous substrate of GGT, the protective effect of NOV-002 in the kidney may be attributed to its ability to act as a competitive substrate for the enzyme. PMID:19896793

  4. Mechanistic Details of Glutathione Biosynthesis Revealed by Crystal Structures of Saccharomyces cerevisiae Glutamate Cysteine Ligase

    SciTech Connect

    Biterova, Ekaterina I.; Barycki, Joseph J.

    2009-12-01

    Glutathione is a thiol-disulfide exchange peptide critical for buffering oxidative or chemical stress, and an essential cofactor in several biosynthesis and detoxification pathways. The rate-limiting step in its de novo biosynthesis is catalyzed by glutamate cysteine ligase, a broadly expressed enzyme for which limited structural information is available in higher eukaryotic species. Structural data are critical to the understanding of clinical glutathione deficiency, as well as rational design of enzyme modulators that could impact human disease progression. Here, we have determined the structures of Saccharomyces cerevisiae glutamate cysteine ligase (ScGCL) in the presence of glutamate and MgCl{sub 2} (2.1 {angstrom}; R = 18.2%, R{sub free} = 21.9%), and in complex with glutamate, MgCl{sub 2}, and ADP (2.7 {angstrom}; R = 19.0%, R{sub free} = 24.2%). Inspection of these structures reveals an unusual binding pocket for the {alpha}-carboxylate of the glutamate substrate and an ATP-independent Mg{sup 2+} coordination site, clarifying the Mg{sup 2+} dependence of the enzymatic reaction. The ScGCL structures were further used to generate a credible homology model of the catalytic subunit of human glutamate cysteine ligase (hGCLC). Examination of the hGCLC model suggests that post-translational modifications of cysteine residues may be involved in the regulation of enzymatic activity, and elucidates the molecular basis of glutathione deficiency associated with patient hGCLC mutations.

  5. Characterization of glutathione S-transferase from dwarf pine needles (Pinus mugo Turra).

    PubMed

    Schröder, P; Rennenberg, H

    1992-09-01

    Glutathione S-transferase activity conjugating xenobiotics with glutathione (GSH) was found in extracts from needles of dwarf pine (Pinus mugo Turra). In vivo incubation of needle segments with the herbicide fluorodifen at 25 degrees C resulted in conversion of the xenobiotic to water-soluble products at initial rates of 0.7 nmol h(-1) g(fw) (-1). At 15 degrees C, the initial rate of product formation was decreased to 0.1 nmol h(-1) g(fw) (-1). In vitro conjugation studies with chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) as model substrates gave apparent K(m) values of 0.5 mM GSH and 1.14 mM CDNB in the GSH/CDNB system and 0.3 mM GSH and 0.44 mM DCNB in the GSH/DCNB system. The pH optimum was between 7.7 and 7.9 for both the GSH/CDNB and the GSH/DCNB systems. The temperature optimum for these model substrates was between 30 and 35 degrees C, and only minute amounts of enzyme activity were detected at 15 degrees C. The activation energy in the temperature range of 15 to 30 degrees C was 46 kJ mol(-1). Dwarf pine glutathione S-transferase exhibited an approximate molecular weight of 52 kD.

  6. Development and validation of a novel RP-HPLC method for the analysis of reduced glutathione.

    PubMed

    Sutariya, Vijaykumar; Wehrung, Daniel; Geldenhuys, Werner J

    2012-03-01

    The objective of this study was the development, optimization, and validation of a novel reverse-phase high-pressure liquid chromatography (RP-HPLC) method for the quantification of reduced glutathione in pharmaceutical formulations utilizing simple UV detection. The separation utilized a C18 column at room temperature and UV absorption was measured at 215 nm. The mobile phase was an isocratic flow of a 50/50 (v/v) mixture of water (pH 7.0) and acetonitrile flowing at 1.0 mL/min. Validation of the method assessed the methods ability in seven categories: linearity, range, limit of detection, limit of quantification, accuracy, precision, and selectivity. Analysis of the system suitability showed acceptable levels of suitability in all categories. Likewise, the method displayed an acceptable degree of linearity (r(2) = 0.9994) over a concentration range of 2.5-60 µg/mL. The detection limit and quantification limit were 0.6 and 1.8 µg/mL respectively. The percent recovery of the method was 98.80-100.79%. Following validation the method was employed in the determination of glutathione in pharmaceutical formulations in the form of a conjugate and a nanoparticle. The proposed method offers a simple, accurate, and inexpensive way to quantify reduced glutathione.

  7. Reduced cardiac remodelling and prevention of glutathione deficiency after omega-3 supplementation in chronic heart failure.

    PubMed

    Fang, Yuehua; Favre, Julie; Vercauteren, Magalie; Laillet, Brigitte; Remy-Jouet, Isabelle; Skiba, Mohamed; Lallemand, Françoise; Dehaudt, Cathy; Monteil, Christelle; Thuillez, Christian; Mulder, Paul

    2011-06-01

    n-3 polyunsaturated fatty acids (omega-3) supplementation is associated with reduced cardiovascular mortality and post-infarction death. However, the impact of omega-3 supplementation in congestive heart failure (CHF) is still unknown. This study assesses the effects of omega-3 supplementation on left ventricular (LV) function and remodelling. We assessed, in rats with CHF induced by left coronary ligation, the effects of a 1-week and a 12-week supplementation with omega-3 (450 mg/kg per day) on LV hemodynamics, function and structure. Chronic omega-3 reduces total peripheral resistance due to an increase in cardiac output without modification of arterial pressure. Only chronic omega-3 reduces LV end-diastolic pressure and LV relaxation constant. Moreover, chronic omega-3 decreases LV systolic and diastolic diameters, LV weight and collagen density. Acute and chronic omega-3 increase LV γ-glutamyl-cysteine synthetase and oppose glutathione deficiency resulting in a reduction of myocardial oxidized glutathione. In experimental CHF, long-term omega-3 supplementation improves LV hemodynamics and function and prevents LV remodelling and glutathione deficiency. The latter might be one of the mechanisms involved, but whether other mechanism, independent of myocardial redox 'status', such as reduced inflammation, are implicated remains to be confirmed.

  8. Glutathione-mediated detoxification of halobenzoquinone drinking water disinfection byproducts in T24 cells.

    PubMed

    Li, Jinhua; Wang, Wei; Zhang, Hongquan; Le, X Chris; Li, Xing-Fang

    2014-10-01

    Halobenzoquinones (HBQs) are a new class of drinking water disinfection byproducts (DBPs) and are capable of producing reactive oxygen species and causing oxidative damage to proteins and DNA in T24 human bladder carcinoma cells. However, the exact mechanism of the cytotoxicity of HBQs is unknown. Here, we investigated the role of glutathione (GSH) and GSH-related enzymes including glutathione S-transferase (GST) and glutathione peroxidase (GPx) in defense against HBQ-induced cytotoxicity in T24 cells. The HBQs are 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), 2,3,6-trichloro-1,4-benzoquinone (TriCBQ), and 2,6-dibromobenzoquinone (DBBQ). We found that depletion of cellular GSH could sensitize cells to HBQs and extracellular GSH supplementation could attenuate HBQ-induced cytotoxicity. HBQs caused significant cellular GSH depletion and increased cellular GST activities in a concentration-dependent manner. Our mass spectrometry study confirms that HBQs can conjugate with GSH, explaining in part the mechanism of GSH depletion by HBQs. The effects of HBQs on GPx activity are compound dependent; DCMBQ and DBBQ decrease cellular GPx activities, whereas DCBQ and TriCBQ have no significant effects. Pearson correlation analysis shows that the cellular GSH level is inversely correlated with ROS production and cellular GST activity in HBQ-treated cells. These results support a GSH and GSH-related enzyme-mediated detoxification mechanism of HBQs in T24 cells.

  9. Preparation and comparison of chitosan nanoparticles with different degrees of glutathione thiolation

    PubMed Central

    Yousefpour, P.; Atyabi, F.; Dinarvand, R.; Vasheghani-Farahani, E.

    2011-01-01

    Background Chitosan has gained considerable attentions as a biocompatible carrier to improve delivery of active agents. Application of this vehicle in the form of nanoparticle could profit advantages of nanotechnology to increase efficacy of active agents. The purpose of this study was to provide detailed information about chitosan–glutathione (Cht-GSH)nanoparticles which are gaining popularity because of their high mucoadhesive and extended drug release properties. Methods Depolymerization of chitosan was carried out using sodium nitrite method.Glutathione was covalently attached to chitosan and the solubility of the resulting conjugates was evaluated. Nanoparticles were prepared by ionic gelation method and then the effect of glutathione immobilization on properties of nanoparticles was investigated. Results Thiolation efficiency was higher in lower molecular weight chitosan polymers compared to unmodified chitosan nanoparticles. Cht-GSH conjugates of the same molecular weight but with different degrees of thiolation had the same hydrodynamic diameter (995± nm) and surface charge (102± mV) as unmodified chitosan, but comprised of a denser network structure and lower concentration. Cht-GSH nanoparticles also exhibited greater mucoadhesive strength which was less affected by ionic strength and pH of the environment. Conclusion Thiolation improves the solubility of chitosan without any significant changes in size and charge of nanoparticles, but affects the nanogel structure. PMID:22615683

  10. Recognition and Detoxification of the Insecticide DDT by Drosophila melanogaster Glutathione S-Transferase D1

    SciTech Connect

    Low, Wai Yee; Feil, Susanne C.; Ng, Hooi Ling; Gorman, Michael A.; Morton, Craig J.; Pyke, James; McConville, Malcolm J.; Bieri, Michael; Mok, Yee-Foong; Robin, Charles; Gooley, Paul R.; Parker, Michael W.; Batterham, Philip

    2010-06-14

    GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 {angstrom} resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional {sup 1}H,{sup 15}N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.

  11. Ultrastructure, glutathione and low molecular weight proteins of Penicillium brevicompactum in response to cobalt.

    PubMed

    Farrag, Rasha M

    2009-01-01

    Penicillium brevicompactum highly tolerated cobalt concentrations of 50, 200, 800 and 1000 ppm both through cell wall and intracellular sequestration- immobilization of the metal on/within the cell wall, cell wall thickness, presence of electron-dense deposits inside vacuoles (thiol peptides sequestering cobalt) and in the cytoplasm (cobalt), and presence of matrixed electron-dense deposits, only at 800 and 1000 ppm, were observed. Increased vacuole formation and plasmolysis were also observed. Fraction number 9 of the cell free extract showed maximum cobalt uptake for all the investigated cobalt concentrations. In this fraction, glutathione was only induced at 500, 800 and 1000 ppm. Maximum glutathione concentration supported maximum cobalt uptake at 800 ppm. Low molecular weight protein profiles of fraction number 9 revealed that the presence of cobalt induced the appearance of new proteins that were not detected in the same fraction of the control. These low molecular weight peptides (12-5 KDa) suggest the production of Co-metallothioneins. This is the first report of cobalt-induced glutathione by P. brevicompactum and suggests the possible production of phytochelatins.

  12. Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis.

    PubMed

    Trivedi, Dipesh Kumar; Gill, Sarvajeet Singh; Yadav, Sandep; Tuteja, Narendra

    2013-02-01

    Plant cells and tissues remain always on risk under abiotic and biotic stresses due to increased production of reactive oxygen species (ROS). Plants protect themselves against ROS induced oxidative damage by the upregulation of antioxidant machinery. Out of many components of antioxidant machinery, glutathione reductase (GR, EC 1.6.4.2) and glutathione (GSH, γ-Glu-Cys-Gly) play important role in the protection of cell against oxidative damage. In stress condition, the GR helps in maintaining the reduced glutathione pool for strengthening the antioxidative processes in plants. Present study investigates genome wide analysis of GR from rice and Arabidopsis. We were able to identify 3 rice GR genes (LOC_Os02 g56850, LOC_Os03 g06740, LOC_Os10 g28000) and 2 Arabidopsis GR genes (AT3G54660, AT3G24170) from their respective genomes on the basis of their annotation as well as the presence of pyridine nucleotide-disulphide oxidoreductases class-I active site. The evolutionary relationship of the GR genes from rice and Arabidopsis genomes was analyzed using the multiple sequence alignment and phylogenetic tree. This revealed evolutionary conserved pyridine nucleotide-disulphide oxidoreductases class-I active site among the GR protein in rice and Arabidopsis. This study should make an important contribution to our better understanding of the GR under normal and stress condition in plants.

  13. Glutathione – Hydroxyl Radical Interaction: A Theoretical Study on Radical Recognition Process

    PubMed Central

    Fiser, Béla; Jójárt, Balázs; Csizmadia, Imre G.; Viskolcz, Béla

    2013-01-01

    Non-reactive, comparative (2×1.2 μs) molecular dynamics simulations were carried out to characterize the interactions between glutathione (GSH, host molecule) and hydroxyl radical (OH•, guest molecule). From this analysis, two distinct steps were identified in the recognition process of hydroxyl radical by glutathione: catching and steering, based on the interactions between the host-guest molecules. Over 78% of all interactions are related to the catching mechanism via complex formation between anionic carboxyl groups and the OH radical, hence both terminal residues of GSH serve as recognition sites. The glycine residue has an additional role in the recognition of OH radical, namely the steering. The flexibility of the Gly residue enables the formation of further interactions of other parts of glutathione (e.g. thiol, α- and β-carbons) with the lone electron pair of the hydroxyl radical. Moreover, quantum chemical calculations were carried out on selected GSH/OH• complexes and on appropriate GSH conformers to describe the energy profile of the recognition process. The relative enthalpy and the free energy changes of the radical recognition of the strongest complexes varied from −42.4 to −27.8 kJ/mol and from −21.3 to 9.8 kJ/mol, respectively. These complexes, containing two or more intermolecular interactions, would be the starting configurations for the hydrogen atom migration to quench the hydroxyl radical via different reaction channels. PMID:24040010

  14. Voltammetric detection of cadmium ions at glutathione-modified gold electrodes.

    PubMed

    Chow, Edith; Hibbert, D Brynn; Gooding, J Justin

    2005-06-01

    An electrochemical sensor for the detection of cadmium ions is described using immobilized glutathione as a selective ligand. First, a self-assembled monolayer of 3-mercaptopropionic acid (MPA) was formed on a gold electrode. The carboxyl terminus then allowed attachment of glutathione (GSH)via carbodiimide coupling to give the MPA-GSH modified electrode. A cadmium ion forms a complex with glutathione via the free sulfhydryl group and also to the carboxyl groups. The complexed ion is reduced by linear and Osteryoung square wave voltammetry with a detection limit of 5 nM. The effect of the kinetics of accumulation of cadmium on the measured current was investigated and modeled. Increasing the temperature of accumulation and electrochemical analysis caused an increase in the voltammetric peak of approximately 4% per degrees C around room temperature. The modified electrode could be regenerated, being stable for more than 16 repeated uses and more than two weeks if used once a day. Some interference from Pb(2+) and Cu(2+) was observed but the effects of Zn(2+), Ni(2+), Cr(3+) and Ba(2+) were insignificant.

  15. Biochemical manipulation of intracellular glutathione levels influences cytotoxicity to isolated human lymphocytes by sulfur mustard

    SciTech Connect

    Gross, C.L.; Innace, J.K.; Hovatter, R.C.; Meier, H.L.; Smith, W.J.

    1993-12-31

    Glutathione (GSH) is the major nonprotein thiol that can protect cells from damage due to electrophilic alkylating agents by forming conjugates with the agent. Sulfur mustard (HD) is an electrophilic alkylating agent that has potent mutagenic, carcinogenic, cytotoxic, and vesicant properties. Compounds that elevate or reduce intracellular levels of GSH may produce changes in cytotoxicity induced by sulfur mustard. Pretreatment of human peripheral blood lymphocytes (PBL) for 72 hr with 1 mM buthionine sulfoximine (BSO), which reduces intracellular GSH content to approximately 26% of control, appears to sensitize these in vitro cells to the cytotoxic effects of 10 AM HD but not to higher HD concentrations. Pretreatment of PBL for 48 hr with 10 mM N-acetyl cysteine (NA C), which elevates intracellular glutathione levels to 122% of control, appears to partially protect these in vitro cells from the cytotoxic effects of 10 LAIHD but not to higher HD concentrations. Augmentation of intracellular levels of glutathione may provide partial protection against cytotoxicity of sulfur mustard.

  16. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes

    SciTech Connect

    Gaetani, G.F.; Galiano, S.; Canepa, L.; Ferraris, A.M.; Kirkman, H.N.

    1989-01-01

    Genetic deficiencies of glucose-6-phosphate dehydrogenase (G6PD) and NADPH predispose affected erythrocytes to destruction from peroxides. Conversely, genetic deficiencies of catalase do not predispose affected erythrocytes to peroxide-induced destruction. These observations have served to strengthen the assumption that the NADPH/glutathione/glutathione peroxidase pathway is the principal means for disposal of H/sub 2/O/sub 2/ in human erythrocytes. Recently, however, mammalian catalase was found to have tightly bound NADPH and to require NADPH for the prevention and reversal of inactivation by its toxic substrate (H/sub 2/O/sub 2/). Since both catalase and the glutathione pathway are dependent on NADPH for function, this finding raises the possibility that both mechanisms destroy H/sub 2/O/sub 2/ in human erythrocytes. A comparison of normal and acatalasemic erythrocytes in the present study indicated that catalase accounts for more than half of the destruction of H/sub 2/O/sub 2/ when H/sub 2/O/sub 2/ is generated at a rate comparable to that which leads to hemolysis in G6PD- deficient erythrocytes.

  17. Yeast-like cell formation and glutathione metabolism in autolysing cultures of Penicillium chrysogenum.

    PubMed

    Pócsi, I; Molnár, Z; Pusztahelyi, T; Varecza, Z; Emri, T

    2007-12-01

    The bulk formation of yeast-like (arthrospore-like) cells were typical in carbon-depleted submerged cultures of the high beta-lactam producer Penicillium chrysogenum NCAIM 00237 strain independently of the nitrogen-content of the culture medium. This morphogenetic switch was still quite common in carbon-starving cultures of the low-penicillin-producer strain P. chrysogenum ATCC 28089 (Wis 54-1255) when the nitrogen-content of the medium was low but was a very rare event in wild-type P. chrysogenum cultures. The mycelium-->yeast-like cell transition correlated well with a relatively high glutathione concentration and a reductive glutathione/glutathione disulfite (GSH/GSSG) redox balance in autolysing cultures, which was a consequence of industrial strain development. Paradoxically, the development of high beta-lactam productivity resulted in a high intracellular GSH level and, concomitantly, in an increased y-glutamyltranspeptidase (i.e. GSH-decomposing) activity in the autolytic phase of growth of P. chrysogenum NCAIM 00237. The hypothesized causal connection between GSH metabolism and cell morphology, if verified, may help us in future metabolic engineering of industrially important filamentous fungi.

  18. Optical biosensor consisting of glutathione-S-transferase for detection of captan.

    PubMed

    Choi, Jeong-Woo; Kim, Young-Kee; Song, Sun-Young; Lee, In-ho; Lee, Won-Hong

    2003-10-15

    The optical biosensor consisting of a glutathione-S-transferase (GST)-immobilized gel film was developed to detect captan in contaminated water. The sensing scheme was based on the decrease of yellow product, s-(2,4-dinitrobenzene) glutathione, produced from substrates, 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), due to the inhibition of GST reaction by captan. Absorbance of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme reactor of the sensor system was fabricated by the gel entrapment technique for the immobilized GST film. The immobilized GST had the maximum activity at pH 6.5. The optimal concentrations of substrates were determined with 1 mM for both of CDNB and GSH. The optimum concentration of enzyme was also determined with 100 microg/ml. The activity of immobilized enzyme was fairly sustained during 30 days. The proposed biosensor could successfully detect the captan up to 2 ppm and the response time to steady signal was about 15 min.

  19. 2-Hydroxy-4-glutathion-S-yl-17beta-estradiol and 2-hydroxy-1-glutathion-S-yl-17beta-estradiol produce oxidative stress and renal toxicity in an animal model of 17beta-estradiol-mediated nephrocarcinogenicity.

    PubMed

    Butterworth, M; Lau, S S; Monks, T J

    1998-01-01

    Chronic exposure of male Syrian hamsters to a variety of estrogens has been linked with a high incidence of renal carcinoma. The basis of this species and tissue specificity remains to be resolved. We have recently shown that (i) 17beta-estradiol is nephrotoxic in the hamster in a manner dependent upon the activity of gamma-glutamyl transpeptidase and (ii) 17beta-estradiol is metabolized to a variety of catechol estrogen glutathione conjugates (Butterworth et al., Carcinogenesis, 18, 561-567, 1997). We report that the catechol estrogen glutathione conjugates exhibit redox properties similar to those of the catechol estrogens, and maintain the ability to generate superoxide radicals. Administration of 2-hydroxy-4-glutathion-S-yl-17beta-estradiol or 2-hydroxy-1-glutathion-S-yl-17beta-estradiol (0.27-5.0 micromol/kg) to Syrian hamsters, produces mild nephrotoxicity. Repeated daily administration of 2-hydroxy-4-glutathion-S-yl-17beta-estradiol causes a sustained elevation in urinary markers of renal damage and in the concentration of renal protein carbonyls and lipid hydroperoxides. Catechol estrogen oxidation and conjugation of glutathione in the liver, followed by the selective uptake of the redox active conjugates in tissues rich in gamma-glutamyl transpeptidase may contribute to 17beta-estradiol-induced renal tumors in the hamster.

  20. Glutathione and thioredoxin type 1 cooperatively denitrosate HepG2 cells-derived cytosolic S-nitrosoproteins

    PubMed Central

    Stoyanovsky, Detcho A.; Scott, Melanie J.; Billiar, Timothy R.

    2013-01-01

    In this study, we present experimental evidence that glutathione acts in concert with human thioredoxin type 1 in the denitrosation of cytosolic S-nitrosoproteins (PSNOs) from HepG2 cells. PMID:23743503

  1. GLUTATHIONE (GSH) CONCENTRATIONS VARY WITH THE CELL CYCLE IN MATURING HAMSTER OOCYTES, ZYGOTES AND PRE-IMPLANATION EMBRYOS

    EPA Science Inventory

    Abstract
    Glutathione (GSH) is thought to play critical roles in oocyte function including spindle maintenance and provision of reducing power needed to initiate sperm chromatin decondensation. Previous observations that GSH concentrations are higher in mature than immature o...

  2. Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons.

    PubMed

    Himi, T; Ikeda, M; Yasuhara, T; Nishida, M; Morita, I

    2003-12-01

    Cysteine uptake is the rate-limiting process in glutathione synthesis. Previously we have shown that the inhibitors of excitatory amino acid transporters (EAATs) significantly enhance glutamate toxicity via depletion of intracellular glutathione. In this study we show evidence that the neuronal glutamate transporter EAAT3 is directly enrolled in cysteine uptake in cultured neurons. Neuronal cysteine uptake was dependent on the extracellular sodium, and was suppressed by EAAT inhibitors. Cysteine uptake was suppressed by extracellular glutamate and aspartate, substrates of EAATs, and not by substrates of cysteine transporters. Intracellular glutathione levels were reduced by EAAT inhibitors, and not by inhibitors of cysteine transporters. Knock down of EAAT3 expression using antisense oligonucleotide significantly reduced cysteine uptake, intracellular glutathione level, and neuronal viability against oxidative stress. These facts indicate that EAAT3 functions as a cysteine transporter, and this function seems to be unique and distinct from cysteine transporters that have been reported.

  3. The effects of exposure to extremely low-frequency magnetic field and amphetamine on the reduced glutathione in the brain.

    PubMed

    Jelenković, Ankica; Janać, Branka; Pesić, Vesna; Jovanović, Marina D; Vasiljević, Ivana; Prolić, Zlatko

    2005-06-01

    Continuous exposure to extremely low-frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) alone and combined with D-amphetamine (1.5 mg/kg) affected the reduced glutathione content in brain regions of rats. Compared to sham-exposed rats, the glutathione content in the forebrain cortex of the ELF-MF-exposed rats decreased (P < 0.001), but this reverted after giving amphetamine upon ELF-MF exposure. In this group, the glutathione content was increased in the brain stem and cerebellum (P < 0.05 compared to the sham-exposed, ELM-MF-exposed, and amphetamine-treated groups). It is suggested that biogenic monoamines are involved in the reduced glutathione changes observed. The changes are not uniform in the brain regions examined.

  4. Activity of the glutathione antioxidant system and NADPH-generating enzymes in blood serum of rats with type 2 diabetes mellitus after administration of melatonin-correcting drugs.

    PubMed

    Agarkov, A A; Popova, T N; Verevkin, A N; Matasova, L V

    2014-06-01

    We studied the effects of epifamin and melaxen on serum content of reduced glutathione and activities of glutathione peroxidase, glutathione reductase, and NADPH-generating enzymes (glucose-6-phosphate dehydrogenase and NADP-isocitrate dehydrogenase) in rats with type 2 diabetes mellitus. The concentration of reduced glutathione was decreased in rats with this disease (by 1.8 times), but increased after treatment with epifamin and melaxen (by 1.6 and 1.7 times, respectively). Activities of glutathione peroxidase, glutathione reductase, and NADPH-generating enzymes returned to the control level. Correction of melatonin concentration after treatment with the test drugs was probably followed by inhibition of free radical processes. The observed changes were accompanied by normalization of activity of the glutathione antioxidant system and NADPH-generating enzymes required for normal function of this system.

  5. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88 µM and 1.9 s(-1); 45 µM and 12.6 s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3 µM and 0.96 s(-1); 4 µM and 1.62 s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I₅₀ = 3.25, 2.29 nM for DTNB and GSSG substrates, respectively for cTsTGR; I₅₀ = 5.6, 25.4 nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase

  6. The role of mitochondrial phospholipid hydroperoxide glutathione peroxidase in cancer therapy

    NASA Astrophysics Data System (ADS)

    Wang, Hong

    Phospholipid hydroperoxide glutathione peroxidase (PhGPx) is a unique selenoenzyme that directly detoxifies lipid hydroperoxides in situ . It therefore plays an important role in the protection of cellular membranes. PhGPx is expressed in most mammalian tissues. It is present as a mitochondrial form (L-PhGPx) and a cytosolic form (S-PhGPx). Overexpression of PhGPx has been shown to significantly protect cells from oxidative damage. The hypothesis of this thesis is that mitochondrial PhGPx (L-PhGPx) may play an important role in the resistance of cells to certain oxidative stress- mediated cancer therapies. A human breast carcinoma MCF-7 cell line was used as a cell model system in this research. It was stably transfected with human L-PhGPx sense cDNA. Four clones (P-1, P-2, P-3, and P-4) with 3- to 7-fold increases in PhGPx activity were selected for study. Overexpression of L-PhGPx did not significantly influence other cellular antioxidants, including superoxide dismutases, cytosolic glutathione peroxidase, catalase, glutathione reductase, and glutathione. However, L-PhGPx did decrease the rate of cell growth. Cell plating efficiency was inversely correlated with effective PhGPx activity, which is defined as the product of cellular PhGPx activity and total glutathione. The biological functions of L-PhGPx have been investigated in cancer treatment, including photodynamic therapy (PDT) and hyperthermia (HT). Both PDT and HT can induce oxidative stress. Overexpression of L-PhGPx in MCF-7 cells significantly increased the resistance of cells to PDT- and HT-mediated cytotoxicity. The effective PhGPx activity had a remarkable inverse linear correlation (r = -0.80) to the rate of removal of lipid hydroperoxides in living cells, and correlated positively with cell survival after photooxidation (r = 0.91). L-PhGPx protected mitochondrial function by preserving the mitochondrial membrane potential. These data demonstrate that L-PhGPx provides significant protection against

  7. Glutathione and thioredoxin systems contribute to recombinant monoclonal antibody interchain disulfide bond reduction during bioprocessing.

    PubMed

    Handlogten, Michael W; Zhu, Min; Ahuja, Sanjeev

    2017-03-06

    Antibody interchain disulfide bond reduction during biopharmaceutical manufacturing has received increased attention since it was first reported in 2010. Antibody reduction leads to loss of product and reduced product stability. It is therefore critical to understand the underlying mechanisms of reduction. To date, the thioredoxin system has been reported as the sole contributor to antibody reduction during bioprocessing. In this work, we show that the glutathione system, in addition to the thioredoxin system, is involved in reducing antibody molecules and the contributions of the two systems can vary depending upon the cell culture process. The roles of the glutathione and thioredoxin systems were evaluated for three molecules with different IgG subclass where reduction was observed during manufacturing: mAb A, mAb B, and mAb C representing an IgG1 , IgG2 , and IgG4, respectively. The expression of enzymes for both the thioredoxin and glutathione systems were confirmed in all three cell lines. Inhibitors were evaluated using purified mammalian reductases to evaluate their specificity. The optimized experimental conditions enabled both the determination of reductase activity contributed from as well as the amount of antibody reduced by each enzymatic system. Our results demonstrate that the underlying enzymatic mechanisms are different depending upon the cell culture process; one of the two systems may be the dominant mechanism, or both enzymatic systems may be involved. Specifically, the glutathione system was found to be the major contributor to mAb A reduction while the thioredoxin system was the major contributor to mAb C reduction. Intriguingly, mAb B experienced significant reduction from both enzymatic systems. In summary, we have demonstrated that in addition to the thioredoxin pathway, the glutathione system is a second major pathway contributing to antibody reduction and this knowledge can be leveraged to develop more specific antibody reduction

  8. Hepatic glutathione metabolism and lipid peroxidation in response to excess dietary selenomethionine and selenite in mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Heinz, G.H.; Krynitsky, A.J.

    1989-01-01

    Selenium from selenomethionine accumulated in a dose-dependent manner in the liver, resulting in a decrease in hepatic-reduced glutathione with a corresponding decrease in total hepatic thiols. There was a dose-dependent increase in the oxidized to reduced glutathione ratio, and an increase in lipid peroxidation. These findings indicate that Se in the diet at 10 ppm and higher causes significant sublethal alterations in mallard ducklings, and 20-40 ppm causes significant hepatotoxicity.

  9. One-dimensional and two-dimensional nuclear magnetic resonance studies of the reaction of phenyldichloroarsine with glutathione

    SciTech Connect

    Dill, K.; Adams, E.R.; O'Connor, R.J.; Chong, S.; McGown, E.L.

    1987-09-01

    /sup 14/C-labeled phenyldichloroarsine (PDA) enters the red blood cell and forms a 1:2 adduct with intracellular glutathione. Upon gel filtration of the hemolysate, (/sup 14/C)PDA was recovered with the glutathione-containing fractions. One-dimensional and two-dimensional nuclear magnetic resonance spectroscopy were used to confirm the structure of the adduct and elucidate its stereochemistry, stability, and reactivity.

  10. The effect of glutathion on the reaction of cis-and trans-diamminedichloroplatinum(II) with DNA.

    PubMed

    Oliński, R

    1990-01-01

    Differential pulse polarography study was used to investigate the influence of glutathion on cis- and trans-DDP induced alterations of DNA structure. Though the applied concentration of glutathion has no effect on the reaction on DNA with cis-DDP, it greatly modifies the reaction with trans isomer. This may be an important reason for the ineffectiveness of the trans-DDP as an antitumor drug.

  11. Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves.

    PubMed Central

    Jimenez, A.; Hernandez, J. A.; Del Rio, L. A.; Sevilla, F.

    1997-01-01

    The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles. PMID:12223704

  12. Reversible near-infrared fluorescent probe introducing tellurium to mimetic glutathione peroxidase for monitoring the redox cycles between peroxynitrite and glutathione in vivo.

    PubMed

    Yu, Fabiao; Li, Peng; Wang, Bingshuai; Han, Keli

    2013-05-22

    The redox homeostasis between peroxynitrite and glutathione is closely associated with the physiological and pathological processes, e.g. vascular tissue prolonged relaxation and smooth muscle preparations, attenuation hepatic necrosis, and activation matrix metalloproteinase-2. We report a near-infrared fluorescent probe based on heptamethine cyanine, which integrates with telluroenzyme mimics for monitoring the changes of ONOO(-)/GSH levels in cells and in vivo. The probe can reversibly respond to ONOO(-) and GSH and exhibits high selectivity, sensitivity, and mitochondrial target. It is successfully applied to visualize the changes of redox cycles during the outbreak of ONOO(-) and the antioxidant GSH repair in cells and animal. The probe would provide a significant advance on the redox events involved in the cellular redox regulation.

  13. Glutathione and multidrug resistance protein transporter mediate a self-propelled disposal of bismuth in human cells.

    PubMed

    Hong, Yifan; Lai, Yau-Tsz; Chan, Godfrey Chi-Fung; Sun, Hongzhe

    2015-03-17

    Glutathione and multidrug resistance protein (MRP) play an important role on the metabolism of a variety of drugs. Bismuth drugs have been used to treat gastrointestinal disorder and Helicobacter pylori infection for decades without exerting acute toxicity. They were found to interact with a wide variety of biomolecules, but the major metabolic pathway remains unknown. For the first time (to our knowledge), we systematically and quantitatively studied the metabolism of bismuth in human cells. Our data demonstrated that over 90% of bismuth was passively absorbed, conjugated to glutathione, and transported into vesicles by MRP transporter. Mathematical modeling of the system reveals an interesting phenomenon. Passively absorbed bismuth consumes intracellular glutathione, which therefore activates de novo biosynthesis of glutathione. Reciprocally, sequestration by glutathione facilitates the passive uptake of bismuth and thus completes a self-sustaining positive feedback circle. This mechanism robustly removes bismuth from both intra- and extracellular space, protecting critical systems of human body from acute toxicity. It elucidates the selectivity of bismuth drugs between human and pathogens that lack of glutathione, such as Helicobacter pylori, opening new horizons for further drug development.

  14. Effects of cyanobacterial lipopolysaccharides from microcystis on glutathione-based detoxification pathways in the zebrafish (Danio rerio) embryo.

    PubMed

    Jaja-Chimedza, Asha; Gantar, Miroslav; Mayer, Gregory D; Gibbs, Patrick D L; Berry, John P

    2012-06-01

    Cyanobacteria ("blue-green algae") are recognized producers of a diverse array of toxic secondary metabolites. Of these, the lipopolysaccharides (LPS), produced by all cyanobacteria, remain to be well investigated. In the current study, we specifically employed the zebrafish (Danio rerio) embryo to investigate the effects of LPS from geographically diverse strains of the widespread cyanobacterial genus, Microcystis, on several detoxifying enzymes/pathways, including glutathione-S-transferase (GST), glutathione peroxidase (GPx)/glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), and compared observed effects to those of heterotrophic bacterial (i.e., E. coli) LPS. In agreement with previous studies, cyanobacterial LPS significantly reduced GST in embryos exposed to LPS in all treatments. In contrast, GPx moderately increased in embryos exposed to LPS, with no effect on reciprocal GR activity. Interestingly, total glutathione levels were elevated in embryos exposed to Microcystis LPS, but the relative levels of reduced and oxidized glutathione (i.e., GSH/GSSG) were, likewise, elevated suggesting that oxidative stress is not involved in the observed effects as typical of heterotrophic bacterial LPS in mammalian systems. In further support of this, no effect was observed with respect to CAT or SOD activity. These findings demonstrate that Microcystis LPS affects glutathione-based detoxification pathways in the zebrafish embryo, and more generally, that this model is well suited for investigating the apparent toxicophore of cyanobacterial LPS, including possible differences in structure-activity relationships between heterotrophic and cyanobacterial LPS, and teleost fish versus mammalian systems.

  15. Schisandrin B protects against carbon tetrachloride toxicity by enhancing the mitochondrial glutathione redox status in mouse liver.

    PubMed

    Ip, S P; Poon, M K; Che, C T; Ng, K H; Kong, Y C; Ko, K M

    1996-01-01

    Previous studies in our laboratory have demonstrated the effect of Schisandrin B (Sch B),an active ingredient of the fruit of Schisandra chinensis, on enhancing the hepatic glutathione antioxidant system in mice, as evidenced by the hepatoprotection against carbon tetrachloride (CCl4) toxicity. In the present study, the mechanism involved in the hepatoprotection afforded by Sch B treatment was investigated. Treating female Balb/c mice with 1, 3-bis(2-chloroethyl)-1-nitrosourea, an inhibitor of glutathione reductase (GRD), at a dose of 2 mmol/kg (i.p.) did not abrogate the hepatoprotective action of Sch B in CCl4-treated mice. The result indicates that the increased activity of hepatic GRD is not ascribable to the hepatoprotective action of Sch B. In control mice, the same Sch B treatment regimen caused an enhancement in hepatic mitochondrial glutathione redox status, as indicated by the significant increase and decrease in reduced and oxidized glutathione levels, respectively. While the CCl4 intoxication greatly impaired mitochondrial glutathione redox status, the beneficial effect of Sch B treatment became more evident after CCl4 challenge. Our results strongly suggest that the mechanism of hepatoprotection afforded by Sch B treatment may involve the enhancement of mitochondrial glutathione redox status.

  16. Voltammetric determination of glutathione in haemolysed erythrocyte and tablet samples using modified-multiwall carbon nanotubes paste electrode.

    PubMed

    Ensafi, Ali A; Dadkhah-Tehrani, Samira; Karimi-Maleh, Hassan

    2012-12-01

    A chemically modified electrode was prepared by incorporating p-aminophenol into multiwall carbon nanotubes paste matrix. Cyclic voltammetry, square wave voltammetry, double potential step chronoamperometry, and electrochemical impedance spectroscopy were used to investigate the electrochemical behaviour of glutathione at the chemically modified electrode prepared. According to the results, p-aminophenol multiwall carbon nanotubes paste electrode (p-APMWCNTPE) showed high electrocatalytic activity for glutathione oxidation, producing a sharp oxidation peak current at about +0.285 vs Ag/AgCl reference electrode at pH 5.0. Chronoamperometry was also used to determine glutathione's catalytic rate constant and diffusion coefficient at p-APMWCNTPE. The square wave voltammetric peak current of glutathione increased linearly with glutathione concentration in the range of 2.0 × 10(-7) - 1.0 × 10(-4) mol L(-1) with a detection limit of 9.0 × 10(-8) mol L(-1). The method was also successfully employed as a selective, simple, and precise method for the determination of glutathione in haemolysed erythrocyte, tablet, and urine samples.

  17. The effect of Alcide, a new antimicrobial drug, on rat blood glutathione and erythrocyte osmotic fragility, in vitro.

    PubMed

    Abdel-Rahman, M S; Scatina, J

    1985-06-01

    Alcide is an antimicrobial drug which has been demonstrated to kill a variety of common pathogenic bacteria as well as fungi, in vitro. This agent is supplied in liquid and gel forms and consists of two parts, one of which contains sodium chlorite, while the other contains lactic acid as the active ingredients. Mixing of the two parts prior to use produces chlorine dioxide (ClO2), a strong oxidizing agent. A dose-dependent decrease in glutathione content and erythrocyte osmotic fragility occurred after incubation of whole blood with Alcide. Glutathione concentration and erythrocyte osmotic fragility approached the control values after 240 min of incubation with Alcide containing 1 mM NaClO2. The addition of exogenous glutathione (50 mg 100 ml-1) or glutathione reductase and NADPH to rat blood in the presence of Alcide returned erythrocyte osmotic fragility to control values. Treatment of rat blood with Alcide did not change glutathione reductase or glutathione peroxidase activities after 1 h of incubation.

  18. Glutathione and multidrug resistance protein transporter mediate a self-propelled disposal of bismuth in human cells

    PubMed Central

    Hong, Yifan; Lai, Yau-Tsz; Chan, Godfrey Chi-Fung; Sun, Hongzhe

    2015-01-01

    Glutathione and multidrug resistance protein (MRP) play an important role on the metabolism of a variety of drugs. Bismuth drugs have been used to treat gastrointestinal disorder and Helicobacter pylori infection for decades without exerting acute toxicity. They were found to interact with a wide variety of biomolecules, but the major metabolic pathway remains unknown. For the first time (to our knowledge), we systematically and quantitatively studied the metabolism of bismuth in human cells. Our data demonstrated that over 90% of bismuth was passively absorbed, conjugated to glutathione, and transported into vesicles by MRP transporter. Mathematical modeling of the system reveals an interesting phenomenon. Passively absorbed bismuth consumes intracellular glutathione, which therefore activates de novo biosynthesis of glutathione. Reciprocally, sequestration by glutathione facilitates the passive uptake of bismuth and thus completes a self-sustaining positive feedback circle. This mechanism robustly removes bismuth from both intra- and extracellular space, protecting critical systems of human body from acute toxicity. It elucidates the selectivity of bismuth drugs between human and pathogens that lack of glutathione, such as Helicobacter pylori, opening new horizons for further drug development. PMID:25737551

  19. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds.

    PubMed

    Pukacka, Stanisława; Ratajczak, Ewelina

    2006-12-01

    Ascorbate-glutathione systems were studied during desiccation of recalcitrant seeds of the silver maple (Acer saccharinum L.). The desiccated seeds gradually lost their germination capacity and this was strongly correlated with an increase in electrolyte leakage from seeds. Simultaneously the increase of reactive oxygen species (ROS) (superoxide radical - O(2)(-*) and hydrogen peroxide - H(2)O(2)) production was observed. The results indicate that remarkable changes in the concentrations and redox status of ascorbate and glutathione occur in embryo axes and cotyledons. After shedding, concentrations of ascorbic acid (ASA) and the reduced form of glutathione (GSH) are higher in embryo axes than in cotyledons and their redox status is high in both embryo parts. Cotyledons in freshly shed seeds are devoid of GSH. At the first stages of desiccation, up to a level of 43% of moisture content, ASA content in embryo axes and GSH content in cotyledons increased. Below this level of moisture content, the antioxidant contents as well as their redox status rapidly decreased. The enzymes of the ascorbate-glutathione pathway: ascorbate peroxidase (APX) (EC 1.11.1.11), monodehydroascorbate reductase (MR) (EC 1.6.5.4), dehydroascorbate reductase (DHAR) (EC 1.8.5.1) and glutathione reductase (GR) (EC 1.6.4.2) increased their activity during desiccation, but mainly in embryonic axes. The changes are probably required for counteracting the production of ROS during desiccation. The relationship between ascorbate and glutathione metabolism and their relevance during desiccation of recalcitrant Acer saccharinum seeds is discussed.

  20. Effects of glutamine supplementation on gut barrier, glutathione content and acute phase response in malnourished rats during inflammatory shock

    PubMed Central

    Belmonte, Liliana; Coëffier, Moïse; Pessot, Florence Le; Miralles-Barrachina, Olga; Hiron, Martine; Leplingard, Antony; Lemeland, Jean-François; Hecketsweiler, Bernadette; Daveau, Maryvonne; Ducrotté, Philippe; Déchelotte, Pierre

    2007-01-01

    AIM: To evaluate the effect of glutamine on intestinal mucosa integrity, glutathione stores and acute phase response in protein-depleted rats during an inflammatory shock. METHODS: Plasma acute phase proteins (APP), jejunal APP mRNA levels, liver and jejunal glutathione concentrations were measured before and one, three and seven days after turpentine injection in 4 groups of control, protein-restricted, protein-restricted rats supplemented with glutamine or protein powder. Bacterial translocation in mesenteric lymph nodes and intestinal morphology were also assessed. RESULTS: Protein deprivation and turpentine injection significantly reduced jejunal villus height, and crypt depths. Mucosal glutathione concentration significantly decreased in protein-restricted rats. Before turpentine oil, glutamine supplementation restored villus heights and glutathione concentration (3.24 ± 1.05 vs 1.72 ± 0.46 μmol/g tissue, P < 0.05) in the jejunum, whereas in the liver glutathione remained low. Glutamine markedly increased jejunal α1-acid glycoprotein mRNA level after turpentine oil but did not affect its plasma concentration. Bacterial translocation in protein-restricted rats was not prevented by glutamine or protein powder supplementation. CONCLUSION: Glutamine restored gut glutathione stores and villus heights in malnourished rats but had no preventive effect on bacterial translocation in our model. PMID:17569119

  1. Structure-activity relationships for chemical and glutathione S-transferase-catalysed glutathione conjugation reactions of a series of 2-substituted 1-chloro-4-nitrobenzenes.

    PubMed Central

    Van der Aar, E M; Bouwman, T; Commandeur, J N; Vermeulen, N P

    1996-01-01

    Glutathione S-transferases (GSTs) constitute an important class of phase II (de)toxifying enzymes, catalysing the conjugation of glutathione (GSH) with electrophilic compounds. In the present study, Km, kcat and kcat/Km values for the rat GST 1-1-, 3-3-, 4-4- and 7-7-catalysed conjugation reactions between GSH and a series of 10 different 2-substituted 1-chloro-4-nitrobenzenes, and the second-order rate constants (ks) of the corresponding base-catalysed reactions, were correlated with nine classical physicochemical parameters (electronic, steric and lipophilic) of the substituents and with 16 computer-calculated molecular parameters of the substrates and of the corresponding Meisenheimer complexes with MeS- as a model nucleophile for GS- (charge distributions and several energy values), giving structure-activity relationships. On the basis of an identical dependence of the base-catalysed as well as the GST 1-1- and GST 7-7-catalysed reactions on electronic parameters (among others, Hammett substituent constant sigma p and charge on p-nitro substituents), and the finding that the corresponding reactions catalysed by GSTs 3-3 and 4-4 depend to a significantly lesser extent on these parameters, it was concluded that the Mu-class GST isoenzymes have a rate-determining transition state in the conjugation reaction between 2-substituted 1-chloro-4-nitrobenzenes and GSH which is different from that of the other two GSTs. Several alternative rate-limiting transition states for GST 3-3 and 4-4 are discussed. Furthermore, based on the obtained structure-activity relationships, it was possible to predict the kcat/Km values of the four GST isoenzymes and the ks of the base-catalysed GSH conjugation of 1-chloro-4-nitrobenzene. PMID:8973562

  2. Retinoid X receptor alpha Regulates the expression of glutathione s-transferase genes and modulates acetaminophen-glutathione conjugation in mouse liver.

    PubMed

    Dai, Guoli; Chou, Nathan; He, Lin; Gyamfi, Maxwell A; Mendy, Alphonse J; Slitt, Angela L; Klaassen, Curtis D; Wan, Yu-Jui Y

    2005-12-01

    Nuclear receptors, including constitutive androstane receptor, pregnane X receptor, and retinoid X receptor (RXR), modulate acetaminophen (APAP)-induced hepatotoxicity by regulating the expression of phase I cytochrome P450 (P450) genes. It has not been fully resolved, however, whether they regulate APAP detoxification at the phase II level. The aim of the current study was to evaluate the role of RXRalpha in phase II enzyme-mediated detoxification of APAP. Wild-type and hepatocyte-specific RXRalpha knockout mice were treated with a toxic dose of APAP (500 mg/kg i.p.). Mutant mice were protected from APAP-induced hepatotoxicity, even though basal liver glutathione (GSH) levels were significantly lower in mutant mice compared with those of wild-type mice. High-performance liquid chromatography analysis of APAP metabolites revealed significantly greater levels of APAP-GSH conjugates in livers and bile of mutant mice compared with those of wild-type mice. Furthermore, hepatocyte RXRalpha deficiency altered the gene expression profile of the glutathione S-transferase (Gst) family. Basal expression of 13 of 15 Gst genes studied was altered in hepatocyte-specific RXRalpha-deficient mice. This probably led to enhanced APAP-GSH conjugation and reduced accumulation of N-acetyl-p-benzoquinone imine, a toxic electrophile that is produced by biotransformation of APAP by phase I P450 enzymes. In conclusion, the data presented in this study define an RXRalpha-Gst regulatory network that controls APAP-GSH conjugation. This report reveals a potential novel strategy to enhance the detoxification of APAP or other xenobiotics by manipulating Gst activity through RXRalpha-mediated pathways.

  3. Co-variation of glutathione transferase expression and cytostatic drug resistance in HeLa cells: establishment of class Mu glutathione transferase M3-3 as the dominating isoenzyme.

    PubMed Central

    Hao, X Y; Widersten, M; Ridderström, M; Hellman, U; Mannervik, B

    1994-01-01

    Qualitative and quantitative analyses of glutathione, glutathione transferases (GSTs) and other glutathione-linked enzymes in HeLa cells have been made in order to study their significance in cellular resistance to electrophilic cytotoxic agents. The cytosolic concentrations of three GSTs, GST M1-1 (53 +/- 9 ng/mg of cytosolic protein), GST P1-1 (11 +/- 3 ng/mg) and GST A1-1 (1.1 +/- 0.4 ng/mg) were quantified by isoenzyme-specific enzyme-linked immunoassays. Electrophoretic analysis and immunoblotting demonstrated another component, GST M3-3, which was identified by amino acid sequence analysis. GST M3-3 was quantified (1550 +/- 250 ng/mg) by slot-blot immunoanalysis and was the most abundant GST in HeLa cells. An additional cytosolic 13 kDa protein with high affinity for immobilized glutathione or S-hexyglutathione was found to be identical with a macrophage migration-inhibitory factor, previously identified as a lymphokine. Cells grown in roller bottles (HR) rather than in ordinary culture flasks contain a significantly lower concentration of all the GSTs and were found to be more sensitive to the cytostatic agents doxorubicin (2.3-fold), cisplatin (1.7-fold) and melphalan (1.4-fold). The cytosolic concentrations of glutathione reductase and glyoxalase I were also lower in HR cells, whereas the total glutathione concentration was unchanged and the glutathione peroxidase activity was increased. The results indicate that GSTs contribute to the cellular resistance phenotype. Images Figure 1 Figure 2 Figure 4 PMID:8280111

  4. Glutathione Degradation by the Alternative Pathway (DUG Pathway) in Saccharomyces cerevisiae Is Initiated by (Dug2p-Dug3p)2 Complex, a Novel Glutamine Amidotransferase (GATase) Enzyme Acting on Glutathione*

    PubMed Central

    Kaur, Hardeep; Ganguli, Dwaipayan; Bachhawat, Anand K.

    2012-01-01

    The recently identified, fungi-specific alternative pathway of glutathione degradation requires the participation of three genes, DUG1, DUG2, and DUG3. Dug1p has earlier been shown to function as a Cys-Gly-specific dipeptidase. In the present study, we describe the characterization of Dug2p and Dug3p. Dug3p has a functional glutamine amidotransferase (GATase) II domain that is catalytically important for glutathione degradation as demonstrated through mutational analysis. Dug2p, which has an N-terminal WD40 and a C-terminal M20A peptidase domain, has no peptidase activity. The previously demonstrated Dug2p-Dug3p interaction was found to be mediated through the WD40 domain of Dug2p. Dug2p was also shown to be able to homodimerize, and this was mediated by its M20A peptidase domain. In vitro reconstitution assays revealed that Dug2p and Dug3p were required together for the cleavage of glutathione into glutamate and Cys-Gly. Purification through gel filtration chromatography confirmed the formation of a Dug2p-Dug3p complex. The functional complex had a molecular weight that corresponded to (Dug2p-Dug3p)2 in addition to higher molecular weight oligomers and displayed Michaelis-Menten kinetics. (Dug2p-Dug3p)2 had a Km for glutathione of 1.2 mm, suggesting a novel GATase enzyme that acted on glutathione. Dug1p activity in glutathione degradation was found to be restricted to its Cys-Gly peptidase activity, which functioned downstream of the (Dug2p-Dug3p)2 GATase. The DUG2 and DUG3 genes, but not DUG1, were derepressed by sulfur limitation. Based on these studies and the functioning of GATases, a mechanism is proposed for the functioning of the Dug proteins in the degradation of glutathione. PMID:22277648

  5. In vitro effects of hyperoxia on alveolar type II pneumocytes: inhibition of glutathione synthesis increases hyperoxic cell injury.

    PubMed

    Aerts, C; Wallaert, B; Voisin, C

    1992-01-01

    An in vitro model of alveolar epithelial oxidant injury was developed based on exposure to hyperoxia of cultured guinea pig type II pneumocytes using a biphasic cell culture system in aerobiosis. The present study investigates the roles of intracellular antioxidant enzymes and of glutathione in providing protection against hyperoxia. A 2-day type II cell culture in normoxia was associated with a significant decrease in protein, catalase, and Cu-Zn SOD cell content, whereas ATP cell content, Mn-SOD, and glutathione peroxidase (GPx) activities did not change and glutathione cell content significantly increased. Exposure of type II cells to hyperoxia did not induce significant changes in cell content in protein, SOD, catalase, GPx, or glutathione cell content when compared to control cells (exposed to normoxia). With ATP cell content expressed as a cell injury index (CII), type II cell injury was found to increase with increasing O2 concentrations. Indeed, a 2-day 50% O2 and 95% O2 exposure resulted in a CII of -7.5 +/- 6.2% and 17.9 +/- 5.9%, respectively, LDH release by type II cells was not significantly increased after hypoxic exposure. Cell injury effects of hyperoxia did not correlate with the endogenous antioxidant enzyme activities (SOD, Mn-SOD, catalase). In marked contrast, there was a significant correlation between the CII and total glutathione content of type II cells (p < .01). This correlation was largely due to the close relationship between CII and reduced glutathione. Hyperoxic induced cell injury (as demonstrated by CII > 0) was clearly associated with significantly lower intracellular glutathione level when compared to experiments without hyperoxia induced cell injury (CII < 0). In addition, in the presence of buthionine sulfoximine (BSO), the ability of type II cells to synthetize new glutathione was severely impaired, whereas ATP cell content and cell antioxidant enzyme activities did not change. As a consequence, the reduction of intracellular

  6. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    PubMed Central

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger

  7. N-acetylcysteine stimulates protein synthesis in enterocytes independently of glutathione synthesis.

    PubMed

    Yi, Dan; Hou, Yongqing; Wang, Lei; Long, Minhui; Hu, Shengdi; Mei, Huimin; Yan, Liqiong; Hu, Chien-An Andy; Wu, Guoyao

    2016-02-01

    Dietary supplementation with N-acetylcysteine (NAC) has been reported to improve intestinal health and treat gastrointestinal diseases. However, the underlying mechanisms are not fully understood. According to previous reports, NAC was thought to exert its effect through glutathione synthesis. This study tested the hypothesis that NAC enhances enterocyte growth and protein synthesis independently of cellular glutathione synthesis. Intestinal porcine epithelial cells were cultured for 3 days in Dulbecco's modified Eagle medium containing 0 or 100 μM NAC. To determine a possible role for GSH (the reduced form of glutathione) in mediating the effect of NAC on cell growth and protein synthesis, additional experiments were conducted using culture medium containing 100 μM GSH, 100 μM GSH ethyl ester (GSHee), diethylmaleate (a GSH-depletion agent; 10 μM), or a GSH-synthesis inhibitor (buthionine sulfoximine, BSO; 20 μM). NAC increased cell proliferation, GSH concentration, and protein synthesis, while inhibiting proteolysis. GSHee enhanced cell proliferation and GSH concentration without affecting protein synthesis but inhibited proteolysis. Conversely, BSO or diethylmaleate reduced cell proliferation and GSH concentration without affecting protein synthesis, while promoting protein degradation. At the signaling level, NAC augmented the protein abundance of total mTOR, phosphorylated mTOR, and phosphorylated 70S6 kinase as well as mRNA levels for mTOR and p70S6 kinase in IPEC-1 cells. Collectively, these results indicate that NAC upregulates expression of mTOR signaling proteins to stimulate protein synthesis in enterocytes independently of GSH generation. Our findings provide a hitherto unrecognized biochemical mechanism for beneficial effects of NAC in intestinal cells.

  8. Determination of Glutathione, Selenium, and Malondialdehyde in Different Edible Mushroom Species.

    PubMed

    Dogan, Hacer; Coteli, Ebru; Karatas, Fikret

    2016-12-01

    In this study, the amount of reduced glutathione (GSH), oxidized glutathione (GSSG), and malondialdehyde (MDA) were determined by high performance liquid chromatography (HPLC), and selenium was determined by using the fluorescence spectrophotometer in eight different species of edible mushrooms. Brittlegill mushroom (Russula delica), meadow mushroom (Agaricus campestris), dryad's saddle mushroom (Polyporus squamosus), white button mushroom (Agaricus bisporus), Pleurotus spp., ink mushroom (Coprinus atramentarius), ebekari mushroom (slimy) (Elazığ local) and çaşır mushroom (Pleurotus eryngii) (Tunceli local) were used for analysis. The amounts of GSH, GSSG, Se, and MDA with GSH/GSSG ratio in the eight different species of edible mushrooms were observed in between 269.10 ± 16.94-1554.83 ± 58.12 μg/g; 23.55 ± 1.89-841.90 ± 20.03 μg/g; 15.06 ± 1.56-82.10 ± 3.84 μg/g; 5.46 ± 0.50-27.45 ± 2.58 μg/g wet weight and 0.32-41.35, respectively. There is a weak correlation (R (2) = 0.389) between MDA and Se, on the other hand, the correlation (R (2) = 0.831) between GSH/GSSG ratio and selenium in mushrooms are reasonable well. In a similar manner, there is a weak correlation (R (2) = 0551) between GSH/GSSG and MDA ratios in mushrooms. It was found that these edible mushroom species are good source of glutathione (GSH, GSSG), and selenium (Se) in terms of quantities obtained; therefore, it can be said that mushrooms are a rich source of antioxidants.

  9. The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana.

    PubMed

    Aborode, Fatai Adigun; Raab, Andrea; Voigt, Matthias; Costa, Leticia Malta; Krupp, Eva M; Feldmann, Joerg

    2016-11-01

    We investigated the role of glutathione (GSH) and phytochelatins (PCs) on the detoxification of selenite using Arabidopsis thaliana. The wild-type (WT) of Arabidopsis thaliana and its mutants (glutathione deficient Cad 2-1 and phytochelatins deficient Cad 1-3) were separately exposed to varying concentrations of selenite and arsenate and jointly to both toxicants to determine their sensitivities. The results of the study revealed that, the mutants were about 20-fold more sensitive to arsenate than the WT, an indication that the GSH and PCs affect arsenate detoxification. On the contrary, the WT and both mutants showed a similar level of sensitivity to selenite, an indication that the GSH and PCs do not significantly affect selenite detoxification. However, the WT is about 8 times more sensitive to selenite than to arsenate, and the mutants were more resistant to selenite than arsenate by a factor of 2. This could not be explained by the accumulation of both elements in roots and shoots in exposure experiments. The co-exposure of the WT indicates a synergistic effect with regards to toxicity since selenite did not induce PCs but arsenic and selenium compete in their PC binding as revealed by speciation analysis of the root extracts using HPLC-ICP-MS/ESI-MS. In the absence of PCs an antagonistic effect has been detected which might suggest indirectly that the formation of Se glutathione complex prevent the formation of detrimental selenopeptides. This study, therefore, revealed that PC and GSH have only a subordinate role in the detoxification of selenite.

  10. A biophysically based mathematical model for the catalytic mechanism of glutathione reductase.

    PubMed

    Pannala, Venkat R; Bazil, Jason N; Camara, Amadou K S; Dash, Ranjan K

    2013-12-01

    Glutathione reductase (GR) catalyzes the reduction of oxidized glutathione (GSSG) to reduced glutathione (GSH) using NADPH as the reducing cofactor, and thereby maintains a constant GSH level in the system. GSH scavenges superoxide (O2(*-)) and hydroxyl radicals (OH) nonenzymatically or by serving as an electron donor to several enzymes involved in reactive oxygen species (ROS) detoxification. In either case, GSH oxidizes to GSSG and is subsequently regenerated by the catalytic action of GR. Although the GR kinetic mechanism has been extensively studied under various experimental conditions with variable substrates and products, the catalytic mechanism has not been studied in terms of a mechanistic model that accounts for the effects of the substrates and products on the reaction kinetics. The aim of this study is therefore to develop a comprehensive mathematical model for the catalytic mechanism of GR. We use available experimental data on GR kinetics from various species/sources to develop the mathematical model and estimate the associated model parameters. The model simulations are consistent with the experimental observation that GR operates via both ping-pong and sequential branching mechanisms based on relevant concentrations of its reaction substrate GSSG. Furthermore, we show the observed pH-dependent substrate inhibition of GR activity by GSSG and bimodal behavior of GR activity with pH. The model presents a unique opportunity to understand the effects of products on the kinetics of GR. The model simulations show that under physiological conditions, where both substrates and products are present, the flux distribution depends on the concentrations of both GSSG and NADP(+), with ping-pong flux operating at low levels and sequential flux dominating at higher levels. The kinetic model of GR may serve as a key module for the development of integrated models for ROS-scavenging systems to understand protection of cells under normal and oxidative stress

  11. Alternate Energy-Dependent Pathways for the Vacuolar Uptake of Glucose and Glutathione Conjugates1

    PubMed Central

    Bartholomew, Dolores M.; Van Dyk, Drew E.; Lau, Sze-Mei Cindy; O'Keefe, Daniel P.; Rea, Philip A.; Viitanen, Paul V.

    2002-01-01

    Through the development and application of a liquid chromatography-mass spectrometry-based procedure for measuring the transport of complex organic molecules by vacuolar membrane vesicles in vitro, it is shown that the mechanism of uptake of sulfonylurea herbicides is determined by the ligand, glucose, or glutathione, to which the herbicide is conjugated. ATP-dependent accumulation of glucosylated chlorsulfuron by vacuolar membrane vesicles purified from red beet (Beta vulgaris) storage root approximates Michaelis-Menten kinetics and is strongly inhibited by agents that collapse or prevent the formation of a transmembrane H+ gradient, but is completely insensitive to the phosphoryl transition state analog, vanadate. In contrast, ATP-dependent accumulation of the glutathione conjugate of a chlorsulfuron analog, chlorimuron-ethyl, is incompletely inhibited by agents that dissipate the transmembrane H+ gradient but completely abolished by vanadate. In both cases, however, conjugation is essential for net uptake because neither of the unconjugated parent compounds are accumulated under energized or nonenergized conditions. That the attachment of glucose to two naturally occurring phenylpropanoids, p-hydroxycinnamic acid and p-hydroxybenzoic acid via aromatic hydroxyl groups, targets these compounds to the functional equivalent of the transporter responsible for chlorsulfuron-glucoside transport, confirms the general applicability of the H+ gradient dependence of glucoside uptake. It is concluded that H+ gradient-dependent, vanadate-insensitive glucoside uptake is mediated by an H+ antiporter, whereas vanadate-sensitive glutathione conjugate uptake is mediated by an ATP-binding cassette transporter. In so doing, it is established that liquid chromatography-mass spectrometry affords a versatile high-sensitivity, high-fidelity technique for studies of the transport of complex organic molecules whose synthesis as radiolabeled derivatives is laborious and/or prohibitively

  12. Prion protein regulates glutathione metabolism and neural glutamate and cysteine uptake via excitatory amino acid transporter 3.

    PubMed

    Guitart, Kathrin; Loers, Gabriele; Schachner, Melitta; Kleene, Ralf

    2015-05-01

    Prion protein (PrP) plays crucial roles in regulating antioxidant systems to improve cell defenses against cellular stress. Here, we show that the interactions of PrP with the excitatory amino acid transporter 3 (EAAT3), γ-glutamyl transpeptidase (γ-GT), and multi-drug resistance protein 1 (MRP1) in astrocytes and the interaction between PrP and EAAT3 in neurons regulate the astroglial and neuronal metabolism of the antioxidant glutathione. Ablation of PrP in astrocytes and cerebellar neurons leads to dysregulation of EAAT3-mediated uptake of glutamate and cysteine, which are precursors for the synthesis of glutathione. In PrP-deficient astrocytes, levels of intracellular glutathione are increased, and under oxidative stress, levels of extracellular glutathione are increased, due to (i) increased glutathione release via MRP1 and (ii) reduced activity of the glutathione-degrading enzyme γ-GT. In PrP-deficient cerebellar neurons, cell death is enhanced under oxidative stress and glutamate excitotoxicity, when compared to wild-type cerebellar neurons. These results indicate a functional interplay of PrP with EAAT3, MRP1 and γ-GT in astrocytes and of PrP and EAAT3 in neurons, suggesting that these interactions play an important role in the metabolic cross-talk between astrocytes and neurons and in protection of neurons by astrocytes from oxidative and glutamate-induced cytotoxicity. Interactions of prion protein (PrP) with excitatory amino acid transporter 3 (EAAT3), γ-glutamyl transpeptidase (GGT) and multi-drug resistance protein 1 (MRP1) regulate the astroglial and neuronal metabolism of glutathione (GSH) which protects cells against the cytotoxic oxidative stress. PrP controls the release of GSH from astrocytes via MRP1 and regulates the hydrolysis of extracellular GSH by GGT as well as the neuronal and astroglial glutamate and cysteine uptake via EAAT3.

  13. Reactive oxygen species and DNA damage in 2-bromo-(glutathion-S-yl) hydroquinone-mediated cytotoxicity.

    PubMed

    Mertens, J J; Gibson, N W; Lau, S S; Monks, T J

    1995-06-20

    Exposure of renal proximal tubular epithelial cells (LLC-PK1) to the nephrotoxicants 2-bromo-6-(glutathion-S-yl)hydroquinone, 2-bromo-3-(glutathion-S-yl)-hydroquinone, and 2-bromo-(diglutathion-S-yl)hydroquinone caused DNA fragmentation and cytotoxicity. Viability measured by lysosomal neutral red accumulation was the most sensitive parameter of cytotoxicity, and preceded toxicity determined by either the mitochondrial MTT assay or by measuring intracellular lactate dehydrogenase activity. DNA fragmentation was detected as early as 15 min after exposure to 2-bromo-6-(glutathion-S-yl)hydroquinone (100 microM), 2-bromo-3-(glutathion-S-yl)hydroquinone (200 microM), and 2-bromo-(diglutathion-S-yl)hydroquinone (400 microM) and prior to other indices of toxicity. The ability of the cells to repair DNA damage was evident by the decrease in the extent of single strand breaks following removal of 2-bromo-3-(glutathion-S-yl)hydroquinone from the incubation medium. Moreover, inhibition of poly(ADP-ribose)polymerase with 3-amino-benzamide (10 mM), following exposure of LLC-PK1 cells to 0.5 mM 2-bromo-6-(glutathion-S-yl)hydroquinone or 2-bromo-(diglutathion-S-yl)hydroquinone, decreased cytotoxicity, indicating that DNA repair processes, activated in response to DNA damage, exacerbate toxicity. Treatment with the endonuclease inhibitor, aurintricarboxylic acid did not decrease cytotoxicity. A decrease in the cytotoxicity caused by 2-bromo-6-(glutathion-S-yl)hydroquinone and 2-bromo-(diglutathion-S-yl)hydroquinone was observed when cells were incubated with catalase or pretreated with deferoxamine (10 mM). The data suggest a mechanism whereby the conjugates generate hydrogen peroxide, and the subsequent iron-catalyzed generation of hydroxyl radicals causes DNA fragmentation and cytotoxicity.

  14. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione.

    PubMed

    Kwak, Min-Kyu; Lee, Mun-Hyoung; Park, Seong-Jun; Shin, Sang-Min; Liu, Rui; Kang, Sa-Ouk

    2016-03-01

    Polyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose. Furthermore, methylglyoxal regulation by putrescine seemed to be a parallel pathway independent of the changes in cellular glutathione content in high-glucose medium. Consequently, we suggest that Dictyostelium cells need polyamines for normal growth and cellular methylglyoxal regulation.

  15. Bioaccumulation and glutathione-mediated detoxification of copper and cadmium in Sphagnum squarrosum Crome Samml.

    PubMed

    Saxena, Anuj; Saxena, Anjali

    2012-07-01

    Physiological and biochemical responses, metal bioaccumulation and tolerance potential of Sphagnum squarrosum Crome Samml. to Cu and Cd were studied to determine its bioindication and bioremediation potential. Results suggest that glutathione treatment increases the metal accumulation potential and plays a definite role in heavy metal scavenging. High abundance of Sphagnum in metal-rich sites strongly suggests its high metal tolerance capabilities. This experiment demonstrates that S. squarrosum is able to accumulate and tolerate a high amount of metals and feasibility of its application as bioindicator and remediator test species of metal-contaminated environment.

  16. Stobadine pretreatment enhances glutathione peroxidase activity in the heart of irradiated mice.

    PubMed

    Kováciková, Z; Chorvatovicová, D; Ginter, E

    1997-05-01

    The effect of pretreatment with stobadine (a novel drug with cardioprotective properties) on the activity of glutathione peroxidase was studied in the heart of mice after Co60 irradiation. Exposure to 6.5 Gy caused significant decrease in the activity of the enzyme (p < 0.01). Treatment with stobadine (70.07 mg/kg) 1 or 2 h before irradiation resulted in activity enhancement in comparison with the nonpretreated irradiated group (p < 0.01). We conclude that the radical scavenging mechanism may be involved in the protection exerted by stobadine. The results are in agreement with those obtained by the micronucleus test.

  17. Reduced to oxidized glutathione ratios and oxygen sensing in calf and rabbit carotid body chemoreceptor cells

    PubMed Central

    Sanz-Alfayate, G; Obeso, A; Agapito, M T; González, C

    2001-01-01

    The aim of this work was to test the redox hypotheses of O2 chemoreception in the carotid body (CB). They postulate that hypoxia alters the levels of reactive oxygen species (ROS) and the ratio of reduced to oxidized glutathione (GSH/GSSG), causing modifications to the sulfhydryl groups/disulfide bonds of K+ channel proteins, which leads to the activation of chemoreceptor cells. We found that the GSH/GSSG ratio in normoxic calf CB (30.14 ± 4.67; n = 12) and hypoxic organs (33.03 ± 6.88; n = 10), and the absolute levels of total glutathione (0.71 ± 0.07 nmol (mg tissue)−1, normoxia vs. 0.76 ± 0.07 nmol (mg tissue)−1, hypoxia) were not statistically different. N-Acetylcysteine (2 mm; NAC), a precursor of glutathione and ROS scavenger, increased normoxic glutathione levels to 1.03 ± 0.06 nmol (mg tissue)−1 (P < 0.02) and GSH/GSSG ratios to 59.05 ± 5.05 (P < 0.001). NAC (20 μm–10 mm) did not activate or inhibit chemoreceptor cells as it did not alter the normoxic or the hypoxic release of 3H-catecholamines (3H-CAs) from rabbit and calf CBs whose CA deposits had been labelled by prior incubation with the natural CA precursor 3H-tyrosine. NAC (2 mm) was equally ineffective in altering the release of 3H-CAs induced by stimuli (high external K+ and ionomycin) that bypass the initial steps of the hypoxic cascade of activation of chemoreceptor cells, thereby excluding the possibility that the lack of effect of NAC on normoxic and hypoxic release of 3H-CAs results from a concomitant alteration of Ca2+ channels or of the exocytotic machinery. The present findings do not support the contention that O2 chemoreception in the CB is linked to variations in the GSH/GSSG quotient as the redox models propose. PMID:11711574

  18. Renal antioxidant enzymes and glutathione redox status in leptin-induced hypertension.

    PubMed

    Bełtowski, Jerzy; Jamroz-Wiśniewska, Anna; Wójcicka, Grazyna; Lowicka, Ewelina; Wojtak, Andrzej

    2008-12-01

    Previously, we have demonstrated that leptin increases blood pressure (BP) in the rats through two oxidative stress-dependent mechanisms: stimulation of extracellular signal-regulated kinases (ERK) by H(2)O(2) and scavenging of nitric oxide (NO) by superoxide (O(2-.)). Herein, we examined if renal glutathione system and antioxidant enzymes determine the mechanism of prohypertensive effect of leptin. Leptin administered at 0.5 mg/kg/day for 4 or 8 days increased BP and renal Na(+),K(+)-ATPase activity and reduced fractional sodium excretion; these effects were prevented by NADPH oxidase inhibitor, apocynin. Superoxide scavenger, tempol, abolished the effect of leptin on BP and renal Na(+) pump in rats receiving leptin for 8 days, whereas ERK inhibitor, PD98059, was effective in animals treated with leptin for 4 days. Leptin administered for 4 days decreased glutathione (GSH) and increased glutathione disulfide (GSSG) in the kidney. In animals receiving leptin for 8 days GSH returned to normal level, which was accompanied by up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme of the GSH biosynthetic pathway. In addition, superoxide dismutase (SOD) activity was decreased, whereas glutathione peroxidase (GPx) was increased in rats receiving leptin for 8 days. Cotreatment with gamma-GCS inhibitor, buthionine sulfoximine (BSO), accelerated, whereas GSH precursor, N-acetylcysteine (NAC), attenuated leptin-induced changes in gamma-GCS, SOD, and GPx. In addition, coadministration of BSO changed the mechanism of BP elevation from H(2)O(2)-ERK to (O(2-.))-NO dependent in animals receiving leptin for 4 days, whereas NAC had the opposite effect in rats treated with leptin for 8 days. These results suggest that initial change in GSH redox status induces decrease in SOD/GPx ratio, which results in greater amount of (O)2-.)) versus H(2)O(2) in later phase of leptin treatment, thus shifting the mechanism of BP elevation from H(2)O(2)-ERK to (O(2

  19. The biological selenium status of livestock in Britain as indicated by sheep erythrocyte glutathione peroxidase activity.

    PubMed

    Anderson, P H; Berrett, S; Patterson, D S

    1979-03-17

    The reliability of erythrocyte glutathione peroxidase activity as an indicator of selenium status in livestock is discussed. Based on this measurement, a survey is described of the biological selenium status of sheep on each of 329 farms in Britain. Results showed that 47 per cent of these farms were probably unable to provide grazing livestock with sufficient selenium to maintain blood levels greater than 0.075 microgram per ml. Increased selenium deficiency from the increasing use of home grown feeds as a major constituent of livestock rations may be causally related to the increase of white muscle disease and other selenium responsive diseases in Britain.

  20. Glutathion S-transferase activity and DDT-susceptibility of Malaysian mosquitos.

    PubMed

    Lee, H L; Chong, W L

    1995-03-01

    Comparative DDT-susceptibility status and glutathion s-transferase (GST) activity of Malaysian Anopheles maculatus, Culex quinquefasciatus and Aedes aegypti was investigated to ascertain the role of this enzyme in DDT resistance. The standardised WHO dose-mortality bioassay tests were used to determine DDT susceptibility in these mosquitos, whilst GST microassay (Brogdon and Barber, 1990) was conducted to measure the activity of this enzyme in mosquito homogenate. It appeared that DDT susceptibility status of Malaysian mosquitos was not correlated with GST activity.

  1. Glutathione-S-transferase selective release of metformin from its sulfonamide prodrug.

    PubMed

    Rautio, Jarkko; Vernerová, Monika; Aufderhaar, Imke; Huttunen, Kristiina M

    2014-11-01

    In this study, three sulfonamide prodrugs of metformin were designed and synthesized. The bioconversion of the sulfonamide prodrugs by glutathione-S-transferase (GST) was evaluated in rat and human liver S9 fractions as well as with recombinant human GST forms. One of the prodrugs (3) was bioactivated by GST and released metformin in a quantitative manner, whereas the two others were enzymatically stable. Prodrug 3 had a much higher logD value relative to metformin and it was reasonably stable in both acidic buffer and rat small intestine homogenate, which indicates that this prodrug has the potential to increase the oral absorption of metformin.

  2. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth.

    PubMed

    Jin, Lingtao; Li, Dan; Alesi, Gina N; Fan, Jun; Kang, Hee-Bum; Lu, Zhou; Boggon, Titus J; Jin, Peng; Yi, Hong; Wright, Elizabeth R; Duong, Duc; Seyfried, Nicholas T; Egnatchik, Robert; DeBerardinis, Ralph J; Magliocca, Kelly R; He, Chuan; Arellano, Martha L; Khoury, Hanna J; Shin, Dong M; Khuri, Fadlo R; Kang, Sumin

    2015-02-09

    How mitochondrial glutaminolysis contributes to redox homeostasis in cancer cells remains unclear. Here we report that the mitochondrial enzyme glutamate dehydrogenase 1 (GDH1) is commonly upregulated in human cancers. GDH1 is important for redox homeostasis in cancer cells by controlling the intracellular levels of its product alpha-ketoglutarate and subsequent metabolite fumarate. Mechanistically, fumarate binds to and activates a reactive oxygen species scavenging enzyme glutathione peroxidase 1. Targeting GDH1 by shRNA or a small molecule inhibitor R162 resulted in imbalanced redox homeostasis, leading to attenuated cancer cell proliferation and tumor growth.

  3. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth

    PubMed Central

    Jin, Lingtao; Li, Dan; Alesi, Gina N.; Fan, Jun; Kang, Hee-Bum; Lu, Zhou; Boggon, Titus J.; Jin, Peng; Yi, Hong; Wright, Elizabeth R.; Duong, Duc; Seyfried, Nicholas T.; Egnatchik, Robert; DeBerardinis, Ralph J.; Magliocca, Kelly R.; He, Chuan; Arellano, Martha L.; Khoury, Hanna J.; Shin, Dong M.; Khuri, Fadlo R.; Kang, Sumin

    2015-01-01

    SUMMARY How mitochondrial glutaminolysis contributes to redox homeostasis in cancer cells remains unclear. Here we report that the mitochondrial enzyme glutamate dehydrogenase 1 (GDH1) is commonly upregulated in human cancers. GDH1 is important for redox homeostasis in cancer cells by controlling the intracellular levels of its product alpha-ketoglutarate (α-KG) and subsequent metabolite fumarate. Mechanistically, fumarate binds to and activates a ROS scavenging enzyme glutathione peroxidase 1 (GPx1). Targeting GDH1 by shRNA or a small molecule inhibitor R162 resulted in imbalanced redox homeostasis, leading to attenuated cancer cell proliferation and tumor growth. PMID:25670081

  4. Radiation response of Chinese hamster cells after elevation of intracellular glutathione levels

    SciTech Connect

    Russo, A.; Mitchell, J.B.

    1984-08-01

    Cellular glutathione (GSH) levels were modulated by either inhibition of GSH synthesis by buthionine sulfoximine (BSO) or elevation of GSH by treatment with 2-oxo-thiazolidine-4-carboxylate (OTZ), cobaltous chloride, or cysteamine. Using these agents, x ray survival in air was assessed as a function of cellular GSH levels. Depletion of GSH by GSO resulted in slight sensitization of the aerated curve. However, elevation of GSH by as much as 200 to 300% of controls provided no radioprotection in air. These data are discussed in the context of the role of GSH and GSH peroxidase in the detoxification of peroxides produced by x rays.

  5. A steady-state-kinetic model for formaldehyde dehydrogenase from human liver. A mechanism involving NAD+ and the hemimercaptal adduct of glutathione and formaldehyde as substrates and free glutathione as an allosteric activator of the enzyme.

    PubMed Central

    Uotila, L; Mannervik, B

    1979-01-01

    The steady-state kinetics of formaldehyde dehydrogenase from human liver have been explored. Non-linearities were obtained in v-versus-v[S] plots. It was necessary and sufficient to consider two reactants of the equilibrium mixture of formaldehyde, glutathione and their hemimercaptal adduct for a complete description of the kinetics. A random sequential reaction scheme is proposed in which adduct and beta-NAD+ are the substrates. In addition, glutathione can bind to an allosteric regulatory site and only the glutathione-containing enzyme is considered productive. Various alternative reaction models were examined but no simple alterative was superior to the model chosen. The discrimination was largely based on results of non-linear regression analysis. Several S-substituted glutathione derivatives were tested as activators or inhibitors of the enzyme, but all were without effect. Thio-NAD+, nicotinamide--hypoxanthine dinucleotide and 3-acetylpyridine-adenine dinucleotide could substitute for beta-NAD+ as the nucleotide substrate. alpha-NAD+ and ADP-ribose were competitive inhibitors with respect to beta-NAD+ and non-competitive with glutathione and the adduct. When used simultaneously, the inhibitors were linear competitive versus each other, indicating a single nucleotide-binding site or, if more than one, non-co-operative binding sites. PMID:220952

  6. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its D,L-polylactide microparticle formulation.

    PubMed

    Bartolini, D; Piroddi, M; Tidei, C; Giovagnoli, S; Pietrella, D; Manevich, Y; Tew, K D; Giustarini, D; Rossi, R; Townsend, D M; Santi, C; Galli, F

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this "depowered" GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of

  7. Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases.

    PubMed Central

    Robinson, Anna; Huttley, Gavin A; Booth, Hilary S; Board, Philip G

    2004-01-01

    The Kappa class of GSTs (glutathione transferases) comprises soluble enzymes originally isolated from the mitochondrial matrix of rats. We have characterized a Kappa class cDNA from human breast. The cDNA is derived from a single gene comprising eight exons and seven introns located on chromosome 7q34-35. Recombinant hGSTK1-1 was expressed in Escherichia coli as a homodimer (subunit molecular mass approximately 25.5 kDa). Significant glutathione-conjugating activity was found only with the model substrate CDNB (1-chloro-2,4-ditnitrobenzene). Hyperbolic kinetics were obtained for GSH (parameters: K(m)app, 3.3+/-0.95 mM; V(max)app, 21.4+/-1.8 micromol/min per mg of enzyme), while sigmoidal kinetics were obtained for CDNB (parameters: S0.5app, 1.5+/-1.0 mM; V(max)app, 40.3+/-0.3 micromol/min per mg of enzyme; Hill coefficient, 1.3), reflecting low affinities for both substrates. Sequence analyses, homology modelling and secondary structure predictions show that hGSTK1 has (a) most similarity to bacterial HCCA (2-hydroxychromene-2-carboxylate) isomerases and (b) a predicted C-terminal domain structure that is almost identical to that of bacterial disulphide-bond-forming DsbA oxidoreductase (root mean square deviation 0.5-0.6 A). The structures of hGSTK1 and HCCA isomerase are predicted to possess a thioredoxin fold with a polyhelical domain (alpha(x)) embedded between the beta-strands (betaalphabetaalpha(x)betabetaalpha, where the underlined elements represent the N and C motifs of the thioredoxin fold), as occurs in the bacterial disulphide-bond-forming oxidoreductases. This is in contrast with the cytosolic GSTs, where the helical domain occurs exclusively at the C-terminus (betaalphabetaalphabetabetaalphaalpha(x)). Although hGSTK1-1 catalyses some typical GST reactions, we propose that it is structurally distinct from other classes of cytosolic GSTs. The present study suggests that the Kappa class may have arisen in prokaryotes well before the divergence of the

  8. Dichloroacetate- and Trichloroacetate-Induced Modulation of Superoxide Dismutase, Catalase, and Glutathione Peroxidase Activities and Glutathione Level in the livers of Mice after Subacute and Subchronic exposure

    PubMed Central

    Hassoun, Ezdihar A.; Cearfoss, Jacquelyn

    2010-01-01

    Dichloroacetate (DCA) and trichloroacetate (TCA) were previously found to induce various levels of oxidative stress in the hepatic tissues of mice after subacute and subchronic exposure. The cells are known to have several protective mechansims against production of oxidative stress by different xenobiotics. To assess the roles of the antioxidant enzymes and glutathione (GSH) in DCA- and TCA-induced oxidative stress, groups of B6C3F1 mice were administered either DCA or TCA at doses of 7.7, 77, 154 and 410 mg/kg/day, by gavage for 4 weeks (4-W) and 13 weeks (13-W), and superoxide dismutase (SOD) catalase (CAT) and glutathione peroxidase (GSH-Px) activities, as well as GSH were determined in the hepatic tissues. DCA at doses ranging between 7.7-410, and 7.7-77 mg/kg/day, given for 4-W and 13-W, respectively, resulted in either suppression or no change in SOD, CAT and GSH-Px activities, but doses of 154-410 mg DCA/kg/day administered for 13-W were found to result in significant induction of the three enzyme activities. TCA administration on the other hand, resulted in increases in SOD and CAT activities, and suppression of GSH-Px activity in both periods. Except for the DCA doses of 77-154 mg/kg/day administered for 13-W that resulted in significant reduction in GSH levels, all other DCA, as well as TCA treatments produced no changes in GSH. Since these enzymes are involved in the detoxification of the reactive oxygen species (ROS), superoxide anion (SA) and H2O2, it is concluded that SA is the main contributor to DCA-induced oxidative stress while both ROS contribute to that of TCA. The increases in the enzyme activities associated with 154-410 mg DCA/kg/day in the 13-W period suggest their role as protective mechanisms contributing to the survival of cells modified in response to those treatments. PMID:21170174

  9. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its d,l-polylactide microparticle formulation

    PubMed Central

    Bartolini, D.; Piroddi, M.; Tidei, C.; Giovagnoli, S.; Pietrella, D.; Manevich, Y.; Tew, K.D.; Giustarini, D.; Rossi, R.; Townsend, D.M.; Santi, C.; Galli, F.

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this “depowered” GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage

  10. Preparation, characterization and electrochemical application of Ag-ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode.

    PubMed

    Beitollahi, Hadi; Gholami, Abbas; Ganjali, Mohammad Reza

    2015-12-01

    Ag-ZnO nanoplates and 2-chlorobenzoyl ferrocene were synthesized and used to construct a modified carbon paste electrode. The electrooxidation of glutathione at the surface of the modified electrode was studied. Under the optimized conditions, the square wave voltammetric (SWV) peak current of glutathione increased linearly with glutathione concentrations in the range of 5.0 × 10(-8) to 2.0 × 10(-4)M with sensitivity of 0.659 μA μM(-1) and method detection limit of 20.0 nM was obtained for glutathione. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of glutathione and tryptophan which makes it suitable for the detection of glutathione in the presence of tryptophan in real samples.

  11. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line.

    PubMed

    Kumar, Umesh; Sharma, Ujjawal; Rathi, Garima

    2017-02-01

    One of the mechanisms for epigenetic silencing of tumor suppressor genes is hypermethylation of cytosine residue at CpG islands at their promoter region that contributes to malignant progression of tumor. Therefore, activation of tumor suppressor genes that have been silenced by promoter methylation is considered to be very attractive molecular target for cancer therapy. Epigenetic silencing of glutathione S-transferase pi 1, a tumor suppressor gene, is involved in various types of cancers including breast cancer. Epigenetic silencing of tumor suppressor genes can be reversed by several molecules including natural compounds such as polyphenols that can act as a hypomethylating agent. Curcumin has been found to specifically target various tumor suppressor genes and alter their expression. To check the effect of curcumin on the methylation pattern of glutathione S-transferase pi 1 gene in MCF-7 breast cancer cell line in dose-dependent manner. To check the reversal of methylation pattern of hypermethylated glutathione S-transferase pi 1, MCF-7 breast cancer cell line was treated with different concentrations of curcumin for different time periods. DNA and proteins of treated and untreated cell lines were isolated, and methylation status of the promoter region of glutathione S-transferase pi 1 was analyzed using methylation-specific polymerase chain reaction assay, and expression of this gene was analyzed by immunoblotting using specific antibodies against glutathione S-transferase pi 1. A very low and a nontoxic concentration (10 µM) of curcumin treatment was able to reverse the hypermethylation and led to reactivation of glutathione S-transferase pi 1 protein expression in MCF-7 cells after 72 h of treatment, although the IC50 value of curcumin was found to be at 20 µM. However, curcumin less than 3 µM of curcumin could not alter the promoter methylation pattern of glutathione S-transferase pi 1. Treatment of breast cancer MCF-7 cells with curcumin causes

  12. Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase.

    PubMed

    Nagababu, Enika; Chrest, Francis J; Rifkind, Joseph M

    2003-03-17

    Catalase and glutathione peroxidase (GSHPX) react with red cell hydrogen peroxide. A number of recent studies indicate that catalase is the primary enzyme responsible for protecting the red cell from hydrogen peroxide. We have used flow cytometry in intact cells as a sensitive measure of the hydrogen-peroxide-induced formation of fluorescent heme degradation products. Using this method, we have been able to delineate a unique role for GSHPX in protecting the red cell from hydrogen peroxide. For extracellular hydrogen peroxide, catalase completely protected the cells, while the ability of GSHPX to protect the cells was limited by the availability of glutathione. The effect of endogenously generated hydrogen peroxide in conjunction with hemoglobin autoxidation was investigated by in vitro incubation studies. These studies indicate that fluorescent products are not formed during incubation unless the glutathione is reduced to at least 40% of its initial value as a result of incubation or by reacting the glutathione with iodoacetamide. Reactive catalase only slows down the depletion of glutathione, but does not directly prevent the formation of these fluorescent products. The unique role of GSHPX is attributed to its ability to react with hydrogen peroxide generated in close proximity to the red cell membrane in conjunction with the autoxidation of membrane-bound hemoglobin.

  13. 1,4-Naphthoquinones and Others NADPH-Dependent Glutathione Reductase-Catalyzed Redox Cyclers as Antimalarial Agents

    PubMed Central

    Belorgey, Didier; Lanfranchi, Don Antoine; Davioud-Charvet, Elisabeth

    2013-01-01

    The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in development arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages. PMID:23116403

  14. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review.

    PubMed

    Srikanth, K; Pereira, E; Duarte, A C; Ahmad, I

    2013-04-01

    Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.

  15. Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury.

    PubMed

    Kocsy, G; von Ballmoos, P; Rüegsegger, A; Szalai, G; Galiba, G; Brunold, C

    2001-11-01

    With the aim of analyzing their protective function against chilling-induced injury, the pools of glutathione and its precursors, cysteine (Cys) and gamma-glutamyl-Cys, were increased in the chilling-sensitive maize (Zea mays) inbred line Penjalinan using a combination of two herbicide safeners. Compared with the controls, the greatest increase in the pool size of the three thiols was detected in the shoots and roots when both safeners were applied at a concentration of 5 microM. This combination increased the relative protection from chilling from 50% to 75%. It is interesting that this increase in the total glutathione (TG) level was accompanied by a rise in glutathione reductase (GR; EC 1.6.4.2) activity. When the most effective safener combination was applied simultaneously with increasing concentrations of buthionine sulfoximine, a specific inhibitor of glutathione synthesis, the total gamma-glutamyl-Cys and TG contents and GR activity were decreased to very low levels and relative protection was lowered from 75% to 44%. During chilling, the ratio of reduced to oxidized thiols first decreased independently of the treatments, but increased again to the initial value in safener-treated seedlings after 7 d at 5 degrees C. Taking all results together resulted in a linear relationship between TG and GR and a biphasic relationship between relative protection and GR or TG, thus demonstrating the relevance of the glutathione levels in protecting maize against chilling-induced injury.

  16. Microglial GLT-1 is upregulated in response to herpes simplex virus infection to provide an antiviral defence via glutathione.

    PubMed

    Persson, Mikael; Brantefjord, Mona; Liljeqvist, Jan-Ake; Bergström, Tomas; Hansson, Elisabeth; Rönnbäck, Lars

    2007-11-01

    Herpes simplex virus (HSV) can enter the central nervous system and cause encephalitis (HSV-1) or meningitis (HSV-2). Microglia, the immunocompetent cells of the central nervous system, are potentially able to detect viral infections. Microglia have been shown to express the glutamate transporter GLT-1 during pathological events, leading to increased microglial glutamate uptake and glutathione synthesis. This study aims to address the role of GLT-1 and glutathione, a major antioxidant with antiviral properties, during HSV infections. Using neuron-enriched mixed primary cultures from rat, it was found that microglia have higher resistance to HSV infections than neurons or astrocytes after 24 h incubation with HSV. Purified microglia in culture were used to further address this. It was found that microglia were able to detect HSV and responded by releasing tumor necrosis factor-alpha (TNF-alpha) and upregulating GLT-1 after 24 h incubation with 1 PFU/cell HSV-1 or HSV-2. Furthermore, the microglial glutathione levels were not significantly diminished after 24 h. Inhibition of the microglial glutathione synthesis with 200 microM buthionine sulfoximide (BSO) led to significantly more infected cells after 24 h incubation with 1 PFU/cell HSV-1 or HSV-2. These data indicate that the higher resistance in microglia against HSV infections may be due to the expression of GLT-1, which can maintain the glutathione levels and provide a mechanism for microglial self-defense against HSV.

  17. Role of the Ascorbate-Glutathione Cycle of Mitochondria and Peroxisomes in the Senescence of Pea Leaves1

    PubMed Central

    Jiménez, Ana; Hernández, José A.; Pastori, Gabriela; del Río, Luis A.; Sevilla, Francisca

    1998-01-01

    We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria. PMID:9847106

  18. Glutathione depletion activates the yeast vacuolar transient receptor potential channel, Yvc1p, by reversible glutathionylation of specific cysteines

    PubMed Central

    Chandel, Avinash; Das, Krishna K.; Bachhawat, Anand K.

    2016-01-01

    Glutathione depletion and calcium influx into the cytoplasm are two hallmarks of apoptosis. We have been investigating how glutathione depletion leads to apoptosis in yeast. We show here that glutathione depletion in yeast leads to the activation of two cytoplasmically inward-facing channels: the plasma membrane, Cch1p, and the vacuolar calcium channel, Yvc1p. Deletion of these channels partially rescues cells from glutathione depletion–induced cell death. Subsequent investigations on the Yvc1p channel, a homologue of the mammalian TRP channels, revealed that the channel is activated by glutathionylation. Yvc1p has nine cysteine residues, of which eight are located in the cytoplasmic regions and one on the transmembrane domain. We show that three of these cysteines, Cys-17, Cys-79, and Cys-191, are specifically glutathionylated. Mutation of these cysteines to alanine leads to a loss in glutathionylation and a concomitant loss in calcium channel activity. We further investigated the mechanism of glutathionylation and demonstrate a role for the yeast glutathione S-transferase Gtt1p in glutathionylation. Yvc1p is also deglutathionylated, and this was found to be mediated by the yeast thioredoxin, Trx2p. A model for redox activation and deactivation of the yeast Yvc1p channel is presented. PMID:27708136