Bonilla, Jose C; Ryan, Valerie; Yazar, Gamze; Kokini, Jozef L; Bhunia, Arun K
2018-04-25
The importance of gluten proteins, gliadins and glutenins, is well-known in the quality of wheat products. To gain more specific information about the role of glutenins in wheat dough, the two major subunits of glutenin, high- and low-molecular-weight (HMW and LMW) glutenins, were extracted, isolated, and identified by mass spectrometry. Antibodies for HMW and LMW glutenins were developed using the proteomic information on the characterized glutenin subunits. The antibodies were found to be specific to each subunit by western immunoblots and were then conjugated to quantum dots (QDs) using site-click conjugation, a new method to keep antibody integrity. A fluorescence-link immunosorbent assay tested the successful QD conjugation. The QD-conjugated antibodies were applied to dough samples, where they recognized glutenin subunits and were visualized using a confocal laser scanning microscope.
USDA-ARS?s Scientific Manuscript database
HMW glutenin subunits are the most important determinants of wheat (Triticum aestivum L.) bread-making quality, and subunit composition explains a large percentage of the variability observed between genotypes. Experiments were designed to elevate expression of a key native HMW glutenin subunit (1D...
Wieser, Herbert
2007-04-01
Gluten proteins play a key role in determining the unique baking quality of wheat by conferring water absorption capacity, cohesivity, viscosity and elasticity on dough. Gluten proteins can be divided into two main fractions according to their solubility in aqueous alcohols: the soluble gliadins and the insoluble glutenins. Both fractions consist of numerous, partially closely related protein components characterized by high glutamine and proline contents. Gliadins are mainly monomeric proteins with molecular weights (MWs) around 28,000-55,000 and can be classified according to their different primary structures into the alpha/beta-, gamma- and omega-type. Disulphide bonds are either absent or present as intrachain crosslinks. The glutenin fraction comprises aggregated proteins linked by interchain disulphide bonds; they have a varying size ranging from about 500,000 to more than 10 million. After reduction of disulphide bonds, the resulting glutenin subunits show a solubility in aqueous alcohols similar to gliadins. Based on primary structure, glutenin subunits have been divided into the high-molecular-weight (HMW) subunits (MW=67,000-88,000) and low-molecular-weight (LMW) subunits (MW=32,000-35,000). Each gluten protein type consists or two or three different structural domains; one of them contains unique repetitive sequences rich in glutamine and proline. Native glutenins are composed of a backbone formed by HMW subunit polymers and of LMW subunit polymers branched off from HMW subunits. Non-covalent bonds such as hydrogen bonds, ionic bonds and hydrophobic bonds are important for the aggregation of gliadins and glutenins and implicate structure and physical properties of dough.
Wheat glutenin: the "tail" of the 1By protein subunits.
Nunes-Miranda, Júlio D; Bancel, Emmanuelle; Viala, Didier; Chambon, Christophe; Capelo, José L; Branlard, Gérard; Ravel, Catherine; Igrejas, Gilberto
2017-10-03
Gluten-forming storage proteins play a major role in the viscoelastic properties of wheat dough through the formation of a continuous proteinaceous network. The high-molecular-weight glutenin subunits represent a functionally important subgroup of gluten proteins by promoting the formation of large glutenin polymers through interchain disulphide bonds between glutenin subunits. Here, we present evidences that y-type glutenin subunits encoded at the Glu-B1 locus are prone to proteolytic processing at the C-terminus tail, leading to the loss of the unique cysteine residue present at the C-terminal domain. Results obtained by intact mass measurement and immunochemistry for each proteoform indicate that the proteolytic cleavage appears to occur at the carboxyl-side of two conserved asparagine residues at the C-terminal domain start. Hence, we hypothesize that the responsible enzymes are a class of cysteine endopeptidases - asparaginyl endopeptidases - described in post-translational processing of other storage proteins in wheat. Biological significance The reported study provides new insights into wheat storage protein maturation. In view of the importance of gluten proteins on dough viscoelastic properties and end-product quality, the reported C-terminal domain cleavage of high-molecular-weight glutenin subunits is of particular interest, since this domain possesses a unique conserved cysteine residue which is assumed to participate in gluten polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
To study the contributions of high-molecular-weight glutenin subunits (HMW-GS) to the gluten macropolymer and dough properties, wheat HMW-GS (x- and y-types) are synthesized in a bacterial expression system. These subunits are then purified and used to supplement dough mixing and extensigraph experi...
Cellular Localization of Wheat High Molecular Weight Glutenin Subunits in Transgenic Rice Grain
Jo, Yeong-Min; Cho, Kyoungwon; Lee, Hye-Jung; Lim, Sun-Hyung; Kim, Jin Sun; Kim, Young-Mi; Lee, Jong-Yeol
2017-01-01
Rice (Oryza sativa L.) is a primary global food cereal. However, when compared to wheat, rice has poor food processing qualities. Dough that is made from rice flour has low viscoelasticity because rice seed lacks storage proteins that are comparable to gluten protein from wheat. Thus, current research efforts aim to improve rice flour processing qualities through the transgenic expression of viscoelastic proteins in rice seeds. In this study, we characterized the transgenic expression of wheat glutenin subunits in rice seeds. The two genes 1Dx5_KK and 1Dy10_JK, which both encode wheat high-molecular-weight glutenin subunits that confer high dough elasticity, were cloned from Korean wheat cultivars KeumKang and JoKyung, respectively. These genes were inserted into binary vectors under the control of the rice endosperm-specific Glu-B1 promoter and were expressed in the high-amylose Korean rice cultivar Koami (Oryza sativa L.). Individual expression of both glutenin subunits was confirmed by SDS-PAGE and immunoblot analyses performed using T3 generation of transgenic rice seeds. The subcellular localization of 1Dx5_KK and 1Dy10_JK in the rice seed endosperm was confirmed by immunofluorescence analysis, indicating that the wheat glutenin subunits accumulate in protein body-II and novel protein body types in the rice seed. These results contribute to our understanding of engineered seed storage proteins in rice. PMID:29156580
Gao, Xin; Liu, Tianhong; Ding, Mengyun; Wang, Jun; Li, Chunlian; Wang, Zhonghua; Li, Xuejun
2018-02-01
Wheat (Triticum aestivum L.) dough strength and extensibility are mainly determined by the polymerization of glutenin. The number of high-molecular-weight glutenin subunits (HMW-GS) differs in various wheat varieties due to the silencing of some genes. The effects of Ax1 or Dx2 subunit absence on glutenin polymerization, dough mixing properties and gluten micro structure were investigated with two groups of near-isogenic lines. The results showed that Ax1 or Dx2 absence decreased the accumulation rate of glutenin polymers and thus delayed the rapid increase period for glutenin polymerization by at least ten days, which led to lower percentage of polymeric protein in mature grain. Ax1 or Dx2 absence significantly decreased the dough development time and dough stability, but increased the uniformity of micro structure. Lacunarity, derived from quantitative analysis of gluten network, is suggested as a new indicator for wheat quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Allelic variation at high-molecular-weight glutenin subunit loci in Aegilops biuncialis Vis].
Kozub, N A; Sozinov, I A; Ksinias, I N; Sozinov, A A
2011-09-01
Alleles at the high-molecular-weight glutenin subunit loci Glu-U1 and Glu-M(b)1 were analyzed in the tetraploid species Aegilops biuncialis (UUM(b)M(b)). The material for the investigation included the collection of 39 accessions of Ae. biuncialis from Ukraine (the Crimea), one Hellenic accession, one accession of unknown origin, F2 seeds from different crosses, as well as samples from natural populations from the Crimea. Ae. umbellulata and Ae. comosa accessions were used to allocate components of the HMW glutenin subunit patterns of Ae. biuncialis to U or M(b) genomes. Eight alleles were identified at the Glu-U1 locus and ten alleles were revealed at the Glu-M(b) 1 locus. Among alleles at the Glu-M(b) 1 locus ofAe. biuncialis there were two alleles controlling the y-type subunit only and one allele encoding the x-subunit only.
USDA-ARS?s Scientific Manuscript database
High molecular weight (HMW) glutenin subunits (GSs) play an important role in determining dough viscoelastic properties and end-use quality in cultivated wheat, and they are also excellent protein markers for genotype identification. The HMW-GSs in wheat species (Triticum ssp.) and Aegilops tauschii...
USDA-ARS?s Scientific Manuscript database
Dual purpose durum (Triticum turgidum L. subsp. durum) wheat, having both good pasta and breadmaking quality, would be an advantage in the market. In this study, we evaluated the effects of genotype and varying HMW and LMW glutenin subunit composition on durum breadmaking quality. Genotypes includ...
Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits
USDA-ARS?s Scientific Manuscript database
Low-molecular-weight glutenin subunits (LMW-GSs) are one of the major components of gluten and their allelic variation has been widely associated with numerous wheat end-use quality parameters. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and...
USDA-ARS?s Scientific Manuscript database
DH20, a new wheat mutant missing low-molecular weight glutenin subunits encoded by the Glu-B3 locus, was discovered among double haploid lines obtained from a cross between the Korean wheat cultivars Keumkang and Olgeuru. Absence of the Glu-B3 LMW-GS proteins was determined by one-dimensional gel e...
USDA-ARS?s Scientific Manuscript database
The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins directly involved in the formation of gluten. Depending on the first amino acid residue of the mature proteins, the LMW-GSs are divided into methionine, serine or isoleucine type. These proteins are encod...
USDA-ARS?s Scientific Manuscript database
The low molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins. They are encoded by a multigene family located at the Glu-3 loci, and their allelic variation strongly influences wheat end-use quality. Due to ambiguities in the LMW-GS allele nomenclature and to the co...
USDA-ARS?s Scientific Manuscript database
Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the processing quality of wheat flour. The LMW-GS are encoded by multi-gene families located on the short arms of the homoeologous group 1 chromosomes, at the Glu-A3, G...
USDA-ARS?s Scientific Manuscript database
Low-molecular-weight glutenin subunits (LMW-GS) are a class of seed storage proteins that play a major role in the determination of the viscoelastic properties of wheat dough. Most of the LMW-GSs are encoded by a multi-gene family located on the short arms of the homoeologous group 1 chromosomes, at...
Santagati, Vito Davide; Sestili, Francesco; Lafiandra, Domenico; D'Ovidio, Renato; Rogniaux, Helene; Masci, Stefania
2016-07-01
Wheat high molecular weight glutenin subunit variation is important because of its great influence on glutenin polymer structure, that is related to dough technological properties. Among the different subunits, the pair Bx20 and By20 is known to have a negative effect on quality, but the reasons are not clear: Bx20 has two cysteines, which theoretically make this subunit a chain extender of the glutenin polymer, just like the other Bx subunits, showing four cysteines, two of which should be involved in intra-molecular disulfide bonds. By20 has never been characterized so far at molecular level. Here we report the nucleotide sequences of Bx20 and By20 genes isolated from the durum wheat cultivar 'Lira 45' and the validation of the corresponding deduced amino acid sequences by using MALDI-TOF and LC-MS/MS. Four nucleotide differences were identified in the Bx20 gene with respect to the deduced sequence present in NCBI, causing two amino acid substitutions. For the By20 subunit, nucleotide and amino acid sequences revealed a great similarity to By15, both at gene and protein levels, showing five nucleotide changes generating two amino acid differences. No evidence of post-translational modifications has been found. Hypotheses are formulated in regard to relationships with technological quality. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Zhang, Lujun; Li, Zhixin; Fan, Renchun; Wei, Bo; Zhang, Xiangqi
2016-07-19
The Roegneria of Triticeae is a large genus including about 130 allopolyploid species. Little is known about its high-molecular-weight glutenin subunits (HMW-GSs). Here, we reported six novel HMW-GS genes from R. nakaii and R. alashanica. Sequencing indicated that Rny1, Rny3, and Ray1 possessed intact open reading frames (ORFs), whereas Rny2, Rny4, and Ray2 harbored in-frame stop codons. All of the six genes possessed a similar primary structure to known HMW-GS, while showing some unique characteristics. Their coding regions were significantly shorter than Glu-1 genes in wheat. The amino acid sequences revealed that all of the six genes were intermediate towards the y-type. The phylogenetic analysis showed that the HMW-GSs from species with St, StY, or StH genome(s) clustered in an independent clade, varying from the typical x- and y-type clusters. Thus, the Glu-1 locus in R. nakaii and R. alashanica is a very primitive glutenin locus across evolution. The six genes were phylogenetically split into two groups clustered to different clades, respectively, each of the two clades included the HMW-GSs from species with St (diploid and tetraploid species), StY, and StH genomes. Hence, it is concluded that the six Roegneria HMW-GS genes are from two St genomes undergoing slight differentiation.
USDA-ARS?s Scientific Manuscript database
The mixing properties of the dough are critical in the production of bread and other food products derived from wheat. The high molecular weight glutenin subunits (HMW-GS) are major determinants of wheat dough processing qualities. The different alleles of the HMW-GS genes in hexaploid wheat vary ...
USDA-ARS?s Scientific Manuscript database
High molecular weight glutenin subunits (HMW-GS) play a significant role in the functional properties of wheat flour. Wheat lines in which one or more of the HMW-GS alleles were absent from Glu-A1, Glu-B1 or Glu-D1 loci (deletion lines) were compared with non-deletion lines for dough and tortilla ma...
Guo, Xiao-Hui; Bi, Zhe-Guang; Wu, Bi-Hua; Wang, Zhen-Zhen; Hu, Ji-Liang; Zheng, You-Liang; Liu, Deng-Cai
2013-12-01
High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n=4x=28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1,671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs. © 2013.
Wang, Jian; Wang, Chang; Zhen, Shoumin; Li, Xiaohui; Yan, Yueming
2018-04-01
Wheat-related genomes may carry new glutenin genes with the potential for quality improvement of breadmaking. In this study, we estimated the gluten quality properties of the wheat line CNU609 derived from crossing between Chinese Spring (CS, Triticum aestivum L., 2n = 6x = 42, AABBDD) and the wheat Aegilops umbellulata (2n = 2x = 14, UU) 1U(1B) substitution line, and investigated the function of 1U-encoded low-molecular-weight glutenin subunits (LMW-GS). The main quality parameters of CNU609 were significantly improved due to introgression of the 1U genome, including dough development time, stability time, farinograph quality number, gluten index, loaf size and inner structure. Glutenin analysis showed that CNU609 and CS had the same high-molecular-weight glutenin subunit (HMW-GS) composition, but CNU609 carried eight specific 1U genome-encoded LMW-GS. The introgression of the 1U-encoded LMW-GS led to more and larger protein body formation in the CNU609 endosperm. Two new LMW-m type genes from the 1U genome, designated Glu-U3a and Glu-U3b, were cloned and characterized. Secondary structure prediction implied that both Glu-U3a and Glu-U3b encode subunits with high α-helix and β-strand content that could benefit the formation of superior gluten structure. Our results indicate that the 1U genome has superior LMW-GS that can be used as new gene resources for wheat gluten quality improvement. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Protein and quality characterization of triticale translocation lines in breadmaking
USDA-ARS?s Scientific Manuscript database
Introduction of high molecular weight glutenin subunits (HMW-GS) from the Glu-D1d locus of wheat into triticale restores the genetic constitution of high molecular weight glutenin loci to that of wheat and subsequently improves the breadmaking quality of triticale. One means of achieving such restor...
Butow, B J; Gale, K R; Ikea, J; Juhász, A; Bedö, Z; Tamás, L; Gianibelli, M C
2004-11-01
Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called 'over-expressing' allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.
Zhou, Jiaxing; Liu, Dongmiao; Deng, Xiong; Zhen, Shoumin; Wang, Zhimin; Yan, Yueming
2018-03-12
Water deficiency affects grain proteome dynamics and storage protein compositions, resulting in changes in gluten viscoelasticity. In this study, the effects of field water deficit on wheat breadmaking quality and grain storage proteins were investigated. Water deficiency produced a shorter grain-filling period, a decrease in grain number, grain weight and grain yield, a reduced starch granule size and increased protein content and glutenin macropolymer contents, resulting in superior dough properties and breadmaking quality. Reverse phase ultra-performance liquid chromatography analysis showed that the total gliadin and glutenin content and the accumulation of individual components were significantly increased by water deficiency. Two-dimensional gel electrophoresis detected 144 individual storage protein spots with significant accumulation changes in developing grains under water deficit. Comparative proteomic analysis revealed that water deficiency resulted in significant upregulation of 12 gliadins, 12 high-molecular-weight glutenin subunits and 46 low-molecular-weight glutenin subunits. Quantitative real-time polymerase chain reaction analysis revealed that the expression of storage protein biosynthesis-related transcription factors Dof and Spa was upregulated by water deficiency. The present results illustrated that water deficiency leads to increased accumulation of storage protein components and upregulated expression of Dof and Spa, resulting in an improvement in glutenin strength and breadmaking quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Yahata, Eriko; Maruyama-Funatsuki, Wakako; Nishio, Zenta; Yamamoto, Yoshihiko; Hanaoka, Akihiro; Sugiyama, Hisashi; Tanida, Masatoshi; Saruyama, Haruo
2006-04-01
The content of specific proteins such as high-molecular-weight glutenin subunits HMW-GS 5+10 and low-molecular-weight glutenin subunits LMW-GS KS2 in wheat mill streams of extra-strong Kachikei 33 wheat was quantified by SDS-PAGE and 2D-PAGE. The mill streams showed varied quantities of HMW-GS 5+10 (0.077 to 2.007 mg/g of mill stream), LMW-GS KS2 (0.018 to 0.586 mg/g of mill stream) and total protein (9.42% to 18.98%). The contents of these specific proteins in the mill streams were significantly correlated with the SDS sedimentation volume and the mixing properties, which are respective indices of specific loaf volume and dough strength. The contents of these specific glutenin proteins in the mill streams were therefore found to be significantly important for improving the dough quality suitable for bread and Chinese noodles. Accordingly, we present here the application of this information to the development of an effective method for producing mill streams with high quality and yield that are suitable for instant Chinese noodles.
2014-01-01
Background Wheat glutenin polymers are made up of two main subunit types, the high- (HMW-GS) and low- (LMW-GS) molecular weight subunits. These latter are represented by heterogeneous proteins. The most common, based on the first amino acid of the mature sequence, are known as LMW-m and LMW-s types. The mature sequences differ as a consequence of three extra amino acids (MET-) at the N-terminus of LMW-m types. The nucleotide sequences of their encoding genes are, however, nearly identical, so that the relationship between gene and protein sequences is difficult to ascertain. It has been hypothesized that the presence of an asparagine residue in position 23 of the complete coding sequence for the LMW-s type might account for the observed three-residue shortened sequence, as a consequence of cleavage at the asparagine by an asparaginyl endopeptidase. Results We performed site-directed mutagenesis of a LMW-s gene to replace asparagine at position 23 with threonine and thus convert it to a candidate LMW-m type gene. Similarly, a candidate LMW-m type gene was mutated at position 23 to replace threonine with asparagine. Next, we produced transgenic durum wheat (cultivar Svevo) lines by introducing the mutated versions of the LMW-m and LMW-s genes, along with the wild type counterpart of the LMW-m gene. Proteomic comparisons between the transgenic and null segregant plants enabled identification of transgenic proteins by mass spectrometry analyses and Edman N-terminal sequencing. Conclusions Our results show that the formation of LMW-s type relies on the presence of an asparagine residue close to the N-terminus generated by signal peptide cleavage, and that LMW-GS can be quantitatively processed most likely by vacuolar asparaginyl endoproteases, suggesting that those accumulated in the vacuole are not sequestered into stable aggregates that would hinder the action of proteolytic enzymes. Rather, whatever is the mechanism of glutenin polymer transport to the vacuole, the proteins remain available for proteolytic processing, and can be converted to the mature form by the removal of a short N-terminal sequence. PMID:24629124
Gao, Xin; Liu, Tianhong; Yu, Jing; Li, Liqun; Feng, Yi; Li, Xuejun
2016-04-15
Glutenin is one of the critical gluten proteins that affect the processing quality of wheat dough. High-molecular-weight glutenin subunits (HMW-GS) affect rheological behavior of wheat dough. This research demonstrated the effects of four variations of HMW-GS composition at the Glu-B1 locus on secondary and micro structures of gluten and rheological properties of wheat dough, using the bread wheat Xinong 1330 and its three near-isogenic lines (NILs). Results indicated that the Amide I bands of the four wheat lines shifted slightly, but the secondary structure, such as content of α-helices, β-sheets, disulfide bands, tryptophan bands and tyrosine bands, differed significantly among the four NILs. The micro structure of gluten in NIL 2 (Bx14+By15) and NIL 3 (Bx17+By18) showed more cross linkage, with two contrasting patterns. Correlation analysis demonstrated that the content of β-sheets and disulfide bonds has a significant relationship with dough stability, which suggests that the secondary structures could be used as predictors of wheat quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh
2014-01-01
Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).
Zhang, Lujun; Chen, Qiufang; Su, Mingjie; Yan, Biao; Zhang, Xiangqi; Jiao, Zhen
2016-03-15
High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat. Mutations induced by ion beam radiation have been applied to improve the yield and quality of crop. In this study, HMW-GS-deficient mutant lines were selected and the effects of Glu-1 loci deletion on wheat quality properties were illustrated according to the analysis of dry seeds of common wheat (Triticum aestivum L.) Xiaoyan 81 treated with a nitrogen ion beam. Three HMW-GS-deficient mutant lines were obtained and then detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Large-chromosome-fragment deletion resulted in specific deficiencies, and the deleted region sizes were determined using molecular markers. Agronomic characters, quantity and proportion of glutenins and dough microstructure of the deletion lines all proved to be quite different from those of wild-type Xiaoyan 81. Analysis of quality properties suggested that GluA1(-) had superior property parameters, while GluB1(-) and GluD1(-) both showed a significant decrease in quality properties compared with Xiaoyan 81. The effects of the three Glu-1 loci on flour and dough quality-related parameters should be Glu-D1 > Glu-B1 > Glu-A1. Ion beam radiation can be used as a mutagen to create new crop mutants. © 2015 Society of Chemical Industry.
Luo, Guangbin; Zhang, Xiaofei; Zhang, Yanlin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Zhang, Aimin; Liu, Dongcheng
2015-02-28
Wheat (AABBDD, 2n = 6x = 42) is a major dietary component for many populations across the world. Bread-making quality of wheat is mainly determined by glutenin subunits, but it remains challenging to elucidate the composition and variation of low-molecular-weight glutenin subunits (LMW-GS) genes, the major components for glutenin subunits in hexaploid wheat. This problem, however, can be greatly simplified by characterizing the LMW-GS genes in Triticum urartu, the A-genome donor of hexaploid wheat. In the present study, we exploited the high-throughput molecular marker system, gene cloning, proteomic methods and molecular evolutionary genetic analysis to reveal the composition, variation, expression and evolution of LMW-GS genes in a T. urartu population from the Fertile Crescent region. Eight LMW-GS genes, including four m-type, one s-type and three i-type, were characterized in the T. urartu population. Six or seven genes, the highest number at the Glu-A3 locus, were detected in each accession. Three i-type genes, each containing more than six allelic variants, were tightly linked because of their co-segregation in every accession. Only 2-3 allelic variants were detected for each m- and s-type gene. The m-type gene, TuA3-385, for which homologs were previously characterized only at Glu-D3 locus in common wheat and Aegilops tauschii, was detected at Glu-A3 locus in T. urartu. TuA3-460 was the first s-type gene identified at Glu-A3 locus. Proteomic analysis showed 1-4 genes, mainly i-type, expressed in individual accessions. About 62% accessions had three active i-type genes, rather than one or two in common wheat. Southeastern Turkey might be the center of origin and diversity for T. urartu due to its abundance of LMW-GS genes/genotypes. Phylogenetic reconstruction demonstrated that the characterized T. urartu might be the direct donor of the Glu-A3 locus in common wheat varieties. Compared with the Glu-A3 locus in common wheat, a large number of highly diverse LMW-GS genes and active genes were characterized in T. urartu, demonstrating that this progenitor might provide valuable genetic resources for LMW-GS genes to improve the quality of common wheat. The phylogenetic analysis provided molecular evidence and confirmed that T. urartu was the A-genome donor of hexaploid wheat.
Protein and Quality Characterization of Triticale Translocation Lines in Bread Making
USDA-ARS?s Scientific Manuscript database
Introduction of high molecular weight glutenin subunits (HMW-GS) from the Glu-Did locus of wheat into triticale restores the genetic constitution of storage protein loci to that of wheat and subsequently improves the bread making quality of triticale. One means to achieve such restoration of the gen...
Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars
USDA-ARS?s Scientific Manuscript database
The accurate identification of alleles for high-molecular weight glutenins (HMW-GS) is critical for wheat breeding programs targeting end-use quality. RP-HPLC methods were optimized for separation of HMW-GS, resulting in enhanced resolution of 1By and 1Dx subunits. Statistically significant differe...
Zhang, Yanzhen; Li, Xiaohui; Wang, Aili; An, Xueli; Zhang, Qian; Pei, Yuhe; Gao, Liyan; Ma, Wujun; Appels, Rudi; Yan, Yueming
2008-01-01
Two new x-type high-molecular-weight glutenin subunits with similar size to 1Dx5, designated 1Dx5*t and 1Dx5.1*t in Aegilops tauschii, were identified by SDS-PAGE, RP-HPLC, and MALDI-TOF-MS. The coding sequences were isolated by AS-PCR and the complete ORFs were obtained. Allele 1Dx5*t consists of 2481 bp encoding a mature protein of 827 residues with deduced Mr of 85,782 Da whereas 1Dx5.1*t comprises 2526 bp encoding 842 residues with Mr of 87,663 Da. The deduced Mr's of both genes were consistent with those determined by MALDI-TOF-MS. Molecular structure analysis showed that the repeat motifs of 1Dx5*t were correspondingly closer to the consensus compared to 1Dx5.1*t and 1Dx5 subunits. A total of 11 SNPs (3 in 1Dx5*t and 8 in 1Dx5.1*t) and two indels in 1Dx5*t were identified, among which 8 SNPs were due to C-T or A-G transitions (an average of 73%). Expression of the cloned ORFs and N-terminal sequencing confirmed the authenticities of the two genes. Interestingly, several hybrid clones of 1Dx5*t expressed a slightly smaller protein relative to the authentic subunit present in seed proteins; this was confirmed to result from a deletion of 180 bp through illegitimate recombination as well as an in-frame stop codon. Network analysis demonstrated that 1Dx5*t, 1Dx2t, 1Dx1.6t, and 1Dx2.2* represent a root within a network and correspond to the common ancestors of the other Glu-D-1-1 alleles in an associated star-like phylogeny, suggesting that there were at least four independent origins of hexaploid wheat. In addition to unequal homologous recombination, duplication and deletion of large fragments occurring in Glu-D-1-1 alleles were attributed to illegitimate recombination.
Allelic analysis of low molecular weight glutenin subunits using 2-DGE in Korean wheat cultivars
USDA-ARS?s Scientific Manuscript database
Two-dimensional gel electrophoresis (2-DGE) was used to determine the allelic compositions of LMW-GS in 32 Korean wheat cultivars. Protein patterns generated by 2-DGE from each cultivar were compared to patterns from standard wheat cultivars for each allele. At the Glu-A3 locus, thirteen c, twelve ...
Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)
USDA-ARS?s Scientific Manuscript database
The low-molecular weight glutenin subunits (LMW-GSs) are one of the major components of wheat seed storage proteins and play a critical role in the determination of wheat flour bread-making quality. The genes encoding for this class of proteins are mainly located at the orthologous Glu-3 loci (Glu-A...
Yasmeen, F; Khurshid, H; Ghafoor, A
2015-05-11
Wheat flour quality is an important consideration in the breeding and development of new cultivars. A strong association between high-molecular weight glutenin subunits (HMW-GS) and bread making quality has resulted in the widespread utilization of HMW-GS in wheat breeding. In this study, we analyzed 242 lines of wheat, including landraces from the provinces of Punjab and Baluchistan, as well as the commercial varieties of Pakistan, to determine allelic variation in the Glu-A1, Glu-B1, and Glu-D1 loci encoding HMW-GS. Higher genetic diversity was observed for HMW-GS in landraces from Baluchistan, followed by landraces collected from Punjab and then commercial varieties. Rare and uncommon subunits were observed in Glu-B1, whereas Glu-A1 was less polymorphic. However, Glu-B1 was the highest contributor to overall diversity (78%), with a total of 31 rare alleles, followed by Glu-D1 (20%) with the high quality 5+10 allele and other variants. Commercial cultivars possessed favorable alleles, potentially from indirect selection for wheat flour quality by the breeders; however, this indirect selection has decreased the pedigree base of commercial cultivars. The allelic combinations, including 2*, 5+10, and 17+18, showing high quality scores were frequent among landraces, indicating their usefulness in future crop improvement and breeding programs.
Evidence of intralocus recombination at the Glu-3 loci in bread wheat (Triticum aestivum L.)
USDA-ARS?s Scientific Manuscript database
The low-molecular weight glutenin subunits (LMW-GSs) are a class of wheat seed storage proteins that play a critical role in the determination of wheat flour bread-making quality. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and Glu-D3), on t...
Li, Xuejun; Liu, Tianhong; Song, Lijun; Zhang, Heng; Li, Liqun; Gao, Xin
2016-12-15
As one of critical gluten proteins, high-molecular-weight glutenin subunits (HMW-GS) mainly affect the rheological behaviour of wheat dough. The influence of HMW-GS variations at the Glu-A1 and Glu-D1 loci on both secondary and micro structures of gluten and rheological properties of wheat dough was investigated in this study. Results showed that the Amide I bands of the three near-isogenic lines (NILs) shifted slightly, but the secondary structures differed significantly. The micro structure of gluten in NIL 4 (Ax null) showed bigger apertures and less connection, compared to that in Xinong 1330 (Ax1). The micro structure of gluten in NIL 5 (Dx5+Dy10) showed more compact than that in Xinong 1330 (Dx2+Dy12). Correlation analysis demonstrated that the content of β-sheets and disulfide bonds in gluten has a significant relationship with dough properties. The secondary structures of native gluten are suggested to be used as predictors of wheat quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dobrotvorskaia, T V; Martynov, S P
2011-07-01
The allelic diversity of high-moleculat-weght glutenin subunits (H WIGS) in Russian and Ukrainian bread wheat cultivars was analyzed. The diversity of spring wheat cultivars for alleles of the Glu-1 loci is characterized by medium values of the polymorphism index (polymorphism information content, PlC), and in winter wheats it varies from high at the Glu-A1 locus to low at the Glu-D1 locus. The spring and winter cultivars differ significantly in the frequencies of alleles of the glutenin loci. The combination of the Glu-A1b, Glu-B1c, and Glu-D1a alleles prevails among the spring cultivars, and the combination of the Glu-A1a, Glu-B1c, and Glu-D1d alleles prevails among the winter cultivars. The distribution of the Glu-1 alleles significantly depends on the moisture and heat supply in the region of origin of the cultivars. Drought resistance is associated with the Glu-D1a allele in the spring wheat and with the Glu-B1b allele in the winter wheat. The sources of the Glu-1 alleles were identified in the spring and wheat cultivars. The analysis of independence of the distribution of the spring and winter cultivars by the market classes and by the alleles of the HMWGS loci showed a highly significant association of the alleles of three Glu-1 loci with the market classes in foreign cultivars and independence or a weak association in the Russian and Ukrainian cultivars. This seems to be due to the absence of a statistically substantiated system of classification of the domestic cultivars on the basis of their quality.
Zhao, X L; Xia, X C; He, Z H; Lei, Z S; Appels, R; Yang, Y; Sun, Q X; Ma, W
2007-02-01
Low-molecular-weight glutenin subunits (LMW-GS) play an important role in bread and noodle processing quality by influencing the viscoelasticity and extensibility of dough. The objectives of this study were to characterize Glu-D3 subunit coding genes and to develop molecular markers for identifying Glu-D3 gene haplotypes. Gene specific primer sets were designed to amplify eight wheat cultivars containing Glu-D3a, b, c, d and e alleles, defined traditionally by protein electrophoretic mobility. Three novel Glu-D3 DNA sequences, designated as GluD3-4, GluD3-5 and GluD3-6, were amplified from the eight wheat cultivars. GluD3-4 showed three allelic variants or haplotypes at the DNA level in the eight cultivars, which were designated as GluD3-41, GluD3-42 and GluD3-43. Compared with GluD3-42, a single nucleotide polymorphism (SNP) was detected for GluD3-43 in the coding region, resulting in a pseudo-gene with a nonsense mutation at the 119th position of deduced peptide, and a 3-bp insertion was found in the coding region of GluD3-41, leading to a glutamine insertion at the 249th position of its deduced protein. The coding regions for GluD3-5 and GluD3-6 showed no allelic variation in the eight cultivars tested, indicating that they were relatively conservative in common wheat. Based on the 12 allelic variants of three Glu-D3 genes identified in this study and three detected previously, seven STS markers were established to amplify the corresponding gene sequences in wheat cultivars containing five Glu-D3 alleles (a, b, c, d and e). The seven primer sets M2F12/M2R12, M2F2/M2R2, M2F3/M2R3, M3F1/M3R1, M3F2/M3R2, M4F1/M4R1 and M4F3/M4R3 were specific to the allelic variants GluD3-21/22, GluD3-22, GluD3-23, GluD3-31, GluD3-32, GluD3-41 and GluD3-43, respectively, which were validated by amplifying 20 Chinese wheat cultivars containing alleles a, b, c and f based on protein electrophoretic mobility. These markers will be useful to identify the Glu-D3 gene haplotypes in wheat breeding programs.
Wang, Yaping; Zhen, Shoumin; Luo, Nana; Han, Caixia; Lu, Xiaobing; Li, Xiaohui; Xia, Xianchun; He, Zhonghu; Yan, Yueming
2016-01-01
Low molecular weight glutenin subunit is one of the important quality elements in wheat (Triticum aestivum L.). Although considerable allelic variation has been identified, the functional properties of individual alleles at Glu-3 loci are less studied. In this work, we performed the first comprehensive study on the molecular characteristics and functional properties of the Glu-B3h gene using the wheat cultivar CB037B and its Glu-B3 deletion line CB037C. The results showed that the Glu-B3h deletion had no significant effects on plant morphological or yield traits, but resulted in a clear reduction in protein body number and size and main quality parameters, including inferior mixing property, dough strength, loaf volume, and score. Molecular characterization showed that the Glu-B3h gene consists of 1179 bp, and its encoded B-subunit has a longer repetitive domain and an increased number of α-helices, as well as higher expression, which could contribute to superior flour quality. The SNP-based allele-specific PCR markers designed for the Glu-B3h gene were developed and validated with bread wheat holding various alleles at Glu-B3 locus, which could effectively distinguish the Glu-B3h gene from others at the Glu-B3 locus, and have potential applications for wheat quality improvement through marker-assisted selection. PMID:27273251
Muccilli, Vera; Lo Bianco, Marisol; Cunsolo, Vincenzo; Saletti, Rosaria; Gallo, Giulia; Foti, Salvatore
2011-11-23
The primary structures of high molecular weight glutenin subunits (HMW-GS) of 5 Triticum durum Desf. cultivars (Simeto, Svevo, Duilio, Bronte, and Sant'Agata), largely cultivated in the south of Italy, and of 13 populations of the old spring Sicilian durum wheat landrace Timilia (Triticum durum Desf.) (accession nos. 1, 2, 3, 4, 7, 8, 9, 13, 14, 15, SG1, SG2, and SG3) were investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high performance liquid chromatography/nanoelectrospray ionization mass spectrometry (RP-HPLC/nESI-MS/MS). M(r) of the intact proteins determined by MALDI mass spectrometry showed that all the 13 populations of Timilia contained the same two HMW-GS with 75.2 kDa and 86.4 kDa, whereas the other durum wheat cultivars showed the presence of the expected HMW-GS 1By8 and 1Bx7 at 75.1 kDa and 83.1 kDa, respectively. By MALDI mass spectrometry of the tryptic digestion peptides of the isolated HMW-GS of Timilia, the 1Bx and 1By subunits were identified as the NCBInr Acc. No AAQ93629, and AAQ93633, respectively. Sequence verification for HMW-GS 1Bx and 1By both in Simeto and Timilia was obtained by MALDI mass mapping and HPLC/nESI-MSMS of the tryptic peptides. The Bx subunit of Timila presents a sequence similarity of 96% with respect to Simeto, with differences in the insertion of 3 peptides of 5, 9, and 15 amino acids, for a total insertion of 29 amino acids and 25 amino acid substitutions. These differences in the amino acidic sequence account for the determined Δm of 3294 Da between the M(r) of the 1Bx subunits in Timilia and Simeto. Sequence alignment between the two By subunits shows 10 amino acid substitutions and is consistent with the Δm of 148 Da found in the MALDI mass spectra of the intact subunits.
Zhang, Jian; Lei, Qian; Meng, Dandan; Ma, Fengyun; Hu, Wei; Chen, Mingjie; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan
2013-01-01
Seed storage proteins in wheat endosperm, particularly high-molecular-weight glutenin subunits (HMW-GS), are primary determinants of dough properties, and affect both end-use quality and grain utilization of wheat (Triticum aestivum L). In order to investigate the interactive effects between the transgenically overexpressed 1Ax1 subunit with different HMW-GS on dough quality traits, we developed a set of 8 introgression lines (ILs) overexpressing the transgenic HMW-glutenin subunit 1Ax1 by introgression of this transgene from transgenic line B102-1-2/1 into an elite Chinese wheat variety Chuanmai107 (C107), using conventional crossing and backcrossing breeding technique. The donor C107 strain lacks 1Ax1 but contains the HMW-GS pairs 1Dx2+1Dy12 and 1Bx7+1By9. The resultant ILs showed robust and stable expression of 1Ax1 even after five generations of self-pollination, and crossing/backcrossing three times. In addition, overexpression of 1Ax1 was compensated by the endogenous gluten proteins. All ILs exhibited superior agronomic performance when compared to the transgenic parent line, B102-1-2/1. Mixograph results demonstrated that overexpressed 1Ax1 significantly improved dough strength, resistance to extension and over-mixing tolerance, in the targeted wheat cultivar C107. Further, comparisons among the ILs showed the interactive effects of endogenous subunits on dough properties when 1Ax1 was overexpressed: subunit pair 17+18 contributed to increased over-mixing tolerance of the dough; expression of the Glu-D1 allele maintained an appropriate balance between x-type and y-type subunits and thereby improved dough quality. It is consistent with ILs C4 (HMW-GS are 1, 17+18, 2+12) had the highest gluten index and Zeleny sedimentation value. This study demonstrates that wheat quality could be improved by using transgenic wheat overexpressing HMW-GS and the feasibility of using such transgenic lines in wheat quality breeding programs. PMID:24167625
Shewry, P R; Gilbert, S M; Savage, A W J; Tatham, A S; Wan, Y-F; Belton, P S; Wellner, N; D'Ovidio, R; Békés, F; Halford, N G
2003-02-01
The gene encoding high-molecular-weight (HMW) subunit 1Bx20 was isolated from durum wheat cv. Lira. It encodes a mature protein of 774 amino acid residues with an M(r) of 83,913. Comparison with the sequence of subunit 1Bx7 showed over 96% identity, the main difference being the substitution of two cysteine residues in the N-terminal domain of subunit 1Bx7 with tyrosine residues in 1Bx20. Comparison of the structures and stabilities of the two subunits purified from wheat using Fourier-transform infra-red and circular dichroism spectroscopy showed no significant differences. However, incorporation of subunit 1Bx7 into a base flour gave increased dough strength and stability measured by Mixograph analysis, while incorporation of subunit 1Bx20 resulted in small positive or negative effects on the parameters measured. It is concluded that the different effects of the two subunits could relate to the differences in their cysteine contents, thereby affecting the cross-linking and hence properties of the glutenin polymers.
Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter
2013-01-01
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.
Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter
2013-01-01
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction. PMID:23520527
Koga, Shiori; Böcker, Ulrike; Moldestad, Anette; Tosi, Paola; Shewry, Peter R; Mosleth, Ellen F; Uhlen, Anne Kjersti
2016-01-15
The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax ) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperatures. © 2015 Society of Chemical Industry.
Dangi, Priya; Khatkar, B S
2018-03-01
Crude glutenin of four commercial wheat varieties viz. C 306, HI 977, HW 2004 and PBW 550 of diverse origin and breadmaking quality were fractionated by size-exclusion chromatography into three fractions of decreasing molecular weights. The relative quantity of peak II, containing LMW-GS specifically, varied considerably among the varieties as reflected from their discrete SEC profiles. The area % of peak II, containing protein of interest, was maximal for C 306 (22.08%) followed by PBW 550 (15.86%). The least proportion of LMW-GS were recovered from variety HW 2004 (9.68%). As the concentration of the sample extract injected to the column increased, the resolution of the peak declined in association with the slight shifting of retention time to the higher values. The best results were obtained for variety C 306 at 100 mg protein concentration with 3 M urea buffer. Consequently, the optimized conditions for purification of LMW-GS in appreciable amounts using SEC were established.
NASA Astrophysics Data System (ADS)
Dworschak, Ragnar G.
Orthogonal-injection was introduced to allow continuous ion sources to be coupled to time-of-flight mass spectrometers, but also demonstrated promising features for pulsed sources such as MALDI. We tested the feasibility of using a simple implementation orthogonal injection TOF with a MALDI source without collisional cooling. The experiment demonstrated that high resolution is achievable in principle in such an instrument, but only with impractical sacrifices in intensity. Subsequent work in this laboratory has demonstrated that the addition of collisional cooling makes orthogonal MALDI not only feasible, but advantageous in several respects. The instrument used for the above feasibility test was well-suited for measurements of initial velocity distributions in MALDI, avoiding problems of field penetration and questions of timescale of the plume expansion that seemed to produce rather conflicting results in axial TOF measurements. Average initial velocities of peptides and proteins above about 1000 daltons were found to be largely mass independent around 800 m/s, plus or minus about 15% depending on the matrix used. This result is slightly higher, but still quite consistent with earlier measurements using axial TOF with the field-free method (˜750 m/s), but a factor of two higher than the first reports using the delayed-extraction method. The experiments also showed that in contrast to the average velocity, the width of the velocity distribution increases significantly with increasing mass. The matrix velocity measurements confirm earlier experiments that show the benzoic acid derivatives have generally higher velocities than the cinnamic acid derivatives. Measurements of the velocity component in the direction back toward the laser with different sample orientations suggest that the surface orientation is the main determiner of the plume direction. On the other hand, preliminary measurements using the field-free method in the axial TOF geometry show higher velocities of matrix and analyte ions for more normal laser incidence, and for single crystals parallel to the sample surface compared to polycrystalline surfaces, suggesting the orientation of the crystal face with respect to the incident laser direction plays a role in the desorption process. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) was used to analyse the protein composition in several common and durum wheat varieties. Mass spectra were obtained directly from crude and partially purified wheat gliadin and reduced glutenin subunit fractions. Mass spectra of the gliadins and the low molecular weight glutenin subunits show a complex pattern of proteins in the 30--40 kDa range. The observed gliadin patterns showed some promise for variety identification. The mass spectra of the high molecular weight glutenin subunits are much simpler and the complete high molecular weight subunit profile can be determined directly from a single mass spectrum. This may prove particularly useful in wheat breeding programs for rapid identification of lines containing subunits associated with superior quality.
Zhen, Shoumin; Han, Caixia; Ma, Chaoying; Gu, Aiqin; Zhang, Ming; Shen, Xixi; Li, Xiaohui; Yan, Yueming
2014-12-19
Low-molecular-weight glutenin subunits (LMW-GS), encoded by Glu-3 complex loci in hexaploid wheat, play important roles in the processing quality of wheat flour. To date, the molecular characteristics and effects on dough quality of individual Glu-3 alleles and their encoding proteins have been poorly studied. We used a Glu-A3 deletion line of the Chinese Spring (CS-n) wheat variety to conduct the first comprehensive study on the molecular characteristics and functional properties of the LMW-GS allele Glu-A3a. The Glu-A3a allele at the Glu-A3 locus in CS and its deletion in CS-n were identified and characterized by proteome and molecular marker methods. The deletion of Glu-A3a had no significant influence on plant morphological and yield traits, but significantly reduced the dough strength and breadmaking quality compared to CS. The complete sequence of the Glu-A3a allele was cloned and characterized, which was found to encode a B-subunit with longer repetitive domains and an increased number of α-helices. The Glu-A3a-encoded B-subunit showed a higher expression level and accumulation rate during grain development. These characteristics of the Glu-A3a allele could contribute to achieving superior gluten quality and demonstrate its potential application to wheat quality improvement. Furthermore, an allele-specific polymerase chain reaction (AS-PCR) marker for the Glu-A3a allele was developed and validated using different bread wheat cultivars, including near-isogenic lines (NILs) and recombinant inbred lines (RILs), which could be used as an effective molecular marker for gluten quality improvement through marker-assisted selection. This work demonstrated that the LMW-GS allele Glu-A3a encodes a specific LMW-i type B-subunit that significantly affects wheat dough strength and breadmaking quality. The Glu-A3a-encoded B-subunit has a long repetitive domain and more α-helix structures as well as a higher expression level and accumulation rate during grain development, which could facilitate the formation of wheat with a stronger dough structure and superior breadmaking quality.
Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann
2016-01-01
The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.
Xue, Cheng; auf’m Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann
2016-01-01
The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems. PMID:27313585
Yu, Xurun; Chen, Xinyu; Wang, Leilei; Yang, Yang; Zhu, Xiaowei; Shao, Shanshan; Cui, Wenxue; Xiong, Fei
2017-04-01
Molecular and cytological mechanisms concerning the effects of nitrogen on wheat (Triticum aestivum L.) storage protein biosynthesis and protein body development remain largely elusive. We used transcriptome sequencing, proteomics techniques, and light microscopy to investigate these issues. In total, 2585 differentially expressed genes (DEGs) and 57 differentially expressed proteins (DEPs) were found 7 days after anthesis (DAA), and 2456 DEGs and 64 DEPs were detected 18 DAA after nitrogen treatment. Gene ontology terms related to protein biosynthesis processes enriched these numbers by 678 and 582 DEGs at 7 and 18 DAA, respectively. Further, 25 Kyoto Encyclopedia of Genes and Genomes pathways were involved in protein biosynthesis at both 7 and 18 DAA. DEPs related to storage protein biosynthesis contained gliadin and glutenin subunits, most of which were up-regulated after nitrogen treatment. Quantitative real-time PCR analysis indicated that some gliadin and glutenin subunit encoding genes were differentially expressed at 18 DAA. Structural observation revealed that wheat endosperm accumulated more and larger protein bodies after nitrogen treatment. Collectively, our findings suggest that nitrogen treatment enhances storage protein content, endosperm protein body quantity, and partial processing quality by altering the expression levels of certain genes involved in protein biosynthesis pathways and storage protein expression at the proteomics level. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Hao, Chenyang; Tang, Saijun; Zhang, Xueyong; Li, Tian
2014-01-01
To better understand the transcriptional regulation of high molecular weight glutenin subunit (HMW-GS) expression, we isolated four Glu-1Bx promoters from six wheat cultivars exhibiting diverse protein expression levels. The activities of the diverse Glu-1Bx promoters were tested and compared with β-glucuronidase (GUS) reporter fusions. Although all the full-length Glu-1Bx promoters showed endosperm-specific activities, the strongest GUS activity was observed with the 1Bx7OE promoter in both transient expression assays and stable transgenic rice lines. A 43 bp insertion in the 1Bx7OE promoter, which is absent in the 1Bx7 promoter, led to enhanced expression. Analysis of promoter deletion constructs confirmed that a 185 bp MITE (miniature inverted-repeat transposable element) in the 1Bx14 promoter had a weak positive effect on Glu-1Bx expression, and a 54 bp deletion in the 1Bx13 promoter reduced endosperm-specific activity. To investigate the effect of the 43 bp insertion in the 1Bx7OE promoter, a functional marker was developed to screen 505 Chinese varieties and 160 European varieties, and only 1Bx7-type varieties harboring the 43 bp insertion in their promoters showed similar overexpression patterns. Hence, the 1Bx7OE promoter should be important tool in crop genetic engineering as well as in molecular assisted breeding. PMID:25133580
Impact of redox agents on the extractability of gluten proteins during bread making.
Lagrain, Bert; Thewissen, Bert G; Brijs, Kristof; Delcour, Jan A
2007-06-27
The gluten proteins gliadin and glutenin are important for dough and bread characteristics. In the present work, redox agents were used to impact gluten properties and to study gliadin-glutenin interactions in bread making. In control bread making, mixing increased the extractability of glutenin. The level of SDS-extractable glutenin decreased during fermentation and then further in the oven. The levels of extractable alpha- and gamma-gliadin also decreased during bread baking due to gliadin-glutenin polymerization. Neither oxidizing nor reducing agents had an impact on glutenin extractabilities after mixing. The redox additives did not affect omega-gliadin extractabilities during bread making due to their lack of cysteine residues. Potassium iodate (0.82-2.47 micromol/g of protein) and potassium bromate (1.07-3.17 micromol/g of protein) increased both alpha- and gamma-gliadin extractabilities during baking. Increasing concentrations of glutathione (1.15-3.45 micromol/g of protein) decreased levels of extractable alpha- and gamma-gliadins during baking. The work not only demonstrated that, during baking, glutenin and gliadin polymerize through heat-induced sulfhydryl-disulfide exchange reactions, but also demonstrated for the first time that oxidizing agents, besides their effect on dough rheology and hence bread volume, hinder gliadin-glutenin linking during baking, while glutathione increases the degree of covalent gliadin to glutenin linking.
Mondal, Suchismita; Tilley, Michael; Alviola, Juma Novi; Waniska, Ralph D; Bean, Scott R; Glover, Karl D; Hays, Dirk B
2008-01-09
In wheat ( Triticum aestivum L), the synthesis of high molecular weight (HMW) glutenins (GS) is controlled by three heterologous genetic loci present on the long arms of group 1 wheat chromosomes. The loci Glu-A1, Glu-B1, and Glu-D1 and their allelic variants play important roles in the functional properties of wheat flour. This study focused on understanding the functionality of these protein subunits on tortilla quality. Near-isogenic wheat lines in which one or more of these loci were absent or deleted were used. Tortillas were prepared from each deletion line and the parent lines. The elimination of certain HMW-GS alleles alter distinct but critical aspects of tortilla quality such as diameter, shelf stability, and overall quality. Two deletion lines possessing HMW-GS 17 + 18 at Glu-B1 and deletions in Glu-A1 and Glu-D1 had significantly larger tortilla diameters, yet tortilla shelf life was compromised or unchanged from the parent lines used to develop the deletion lines or the commercial tortilla flour used as a control. Alternatively, a deletion line possessing Glu-A1 and Glu-D1 (HMW-GS 1, 5 + 10) and a deletion in Glu-B1 also significantly improved tortilla diameters. Whereas the increase in diameter was less than the line possessing only HMW-GS 17 + 18 at Glu-B1, the stability of the tortillas were, however, maintained and improved as compared to the parent lines containing a full compliment of HMW-GS. Thus, the presence of subunits 5 + 10 at Glu-D1 alone or in combination with subunit 1 at Glu-A1 appears to provide a compromise of improvement in dough extensibility for improved tortilla diameters while also providing sufficient gluten strength to maintain ideal shelf stability.
Guo, Xiao-Hui; Wu, Bi-Hua; Hu, Xi-Gui; Bi, Zhe-Guang; Wang, Zhen-Zhen; Liu, Deng-Cai; Zheng, You-Liang
2013-03-01
Two y-type high molecular weight glutenin subunits (HMW-GSs) 1Ay12 and 1Ay8 from the two accessions PI560720 and PI345186 of cultivated einkorn wheat (Triticum monococcum ssp. monococcum, AA, 2n=2x=14), were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The mobility of 1Ay12 and 1Ay8 was similar to that of 1Dy12 and 1By8 from common wheat Chinese Spring, respectively. Their ORFs respectively consisted of 1812bp and 1935bp, encoding 602 and 643 amino acid residues with the four typical structural domains of HMW-GS including signal peptide, conserved N-, and C-terminal and central repetitive domains. Compared with the most similar active 1Ay alleles previous published, there were a total of 15 SNPs and 2 InDels in them. Their encoding functions were confirmed by successful heterogeneous expression. The two novel 1Ay alleles were named as 1Ay12 and 1Ay8 with the accession No. JQ318694 and JQ318695 in GenBank, respectively. The two alleles were classed into the two distinct groups, Phe-type and Cys-type, which might be relevant to the differentiation of Glu-A1-2 alleles. Of which, 1Ay8 belonged to Cys-type group, and its protein possessed an additional conserved cysteine residue in central repetitive region besides the six common ones in N- and C-terminal regions of Phe-type group, and was the second longest in all the known active 1Ay alleles. These results suggested that the subunit 1Ay8 of cultivated einkorn wheat accession PI345186 might have a potential ability to strengthen the gluten polymer interactions and be a valuable genetic resource for wheat quality improvement. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of wheat glutenin nanoparticles and their biodistribution in mice.
Reddy, Narendra; Shi, Zhen; Xu, Helan; Yang, Yiqi
2015-05-01
Wheat glutenin nanoparticles intended for targeted drug delivery were biocompatible and were detected in the kidney, liver, and spleen in mice. Protein-based nanoparticles are preferred for therapeutic drug and gene delivery owing to their biocompatibility and ability to load various types of drugs. However, proteins such as a collagen and albumin are unstable in aqueous environments and are not ideal for drug delivery applications. Wheat glutenin has been demonstrated to be biocompatible and have good stability under aqueous conditions. Films and fibers have been made from wheat glutenin for medical applications but there are no reports on developing micro- or nanoparticles. In this research, wheat glutenin nanoparticles (70-140 nm) were prepared and the stability of the nanoparticles under various physiological conditions was investigated. Nanoparticles were fluorescently labeled and later injected into mice and the ability of the nanoparticles to penetrate into the cells in various organs was studied. Strong acidic or alkaline conditions provided glutenin nanoparticles with low diameters and the particles were more stable under the pH 7 rather than pH of 4. Glutenin nanoparticles were predominantly found in the liver in mice. Our in vivo and in vitro studies suggest that glutenin nanoparticles are suitable for drug delivery applications. © 2014 Wiley Periodicals, Inc.
Zhang, Xiaofei; Liu, Dongcheng; Zhang, Jianghua; Jiang, Wei; Luo, Guangbin; Yang, Wenlong; Sun, Jiazhu; Tong, Yiping; Cui, Dangqun; Zhang, Aimin
2013-01-01
Low-molecular-weight glutenin subunits (LMW-GS), encoded by a complex multigene family, play an important role in the processing quality of wheat flour. Although members of this gene family have been identified in several wheat varieties, the allelic variation and composition of LMW-GS genes in common wheat are not well understood. In the present study, using the LMW-GS gene molecular marker system and the full-length gene cloning method, a comprehensive molecular analysis of LMW-GS genes was conducted in a representative population, the micro-core collections (MCC) of Chinese wheat germplasm. Generally, >15 LMW-GS genes were identified from individual MCC accessions, of which 4–6 were located at the Glu-A3 locus, 3–5 at the Glu-B3 locus, and eight at the Glu-D3 locus. LMW-GS genes at the Glu-A3 locus showed the highest allelic diversity, followed by the Glu-B3 genes, while the Glu-D3 genes were extremely conserved among MCC accessions. Expression and sequence analysis showed that 9–13 active LMW-GS genes were present in each accession. Sequence identity analysis showed that all i-type genes present at the Glu-A3 locus formed a single group, the s-type genes located at Glu-B3 and Glu-D3 loci comprised a unique group, while high-diversity m-type genes were classified into four groups and detected in all Glu-3 loci. These results contribute to the functional analysis of LMW-GS genes and facilitate improvement of bread-making quality by wheat molecular breeding programmes. PMID:23536608
Li, Xiaohui; Ma, Wujun; Gao, Liyan; Zhang, Yanzhen; Wang, Aili; Ji, Kangmin; Wang, Ke; Appels, Rudi; Yan, Yueming
2008-09-01
Four LMW-m and one novel chimeric (between LMW-i and LMW-m types) low-molecular-weight glutenin subunit (LMW-GS) genes from Aegilops neglecta (UUMM), Ae. kotschyi (UUSS), and Ae. juvenalis (DDMMUU) were isolated and characterized. Sequence structures showed that the 4 LMW-m-type genes, assigned to the M genome of Ae. neglecta, displayed a high homology with those from hexaploid common wheat. The novel chimeric gene, designed as AjkLMW-i, was isolated from both Ae. kotschyi and Ae. juvenalis and shown to be located on the U genome. Phylogentic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. A total of 20 single nucleotide polymorphisms (SNPs) were detected among the 4 LMW-m genes, with 13 of these being nonsynonymous SNPs that resulted in amino acid substitutions in the deduced mature proteins. Phylogenetic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. The divergence time estimation showed that the M and D genomes were closely related and diverged at 5.42 million years ago (MYA) while the differentiation between the U and A genomes was 6.82 MYA. We propose that, in addition to homologous recombination, an illegitimate recombination event on the U genome may have occurred 6.38 MYA and resulted in the generation of the chimeric gene AjkLMW-i, which may be an important genetic mechanism for the origin and evolution of LMW-GS Glu-3 alleles as well as other prolamin genes.
Bruneel, Charlotte; Buggenhout, Joke; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A
2016-04-01
Durum wheat (Triticum durum Desf.) semolina gluten proteins consist of monomeric gliadin and polymeric glutenin and determine the quality of pasta products made therefrom. During pasta drying, glutenin starts polymerizing already below 60 °C (65% relative humidity (RH)), whereas gliadin only is incorporated in the protein network at temperatures exceeding 68 °C (68% RH) through thiol (SH)/disulfide (SS) exchange reactions. Removal of free SH groups in glutenin by adding 2.3 μmol KBrO3 or KIO3 per g dry matter semolina protein (g protein) or 13.8 μmol N-ethylmaleimide/g protein reduces gliadin-glutenin cross-linking during pasta drying and/or cooking and yields cooked pasta of high quality. Introducing free SH groups by adding 13.8 μmol glutathione/g protein increases gliadin-glutenin cross-linking during pasta processing, resulting in cooked pasta of lower quality. We hypothesize that too much gliadin incorporation in the glutenin network during pasta processing tightens the protein network and results in lower cooking quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Identification of coeliac disease triggering glutenin peptides in adults.
Donnelly, Suzanne C; Šuligoj, Tanja; Ellis, H Julia; Ciclitira, Paul J
2016-07-01
Coeliac disease affects approximately 1% of Northern American and European populations. It is caused by an inappropriate immune response to dietary gluten. Gluten comprises of two major protein fractions: gliadins and glutenins. Glutenins have recently been found to be toxic to coeliac individuals. Proliferation assays suggest in some but not all paediatric coeliac individuals there may be immunological stimulation with high molecular weight (HMW) glutenins. Less evidence pertains to low molecular weight (LMW) glutenins. The aim is to assess adaptive, T-cell driven, and innate immune response in adult coeliac individuals towards HMW glutenin peptide, glut04, and LMW glutenin peptide, glt156. Coeliac patients were recruited attending endoscopy for routine monitoring. Adaptive immune response towards glut04 and glt156 was measured by proliferation assays and measurement of interferon-γ secretion in 28 T-cell lines. The innate immune response was assessed by measurement of enterocyte cell height (ECH) in coeliac small intestinal biopsies following overnight incubation in organ culture chambers in a further nine individuals. There were 3/28 and 2/28 positive proliferation results using gluten-sensitive T-cells with glut04 and glt156, respectively. All coeliac biopsies tested in organ culture chambers demonstrated clear reduction in ECH with peptic-tryptic digest of whole industrial gluten, glut04 and glt156 when compared to negative control ovalbumin (p < 0.005). Three individuals had both T-cell and organ culture study data. Their proliferation assays showed no stimulation of the T-cells. This study demonstrates glutenin epitopes glut04 and glt156, while minor T-cell epitopes, are important in their ability to trigger the innate immune response.
Visioli, Giovanna; Bonas, Urbana; Dal Cortivo, Cristian; Pasini, Gabriella; Marmiroli, Nelson; Mosca, Giuliano; Vamerali, Teofilo
2018-04-01
With the increasing demand for high-quality foodstuffs and concern for environmental sustainability, late-season nitrogen (N) foliar fertilization of common wheat is now an important and widespread practice. This study investigated the effects of late-season foliar versus soil N fertilization on yield and protein content of four varieties of durum wheat, Aureo, Ariosto, Biensur and Liberdur, in a three-year field trial in northern Italy. Variations in low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that N applied to the canopy did not improve protein rate compared with N application to the soil (general mean 138 mg g -1 ), but moderately increased productivity in the high-yielding varieties Liberdur and Biensur (three-year means 7.23 vs 7.13 and 7.53 vs 7.09 t ha -1 respectively). Technological quality was mainly related to variety choice, Aureo and Ariosto having higher protein rates and glutenin/gliadin ratios. Also found was a strong 'variety × N application method' interaction in the proportions of protein subunits within each class, particularly LMW-GS and gliadins. A promising result was the higher N uptake efficiency, although as apparent balance, combined with higher HMW/LMW-GS ratio in var. Biensur. Late-season foliar N fertilization allows N fertilizer saving, potentially providing environmental benefits in the rainy climate of the northern Mediterranean area, and also leads to variety-dependent up-regulation of essential LMW-GS and gliadins. Variety choice is a key factor in obtaining high technological quality, although it is currently associated with modest grain yield. This study provides evidence of high quality in the specific high-yielding variety Biensur, suggesting its potential as a mono-varietal semolina for pasta production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Fan, Huajie; Sun, Jiazhu; Zhang, Zhongjuan; Qin, Huanju; Li, Bin; Hao, Shanting; Li, Zhensheng; Wang, Daowen; Zhang, Aimin; Ling, Hong-Qing
2010-01-01
The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding. PMID:20975830
Distribution of gluten proteins in bread wheat (Triticum aestivum) grain.
Tosi, Paola; Gritsch, Cristina Sanchis; He, Jibin; Shewry, Peter R
2011-07-01
Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality. Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers. Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain. Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters.
Distribution of gluten proteins in bread wheat (Triticum aestivum) grain
Tosi, Paola; Gritsch, Cristina Sanchis; He, Jibin; Shewry, Peter R.
2011-01-01
Background and Aims Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality. Methods Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers. Key Results Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain. Conclusions Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters. PMID:21693664
Ragupathy, Raja; Naeem, Hamid A; Reimer, Elsa; Lukow, Odean M; Sapirstein, Harry D; Cloutier, Sylvie
2008-01-01
Sequencing of a BAC clone encompassing the Glu-B1 locus in Glenlea, revealed a 10.3 Kb segmental duplication including the Bx7 gene and flanking an LTR retroelement. To better understand the evolution of this locus, two collections of wheat were surveyed. The first consisted of 96 diploid and tetraploid species accessions while the second consisted of 316 Triticum aestivum cultivars and landraces from 41 countries. The genotypes were first characterized by SDS-PAGE and a total of 40 of the 316 T. aestivum accessions were found to display the overexpressed Bx7 phenotype (Bx7OE). Three lines from the 96 diploid/tetraploid collection also displayed the stronger intensity staining characteristic of the Bx7(OE) subunit. The relative amounts of the Bx7 subunit to total HMW-GS were quantified by RP-HPLC for all Bx7OE accessions and a number of checks. The entire collection was assessed for the presence of four DNA markers namely an 18 bp indel of the coding region of Bx7 variant alleles, a 43 bp indel of the 5'-region and the left and right junctions of the LTR retrotransposon borders and the duplicated segment. All 43 accessions found to have the Bx7OE subunit by SDS-PAGE and RP-HPLC produced the four diagnostic PCR amplicons. None of the lines without the Bx7OE had the LTR retroelement/duplication genomic structure. However, the 18 and 43 bp indel were found in accessions other than Bx7OE. These results indicate that the overexpression of the Bx7 HMW-GS is likely the result of a single event, i.e., a gene duplication at the Glu-B1 locus mediated by the insertion of a retroelement. Also, the 18 and 43 bp indels pre-date the duplication event. Allelic variants Bx7*, Bx7 with and without 43 bp insert and Bx7OE were found in both tetraploid and hexaploid collections and shared the same genomic organization. Though the possibility of introgression from T. aestivum to T. turgidum cannot be ruled out, the three structural genomic changes of the B-genome taken together support the hypothesis of multiple polyploidization events involving different tetraploid progenitors.
De Santis, Michele A; Giuliani, Marcella M; Giuzio, Luigia; De Vita, Pasquale; Lovegrove, Alison; Shewry, Peter R; Flagella, Zina
2017-07-01
The impact of breeding on grain yields of wheat varieties released during the 20th century has been extensively studied, whereas less information is available on the changes in gluten quality associated with effects on the amount and composition of glutenins and gliadins. In order to explore the effects of breeding during the 20th century on gluten quality of durum wheat for processing and health we have compared a set of old and modern Italian genotypes grown under Mediterranean conditions. The better technological performance observed for the modern varieties was found to be due not only to the introgression of superior alleles of high (HMW-GS) and low molecular weight (LMW-GS) glutenin subunits encoded at Glu-B1 and Glu-B3 loci , but also to differential expression of specific storage proteins. In particular, the higher gluten index observed in modern genotypes was correlated with an increased glutenin/gliadin ratio and the expression of B-type LMW-GS which was, on average, two times higher in the modern than in the old group of durum wheat genotypes. By contrast, no significant differences were found between old and modern durum wheat genotypes in relation to the expression of α-type and γ-type gliadins which are major fractions that trigger coeliac disease (CD) in susceptible individuals. Furthermore, a drastic decrease was observed in the expression of ω-type gliadins in the modern genotypes, mainly ω-5 gliadin (also known as Tri a 19) which is a major allergen in wheat dependent exercise induced anaphylaxis (WDEIA). Immunological and 2DE SDS-PAGE analyses indicated that these differences could be related either to a general down-regulation or to differences in numbers of isoforms. Lower rainfall during grain filling period was related to overall higher expression of HMW-GS and ω-gliadins. In conclusion, breeding activity carried out in Italy during the 20th century appears to have improved durum wheat gluten quality, both in relation to technological performance and allergenic potential.
Rabinovich, S V; Fedak, G; Lukov, O
2000-01-01
The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.
Li, Xiaoyan; Xiao, Xin; Sun, Fusheng; Wang, Cheng; Hu, Wei; Feng, Zhijuan; Chang, Junli; Chen, Mingjie; Wang, Yuesheng; Li, Kexiu; Yang, Guangxiao; He, Guangyuan
2012-01-01
Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum wheat. PMID:23185532
Li, Yin; Wang, Qiong; Li, Xiaoyan; Xiao, Xin; Sun, Fusheng; Wang, Cheng; Hu, Wei; Feng, Zhijuan; Chang, Junli; Chen, Mingjie; Wang, Yuesheng; Li, Kexiu; Yang, Guangxiao; He, Guangyuan
2012-01-01
Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum wheat.
Hill, A S; Giersch, T M; Loh, C S; Skerritt, J H
1999-10-01
A single-chain fragment (scFv) was engineered from a monoclonal antibody to high molecular weight glutenin subunits (HMW-GS), wheat flour polypeptides that play a major role in determining the mixing- and extension strength-related properties of dough and its subsequent baking performance. The scFv was expressed in a thioredoxin mutant Escherichia coli strain that allows disulfide bond formation in the cytoplasm and incorporated into a diagnostic test for wheat quality. Although the scFv lacks the more highly conserved antibody constant regions usually involved with immobilization, it was able to be directly immobilized to a polystyrene microwell solid phase without chemical or covalent modification of the protein or solid phase and utilized as a capture antibody in a double-antibody (two-site) immunoassay. In the sandwich assay, increasing HMW-GS concentrations produced increasing assay color, and highly significant correlations were obtained between optical densities obtained in the ELISA using the scFv and the content of large glutenin polymers in flours as well as measures of dough strength as measured by resistance to dough extension in rheological testing. The assay using the scFv was able to be carried out at lower flour sample extract dilutions than that required for a similar assay utilizing a monoclonal capture antibody. This research shows that engineered antibody fragments can be utilized to provide superior assay performance in two-site ELISAs over monoclonal antibodies and is the first application of an engineered antibody to the analysis of food processing quality.
Scherf, Katharina Anne; Wieser, Herbert; Koehler, Peter
2016-10-12
Purified wheat starch (WSt) is commonly used in gluten-free products for celiac disease (CD) patients. It is mostly well-tolerated, but doubts about its safety for CD patients persist. One reason may be that most ELISA kits primarily recognize the alcohol-soluble gliadin fraction of gluten, but insufficiently target the alcohol-insoluble glutenin fraction. To address this problem, a new sensitive method based on the sequential extraction of gliadins, glutenins, and gluten from WSt followed by gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD) was developed. It revealed that considerable amounts of glutenins were present in most WSt. The gluten contents quantitated by GP-HPLC-FLD as sum of gliadins and glutenins were higher than those by R5 ELISA (gluten as gliadin content multiplied by a factor of 2) in 19 out of 26 WSt. Despite its limited selectivity, GP-HPLC-FLD may be applied as confirmatory method to ELISA to quantitate gluten in WSt.
Farkhari, M; Naghavi, M R; Pyghambari, S A; Sabokdast
2007-09-01
Genetic variation of 28 populations of jointed goatgrass (Aegilops cylindrica Host.), collected from different parts of Iran, were evaluated using both RAPD-PCR and SDS-PAGE of seed proteins. The diversity within and between populations for the three-band High Molecular Weight (HMW) subunits of glutenin pattern were extremely low. Out of 15 screened primers of RAPD, 14 primers generated 133 reproducible fragments which among them 92 fragments were polymorphic (69%). Genetic similarity calculated from the RAPD data ranged from 0.64 to 0.98. A dendrogram was prepared on the basis of a similarity matrix using the UPGMA algorithm and separated the 28 populations into two groups. Confusion can happen between populations with the same origin as well as between populations of very diverse geographical origins. Our results show that compare to seed storage protein, RAPD is suitable for genetic diversity assessment in Ae. cylindrica populations.
Beckles, Diane M; Tananuwong, Kanitha; Shoemaker, Charles F
2012-04-01
The effects of engineering higher levels of the High Molecular Weight Glutenin Dx5 subunit on starch characteristics in transgenic wheat (Triticum aestivum L.) grain were evaluated. This is important because of the interrelationship between starch and protein accumulation in grain, the strong biotechnological interest in modulating Dx5 levels and the increasing likelihood that transgenic wheat will be commercialized in the U.S. Unintended effects of Dx5 overexpression on starch could affect wheat marketability and therefore should be examined. Two controls with native levels of Dx5 were used: (i) the nontransformed Bobwhite cultivar, and (ii) a transgenic line (Bar-D) expressing a herbicide resistant (bar) gene, and they were compared with 2 transgenic lines (Dx5G and Dx5J) containing bar and additional copies of Dx5. There were few changes between Bar-D and Dx5G compared to Bobwhite. However, Dx5J, the line with the highest Dx5 protein (×3.5) accumulated 140% more hexose, 25% less starch and the starch had a higher frequency of longer amylopectin chains. These differences were not of sufficient magnitude to influence starch functionality, because granule morphology, crystallinity, amylose-to-amylopectin ratio, and the enthalpy of starch gelatinization and the amylose-lipid complex melting were similar to the control (P > 0.05). This overall similarity was borne out by Partial Least Squares-Discriminant Function Analysis, which could not distinguish among genotypes. Collectively our data imply that higher Dx5 can affect starch accumulation and some aspects of starch molecular structure but that the starches of the Dx5 transgenic wheat lines are substantially equivalent to the controls. Transgenic manipulation of biochemical pathways is an effective way to enhance food sensory quality, but it can also lead to unintended effects. These spurious changes are a concern to Government Regulatory Agencies and to those Industries that market the product. In this study we examined if making "specific" changes to the composition of gluten proteins in wheat seeds would simultaneously alter starch, as their synthesis is interrelated and the molecular structure of both determine flour functionality. This information may be used to address issues of "substantial equivalence" and to inform Industrial End-Users of possible changes in product performance. © 2012 Institute of Food Technologists®
2011-01-01
Background Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences. Results Grain from the extensively characterized spring wheat cultivar Triticum aestivum 'Butte 86' was milled to white flour from which proteins were extracted, then separated and quantified by 2-DE. Protein spots were identified by separate digestions with three proteases, followed by tandem mass spectrometry analysis of the peptides. The spectra were used to interrogate an improved protein sequence database and results were integrated using the Scaffold program. Inclusion of cultivar specific sequences in the database greatly improved the results, and 233 spots were identified, accounting for 93.1% of normalized spot volume. Identified proteins were assigned to 157 wheat sequences, many for proteins unique to wheat and nearly 40% from Butte 86. Alpha-gliadins accounted for 20.4% of flour protein, low molecular weight glutenin subunits 18.0%, high molecular weight glutenin subunits 17.1%, gamma-gliadins 12.2%, omega-gliadins 10.5%, amylase/protease inhibitors 4.1%, triticins 1.6%, serpins 1.6%, purinins 0.9%, farinins 0.8%, beta-amylase 0.5%, globulins 0.4%, other enzymes and factors 1.9%, and all other 3%. Conclusions This is the first successful effort to identify the majority of abundant flour proteins for a single wheat cultivar, relate them to individual gene sequences and estimate their relative levels. Many genes for wheat flour proteins are not expressed, so this study represents further progress in describing the expressed wheat genome. Use of cultivar-specific contigs helped to overcome the difficulties of matching peptides to gene sequences for members of highly similar, rapidly evolving storage protein families. Prospects for simplifying this process for routine analyses are discussed. The ability to measure expression levels for individual flour protein genes complements information gained from efforts to sequence the wheat genome and is essential for studies of effects of environment on gene expression. PMID:21314956
1981-12-01
file.library-unit{.subunit).SYMAP Statement Map: library-file. library-unit.subunit).SMAP Type Map: 1 ibrary.fi le. 1 ibrary-unit{.subunit). TMAP The library...generator SYMAP Symbol Map code generator SMAP Updated Statement Map code generator TMAP Type Map code generator A.3.5 The PUNIT Command The P UNIT...Core.Stmtmap) NAME Tmap (Core.Typemap) END Example A-3 Compiler Command Stream for the Code Generator Texas Instruments A-5 Ada Optimizing Compiler
The trafficking pathway of a wheat storage protein in transgenic rice endosperm.
Oszvald, Maria; Tamas, Laszlo; Shewry, Peter R; Tosi, Paola
2014-04-01
The trafficking of proteins in the endoplasmic reticulum (ER) of plant cells is a topic of considerable interest since this organelle serves as an entry point for proteins destined for other organelles, as well as for the ER itself. In the current work, transgenic rice was used to study the pattern and pathway of deposition of the wheat high molecular weight (HMW) glutenin sub-unit (GS) 1Dx5 within the rice endosperm using specific antibodies to determine whether it is deposited in the same or different protein bodies from the rice storage proteins, and whether it is located in the same or separate phases within these. The protein distribution and the expression pattern of HMW sub-unit 1Dx5 in transgenic rice endosperm at different stages of development were determined using light and electron microscopy after labelling with antibodies. The use of HMW-GS-specific antibodies showed that sub-unit 1Dx5 was expressed mainly in the sub-aleurone cells of the endosperm and that it was deposited in both types of protein body present in the rice endosperm: derived from the ER and containing prolamins, and derived from the vacuole and containing glutelins. In addition, new types of protein bodies were also formed within the endosperm cells. The results suggest that the HMW 1Dx5 protein could be trafficked by either the ER or vacuolar pathway, possibly depending on the stage of development, and that its accumulation in the rice endosperm could compromise the structural integrity of protein bodies and their segregation into two distinct populations in the mature endosperm.
Islam, Nazrul; Woo, Sun-Hee; Tsujimoto, Hisashi; Kawasaki, Hiroshi; Hirano, Hisashi
2002-09-01
Changes in protein composition of wheat endosperm proteome were investigated in 39 ditelocentric chromosome lines of common wheat (Triticum aestivum L.) cv. Chinese Spring. Two-dimensional gel electrophoresis followed by Coomassie Brilliant Blue staining has resolved a total of 105 protein spots in a gel. Quantitative image analysis of protein spots was performed by PDQuest. Variations in protein spots between the euploid and the 39 ditelocentric lines were evaluated by spot number, appearance, disappearance and intensity. A specific spot present in all gels was taken as an internal standard, and the intensity of all other spots was calculated as the ratio of the internal standard. Out of the 1755 major spots detected in 39 ditelocentric lines, 1372 (78%) spots were found variable in different spot parameters: 147 (11%) disappeared, 978 (71%) up-regulated and 247 (18%) down-regulated. Correlation studies in changes in protein intensities among 24 protein spots across the ditelocentric lines were performed. High correlations in changes of protein intensities were observed among the proteins encoded by genes located in the homoeologous arms. Locations of structural genes controlling 26 spots were identified in 10 chromosomal arms. Multiple regulators of the same protein located at various chromosomal arms were also noticed. Identification of structural genes for most of the proteins was found difficult due to multiple regulators encoding the same protein. Two novel subunits (1B(Z,) 1BDz), the structure of which are very similar to the high molecular weight glutenin subunit 12, were identified, and the chromosome arm locations of these subunits were assigned.
Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality.
Tamás, Cecília; Kisgyörgy, Boglárka N; Rakszegi, Mariann; Wilkinson, Mark D; Yang, Moon-Sik; Láng, László; Tamás, László; Bedo, Zoltán
2009-07-01
An amaranth (Amaranthus hypochondriacus) albumin gene, encoding the 35-kDa AmA1 protein of the seed, with a high content of essential amino acids, was used in the biolistic transformation of bread wheat (Triticum aestivum L.) variety Cadenza. The transformation cassette carried the ama1 gene under the control of a powerful wheat endosperm-specific promoter (1Bx17 HMW-GS). Southern-blot analysis of T(1) lines confirmed the integration of the foreign gene, while RT-PCR and Western-blot analyses of the samples confirmed the transcription and translation of the transgene. The effects of the extra albumin protein on the properties of flour, produced from bulked T(2) seeds, were calculated using total protein and essential amino acid content analysis, polymeric/monomeric protein and HMW/LMW glutenin subunit ratio measurements. The results indicated that not only can essential amino acid content be increased, but some parameters associated with functional quality may also be improved because of the expression of the AmA1 protein.
Selection indices for quality evaluation in wheat breeding.
Branlard, G; Pierre, J; Rousset, M
1992-06-01
From multilocation trials involving 125 cultivars of wheat of mainly French and European origin four tests - protein content, Pelshenke, modified Zeleny and the mixograph - were used to establish six selection indices. Three of these indices - IW1, IW2 and IW3 - were calculated in order to evaluate the genetic potentiality of the lines for dough strength as given by the Chopin alveograph. The indices IV1, IV2 and IV3 were established to evaluate loaf volume as measured by the French bread-making standard. A quality index IQ was calculated from the allelic effects of the high-molecular-weight (HMW) subunits of glutenin from 195 cultivars assessed by the Chopin alveograph and the Pelshenke test. Comparison of the relative efficiency of each of the six indices to the individual tests revealed the superiority of the indices over one or several technological parameters. The six selection indices and the quality index were compared using 30 very diverse F4 lines. Their ability to retain the good quality lines is discussed in particular.
Effect of Barley β-Glucan on the Gluten Polymerization Process in Dough during Heat Treatment.
Huang, Ze-Hua; Zhao, Yang; Zhu, Ke-Xue; Guo, Xiao-Na; Peng, Wei; Zhou, Hui-Ming
2017-07-26
Barley (Hordeum vulgare L.) β-glucan (BBG) is of interest as a result of its health benefits, but BBG presents significant disruptions on the gluten network, with a negative impact on food texture. To clarify the interaction between BBG and gluten in dough, the dynamic rheological, thermochemical process of gluten and microstructure of dough with BBG during heating were detected. The results showed that BBG delayed the gluten thermopolymerization reaction during heating and affected polymerization of specific molecular weight protein subunits. These impacts depended upon the heating temperature and time. When heating under 25-65 °C, tan δ of the dough reached the highest level at the BBG concentration of 1%. However, under the temperature of 65-95 °C, tan δ was positively correlated with the BBG content (0-3%). The differential scanning calorimetry curves revealed that the peak temperature (T P ) of the two endothermic peaks increased by 3.86 and 3.10 °C. Size-exclusion high-performance liquid chromatography analysis showed that BBG mainly affected the peak area of gliadin and glutenin. Furthermore, after 3% BBG was added, the bands of 59.8 and 64.9 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns delayed, vanishing for 120 s when heating at 95 °C. Therefore, BBG delayed the polymerization reaction of specific molecular weight protein subunits rather than all of the proteins.
Functionality of ovalbumin during Chinese steamed bread-making processing.
Sang, Shangyuan; Zhang, Huang; Xu, Lei; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Yang, Na; Wu, Fengfeng; Li, Dandan
2018-07-01
Hen egg is commonly used in some cereal-based food, including cakes and bread. Ovalbumin, one of the major components of egg white protein, can affect the performance of the food product. The interaction between ovalbumin and gluten protein and its effect on property of dough and quality of Chinese steamed bread was investigated in this study. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns indicated that ovalbumin was surprisingly not incorporated in glutenins by covalent bond, whereas size-exclusion high-performance liquid chromatography showed that glutenin macropolymer content in glutenins increased slightly. Furthermore, dynamic rheology experiments indicated ovalbumin led to a decrease inG' andG″ of dough. Based on molecular dynamic simulation and SDS-PAGE results, it was inferred that ovalbumin was not hydrolyzed by endopeptidases during dough fermentation and crosslinked to gluten proteins during steaming. Finally, ovalbumin improved maximum dough height (Hm) during dough development and specific volume of Chinese steamed bread. Copyright © 2018 Elsevier Ltd. All rights reserved.
Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality.
Wang, Pei; Tao, Han; Jin, Zhengyu; Xu, Xueming
2016-06-01
Impact of water extractable arabinoxylan from rye bran on frozen steamed bread dough quality was investigated in terms of the bread characteristics, ice crystallization, yeast activity as well as the gluten molecular weight distribution and glutenin macropolymer content in the present study. Results showed that water extractable arabinoxylan significantly improved bread characteristics during the 60-day frozen storage. Less water was crystallized in the water extractable arabinoxylan dough during storage, which could explain the alleviated yeast activity loss. For all the frozen dough samples, more soluble high molecular weight (Mw ≈ 91,000-688,000) and low molecular weight (Mw ≈ 91,000-16,000) proteins were derived from glutenin macropolymer depolymerization. Nevertheless, water extractable arabinoxylan dough developed higher glutenin macropolymer content with lowered level of soluble low molecular weight proteins throughout the storage. This study suggested water extractable arabinoxylan from rye bran had great potential to be served as an effective frozen steamed bread dough improver. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harford, N.; De Wilde, M.
1987-05-19
A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce anmore » immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.« less
Salmanowicz, Bolesław P.; Langner, Monika; Wiśniewska, Halina; Apolinarska, Barbara; Kwiatek, Michał; Błaszczyk, Lidia
2013-01-01
Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement. PMID:23896593
Liu, Li; Ikeda, Tatsuya M; Branlard, Gerard; Peña, Roberto J; Rogers, William J; Lerner, Silvia E; Kolman, María A; Xia, Xianchun; Wang, Linhai; Ma, Wujun; Appels, Rudi; Yoshida, Hisashi; Wang, Aili; Yan, Yueming; He, Zhonghu
2010-06-24
Low-molecular-weight glutenin subunits (LMW-GS) play a crucial role in determining end-use quality of common wheat by influencing the viscoelastic properties of dough. Four different methods - sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE, IEF x SDS-PAGE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR), were used to characterize the LMW-GS composition in 103 cultivars from 12 countries. At the Glu-A3 locus, all seven alleles could be reliably identified by 2-DE and PCR. However, the alleles Glu-A3e and Glu-A3d could not be routinely distinguished from Glu-A3f and Glu-A3g, respectively, based on SDS-PAGE, and the allele Glu-A3a could not be differentiated from Glu-A3c by MALDI-TOF-MS. At the Glu-B3 locus, alleles Glu-B3a, Glu-B3b, Glu-B3c, Glu-B3g, Glu-B3h and Glu-B3j could be clearly identified by all four methods, whereas Glu-B3ab, Glu-B3ac, Glu-B3ad could only be identified by the 2-DE method. At the Glu-D3 locus, allelic identification was problematic for the electrophoresis based methods and PCR. MALDI-TOF-MS has the potential to reliably identify the Glu-D3 alleles. PCR is the simplest, most accurate, lowest cost, and therefore recommended method for identification of Glu-A3 and Glu-B3 alleles in breeding programs. A combination of methods was required to identify certain alleles, and would be especially useful when characterizing new alleles. A standard set of 30 cultivars for use in future studies was chosen to represent all LMW-GS allelic variants in the collection. Among them, Chinese Spring, Opata 85, Seri 82 and Pavon 76 were recommended as a core set for use in SDS-PAGE gels. Glu-D3c and Glu-D3e are the same allele. Two new alleles, namely, Glu-D3m in cultivar Darius, and Glu-D3n in Fengmai 27, were identified by 2-DE. Utilization of the suggested standard cultivar set, seed of which is available from the CIMMYT and INRA Clermont-Ferrand germplasm collections, should also promote information sharing in the identification of individual LMW-GS and thus provide useful information for quality improvement in common wheat.
Nazco, R; Peña, R J; Ammar, K; Villegas, D; Crossa, J; Moragues, M; Royo, C
2014-06-01
The allelic composition at five glutenin loci was assessed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) on a set of 155 landraces (from 21 Mediterranean countries) and 18 representative modern varieties. Gluten strength was determined by SDS-sedimentation on samples grown under rainfed conditions during 3 years in north-eastern Spain. One hundred and fourteen alleles/banding patterns were identified (25 at Glu-1 and 89 at Glu-2 / Glu-3 loci); 0·85 of them were in landraces at very low frequency and 0·72 were unreported. Genetic diversity index was 0·71 for landraces and 0·38 for modern varieties. All modern varieties exhibited medium to strong gluten type with none of their 13 banding patterns having a significant effect on gluten-strength type. Ten banding patterns significantly affected gluten strength in landraces. Alleles Glu-B1e (band 20), Glu-A3a (band 6), Glu-A3d (bands 6 + 11), Glu-B3a (bands 2 + 4+15 + 19) and Glu-B2a (band 12) significantly increased the SDS-value, and their effects were associated with their frequency. Two alleles, Glu-A3b (band 5) and Glu-B2b (null), significantly reduced gluten strength, but only the effect of the latter locus could be associated with its frequency. Only three rare banding patterns affected gluten strength significantly: Glu-B1a (band 7), found in six landraces, had a negative effect, whereas banding patterns 2 + 4+14 + 15 + 18 and 2 + 4+15 + 18 + 19 at Glu-B3 had a positive effect. Landraces with outstanding gluten strength were more frequent in eastern than in western Mediterranean countries. The geographical pattern displayed from the frequencies of Glu-A1c is discussed.
Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan
2013-01-01
Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.
Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan
2013-01-01
Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength. PMID:23843964
Effects of protein in wheat flour on retrogradation of wheat starch.
Xijun, Lian; Junjie, Guo; Danli, Wang; Lin, Li; Jiaran, Zhu
2014-08-01
Albumins, globulins, gliadins, and glutenins were isolated from wheat flour and the effects of those proteins on retrogradation of wheat starch were investigated. The results showed that only glutenins retarded retrogradation of wheat starch and other 3 proteins promoted it. The results of IR spectra proved that no S-S linkage formed during retrogradation of wheat starch blended with wheat proteins. Combination of wheat starch and globulins or gliadins through glucosidic bonds hindered the hydrolysis of wheat starch by α-amylase. The melting peak temperatures of retrograded wheat starch attached to different proteins were 128.46, 126.14, 132.03, 121.65, and 134.84 °C for the control with no protein, albumins, glutenins, globulins, gliadins groups, respectively, and there was no second melting temperature for albumins group. Interaction of wheat proteins and starch in retrograded wheat starch greatly decreased the endothermic enthalpy (△H) of retrograded wheat starch. Retrograded wheat starch bound to gliadins might be a new kind of resistant starch based on glycosidic bond between starch and protein. © 2014 Institute of Food Technologists®
Protein-transitions in and out of the dough matrix in wheat flour mixing.
Wang, Xiaolong; Appels, Rudi; Zhang, Xiaoke; Bekes, Ferenc; Torok, Kitti; Tomoskozi, Sandor; Diepeveen, Dean; Ma, Wujun; Islam, Shahidul
2017-02-15
Sequential protein behavior in the wheat dough matrix under continuous mixing and heating treatment has been studied using Mixolab-dough samples from two Australian wheat cultivars, Westonia and Wyalkatchem. Size exclusion high performance liquid chromatography (SE-HPLC) and two-dimensional gel electrophoresis (2-DGE) analysis indicated that 32min (80°C) was a critical time point in forming large protein complexes and loosing extractability of several protein groups like y-type high molecular weight glutenin subunits (HMW-GSs), gamma-gliadins, beta-amylases, serpins, and metabolic proteins with higher mass. Up to 32min (80°C) Westonia showed higher protein extractability compared to Wyalkatchem although it was in the opposite direction thereafter. Twenty differentially expressed proteins could be assigned to chromosomes 1D, 3A, 4A, 4B, 4D, 6A, 6B, 7A and 7B. The results expanded the range of proteins associated with changes in the gluten-complex during processing and provided targets for selecting new genetic variants associated with altered quality attributes of the flour. Copyright © 2016 Elsevier Ltd. All rights reserved.
Altenbach, Susan B; Tanaka, Charlene K; Pineau, Florence; Lupi, Roberta; Drouet, Martine; Beaudouin, Etienne; Morisset, Martine; Denery-Papini, Sandra
2015-10-28
The ω5-gliadins are the major sensitizing allergens in wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, two-dimensional immunoblot analysis was used to assess the allergenic potential of two transgenic wheat lines in which ω5-gliadin genes were silenced by RNA interference. Sera from 7 of 11 WDEIA patients showed greatly reduced levels of immunoglobulin E (IgE) reactivity to ω5-gliadins in both transgenic lines. However, these sera also showed low levels of reactivity to other gluten proteins. Sera from three patients showed the greatest reactivity to proteins other than ω5-gliadins, either high-molecular-weight glutenin subunits (HMW-GSs), α-gliadins, or non-gluten proteins. The complexity of immunological responses among these patients suggests that flour from the transgenic lines would not be suitable for individuals already diagnosed with WDEIA. However, the introduction of wheat lacking ω5-gliadins could reduce the number of people sensitized to these proteins and thereby decrease the overall incidence of this serious food allergy.
De Wachter, R; Neefs, J M; Goris, A; Van de Peer, Y
1992-01-01
The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing. PMID:1561081
LaPolla, R J; Mayne, K M; Davidson, N
1984-01-01
A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870
Zhu, Jiantang; Hao, Pengchao; Chen, Guanxing; Han, Caixia; Li, Xiaohui; Zeller, Friedrich J; Hsam, Sai L K; Hu, Yingkao; Yan, Yueming
2014-10-01
The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress. Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains. The high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling growth, and under various abiotic stresses.
Wang, Aili; Liu, Li; Peng, Yanchun; Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun
2015-01-01
Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes.
Du, Lipu; Cao, Xinyou; Zhang, Xiaoxiang; Zhou, Yang; Yan, Yueming; Ye, Xingguo
2016-01-01
High molecular weight glutenin subunits (HMW-GSs) are important seed storage proteins in wheat (Triticum aestivum) that determine wheat dough elasticity and processing quality. Clarification of the defined effectiveness of HMW-GSs is very important to breeding efforts aimed at improving wheat quality. To date, there have no report on the expression silencing and quality effects of 1Bx20 and 1By20 at the Glu-B1 locus in wheat. A wheat somatic variation line, AS208, in which both 1Bx20 and 1By20 at Glu-B1 locus were silenced, was developed recently in our laboratory. Evaluation of agronomic traits and seed storage proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high performance liquid chromatography (RP-HPLC) indicated that AS208 was highly similar to its parental cultivar Lunxuan987 (LX987), with the exception that the composition and expression of HMW-GSs was altered. The 1Bx20 and 1By20 in AS208 were further identified to be missing by polymerase chain reaction (PCR) and quantitative real-time RT-PCR (qRT-PCR) assays. Based on the PCR results for HMW-GS genes and their promoters in AS208 compared with LX987, 1Bx20 and 1By20 were speculated to be deleted in AS208 during in vitro culture. Quality analysis of this line with Mixograph, Farinograph, and Extensograph instruments, as well as analysis of bread-making quality traits, demonstrated that the lack of the genes encoding 1Bx20 and 1By20 caused various negative effects on dough processing and bread-making quality traits, including falling number, dough stability time, mixing tolerance index, crude protein values, wet gluten content, bread size, and internal cell structure. AS208 can potentially be used in the functional dissection of other HMW-GSs as a plant material with desirable genetic background, and in biscuit making industry as a high-quality weak gluten wheat source. PMID:26765256
Islam, Shahidul; Applebee, Marie; Appels, Rudi; Yan, Yueming; Ma, Wujun
2015-01-01
Low molecular weight glutenin subunits (LMW-GS) play an important role in determining dough properties and breadmaking quality. However, resolution of the currently used methodologies for analyzing LMW-GS is rather low which prevents an efficient use of genetic variations associated with these alleles in wheat breeding. The aim of the current study is to evaluate and develop a rapid, simple, and accurate method to differentiate LMW-GS alleles using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. A set of standard single LMW-GS allele lines as well as a suite of well documented wheat cultivars were collected from France, CIMMYT, and Canada. Method development and optimization were focused on protein extraction procedures and MALDI-TOF instrument settings to generate reproducible diagnostic spectrum peak profiles for each of the known wheat LMW-GS allele. Results revealed a total of 48 unique allele combinations among the studied genotypes. Characteristic MALDI-TOF peak patterns were obtained for 17 common LMW-GS alleles, including 5 (b, a or c, d, e, f), 7 (a, b, c, d or i, f, g, h) and 5 (a, b, c, d, f) patterns or alleles for the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. In addition, some reproducible MALDI-TOF peak patterns were also obtained that did not match with any known alleles. The results demonstrated a high resolution and throughput nature of MALDI-TOF technology in analyzing LMW-GS alleles, which is suitable for application in wheat breeding programs in processing a large number of wheat lines with high accuracy in limited time. It also suggested that the variation of LMW-GS alleles is more abundant than what has been defined by the current nomenclature system that is mainly based on SDS-PAGE system. The MALDI-TOF technology is useful to differentiate these variations. An international joint effort may be needed to assign allele symbols to these newly identified alleles and determine their effects on end-product quality attributes. PMID:26407296
Change in Glutenin Macropolymer Secondary Structure in Wheat Sourdough Fermentation by FTIR.
Wang, Jinshui; Yue, Yuanyuan; Liu, Tiantian; Zhang, Bin; Wang, Zhenlei; Zhang, Changfu
2017-06-01
Wheat sourdough was prepared by fermentation with Lactobacillus plantarum M616 and yeast in the present study. The change in secondary structure of glutenin macropolymer (GMP) in wheat sourdough fermentation for 4 and 12 h was determined using Fourier transform infrared spectroscopy, and then the resultant spectra were Fourier self-deconvoluted of the amide I band in the region from 1600 to 1700 cm -1 . Significant different spectra especially in the amide I band for GMP from sourdough fermented with L. plantarum M616 (SL) and with L. plantarum M616 and yeast (SLY) were found in respect of control dough (CK), dough with acids (SA), and sourdough fermented with yeast (SY) at 4 and 12 h of fermentation. The loss of α-helix structure in SL, SLY, and SA samples was noticed during fermentation. Compared with CK and SY, SL, SLY, and SA samples showed significant decrease (p < 0.05) in the relative areas of α-helix at the same stage of fermentation. In addition, β-turns in SL sourdough decrease, and the relative areas of random coil increase significantly (p < 0.05). These changes in the secondary structure mean that the flexibility of glutenin macropolymer in sourdough increases and it makes GMP degradation easier during fermentation. The modified secondary structure of GMP makes more sensitive to proteolysis by means of cereal enzymes.
Cloning and sequencing of the allophycocyanin genes from Spirulina maxima (Cyanophyta)
NASA Astrophysics Data System (ADS)
Qin, Song; Hiroyuki, Kojima; Yoshikazu, Kawata; Shin-Ichi, Yano; Zeng, Cheng-Kui
1998-03-01
The genes coding for the α-and β-subunit of allophycocyanin ( apcA and apcB) from the cyanophyte Spirulina maxima were cloned and sequenced. The results revealed 44.4% of nucleotide sequence similarity and 30.4% of similarity of deduced amino acid sequence between them. The amino acid sequence identities between S. maxima and S. platensis are 99.4% for α subunit and 100% for β subunit.
Development of a peptide substrate for detection of Sunn pest damage in wheat flour.
Hançerlioğulları, Begüm Zeynep; Köksel, Hamit; Dudak, Fahriye Ceyda
2018-05-07
Since the common protease substrates did not give satisfactory results for the determination of Sunn pest protease activity in damaged wheat, different peptide substrates derived from the repeat sequences of high molecular weight glutenin subunits were synthesized. Hydrolysis of peptides by pest protease was determined by HPLC. Among three peptides having the same consensus motifs, peptide1 (PGQGQQGYYPTSPQQ) showed the best catalytic efficiency. A novel assay was described for monitoring the enzymatic activity of protease extracted from damaged wheat flour. The selected peptide was labeled with a fluorophore (EDANS) and quencher (Dabcyl) to display fluorescence resonance energy transfer (FRET). The proteolytic activity was measured by the change in fluorescence intensity that occurred when the protease cleaved the peptide substrate. Furthermore, the developed assay was modified for rapid and easy detection of bug damage in flour. Flour samples were suspended in water and mixed with fluorescence peptide substrate. After centrifugation, the fluorescence intensities of the supernatants were determined which is proportional with the protease content of the flour. The total analysis time for the developed assay is estimated as 15 minutes. The developed assay permits a significant decrease in time and labor, offering sensitive detection of Sunn pest damage in wheat flour. This article is protected by copyright. All rights reserved.
URF6, Last Unidentified Reading Frame of Human mtDNA, Codes for an NADH Dehydrogenase Subunit
NASA Astrophysics Data System (ADS)
Chomyn, Anne; Cleeter, Michael W. J.; Ragan, C. Ian; Riley, Marcia; Doolittle, Russell F.; Attardi, Giuseppe
1986-10-01
The polypeptide encoded in URF6, the last unassigned reading frame of human mitochondrial DNA, has been identified with antibodies to peptides predicted from the DNA sequence. Antibodies prepared against highly purified respiratory chain NADH dehydrogenase from beef heart or against the cytoplasmically synthesized 49-kilodalton iron-sulfur subunit isolated from this enzyme complex, when added to a deoxycholate or a Triton X-100 mitochondrial lysate of HeLa cells, specifically precipitated the URF6 product together with the six other URF products previously identified as subunits of NADH dehydrogenase. These results strongly point to the URF6 product as being another subunit of this enzyme complex. Thus, almost 60% of the protein coding capacity of mammalian mitochondrial DNA is utilized for the assembly of the first enzyme complex of the respiratory chain. The absence of such information in yeast mitochondrial DNA dramatizes the variability in gene content of different mitochondrial genomes.
Geranyl diphosphate synthase large subunit, and methods of use
Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.
2001-10-16
A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).
Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai
2014-12-01
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.
National Underground Mines Inventory
1983-10-01
system is well designed to minimize water accumulation on the drift levels. In many areas, sufficient water has accumulated to make the use of boots a...four characters designate Field office. 17-18 State Code Pic 99 FIPS code for state in which minets located. 19-21 County Code Plc 999 FIPS code for... Designate a general product class based onSIC code. 28-29 Nine Type Plc 99 Natal/Nonmetal mine type code. Based on subunit operations code and canvass code
Gene networks in the synthesis and deposition of protein polymers during grain development of wheat.
She, Maoyun; Ye, Xingguo; Yan, Yueming; Howit, C; Belgard, M; Ma, Wujun
2011-03-01
As the amino acid storing organelle, the protein bodies provide nutrients for embryo development, seed germination and early seedling growth through storage proteolysis in cereal plants, such as wheat and rice. In protein bodies, the monomeric and polymeric prolamins, i.e. gliadins and glutenins, form gluten and play a key role in determining dough functionality and end-product quality of wheat. The formation of intra- and intermolecular bonds, including disulphide and tyrosine bonds, in and between prolamins confers cohesivity, viscosity, elasticity and extensibility to wheat dough during mixing and processing. In this review, we summarize recent progress in wheat gluten research with a focus on the fundamental molecular biological aspects, including transcriptional regulation on genes coding for prolamin components, biosynthesis, deposition and secretion of protein polymers, formation of protein bodies, genetic control of seed storage proteins, the transportation of the protein bodies and key enzymes for determining the formation of disulphide bonds of prolamin polymers.
Proteomics characterization of intermediate wheatgrass (Thinopyrum intermedium) flour proteins
USDA-ARS?s Scientific Manuscript database
Thinopyrum intermedium, commonly known as intermediate wheatgrass (IWG), is a perennial crop with favorable agronomic characteristics and nutritional benefits. IWG lines are deficient in high molecular weight glutenins (HMWG), responsible for dough strength. A detailed characterization of IWG flou...
Basis for selecting soft wheat for end-use quality
USDA-ARS?s Scientific Manuscript database
Within the United States, end-use quality of soft wheat (Triticum aestivum L.) is determined by several genetically controlled components: milling yield, flour particle size, and baking characteristics related to flour water absorption caused by glutenin macropolymer, non-starch polysaccharides, and...
The Mediator complex: a central integrator of transcription
Allen, Benjamin L.; Taatjes, Dylan J.
2016-01-01
The RNA polymerase II (pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator, a large, conformationally flexible protein complex with variable subunit composition (for example, a four-subunit CDK8 module can reversibly associate). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes important for transcription, including organization of chromatin architecture and regulation of pol II pre-initiation, initiation, re-initiation, pausing, and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions appear to be specific to metazoans, indicative of more diverse regulatory requirements. PMID:25693131
[Effects of salt and waterlogging stress at post-anthesis stage on wheat grain yield and quality].
Zheng, Chun-Fang; Jiang, Dong; Dai, Ting-Bo; Jing, Qi; Cao, Wei-Xing
2009-10-01
A pot experiment was conducted to study the effects of salt (ST), waterlogging (WL), and their combination (SW) at post-anthesis on the grain yield and its starch and protein components of wheat cultivars Yangmai 12 and Huaimai 17. Comparing with the control, treatments ST, WL, and SW, especially ST and SW, decreased the allocation of nitrogen and carbon assimilates at pre- and post-anthesis to the grains significantly, resulting in an obvious decrease of grain yield and its protein and starch contents. Both ST and SW had significant negative effects on the glutenin/gliadin and amylase/amylopectin ratios in the grains, compared to CK and WL. Yangmai 12 was more sensitive to ST than SW, while Huaimai 17 was in adverse. WL decreased the accumulation of protein and starch in the grains of the two cultivars. Except that the glutenin and albumin in Huaimai 17 had some increase, the globulin and gliadin in Huaimai 17 and all protein components in Yangmai 12 were decreased under WL.
Microwave fixation enhances gluten fibril formation in wheat endosperm
USDA-ARS?s Scientific Manuscript database
The wheat storage proteins, primarily glutenin and gliadin, contribute unique functional properties in food products and play a critical role in determining the end-use quality of wheat. In the wheat endosperm these proteins form a proteinaceous matrix deposited among starch granules only to be brou...
Gliadin functionality in the gluten network: Role of omega-gliadin proteins
USDA-ARS?s Scientific Manuscript database
Gluten forming proteins found in the wheat endosperm consist of gliadin and glutenin proteins. These proteins are responsible for the viscoelastic properties found in wheat dough. Gliadins are further divided into a-/ß-, '- and '- fractions. These proteins are monomeric in structure whereas, gluteni...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreitzer, Robert J.
CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesismore » is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.« less
Schoch, Conrad L.; Seifert, Keith A.; Huhndorf, Sabine; Robert, Vincent; Spouge, John L.; Levesque, C. André; Chen, Wen; Bolchacova, Elena; Voigt, Kerstin; Crous, Pedro W.; Miller, Andrew N.; Wingfield, Michael J.; Aime, M. Catherine; An, Kwang-Deuk; Bai, Feng-Yan; Barreto, Robert W.; Begerow, Dominik; Bergeron, Marie-Josée; Blackwell, Meredith; Boekhout, Teun; Bogale, Mesfin; Boonyuen, Nattawut; Burgaz, Ana R.; Buyck, Bart; Cai, Lei; Cai, Qing; Cardinali, G.; Chaverri, Priscila; Coppins, Brian J.; Crespo, Ana; Cubas, Paloma; Cummings, Craig; Damm, Ulrike; de Beer, Z. Wilhelm; de Hoog, G. Sybren; Del-Prado, Ruth; Dentinger, Bryn; Diéguez-Uribeondo, Javier; Divakar, Pradeep K.; Douglas, Brian; Dueñas, Margarita; Duong, Tuan A.; Eberhardt, Ursula; Edwards, Joan E.; Elshahed, Mostafa S.; Fliegerova, Katerina; Furtado, Manohar; García, Miguel A.; Ge, Zai-Wei; Griffith, Gareth W.; Griffiths, K.; Groenewald, Johannes Z.; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Guo, Liang-Dong; Hagen, Ferry; Hambleton, Sarah; Hamelin, Richard C.; Hansen, Karen; Harrold, Paul; Heller, Gregory; Herrera, Cesar; Hirayama, Kazuyuki; Hirooka, Yuuri; Ho, Hsiao-Man; Hoffmann, Kerstin; Hofstetter, Valérie; Högnabba, Filip; Hollingsworth, Peter M.; Hong, Seung-Beom; Hosaka, Kentaro; Houbraken, Jos; Hughes, Karen; Huhtinen, Seppo; Hyde, Kevin D.; James, Timothy; Johnson, Eric M.; Johnson, Joan E.; Johnston, Peter R.; Jones, E.B. Gareth; Kelly, Laura J.; Kirk, Paul M.; Knapp, Dániel G.; Kõljalg, Urmas; Kovács, Gábor M.; Kurtzman, Cletus P.; Landvik, Sara; Leavitt, Steven D.; Liggenstoffer, Audra S.; Liimatainen, Kare; Lombard, Lorenzo; Luangsa-ard, J. Jennifer; Lumbsch, H. Thorsten; Maganti, Harinad; Maharachchikumbura, Sajeewa S. N.; Martin, María P.; May, Tom W.; McTaggart, Alistair R.; Methven, Andrew S.; Meyer, Wieland; Moncalvo, Jean-Marc; Mongkolsamrit, Suchada; Nagy, László G.; Nilsson, R. Henrik; Niskanen, Tuula; Nyilasi, Ildikó; Okada, Gen; Okane, Izumi; Olariaga, Ibai; Otte, Jürgen; Papp, Tamás; Park, Duckchul; Petkovits, Tamás; Pino-Bodas, Raquel; Quaedvlieg, William; Raja, Huzefa A.; Redecker, Dirk; Rintoul, Tara L.; Ruibal, Constantino; Sarmiento-Ramírez, Jullie M.; Schmitt, Imke; Schüßler, Arthur; Shearer, Carol; Sotome, Kozue; Stefani, Franck O.P.; Stenroos, Soili; Stielow, Benjamin; Stockinger, Herbert; Suetrong, Satinee; Suh, Sung-Oui; Sung, Gi-Ho; Suzuki, Motofumi; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M. Teresa; Tretter, Eric; Untereiner, Wendy A.; Urbina, Hector; Vágvölgyi, Csaba; Vialle, Agathe; Vu, Thuy Duong; Walther, Grit; Wang, Qi-Ming; Wang, Yan; Weir, Bevan S.; Weiß, Michael; White, Merlin M.; Xu, Jianping; Yahr, Rebecca; Yang, Zhu L.; Yurkov, Andrey; Zamora, Juan-Carlos; Zhang, Ning; Zhuang, Wen-Ying; Schindel, David
2012-01-01
Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups. PMID:22454494
Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen
2012-04-17
Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.
Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L
1992-01-01
cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046
Hirose, K; Kawasaki, Y; Kotani, K; Abiko, K; Sato, H
2004-05-01
Quinolone-resistant (QR) mutants of Mycoplasma bovirhinis strain PG43 (type strain) were generated by stepwise selection in increasing concentrations of enrofloxacin (ENR). An alteration was found in the quinolone resistance-determining region (QRDR) of the parC gene coding for the ParC subunit of topoisomerase IV from these mutants, but not in the gyrA, gyrB, and parE gene coding for the GyrA and GyrB subunits of DNA gyrase and the ParE subunit of topoisomerase IV. Similarly, such an alteration in QRDR of parC was found in the field isolates of M. bovirhinis, which possessed various levels of QR. The substitution of leucine (Leu) by serine (Ser) at position 80 of QRDR of ParC was observed in both QR-mutants and QR-isolates. This is the first report of QR based on a point mutation of the parC gene in M. bovirhinis.
Wheat glutenin alters protein body structure in maize but not levels of endogenous storage proteins
USDA-ARS?s Scientific Manuscript database
Cereal grains are an important nutritional source of amino acids for humans and livestock worldwide. They belong to three subfamilies of grasses or Poaceae. Wheat, barley, and oats belong to the subfamily Pooideae, rice to the Ehrhartoideae, and maize, millets, sugarcane, and sorghum to the Panicoid...
Osman, Aart M; Struik, Paul C; van Bueren, Edith T Lammerts
2012-01-30
Northwestern European consumers like their bread to be voluminous and easy to chew. These attributes require a raw material that is rich in protein with, among other characteristics, a suitable ratio between gliadins and glutenins. Achieving this is a challenge for organic growers, because they lack cultivars that can realise high protein concentrations under the relatively low and variable availability of nitrogen during the grain-filling phase common in organic farming. Relatively low protein content in wheat grains thus needs to be compensated by a high proportion of high-quality protein. Organic farming therefore needs cultivars with genes encoding for optimal levels of glutenins and gliadins, a maximum ability for nitrogen uptake, a large storage capacity of nitrogen in the biomass, an adequate balance between vegetative and reproductive growth, a high nitrogen translocation efficiency for the vegetative parts into the grains during grain filling and an efficient conversion of nitrogen into high-quality proteins. In this perspective paper the options to breed and grow such varieties are discussed. Copyright © 2011 Society of Chemical Industry.
Lagman, David; Franzén, Ilkin E; Eggert, Joel; Larhammar, Dan; Abalo, Xesús M
2016-06-13
Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade.
Russo, Lisa M.; Melton-Celsa, Angela R.; Smith, Michael J.; O'Brien, Alison D.
2014-01-01
Shiga toxin (Stx)-producing E. coli (STEC) cause food-borne outbreaks of hemorrhagic colitis. The main virulence factor expressed by STEC, Stx, is an AB5 toxin that has two antigenically distinct forms, Stx1a and Stx2a. Although Stx1a and Stx2a bind to the same receptor, globotriaosylceramide (Gb3), Stx2a is more potent than Stx1a in mice, whereas Stx1a is more cytotoxic than Stx2a in cell culture. In this study, we used chimeric toxins to ask what the relative contribution of individual Stx subunits is to the differential toxicity of Stx1a and Stx2a in vitro and in vivo. Chimeric stx1/stx2 operons were generated by PCR such that the coding regions for the A2 and B subunits of one toxin were combined with the coding region for the A1 subunit of the heterologous toxin. The toxicities of purified Stx1a, Stx2a, and the chimeric Stxs were determined on Vero and HCT-8 cell lines, while polarized HCT-8 cell monolayers grown on permeable supports were used to follow toxin translocation. In all in vitro assays, the activity of the chimeric toxin correlated with that of the parental toxin from which the B subunit originated. The origin of the native B subunit also dictated the 50% lethal dose of toxin after intraperitoneal intoxication of mice; however, the chimeric Stxs exhibited reduced oral toxicity and pH stability compared to Stx1a and Stx2a. Taken together, these data support the hypothesis that the differential toxicity of the chimeric toxins for cells and mice is determined by the origin of the B subunit. PMID:24671194
USDA-ARS?s Scientific Manuscript database
The influence of added phytate on dough properties and bread baking quality was studied to determine the role of phytate in the impaired functional properties of whole grain wheat flour for baking bread. Phytate addition to refined flour at a 1% level substantially increased mixograph mixing time, g...
Mihálik, Daniel; Klčová, Lenka; Ondreičková, Katarína; Hudcovicová, Martina; Gubišová, Marcela; Klempová, Tatiana; Čertík, Milan; Pauk, János; Kraic, Ján
2015-01-01
The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v) and 0%–1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat. PMID:26694368
Pontonio, Erica; Nionelli, Luana; Curiel, José Antonio; Sadeghi, Alireza; Di Cagno, Raffaella; Gobbetti, Marco; Rizzello, Carlo Giuseppe
2015-05-01
This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Proteomics, peptidomics, and immunogenic potential of wheat beer (Weissbier).
Picariello, Gianluca; Mamone, Gianfranco; Cutignano, Adele; Fontana, Angelo; Zurlo, Lucia; Addeo, Francesco; Ferranti, Pasquale
2015-04-08
Wheat beer is a traditional light-colored top-fermenting beer brewed with at least 50% malted (e.g., German Weissbier) or unmalted (e.g., Belgian Witbier) wheat (Triticum aestivum) as an adjunct to barley (Hordeum vulgare) malt. For the first time, we explored the proteome of three Weissbier samples, using both 2D electrophoresis (2DE)-based and 2DE-free strategies. Overall, 58 different gene products arising from barley, wheat, and yeast (Saccharomyces spp.) were identified in the protein fraction of a representative Weissbier sample analyzed in detail. Analogous to all-barley-malt beers (BMB), barley and wheat Z-type serpins and nonspecific lipid transfer proteins dominated the proteome of Weissbier. Several α-amylase/trypsin inhibitors also survived the harsh brewing conditions. During brewing, hundreds of peptides are released into beer. By liquid chromatography-electrospray tandem mass spectrometry (LC-ESI MS/MS) analysis, we characterized 167 peptides belonging to 44 proteins, including gliadins, hordeins, and high- and low-molecular-weight glutenin subunits. Because of the interference from the overabundant yeast-derived peptides, we identified only a limited number of epitopes potentially triggering celiac disease. However, Weissbier samples contained 374, 372, and 382 ppm gliadin-equivalent peptides, as determined with the competitive G12 ELISA, which is roughly 10-fold higher than a lager BMB (41 ppm), thereby confirming that Weissbier is unsuited for celiacs. Western blot analysis demonstrated that Weissbier also contained large-sized prolamins immunoresponsive to antigliadin IgA antibodies from the pooled sera of celiac patients (n = 4).
Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin
2017-07-01
Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.
Expression, purification and functional reconstitution of slack sodium-activated potassium channels.
Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J
2012-11-01
The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.
Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice
Fujisawa, Yukiko; Kato, Teruhisa; Ohki, Shizuka; Ishikawa, Atsushi; Kitano, Hidemi; Sasaki, Takuji; Asahi, Tadashi; Iwasaki, Yukimoto
1999-01-01
Transgenic rice containing an antisense cDNA for the α subunit of rice heterotrimeric G protein produced little or no mRNA for the subunit and exhibited abnormal morphology, including dwarf traits and the setting of small seeds. In normal rice, the mRNA for the α subunit was abundant in the internodes and florets, the tissues closely related to abnormality in the dwarf transformants. The position of the α-subunit gene was mapped on rice chromosome 5 by mapping with the restriction fragment length polymorphism. The position was closely linked to the locus of a rice dwarf mutant, Daikoku dwarf (d-1), which is known to exhibit abnormal phenotypes similar to those of the transformants that suppressed the endogenous mRNA for the α subunit by antisense technology. Analysis of the cDNAs for the α subunits of five alleles of Daikoku dwarf (d-1), ID-1, DK22, DKT-1, DKT-2, and CM1361–1, showed that these dwarf mutants had mutated in the coding region of the α-subunit gene. These results show that the G protein functions in the formation of normal internodes and seeds in rice. PMID:10377457
Live-cell imaging of budding yeast telomerase RNA and TERRA.
Laprade, Hadrien; Lalonde, Maxime; Guérit, David; Chartrand, Pascal
2017-02-01
In most eukaryotes, the ribonucleoprotein complex telomerase is responsible for maintaining telomere length. In recent years, single-cell microscopy techniques such as fluorescent in situ hybridization and live-cell imaging have been developed to image the RNA subunit of the telomerase holoenzyme. These techniques are now becoming important tools for the study of telomerase biogenesis, its association with telomeres and its regulation. Here, we present detailed protocols for live-cell imaging of the Saccharomyces cerevisiae telomerase RNA subunit, called TLC1, and also of the non-coding telomeric repeat-containing RNA TERRA. We describe the approach used for genomic integration of MS2 stem-loops in these transcripts, and provide information for optimal live-cell imaging of these non-coding RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Nionelli, Luana; Curri, Nertila; Curiel, José Antonio; Di Cagno, Raffaella; Pontonio, Erica; Cavoski, Ivana; Gobbetti, Marco; Rizzello, Carlo Giuseppe
2014-12-01
Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Singh, Sondeep; Gupta, Anil K.; Kaur, Narinder
2012-01-01
The present study in a two-year experiment investigated the influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat whole meal of two genotypes differing in their water requirements. Different thermal conditions prevailing during the grain filling period under different sowing time generated a large effect on the amount of total soluble proteins. Late sown conditions offered higher protein content accompanied by increased albumin-globulin but decreased glutenin content. Fe content was increased to 20–23%; however, tannin decreased to 18–35% under early sown rain-fed conditions as compared to irrigated timely sown conditions in both the genotypes. Activity of trypsin inhibitor was decreased under rain-fed conditions in both genotypes. This study inferred that variable sowing times and irrigation practices can be used for inducing variation in different wheat whole meal quality characteristics. Lower temperature prevailing under early sown rain-fed conditions; resulted in higher protein content. Higher Fe and lower tannin contents were reported under early sown rain-fed conditions however, late sown conditions offered an increase in phytic acid accompanied by decreased micronutrients and glutenin contents. PMID:22629143
... or placebo agent. The purpose of this research design is to avoid inadvertent bias of the test ... basic unit of heredity containing coded instructions for manufacturing a protein. Genes are subunits of chromosomes, which ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, T.A.
1993-06-01
This study investigates the molecular events of vacuole ontogeny in rapidly elongated cotton plant cells. Within the DNA coding region, the cotton and carrot cDNA clones exhibit 82.2% nucleotide sequence homology; at the amino acid level cotton and carrot catalytic subunits exhibited 95.7% identity and 2.1% amino acid similarity. When aligned with the analogous sequences from yeast, the cotton protein shared only 60.5% amino acid identity and 12.7% similarity. 10 refs., 1 tab.
Reliability and coverage analysis of non-repairable fault-tolerant memory systems
NASA Technical Reports Server (NTRS)
Cox, G. W.; Carroll, B. D.
1976-01-01
A method was developed for the construction of probabilistic state-space models for nonrepairable systems. Models were developed for several systems which achieved reliability improvement by means of error-coding, modularized sparing, massive replication and other fault-tolerant techniques. From the models developed, sets of reliability and coverage equations for the systems were developed. Comparative analyses of the systems were performed using these equation sets. In addition, the effects of varying subunit reliabilities on system reliability and coverage were described. The results of these analyses indicated that a significant gain in system reliability may be achieved by use of combinations of modularized sparing, error coding, and software error control. For sufficiently reliable system subunits, this gain may far exceed the reliability gain achieved by use of massive replication techniques, yet result in a considerable saving in system cost.
Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro
2011-01-01
By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.
Collavoli, Anita; Comelli, Laura; Cervelli, Tiziana; Galli, Alvaro
2011-01-01
By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR) when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB). This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p. PMID:21660142
Bhattacharya, D; Surek, B; Rüsing, M; Damberger, S; Melkonian, M
1994-01-01
Group I introns are found in organellar genomes, in the genomes of eubacteria and phages, and in nuclear-encoded rRNAs. The origin and distribution of nuclear-encoded rRNA group I introns are not understood. To elucidate their evolutionary relationships, we analyzed diverse nuclear-encoded small-subunit rRNA group I introns including nine sequences from the green-algal order Zygnematales (Charophyceae). Phylogenetic analyses of group I introns and rRNA coding regions suggest that lateral transfers have occurred in the evolutionary history of group I introns and that, after transfer, some of these elements may form stable components of the host-cell nuclear genomes. The Zygnematales introns, which share a common insertion site (position 1506 relative to the Escherichia coli small-subunit rRNA), form one subfamily of group I introns that has, after its origin, been inherited through common ancestry. Since the first Zygnematales appear in the middle Devonian within the fossil record, the "1506" group I intron presumably has been a stable component of the Zygnematales small-subunit rRNA coding region for 350-400 million years. PMID:7937917
Pietan, Lucas L.; Spradling, Theresa A.
2016-01-01
In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916–1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function. PMID:27589589
Foox, Jonathan; Brugler, Mercer; Siddall, Mark Edward; Rodríguez, Estefanía
2016-07-01
Six complete and three partial actiniarian mitochondrial genomes were amplified in two semi-circles using long-range PCR and pyrosequenced in a single run on a 454 GS Junior, doubling the number of complete mitogenomes available within the order. Typical metazoan mtDNA features included circularity, 13 protein-coding genes, 2 ribosomal RNA genes, and length ranging from 17,498 to 19,727 bp. Several typical anthozoan mitochondrial genome features were also observed including the presence of only two transfer RNA genes, elevated A + T richness ranging from 54.9 to 62.4%, large intergenic regions, and group 1 introns interrupting NADH dehydrogenase subunit 5 and cytochrome c oxidase subunit I, the latter of which possesses a homing endonuclease gene. Within the sea anemone Alicia sansibarensis, we report the first mitochondrial gene order rearrangement within the Actiniaria, as well as putative novel non-canonical protein-coding genes. Phylogenetic analyses of all 13 protein-coding and 2 ribosomal genes largely corroborated current hypotheses of sea anemone interrelatedness, with a few lower-level differences.
Yáñez, R J; Boursnell, M; Nogal, M L; Yuste, L; Viñuela, E
1993-01-01
A random sequencing strategy applied to two large SalI restriction fragments (SB and SD) of the African swine fever virus (ASFV) genome revealed that they might encode proteins similar to the two largest RNA polymerase subunits of eukaryotes, poxviruses and Escherichia coli. After further mapping by dot-blot hybridization, two large open reading frames (ORFs) were completely sequenced. The first ORF (NP1450L) encodes a protein of 1450 amino acids with extensive similarity to the largest subunit of RNA polymerases. The second one (EP1242L) codes for a protein of 1242 amino acids similar to the second largest RNA polymerase subunit. Proteins NP1450L and EP1242L are more similar to the corresponding subunits of eukaryotic RNA polymerase II than to those of vaccinia virus, the prototype poxvirus, which shares many functional characteristics with ASFV. ORFs NP1450L and EP1242L are mainly expressed late in ASFV infection, after the onset of DNA replication. Images PMID:8506138
A Catalog of Regulatory Sequences for Trait Gene for the Genome Editing of Wheat.
Makai, Szabolcs; Tamás, László; Juhász, Angéla
2016-01-01
Wheat has been cultivated for 10000 years and ever since the origin of hexaploid wheat it has been exempt from natural selection. Instead, it was under the constant selective pressure of human agriculture from harvest to sowing during every year, producing a vast array of varieties. Wheat has been adopted globally, accumulating variation for genes involved in yield traits, environmental adaptation and resistance. However, one small but important part of the wheat genome has hardly changed: the regulatory regions of both the x- and y-type high molecular weight glutenin subunit (HMW-GS) genes, which are alone responsible for approximately 12% of the grain protein content. The phylogeny of the HMW-GS regulatory regions of the Triticeae demonstrates that a genetic bottleneck may have led to its decreased diversity during domestication and the subsequent cultivation. It has also highlighted the fact that the wild relatives of wheat may offer an unexploited genetic resource for the regulatory region of these genes. Significant research efforts have been made in the public sector and by international agencies, using wild crosses to exploit the available genetic variation, and as a result synthetic hexaploids are now being utilized by a number of breeding companies. However, a newly emerging tool of genome editing provides significantly improved efficiency in exploiting the natural variation in HMW-GS genes and incorporating this into elite cultivars and breeding lines. Recent advancement in the understanding of the regulation of these genes underlines the needs for an overview of the regulatory elements for genome editing purposes.
Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates.
Thabet, Rahma; Rouault, J-D; Ayadi, Habib; Leignel, Vincent
2016-01-01
The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Grants, Jennifer M.; Goh, Grace Y. S.; Taubert, Stefan
2015-01-01
The Mediator multiprotein complex (‘Mediator’) is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/β-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways. PMID:25634893
Correa, Ricardo; Salpea, Paraskevi; Stratakis, Constantine
2015-01-01
Carney Complex (CNC) is a rare autosomal dominant syndrome, characterized by pigmented lesions of the skin and mucosa, cardiac, cutaneous and other myxomas, and multiple endocrine tumors. The disease is caused by inactivating mutations or large deletions of the PRKAR1A gene located at 17q22–24 coding for the regulatory subunit type I alpha of protein kinase A (PKA) gene. Most recently, components of the complex have been associated with defects of other PKA subunits, such as the catalytic subunits PRKACA (adrenal hyperplasia) and PRKACB (pigmented spots, myxomas, pituitary adenomas). In this report, we review CNC, its clinical features, diagnosis, treatment, and molecular etiology including PRKAR1A mutations and the newest on PRKACA and PRKACB defects especially as they pertain to adrenal tumors and Cushing’s syndrome. PMID:26130139
Bashan, Anat; Yonath, Ada
2009-01-01
Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by “gluing” symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment. PMID:19915655
Guyon, T; Levasseur, P; Truffault, F; Cottin, C; Gaud, C; Berrih-Aknin, S
1994-01-01
Myasthenia gravis (MG) is an autoimmune disease mediated by auto-antibodies that attack the nicotinic acetylcholine receptor (AChR). To elucidate the molecular mechanisms underlying the decrease in AChR levels at the neuromuscular junction, we investigated the regulation of AChR expression by analyzing mRNA of the two AChR alpha subunit isoforms (P3A+ and P3A-) in muscle samples from myasthenic patients relative to controls. We applied a quantitative method based on reverse transcription of total RNA followed by polymerase chain reaction (PCR), using an internal standard we constructed by site-directed mutagenesis. An increased expression of mRNA coding for the alpha subunit of the AChR isoforms was observed in severely affected patients (P < 0.003 versus controls) but not in moderately affected patients, independently of the anti-AChR antibody titer. Study of mRNA precursor levels indicates a higher expression in severely affected patients compared to controls, suggesting an enhanced rate of transcription of the message coding for the alpha subunit isoforms in these patients. We have also reported that mRNA encoding both isoforms are expressed at an approximate 1:1 ratio in controls and in patients. We have thus identified a new biological parameter correlated with disease severity, and provide evidence of a compensatory mechanism to balance the loss of AChR in human myasthenia gravis, which is probably triggered only above a certain degree of AChR loss. Images PMID:8040257
Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits
Torres, Yolima P.; Granados, Sara T.; Latorre, Ramón
2014-01-01
Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca2+-activated K+ channel (BK) is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels) and a large C terminus composed of two regulators of K+ conductance domains (RCK domains), where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca2+ sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above. PMID:25346693
Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits.
Torres, Yolima P; Granados, Sara T; Latorre, Ramón
2014-01-01
Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.
Fine structure of OXI1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase.
Weiss-Brummer, B; Guba, R; Haid, A; Schweyen, R J
1979-12-01
Genetic and biochemical studies have been performed with 110 mutants which are defective in cytochrome a·a3 and map in the regions on mit DNA previously designated OXI1 and OXI2. With 88 mutations allocated to OXI1 fine structure mapping was achieved by the analysis of rho (-) deletions. The order of six groups of mutational sites (A 1, A2, B 1, B2, C 1, C2) thus determined was confirmed by oxi i x oxi j recombination analysis.Analysis of mitochondrially translated polypeptides of oxil mutants by SDS-polyacrylamide electrophoresis reveals three classes of mutant patterns: i) similar to wild-tpye (19 mutants); ii) lacking SU II of cytochrome c oxidase (53 mutants); iii) lacking this subunit and exhibiting a single new polypeptide of lower Mr (16 mutants). Mutations of each of these classes are scattered over the OXI1 region without any detectable clustering; this is consistent with the assumption that all oxil mutations studied are within the same gene.New polypeptides observed in oxil mutants of class iii) vary in Mr in the range from 10,500 to 33,000. Those of Mr 17,000 to 33,000 are shown to be antigenically related to subunit II of cytochrome c oxidase. Colinearity is established between the series of new polypeptides of Mr values increasing from 10,500 to 31,500 and the order of the respective mutational sites on the map, e.g. mutations mapping in A 1 generate the smallest and mutations mapping in C2 the largest mutant fragments.From these data we conclude that i) all mutations allocated to the OXI1 region are in the same gene; ii) this gene codes for subunit II of cytochrome c oxidase; iii) the direction of translation is from CAP to 0X12. Out of 19 mutants allocated to OXI2 three exhibit a new polypeptide; these and all the other oxi2 mutants lack subunit III of cytochrome oxidase. This result provides preliminary evidence that the OXI2 region harbours the structural gene for this subunit III.
Skjaerven, Lars; Grant, Barry; Muga, Arturo; Teigen, Knut; McCammon, J. Andrew; Reuter, Nathalie; Martinez, Aurora
2011-01-01
GroEL is an ATP dependent molecular chaperone that promotes the folding of a large number of substrate proteins in E. coli. Large-scale conformational transitions occurring during the reaction cycle have been characterized from extensive crystallographic studies. However, the link between the observed conformations and the mechanisms involved in the allosteric response to ATP and the nucleotide-driven reaction cycle are not completely established. Here we describe extensive (in total long) unbiased molecular dynamics (MD) simulations that probe the response of GroEL subunits to ATP binding. We observe nucleotide dependent conformational transitions, and show with multiple 100 ns long simulations that the ligand-induced shift in the conformational populations are intrinsically coded in the structure-dynamics relationship of the protein subunit. Thus, these simulations reveal a stabilization of the equatorial domain upon nucleotide binding and a concomitant “opening” of the subunit, which reaches a conformation close to that observed in the crystal structure of the subunits within the ADP-bound oligomer. Moreover, we identify changes in a set of unique intrasubunit interactions potentially important for the conformational transition. PMID:21423709
Coffinet, Stéphanie; Cossu-Leguille, Carole; Rodius, François; Vasseur, Paule
2008-09-01
Glutamate cysteine ligase (GCL; EC 6.3.2.2) is the first enzyme involved in the synthesis of glutathione. A HPLC method with fluorimetric detection was used to measure GCL activity in the gills and the digestive gland of the freshwater bivalve, Unio tumidus. Storage conditions were optimized in order to prevent decrease of GCL activity and consisted in freezing the cytosolic fraction in the presence of protease (1 mM phenylmethylsulfonic fluoric acid) and gamma-glutamyltranspeptidase (1 mM L-serine borate mixture and 0.5 mM acivicin) inhibitors. Seasonal variations of activity in the digestive gland and to a lesser extent in the gills were found with activity increasing in spring compared to winter. No sex differences were revealed. The GCL coding sequence was identified using degenerated primers designed in the highly conserved regions of the catalytic subunit of GCL. The partial sequence identified encoded for 121 amino acids. The comparison of the identified partial coding sequence of U. tumidus with those available from vertebrates and invertebrates indicated that GCL sequence was highly conserved.
Henderson, R A; Krissansen, G W; Yong, R Y; Leung, E; Watson, J D; Dholakia, J N
1994-12-02
Protein synthesis in mammalian cells is regulated at the level of the guanine nucleotide exchange factor, eIF-2B, which catalyzes the exchange of eukaryotic initiation factor 2-bound GDP for GTP. We have isolated and sequenced cDNA clones encoding the delta-subunit of murine eIF-2B. The cDNA sequence encodes a polypeptide of 544 amino acids with molecular mass of 60 kDa. Antibodies against a synthetic polypeptide of 30 amino acids deduced from the cDNA sequence specifically react with the delta-subunit of mammalian eIF-2B. The cDNA-derived amino acid sequence shows significant homology with the yeast translational regulator Gcd2, supporting the hypothesis that Gcd2 may be the yeast homolog of the delta-subunit of mammalian eIF-2B. Primer extension studies and anchor polymerase chain reaction analysis were performed to determine the 5'-end of the transcript for the delta-subunit of eIF-2B. Results of these experiments demonstrate two different mRNAs for the delta-subunit of eIF-2B in murine cells. The isolation and characterization of two different full-length cDNAs also predicts the presence of two alternate forms of the delta-subunit of eIF-2B in murine cells. These differ at their amino-terminal end but have identical nucleotide sequences coding for amino acids 31-544.
NASA Astrophysics Data System (ADS)
Zhuang, Chao; Zhou, Zhifang; Illman, Walter A.; Guo, Qiaona; Wang, Jinguo
2017-09-01
The classical aquitard-drainage model COMPAC has been modified to simulate the compaction process of a heterogeneous aquitard consisting of multiple sub-units (Multi-COMPAC). By coupling Multi-COMPAC with the parameter estimation code PEST++, the vertical hydraulic conductivity ( K v) and elastic ( S ske) and inelastic ( S skp) skeletal specific-storage values of each sub-unit can be estimated using observed long-term multi-extensometer and groundwater level data. The approach was first tested through a synthetic case with known parameters. Results of the synthetic case revealed that it was possible to accurately estimate the three parameters for each sub-unit. Next, the methodology was applied to a field site located in Changzhou city, China. Based on the detailed stratigraphic information and extensometer data, the aquitard of interest was subdivided into three sub-units. Parameters K v, S ske and S skp of each sub-unit were estimated simultaneously and then were compared with laboratory results and with bulk values and geologic data from previous studies, demonstrating the reliability of parameter estimates. Estimated S skp values ranged within the magnitude of 10-4 m-1, while K v ranged over 10-10-10-8 m/s, suggesting moderately high heterogeneity of the aquitard. However, the elastic deformation of the third sub-unit, consisting of soft plastic silty clay, is masked by delayed drainage, and the inverse procedure leads to large uncertainty in the S ske estimate for this sub-unit.
Oh, Minyoung; Umasuthan, Navaneethaiyer; Elvitigala, Don Anushka Sandaruwan; Wan, Qiang; Jo, Eunyoung; Ko, Jiyeon; Noh, Gyeong Eon; Shin, Sangok; Rho, Sum; Lee, Jehee
2016-02-01
Ferritins play an indispensable role in iron homeostasis through their iron-withholding function in living beings. In the current study, cDNA sequences of three distinct ferritin subunits, including a ferritin H, a ferritin M, and a ferritin L, were identified from big belly seahorse, Hippocampus abdominalis, and molecularly characterized. Complete coding sequences (CDS) of seahorse ferritin H (HaFerH), ferritin M (HaFerM), and ferritin L (HaFerL) subunits were comprised of 531, 528, and 522 base pairs (bp), respectively, which encode polypeptides of 177, 176, and 174 amino acids, respectively, with molecular masses of ∼20-21 kDa. Our in silico analyses demonstrate that these three ferritin subunits exhibit the typical characteristics of ferritin superfamily members including iron regulatory elements, domain signatures, and reactive centers. The coding sequences of HaFerH, M, and L were cloned and the corresponding proteins were overexpressed in a bacterial system. Recombinantly expressed HaFer proteins demonstrated detectable in vivo iron sequestrating (ferroxidase) activity, consistent with their putative iron binding capability. Quantification of the basal expression of these three HaFer sequences in selected tissues demonstrated a gene-specific ubiquitous spatial distribution pattern, with abundance of mRNA in HaFerM in the liver and predominant expression of HaFerH and HaFerL in blood. Interestingly, the basal expression of all three ferritin genes was found to be significantly modulated against pathogenic stress mounted by lipopolysaccharides (LPS), poly I:C, Streptococcus iniae, and Edwardsiella tarda. Collectively, our findings suggest that the three HaFer subunits may be involved in iron (II) homeostasis in big belly seahorse and that they are important in its host defense mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gan, Han Ming; Tan, Mun Hua; Lee, Yin Peng; Austin, Christopher M
2016-05-01
The mitogenome of the Australian freshwater blackfish, Gadopsis marmoratus was recovered coverage by genome skimming using the MiSeq sequencer (GenBank Accession Number: NC_024436). The blackfish mitogenome has 16,407 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the 5th mitogenome sequence to be reported for the family Percichthyidae.
Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron
Hiesel, Rudolf; Brennicke, Axel
1983-01-01
The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spreitzer, Robert Joseph
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO 2 fixation in photosynthesis. However, it is a slow enzyme, and O 2 competes with CO 2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO 2. If carboxylation could be increased or oxygenation decreased, an increase in net CO 2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants,more » and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO 2/O 2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a possible structural pathway between the small-subunit βA-βB loop and alpha-helix 8 of the large-subunit α/β-barrel active site. Hybrid enzymes were also created comprised of plant small subunits and Chlamydomonas large subunits, and these enzymes have increases in CO 2/O 2 specificity, further indicating that small subunits may be the key for ultimately engineering an improved Rubisco enzyme.« less
Grants, Jennifer M; Goh, Grace Y S; Taubert, Stefan
2015-02-27
The Mediator multiprotein complex ('Mediator') is an important transcriptional coregulator that is evolutionarily conserved throughout eukaryotes. Although some Mediator subunits are essential for the transcription of all protein-coding genes, others influence the expression of only subsets of genes and participate selectively in cellular signaling pathways. Here, we review the current knowledge of Mediator subunit function in the nematode Caenorhabditis elegans, a metazoan in which established and emerging genetic technologies facilitate the study of developmental and physiological regulation in vivo. In this nematode, unbiased genetic screens have revealed critical roles for Mediator components in core developmental pathways such as epidermal growth factor (EGF) and Wnt/β-catenin signaling. More recently, important roles for C. elegans Mediator subunits have emerged in the regulation of lipid metabolism and of systemic stress responses, engaging conserved transcription factors such as nuclear hormone receptors (NHRs). We emphasize instances where similar functions for individual Mediator subunits exist in mammals, highlighting parallels between Mediator subunit action in nematode development and in human cancer biology. We also discuss a parallel between the association of the Mediator subunit MED12 with several human disorders and the role of its C. elegans ortholog mdt-12 as a regulatory hub that interacts with numerous signaling pathways. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhu, Shujia; Riou, Morgane; Yao, C Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin
2014-04-22
Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion.
Chaudhary, Nisha; Dangi, Priya; Khatkar, B S
2017-02-01
The size distribution assessment of unreduced wheat gluten proteins of commercial Indian wheat varieties was examined using Size-Exclusion Fast Protein Liquid Chromatography. Elution profiles were fractionated into five peaks, with the molecular weights of eluting peaks as 130-30, 55-20, 28-10 and <10 kDa (IV and V), respectively. Peak I (glutenins) and II (gliadins) exhibited contrary results with AWRC (r = 0.928** and r = -0.831**), R/E ratio (r = 0.745** and r = -0.869**), gluten index (r = 0.959** and r = -0.994**), gliadin/glutenin ratio (r = -0.952** and r = 0.948**), dough development time (r = 0.830** and r = -0.930**), dough stability (r = 0.901** and r = -0.979**) and dough weakening (r = -0.969** and r = 0.986**). Significant statistical correlation was also observed for peak I and II with cookie hardness (r = 0.948** and r = -0.924**) and cookie spread (r = -0.837** and r = -0.743**) respectively. Peak III, IV and V occupied a minor fraction of whole and did not exhibit a statistically significant correlation with any of the quality parameters.
The genetic control of milling yield, dough rheology and baking quality of wheat.
Kuchel, H; Langridge, P; Mosionek, L; Williams, K; Jefferies, S P
2006-05-01
Improving the end-use quality of wheat is a key target for many breeding programmes. With the exception of the relationship between glutenin alleles and some dough rheological characters, knowledge concerning the genetic control of wheat quality traits is somewhat limited. A doubled haploid population produced from a cross between two Australian cultivars 'Trident' and 'Molineux' has been used to construct a linkage map based largely on microsatellite molecular makers. 'Molineux' is superior to 'Trident' for a number of milling, dough rheology and baking quality characteristics, although by international standards 'Trident' would still be regarded as possessing moderately good end-use quality. This population was therefore deemed useful for investigation of wheat end-use quality. A number of significant QTL identified for dough rheological traits mapped to HMW and LMW glutenin loci on chromosomes 1A and 1B. However, QTL associated with dough strength and loaf volume were also identified on chromosome 2A and a significant QTL associated with loaf volume and crumb quality was identified on chromosome 3A. A QTL for flour protein content and milling yield was identified on chromosome 6A and a QTL associated with flour colour reported previously on chromosome 7B was confirmed in this population. The detection of loci affecting dough strength, loaf volume and flour protein content may provide fresh opportunities for the application of marker-assisted selection to improve bread-making quality.
Schalk, Kathrin; Lexhaller, Barbara; Koehler, Peter; Scherf, Katharina Anne
2017-01-01
Gluten proteins from wheat, rye, barley and, in rare cases, oats, are responsible for triggering hypersensitivity reactions such as celiac disease, non-celiac gluten sensitivity and wheat allergy. Well-defined reference materials (RM) are essential for clinical studies, diagnostics, elucidation of disease mechanisms and food analyses to ensure the safety of gluten-free foods. Various RM are currently used, but a thorough characterization of the gluten source, content and composition is often missing. However, this characterization is essential due to the complexity and heterogeneity of gluten to avoid ambiguous results caused by differences in the RM used. A comprehensive strategy to isolate gluten protein fractions and gluten protein types (GPT) from wheat, rye, barley and oat flours was developed to obtain well-defined RM for clinical assays and gluten-free compliance testing. All isolated GPT (ω5-gliadins, ω1,2-gliadins, α-gliadins, γ-gliadins and high- and low-molecular-weight glutenin subunits from wheat, ω-secalins, γ-75k-secalins, γ-40k-secalins and high-molecular-weight secalins from rye, C-hordeins, γ-hordeins, B-hordeins and D-hordeins from barley and avenins from oats) were fully characterized using analytical reversed-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), N-terminal sequencing, electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and untargeted LC-MS/MS of chymotryptic hydrolyzates of the single GPT. Taken together, the analytical methods confirmed that all GPT were reproducibly isolated in high purity from the flours and were suitable to be used as RM, e.g., for calibration of LC-MS/MS methods or enzyme-linked immunosorbent assays (ELISAs).
Effects of nitrogen nutrition on the synthesis and deposition of the ω-gliadins of wheat.
Wan, Yongfang; Gritsch, Cristina Sanchis; Hawkesford, Malcolm J; Shewry, Peter R
2014-03-01
The ω-gliadin storage proteins of wheat are of interest in relation to their impact on grain processing properties and their role in food allergy, particularly the ω-5 sub-group and wheat-dependent exercise-induced anaphylaxis. The ω-gliadins are also known to be responsive to nitrogen application. This study therefore compares the effects of cultivar and nitrogen availability on the synthesis and deposition of ω-gliadins in wheat grown under field conditions in the UK, including temporal and spatial analyses at the protein and transcript levels. SDS-PAGE, western blotting and N-terminal amino acid sequencing were used to compare the patterns of ω-gliadin components in mature grain of six British wheat (Triticum aestivum) cultivars and their accumulation during the development of grain grown in field plots with varying nitrogen supply. Changes in gene expression during development were determined using real-time reverse transcription-PCR (RT-PCR). Spatial patterns of gene expression and protein accumulation were determined by in situ hybridization and immunofluorescence microscopy, respectively. Two patterns of ω-gliadins were identified in the six cultivars, including both monomeric 'gliadin' proteins and subunits present in polymeric 'glutenin' fractions. Increasing the level of nitrogen fertilizer in field plots resulted in increased expression of ω-gliadin transcripts and increased proportions of ω-5 gliadins. Nitrogen supply also affected the spatial patterns of ω-gliadin synthesis and deposition, which were differentially increased in the outer layers of the starchy endosperm with high levels of nitrogen. Wheat ω-gliadins vary in amount and composition between cultivars, and in their response to nitrogen supply. Their spatial distribution is also affected by nitrogen supply, being most highly concentrated in the sub-aleurone cells of the starchy endosperm under higher nitrogen availability.
Hu, Xinkun; Dai, Shoufen; Song, Zhongping; Xu, Dongyang; Wen, Zhaojin; Wei, Yuming; Liu, Dengcai; Zheng, Youliang; Yan, Zehong
2018-06-01
Nine novel high-molecular-weight prolamins (HMW-prolamins) were isolated from Leymus multicaulis and L. chinensis. Based on the structure of the repetitive domains, all nine genes were classified as D-hordeins but not high-molecular-weight glutenin subunits (HMW-GSs) that have been previously isolated in Leymus spp. Four genes, Lmul 1.2, 2.4, 2.7, and Lchi 2.5 were verified by bacterial expression, whereas the other five sequences (1.3 types) were classified as pseudogenes. The four Leymus D-hordein proteins had longer N-termini than those of Hordeum spp. [116/118 vs. 110 amino acid (AA) residues], whereas three (Lmul 1.2, 2.4, and 2.7) contained shorter N-termini than those of the Ps. juncea (116 vs. 118 AA residues). Furthermore, Lmul 1.2 was identified as the smallest D-hordein, and Lmul 1.2 and 2.7 had an additional cysteines. Phylogenetic analysis supported that the nine D-hordeins of Leymus formed two independent clades, with all the 1.3 types clustered with Ps. juncea Ns 1.3, whereas the others were clustered together with the D-hordeins from Hordeum and Ps. juncea and the HMW-GSs from Leymus. Within the clade of four D-hordein genes and HMW-GSs, the HMW-GSs of Leymus formed a separated branch that served as an intermediate between the D-hordeins of Ps. juncea and Leymus. These novel D-hordeins may be potentially utilized in the improvement of food processing properties particularly those relating to extra cysteine residues. The findings of the present study also provide basic information for understanding the HMW-prolamins among Triticeae species, as well as expand the sources of D-hordeins from Hordeum to Leymus.
Tabor, C W; Tabor, H
1987-11-25
We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).
Glutamate receptor mutations in psychiatric and neurodevelopmental disorders
Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Àlex
2014-01-01
Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications. PMID:24605182
Glutamate receptor mutations in psychiatric and neurodevelopmental disorders.
Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Alex
2014-01-01
Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications.
HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove
Filbin, Megan E.; Kieft, Jeffrey S.
2011-01-01
Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem–loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit's decoding groove. This configuration depends on the sequence and structure of a different stem–loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis. PMID:21606179
HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove.
Filbin, Megan E; Kieft, Jeffrey S
2011-07-01
Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem-loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit's decoding groove. This configuration depends on the sequence and structure of a different stem-loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis.
Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA
Dickinson, Craig D.; Floener, Liliane A.; Lilley, Glenn G.; Nielsen, Niels C.
1987-01-01
An in vitro system was developed that results in the self-assembly of subunit precursors into complexes that resemble those found naturally in the endoplasmic reticulum. Subunits of glycinin, the predominant seed protein of soybeans, were synthesized from modified cDNAs using a combination of the SP6 transcription and the rabbit reticulocyte translation systems. Subunits produced from plasmid constructions that encoded either Gy4 or Gy5 gene products, but modified such that their signal sequences were absent, self-assembled into trimers equivalent in size to those precursors found in the endoplasmic reticulum. In contrast, proteins synthesized in vitro from Gy4 constructs failed to self-assemble when the signal sequence was left intact (e.g., preproglycinin) or when the coding sequence was modified to remove 27 amino acids from an internal hydrophobic region, which is highly conserved among the glycinin subunits. Various hybrid subunits were also produced by trading portions of Gy4 and Gy5 cDNAs and all self-assembled in our system. The in vitro assembly system provides an opportunity to study the self-assembly of precursors and to probe for regions important for assembly. It will also be helpful in attempts to engineer beneficial nutritional changes into this important food protein. Images PMID:16593868
Plaga, W; Lottspeich, F; Oesterhelt, D
1992-04-01
An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.
Masha, Roland T; Houreld, Nicolette N; Abrahamse, Heidi
2013-02-01
Low-intensity laser irradiation (LILI) has been shown to stimulate cellular functions leading to increased adenosine triphosphate (ATP) synthesis. This study was undertaken to evaluate the effect of LILI on genes involved in the mitochondrial electron transport chain (ETC, complexes I-IV) and oxidative phosphorylation (ATP synthase). Four human skin fibroblast cell models were used in this study: normal non-irradiated cells were used as controls while wounded, diabetic wounded, and ischemic cells were irradiated. Cells were irradiated with a 660 nm diode laser with a fluence of 5 J/cm(2) and gene expression determined by quantitative real-time reverse transcription (RT) polymerase chain reaction (PCR). LILI upregulated cytochrome c oxidase subunit VIb polypeptide 2 (COX6B2), cytochrome c oxidase subunit VIc (COX6C), and pyrophosphatase (inorganic) 1 (PPA1) in diabetic wounded cells; COX6C, ATP synthase, H+transporting, mitochondrial Fo complex, subunit B1 (ATP5F1), nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) 1 alpha subcomplex, 11 (NDUFA11), and NADH dehydrogenase (ubiquinone) Fe-S protein 7 (NDUFS7) in wounded cells; and ATPase, H+/K+ exchanging, beta polypeptide (ATP4B), and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) (ATP5G2) in ischemic cells. LILI at 660 nm stimulates the upregulation of genes coding for subunits of enzymes involved in complexes I and IV and ATP synthase.
Obtułowicz, Krystyna; Waga, Jacek; Dyga, Wojciech
2015-01-01
Gluten is the product of a chemical bond of wheat prolamin proteins (glia- dins and glutenins) in an aqueous me- dium. IgE mediated gluten allergy can be induced either by gluten as an in- gredient in foods or wheat prolamines present in the air. The aim of the study was clinical analysis of 13 patients, who demonstrated elevated levels of gluten specific IgE and identification of the most allergenic protein fractions from several samples of wheat using serum of examined subjects. Clinical analysis showed the occupational allergy to gluten in the form of rhinitis, asthma and airborne dermatistis in 9 subjects, whose symptoms disappeared during isolation from occupational exposure despite the use of a normal diet. In case of 4 patients with severe forms of chronic urticaria and atopic dermatitis, who are also allergic to grass pollen at the same time, the introduction of a gluten-free diet resulted in improvement of health conditions. The study of wheat protein fractions revealed a significant polymorphism dependent on the wheat sample. In the protein fractions, low and high molecular glutenin fractions, and alpha, beta, gamma, and omega-gliadins were separated. It has been shown that the strongest immunogenic effect causes omega-5 gliadin fraction. The removal of this fraction resulted in reduction of skin reactivity evaluated by skin prick test in the studied patients.
Identification of novel antibody-reactive detection sites for comprehensive gluten monitoring.
Röckendorf, Niels; Meckelein, Barbara; Scherf, Katharina A; Schalk, Kathrin; Koehler, Peter; Frey, Andreas
2017-01-01
Certain cereals like wheat, rye or barley contain gluten, a protein mixture that can trigger celiac disease (CD). To make gluten-free diets available for affected individuals the gluten content of foodstuff must be monitored. For this purpose, antibody-based assays exist which rely on the recognition of certain linear gluten sequence motifs. Yet, not all CD-active gluten constituents and fragments formed during food processing/fermentation may be covered by those tests. In this study, we therefore assayed the coverage of reportedly CD-active gluten components by currently available detection antibodies and determined the antibody-inducing capacity of wheat gluten constituents in order to provide novel diagnostic targets for comprehensive gluten quantitation. Immunizations of outbred mice with purified gliadins and glutenins were conducted and the linear target recognition profile of the sera was recorded using synthetic peptide arrays that covered the sequence space of gluten constituents present in those preparations. The resulting murine immunorecognition profile of gluten demonstrated that further linear binding sites beyond those recognized by the monoclonal antibodies α20, R5 and G12 exist and may be exploitable as diagnostic targets. We conclude that the safety of foodstuffs for CD patients can be further improved by complementing current tests with antibodies directed against additional CD-active gluten components. Currently unrepresented linear gluten detection sites in glutenins and α-gliadins suggest sequences QQQYPS, PQQSFP, QPGQGQQG and QQPPFS as novel targets for antibody generation.
Identification of novel antibody-reactive detection sites for comprehensive gluten monitoring
Röckendorf, Niels; Meckelein, Barbara; Scherf, Katharina A.; Schalk, Kathrin; Koehler, Peter
2017-01-01
Certain cereals like wheat, rye or barley contain gluten, a protein mixture that can trigger celiac disease (CD). To make gluten-free diets available for affected individuals the gluten content of foodstuff must be monitored. For this purpose, antibody-based assays exist which rely on the recognition of certain linear gluten sequence motifs. Yet, not all CD-active gluten constituents and fragments formed during food processing/fermentation may be covered by those tests. In this study, we therefore assayed the coverage of reportedly CD-active gluten components by currently available detection antibodies and determined the antibody-inducing capacity of wheat gluten constituents in order to provide novel diagnostic targets for comprehensive gluten quantitation. Immunizations of outbred mice with purified gliadins and glutenins were conducted and the linear target recognition profile of the sera was recorded using synthetic peptide arrays that covered the sequence space of gluten constituents present in those preparations. The resulting murine immunorecognition profile of gluten demonstrated that further linear binding sites beyond those recognized by the monoclonal antibodies α20, R5 and G12 exist and may be exploitable as diagnostic targets. We conclude that the safety of foodstuffs for CD patients can be further improved by complementing current tests with antibodies directed against additional CD-active gluten components. Currently unrepresented linear gluten detection sites in glutenins and α-gliadins suggest sequences QQQYPS, PQQSFP, QPGQGQQG and QQPPFS as novel targets for antibody generation. PMID:28759621
Langner, Monika; Krystkowiak, Karolina; Salmanowicz, Bolesław P; Adamski, Tadeusz; Krajewski, Paweł; Kaczmarek, Zygmunt; Surma, Maria
2017-12-01
The major determinants of wheat quality are Glu-1 and Glu-3 glutenin loci and environmental factors. Additive effects of alleles at the Glu-1 and Glu-3 loci, as well as their interactions, were evaluated for dough rheology and baking properties in four groups of wheat doubled haploid lines differing in high- and low-molecular-weight glutenin composition. Flour quality, Reomixer (Reologica Instruments, Lund, Sweden), dough extension, Farinograph (Brabender GmbH, Duisburg, Germany) and baking parameters were determined. Groups of lines with the alleles Glu-A3b and Glu-B3d were characterized by higher values of dough and baking parameters compared to those with the Glu-A3e and Glu-B3a alleles. Effects of interactions between allelic variants at the Glu-1 and Glu-3 loci on Reomixer parameters, dough extension tests and baking parameters were significant, although additive effects of individual alleles were not always significant. The allelic variants at Glu-B3 had a much greater effect on dough rheological parameters than the variants at Glu-A3 or Glu-D3 loci. The effect of allelic variations at the Glu-D3 loci on rheological parameters and bread-making quality was non-significant, whereas their interactions with a majority of alleles at the other Glu-1 × Glu-3 loci were significant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho
2015-01-01
Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I. PMID:26285039
Fearnley, I M; Finel, M; Skehel, J M; Walker, J E
1991-01-01
The 39 kDa and 42 kDa subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria are nuclear-coded components of the hydrophobic protein fraction of the enzyme. Their amino acid sequences have been deduced from the sequences of overlapping cDNA clones. These clones were amplified from total bovine heart cDNA by means of the polymerase chain reaction, with the use of complex mixtures of oligonucleotide primers based upon fragments of protein sequence determined at the N-terminals of the proteins and at internal sites. The protein sequences of the 39 kDa and 42 kDa subunits are 345 and 320 amino acid residues long respectively, and their calculated molecular masses are 39,115 Da and 36,693 Da. Both proteins are predominantly hydrophilic, but each contains one or two hydrophobic segments that could possibly be folded into transmembrane alpha-helices. The bovine 39 kDa protein sequence is related to that of a 40 kDa subunit from complex I from Neurospora crassa mitochondria; otherwise, it is not related significantly to any known sequence, including redox proteins and two polypeptides involved in import of proteins into mitochondria, known as the mitochondrial processing peptidase and the processing-enhancing protein. Therefore the functions of the 39 kDa and 42 kDa subunits of complex I are unknown. The mitochondrial gene product, ND4, a hydrophobic component of complex I with an apparent molecular mass of about 39 kDa, has been identified in preparations of the enzyme. This subunit stains faintly with Coomassie Blue dye, and in many gel systems it is not resolved from the nuclearcoded 36 kDa subunit. Images Fig. 1. PMID:1832859
Crystal structure of a two-subunit TrkA octameric gating ring assembly
Deller, Marc C.; Johnson, Hope A.; Miller, Mitchell D.; ...
2015-03-31
The TM1088 locus of T. maritima codes for two proteins designated TM1088A and TM1088B, which combine to form the cytosolic portion of a putative Trk K⁺ transporter. We report the crystal structure of this assembly to a resolution of 3.45 Å. The high resolution crystal structures of the components of the assembly, TM1088A and TM1088B, were also determined independently to 1.50 Å and 1.55 Å, respectively. The TM1088 proteins are structurally homologous to each other and to other K⁺ transporter proteins, such as TrkA. These proteins form a cytosolic gating ring assembly that controls the flow of K⁺ ions acrossmore » the membrane. TM1088 represents the first structure of a two-subunit Trk assembly. Despite the atypical genetics and chain organization of the TM1088 assembly, it shares significant structural homology and an overall quaternary organization with other single-subunit K⁺ gating ring assemblies. This structure provides the first structural insights into what may be an evolutionary ancestor of more modern single-subunit K⁺ gating ring assemblies.« less
The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit.
Singleton, B K; Torres-Arzayus, M I; Rottinghaus, S T; Taccioli, G E; Jeggo, P A
1999-05-01
Ku is a heterodimeric protein with double-stranded DNA end-binding activity that operates in the process of nonhomologous end joining. Ku is thought to target the DNA-dependent protein kinase (DNA-PK) complex to the DNA and, when DNA bound, can interact and activate the DNA-PK catalytic subunit (DNA-PKcs). We have carried out a 3' deletion analysis of Ku80, the larger subunit of Ku, and shown that the C-terminal 178 amino acid residues are dispensable for DNA end-binding activity but are required for efficient interaction of Ku with DNA-PKcs. Cells expressing Ku80 proteins that lack the terminal 178 residues have low DNA-PK activity, are radiation sensitive, and can recombine the signal junctions but not the coding junctions during V(D)J recombination. These cells have therefore acquired the phenotype of mouse SCID cells despite expressing DNA-PKcs protein, suggesting that an interaction between DNA-PKcs and Ku, involving the C-terminal region of Ku80, is required for DNA double-strand break rejoining and coding but not signal joint formation. To gain further insight into important domains in Ku80, we report a point mutational change in Ku80 in the defective xrs-2 cell line. This residue is conserved among species and lies outside of the previously reported Ku70-Ku80 interaction domain. The mutational change nonetheless abrogates the Ku70-Ku80 interaction and DNA end-binding activity.
The complete mitochondrial genome sequence of Eimeria innocua (Eimeriidae, Coccidia, Apicomplexa).
Hafeez, Mian Abdul; Vrba, Vladimir; Barta, John Robert
2016-07-01
The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp. infecting galliform birds. The circular-mapping mt genome of E. innocua is 6247 bp in length with three protein-coding genes (cox1, cox3, and cytb), 19 gene fragments encoding large subunit (LSU) rRNA and 14 gene fragments encoding small subunit (SSU) rRNA. Like other Apicomplexa, no tRNA was encoded. The mitochondrial genome of E. innocua confirms its close phylogenetic affinities to Eimeria dispersa.
Evolution of the eukaryotic dynactin complex, the activator of cytoplasmic dynein
2012-01-01
Background Dynactin is a large multisubunit protein complex that enhances the processivity of cytoplasmic dynein and acts as an adapter between dynein and the cargo. It is composed of eleven different polypeptides of which eight are unique to this complex, namely dynactin1 (p150Glued), dynactin2 (p50 or dynamitin), dynactin3 (p24), dynactin4 (p62), dynactin5 (p25), dynactin6 (p27), and the actin-related proteins Arp1 and Arp10 (Arp11). Results To reveal the evolution of dynactin across the eukaryotic tree the presence or absence of all dynactin subunits was determined in most of the available eukaryotic genome assemblies. Altogether, 3061 dynactin sequences from 478 organisms have been annotated. Phylogenetic trees of the various subunit sequences were used to reveal sub-family relationships and to reconstruct gene duplication events. Especially in the metazoan lineage, several of the dynactin subunits were duplicated independently in different branches. The largest subunit repertoire is found in vertebrates. Dynactin diversity in vertebrates is further increased by alternative splicing of several subunits. The most prominent example is the dynactin1 gene, which may code for up to 36 different isoforms due to three different transcription start sites and four exons that are spliced as differentially included exons. Conclusions The dynactin complex is a very ancient complex that most likely included all subunits in the last common ancestor of extant eukaryotes. The absence of dynactin in certain species coincides with that of the cytoplasmic dynein heavy chain: Organisms that do not encode cytoplasmic dynein like plants and diplomonads also do not encode the unique dynactin subunits. The conserved core of dynactin consists of dynactin1, dynactin2, dynactin4, dynactin5, Arp1, and the heterodimeric actin capping protein. The evolution of the remaining subunits dynactin3, dynactin6, and Arp10 is characterized by many branch- and species-specific gene loss events. PMID:22726940
Kastner, Philomena; Mosgoeller, Wilhelm; Fang-Kircher, Susanne; Kitzmueller, Erwin; Kirchner, Liselotte; Hoeger, Harald; Seither, Peter; Lubec, Gert; Lubec, Barbara
2003-01-01
RNA polymerases (POL) are integral constituents of the protein synthesis machinery, with POL I and POL III coding for ribosomal RNA and POL II coding for protein. POL I is located in the nucleolus and transcribes class I genes, those that code for large ribosomal RNA. It has been reported that the POL system is seriously affected in perinatal asphyxia (PA) immediately after birth. Because POL I is necessary for protein synthesis and brain protein synthesis was shown to be deranged after hypoxic-ischemic conditions, we aimed to study whether POL derangement persists in a simple, well-documented animal model of graded global PA at the activity, mRNA, protein, and morphologic level until 8 d after the asphyctic insult. Nuclear POL I activity was determined according to a radiochemical method; mRNA steady state and protein levels of RPA4O-an essential subunit of POL I and III-were evaluated by blotting methods; and the POL I subunit polymerase activating factor-53 was evaluated using immunohistochemistry. Silver staining and transmission electron microscopy were used to examine the nucleolus. At the eighth day after PA, nuclear POL I decreased with the length of the asphyctic period, whereas mRNA and protein levels for RPA4O were unchanged. The subunit polymerase activating factor-53, however, was unambiguously reduced in several brain regions. Dramatic changes of nucleolar morphology were observed, the main finding being nucleolar disintegration at the electron microscopy level. We suggest that severe acidosis and/or deficient protein kinase C in the brain during the asphyctic period may be responsible for disintegration of the nucleolus as well as for decreased POL activity persisting until the eighth day after PA. The biologic effect may be that PA causes impaired RNA and protein synthesis, which has been already observed in hypoxic-ischemic states.
Luna, M G; Martins, M M; Newton, S M; Costa, S O; Almeida, D F; Ferreira, L C
1997-01-01
Oligonucleotides coding for linear epitopes of the fimbrial colonization factor antigen I (CFA/I) of enterotoxigenic Escherichia coli (ETEC) were cloned and expressed in a deleted form of the Salmonella muenchen flagellin fliC (H1-d) gene. Four synthetic oligonucleotide pairs coding for regions corresponding to amino acids 1 to 15 (region I), amino acids 11 to 25 (region II), amino acids 32 to 45 (region III) and amino acids 88 to 102 (region IV) were synthesized and cloned in the Salmonella flagellin-coding gene. All four hybrid flagellins were exported to the bacterial surface where they produced flagella, but only three constructs were fully motile. Sera recovered from mice immunized with intraperitoneal injections of purified flagella containing region II (FlaII) or region IV (FlaIV) showed high titres against dissociated solid-phase-bound CFA/I subunits. Hybrid flagellins containing region I (FlaI) or region III (FlaIII) elicited a weak immune response as measured in enzyme-linked immunosorbent assay (ELISA) with dissociated CFA/I subunits. None of the sera prepared with purified hybrid flagella were able to agglutinate or inhibit haemagglutination promoted by CFA/I-positive strains. Moreover, inhibition ELISA tests indicated that antisera directed against region I, II, III or IV cloned in flagellin were not able to recognize surface-exposed regions on the intact CFA/I fimbriae.
Oya, Eriko; Kato, Hiroaki; Chikashige, Yuji; Tsutsumi, Chihiro; Hiraoka, Yasushi; Murakami, Yota
2013-01-01
Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.
The Mediator complex and transcription regulation
Poss, Zachary C.; Ebmeier, Christopher C.
2013-01-01
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064
Gan, Han Ming; Tan, Mun Hua; Lee, Yin Peng; Austin, Christopher M
2016-05-01
The mitochondrial genome sequence of the Australian tadpole shrimp, Triops australiensis is presented (GenBank Accession Number: NC_024439) and compared with other Triops species. Triops australiensis has a mitochondrial genome of 15,125 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The T. australiensis mitogenome is composed of 36.4% A, 16.1% C, 12.3% G and 35.1% T. The mitogenome gene order conforms to the primitive arrangement for Branchiopod crustaceans, which is also conserved within the Pancrustacean.
Austin, Christopher M; Tan, Mun Hua; Lee, Yin Peng; Croft, Laurence J; Meekan, Mark G; Pierce, Simon J; Gan, Han Ming
2016-01-01
The complete mitochondrial genome of the parasitic copepod Pandarus rhincodonicus was obtained from a partial genome scan using the HiSeq sequencing system. The Pandarus rhincodonicus mitogenome has 14,480 base pairs (62% A+T content) made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 384 bp non-coding AT-rich region. This Pandarus mitogenome sequence is the first for the family Pandaridae, the second for the order Siphonostomatoida and the sixth for the Copepoda.
Hiragun, Makiko; Ishii, Kaori; Hiragun, Takaaki; Shindo, Hajime; Mihara, Shoji; Matsuo, Hiroaki; Hide, Michihiro
2013-09-01
Recently, an increasing number of patients with wheat-dependent exercise-induced anaphylaxis (WDEIA) have been reported in Japan. Most of them had developed this condition during or after using hydrolyzed wheat protein (HWP)-containing soap (HWP-WDEIA). To clarify the relation between WDEIA and HWP-containing soap and their prognosis, we retrospectively studied the patients who visited Hiroshima University Hospital and were diagnosed as WDEIA from January 2010 to June 2011. We took detailed clinical histories, performed skin prick tests, serum immunoassays for antigen-specific IgE and basophil histamine release test, and followed up their clinical courses after the diagnosis. Among 36 patients with WDEIA, 30 patients had used only one type of HWP-soap. The patients with HWP-WDEIA were mainly women and had developed facial symptoms and angioedema. They suffered from blood pressure reductions less frequently than patients with conventional WDEIA. The levels of gluten-specific IgE were higher than those of omega-5 gliadin in patients with HWP-WDEIA (P < 0.05, One-way ANOVA). All patients with HWP-WDEIA were positive against HWP in histamine release test. Among the conventional wheat antigens, glutenins induced the highest histamine release from basophils of patients with HWP-WDEIA. The sensitivities of patients against glutens and glutenins were reduced over months along with the discontinuance of HWP-soap. The development of HWP-WDEIA is associated with the use of HWP-soap. The sensitivity to HWP that cross reacts with non-processed wheat may be reduced or possibly cured after the discontinuation of HWP-soap.
Hiragun, Makiko; Ishii, Kaori; Hiragun, Takaaki; Shindo, Hajime; Mihara, Shoji; Matsuo, Hiroaki; Hide, Michihiro
2011-12-01
Recently an increasing number of patients with wheat-dependent exercise-induced anaphylaxis (WDEIA), developed during or after using hydrolyzed wheat protein (HWP)-containing soap (HWP-WDEIA), were reported in Japan. To clarify the relation between WDEIA and HWP-containing soap and their prognosis, we investigated the patients who visited Hiroshima University Hospital and were diagnosed as WDEIA from January 2010 to June 2011. We took detailed clinical histories, performed skin prick tests, serum immunoassays for antigen-specific IgE and basophil histamine release test, and followed up their clinical courses after the diagnosis. Among 36 patients with WDEIA, 30 patients had used only one type of HWP-soap. The patients with HWP-WDEIA were mainly women and had developed facial symptoms and angioedema. They suffered from blood pressure reductions less frequently than patients with conventional WDEIA. The levels of glutens-specific IgE were higher than those of ω-5 gliadin in patients with HWP-WDEIA (p<0.05, One-way ANOVA). All patients with HWP-WDEIA were positive against HWP in histamine release test. Among the conventional wheat antigens, glutenins induced highest histamine release from basophils of patients with HWP-WDEIA. The sensitivities of patients against glutens and glutenins were reduced over months along with the discontinuance of HWP-soap. The development of HWP-WDEIA is associated with the use of HWP-soap. The sensitivities to HWP that cross reacts with non-processed wheat may be reduced or possibly cured after the discontinuation of HWP-soap.
Wu, Yixuan; Albrecht, Todd R; Baillat, David; Wagner, Eric J; Tong, Liang
2017-04-25
The metazoan Integrator complex (INT) has important functions in the 3'-end processing of noncoding RNAs, including the uridine-rich small nuclear RNA (UsnRNA) and enhancer RNA (eRNA), and in the transcription of coding genes by RNA polymerase II. The INT contains at least 14 subunits, but its molecular mechanism of action is poorly understood, because currently there is little structural information about its subunits. The endonuclease activity of INT is mediated by its subunit 11 (IntS11), which belongs to the metallo-β-lactamase superfamily and is a paralog of CPSF-73, the endonuclease for pre-mRNA 3'-end processing. IntS11 forms a stable complex with Integrator complex subunit 9 (IntS9) through their C-terminal domains (CTDs). Here, we report the crystal structure of the IntS9-IntS11 CTD complex at 2.1-Å resolution and detailed, structure-based biochemical and functional studies. The complex is composed of a continuous nine-stranded β-sheet with four strands from IntS9 and five from IntS11. Highly conserved residues are located in the extensive interface between the two CTDs. Yeast two-hybrid assays and coimmunoprecipitation experiments confirm the structural observations on the complex. Functional studies demonstrate that the IntS9-IntS11 interaction is crucial for the role of INT in snRNA 3'-end processing.
Li, Chuan; Han, Lei; Ma, Chun-Wai; Lai, Suk-King; Lai, Chun-Hong; Shum, Daisy Kwok Yan; Chan, Ying-Shing
2013-07-01
Using sinusoidal oscillations of linear acceleration along both the horizontal and vertical planes to stimulate otolith organs in the inner ear, we charted the postnatal time at which responsive neurons in the rat inferior olive (IO) first showed Fos expression, an indicator of neuronal recruitment into the otolith circuit. Neurons in subnucleus dorsomedial cell column (DMCC) were activated by vertical stimulation as early as P9 and by horizontal (interaural) stimulation as early as P11. By P13, neurons in the β subnucleus of IO (IOβ) became responsive to horizontal stimulation along the interaural and antero-posterior directions. By P21, neurons in the rostral IOβ became also responsive to vertical stimulation, but those in the caudal IOβ remained responsive only to horizontal stimulation. Nearly all functionally activated neurons in DMCC and IOβ were immunopositive for the NR1 subunit of the NMDA receptor and the GluR2/3 subunit of the AMPA receptor. In situ hybridization studies further indicated abundant mRNA signals of the glutamate receptor subunits by the end of the second postnatal week. This is reinforced by whole-cell patch-clamp data in which glutamate receptor-mediated miniature excitatory postsynaptic currents of rostral IOβ neurons showed postnatal increase in amplitude, reaching the adult level by P14. Further, these neurons exhibited subthreshold oscillations in membrane potential as from P14. Taken together, our results support that ionotropic glutamate receptors in the IO enable postnatal coding of gravity-related information and that the rostral IOβ is the only IO subnucleus that encodes spatial orientations in 3-D.
Bryant, D A; de Lorimier, R; Lambert, D H; Dubbs, J M; Stirewalt, V L; Stevens, S E; Porter, R D; Tam, J; Jay, E
1985-01-01
The genes for the alpha- and beta-subunit apoproteins of allophycocyanin (AP) were isolated from the cyanelle genome of Cyanophora paradoxa and subjected to nucleotide sequence analysis. The AP beta-subunit apoprotein gene was localized to a 7.8-kilobase-pair Pst I restriction fragment from cyanelle DNA by hybridization with a tetradecameric oligonucleotide probe. Sequence analysis using that oligonucleotide and its complement as primers for the dideoxy chain-termination sequencing method confirmed the presence of both AP alpha- and beta-subunit genes on this restriction fragment. Additional oligonucleotide primers were synthesized as sequencing progressed and were used to determine rapidly the nucleotide sequence of a 1336-base-pair region of this cloned fragment. This strategy allowed the sequencing to be completed without a detailed restriction map and without extensive and time-consuming subcloning. The sequenced region contains two open reading frames whose deduced amino acid sequences are 81-85% homologous to cyanobacterial and red algal AP subunits whose amino acid sequences have been determined. The two open reading frames are in the same orientation and are separated by 39 base pairs. AP alpha is 5' to AP beta and both coding sequences are preceded by a polypurine, Shine-Dalgarno-type sequence. Sequences upstream from AP alpha closely resemble the Escherichia coli consensus promoter sequences and also show considerable homology to promoter sequences for several chloroplast-encoded psbA genes. A 56-base-pair palindromic sequence downstream from the AP beta gene could play a role in the termination of transcription or translation. The allophycocyanin apoprotein subunit genes are located on the large single-copy region of the cyanelle genome. PMID:2987916
Müller, M; Schnitzler, P; Koonin, E V; Darai, G
1995-05-01
Cytoplasmic DNA viruses encode a DNA-dependent RNA polymerase (DdRP) that is essential for transcription of viral genes. The amino acid sequences of the known largest subunits of DdRPs from different species contain highly conserved regions. Oligonucleotide primers, deduced from two conserved domains (RQP[T/S]LH and NADFDGDE) were used for detecting the corresponding gene of fish lymphocystis disease virus (FLCDV), a member of the family Iridoviridae, which replicates in the cytoplasm of infected cells of flatfish. The gene coding for the largest subunit of the DdRP was identified using a PCR-derived probe. The screening of the complete EcoRI gene library of the viral genome led to the identification of the gene locus of the largest subunit of the DdRP within the EcoRI DNA fragment B (12.4 kbp, 0.034 to 0.165 map units). The nucleotide sequence of a part (8334 bp) of the EcoRI DNA fragment B was determined and a large ORF on the lower strand (ATG = 5787; TAA = 2190) was detected which encodes a protein of 1199 amino acids. Comparison of the amino acid sequences of the largest subunits of the DdRP (RPO1) of FLCDV and Chilo iridescent virus (CIV) revealed a dramatic difference in their domain organization. Unlike the 1051 aa RPO1 of CIV, which lacks the C-terminal domain conserved in eukaryotic, eubacterial and other viral RNA polymerases, the 1199 aa RPO1 of FLCDV is fully collinear with its cellular and viral homologues. Despite this difference, comparative analysis of the amino acid sequences of viral and cellular RNA polymerases suggests a common origin for the largest RNA polymerase subunits of FLCDV and CIV.
Coexpression of the KCNA3B gene product with Kv1.5 leads to a novel A-type potassium channel.
Leicher, T; Bähring, R; Isbrandt, D; Pongs, O
1998-12-25
Shaker-related voltage-gated potassium (Kv) channels may be heterooligomers consisting of membrane-integral alpha-subunits associated with auxiliary cytoplasmic beta-subunits. In this study we have cloned the human Kvbeta3.1 subunit and the corresponding KCNA3B gene. Identification of sequence-tagged sites in the gene mapped KCNA3B to band p13.1 of human chromosome 17. Comparison of the KCNA1B, KCNA2B, and KCNA3B gene structures showed that the three Kvbeta genes have very disparate lengths varying from >/=350 kb (KCNA1B) to approximately 7 kb (KCNA3B). Yet, the exon patterns of the three genes, which code for the seven known mammalian Kvbeta subunits, are very similar. The Kvbeta1 and Kvbeta2 splice variants are generated by alternative use of 5'-exons. Mouse Kvbeta4, a potential splice variant of Kvbeta3, is a read-through product where the open reading frame starts within the sequence intervening between Kvbeta3 exons 7 and 8. The human KCNA3B sequence does not contain a mouse Kvbeta4-like open reading frame. Human Kvbeta3 mRNA is specifically expressed in the brain, where it is predominantly detected in the cerebellum. The heterologous coexpression of human Kv1.5 and Kvbeta3.1 subunits in Chinese hamster ovary cells yielded a novel Kv channel mediating very fast inactivating (A-type) outward currents upon depolarization. Thus, the expression of Kvbeta3.1 subunits potentially extends the possibilities to express diverse A-type Kv channels in the human brain.
Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A
1992-06-01
Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.
Sikorav, J L; Duval, N; Anselmet, A; Bon, S; Krejci, E; Legay, C; Osterlund, M; Reimund, B; Massoulié, J
1988-01-01
In this paper, we show the existence of alternative splicing in the 3' region of the coding sequence of Torpedo acetylcholinesterase (AChE). We describe two cDNA structures which both diverge from the previously described coding sequence of the catalytic subunit of asymmetric (A) forms (Schumacher et al., 1986; Sikorav et al., 1987). They both contain a coding sequence followed by a non-coding sequence and a poly(A) stretch. Both of these structures were shown to exist in poly(A)+ RNAs, by S1 mapping experiments. The divergent region encoded by the first sequence corresponds to the precursor of the globular dimeric form (G2a), since it contains the expected C-terminal amino acids, Ala-Cys. These amino acids are followed by a 29 amino acid extension which contains a hydrophobic segment and must be replaced by a glycolipid in the mature protein. Analyses of intact G2a AChE showed that the common domain of the protein contains intersubunit disulphide bonds. The divergent region of the second type of cDNA consists of an adjacent genomic sequence, which is removed as an intron in A and Ga mRNAs, but may encode a distinct, less abundant catalytic subunit. The structures of the cDNA clones indicate that they are derived from minor mRNAs, shorter than the three major transcripts which have been described previously (14.5, 10.5 and 5.5 kb). Oligonucleotide probes specific for the asymmetric and globular terminal regions hybridize with the three major transcripts, indicating that their size is determined by 3'-untranslated regions which are not related to the differential splicing leading to A and Ga forms. Images PMID:3181125
Pharmacogenetics of new analgesics
Lötsch, Jörn; Geisslinger, Gerd
2011-01-01
Patient phenotypes in pharmacological pain treatment varies between individuals, which could be partly assigned to their genotypes regarding the targets of classical analgesics (OPRM1, PTGS2) or associated signalling pathways (KCNJ6). Translational and genetic research have identified new targets, for which new analgesics are being developed. This addresses voltage-gated sodium, calcium and potassium channels, for which SCN9A, CACNA1B, KCNQ2 and KCNQ3, respectively, are primary gene candidates because they code for the subunits of the respective channels targeted by analgesics currently in clinical development. Mutations in voltage gated transient receptor potential (TRPV) channels are known from genetic pain research and may modulate the effects of analgesics under development targeting TRPV1 or TRPV3. To this add ligand-gated ion channels including nicotinic acetylcholine receptors, ionotropic glutamate-gated receptors and ATP-gated purinergic P2X receptors with most important subunits coded by CHRNA4, GRIN2B and P2RX7. Among G protein coupled receptors, δ-opioid receptors (coded by OPRD1), cannabinoid receptors (CNR1 and CNR2), metabotropic glutamate receptors (mGluR5 coded by GRM5), bradykinin B1 (BDKRB1) and 5-HT1A (HTR1A) receptors are targeted by new analgesic substances. Finally, nerve growth factor (NGFB), its tyrosine kinase receptor (NTRK1) and the fatty acid amide hydrolase (FAAH) have become targets of interest. For most of these genes, functional variants have been associated with neuro-psychiatric disorders and not yet with analgesia. However, research on the genetic modulation of pain has already identified variants in these genes, relative to pain, which may facilitate the pharmacogenetic assessments of new analgesics. The increased number of candidate pharmacogenetic modulators of analgesic actions may open opportunities for the broader clinical implementation of genotyping information. PMID:20942817
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR), a key regulatory enzyme in the DNA synthesis pathway. The gene coding for the RR of MDV is located in the unique long (UL) region of the genome. The large subunit is encoded by UL39 (RR1) and is predicted to comprise 860 amino acid...
Morchikh, Mehdi; Cribier, Alexandra; Raffel, Raoul; Amraoui, Sonia; Cau, Julien; Severac, Dany; Dubois, Emeric; Schwartz, Olivier; Bennasser, Yamina; Benkirane, Monsef
2017-08-03
The DNA-mediated innate immune response underpins anti-microbial defenses and certain autoimmune diseases. Here we used immunoprecipitation, mass spectrometry, and RNA sequencing to identify a ribonuclear complex built around HEXIM1 and the long non-coding RNA NEAT1 that we dubbed the HEXIM1-DNA-PK-paraspeckle components-ribonucleoprotein complex (HDP-RNP). The HDP-RNP contains DNA-PK subunits (DNAPKc, Ku70, and Ku80) and paraspeckle proteins (SFPQ, NONO, PSPC1, RBM14, and MATRIN3). We show that binding of HEXIM1 to NEAT1 is required for its assembly. We further demonstrate that the HDP-RNP is required for the innate immune response to foreign DNA, through the cGAS-STING-IRF3 pathway. The HDP-RNP interacts with cGAS and its partner PQBP1, and their interaction is remodeled by foreign DNA. Remodeling leads to the release of paraspeckle proteins, recruitment of STING, and activation of DNAPKc and IRF3. Our study establishes the HDP-RNP as a key nuclear regulator of DNA-mediated activation of innate immune response through the cGAS-STING pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori
Shao, Ya-Ming; Dong, Ke; Zhang, Chuan-Xi
2007-01-01
Background Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance. Results We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5. Conclusion B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family. PMID:17868469
An inversion of 25 base pairs causes feline GM2 gangliosidosis variant.
Martin, Douglas R; Krum, Barbara K; Varadarajan, G S; Hathcock, Terri L; Smith, Bruce F; Baker, Henry J
2004-05-01
In G(M2) gangliosidosis variant 0, a defect in the beta-subunit of lysosomal beta-N-acetylhexosaminidase (EC 3.2.1.52) causes abnormal accumulation of G(M2) ganglioside and severe neurodegeneration. Distinct feline models of G(M2) gangliosidosis variant 0 have been described in both domestic shorthair and Korat cats. In this study, we determined that the causative mutation of G(M2) gangliosidosis in the domestic shorthair cat is a 25-base-pair inversion at the extreme 3' end of the beta-subunit (HEXB) coding sequence, which introduces three amino acid substitutions at the carboxyl terminus of the protein and a translational stop that is eight amino acids premature. Cats homozygous for the 25-base-pair inversion express levels of beta-subunit mRNA approximately 190% of normal and protein levels only 10-20% of normal. Because the 25-base-pair inversion is similar to mutations in the terminal exon of human HEXB, the domestic shorthair cat should serve as an appropriate model to study the molecular pathogenesis of human G(M2) gangliosidosis variant 0 (Sandhoff disease).
Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean
2006-07-01
The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.
Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome.
Bénit, P; Slama, A; Cartault, F; Giurgea, I; Chretien, D; Lebon, S; Marsac, C; Munnich, A; Rötig, A; Rustin, P
2004-01-01
Respiratory chain complex I deficiency represents a genetically heterogeneous group of diseases resulting from mutations in mitochondrial or nuclear genes. Mutations have been reported in 13 of the 14 subunits encoding the core of complex I (seven mitochondrial and six nuclear genes) and these result in Leigh or Leigh-like syndromes or cardiomyopathy. In this study, a combination of denaturing high performance liquid chromatography and sequence analysis was used to study the NDUFS3 gene in a series of complex I deficient patients. Mutations found in this gene (NADH dehydrogenase iron-sulphur protein 3), coding for the seventh and last subunit of complex I core, were shown to cause late onset Leigh syndrome, optic atrophy, and complex I deficiency. A biochemical diagnosis of complex I deficiency on cultured amniocytes from a later pregnancy was confirmed through the identification of disease causing NDUFS3 mutations in these cells. While mutations in the NDUFS3 gene thus result in Leigh syndrome, a dissimilar clinical phenotype is observed in mutations in the NDUFV2 and NDUFS2 genes, resulting in encephalomyopathy and cardiomyopathy. The reasons for these differences are uncertain.
Grandin, Nathalie; Corset, Laetitia; Charbonneau, Michel
2012-01-01
Background In budding yeast, the highly conserved Tel2 protein is part of several complexes and its main function is now believed to be in the biogenesis of phosphatidyl inositol 3-kinase related kinases. Principal Findings To uncover potentially novel functions of Tel2, we set out to isolate temperature-sensitive (ts) mutant alleles of TEL2 in order to perform genetic screenings. MED15/GAL11, a subunit of Mediator, a general regulator of transcription, was isolated as a suppressor of these mutants. The isolated tel2 mutants exhibited a short telomere phenotype that was partially rescued by MED15/GAL11 overexpression. The tel2-15mutant was markedly deficient in the transcription of EST2, coding for the catalytic subunit of telomerase, potentially explaining the short telomere phenotype of this mutant. In parallel, a two-hybrid screen identified an association between Tel2 and Rvb2, a highly conserved member of the AAA+ family of ATPases further found by in vivo co-immunoprecipitation to be tight and constitutive. Transiently overproduced Tel2 and Med15/Gal11 associated together, suggesting a potential role for Tel2 in transcription. Other Mediator subunits, as well as SUA7/TFIIB, also rescued the tel2-ts mutants. Significance Altogether, the present data suggest the existence of a novel role for Tel2, namely in transcription, possibly in cooperation with Rvb2 and involving the existence of physical interactions with the Med15/Gal11 Mediator subunit. PMID:22291956
Huang, Juan; Wang, Yujie; Li, Daiyan; Diao, Chengdou; Zhu, Wei; Tang, Yao; Wang, Yi; Fan, Xing; Zeng, Jian; Xu, Lili; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong
2016-01-01
Hexaploid triticale is an important forage crop and a promising energy plant. Some forms were previously reported for developing the hexaploid triticale, such as crossing tetraploid wheat or hexaploid wheat with rye, crossing hexaploid triticale and/or hexaploid wheat with octoploid triticale, and spontaneously appearing in the selfed progenies of octoploid triticale. In the present study, we developed an effective method for production of diverse types of hexaploid triticale via wheat—rye—Psathyrostachys huashanica trigeneric hybrid. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) karyotyping revealed that D genome chromosomes were completely eliminated and the whole A, B, and R genome chromosomes were retained in three lines. More interestingly, the composite genome of the line K14-489-2 consisted of complete A and B genomes and chromosomes 1D, 2R, 3R, 4R, 5R, 6R, and 7R, that of line K14-491-2 was 12 A-genome (1A-6A), 14 B-genome (1B-7B), 12 R-genome (1R-3R, 5R-7R), and chromosomes 1D and 3D, and that of the line K14-547-1 had 26A/B and 14R chromosomes, plus one pair of centric 6BL/2DS translocations. This finding implies that some of D genome chromosomes can be spontaneously and stably incorporated into the hexaploid triticale. Additionally, a variety of high-molecular-weight glutenin subunits (HMW-GS) compositions were detected in the six hexaploid triticale lines, respectively. Besides, compared with its recurrent triticale parent Zhongsi828, these lines showed high level of resistance to stripe rust (Puccinia striiformis f. sp. tritici, Pst) pathogens prevalent in China, including V26/Gui 22. These new hexaploid triticales not only enhanced diversification of triticale but also could be utilized as valuable germplasm for wheat improvement. PMID:27182983
Raman, Gurusamy; Park, SeonJoo
2015-01-01
Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.
Raman, Gurusamy; Park, SeonJoo
2015-01-01
Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus. PMID:26513163
Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B.; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva
2018-01-01
The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity. PMID:29780400
Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva
2018-01-01
The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.
Yokooji, Tomoharu; Kurihara, Saki; Murakami, Tomoko; Chinuki, Yuko; Takahashi, Hitoshi; Morita, Eishin; Harada, Susumu; Ishii, Kaori; Hiragun, Makiko; Hide, Michihiro; Matsuo, Hiroaki
2013-12-01
In Japan, hydrolyzed wheat proteins (HWP) have been reported to cause wheat-dependent exercise-induced anaphylaxis (WDEIA) by transcutaneous sensitization using HWP-containing soap. Patients develop allergic reactions not only with soap use, but also with exercise after the intake of wheat protein (WP). ω5-Gliadin and HMW-glutenin were identified as major allergens in conventional WP-WDEIA patients. However, the allergens in HWP-WDEIA have yet to be elucidated. Sera were obtained from 22 patients with HWP-sensitized WDEIA. The allergenic activities of HWP and six recombinant wheat gluten proteins, including α/β-, γ-, ω1,2- and ω5-gliadin and low- and high molecular weight (HMW)-glutenins, were characterized by immunoblot analysis and histamine releasing test. IgE-binding epitopes were identified using arrays of overlapping peptides synthesized on SPOTs membrane. Immunoblot analysis showed that IgE antibodies (Abs) from HWP-WDEIA bound to α/β-, γ- and ω1,2-gliadin. Recombinant γ-gliadin induced significant histamine release from basophils in eight of 11 patients with HWP-WDEIA. An IgE-binding epitope "QPQQPFPQ" was identified within the primary sequence of γ-gliadin, and the deamidated peptide containing the "PEEPFP" sequence bound with IgE Abs more strongly compared to the native epitope-peptide. The epitope-peptide inhibited IgE-binding to HWP, indicating that the specific IgE to HWP cross-reacts with γ-gliadin. HWP-WDEIA patients could be sensitized to HWP containing a PEEPFP sequence, and WDEIA symptoms after WP ingestion could partly be induced by γ-gliadin. These findings could be useful to help develop tools for diagnosis and desensitization therapy for HWP-WDEIA.
Guanine nucleotide-binding regulatory proteins in retinal pigment epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Meisheng; Tran, V.T.; Fong, H.K.W.
1991-05-01
The expression of GTP-binding regulatory proteins (G proteins) in retinal pigment epithelial (RPE) cells was analyzed by RNA blot hybridization and cDNA amplification. Both adult and fetal human RPE cells contain mRNA for multiple G protein {alpha} subunits (G{alpha}) including G{sub s}{alpha}, G{sub i-1}{alpha}, G{sub i-2}{alpha}, G{sub i-3}{alpha}, and G{sub z}{alpha} (or G{sub x}{alpha}), where G{sub s} and G{sub i} are proteins that stimulate or inhibit adenylyl cyclase, respectively, and G{sub z} is a protein that may mediate pertussis toxin-insensitive events. Other G{alpha}-related mRNA transcripts were detected in fetal RPE cells by low-stringency hybridization to G{sub i-2}{alpha} and G{sub s}{alpha}more » protein-coding cDNA probes. The diversity of G proteins in RPE cells was further studied by cDNA amplification with reverse transcriptase and the polymerase chain reaction. This approach revealed that, besides the above mentioned members of the G{alpha} gene family, at least two other G{alpha} subunits are expressed in RPE cells. Human retinal cDNA clones that encode one of the additional G{alpha} subunits were isolated and characterized. The results indicate that this G{alpha} subunit belongs to a separate subfamily of G proteins that may be insensitive to inhibition by pertussis toxin.« less
Fusion of Escherichia coli heat-stable enterotoxin and heat-labile enterotoxin B subunit.
Guzman-Verduzco, L M; Kupersztoch, Y M
1987-11-01
The 3' terminus of the DNA coding for the extracellular Escherichia coli heat-stable enterotoxin (ST) devoid of transcription and translation stop signals was fused to the 5' terminus of the DNA coding for the periplasmic B subunit of the heat-labile enterotoxin (LTB) deleted of ribosomal binding sites and leader peptide. By RNA-DNA hybridization analysis, it was shown that the fused DNA was transcribed in vivo into an RNA species in close agreement with the expected molecular weight inferred from the nucleotide sequence. The translation products of the fused DNA resulted in a hybrid molecule recognized in Western blots (immunoblots) with antibodies directed against the heat-labile moiety. Anti-LTB antibodies coupled to a solid support bound ST and LTB simultaneously when incubated with ST-LTB cellular extracts. By [35S]cysteine pulse-chase experiments, it was shown that the fused ST-LTB polypeptide was converted from a precursor with an equivalent electrophoretic mobility of 20,800 daltons to an approximately 18,500-dalton species, which accumulated within the cell. The data suggest that wild-type ST undergoes at least two processing steps during its export to the culture supernatant. Blocking the natural carboxy terminus of ST inhibited the second proteolytic step and extracellular delivery of the hybrid molecule.
Savard, L; Li, P; Strauss, S H; Chase, M W; Michaud, M; Bousquet, J
1994-01-01
We have estimated the time for the last common ancestor of extant seed plants by using molecular clocks constructed from the sequences of the chloroplastic gene coding for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL) and the nuclear gene coding for the small subunit of rRNA (Rrn18). Phylogenetic analyses of nucleotide sequences indicated that the earliest divergence of extant seed plants is likely represented by a split between conifer-cycad and angiosperm lineages. Relative-rate tests were used to assess homogeneity of substitution rates among lineages, and annual angiosperms were found to evolve at a faster rate than other taxa for rbcL and, thus, these sequences were excluded from construction of molecular clocks. Five distinct molecular clocks were calibrated using substitution rates for the two genes and four divergence times based on fossil and published molecular clock estimates. The five estimated times for the last common ancestor of extant seed plants were in agreement with one another, with an average of 285 million years and a range of 275-290 million years. This implies a substantially more recent ancestor of all extant seed plants than suggested by some theories of plant evolution. PMID:8197201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostra, R.J.; Bleeker-Wagemakers, E.M.; Zwart, R.
1995-10-01
Three mtDNA point mutations at nucleotide position (np) 3460, at np 11778 and at np 14484, are thought to be of primary importance in the pathogenesis of Leber hereditary optic neuropathy (LHON), a maternally inherited disease characterized by subacute central vision loss. These mutations are present in genes coding for subunits of complex I (NADH dehydrogenase) of the respiratory chain, occur exclusively in LHON maternal pedigrees, and have never been reported to occur together. Johns and Neufeld postulated that an mtDNA mutation at np 9438, in the gene coding for one of the subunits (COX III) of complex IV (cytochromemore » c oxidase), was also of primary importance. Johns and Neufeld (1993) found this mutation, which changed a conserved glycine to a serine, in 5 unrelated LHON probands who did not carry one of the presently known primary mutations, but they did not find it in 400 controls. However, the role of this sequence variant has been questioned in the Journal when it has been found to occur in apparently healthy African and Cuban individuals. Subsequently, Johns et al. described this mutation in two Cuban individuals presenting with optic and peripheral neuropathy. 22 refs., 1 fig., 1 tab.« less
Tyler, S D; Johnson, W M; Lior, H; Wang, G; Rozee, K R
1991-01-01
A set of synthetic oligonucleotide primers was designed for use in a polymerase chain reaction protocol to specifically detect the B subunit genes in vtx2ha and vtx2hb, which code for the production of the VT2 (Shiga-like toxin II) variant cytotoxins VT2v-a and VT2v-b, respectively. An additional set of primers amplified a fragment common to the B subunits of the VT2 and the VT2 variant genes. Subsequent restriction endonuclease digestion of this amplicon permitted prediction of specific VT2 and variant genotypes on the basis of predetermined restriction fragment length polymorphisms. Genotypes of 21 VT2-producing strains of Escherichia coli were determined using this polymerase chain reaction-restriction fragment length polymorphism procedure. Four strains contained B subunit target sequences only for VT2 genes, 9 strains contained sequences only for VT2v-a genes, and 3 strains contained sequences only for VT2v-b. For genes in combination, one strain contained B subunit genes for both VT2 and VT2v-a and two strains contained B subunit genes for VT2 and VT2v-b. Two strains of E. coli O91:H21 contained both VT2v-a and VT2v-b B subunit genes. The VT2 reference strain of E. coli, E32511, was found to contain the targeted sequences from both VT2 and VT2v-a genes, whereas the recombinant E. coli, pEB1, possessed only that of the VT2 gene. The specific activities of extracellular VT2 determined in HeLa cells ranged from 0.3 to 41.7 TCD50 per microgram of protein in strains carrying the VT2 gene target and from 0 to 50.0 TCD50 per microgram of protein in strains carrying only the VT2 variant target (TCD50 is the tissue culture dose by which 50% of the cells were affected), suggesting that phenotypic expression does not correlate with genotype. Images PMID:1679436
Karn, Robert C; Laukaitis, Christina M
2003-06-17
Mouse salivary androgen-binding protein (ABP) is a member of the secretoglobin family produced in the submaxillary glands of house mice (Mus musculus). We report the cDNA sequences and amino acid sequences of the beta and gamma subunits of ABP from a mouse cDNA library, identifying the two subunits by their pIs and molecular weights. An anomalously high molecular weight of the alpha subunit is likely due to glycosylation at a single site. A phylogenetic comparison of the three subunits of ABP with the chains of other mammalian secretoglobins shows that ABP is most closely related to mouse lachrymal protein and to the major cat allergen Fel dI. An evaluation of the most conserved residues in ABP and the other secretoglobins, in light of structural data reported by others [Callebaut, I., Poupon, A., Bally, R., Demaret, J.-P., Housset, D., Delettre, J., Hossenlopp, P., and Mornon, J.-P. (2000) Ann. N.Y. Acad. Sci. 923, 90-112; Pattabiraman, N., Matthews, J., Ward, K., Mantile-Selvaggi, G., Miele, L., and Mukherjee, A. (2000) Ann. N.Y. Acad. Sci. 923, 113-127], allows us to draw conclusions about the critical residues important in ligand binding by the two different ABP dimers and to assess the importance of ligand binding in the function of the molecule. In addition to the cDNAs, which represent those of the musculus subspecies of Mus musculus, we also report the coding regions of the beta and gamma subunit cDNAs from two other mouse inbred strains which represent the other two subspecies: M. musculus domesticus and M. musculus castaneus. The high nonsynonymous/synonymous substitution rate ratios (K(a)/K(s)) for both the beta and gamma subunits suggest that these two proteins are evolving under strong directional selection, as has been reported for the alpha subunit [Hwang, J., Hofstetter, J., Bonhomme, F., and Karn, R. (1997) J. Hered. 88, 93-97; Karn, R., and Clements, M. (1999) Biochem. Genet. 37, 187-199].
A yeast-based genetic screening to identify human proteins that increase homologous recombination.
Collavoli, Anita; Comelli, Laura; Rainaldi, Giuseppe; Galli, Alvaro
2008-05-01
To identify new human proteins implicated in homologous recombination (HR), we set up 'a papillae assay' to screen a human cDNA library using the RS112 strain of Saccharomyces cerevisiae containing an intrachromosomal recombination substrate. We isolated 23 cDNAs, 11 coding for complete proteins and 12 for partially deleted proteins that increased HR when overexpressed in yeast. We characterized the effect induced by the overexpression of the complete human proteasome subunit beta 2, the partially deleted proteasome subunits alpha 3 and beta 8, the ribosomal protein L12, the brain abundant membrane signal protein (BASP1) and the human homologue to v-Ha-RAS (HRAS), which elevated HR by 2-6.5-fold over the control. We found that deletion of the RAD52 gene, which has a key role in most HR events, abolished the increase of HR induced by the proteasome subunits and HRAS; by contrast, the RAD52 deletion did not affect the high level of HR due to BASP1 and RPL12. This suggests that the proteins stimulated yeast HR via different mechanisms. Overexpression of the complete beta 2 human proteasome subunit or the partially deleted alpha 3 and beta 8 subunits increased methyl methanesulphonate (MMS) resistance much more in the rad52 Delta mutant than in the wild-type. Overexpression of RPL12 and BASP1 did not affect MMS resistance in both the wild-type and the rad52 Delta mutant, whereas HRAS decreased MMS resistance in the rad52 Delta mutant. The results indicate that these proteins may interfere with the pathway(s) involved in the repair of MMS-induced DNA damage. Finally, we provide further evidence that yeast is a helpful tool to identify human proteins that may have a regulatory role in HR.
Saha, Anusree; Das, Shubhajit; Moin, Mazahar; Dutta, Mouboni; Bakshi, Achala; Madhav, M. S.; Kirti, P. B.
2017-01-01
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops. PMID:28966624
Déquard-Chablat, Michelle; Sellem, Carole H; Golik, Pawel; Bidard, Frédérique; Martos, Alexandre; Bietenhader, Maïlis; di Rago, Jean-Paul; Sainsard-Chanet, Annie; Hermann-Le Denmat, Sylvie; Contamine, Véronique
2011-07-01
An F(1)F(O) ATP synthase in the inner mitochondrial membrane catalyzes the late steps of ATP production via the process of oxidative phosphorylation. A small protein subunit (subunit c or ATP9) of this enzyme shows a substantial genetic diversity, and its gene can be found in both the mitochondrion and/or nucleus. In a representative set of 26 species of fungi for which the genomes have been entirely sequenced, we found five Atp9 gene repartitions. The phylogenetic distribution of nuclear and mitochondrial Atp9 genes suggests that their evolution has included two independent transfers to the nucleus followed by several independent episodes of the loss of the mitochondrial and/or nuclear gene. Interestingly, we found that in Podospora anserina, subunit c is exclusively produced from two nuclear genes (PaAtp9-5 and PaAtp9-7), which display different expression profiles through the life cycle of the fungus. The PaAtp9-5 gene is specifically and strongly expressed in germinating ascospores, whereas PaAtp9-7 is mostly transcribed during sexual reproduction. Consistent with these observations, deletion of PaAtp9-5 is lethal, whereas PaAtp9-7 deletion strongly impairs ascospore production. The P. anserina PaAtp9-5 and PaAtp9-7 genes are therefore nonredundant. By swapping the 5' and 3' flanking regions between genes we demonstrated, however, that the PaAtp9 coding sequences are functionally interchangeable. These findings show that after transfer to the nucleus, the subunit c gene in Podospora became a key target for the modulation of cellular energy metabolism according to the requirements of the life cycle.
Loc, Nguyen Hoang; Bach, Nguyen Hoang; Kim, Tae-Geum; Yang, Moon-Sik
2010-07-01
The B subunit of Escherichia coli heat-labile enterotoxin (LTB), a non-toxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. We synthesized a gene encoding the LTB adapted to the optimized coding sequences in plants and fused to the endoplasmic reticulum retention signal SEKDEL to enhance its expression level and protein assembly in plants. The synthetic LTB gene was located into a plant expression vector under the control of CaMV 35S promoter and was introduced into Peperomia pellucida by biolistic transformation method. The integration of synthetic LTB gene into genomic DNA of transgenic plants was confirmed by genomic DNA PCR amplification method. The assembly of plant-produced LTB was detected by western blot analysis. The amount of LTB protein produced in transgenic P. pellucida leaves was approximately 0.75% of the total soluble plant protein. Enzyme-linked immunosorbent assay indicated that plant-synthesized LTB protein bound specifically to GM1-ganglioside, which is receptor for LTB on the cell surface, suggesting that the LTB subunits formed biological active pentamers. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim
1987-11-01
A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.
Peng, Rui; Zeng, Bo; Meng, Xiuxiang; Yue, Bisong; Zhang, Zhihe; Zou, Fangdong
2007-08-01
The complete mitochondrial genome sequence of the giant panda, Ailuropoda melanoleuca, was determined by the long and accurate polymerase chain reaction (LA-PCR) with conserved primers and primer walking sequence methods. The complete mitochondrial DNA is 16,805 nucleotides in length and contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and one control region. The total length of the 13 protein-coding genes is longer than the American black bear, brown bear and polar bear by 3 amino acids at the end of ND5 gene. The codon usage also followed the typical vertebrate pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 5 (ND5) gene. The molecular phylogenetic analysis was performed on the sequences of 12 concatenated heavy-strand encoded protein-coding genes, and suggested that the giant panda is most closely related to bears.
Krzeminska, Urszula; Wilson, Robyn; Rahman, Sadequr; Song, Beng Kah; Seneviratne, Sampath; Gan, Han Ming; Austin, Christopher M
2016-07-01
The complete mitochondrial genomes of two jungle crows (Corvus macrorhynchos) were sequenced. DNA was extracted from tissue samples obtained from shed feathers collected in the field in Sri Lanka and sequenced using the Illumina MiSeq Personal Sequencer. Jungle crow mitogenomes have a structural organization typical of the genus Corvus and are 16,927 bp and 17,066 bp in length, both comprising 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal subunit genes, and a non-coding control region. In addition, we complement already available house crow (Corvus spelendens) mitogenome resources by sequencing an individual from Singapore. A phylogenetic tree constructed from Corvidae family mitogenome sequences available on GenBank is presented. We confirm the monophyly of the genus Corvus and propose to use complete mitogenome resources for further intra- and interspecies genetic studies.
Bouhouche, A; Benomar, A; Bouslam, N; Chkili, T; Yahyaoui, M
2006-05-01
Mutilating sensory neuropathy with spastic paraplegia is a very rare disease with both autosomal dominant and recessive modes of inheritance. We previously mapped the locus of the autosomal recessive form to a 25 cM interval between markers D5S2048 and D5S648 on chromosome 5p. In this candidate interval, the Cct5 gene encoding the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (CCT) was the most obvious candidate gene since mutation in the Cct4 gene encoding the CCT delta subunit has been reported to be associated with autosomal recessive mutilating sensory neuropathy in mutilated foot (mf) rat mutant. A consanguineous Moroccan family with four patients displaying mutilating sensory neuropathy associated with spastic paraplegia was investigated. To identify the disease causing gene, the 11 coding exons of the Cct5 gene were screened for mutations by direct sequencing in all family members including the four patients, parents, and six at risk relatives. Sequence analysis of the Cct5 gene revealed a missense A492G mutation in exon 4 that results in the substitution of a highly conserved histidine for arginine amino acid 147. Interestingly, R147 was absent in 384 control matched chromosomes tested. This is the first disease causing mutation that has been identified in the human CCT subunit genes; the mf rat mutant could serve as an animal model for studying these chaperonopathies.
Hallmann, Kerstin; Kudin, Alexei P; Zsurka, Gábor; Kornblum, Cornelia; Reimann, Jens; Stüve, Burkhard; Waltz, Stephan; Hattingen, Elke; Thiele, Holger; Nürnberg, Peter; Rüb, Cornelia; Voos, Wolfgang; Kopatz, Jens; Neumann, Harald; Kunz, Wolfram S
2016-02-01
Isolated cytochrome c oxidase (complex IV) deficiency is one of the most frequent respiratory chain defects in humans and is usually caused by mutations in proteins required for assembly of the complex. Mutations in nuclear-encoded structural subunits are very rare. In a patient with Leigh-like syndrome presenting with leukodystrophy and severe epilepsy, we identified a homozygous splice site mutation in COX8A, which codes for the ubiquitously expressed isoform of subunit VIII, the smallest nuclear-encoded subunit of complex IV. The mutation, affecting the last nucleotide of intron 1, leads to aberrant splicing, a frame-shift in the highly conserved exon 2, and decreased amount of the COX8A transcript. The loss of the wild-type COX8A protein severely impairs the stability of the entire cytochrome c oxidase enzyme complex and manifests in isolated complex IV deficiency in skeletal muscle and fibroblasts, similar to the frequent c.845_846delCT mutation in the assembly factor SURF1 gene. Stability and activity of complex IV could be rescued in the patient's fibroblasts by lentiviral expression of wild-type COX8A. Our findings demonstrate that COX8A is indispensable for function of human complex IV and its mutation causes human disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Plastid transformation for Rubisco engineering and protocols for assessing expression.
Whitney, Spencer M; Sharwood, Robert E
2014-01-01
The assimilation of CO2 within chloroplasts is catalyzed by the bi-functional enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco. Within higher plants the Rubisco large subunit gene, rbcL, is encoded in the plastid genome, while the Rubisco small subunit gene, RbcS is coded in the nucleus by a multi-gene family. Rubisco is considered a poor catalyst due to its slow turnover rate and its additional fixation of O2 that can result in wasteful loss of carbon through the energy requiring photorespiratory cycle. Improving the carboxylation efficiency and CO2/O2 selectivity of Rubisco within higher plants has been a long-term goal which has been greatly advanced in recent times using plastid transformation techniques. Here we present experimental methodologies for efficiently engineering Rubisco in the plastids of a tobacco master-line and analyzing leaf Rubisco content.
Mediator phosphorylation prevents stress response transcription during non-stress conditions.
Miller, Christian; Matic, Ivan; Maier, Kerstin C; Schwalb, Björn; Roether, Susanne; Strässer, Katja; Tresch, Achim; Mann, Matthias; Cramer, Patrick
2012-12-28
The multiprotein complex Mediator is a coactivator of RNA polymerase (Pol) II transcription that is required for the regulated expression of protein-coding genes. Mediator serves as an end point of signaling pathways and regulates Pol II transcription, but the mechanisms it uses are not well understood. Here, we used mass spectrometry and dynamic transcriptome analysis to investigate a functional role of Mediator phosphorylation in gene expression. Affinity purification and mass spectrometry revealed that Mediator from the yeast Saccharomyces cerevisiae is phosphorylated at multiple sites of 17 of its 25 subunits. Mediator phosphorylation levels change upon an external stimulus set by exposure of cells to high salt concentrations. Phosphorylated sites in the Mediator tail subunit Med15 are required for suppression of stress-induced changes in gene expression under non-stress conditions. Thus dynamic and differential Mediator phosphorylation contributes to gene regulation in eukaryotic cells.
Wild-type isopropylmalate isomerase in Salmonella typhimurium is composed of two different subunits.
Fultz, P N; Kemper, J
1981-01-01
The isopropylmalate isomerase in Salmonella typhimurium is the second enzyme specific for leucine biosynthesis. It is a complex enzyme composed of two subunits which are coded for by two genes of the leucine operon, leuC and leuD. The two polypeptides have been shown to copurify through successive ammonium sulfate fractionations and have been identified on sodium dodecyl sulfate-polyacrylamide gels as having molecular weights of 51,000 (leuC gene product) and 23,500 (leuD gene product). They have also been shown to be fairly stable, since in vitro complementation of cell-free extracts of leuC and leuD mutant strains was demonstrated, with only a 40% loss of activity 16 h after preparation of the extracts. The native isopropylmalate isomerase was shown to have a Km for its substrate alpha-isopropylmalate of 3 x 10(-4)M. Images PMID:7026530
Zhang, Yanan; Song, Tao; Pan, Tao; Sun, Xiaonan; Sun, Zhonglou; Qian, Lifu; Zhang, Baowei
2016-07-01
The complete sequence of the mitochondrial genome was determined for Asio flammeus, which is distributed widely in geography. The length of the complete mitochondrial genome was 18,966 bp, containing 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes (PCGs), and 1 non-coding region (D-loop). All the genes were distributed on the H-strand, except for the ND6 subunit gene and eight tRNA genes which were encoded on the L-strand. The D-loop of A. flammeus contained many tandem repeats of varying lengths and repeat numbers. The molecular-based phylogeny showed that our species acted as the sister group to A. capensis and the supported Asio was the monophyletic group.
2009-08-01
type and amount of pollutants emitted into the atmosphere, the size and topography of the air basin , and the prevailing meteorological conditions...Upper Missouri Dearborn Rivers Sub- Basin , Sub-Unit 686 (BAH, 2008). 3.2.1.2 Surface Water MAFB lies on a plateau roughly 10 square miles in...Rivers Sub- Basin (Hydrologic Unit Code 10030102) (BAH, 2008). The watershed drainage area is approximately 6,930 acres, of which approximately 3,052
The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum
Feagin, Jean E.; Harrell, Maria Isabel; Lee, Jung C.; Coe, Kevin J.; Sands, Bryan H.; Cannone, Jamie J.; Tami, Germaine; Schnare, Murray N.; Gutell, Robin R.
2012-01-01
Background The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. Principal Findings The identification of 14 additional small mitochondrial transcripts from P. falcipaurm and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. Significance All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered. PMID:22761677
Graentzdoerffer, Andrea; Rauh, David; Pich, Andreas; Andreesen, Jan R
2003-01-01
Two gene clusters encoding similar formate dehydrogenases (FDH) were identified in Eubacterium acidaminophilum. Each cluster is composed of one gene coding for a catalytic subunit ( fdhA-I, fdhA-II) and one for an electron-transferring subunit ( fdhB-I, fdhB-II). Both fdhA genes contain a TGA codon for selenocysteine incorporation and the encoded proteins harbor five putative iron-sulfur clusters in their N-terminal region. Both FdhB subunits resemble the N-terminal region of FdhA on the amino acid level and contain five putative iron-sulfur clusters. Four genes thought to encode the subunits of an iron-only hydrogenase are located upstream of the FDH gene cluster I. By sequence comparison, HymA and HymB are predicted to contain one and four iron-sulfur clusters, respectively, the latter protein also binding sites for FMN and NAD(P). Thus, HymA and HymB seem to represent electron-transferring subunits, and HymC the putative catalytic subunit containing motifs for four iron-sulfur clusters and one H-cluster specific for Fe-only hydrogenases. HymD has six predicted transmembrane helices and might be an integral membrane protein. Viologen-dependent FDH activity was purified from serine-grown cells of E. acidaminophilum and the purified protein complex contained four subunits, FdhA and FdhB, encoded by FDH gene cluster II, and HymA and HymB, identified after determination of their N-terminal sequences. Thus, this complex might represent the most simple type of a formate hydrogen lyase. The purified formate dehydrogenase fraction contained iron, tungsten, a pterin cofactor, and zinc, but no molybdenum. FDH-II had a two-fold higher K(m) for formate (0.37 mM) than FDH-I and also catalyzed CO(2) reduction to formate. Reverse transcription (RT)-PCR pointed to increased expression of FDH-II in serine-grown cells, supporting the isolation of this FDH isoform. The fdhA-I gene was expressed as inactive protein in Escherichia coli. The in-frame UGA codon for selenocysteine incorporation was read in the heterologous system only as stop codon, although its potential SECIS element exhibited a quite high similarity to that of E. coli FDH.
Smothers, C. Thetford; Jin, Chun; Woodward, John J.
2013-01-01
Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549
Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb.
Wang, Wei; Yao, Xiao; Huang, Yan; Hu, Xiangming; Liu, Runzhong; Hou, Dongming; Chen, Ruichuan; Wang, Gang
2013-01-01
The Mediator is a multi-subunit complex that transduces regulatory information from transcription regulators to the RNA polymerase II apparatus. Growing evidence suggests that Mediator plays roles in multiple stages of eukaryotic transcription, including elongation. However, the detailed mechanism by which Mediator regulates elongation remains elusive. In this study, we demonstrate that Mediator MED23 subunit controls a basal level of transcription by recruiting elongation factor P-TEFb, via an interaction with its CDK9 subunit. The mRNA level of Egr1, a MED23-controlled model gene, is reduced 4-5 fold in Med23 (-/-) ES cells under an unstimulated condition, but Med23-deficiency does not alter the occupancies of RNAP II, GTFs, Mediator complex, or activator ELK1 at the Egr1 promoter. Instead, Med23 depletion results in a significant decrease in P-TEFb and RNAP II (Ser2P) binding at the coding region, but no changes for several other elongation regulators, such as DSIF and NELF. ChIP-seq revealed that Med23-deficiency partially reduced the P-TEFb occupancy at a set of MED23-regulated gene promoters. Further, we demonstrate that MED23 interacts with CDK9 in vivo and in vitro. Collectively, these results provide the mechanistic insight into how Mediator promotes RNAP II into transcription elongation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Januszyk, Kurt; Liu, Quansheng; Lima, Christopher D.
The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known asmore » PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, P.J.; Coulter-Mackie, M.B.
1992-10-01
The B1 variant form of Tay-Sachs disease is enzymologically unique in that the causative mutation(s) appear to affect the active site in the [alpha] subunit of [beta]-hexosaminidase A without altering its ability to associate with the [beta] subunit. Most previously reported B1 variant mutations were found in exon 5 within codon 178. The coding sequence of the [alpha] subunit gene of a patient with the B1 variant form was examined with a combination of reverse transcription of mRNA to cDNA, PCR, and dideoxy sequencing. A double mutation in exon 6 has been identified: a G[sub 574][yields]C transversion causing a val[submore » 192][yields]leu change and a G[sub 598][yields] A transition resulting in a val[sub 200][yields]met alteration. The amplified cDNAs were otherwise normal throughout their sequence. The 574 and 598 alterations have been confirmed by amplification directly from genomic DNA from the patient and her mother. Transient-expression studies of the two exon 6 mutations (singly or together) in COS-1 cells show that the G[sub 574][yields]C change is sufficient to cause the loss of enzyme activity. The biochemical phenotype of the 574 alteration in transfection studies is consistent with that expected for a B1 variant mutation. As such, this mutation differs from previously reported B1 variant mutations, all of which occur in exon 5. 31 refs., 2 figs., 2 tabs.« less
Immunodiagnostic Value of Echinococcus Granulosus Recombinant B8/1 Subunit of Antigen B.
Savardashtaki, Amir; Sarkari, Bahador; Arianfar, Farzane; Mostafavi-Pour, Zohreh
2017-06-01
Cystic echinococcosis (CE), as a chronic parasitic disease, is a major health problem in many countries. The performance of the currently available serodiagnostic tests for the diagnosis of CE is unsatisfactory. The current study aimed at sub-cloning a gene, encoding the B8/1 subunit of antigen B (AgB) from Echinococcus granulosus, using gene optimization for the immunodiagnosis of human CE. The coding sequence for AgB8/1 subunit of Echinococcus granulosus was selected from GenBank and was gene-optimized. The sequence was synthesized and inserted into pGEX-4T-1 vector. Purification was performed with GST tag affinity column. Diagnostic performance of the produced recombinant antigen, native antigen B and a commercial ELISA kit were further evaluated in an ELISA system, using a panel of sera from CE patients and controls. SDS-PAGE demonstrated that the protein of interest had a high expression level and purity after GST tag affinity purification. Western blotting verified the immunoreactivity of the produced recombinant antigen with the sera of CE patients. In an ELISA system, the sensitivity and specificity (for human CE diagnosis) of the recombinant antigen, native antigen B and commercial kit were respectively 93% and 92%, 87% and 90% and 97% and 95%. The produced recombinant antigen showed a high diagnostic value which can be recommended for serodiagnosis of CE in Iran and other CE-endemic areas. Utilizing the combination of other subunits of AgB8 would improve the performance value of the introduced ELISA system.
Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M
1997-06-25
Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.
Bitrián, Marta; Roodbarkelari, Farshad; Horváth, Mihály; Koncz, Csaba
2011-03-01
Recombineering, permitting precise modification of genes within bacterial artificial chromosomes (BACs) through homologous recombination mediated by lambda phage-encoded Red proteins, is a widely used powerful tool in mouse, Caenorhabditis and Drosophila genetics. As Agrobacterium-mediated transfer of large DNA inserts from binary BACs and TACs into plants occurs at low frequency, recombineering is so far seldom exploited in the analysis of plant gene functions. We have constructed binary plant transformation vectors, which are suitable for gap-repair cloning of genes from BACs using recombineering methods previously developed for other organisms. Here we show that recombineering facilitates PCR-based generation of precise translational fusions between coding sequences of fluorescent reporter and plant proteins using galK-based exchange recombination. The modified target genes alone or as part of a larger gene cluster can be transferred by high-frequency gap-repair into plant transformation vectors, stably maintained in Agrobacterium and transformed without alteration into plants. Versatile application of plant BAC-recombineering is illustrated by the analysis of developmental regulation and cellular localization of interacting AKIN10 catalytic and SNF4 activating subunits of Arabidopsis Snf1-related (SnRK1) protein kinase using in vivo imaging. To validate full functionality and in vivo interaction of tagged SnRK1 subunits, it is demonstrated that immunoprecipitated SNF4-YFP is bound to a kinase that phosphorylates SnRK1 candidate substrates, and that the GFP- and YFP-tagged kinase subunits co-immunoprecipitate with endogenous wild type AKIN10 and SNF4. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
de Jesus, Lázaro Wender O; Bogerd, Jan; Vieceli, Felipe M; Branco, Giovana S; Camargo, Marília P; Cassel, Mônica; Moreira, Renata G; Yan, Chao Y I; Borella, Maria I
2017-05-15
To better understand the endocrine control of reproduction in Characiformes and the reproductive dysfunctions that commonly occur in migratory fish of this order when kept in captivity, we chose Astyanax altiparanae, which has asynchronous ovarian development and multiple spawning events, as model species. From A. altiparanae pituitary total RNA, we cloned the full-length cDNAs coding for the follicle-stimulating hormone β subunit (fshb), the luteinizing hormone β subunit (lhb), and the common gonadotropin α subunit (gpha). All three sequences showed the highest degree of amino acid identity with other homologous sequences from Siluriformes and Cypriniformes. Real-time, quantitative PCR analysis showed that gpha, fshb and lhb mRNAs were restricted to the pituitary gland. In situ hybridization and immunofluorescence, using specific-developed and characterized polyclonal antibodies, revealed that both gonadotropin β subunits mRNAs/proteins are expressed by distinct populations of gonadotropic cells in the proximal pars distalis. No marked variations for lhb transcripts levels were detected during the reproductive cycle, and 17α,20β-dihydroxy-4-pregnen-3-one plasma levels were also constant, suggesting that the reproductive dysfunction seen in A. altiparanae females in captivity are probably due to a lack of increase of Lh synthesis during spawning season. In contrast, fshb transcripts changed significantly during the reproductive cycle, although estradiol-17β (E 2 ) levels remained constant during the experiment, possibly due to a differential regulation of E 2 synthesis. Taken together, these data demonstrate the putative involvement of gonadotropin signaling on the impairment of the reproductive function in a migratory species when kept in captivity. Future experimental studies must be carried to clarify this hypothesis. All these data open the possibility for further basic and applied studies related to reproduction in this fish model. Copyright © 2016 Elsevier Inc. All rights reserved.
Whitney, Spencer Michael; Kane, Heather Jean; Houtz, Robert L; Sharwood, Robert Edward
2009-04-01
Manipulation of Rubisco within higher plants is complicated by the different genomic locations of the large (L; rbcL) and small (S; RbcS) subunit genes. Although rbcL can be accurately modified by plastome transformation, directed genetic manipulation of the multiple nuclear-encoded RbcS genes is more challenging. Here we demonstrate the viability of linking the S and L subunits of tobacco (Nicotiana tabacum) Rubisco using a flexible 40-amino acid tether. By replacing the rbcL in tobacco plastids with an artificial gene coding for a S40L fusion peptide, we found that the fusions readily assemble into catalytic (S40L)8 and (S40L)16 oligomers that are devoid of unlinked S subunits. While there was little or no change in CO2/O2 specificity or carboxylation rate of the Rubisco oligomers, their Kms for CO2 and O2 were reduced 10% to 20% and 45%, respectively. In young maturing leaves of the plastome transformants (called ANtS40L), the S40L-Rubisco levels were approximately 20% that of wild-type controls despite turnover of the S40L-Rubisco oligomers being only slightly enhanced relative to wild type. The reduced Rubisco content in ANtS40L leaves is partly attributed to problems with folding and assembly of the S40L peptides in tobacco plastids that relegate approximately 30% to 50% of the S40L pool to the insoluble protein fraction. Leaf CO2-assimilation rates in ANtS40L at varying pCO2 corresponded with the kinetics and reduced content of the Rubisco oligomers. This fusion strategy provides a novel platform to begin simultaneously engineering Rubisco L and S subunits in tobacco plastids.
A functional portrait of Med7 and the mediator complex in Candida albicans.
Tebbji, Faiza; Chen, Yaolin; Richard Albert, Julien; Gunsalus, Kearney T W; Kumamoto, Carol A; Nantel, André; Sellam, Adnane; Whiteway, Malcolm
2014-11-01
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3' ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control.
A Functional Portrait of Med7 and the Mediator Complex in Candida albicans
Tebbji, Faiza; Chen, Yaolin; Richard Albert, Julien; Gunsalus, Kearney T. W.; Kumamoto, Carol A.; Nantel, André; Sellam, Adnane; Whiteway, Malcolm
2014-01-01
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control. PMID:25375174
Cloning, expression, and crystallization of Cpn60 proteins from Thermococcus litoralis.
Osipiuk, J; Sriram, M; Mai, X; Adams, M W; Joachimiak, A
2000-01-01
Two genes of the extreme thermophilic archaeon Thermococcus litoralis homologous to those that code for Cpn60 chaperonins were cloned and expressed in Escherichia coli. Each of the Cpn60 subunits as well as the entire Cpn60 complex crystallize in a variety of morphological forms. The best crystals diffract to 3.6 A resolution at room temperature and belong to the space group 1422 with unit cell parameters a = b = 193.5 A, c = 204.2 A.
NASA Technical Reports Server (NTRS)
Baer, J. A.
1976-01-01
A tactile paging system for deaf-blind people has been brought from the concept stage to the development of a first model. The model consists of a central station that transmits coded information via radio link to an on-body (i.e., worn on the wrist) receiving unit, the output from which is a coded vibrotactile signal. The model is a combination of commercially available equipment, customized electronic circuits, and electromechanical transducers. The paging system facilitates communication to deaf-blind clients in an institutional environment as an aid in their training and other activities. Several subunits of the system were individually developed, tested, and integrated into an operating system ready for experimentation and evaluation. The operation and characteristics of the system are described and photographs are shown.
van Nierop, Pim; Vormer, Tinke L.; Foijer, Floris; Verheij, Joanne; Lodder, Johannes C.; Andersen, Jesper B.; Mansvelder, Huibert D.; te Riele, Hein
2018-01-01
To identify coding and non-coding suppressor genes of anchorage-independent proliferation by efficient loss-of-function screening, we have developed a method for enzymatic production of low complexity shRNA libraries from subtracted transcriptomes. We produced and screened two LEGO (Low-complexity by Enrichment for Genes shut Off) shRNA libraries that were enriched for shRNA vectors targeting coding and non-coding polyadenylated transcripts that were reduced in transformed Mouse Embryonic Fibroblasts (MEFs). The LEGO shRNA libraries included ~25 shRNA vectors per transcript which limited off-target artifacts. Our method identified 79 coding and non-coding suppressor transcripts. We found that taurine-responsive GABAA receptor subunits, including GABRA5 and GABRB3, were induced during the arrest of non-transformed anchor-deprived MEFs and prevented anchorless proliferation. We show that taurine activates chloride currents through GABAA receptors on MEFs, causing seclusion of cell volume in large membrane protrusions. Volume seclusion from cells by taurine correlated with reduced proliferation and, conversely, suppression of this pathway allowed anchorage-independent proliferation. In human cholangiocarcinomas, we found that several proteins involved in taurine signaling via GABAA receptors were repressed. Low GABRA5 expression typified hyperproliferative tumors, and loss of taurine signaling correlated with reduced patient survival, suggesting this tumor suppressive mechanism operates in vivo. PMID:29787571
Bhattacharya, D; Steinkötter, J; Melkonian, M
1993-12-01
Centrin (= caltractin) is a ubiquitous, cytoskeletal protein which is a member of the EF-hand superfamily of calcium-binding proteins. A centrin-coding cDNA was isolated and characterized from the prasinophyte green alga Scherffelia dubia. Centrin PCR amplification primers were used to isolate partial, homologous cDNA sequences from the green algae Tetraselmis striata and Spermatozopsis similis. Annealing analyses suggested that centrin is a single-copy-coding region in T. striata and S. similis and other green algae studied. Centrin-coding regions from S. dubia, S. similis and T. striata encode four colinear EF-hand domains which putatively bind calcium. Phylogenetic analyses, including homologous sequences from Chlamydomonas reinhardtii and the land plant Atriplex nummularia, demonstrate that the domains of centrins are congruent and arose from the two-fold duplication of an ancestral EF hand with Domains 1+3 and Domains 2+4 clustering. The domains of centrins are also congruent with those of calmodulins demonstrating that, like calmodulin, centrin is an ancient protein which arose within the ancestor of all eukaryotes via gene duplication. Phylogenetic relationships inferred from centrin-coding region comparisons mirror results of small subunit ribosomal RNA sequence analyses suggesting that centrin-coding regions are useful evolutionary markers within the green algae.
Zhang, Li; Luo, Jiang-Tao; Hao, Ming; Zhang, Lian-Quan; Yuan, Zhong-Wei; Yan, Ze-Hong; Liu, Ya-Xi; Zhang, Bo; Liu, Bao-Long; Liu, Chun-Ji; Zhang, Huai-Gang; Zheng, You-Liang; Liu, Deng-Cai
2012-08-13
A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.
Khulape, S A; Maity, H K; Pathak, D C; Mohan, C Madhan; Dey, S
2015-09-01
The outer membrane glycoprotein, hemagglutinin-neuraminidase (HN) of Newcastle disease virus (NDV) is important for virus infection and subsequent immune response by host, and offers target for development of recombinant antigen-based immunoassays and subunit vaccines. In this study, the expression of HN protein of NDV is attempted in yeast expression system. Yeast offers eukaryotic environment for protein processing and posttranslational modifications like glycosylation, in addition to higher growth rate and easy genetic manipulation. Saccharomyces cerevisiae was found to be better expression system for HN protein than Pichia pastoris as determined by codon usage analysis. The complete coding sequence of HN gene was amplified with the histidine tag, cloned in pESC-URA under GAL10 promotor and transformed in Saccharomyces cerevisiae. The recombinant HN (rHN) protein was characterized by western blot, showing glycosylation heterogeneity as observed with other eukaryotic expression systems. The recombinant protein was purified by affinity column purification. The protein could be further used as subunit vaccine.
Expression of glutathione peroxidase I gene in selenium-deficient rats.
Reddy, A P; Hsu, B L; Reddy, P S; Li, N Q; Thyagaraju, K; Reddy, C C; Tam, M F; Tu, C P
1988-01-01
We have characterized a cDNA pGPX1211 encoding rat glutathione peroxidase I. The selenocysteine in the protein corresponded to a TGA codon in the coding region of the cDNA, similar to earlier findings in mouse and human genes, and a gene encoding the formate dehydrogenase from E. coli, another selenoenzyme. The rat GSH peroxidase I has a calculated subunit molecular weight of 22,155 daltons and shares 95% and 86% sequence homology with the mouse and human subunits, respectively. The 3'-noncoding sequence (greater than 930 bp) in pGPX1211 is much longer than that of the human sequences. We found that glutathione peroxidase I mRNA, but not the polypeptide, was expressed under nutritional stress of selenium deficiency where no glutathione peroxidase I activity can be detected. The failure of detecting any apoprotein for the glutathione peroxidase I under selenium deficiency and results published from other laboratories supports the proposal that selenium may be incorporated into the glutathione peroxidase I co-translationally. Images PMID:2838821
Zaborowska, Justyna; Isa, Nur F.
2015-01-01
Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents. PMID:27398404
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinlein, O.; Weiland, S.; Stoodt, J.
1996-03-01
The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set ofmore » primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.« less
Palacio, Melissa; Robledo, Gerardo Lucio; Reck, Mateus Arduvino; Grassi, Emanuel; Góes-Neto, Aristóteles; Drechsler-Santos, Elisandro Ricardo
2017-01-01
Polyporus dictyopus, with a large number of heterotypic synonyms, has been traditionally considered a species complex, characterized by wide morphological variation and geographic distribution. Thus, neotropical specimens previously identified as P. dictyopus from Amazonia, Cerrado and Atlantic Forest biomes were studied based on detailed macro- and micromorphological examination and phylogenetic analyses, using distinct ribosomal and protein-coding genomic regions: the nuclear ribosomal internal transcribed spacer (nrITS), nuclear ribosomal large subunit (nrLSU), and RNA polymerase II second subunit (RPB2). Two unrelated generic lineages, each one represented by different species, are reported: Atroporus is recovered and re-circumscribed to include A. diabolicus and A. rufoatratus comb. nov.; Neodictyopus gen. nov. is proposed to accommodate N. dictyopus comb. nov. and two new species, N. atlanticae and N. gugliottae. Our study showed that at least five distinct species were hidden under the name P. dictyopus. Detailed descriptions, pictures, illustrations, and a key are provided for Atroporus and Neodictyopus species.
Reck, Mateus Arduvino; Grassi, Emanuel; Góes-Neto, Aristóteles; Drechsler-Santos, Elisandro Ricardo
2017-01-01
Polyporus dictyopus, with a large number of heterotypic synonyms, has been traditionally considered a species complex, characterized by wide morphological variation and geographic distribution. Thus, neotropical specimens previously identified as P. dictyopus from Amazonia, Cerrado and Atlantic Forest biomes were studied based on detailed macro- and micromorphological examination and phylogenetic analyses, using distinct ribosomal and protein-coding genomic regions: the nuclear ribosomal internal transcribed spacer (nrITS), nuclear ribosomal large subunit (nrLSU), and RNA polymerase II second subunit (RPB2). Two unrelated generic lineages, each one represented by different species, are reported: Atroporus is recovered and re-circumscribed to include A. diabolicus and A. rufoatratus comb. nov.; Neodictyopus gen. nov. is proposed to accommodate N. dictyopus comb. nov. and two new species, N. atlanticae and N. gugliottae. Our study showed that at least five distinct species were hidden under the name P. dictyopus. Detailed descriptions, pictures, illustrations, and a key are provided for Atroporus and Neodictyopus species. PMID:29049417
NASA Astrophysics Data System (ADS)
Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki
2013-08-01
Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.
Yong, Hoi-Sen; Lim, Phaik-Eem; Eamsobhana, Praphathip
2017-01-01
The tephritid fruit fly Zeugodacus tau (Walker) is a polyphagous fruit pest of economic importance in Asia. Studies based on genetic markers indicate that it forms a species complex. We report here (1) the complete mitogenome of Z. tau from Malaysia and comparison with that of China as well as the mitogenome of other congeners, and (2) the relationship of Z. tau taxa from different geographical regions based on sequences of cytochrome c oxidase subunit I gene. The complete mitogenome of Z. tau had a total length of 15631 bp for the Malaysian specimen (ZT3) and 15835 bp for the China specimen (ZT1), with similar gene order comprising 37 genes (13 protein-coding genes—PCGs, 2 rRNA genes, and 22 tRNA genes) and a non-coding A + T-rich control region (D-loop). Based on 13 PCGs and 15 mt-genes, Z. tau NC_027290 (China) and Z. tau ZT1 (China) formed a sister group in the lineage containing also Z. tau ZT3 (Malaysia). Phylogenetic analysis based on partial sequences of cox1 gene indicates that the taxa from China, Japan, Laos, Malaysia, Bangladesh, India, Sri Lanka, and Z. tau sp. A from Thailand belong to Z. tau sensu stricto. A complete cox1 gene (or 13 PCGs or 15 mt-genes) instead of partial sequence is more appropriate for determining phylogenetic relationship. PMID:29216281
Ming, De-Song; Chen, Qing-Qing; Chen, Xiao-Tin
2018-05-14
To clarify the resistance mechanisms of Pannonibacter phragmitetus 31801, isolated from the blood of a liver abscess patient, at the genomic level, we performed whole genomic sequencing using a PacBio RS II single-molecule real-time long-read sequencer. Bioinformatic analysis of the resulting sequence was then carried out to identify any possible resistance genes. Analyses included Basic Local Alignment Search Tool searches against the Antibiotic Resistance Genes Database, ResFinder analysis of the genome sequence, and Resistance Gene Identifier analysis within the Comprehensive Antibiotic Resistance Database. Prophages, clustered regularly interspaced short palindromic repeats (CRISPR), and other putative virulence factors were also identified using PHAST, CRISPRfinder, and the Virulence Factors Database, respectively. The circular chromosome and single plasmid of P. phragmitetus 31801 contained multiple antibiotic resistance genes, including those coding for three different types of β-lactamase [NPS β-lactamase (EC 3.5.2.6), β-lactamase class C, and a metal-dependent hydrolase of β-lactamase superfamily I]. In addition, genes coding for subunits of several multidrug-resistance efflux pumps were identified, including those targeting macrolides (adeJ, cmeB), tetracycline (acrB, adeAB), fluoroquinolones (acrF, ceoB), and aminoglycosides (acrD, amrB, ceoB, mexY, smeB). However, apart from the tripartite macrolide efflux pump macAB-tolC, the genome did not appear to contain the complete complement of subunit genes required for production of most of the major multidrug-resistance efflux pumps.
Rodermel, S; Haley, J; Jiang, C Z; Tsai, C H; Bogorad, L
1996-01-01
Multimeric protein complexes in chloroplasts and mitochondria are generally composed of products of both nuclear and organelle genes of the cell. A central problem of eukaryotic cell biology is to identify and understand the molecular mechanisms for integrating the production and accumulation of the products of the two separate genomes. Ribulose bisphosphate carboxylase (Rubisco) is localized in the chloroplasts of photosynthetic eukaryotic cells and is composed of small subunits (SS) and large subunits (LS) coded for by nuclear rbcS and chloroplast rbcL genes, respectively. Transgenic tobacco plants containing antisense rbcS DNA have reduced levels of rbcS mRNA, normal levels of rbcL mRNA, and coordinately reduced LS and SS proteins. Our previous experiments indicated that the rate of translation of rbcL mRNA might be reduced in some antisense plants; direct evidence is presented here. After a short-term pulse there is less labeled LS protein in the transgenic plants than in wild-type plants, indicating that LS accumulation is controlled in the mutants at the translational and/or posttranslational levels. Consistent with a primary restriction at translation, fewer rbcL mRNAs are associated with polysomes of normal size and more are free or are associated with only a few ribosomes in the antisense plants. Effects of the rbcS antisense mutation on mRNA and protein accumulation, as well as on the distribution of mRNAs on polysomes, appear to be minimal for other chloroplast and nuclear photosynthetic genes. Our results suggest that SS protein abundance specifically contributes to the regulation of LS protein accumulation at the level of rbcL translation initiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 Fig. 7 Fig. 8 PMID:8632983
Structural symmetry and protein function.
Goodsell, D S; Olson, A J
2000-01-01
The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.
Kerekes, Éva; Kókai, Endre; Páldy, Ferenc Sándor; Dombrádi, Viktor
2014-06-01
The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster. Copyright © 2014 Elsevier Ltd. All rights reserved.
Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160.
Perrin, Arnaud; Rousseau, Joël; Tremblay, Jacques P
2017-03-17
Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis. We thus developed an alternative method to laminin-111 protein repeated administration by inducing expression of the endogenous mouse Lama1 gene. This was done with the CRSPR/Cas9 system, i.e., by targeting the Lama1 promoter with one or several gRNAs and a dCas9 coupled with the VP160 transcription activation domain. Lama1 mRNA (qRT-PCR) and proteins (immunohistochemistry and western blot) were not detected in the control C2C12 myoblasts and in control muscles. However, significant expression was observed in cells transfected and in mouse muscles electroporated with plasmids coding for dCas9-VP160 and a gRNA. Larger synergic increases were observed by using two or three gRNAs. The increased Lama1 expression did not modify the expression of the α7 and β1 integrins. Increased expression of Lama1 by the CRISPR/Cas9 system will have to be further investigated by systemic delivery of the CRISPR/Cas9 components to verify whether this could be a treatment for several myopathies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Ai-bing; Feng, Jie; Ward, Robert D; Wan, Ping; Gao, Qiang; Wu, Jun; Zhao, Wei-zhong
2012-01-01
Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.
Dreyer, Hermann; Steiner, Gerhard
2006-01-01
Background Mitochondrial (mt) gene arrangement is highly variable among molluscs and especially among bivalves. Of the 30 complete molluscan mt-genomes published to date, only one is of a heterodont bivalve, although this is the most diverse taxon in terms of species numbers. We determined the complete sequence of the mitochondrial genomes of Acanthocardia tuberculata and Hiatella arctica, (Mollusca, Bivalvia, Heterodonta) and describe their gene contents and genome organisations to assess the variability of these features among the Bivalvia and their value for phylogenetic inference. Results The size of the mt-genome in Acanthocardia tuberculata is 16.104 basepairs (bp), and in Hiatella arctica 18.244 bp. The Acanthocardia mt-genome contains 12 of the typical protein coding genes, lacking the Atpase subunit 8 (atp8) gene, as all published marine bivalves. In contrast, a complete atp8 gene is present in Hiatella arctica. In addition, we found a putative truncated atp8 gene when re-annotating the mt-genome of Venerupis philippinarum. Both mt-genomes reported here encode all genes on the same strand and have an additional trnM. In Acanthocardia several large non-coding regions are present. One of these contains 3.5 nearly identical copies of a 167 bp motive. In Hiatella, the 3' end of the NADH dehydrogenase subunit (nad)6 gene is duplicated together with the adjacent non-coding region. The gene arrangement of Hiatella is markedly different from all other known molluscan mt-genomes, that of Acanthocardia shows few identities with the Venerupis philippinarum. Phylogenetic analyses on amino acid and nucleotide levels robustly support the Heterodonta and the sister group relationship of Acanthocardia and Venerupis. Monophyletic Bivalvia are resolved only by a Bayesian inference of the nucleotide data set. In all other analyses the two unionid species, being to only ones with genes located on both strands, do not group with the remaining bivalves. Conclusion The two mt-genomes reported here add to and underline the high variability of gene order and presence of duplications in bivalve and molluscan taxa. Some genomic traits like the loss of the atp8 gene or the encoding of all genes on the same strand are homoplastic among the Bivalvia. These characters, gene order, and the nucleotide sequence data show considerable potential of resolving phylogenetic patterns at lower taxonomic levels. PMID:16948842
NASA Technical Reports Server (NTRS)
Yu, Y.; Okayasu, R.; Weil, M. M.; Silver, A.; McCarthy, M.; Zabriskie, R.; Long, S.; Cox, R.; Ullrich, R. L.
2001-01-01
Female BALB/c mice are unusually radiosensitive and more susceptible than C57BL/6 and other tested inbred mice to ionizing radiation (IR)-induced mammary tumors. This breast cancer susceptibility is correlated with elevated susceptibility for mammary cell transformation and genomic instability following irradiation. In this study, we report the identification of two BALB/c strain-specific polymorphisms in the coding region of Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit, which is known to be involved in DNA double-stranded break repair and post-IR signal transduction. First, we identified an A --> G transition at base 11530 resulting in a Met --> Val conversion at codon 3844 (M3844V) in the phosphatidylinositol 3-kinase domain upstream of the scid mutation (Y4046X). Second, we identified a C --> T transition at base 6418 resulting in an Arg --> Cys conversion at codon 2140 (R2140C) downstream of the putative leucine zipper domain. This unique PrkdcBALB variant gene is shown to be associated with decreased DNA-dependent protein kinase catalytic subunit activity and with increased susceptibility to IR-induced genomic instability in primary mammary epithelial cells. The data provide the first evidence that naturally arising allelic variation in a mouse DNA damage response gene may associate with IR response and breast cancer risk.
Zito, Francesca; Blangy, Stéphanie; Auroy, Pascaline; Johnson, Xenie; Peltier, Gilles
2017-01-01
The cytochrome (cyt) b6f complex and Stt7 kinase regulate the antenna sizes of photosystems I and II through state transitions, which are mediated by a reversible phosphorylation of light harvesting complexes II, depending on the redox state of the plastoquinone pool. When the pool is reduced, the cyt b6f activates the Stt7 kinase through a mechanism that is still poorly understood. After random mutagenesis of the chloroplast petD gene, coding for subunit IV of the cyt b6f complex, and complementation of a ΔpetD host strain by chloroplast transformation, we screened for impaired state transitions in vivo by chlorophyll fluorescence imaging. We show that residues Asn122, Tyr124, and Arg125 in the stromal loop linking helices F and G of cyt b6f subunit IV are crucial for state transitions. In vitro reconstitution experiments with purified cyt b6f and recombinant Stt7 kinase domain show that cyt b6f enhances Stt7 autophosphorylation and that the Arg125 residue is directly involved in this process. The peripheral stromal structure of the cyt b6f complex had, until now, no reported function. Evidence is now provided of a direct interaction with Stt7 on the stromal side of the membrane. PMID:29078388
Chakraborty, Mukta; Chen, Liang-Fu; Fridel, Emma E; Klein, Marguerita E; Senft, Rebecca A; Sarkar, Abhra; Jarvis, Erich D
2017-04-21
Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.
Yi, Zhenzhen; Song, Weibo; Clamp, John C; Chen, Zigui; Gao, Shan; Zhang, Qianqian
2009-03-01
Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the "typical" euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae-Certesiidae-Aspidiscidae-Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information.
Mejia, Carla D; Gonzalez, David C; Mauer, Lisa J; Campanella, Osvaldo H; Hamaker, Bruce R
2012-03-07
Wheat gluten proteins are considered to have the unique ability to form viscoelastic matrices that are essential for breadmaking. This study shows that maize seed storage protein (zein), if properly treated, can be made to function similarly to gluten at the protein secondary structure level with concomitant improved viscoelasticity. Here, we propose the concept of a small amount of coprotein (high molecular weight glutenin or casein) acting to stabilize a build-up of β-sheet structure in a zein-based dough, thus creating a viscoelastic matrix that is retained over time. This discovery is relevant to the need for gluten replacement viscoelastic proteins for wheat intolerant individuals and as well opens possibilities of creating wheatlike cereal varieties that could more cheaply substitute for wheat imports in developing countries.
The complete mitochondrial genome of Chinese green hydra, Hydra sinensis (Hydroida: Hydridae).
Pan, Hong-Chun; Qian, Xiao-Cheng; Li, Ping; Li, Xiao-Fei; Wang, An-Tai
2014-02-01
The complete mitochondrial genome of Chinese green hydra, Hydra sinensis (Hydroida: Hydridae) is a linear molecule of 16,189 bp in length, containing 13 protein-coding genes, small and large subunit ribosomal RNAs, methionine and tryptophan transfer RNAs, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mitochondrial DNA. The A + T content of the overall base composition of H-strand is 77.2% (T: 41.7%; C: 10.9%; A: 35.5%; and G: 11.9%). COI and ND1 genes begin with GTG as start codon, while other 11 protein-coding genes start with a typical ATG initiation codon. COII, ATP8, ATP6, COIII, ND5, ND6, ND3, ND1, ND4 and COI genes are terminated with TAA as stop codon, ND4L ends with TAG, ND2 ends with TA and Cyt b ends with T.
Sato, T; Oeller, P W; Theologis, A
1991-02-25
The key regulatory enzyme in the biosynthetic pathway of the plant hormone ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (EC 4.4.1.14). We have partially purified ACC synthase 6,000-fold from Cucurbita fruit tissue treated with indoleacetic acid + benzyladenine + aminooxyacetic acid + LiCl. The enzyme has a specific activity of 35,000 nmol/h/mg protein, a pH optimum of 9.5, an isoelectric point of 5.0, a Km of 17 microM with respect to S-adenosylmethionine, and is a dimer of two identical subunits of approximately 46,000 Da each. The subunit exists in vivo as a 55,000-Da species similar in size to the primary in vitro translation product. DNA sequence analysis of the cDNA clone pACC1 revealed that the coding region of the ACC synthase mRNA spans 493 amino acids corresponding to a 55,779-Da polypeptide; and expression of the coding sequence (pACC1) in Escherichia coli as a COOH terminus hybrid of beta-galactosidase or as a nonhybrid polypeptide catalyzed the conversion of S-adenosylmethionine to ACC (Sato, T., and Theologis, A. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6621-6625). Immunoblotting experiments herein show that the molecular mass of the beta-galactosidase hybrid polypeptide is 170,000 Da, and the size of the largest nonhybrid polypeptide is 53,000 Da. The data suggest that the enzyme is post-translationally processed during protein purification.
Zhang, Q; Baldwin, V J; Acland, G M; Parshall, C J; Haskel, J; Aguirre, G D; Ray, K
1999-01-01
Photoreceptor dysplasia (pd) is one of a group of at least six distinct autosomal and one X-linked retinal disorders identified in dogs which are collectively known as progressive retinal atrophy (PRA). It is an early onset retinal disease identified in miniature schnauzer dogs, and pedigree analysis and breeding studies have established autosomal recessive inheritance of the disease. Using a gene-based approach, a number of retina-expressed genes, including some members of the phototransduction pathway, have been causally implicated in retinal diseases of humans and other animals. Here we examined seven such potential candidate genes (opsin, RDS/peripherin, ROM1, rod cGMP-gated cation channel alpha-subunit, and three subunits of transducin) for their causal association with the pd locus by testing segregation of intragenic markers with the disease locus, or, in the absence of informative polymorphisms, sequencing of the coding regions of the genes. Based on these results, we have conclusively excluded four photoreceptor-specific genes as candidates for pd by linkage analysis. For three other photoreceptor-specific genes, we did not find any mutation in the coding sequences of the genes and have excluded them provisionally. Formal exclusion would require investigation of the levels of expression of the candidate genes in pd-affected dogs relative to age-matched controls. At present we are building suitable informative pedigrees for the disease locus with a sufficient number of meiosis to be useful for genomewide screening. This should identify markers linked to the disease locus and eventually permit progress toward the identification of the photoreceptor dysplasia gene and the disease-causing mutation.
Vitamin K epoxide reductase complex subunit 1 (Vkorc1) haplotype diversity in mouse priority strains
Song, Ying; Vera, Nicole; Kohn, Michael H
2008-01-01
Background Polymorphisms in the vitamin K-epoxide reductase complex subunit 1 gene, Vkorc1, could affect blood coagulation and other vitamin K-dependent proteins, such as osteocalcin (bone Gla protein, BGP). Here we sequenced the Vkorc1 gene in 40 mouse priority strains. We analyzed Vkorc1 haplotypes with respect to prothrombin time (PT) and bone mineral density and composition (BMD and BMC); phenotypes expected to be vitamin K-dependent and represented by data in the Mouse Phenome Database (MPD). Findings In the commonly used laboratory strains of Mus musculus domesticus we identified only four haplotypes differing in the intron or 5' region sequence of the Vkorc1. Six haplotypes differing by coding and non-coding polymorphisms were identified in the other subspecies of Mus. We detected no significant association of Vkorc1 haplotypes with PT, BMD and BMC within each subspecies of Mus. Vkorc1 haplotype sequences divergence between subspecies was associated with PT, BMD and BMC. Conclusion Phenotypic variation in PT, BMD and BMC within subspecies of Mus, while substantial, appears to be dominated by genetic variation in genes other than the Vkorc1. This was particularly evident for M. m. domesticus, where a single haplotype was observed in conjunction with virtually the entire range of PT, BMD and BMC values of all 5 subspecies of Mus included in this study. Differences in these phenotypes between subspecies also should not be attributed to Vkorc1 variants, but should be viewed as a result of genome wide genetic divergence. PMID:19046458
Raza, M. Hashim; Mattera, Rafael; Morell, Robert; Sainz, Eduardo; Rahn, Rachel; Gutierrez, Joanne; Paris, Emily; Root, Jessica; Solomon, Beth; Brewer, Carmen; Basra, M. Asim Raza; Khan, Shaheen; Riazuddin, Sheikh; Braun, Allen; Bonifacino, Juan S.; Drayna, Dennis
2015-01-01
Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering. PMID:26544806
Wang, Si-Qi; Shi, Dong-Qiao; Long, Yan-Ping; Liu, Jie; Yang, Wei-Cai
2012-01-01
RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants.
What is special about the adolescent (JME) brain?
Craiu, Dana
2013-07-01
Juvenile myoclonic epilepsy (JME) involves cortico-thalamo-cortical networks. Thalamic, frontal gray matter, connectivity, and neurotransmitter disturbances have been demonstrated by structural/functional imaging studies. Few patients with JME show mutations in genes coding ion channels or GABAA (gamma-aminobutyric acid) receptor subunits. Recent research points to EFHC1 gene mutations leading to microdysgenesis and possible aberrant circuitry. Imaging studies have shown massive structural/functional changes of normally developing adolescent brain structures maturing at strikingly different rates and times. Gray matter (GM) volume diminishes in cortical areas (frontal and parietal) and deep structures (anterior thalamus, putamen, and caudate). Diffusion tensor imaging (DTI) findings support continued microstructural change in WM (white matter) during late adolescence with robust developmental changes in thalamocortical connectivity. The GABAA receptor distribution and specific receptor subunits' expression patterns change with age from neonate to adolescent/adult, contributing to age-related changes in brain excitability. Hormonal influence on brain structure development during adolescence is presented. Possible implications of brain changes during adolescence on the course of JME are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.
Dean, Caroline; van den Elzen, Peter; Tamaki, Stanley; Dunsmuir, Pamela; Bedbrook, John
1985-01-01
Twenty-six λ phage clones with homology to coding sequences of the small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase have been isolated from an EMBL3 λ phage bank of Petunia (Mitchell) DNA. Restriction mapping of the phage inserts shows that the clones were obtained from five nonoverlapping regions of petunia DNA that carry seven SSU genes. Comparison of the HindIII genomic fragments of petunia DNA with the HindIII restriction fragments of the isolated phage indicates that petunia nuclear DNA encodes eight SSU genes, seven of which are present in the phage clones. Two incomplete genes, which contain only the 3′ end of an SSU gene, were also found in the phage clones. We demonstrate that the eight SSU genes of petunia can be divided into three gene families based on homology to three petunia cDNA clones. Two gene families contain single SSU genes and the third contains six genes, four of which are closely linked within petunia nuclear DNA. Images PMID:16593584
Purrello, M; Di Pietro, C; Rapisarda, A; Viola, A; Corsaro, C; Motta, S; Grzeschik, K H; Sichel, G
1996-01-01
Dr1 is a nuclear protein of 19 kDa that exists in the nucleoplasm as a homotetramer. By binding to TBP (the DNA-binding subunit of TFIID, and also a subunit of SL1 and TFIIIB), the protein blocks class II and class III preinitiation complex assembly, thus repressing the activity of the corresponding promoters. Since transcription of class I genes is unaffected by Dr1. it has been proposed that the protein may coordinate the expression of class I, class II and class III genes. By somatic cell genetics and fluorescence in situ hybridization, we have localized the gene (DR1), present in the genome of higher eukaryotes as a single copy, to human chromosome region 1p21-->p13. The nucleotide sequence conservation of the coding segment of the gene, as determined by Noah's ark blot analysis, and its ubiquitous transcription suggest that Dr1 has an important biological role, which could be related to the negative control of cell proliferation.
Valderrama-Aguirre, Augusto; Zúñiga-Soto, Evelin; Mariño-Ramírez, Leonardo; Moreno, Luz Ángela; Escalante, Ananías A.; Arévalo-Herrera, Myriam; Herrera, Sócrates
2011-01-01
Merozoite surface protein 1 (MSP-1) is a polymorphic malaria protein with functional domains involved in parasite erythrocyte interaction. Plasmodium vivax MSP-1 has a fragment (Pv200L) that has been identified as a potential subunit vaccine because it is highly immunogenic and induces partial protection against infectious parasite challenge in vaccinated monkeys. To determine the extent of genetic polymorphism and its effect on the translated protein, we sequenced the Pv200L coding region from isolates of 26 P. vivax-infected patients in a malaria-endemic area of Colombia. The extent of nucleotide diversity (π) in these isolates (0.061 ± 0.004) was significantly lower (P ≤ 0.001) than that observed in Thai and Brazilian isolates; 0.083 ± 0.006 and 0.090 ± 0.006, respectively. We found two new alleles and several previously unidentified dimorphic substitutions and significant size polymorphism. The presence of highly conserved blocks in this fragment has important implications for the development of Pv200L as a subunit vaccine candidate. PMID:21292880
Vander Lugt correlation of DNA sequence data
NASA Astrophysics Data System (ADS)
Christens-Barry, William A.; Hawk, James F.; Martin, James C.
1990-12-01
DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.
The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).
Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan
2015-01-01
In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.
The control of lambda DNA terminase synthesis.
Murialdo, H; Davidson, A; Chow, S; Gold, M
1987-01-01
Nu1 and A, the genes coding for bacteriophage lambda DNA terminase, rank among the most poorly translated genes expressed in E. coli. To understand the reason for this low level of translation the genes were cloned into plasmids and their expression measured. In addition, the wild type DNA sequences immediately preceding the genes were reduced and modified. It was found that the elements that control translation are contained in the 100 base pairs upstream from the initiation codon. Interchanging these upstream sequences with those of an efficiently translated gene dramatically increased the translation of terminase subunits. It seems unlikely that the rare codons present in the genes, and any feature of their mRNA secondary structure play a role in the control of their translation. The elimination of cos from plasmids containing Nu1 and A also resulted in an increase in terminase production. This result suggests a role for cos in the control of late gene expression. The terminase subunit overproducer strains are potentially very useful for the design of improved DNA packaging and cosmid mapping techniques. Images PMID:3029667
The complete DNA sequence of lymphocystis disease virus.
Tidona, C A; Darai, G
1997-04-14
Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease, which has been reported to occur in over 100 different fish species worldwide. LCDV is a member of the family Iridoviridae and the type species of the genus Lymphocystivirus. The virions contain a single linear double-stranded DNA molecule, which is circularly permuted, terminally redundant, and heavily methylated at cytosines in CpG sequences. The complete nucleotide sequence of LCDV-1 (flounder isolate) was determined by automated cycle sequencing and primer walking. The genome of LCDV-1 is 102.653 bp in length and contains 195 open reading frames with coding capacities ranging from 40 to 1199 amino acids. Computer-assisted analyses of the deduced amino acid sequences led to the identification of several putative gene products with significant homologies to entries in protein data banks, such as the two major subunits of the viral DNA-dependent RNA polymerase, DNA polymerase, several protein kinases, two subunits of the ribonucleoside diphosphate reductase, DNA methyltransferase, the viral major capsid protein, insulin-like growth factor, and tumor necrosis factor receptor homolog.
Chaumont, F; Silva Filho, M de C; Thomas, D; Leterme, S; Boutry, M
1994-02-01
The mitochondrial F1-ATPase beta subunit (ATPase-beta) of Nicotiana plumbaginifolia is nucleus-encoded as a precursor containing an NH2-terminal extension. By sequencing the mature N. tabacum ATPase-beta, we determined the length of the presequence, viz. 54 residues. To define the essential regions of this presequence, we produced a series of 3' deletions in the sequence coding for the 90 NH2-terminal residues of ATPase-beta. The truncated sequences were fused with the chloramphenicol acetyl transferase (cat) and beta-glucuronidase (gus) genes and introduced into tobacco plants. From the observed distribution of CAT and GUS activity in the plant cells, we conclude that the first 23 amino-acid residues of ATPase-beta remain capable of specifically targeting reporter proteins into mitochondria. Immunodetection in transgenic plants and in vitro import experiments with various CAT fusion proteins show that the precursors are processed at the expected cleavage site but also at a cryptic site located in the linker region between the presequence and the first methionine of native CAT.
Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger
2012-01-01
Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916
van Doorn, J.; Hollinger, T. C.; Oudega, B.
2001-01-01
A sensitive and specific detection method was developed for Xanthomonas hyacinthi; this method was based on amplification of a subsequence of the type IV fimbrial-subunit gene fimA from strain S148. The fimA gene was amplified by PCR with degenerate DNA primers designed by using the N-terminal and C-terminal amino acid sequences of trypsin fragments of FimA. The nucleotide sequence of fimA was determined and compared with the nucleotide sequences coding for the fimbrial subunits in other type IV fimbria-producing bacteria, such as Xanthomonas campestris pv. vesicatoria, Neisseria gonorrhoeae, and Moraxella bovis. In a PCR internal primers JAAN and JARA, designed by using the nucleotide sequences of the variable central and C-terminal region of fimA, amplified a 226-bp DNA fragment in all X. hyacinthi isolates. This PCR was shown to be pathovar specific, as assessed by testing 71 Xanthomonas pathovars and bacterial isolates belonging to other genera, such as Erwinia and Pseudomonas. Southern hybridization experiments performed with the labelled 226-bp DNA amplicon as a probe suggested that there is only one structural type IV fimbrial-gene cluster in X. hyacinthi. Only two Xanthomonas translucens pathovars cross-reacted weakly in PCR. Primers amplifying a subsequence of the fimA gene of X. campestris pv. vesicatoria (T. Ojanen-Reuhs, N. Kalkkinen, B. Westerlund-Wikström, J. van Doorn, K. Haahtela, E.-L. Nurmiaho-Lassila, K. Wengelink, U. Bonas, and T. K. Korhonen, J. Bacteriol. 179: 1280–1290, 1997) were shown to be pathovar specific, indicating that the fimbrial-subunit sequences are more generally applicable in xanthomonads for detection purposes. Under laboratory conditions, approximately 1,000 CFU of X. hyacinthi per ml could be detected. In inoculated leaves of hyacinths the threshold was 5,000 CFU/ml. The results indicated that infected hyacinths with early symptoms could be successfully screened for X. hyacinthi with PCR. PMID:11157222
Raza, M Hashim; Mattera, Rafael; Morell, Robert; Sainz, Eduardo; Rahn, Rachel; Gutierrez, Joanne; Paris, Emily; Root, Jessica; Solomon, Beth; Brewer, Carmen; Basra, M Asim Raza; Khan, Shaheen; Riazuddin, Sheikh; Braun, Allen; Bonifacino, Juan S; Drayna, Dennis
2015-11-05
Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Structure of Thermotoga maritima Stationary Phase Survival Protein SurE: A Novel Acid Phosphatase
Zhang, R.-G.; Skarina, T.; Katz, J.E.; Beasley, S.; Khachatryan, A.; Vyas, S.; Arrowsmith, C.H.; Clarke, S.; Edwards, A.; Joachimiak, A.; Savchenko, A.
2009-01-01
Summary Background The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase σ subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. Results The structure of SurE from Thermotoga maritima was determined at 2.0 Å. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5–6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and inter-subunit salt bridges were identified that may explain the SurE thermostability. Conclusions The structure of SurE provided information about the protein’s fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis. PMID:11709173
Molecular and neurochemical substrates of the audiogenic seizure strains: The GASH:Sal model.
Prieto-Martín, Ana I; Aroca-Aguilar, J Daniel; Sánchez-Sánchez, Francisco; Muñoz, Luis J; López, Dolores E; Escribano, Julio; de Cabo, Carlos
2017-06-01
Animal models of audiogenic epilepsy are useful tools to understand the mechanisms underlying human reflex epilepsies. There is accumulating evidence regarding behavioral, anatomical, electrophysiological, and genetic substrates of audiogenic seizure strains, but there are still aspects concerning their neurochemical basis that remain to be elucidated. Previous studies have shown the involved of γ-amino butyric acid (GABA) in audiogenic seizures. The aim of our research was to clarify the role of the GABAergic system in the generation of epileptic seizures in the genetic audiogenic seizure-prone hamster (GASH:Sal) strain. We studied the K + /Cl - cotransporter KCC2 and β2-GABAA-type receptor (GABAAR) and β3-GABAAR subunit expressions in the GASH:Sal both at rest and after repeated sound-induced seizures in different brain regions using the Western blot technique. We also sequenced the coding region for the KCC2 gene both in wild- type and GASH:Sal hamsters. Lower expression of KCC2 protein was found in GASH:Sal when compared with controls at rest in several brain areas: hippocampus, cortex, cerebellum, hypothalamus, pons-medulla, and mesencephalon. Repeated induction of seizures caused a decrease in KCC2 protein content in the inferior colliculus and hippocampus and an increase in the pons-medulla. When compared to controls, the basal β 2 -GABA A R subunit in the GASH:Sal was overexpressed in the inferior colliculus, rest of the mesencephalon, and cerebellum, whereas basal β 3 subunit levels were lower in the inferior colliculus and rest of the mesencephalon. Repeated seizures increased β2 both in the inferior colliculus and in the hypothalamus and β 3 in the hypothalamus. No differences in the KCC2 gene-coding region were found between GASH:Sal and wild-type hamsters. These data indicate that GABAergic system functioning is impaired in the GASH:Sal strain, and repeated seizures seem to aggravate this dysfunction. These results have potential clinical relevance and support the validity of employing the GASH:Sal strain as a model to study the neurochemistry of genetic reflex epilepsy. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2015 Elsevier Inc. All rights reserved.
Loos, Julia A; Cumino, Andrea C
2015-01-01
Metformin (Met) is a biguanide anti-hyperglycemic agent, which also exerts antiproliferative effects on cancer cells. This drug inhibits the complex I of the mitochondrial electron transport chain inducing a fall in the cell energy charge and leading 5'-AMP-activated protein kinase (AMPK) activation. AMPK is a highly conserved heterotrimeric complex that coordinates metabolic and growth pathways in order to maintain energy homeostasis and cell survival, mainly under nutritional stress conditions, in a Liver Kinase B1 (LKB1)-dependent manner. This work describes for the first time, the in vitro anti-echinococcal effect of Met on Echinococcus granulosus larval stages, as well as the molecular characterization of AMPK (Eg-AMPK) in this parasite of clinical importance. The drug exerted a dose-dependent effect on the viability of both larval stages. Based on this, we proceeded with the identification of the genes encoding for the different subunits of Eg-AMPK. We cloned one gene coding for the catalytic subunit (Eg-ampkɑ) and two genes coding for the regulatory subunits (Eg-ampkβ and Eg-ampkγ), all of them constitutively transcribed in E. granulosus protoscoleces and metacestodes. Their deduced amino acid sequences show all the conserved functional domains, including key amino acids involved in catalytic activity and protein-protein interactions. In protoscoleces, the drug induced the activation of AMPK (Eg-AMPKɑ-P176), possibly as a consequence of cellular energy charge depletion evidenced by assays with the fluorescent indicator JC-1. Met also led to carbohydrate starvation, it increased glucogenolysis and homolactic fermentation, and decreased transcription of intermediary metabolism genes. By in toto immunolocalization assays, we detected Eg-AMPKɑ-P176 expression, both in the nucleus and the cytoplasm of cells as in the larval tegument, the posterior bladder and the calcareous corpuscles of control and Met-treated protoscoleces. Interestingly, expression of Eg-AMPKɑ was observed in the developmental structures during the de-differentiation process from protoscoleces to microcysts. Therefore, the Eg-AMPK expression during the asexual development of E. granulosus, as well as the in vitro synergic therapeutic effects observed in presence of Met plus albendazole sulfoxide (ABZSO), suggest the importance of carrying out chemoprophylactic and clinical efficacy studies combining Met with conventional anti-echinococcal agents to test the potential use of this drug in hydatidosis therapy.
Loos, Julia A.; Cumino, Andrea C.
2015-01-01
Metformin (Met) is a biguanide anti-hyperglycemic agent, which also exerts antiproliferative effects on cancer cells. This drug inhibits the complex I of the mitochondrial electron transport chain inducing a fall in the cell energy charge and leading 5'-AMP-activated protein kinase (AMPK) activation. AMPK is a highly conserved heterotrimeric complex that coordinates metabolic and growth pathways in order to maintain energy homeostasis and cell survival, mainly under nutritional stress conditions, in a Liver Kinase B1 (LKB1)-dependent manner. This work describes for the first time, the in vitro anti-echinococcal effect of Met on Echinococcus granulosus larval stages, as well as the molecular characterization of AMPK (Eg-AMPK) in this parasite of clinical importance. The drug exerted a dose-dependent effect on the viability of both larval stages. Based on this, we proceeded with the identification of the genes encoding for the different subunits of Eg-AMPK. We cloned one gene coding for the catalytic subunit (Eg-ampkɑ) and two genes coding for the regulatory subunits (Eg-ampkβ and Eg-ampkγ), all of them constitutively transcribed in E. granulosus protoscoleces and metacestodes. Their deduced amino acid sequences show all the conserved functional domains, including key amino acids involved in catalytic activity and protein-protein interactions. In protoscoleces, the drug induced the activation of AMPK (Eg-AMPKɑ-P176), possibly as a consequence of cellular energy charge depletion evidenced by assays with the fluorescent indicator JC-1. Met also led to carbohydrate starvation, it increased glucogenolysis and homolactic fermentation, and decreased transcription of intermediary metabolism genes. By in toto immunolocalization assays, we detected Eg-AMPKɑ-P176 expression, both in the nucleus and the cytoplasm of cells as in the larval tegument, the posterior bladder and the calcareous corpuscles of control and Met-treated protoscoleces. Interestingly, expression of Eg-AMPKɑ was observed in the developmental structures during the de-differentiation process from protoscoleces to microcysts. Therefore, the Eg-AMPK expression during the asexual development of E. granulosus, as well as the in vitro synergic therapeutic effects observed in presence of Met plus albendazole sulfoxide (ABZSO), suggest the importance of carrying out chemoprophylactic and clinical efficacy studies combining Met with conventional anti-echinococcal agents to test the potential use of this drug in hydatidosis therapy. PMID:25965910
Townley, Ian K.; Karchner, Sibel I.; Skripnikova, Elena; Wiese, Thomas E.; Hahn, Mark E.
2017-01-01
The hypoxia-inducible factor (HIF) family of transcription factors plays central roles in the development, physiology, pathology, and environmental adaptation of animals. Because many aquatic habitats are characterized by episodes of low dissolved oxygen, fish represent ideal models to study the roles of HIF in the response to aquatic hypoxia. The estuarine fish Fundulus heteroclitus is found in habitats prone to hypoxia. It responds to low oxygen via behavioral, physiological, and molecular changes, and one member of the HIF family, HIF2α, has been previously described. Herein, cDNA sequencing, phylogenetic analyses, and genomic approaches were used to determine other members of the HIFα family from F. heteroclitus and their relationships to HIFα subunits from other vertebrates. In vitro and cellular approaches demonstrated that full-length forms of HIF1α, HIF2α, and HIF3α independently formed complexes with the β-subunit, aryl hydrocarbon receptor nuclear translocator, to bind to hypoxia response elements and activate reporter gene expression. Quantitative PCR showed that HIFα mRNA abundance varied among organs of normoxic fish in an isoform-specific fashion. Analysis of the F. heteroclitus genome revealed a locus encoding a second HIF2α—HIF2αb—a predicted protein lacking oxygen sensing and transactivation domains. Finally, sequence analyses demonstrated polymorphism in the coding sequence of each F. heteroclitus HIFα subunit, suggesting that genetic variation in these transcription factors may play a role in the variation in hypoxia responses among individuals or populations. PMID:28039194
Townley, Ian K; Karchner, Sibel I; Skripnikova, Elena; Wiese, Thomas E; Hahn, Mark E; Rees, Bernard B
2017-03-01
The hypoxia-inducible factor (HIF) family of transcription factors plays central roles in the development, physiology, pathology, and environmental adaptation of animals. Because many aquatic habitats are characterized by episodes of low dissolved oxygen, fish represent ideal models to study the roles of HIF in the response to aquatic hypoxia. The estuarine fish Fundulus heteroclitus is found in habitats prone to hypoxia. It responds to low oxygen via behavioral, physiological, and molecular changes, and one member of the HIF family, HIF2α, has been previously described. Herein, cDNA sequencing, phylogenetic analyses, and genomic approaches were used to determine other members of the HIFα family from F. heteroclitus and their relationships to HIFα subunits from other vertebrates. In vitro and cellular approaches demonstrated that full-length forms of HIF1α, HIF2α, and HIF3α independently formed complexes with the β-subunit, aryl hydrocarbon receptor nuclear translocator, to bind to hypoxia response elements and activate reporter gene expression. Quantitative PCR showed that HIFα mRNA abundance varied among organs of normoxic fish in an isoform-specific fashion. Analysis of the F. heteroclitus genome revealed a locus encoding a second HIF2α-HIF2αb-a predicted protein lacking oxygen sensing and transactivation domains. Finally, sequence analyses demonstrated polymorphism in the coding sequence of each F. heteroclitus HIFα subunit, suggesting that genetic variation in these transcription factors may play a role in the variation in hypoxia responses among individuals or populations. Copyright © 2017 the American Physiological Society.
Pohl, Thomas; Uhlmann, Mareike; Kaufenstein, Miriam; Friedrich, Thorsten
2007-09-18
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.
Haack, Tobias B; Madignier, Florence; Herzer, Martina; Lamantea, Eleonora; Danhauser, Katharina; Invernizzi, Federica; Koch, Johannes; Freitag, Martin; Drost, Rene; Hillier, Ingo; Haberberger, Birgit; Mayr, Johannes A; Ahting, Uwe; Tiranti, Valeria; Rötig, Agnes; Iuso, Arcangela; Horvath, Rita; Tesarova, Marketa; Baric, Ivo; Uziel, Graziella; Rolinski, Boris; Sperl, Wolfgang; Meitinger, Thomas; Zeviani, Massimo; Freisinger, Peter; Prokisch, Holger
2012-02-01
Mitochondrial complex I deficiency is the most common cause of mitochondrial disease in childhood. Identification of the molecular basis is difficult given the clinical and genetic heterogeneity. Most patients lack a molecular definition in routine diagnostics. A large-scale mutation screen of 75 candidate genes in 152 patients with complex I deficiency was performed by high-resolution melting curve analysis and Sanger sequencing. The causal role of a new disease allele was confirmed by functional complementation assays. The clinical phenotype of patients carrying mutations was documented using a standardised questionnaire. Causative mutations were detected in 16 genes, 15 of which had previously been associated with complex I deficiency: three mitochondrial DNA genes encoding complex I subunits, two mitochondrial tRNA genes and nuclear DNA genes encoding six complex I subunits and four assembly factors. For the first time, a causal mutation is described in NDUFB9, coding for a complex I subunit, resulting in reduction in NDUFB9 protein and both amount and activity of complex I. These features were rescued by expression of wild-type NDUFB9 in patient-derived fibroblasts. Mutant NDUFB9 is a new cause of complex I deficiency. A molecular diagnosis related to complex I deficiency was established in 18% of patients. However, most patients are likely to carry mutations in genes so far not associated with complex I function. The authors conclude that the high degree of genetic heterogeneity in complex I disorders warrants the implementation of unbiased genome-wide strategies for the complete molecular dissection of mitochondrial complex I deficiency.
Poyau, A; Buchet, K; Bouzidi, M F; Zabot, M T; Echenne, B; Yao, J; Shoubridge, E A; Godinot, C
2000-02-01
We have studied the fibroblasts of three patients suffering from Leigh syndrome associated with cytochrome c oxidase deficiency (LS-COX-). Their mitochondrial DNA was functional and all nuclear COX subunits had a normal sequence. The expression of transcripts encoding mitochondrial and nuclear COX subunits was normal or slightly increased. Similarly, the OXA1 transcript coding for a protein involved in COX assembly was increased. However, several COX-protein subunits were severely depressed, indicating deficient COX assembly. Surf1, a factor involved in COX biogenesis, was recently reported as mutated in LS-COX- patients, all mutations predicting a truncated protein. Sequence analysis of SURF1 gene in our three patients revealed seven heterozygous mutations, six of which were new : an insertion, a nonsense mutation, a splicing mutation of intron 7 in addition to three missense mutations. The mutation G385 A (Gly124-->Glu) changes a Gly that is strictly conserved in Surfl homologs of 12 species. The substitution G618 C (Asp202-->His), changing an Asp that is conserved only in mammals, appears to be a polymorphism. The mutation T751 C changes Ile246 to Thr, a position at which a hydrophobic amino acid is conserved in all eukaryotic and some bacterial species. Replacing Ile246 by Thr disrupts a predicted beta sheet structure present in all higher eukaryotes. COX activity could be restored in fibroblasts of the three patients by complementation with a retroviral vector containing normal SURF1 cDNA. These mutations identify domains essential to Surf1 protein structure and/or function.
Fletcher, Simon P; Ali, Iraj K; Kaminski, Ann; Digard, Paul; Jackson, Richard J
2002-01-01
Classical swine fever virus (CSFV) is a member of the pestivirus family, which shares many features in common with hepatitis C virus (HCV). It is shown here that CSFV has an exceptionally efficient cis-acting internal ribosome entry segment (IRES), which, like that of HCV, is strongly influenced by the sequences immediately downstream of the initiation codon, and is optimal with viral coding sequences in this position. Constructs that retained 17 or more codons of viral coding sequence exhibited full IRES activity, but with only 12 codons, activity was approximately 66% of maximum in vitro (though close to maximum in transfected BHK cells), whereas with just 3 codons or fewer, the activity was only approximately 15% of maximum. The minimal coding region elements required for high activity were exchanged between HCV and CSFV. Although maximum activity was observed in each case with the homologous combination of coding region and 5' UTR, the heterologous combinations were sufficiently active to rule out a highly specific functional interplay between the 5' UTR and coding sequences. On the other hand, inversion of the coding sequences resulted in low IRES activity, particularly with the HCV coding sequences. RNA structure probing showed that the efficiency of internal initiation of these chimeric constructs correlated most closely with the degree of single-strandedness of the region around and immediately downstream of the initiation codon. The low activity IRESs could not be rescued by addition of supplementary eIF4A (the initiation factor with ATP-dependent RNA helicase activity). The extreme sensitivity to secondary structure around the initiation codon is likely to be due to the fact that the eIF4F complex (which has eIF4A as one of its subunits) is not required for and does not participate in initiation on these IRESs. PMID:12515388
Wan, Jijun; Yourshaw, Michael; Mamsa, Hafsa; Rudnik-Schöneborn, Sabine; Menezes, Manoj P.; Hong, Ji Eun; Leong, Derek W.; Senderek, Jan; Salman, Michael S.; Chitayat, David; Seeman, Pavel; von Moers, Arpad; Graul-Neumann, Luitgard; Kornberg, Andrew J.; Castro-Gago, Manuel; Sobrido, María-Jesús; Sanefuji, Masafumi; Shieh, Perry B.; Salamon, Noriko; Kim, Ronald C.; Vinters, Harry V.; Chen, Zugen; Zerres, Klaus; Ryan, Monique M.; Nelson, Stanley F.; Jen, Joanna C.
2012-01-01
RNA exosomes are multi-subunit complexes conserved throughout evolution1 and emerging as the major cellular machinery for processing, surveillance, and turnover of a diverse spectrum of coding and non-coding RNA substrates essential for viability2. By exome sequencing, we discovered recessive mutations in exosome component 3 (EXOSC3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly, and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 [PCH1; OMIM 607596]3–6. We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment with small brain and poor motility, reminiscent of human clinical features and largely rescued by coinjected wildtype but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome gene responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration. PMID:22544365
Schuller, D J; Fetter, C H; Banaszak, L J; Grant, G A
1989-02-15
The serA gene of Escherichia coli strain K-12, which codes for the cooperative allosteric enzyme D-3-phosphoglycerate dehydrogenase, was inserted into an inducible expression vector which produced phosphoglycerate dehydrogenase as 8% of the soluble protein of E. coli. The purified protein was used to grow several different single crystal forms. One of these, with space group P2(1), appears to contain all four subunits of the tetrameric enzyme in the asymmetric unit and diffracts to sufficient resolution to allow determination of the structure of phosphoglycerate dehydrogenase.
Jankovsky, Jennie M; Brand, Mabre; Gerhold, Richard W
2017-04-01
We diagnosed renal coccidiosis in two of five Great-horned Owls ( Bubo virginianus ) examined in eastern Tennessee, US, 2007-13. Histopathologic examination of the kidneys revealed multifocal mild-to-moderate dilation and epithelial hyperplasia of collecting ducts. Renal collecting duct epithelial cells contained intracytoplasmic microgametocytes, macrogametocytes, and sporulating and sporulated oocysts. Renal coccidiosis in affected birds did not result in significant inflammation. Sequence analysis of the amplified partial 18S short subunit ribosomal RNA coding region from examination of formalin fixed tissue by using PCR disclosed a 93% identity to Eimeria reichenowi in GenBank, suggesting a novel Eimeria sp.
A congruent phylogenomic signal places eukaryotes within the Archaea.
Williams, Tom A; Foster, Peter G; Nye, Tom M W; Cox, Cymon J; Embley, T Martin
2012-12-22
Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook 'three domains' tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.
Perdigão, J; Logarinho, E; Avides, M C; Sunkel, C E
1999-12-01
Replication protein A (RPA) is a highly conserved multifunctional heterotrimeric complex, involved in DNA replication, repair, recombination, and possibly transcription. Here, we report the cloning of the gene that codes for the largest subunit of the Drosophila melanogaster RPA homolog, dmRPA70. In situ hybridization showed that dmRPA70 RNA is present in developing embryos during the first 16 cycles. After this point, dm-RPA70 expression is downregulated in cells that enter a G1 phase and exit the mitotic cycle, becoming restricted to brief bursts of accumulation from late G1 to S phase. This pattern of regulated expression is also observed in the developing eye imaginal disc. In addition, we have shown that the presence of cyclin E is necessary and sufficient to drive the expression of dmRPA70 in embryonic cells arrested in G1 but is not required in tissues undergoing endoreduplication. Immunolocalization showed that in early developing embryos, the dmRPA70 protein associates with chromatin from the end of mitosis until the beginning of the next prophase in a dynamic speckled pattern that is strongly suggestive of its association with replication foci.
Isolation and characterization of the pea cytochrome c oxidase Vb gene.
Kubo, Nakao; Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Kadowaki, Koh-Ichi; Hirai, Masashi
2006-11-01
Three copies of the gene that encodes cytochrome c oxidase subunit Vb were isolated from the pea (PscoxVb-1, PscoxVb-2, and PscoxVb-3). Northern Blot and reverse transcriptase-PCR analyses suggest that all 3 genes are transcribed in the pea. Each pea coxVb gene has an N-terminal extended sequence that can encode a mitochondrial targeting signal, called a presequence. The localization of green fluorescent proteins fused with the presequence strongly suggests the targeting of pea COXVb proteins to mitochondria. Each pea coxVb gene has 5 intron sites within the coding region. These are similar to Arabidopsis and rice, although the intron lengths vary greatly. A phylogenetic analysis of coxVb suggests the occurrence of gene duplication events during angiosperm evolution. In particular, 2 duplication events might have occurred in legumes, grasses, and Solanaceae. A comparison of amino acid sequences in COXVb or its counterpart shows the conservation of several amino acids within a zinc finger motif. Interestingly, a homology search analysis showed that bacterial protein COG4391 and a mitochondrial complex I 13 kDa subunit also have similar amino acid compositions around this motif. Such similarity might reflect evolutionary relationships among the 3 proteins.
The Complete Plastome Sequence of an Antarctic Bryophyte Sanionia uncinata (Hedw.) Loeske
Park, Mira; Park, Hyun; Lee, Hyoungseok; Lee, Byeong-ha
2018-01-01
Organellar genomes of bryophytes are poorly represented with chloroplast genomes of only four mosses, four liverworts and two hornworts having been sequenced and annotated. Moreover, while Antarctic vegetation is dominated by the bryophytes, there are few reports on the plastid genomes for the Antarctic bryophytes. Sanionia uncinata (Hedw.) Loeske is one of the most dominant moss species in the maritime Antarctic. It has been researched as an important marker for ecological studies and as an extremophile plant for studies on stress tolerance. Here, we report the complete plastome sequence of S. uncinata, which can be exploited in comparative studies to identify the lineage-specific divergence across different species. The complete plastome of S. uncinata is 124,374 bp in length with a typical quadripartite structure of 114 unique genes including 82 unique protein-coding genes, 37 tRNA genes and four rRNA genes. However, two genes encoding the α subunit of RNA polymerase (rpoA) and encoding the cytochrome b6/f complex subunit VIII (petN) were absent. We could identify nuclear genes homologous to those genes, which suggests that rpoA and petN might have been relocated from the chloroplast genome to the nuclear genome. PMID:29494552
Analysis of the cytochrome c oxidase subunit II (COX2) gene in giant panda, Ailuropoda melanoleuca.
Ling, S S; Zhu, Y; Lan, D; Li, D S; Pang, H Z; Wang, Y; Li, D Y; Wei, R P; Zhang, H M; Wang, C D; Hu, Y D
2017-01-23
The giant panda, Ailuropoda melanoleuca (Ursidae), has a unique bamboo-based diet; however, this low-energy intake has been sufficient to maintain the metabolic processes of this species since the fourth ice age. As mitochondria are the main sites for energy metabolism in animals, the protein-coding genes involved in mitochondrial respiratory chains, particularly cytochrome c oxidase subunit II (COX2), which is the rate-limiting enzyme in electron transfer, could play an important role in giant panda metabolism. Therefore, the present study aimed to isolate, sequence, and analyze the COX2 DNA from individuals kept at the Giant Panda Protection and Research Center, China, and compare these sequences with those of the other Ursidae family members. Multiple sequence alignment showed that the COX2 gene had three point mutations that defined three haplotypes, with 60% of the sequences corresponding to haplotype I. The neutrality tests revealed that the COX2 gene was conserved throughout evolution, and the maximum likelihood phylogenetic analysis, using homologous sequences from other Ursidae species, showed clustering of the COX2 sequences of giant pandas, suggesting that this gene evolved differently in them.
Miao, Miao; Song, Weibo; Clamp, John C; Al-Rasheid, Khaled A S; Al-Khedhairy, Abdulaziz A; Al-Arifi, Saud
2009-01-01
The systematic relationships and taxonomic positions of the traditional heterotrich genera Condylostentor, Climacostomum, Fabrea, Folliculina, Peritromus, and Condylostoma, as well as the licnophorid genus Licnophora, were re-examined using new data from sequences of the gene coding for small subunit ribosomal RNA. Trees constructed using distance-matrix, Bayesian inference, and maximum-parsimony methods all showed the following relationships: (1) the "traditional" heterotrichs consist of several paraphyletic groups, including the current classes Heterotrichea, Armophorea and part of the Spirotrichea; (2) the class Heterotrichea was confirmed as a monophyletic assemblage based on our analyses of 31 taxa, and the genus Peritromus was demonstrated to be a peripheral group; (3) the genus Licnophora occupied an isolated branch on one side of the deepest divergence in the subphylum Intramacronucleata and was closely affiliated with spirotrichs, armophoreans, and clevelandellids; (4) Condylostentor, a recently defined genus with several truly unique morphological features, is more closely related to Condylostoma than to Stentor; (5) Folliculina, Eufolliculina, and Maristentor always clustered together with high bootstrap support; and (6) Climacostomum occupied a paraphyletic position distant from Fabrea, showing a close relationship with Condylostomatidae and Chattonidiidae despite of modest support.
Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen
2018-01-01
A wheat-Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1Ss from Ae. searsii, was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1Ss loci of Ae. searsii. Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.
Fate of SDS-insoluble glutenin polymers from semolina to dry pasta.
Joubert, Marianne; Lullien-Pellerin, Valérie; Morel, Marie-Hélène
2018-02-01
Pasta cooking quality is well known to be related to semolina protein content and composition, however impact of the unextractable polymeric protein content (%UPP) remains disputed. In this work different semolina samples, of variable protein contents (10.5-14.2%) and %UPP (20.2-46.3%) are studied. The changes in %UPP induced by the successive pasta processing steps (mixing, extrusion, drying) but also those occurring during resting periods at 35°C, applied in-between them, were investigated. Effect of a resting period was moderate after mixing, but pronounced after extrusion. Resting of extruded pasta at 35°C significantly increased %UPP, which can even grow beyond that of the semolina. No relationship was found between pasta viscoelastic index (VI) and semolina %UPP or protein content. However, cooked pasta VI was found related to the calculated %UPP of rested fresh pasta. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Lie; Bi, Danlei; Tian, Lijun; McClafferty, Heather; Steeb, Franziska; Ruth, Peter; Knaus, Hans Guenther; Shipston, Michael J.
2013-01-01
Regulatory β-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on β-subunit function is largely unknown. Here we demonstrate that the human β4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory β-subunit. β4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the β4-subunit alone. Importantly, palmitoylated β4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas β4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and β4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif (… REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, β4-subunits. Our data reveal a novel mechanism by which palmitoylated β4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels. PMID:23504458
Structure of the protein phosphatase 2A holoenzyme.
Xu, Yanhui; Xing, Yongna; Chen, Yu; Chao, Yang; Lin, Zheng; Fan, Eugene; Yu, Jong W; Strack, Stefan; Jeffrey, Philip D; Shi, Yigong
2006-12-15
Protein Phosphatase 2A (PP2A) plays an essential role in many aspects of cellular physiology. The PP2A holoenzyme consists of a heterodimeric core enzyme, which comprises a scaffolding subunit and a catalytic subunit, and a variable regulatory subunit. Here we report the crystal structure of the heterotrimeric PP2A holoenzyme involving the regulatory subunit B'/B56/PR61. Surprisingly, the B'/PR61 subunit has a HEAT-like (huntingtin-elongation-A subunit-TOR-like) repeat structure, similar to that of the scaffolding subunit. The regulatory B'/B56/PR61 subunit simultaneously interacts with the catalytic subunit as well as the conserved ridge of the scaffolding subunit. The carboxyterminus of the catalytic subunit recognizes a surface groove at the interface between the B'/B56/PR61 subunit and the scaffolding subunit. Compared to the scaffolding subunit in the PP2A core enzyme, formation of the holoenzyme forces the scaffolding subunit to undergo pronounced conformational rearrangements. This structure reveals significant ramifications for understanding the function and regulation of PP2A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack Preiss
Conversion of the Potato tuber ADP-glucose Pyrophopshorylase Regulatory Subunit into a Catalytic Subunit. ADP-glucose synthesis, a rate-limiting reaction in starch synthesis, is catalyzed by ADP-glucose pyrophosphorylase (ADPGlc PPase). The enzyme in plants is allosterically activated by 3-phosphoglycerate (3PGA) and inhibited by inorganic phosphate (Pi) and is composed of two subunits as a heterotetramer, a2b2. Subunit a is the catalytic subunit and subunit b is designated as the regulatory subunit.The b subunit increases the affinty of the activator for the catalytic subunit. Recent results have shown that the subunits are derived from the same ancestor subunit as the regulatory subunit canmore » be converted to a catalytically subunit via mutation of just two amino acids. Lys44 and Thr54 in the large subunit from potato tuber were converted to the homologous catalytic subunit residues, Arg33 and Lys43. The activity of the large subunit mutants cannot be readily tested with a co-expressed wild-type small (catalytic) subunit because of the intrinsic activity of the latter. We co-expressed the regulatory-subunit mutants with SmallD145N, an inactive S subunit in which the catalytic Asp145 was mutated. The activity of the small (catalytic) subunit was reduced more than three orders of magnitude. Coexpression of the L subunit double mutant LargeK44R/T54K with SmallD145N generated an enzyme with considerable activity, 10% and 18% of the wildtype enzyme, in the ADP-glucose synthetic and pyrophosphorolytic direction, respectively. Replacement of those two residues in the small subunit by the homologous amino acids in the L subunits (mutations R33K and K43T) decreased the activity one and two orders of magnitude. The wild-type enzyme and SmallD145NLargeK44R/T54K had very similar kinetic properties indicating that the substrate site has been conserved. The fact that only two mutations in the L subunit restored enzyme activity is very strong evidence that the large subunit is derived from the catalytic ancestor. Previous results showed that Asp145 in the small subunit of the wild-type is essential for catalysis, whereas the homologous Asp160 in the Large WT subunit is not. However, in this study, mutation D160N or D160E in the LK44R/T54K subunit abolished the activity, which shows the ancestral essential role of this residue and confirms that the catalysis of SmallD145NLarge K44R/T54K occurs in the L(b) subunit. A phylogenetic tree of the ADP-Glc PPases present in photosynthetic eukaryotes also sheds information about the origin of the subunits. The tree showed that plant Small and Large subunits can be divided into two and four distinct groups, respectively. The two main groups of S subunits are from dicot and monocot plants, whereas Large subunit groups correlate better with their documented tissue expression. The first Large-subunit group is generally expressed in photosynthetic tissues and comprises Large subunits from dicots and monocots. Group II displays a broader expression pattern, whereas groups III and IV are expressed in storage organs (roots, stems, tubers, seeds). Subunits from group III are only from dicot plants, whereas group IV are seed-specific subunits from monocots. These last two groups stem from the same branch of the phylogenetic tree and split before monocot and dicot separation. Thus few as two mutations turned the L subunit from Solanum tuberosum catalytic, showing that L and S subunits share a common catalytic ancestor, rather than a non-catalytic one. The L subunit evolved to have a regulatory role, lost catalytic residues more than 130 million years ago before monocots and dicots diverged, and preserved, possibly as a byproduct, the active site domain.« less
Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility.
Bacchelli, Elena; Battaglia, Agatino; Cameli, Cinzia; Lomartire, Silvia; Tancredi, Raffaella; Thomson, Susanne; Sutcliffe, James S; Maestrini, Elena
2015-04-01
Chromosome 15q13.3 recurrent microdeletions are causally associated with a wide range of phenotypes, including autism spectrum disorder (ASD), seizures, intellectual disability, and other psychiatric conditions. Whether the reciprocal microduplication is pathogenic is less certain. CHRNA7, encoding for the alpha7 subunit of the neuronal nicotinic acetylcholine receptor, is considered the likely culprit gene in mediating neurological phenotypes in 15q13.3 deletion cases. To assess if CHRNA7 rare variants confer risk to ASD, we performed copy number variant analysis and Sanger sequencing of the CHRNA7 coding sequence in a sample of 135 ASD cases. Sequence variation in this gene remains largely unexplored, given the existence of a fusion gene, CHRFAM7A, which includes a nearly identical partial duplication of CHRNA7. Hence, attempts to sequence coding exons must distinguish between CHRNA7 and CHRFAM7A, making next-generation sequencing approaches unreliable for this purpose. A CHRNA7 microduplication was detected in a patient with autism and moderate cognitive impairment; while no rare damaging variants were identified in the coding region, we detected rare variants in the promoter region, previously described to functionally reduce transcription. This study represents the first sequence variant analysis of CHRNA7 in a sample of idiopathic autism. © 2015 Wiley Periodicals, Inc.
Tummala, Hemanth; Fleming, Stewart; Hocking, Paul M.; Wehner, Daniel; Naseem, Zahid; Ali, Manir; Inglehearn, Christopher F.; Zhelev, Nikolai; Lester, Douglas H.
2011-01-01
Background The GNB3 gene is expressed in cone but not rod photoreceptors of vertebrates, where it acts as the β transducin subunit in the colour visual transduction process. A naturally occurring mutation ‘D153del’ in the GNB3 gene causes the recessively inherited blinding phenotype retinopathy globe enlarged (rge) disease in chickens. GNB3 is however also expressed in most other vertebrate tissues suggesting that the D153del mutation may exert pathological effects that outlie from eye. Principal Findings Recombinant studies in COS-7 cells that were transfected with normal and mutant recombinant GNB3 constructs and subjected to cycloheximide chase showed that the mutant GNB3d protein had a much shorter half life compared to normal GNB3. GNB3 codes for the Gβ3 protein subunit that, together with different Gγ and Gα subunits, activates and regulates phosphorylation cascades in different tissues. As expected, the relative levels of cGMP and cAMP secondary messengers and their activated kinases such as MAPK, AKT and GRK2 were also found to be altered significantly in a tissue specific manner in rge chickens. Histochemical analysis on kidney tissue sections, from rge homozygous affected chickens, showed the chickens had enlargement of the glomerular capsule, causing glomerulomegaly and tubulointerstitial inflammation whereas other tissues (brain, heart, liver, pancreas) were unaffected. Significance These findings confirm that the D153del mutation in GNB3 gene targets GNB3 protein to early degradation. Lack of GNB3 signalling causes reduced phosphorylation activity of ERK2 and AKT leading to severe pathological phenotypes such as blindness and renal abnormalities in rge chickens. PMID:21887213
Papadimitriou, G N; Dikeos, D G; Karadima, G; Avramopoulos, D; Daskalopoulou, E G; Stefanis, C N
2001-05-08
There is accumulated evidence that the genes coding for the receptor of gamma aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the CNS, may be involved in the pathogenesis of affective disorders. In a previous study, we have found a genetic association between the GABA-A receptor alpha5 subunit gene locus (GABRA5) on chromosome 15q11-of 13 and bipolar affective disorder. The aim of the present study was to examine the same subjects to see if there exists a genetic association between bipolar affective disorder and the GABA receptor beta3 subunit gene (GABRB3), which is located within 100 kb from GABRA5. The sample consisted of 48 bipolar patients compared to 44 controls (blood donors). All subjects were Greek, unrelated, and personally interviewed. Diagnosis was based on DSM-IV and ICD-10 criteria. The marker used was a dinucleotide (CA) repeat polymorphism with 12 alleles 179 to 201 bp long; genotyping was successful in all patients and 43 controls. The distribution of GABRB3 genotypes among the controls did not deviate significantly from the Hardy-Weinberg equilibrium. No differences in allelic frequencies between bipolar patients and controls were found for GABRB3, while this locus and GABRA5 did not seem to be in significant linkage disequilibrium. In conclusion, the GABRB3 CA-repeat polymorphism we investigated does not present the observed association between bipolar affective illness and GABRA5. This could be due to higher mutation rate in the GABRB3 CA-repeat polymorphism, but it might also signify that GABRA5 is the gene actually associated with the disease. Copyright 2001 Wiley-Liss, Inc.
Sangdee, Kusavadee; Nakbanpote, Woranan; Sangdee, Aphidech
2015-01-01
The entomopathogenic fungus Cod-MK1201 was isolated from a dead cicada nymph. Three regions of ribosomal nuclear DNA, the internal transcribed spacers of nuclear ribosomal DNA repeats (ITS), the partial small subunit of rDNA (nrSSU) , and the partial large subunit of rDNA (nrLSU), and two protein-coding regions, the elongation factor 1α (EF-1α), and the largest subunit of the RNA polymerase II (rpb1) gene, were sequenced and used for fungal identification. The phylogenetic analysis of the ITS and the combined data set of the five genes indicated that the fungal isolate Cod-MK1201 is a new strain of Cordyceps sp. that is closely related to Cordyceps nipponica and C. kanzashiana. Crude extracts of mycelium-cultured Cod-MK1201 were obtained using distilled water and 50% (v/v) ethanol, and the antibacterial activity of each was determined. Both extracts had activity against Gram-positive and Gram-negative bacteria, but the ethanol extract was the more potent of the two. The antibacterial activity of the protein fractions of these extracts was also determined. The protein fraction from the ethanol extract was more antibacterial than the protein fraction from the aqueous extract. Three antibacterial constituents including adenosine, the total phenolic content (TPC), and the total flavonoid content (TFC) was also determined. The results showed that the adenosine content, the TPC, and the TFC of the ethanol extract were more active than those of the aqueous extract. Moreover, synergism was detected between these antibacterial constituents. In conclusion, the entomopathogenic fungal isolate Cod-MK1201 represents a natural source of antibacterial agents.
Perspectives on fish gonadotropins and their receptors.
Levavi-Sivan, B; Bogerd, J; Mañanós, E L; Gómez, A; Lareyre, J J
2010-02-01
Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species. Copyright 2009 Elsevier Inc. All rights reserved.
Mutations affecting gyrase in Haemophilus influenzae.
Setlow, J K; Cabrera-Juárez, E; Albritton, W L; Spikes, D; Mutschler, A
1985-01-01
Mutants separately resistant to novobiocin, coumermycin, nalidixic acid, and oxolinic acid contained gyrase activity as measured in vitro that was resistant to the antibiotics, indicating that the mutations represented structural alterations of the enzyme. One Novr mutant contained an altered B subunit of the enzyme, as judged by the ability of a plasmid, pNov1, containing the mutation to complement a temperature-sensitive gyrase B mutation in Escherichia coli and to cause novobiocin resistance in that strain. Three other Novr mutations did not confer antibiotic resistance to the gyrase but appeared to increase the amount of active enzyme in the cell. One of these, novB1, could only act in cis, whereas a new mutation, novC, could act in trans. An RNA polymerase mutation partially substituted for the novB1 mutation, suggesting that novB1 may be a mutation in a promoter region for the B subunit gene. Growth responses of strains containing various combinations of mutations on plasmids or on the chromosome indicated that low-level resistance to novobiocin or coumermycin may have resulted from multiple copies of wild-type genes coding for the gyrase B subunit, whereas high-level resistance required a structural change in the gyrase B gene and was also dependent on alteration in a regulatory region. When there was mismatch at the novB locus, with the novB1 mutation either on a plasmid or the chromosome, and the corresponding wild-type gene present in trans, chromosome to plasmid recombination during transformation was much higher than when the genes matched, probably because plasmid to chromosome recombination, eliminating the plasmid, was inhibited by the mismatch. PMID:2997115
Liu, Zhongle; Myers, Lawrence C
2017-11-01
Long-term azole treatment of patients with chronic Candida albicans infections can lead to drug resistance. Gain-of-function (GOF) mutations in the transcription factor Mrr1 and the consequent transcriptional activation of MDR1 , a drug efflux coding gene, is a common pathway by which this human fungal pathogen acquires fluconazole resistance. This work elucidates the previously unknown downstream transcription mechanisms utilized by hyperactive Mrr1. We identified the Swi/Snf chromatin remodeling complex as a key coactivator for Mrr1, which is required to maintain basal and induced open chromatin, and Mrr1 occupancy, at the MDR1 promoter. Deletion of snf2 , the catalytic subunit of Swi/Snf, largely abrogates the increases in MDR1 expression and fluconazole MIC observed in MRR1 GOF mutant strains. Mediator positively and negatively regulates key Mrr1 target promoters. Deletion of the Mediator tail module med3 subunit reduces, but does not eliminate, the increased MDR1 expression and fluconazole MIC conferred by MRR1 GOF mutations. Eliminating the kinase activity of the Mediator Ssn3 subunit suppresses the decreased MDR1 expression and fluconazole MIC of the snf2 null mutation in MRR1 GOF strains. Ssn3 deletion also suppresses MDR1 promoter histone displacement defects in snf2 null mutants. The combination of this work with studies on other hyperactive zinc cluster transcription factors that confer azole resistance in fungal pathogens reveals a complex picture where the induction of drug efflux pump expression requires the coordination of multiple coactivators. The observed variations in transcription factor and target promoter dependence of this process may make the search for azole sensitivity-restoring small molecules more complicated. Copyright © 2017 American Society for Microbiology.
Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un
2016-12-01
Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.
A novel mitochondrial genome of Arborophila and new insight into Arborophila evolutionary history.
Yan, Chaochao; Mou, Biqin; Meng, Yang; Tu, Feiyun; Fan, Zhenxin; Price, Megan; Yue, Bisong; Zhang, Xiuyue
2017-01-01
The lineage of the Bar-backed Partridge (Arborophila brunneopectus) was investigated to determine the phylogenetic relationships within Arborophila as the species is centrally distributed within an area covered by the distributions of 22 South-east Asian hill partridge species. The complete mitochondrial genome (mitogenome) of A. brunneopectus was determined and compared with four other hill partridge species mitogenomes. NADH subunit genes are radical in hill partridge mitogenomes and contain the most potential positive selective sites around where variable sites are abundant. Together with 44 other mitogenomes of closely related species, we reconstructed highly resolved phylogenetic trees using maximum likelihood (ML) and Bayesian inference (BI) analyses and calculated the divergence and dispersal history of Arborophila using combined datasets composed of their 13-protein coding sequences. Arborophila is reportedly be the oldest group in Phasianidae whose ancestors probably originated in Asia. A. rufipectus shares a closer relationship with A. ardens and A. brunneopectus compared to A. gingica and A. rufogularis, and such relationships were supported and profiled by NADH dehydrogenase subunit 5 (ND5). The intragenus divergence of all five Arborophila species occurred in the Miocene (16.84~5.69 Mya) when there were periods of climate cooling. We propose that these cooling events in the Miocene forced hill partridges from higher to lower altitudes, which led to geographic isolation and speciation. We demonstrated that the apparently deleterious +1 frameshift mutation in NADH dehydrogenase subunit 3 (ND3) found in all Arborophila is an ancient trait that has been eliminated in some younger lineages, such as Passeriformes. It is unclear of the biological advantages of this elimination for the relevant taxa and this requires further investigation.
Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi
2011-01-01
The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150
Jia, Yuzhi; Chang, Hsiang-Chun; Schipma, Matthew J; Liu, Jing; Shete, Varsha; Liu, Ning; Sato, Tatsuya; Thorp, Edward B; Barger, Philip M; Zhu, Yi-Jun; Viswakarma, Navin; Kanwar, Yashpal S; Ardehali, Hossein; Thimmapaya, Bayar; Reddy, Janardan K
2016-01-01
Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.
Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S
1999-03-05
Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.
Zhang, Yanjie; Sun, Jin; Li, Xinzheng; Qiu, Jian-Wen
2016-01-01
We reported a nearly complete mitochondrial genome (mitogenome) from the glass sponge Lophophysema eversa, the second mitogenome in the order Amphidiscosida and the ninth in the class Hexactinellida. It is 20,651 base pairs in length and contains 39 genes including 13 protein-coding genes, 2 ribosomal RNA subunit genes and 24 tRNA genes. The gene content and order of L. eversa are identical to those of Tabachnickia sp., the other species with a sequenced mitogenome in Amphidiscosida, except with two additional tRNAs and three tRNA translocations. The cob gene has a +1 translational frameshift. These results will contribute to a better understanding of the phylogeny of glass sponges.
The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.
Malik, Sohail; Roeder, Robert G
2010-11-01
The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.
A new Sparassis species from Spain described using morphological and molecular data.
Blanco-Dios, Jaime B; Wang, Zheng; Binder, Manfred; Hibbett, David S
2006-10-01
Sparassis miniensis, collected in Pinus pinaster forests in Galicia (northwest Iberian Peninsula) is described as a new species, based on morphological and molecular data. Sparassis miniensis is morphologically distinct from all other species in the genus Sparassis based on scattered flabellae, which are strongly laciniated, azonate, and arise from an orange to rose-purplish base. The sporadic presence of clamp connections is restricted to subhymenial hyphae. Molecular data from LSU-rDNA, ITS and partial gene coding RNA polymerase subunit II (rpb2) suggest a close relationship between the new species S. miniensis and S. brevipes, another European species producing large fruiting bodies but with entire flabellae and no clamp connections.
Association with β-COP Regulates the Trafficking of the Newly Synthesized Na,K-ATPase*
Morton, Michael J.; Farr, Glen A.; Hull, Michael; Capendeguy, Oihana; Horisberger, Jean-Daniel; Caplan, Michael J.
2010-01-01
Plasma membrane expression of the Na,K-ATPase requires assembly of its α- and β-subunits. Using a novel labeling technique to identify Na,K-ATPase partner proteins, we detected an interaction between the Na,K-ATPase α-subunit and the coat protein, β-COP, a component of the COP-I complex. When expressed in the absence of the Na,K-ATPase β-subunit, the Na,K-ATPase α-subunit interacts with β-COP, is retained in the endoplasmic reticulum, and is targeted for degradation. In the presence of the Na,K-ATPase β-subunit, the α-subunit does not interact with β-COP and traffics to the plasma membrane. Pulse-chase experiments demonstrate that in cells expressing both the Na,K-ATPase α- and β-subunits, newly synthesized α-subunit associates with β-COP immediately after its synthesis but that this interaction does not constitute an obligate intermediate in the assembly of the α- and β-subunits to form the pump holoenzyme. The interaction with β-COP was reduced by mutating a dibasic motif at Lys54 in the Na,K-ATPase α-subunit. This mutant α-subunit is not retained in the endoplasmic reticulum and reaches the plasma membrane, even in the absence of Na,K-ATPase β-subunit expression. Although the Lys54 α-subunit reaches the cell surface without need for β-subunit assembly, it is only functional as an ion-transporting ATPase in the presence of the β-subunit. PMID:20801885
Amino acid sequence of the human fibronectin receptor
1987-01-01
The amino acid sequence deduced from cDNA of the human placental fibronectin receptor is reported. The receptor is composed of two subunits: an alpha subunit of 1,008 amino acids which is processed into two polypeptides disulfide bonded to one another, and a beta subunit of 778 amino acids. Each subunit has near its COOH terminus a hydrophobic segment. This and other sequence features suggest a structure for the receptor in which the hydrophobic segments serve as transmembrane domains anchoring each subunit to the membrane and dividing each into a large ectodomain and a short cytoplasmic domain. The alpha subunit ectodomain has five sequence elements homologous to consensus Ca2+- binding sites of several calcium-binding proteins, and the beta subunit contains a fourfold repeat strikingly rich in cysteine. The alpha subunit sequence is 46% homologous to the alpha subunit of the vitronectin receptor. The beta subunit is 44% homologous to the human platelet adhesion receptor subunit IIIa and 47% homologous to a leukocyte adhesion receptor beta subunit. The high degree of homology (85%) of the beta subunit with one of the polypeptides of a chicken adhesion receptor complex referred to as integrin complex strongly suggests that the latter polypeptide is the chicken homologue of the fibronectin receptor beta subunit. These receptor subunit homologies define a superfamily of adhesion receptors. The availability of the entire protein sequence for the fibronectin receptor will facilitate studies on the functions of these receptors. PMID:2958481
Qiao, Xin; Sun, Guangchun; Clare, Jeffrey J; Werkman, Taco R; Wadman, Wytse J
2014-01-01
Background and purpose Voltage-activated Na+ channels contain one distinct α-subunit. In the brain NaV1.1, NaV1.2, NaV1.3 and NaV1.6 are the four most abundantly expressed α-subunits. The antiepileptic drugs (AEDs) carbamazepine, phenytoin and lamotrigine have voltage-gated Na+ channels as their primary therapeutic targets. This study provides a systematic comparison of the biophysical properties of these four α-subunits and characterizes their interaction with carbamazepine, phenytoin and lamotrigine. Experimental approach Na+ currents were recorded in voltage-clamp mode in HEK293 cells stably expressing one of the four α-subunits. Key results NaV1.2 and NaV1.3 subunits have a relatively slow recovery from inactivation, compared with the other subunits and NaV1.1 subunits generate the largest window current. Lamotrigine evokes a larger maximal shift of the steady-state inactivation relationship than carbamazepine or phenytoin. Carbamazepine shows the highest binding rate to the α-subunits. Lamotrigine binding to NaV1.1 subunits is faster than to the other α-subunits. Lamotrigine unbinding from the α-subunits is slower than that of carbamazepine and phenytoin. Conclusions and implications The four Na+ channel α-subunits show subtle differences in their biophysical properties, which, in combination with their (sub)cellular expression patterns in the brain, could contribute to differences in neuronal excitability. We also observed differences in the parameters that characterize AED binding to the Na+ channel subunits. Particularly, lamotrigine binding to the four α-subunits suggests a subunit-specific response. Such differences will have consequences for the clinical efficacy of AEDs. Knowledge of the biophysical and binding parameters could be employed to optimize therapeutic strategies and drug development. PMID:24283699
Electrophysiology and Beyond: Multiple roles of Na+ channel β subunits in development and disease
Patino, Gustavo A.; Isom, Lori L.
2010-01-01
Voltage-gated Na+ channel (VGSC) β subunits are not “auxiliary.” These multifunctional molecules not only modulate Na+ current (INa), but also function as cell adhesion molecules (CAMs) – playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system. PMID:20600605
Inherent conformational flexibility of F1-ATPase α-subunit.
Hahn-Herrera, Otto; Salcedo, Guillermo; Barril, Xavier; García-Hernández, Enrique
2016-09-01
The core of F1-ATPase consists of three catalytic (β) and three noncatalytic (α) subunits, forming a hexameric ring in alternating positions. A wealth of experimental and theoretical data has provided a detailed picture of the complex role played by catalytic subunits. Although major conformational changes have only been seen in β-subunits, it is clear that α-subunits have to respond to these changes in order to be able to transmit information during the rotary mechanism. However, the conformational behavior of α-subunits has not been explored in detail. Here, we have combined unbiased molecular dynamics (MD) simulations and calorimetrically measured thermodynamic signatures to investigate the conformational flexibility of isolated α-subunits, as a step toward deepening our understanding of its function inside the α3β3 ring. The simulations indicate that the open-to-closed conformational transition of the α-subunit is essentially barrierless, which is ideal to accompany and transmit the movement of the catalytic subunits. Calorimetric measurements of the recombinant α-subunit from Geobacillus kaustophilus indicate that the isolated subunit undergoes no significant conformational changes upon nucleotide binding. Simulations confirm that the nucleotide-free and nucleotide-bound subunits show average conformations similar to that observed in the F1 crystal structure, but they reveal an increased conformational flexibility of the isolated α-subunit upon MgATP binding, which might explain the evolutionary conserved capacity of α-subunits to recognize nucleotides with considerable strength. Furthermore, we elucidate the different dependencies that α- and β-subunits show on Mg(II) for recognizing ATP. Copyright © 2016 Elsevier B.V. All rights reserved.
Saini, Deepak Kumar; Kalyanaraman, Vani; Chisari, Mariangela; Gautam, Narasimhan
2008-01-01
The present model of G protein activation by G protein-coupled receptors exclusively localizes their activation and function to the plasma membrane (PM). Observation of the spatiotemporal response of G protein subunits in a living cell to receptor activation showed that 6 of the 12 members of the G protein γ subunit family translocate specifically from the PM to endomembranes. The γ subunits translocate as βγ complexes, whereas the α subunit is retained on the PM. Depending on the γ subunit, translocation occurs predominantly to the Golgi complex or the endoplasmic reticulum. The rate of translocation also varies with the γ subunit type. Different γ subunits, thus, confer distinct spatiotemporal properties to translocation. A striking relationship exists between the amino acid sequences of various γ subunits and their translocation properties. γ subunits with similar translocation properties are more closely related to each other. Consistent with this relationship, introducing residues conserved in translocating subunits into a non-translocating subunit results in a gain of function. Inhibitors of vesicle-mediated trafficking and palmitoylation suggest that translocation is diffusion-mediated and controlled by acylation similar to the shuttling of G protein subunits (Chisari, M., Saini, D. K., Kalyanaraman, V., and Gautam, N. (2007) J. Biol. Chem. 282, 24092–24098). These results suggest that the continual testing of cytosolic surfaces of cell membranes by G protein subunits facilitates an activated cell surface receptor to direct potentially active G protein βγ subunits to intracellular membranes. PMID:17581822
Zhu, Shaotong; Canales, Alejandra; Bedair, Mai; Vik, Steven B
2016-06-01
Complex I is a multi-subunit enzyme of the respiratory chain with seven core subunits in its membrane arm (A, H, J, K, L, M, and N). In the enzyme from Escherichia coli the C-terminal ten amino acids of subunit K lie along the lateral helix of subunit L, and contribute to a junction of subunits K, L and N on the cytoplasmic surface. Using double cysteine mutagenesis, the cross-linking of subunit K (R99C) to either subunit L (K581C) or subunit N (T292C) was attempted. A partial yield of cross-linked product had no effect on the activity of the enzyme, or on proton translocation, suggesting that the C-terminus of subunit K has no dynamic role in function. To further elucidate the role of subunit K genetic deletions were constructed at the C-terminus. Upon the serial deletion of the last 4 residues of the C-terminus of subunit K, various results were obtained. Deletion of one amino acid had little effect on the activity of Complex I, but deletions of 2 or more amino acids led to total loss of enzyme activity and diminished levels of subunits L, M, and N in preparations of membrane vesicles. Together these results suggest that while the C-terminus of subunit K has no dynamic role in energy transduction by Complex I, it is vital for the correct assembly of the enzyme.
Trefoil factor 2 (TFF2) deficiency in murine digestive tract influences the immune system.
Baus-Loncar, Mirela; Schmid, Janinne; Lalani, El-Nasir; Rosewell, Ian; Goodlad, Robert A; Stamp, Gordon W H; Blin, Nikolaus; Kayademir, Tuncay
2005-01-01
The gastrointestinal trefoil factor family (TFF1, TFF2, TFF3) peptides are considered to play an important role in maintaining the integrity of the mucosa. The physiological role of TFF2 in the protection of the GI tract was investigated in TFF2 deficiency. TFF2-/- mice were generated and differential expression of various genes was assessed by using a mouse expression microarray, quantitative real time PCR, Northern blots or immunohistochemistry. On an mRNA level we found 128 differentially expressed genes. We observed modulation of a number of crucial genes involved in innate and adaptive immunity in the TFF2-/- mice. Expression of proteasomal subunits genes (LMP2, LMP7 and PSMB5) involved in the MHC class I presentation pathway were modulated indicating the formation of immunoproteasomes improving antigen presentation. Expression of one subunit of a transporter (TAP1) responsible for importing degraded antigens into ER was increased, similarly to the BAG2 gene that modulates chaperone activity in ER helping proper loading on MHC class I molecules. Several mouse defensin (cryptdin) genes coding important intestinal microbicidal proteins were up-regulated as a consequence of TFF2 deficiency. Normally moderate expression of TFF3 was highly increased in stomach. Copyright (c) 2005 S. Karger AG, Basel.
A 16-year-old girl with anti-NMDA-receptor encephalitis and family history of psychotic disorders.
Cleland, Neil; Lieblich, Samuel; Schalling, Martin; Rahm, Christoffer
2015-12-01
Autoimmune NMDA-R encephalitis (ANRE) shares clinical features with schizophrenia. Recent research also indicates that both disorders are associated with dysfunction of the N-Methyl-D-Aspartate glutamate receptors (NMDA-R) subunit 1. We present the case of Ms A, 16 years old. Ms A presented with acute personality change, bizarre behaviour, delusional ideas and atypical seizures. She had a family history of psychotic disorders, and autistic traits diagnosed in childhood. She was initially diagnosed with a psychotic disorder. Delayed testing of CSF indicated ANRE. As the patient was a Jehovah's witness the treating team was unable to use gammaglobulin therapy; they instead relied on combined plasmapheresis and rituximab. To exclude the possibility that the affected members of this family shared a gene coding for an abnormal configuration of the NMDA receptor subunit 1 we sequenced the region of the GRIN1 gene in DNA extracted from blood in both Ms A and her grandmother. Ms A's condition improved dramatically, though her long-term memory is still demonstrably impaired. No genetic abnormality was detected. This case emphasizes how important it is, for a first episode psychosis, to exclude ANRE and other autoimmune synaptic encephalitides, even in the face of significant family history, and if seronegative, the importance of testing for CSF autoantibodies.
Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry
2015-01-01
AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload.
Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry
2015-01-01
AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload. PMID:26098914
Whittaker, Jonathan; Whittaker, Linda J.; Roberts, Charles T.; Phillips, Nelson B.; Ismail-Beigi, Faramarz; Lawrence, Michael C.; Weiss, Michael A.
2012-01-01
The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo–cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation. PMID:22736795
Whittaker, Jonathan; Whittaker, Linda J; Roberts, Charles T; Phillips, Nelson B; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A
2012-07-10
The primary hormone-binding surface of the insulin receptor spans one face of the N-terminal β-helix of the α-subunit (the L1 domain) and an α-helix in its C-terminal segment (αCT). Crystallographic analysis of the free ectodomain has defined a contiguous dimer-related motif in which the αCT α-helix packs against L1 β-strands 2 and 3. To relate structure to function, we exploited expanded genetic-code technology to insert photo-activatable probes at key sites in L1 and αCT. The pattern of αCT-mediated photo-cross-linking within the free and bound receptor is in accord with the crystal structure and prior mutagenesis. Surprisingly, L1 photo-probes in β-strands 2 and 3, predicted to be shielded by αCT, efficiently cross-link to insulin. Furthermore, anomalous mutations were identified on neighboring surfaces of αCT and insulin that impair hormone-dependent activation of the intracellular receptor tyrosine kinase (contained within the transmembrane β-subunit) disproportionately to their effects on insulin binding. Taken together, these results suggest that αCT, in addition to its hormone-recognition role, provides a signaling element in the mechanism of receptor activation.
Heeren, Gino; Rinnerthaler, Mark; Laun, Peter; von Seyerl, Phyllis; Kössler, Sonja; Klinger, Harald; Hager, Matthias; Bogengruber, Edith; Jarolim, Stefanie; Simon-Nobbe, Birgit; Schüller, Christoph; Carmona-Gutierrez, Didac; Breitenbach-Koller, Lore; Mück, Christoph; Jansen-Dürr, Pidder; Criollo, Alfredo; Kroemer, Guido; Madeo, Frank; Breitenbach, Michael
2009-07-13
Yeast mother cell-specific aging constitutes a model of replicative aging as it occurs in stem cell populations of higher eukaryotes. Here, we present a new long-lived yeast deletion mutation,afo1 (for aging factor one), that confers a 60% increase in replicative lifespan. AFO1/MRPL25 codes for a protein that is contained in the large subunit of the mitochondrial ribosome. Double mutant experiments indicate that the longevity-increasing action of the afo1 mutation is independent of mitochondrial translation, yet involves the cytoplasmic Tor1p as well as the growth-controlling transcription factor Sfp1p. In their final cell cycle, the long-lived mutant cells do show the phenotypes of yeast apoptosis indicating that the longevity of the mutant is not caused by an inability to undergo programmed cell death. Furthermore, the afo1 mutation displays high resistance against oxidants. Despite the respiratory deficiency the mutant has paradoxical increase in growth rate compared to generic petite mutants. A comparison of the single and double mutant strains for afo1 and fob1 shows that the longevity phenotype of afo1 is independent of the formation of ERCs (ribosomal DNA minicircles). AFO1/MRPL25 function establishes a new connection between mitochondria, metabolism and aging.
Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology.
Heinson, Ashley I; Gunawardana, Yawwani; Moesker, Bastiaan; Hume, Carmen C Denman; Vataga, Elena; Hall, Yper; Stylianou, Elena; McShane, Helen; Williams, Ann; Niranjan, Mahesan; Woelk, Christopher H
2017-02-01
Reverse vaccinology (RV) is a bioinformatics approach that can predict antigens with protective potential from the protein coding genomes of bacterial pathogens for subunit vaccine design. RV has become firmly established following the development of the BEXSERO® vaccine against Neisseria meningitidis serogroup B. RV studies have begun to incorporate machine learning (ML) techniques to distinguish bacterial protective antigens (BPAs) from non-BPAs. This research contributes significantly to the RV field by using permutation analysis to demonstrate that a signal for protective antigens can be curated from published data. Furthermore, the effects of the following on an ML approach to RV were also assessed: nested cross-validation, balancing selection of non-BPAs for subcellular localization, increasing the training data, and incorporating greater numbers of protein annotation tools for feature generation. These enhancements yielded a support vector machine (SVM) classifier that could discriminate BPAs (n = 200) from non-BPAs (n = 200) with an area under the curve (AUC) of 0.787. In addition, hierarchical clustering of BPAs revealed that intracellular BPAs clustered separately from extracellular BPAs. However, no immediate benefit was derived when training SVM classifiers on data sets exclusively containing intra- or extracellular BPAs. In conclusion, this work demonstrates that ML classifiers have great utility in RV approaches and will lead to new subunit vaccines in the future.
Inta, Ioana Monica; Choukair, Daniela; Bender, Sebastian; Kneppo, Carolin; Knauer-Fischer, Sabine; Meyenburg, Kahina; Ivandic, Boris; Pfister, Stefan M; Bettendorf, Markus
2014-01-01
GNAS encodes the α subunit of the stimulatory G protein (Gsα). Maternal inherited Gsα mutations cause pseudohypoparathyroidism type Ia (PHP-Ia), associated with shortening of the 4th and 5th metacarpals. Here we investigated the Gsα pathway in short patients with distinct shortening of the 4th and 5th metacarpals. In 571 children with short stature and 4 patients with PHP-Ia metacarpal bone lengths were measured. In identified patients we analysed the Gsα protein function in platelets, performed GNAS sequencing, and epigenetic analysis of four significant differentially methylated regions. In 51 patients (8.9%) shortening of the 4th and 5th metacarpals was more pronounced than their height deficit. No GNAS coding mutations were identified in 20 analysed patients, except in 2 PHP-Ia patients. Gsα activity was reduced in all PHP-Ia patients and in 25% of the analysed patients. No significant methylation changes were identified. Our findings suggest that patients with short stature and distinct metacarpal bone shortening could be part of the wide variety of PHP/PPHP, therefore it was worthwhile analysing the Gsα protein function and GNAS gene in these patients in order to further elucidate the phenotype and genotype of Gsα dysfunction.
Bonen, Linda; Boer, Poppo H.; Gray, Michael W.
1984-01-01
We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity. ImagesFig. 3.Fig. 4.Fig. 5. PMID:16453565
Geiss, K T; Abbas, G M; Makaroff, C A
1994-04-01
The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.
[Post partum depression: future perspectives].
Pinna, Martina; Zompo, Maria Del
2012-01-01
Post partum depression (PPD) is a psychiatric illness approximately affecting 10-20% of women after childbirth. The objective of this work is to update our knowledge of PPD giving particular emphasis to etiopathogenetic hypotheses. An accurate search of the literature on this topic was conducted using free dedicated websites such as PubMed. The most recent studies reveal that PPD is a complex disease, whose pathogenesis is not yet clarified, determined by a mix of genetic, biological and environmental factors. Genetic studies have shown a possible involvement of polymorphisms of genes coding for serotonin transporter, 5HT2A and 5HT2C receptors, HMCN1 and METTL13 genes, D2 receptor and GABAA receptor (GABAAR). The involvement of these systems might provide an explanation of the relations among genetic alterations, hormonal fluctuations in the post partum, changes in neurotransmission and mood fluctuations typical of PPD. The results obtained so far are not exhaustive. However, there is a substantial evidence showing that patients with PPD may have a high genetic vulnerability, although we have not been able yet to pinpoint a specific biological marker of the disease. Recent research is focusing on the δ subunit of GABAAR and the possible role of selective agonists of this subunit, such as gaboxadol, in the treatment of PPD.
Masuda, Isao; Matsuzaki, Motomichi; Kita, Kiyoshi
2010-10-01
Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.
Deciphering the function of the CNGB1b subunit in olfactory CNG channels.
Nache, Vasilica; Wongsamitkul, Nisa; Kusch, Jana; Zimmer, Thomas; Schwede, Frank; Benndorf, Klaus
2016-07-11
Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron.
Prophage-mediated defense against viral attack and viral counter-defense
Dedrick, Rebekah M.; Jacobs-Sera, Deborah; Guerrero Bustamante, Carlos A.; Garlena, Rebecca A.; Mavrich, Travis N.; Pope, Welkin H.; Reyes, Juan C Cervantes; Russell, Daniel A.; Adair, Tamarah; Alvey, Richard; Bonilla, J. Alfred; Bricker, Jerald S.; Brown, Bryony R.; Byrnes, Deanna; Cresawn, Steven G.; Davis, William B.; Dickson, Leon A.; Edgington, Nicholas P.; Findley, Ann M.; Golebiewska, Urszula; Grose, Julianne H.; Hayes, Cory F.; Hughes, Lee E.; Hutchison, Keith W.; Isern, Sharon; Johnson, Allison A.; Kenna, Margaret A.; Klyczek, Karen K.; Mageeney, Catherine M.; Michael, Scott F.; Molloy, Sally D.; Montgomery, Matthew T.; Neitzel, James; Page, Shallee T.; Pizzorno, Marie C.; Poxleitner, Marianne K.; Rinehart, Claire A.; Robinson, Courtney J.; Rubin, Michael R.; Teyim, Joseph N.; Vazquez, Edwin; Ware, Vassie C.; Washington, Jacqueline; Hatfull, Graham F.
2017-01-01
Temperate phages are common and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses infecting mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity, and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages reveals at least five distinct prophage-expressed viral defense systems that interfere with infection of lytic and temperate phages that are either closely-related (homotypic defense) or unrelated (heterotypic defense). Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defense systems include a single-subunit restriction system, a heterotypic exclusion system, and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival, and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, that acts as a highly effective counter-defense system. Prophage-mediated viral defense offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defense promotes phage co-evolution. PMID:28067906
Albertini, A M; Caramori, T; Crabb, W D; Scoffone, F; Galizzi, A
1991-01-01
We cloned and sequenced 8.3 kb of Bacillus subtilis DNA corresponding to the flaA locus involved in flagellar biosynthesis, motility, and chemotaxis. The DNA sequence revealed the presence of 10 complete and 2 incomplete open reading frames. Comparison of the deduced amino acid sequences to data banks showed similarities of nine of the deduced products to a number of proteins of Escherichia coli and Salmonella typhimurium for which a role in flagellar functioning has been directly demonstrated. In particular, the sequence data suggest that the flaA operon codes for the M-ring protein, components of the motor switch, and the distal part of the basal-body rod. The gene order is remarkably similar to that described for region III of the enterobacterial flagellar regulon. One of the open reading frames was translated into a protein with 48% amino acid identity to S. typhimurium FliI and 29% identity to the beta subunit of E. coli ATP synthase. PMID:1828465
Bonnafé, Elsa; Drouard, Florian; Hotier, Lucie; Carayon, Jean-Luc; Marty, Pierre; Treilhou, Michel; Armengaud, Catherine
2015-06-01
Essential oils are used by beekeepers to control the Varroa mites that infest honeybee colonies. So, bees can be exposed to thymol formulations in the hive. The effects of the monoterpenoid thymol were explored on olfactory memory and gene expression in the brain of the honeybee. In bees previously exposed to thymol (10 or 100 ng/bee), the specificity of the response to the conditioned stimulus (CS) was lost 24 h after learning. Besides, the octopamine receptor OA1 gene Amoa1 showed a significant decrease of expression 3 h after exposure with 10 or 100 ng/bee of thymol. With the same doses, expression of Rdl gene, coding for a GABA receptor subunit, was not significantly modified but the trpl gene was upregulated 1 and 24 h after exposure to thymol. These data indicated that the genes coding for the cellular targets of thymol could be rapidly regulated after exposure to this molecule. Memory and sensory processes should be investigated in bees after chronic exposure in the hive to thymol-based preparations.
Superstructure for high current applications in superconducting linear accelerators
Sekutowicz, Jacek [Elbchaussee, DE; Kneisel, Peter [Williamsburg, VA
2008-03-18
A superstructure for accelerating charged particles at relativistic speeds. The superstructure consists of two weakly coupled multi-cell subunits equipped with HOM couplers. A beam pipe connects the subunits and an HOM damper is included at the entrance and the exit of each of the subunits. A coupling device feeds rf power into the subunits. The subunits are constructed of niobium and maintained at cryogenic temperatures. The length of the beam pipe between the subunits is selected to provide synchronism between particles and rf fields in both subunits.
Senior, Alan E.; Muharemagi, Alma; Wilke-Mounts, Susan
2008-01-01
Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, competent in nucleotide binding, and had normal N-terminal sequence. In F1-subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiment showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming, and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector. PMID:17176112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu-Zhong Zhang; Ewart, G.; Capaldi, R.A.
The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane({sup 35}S)sulfonate and sodium methyl 4-({sup 3}H)formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibodymore » (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C-domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage produce from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.« less
Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji
2016-12-01
Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor. Copyright © 2016 Elsevier B.V. All rights reserved.
Splicing regulation and dysregulation of cholinergic genes expressed at the neuromuscular junction.
Ohno, Kinji; Rahman, Mohammad Alinoor; Nazim, Mohammad; Nasrin, Farhana; Lin, Yingni; Takeda, Jun-Ichi; Masuda, Akio
2017-08-01
We humans have evolved by acquiring diversity of alternative RNA metabolisms including alternative means of splicing and transcribing non-coding genes, and not by acquiring new coding genes. Tissue-specific and developmental stage-specific alternative RNA splicing is achieved by tightly regulated spatiotemporal regulation of expressions and activations of RNA-binding proteins that recognize their cognate splicing cis-elements on nascent RNA transcripts. Genes expressed at the neuromuscular junction are also alternatively spliced. In addition, germline mutations provoke aberrant splicing by compromising binding of RNA-binding proteins, and cause congenital myasthenic syndromes (CMS). We present physiological splicing mechanisms of genes for agrin (AGRN), acetylcholinesterase (ACHE), MuSK (MUSK), acetylcholine receptor (AChR) α1 subunit (CHRNA1), and collagen Q (COLQ) in human, and their aberration in diseases. Splicing isoforms of AChE T , AChE H , and AChE R are generated by hnRNP H/F. Skipping of MUSK exon 10 makes a Wnt-insensitive MuSK isoform, which is unique to human. Skipping of exon 10 is achieved by coordinated binding of hnRNP C, YB-1, and hnRNP L to exon 10. Exon P3A of CHRNA1 is alternatively included to generate a non-functional AChR α1 subunit in human. Molecular dissection of splicing mutations in patients with CMS reveals that exon P3A is alternatively skipped by hnRNP H, polypyrimidine tract-binding protein 1, and hnRNP L. Similarly, analysis of an exonic mutation in COLQ exon 16 in a CMS patient discloses that constitutive splicing of exon 16 requires binding of serine arginine-rich splicing factor 1. Intronic and exonic splicing mutations in CMS enable us to dissect molecular mechanisms underlying alternative and constitutive splicing of genes expressed at the neuromuscular junction. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajra, A.; Liu, P.; Collins, E.S.
1994-09-01
A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less
Sasado, Takao; Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi
2017-01-01
Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3'UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3'UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3'UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo.
Kondoh, Hisato; Furutani-Seiki, Makoto; Naruse, Kiyoshi
2017-01-01
Our previous studies analyzing medaka mutants defective in primordial germ cell (PGC) migration identified cxcr4b and cxcr7, which are both receptors of the chemokine sdf1/cxcl12, as key regulators of PGC migration. Among PGC migration mutants, naruto (nar) is unique in that the mutant phenotype includes gross morphological abnormalities of embryos, suggesting that the mutation affects a broader range of processes. A fine genetic linkage mapping and genome sequencing showed the nar gene encodes Cleavage and Polyadenylation Specificity Factor subunit 6 (CPSF6/CFIm68). CPSF6 is a component of the Cleavage Factor Im complex (CFIm) which plays a key role in pre-mRNA 3'-cleavage and polyadenylation. 3'RACE of sdf1a/b and cxcr7 transcripts in the mutant embryos indicated shorter 3’UTRs with poly A additions occurring at more upstream positions than wild-type embryos, suggesting CPSF6 functions to prevent premature 3’UTR cleavage. In addition, expression of the coding region sequences of sdf1a/b in nar mutants was more anteriorly extended in somites than wild-type embryos, accounting for the abnormally extended distribution of PGCs in nar mutants. An expected consequence of shortening 3'UTR is the escape from the degradation mechanism mediated by microRNAs interacting with distal 3’UTR sequence. The abnormal expression pattern of sdf1a coding sequence may be at least partially accounted for by this mechanism. Given the pleiotropic effects of nar mutation, further analysis using the nar mutant will reveal processes in which CPSF6 plays essential regulatory roles in poly A site selection and involvement of 3'UTRs in posttranscriptional gene regulation in various genes in vivo. PMID:28253363
Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O
1998-01-01
All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309
Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud
2000-01-01
Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413
Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon
2012-01-01
The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124
Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R
2008-01-01
The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.
Specific Roles of NMDA Receptor Subunits in Mental Disorders.
Yamamoto, H; Hagino, Y; Kasai, S; Ikeda, K
2015-01-01
N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.
Chen, Jian; Hu, Rongbin; Zhu, Yinfeng; Shen, Guoxin; Zhang, Hong
2014-01-01
PROTEIN PHOSPHATASE 2A (PP2A) is a major group of serine/threonine protein phosphatases in eukaryotes. It is composed of three subunits: scaffolding subunit A, regulatory subunit B, and catalytic subunit C. Assembly of the PP2A holoenzyme in Arabidopsis (Arabidopsis thaliana) depends on Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR (AtPTPA). Reduced expression of AtPTPA leads to severe defects in plant development, altered responses to abscisic acid, ethylene, and sodium chloride, and decreased PP2A activity. In particular, AtPTPA deficiency leads to decreased methylation in PP2A-C subunits (PP2Ac). Complete loss of PP2Ac methylation in the suppressor of brassinosteroid insensitive1 mutant leads to 30% reduction of PP2A activity, suggesting that PP2A with a methylated C subunit is more active than PP2A with an unmethylated C subunit. Like AtPTPA, PP2A-A subunits are also required for PP2Ac methylation. The interaction between AtPTPA and PP2Ac is A subunit dependent. In addition, AtPTPA deficiency leads to reduced interactions of B subunits with C subunits, resulting in reduced functional PP2A holoenzyme formation. Thus, AtPTPA is a critical factor for committing the subunit A/subunit C dimer toward PP2A heterotrimer formation. PMID:25281708
Assembly of the epithelial Na+ channel evaluated using sucrose gradient sedimentation analysis.
Cheng, C; Prince, L S; Snyder, P M; Welsh, M J
1998-08-28
Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Na+ channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S. In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the alpha subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the alpha subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the alpha subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.
Assembly and mechanism of a group II ECF transporter.
Karpowich, Nathan K; Wang, Da-Neng
2013-02-12
Energy-coupling factor (ECF) transporters are a recently discovered family of primary active transporters for micronutrients and vitamins, such as biotin, thiamine, and riboflavin. Found exclusively in archaea and bacteria, including the human pathogens Listeria, Streptococcus, and Staphylococcus, ECF transporters may be the only means of vitamin acquisition in these organisms. The subunit composition of ECF transporters is similar to that of ATP binding cassette (ABC) importers, whereby both systems share two homologous ATPase subunits (A and A'), a high affinity substrate-binding subunit (S), and a transmembrane coupling subunit (T). However, the S subunit of ECF transporters is an integral membrane protein, and the transmembrane coupling subunits do not share an obvious sequence homology between the two transporter families. Moreover, the subunit stoichiometry of ECF transporters is controversial, and the detailed molecular interactions between subunits and the conformational changes during substrate translocation are unknown. We have characterized the ECF transporters from Thermotoga maritima and Streptococcus thermophilus. Our data suggests a subunit stoichiometry of 2S:2T:1A:1A' and that S subunits for different substrates can be incorporated into the same transporter complex simultaneously. In the first crystal structure of the A-A' heterodimer, each subunit contains a novel motif called the Q-helix that plays a key role in subunit coupling with the T subunits. Taken together, these findings suggest a mechanism for coupling ATP binding and hydrolysis to transmembrane transport by ECF transporters.
The equine LH/CGβ subunit combines divergent intracellular traits of the human LHβ and CGβ subunits
Cohen, Limor; Bousfield, George R; Ben-Menahem, David
2017-01-01
The pituitary LHβ and placental CGβ subunits are products of different genes in primates. The major structural difference between the two subunits is in the carboxy-terminal region, where the short carboxyl sequence of hLHβ is replaced by a longer O-glycosylated carboxy-terminal peptide (CTP) in hCGβ. In association with this structural deviation, there are marked differences in the secretion kinetics and polarized routing of the two subunits. In equids, however, the CGβ and LHβ subunits are products of the same gene expressed in the placenta and pituitary (eLH/CGβ), and both contain a CTP. This unusual expression pattern intrigued us and led to our study of eLH/CGβ subunit secretion by transfected CHO and MDCK cells. In continuous labeling and pulse chase experiments, the secretion of the eLH/CGβ subunit from the transfected CHO cells was inefficient (medium recovery of 16–25%) and slow (t1/2 >6.5 hrs). This indicated that, the secretion of the eLH/CGβ subunit resembles that of hLHβ rather than hCGβ. In MDCK cells grown on Transwell filters, the eLH/CGβ subunit was preferentially secreted from the apical side, similar to the hCGβ subunit secretory route (~65% of the total protein secreted). Taken together, these data suggested that secretion of the eLH/CGβ subunit integrates features of both hLHβ and hCGβ subunits. We propose that the evolution of this intracellular behavior may fulfill the physiological demands for biosynthesis of the eLH/CGβ subunit in the pituitary as well as in the placenta. PMID:25796287
Goalpha regulates volatile anesthetic action in Caenorhabditis elegans.
van Swinderen, B; Metz, L B; Shebester, L D; Mendel, J E; Sternberg, P W; Crowder, C M
2001-01-01
To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goalpha, and presynaptic Goalpha-effectors are candidate VA molecular targets. PMID:11404329
Galaxy formation and physical bias
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1992-01-01
We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell the gas is Jeans' unstable, collapsing, and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. After grouping them into galaxies, we estimate the relative distributions of galaxies and dark matter and the relative velocities of galaxies and dark matter. In a large scale CDM run of 80/h Mpc size with 8 x 10 exp 6 cells and dark matter particles, we find that physical bias b is on the 8/h Mpc scale is about 1.6 and increases towards smaller scales, and that velocity bias is about 0.8 on the same scale. The comparable HDM simulation is highly biased with b = 2.7 on the 8/h Mpc scale. Implications of these results are discussed in the light of the COBE observations which provide an accurate normalization for the initial power spectrum. CDM can be ruled out on the basis of too large a predicted small scale velocity dispersion at greater than 95 percent confidence level.
Aggregation of gluten proteins in model dough after fibre polysaccharide addition.
Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Wilczewska, Agnieszka Z; Markiewicz, Karolina H
2017-09-15
FT-Raman spectroscopy, thermogravimetry and differential scanning calorimetry were used to study changes in structure of gluten proteins and their thermal properties influenced by four dietary fibre polysaccharides (microcrystalline cellulose, inulin, apple pectin and citrus pectin) during development of a model dough. The flour reconstituted from wheat starch and wheat gluten was mixed with the polysaccharides in five concentrations: 3%, 6%, 9%, 12% and 18%. The obtained results showed that all polysaccharides induced similar changes in secondary structure of gluten proteins concerning formation of aggregates (1604cm -1 ), H-bonded parallel- and antiparallel-β-sheets (1690cm -1 ) and H-bonded β-turns (1664cm -1 ). These changes concerned mainly glutenins since β-structures are characteristic for them. The observed structural changes confirmed hypothesis about partial dehydration of gluten network after polysaccharides addition. The gluten aggregation and dehydration processes were also reflected in the DSC results, while the TGA ones showed that gluten network remained thermally stable after polysaccharides addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lin, Muyang; Tay, Siang Hong; Yang, Hongshun; Yang, Bao; Li, Hongliang
2017-08-15
To evaluate the feasibility of substituting eggs in yellow cake by a mixture of soybean proteins, plant polysaccharides, and emulsifiers, the batter properties, including specific gravity and viscosity; cake properties, including specific volume, texture, colour, moisture, microstructures, and structural properties of starch and glutens of the replaced cake and traditional cake containing egg, were evaluated. Replacing eggs with a soy protein isolate and 1% mono-, di-glycerides yielded a similar specific volume, specific gravity, firmness and moisture content (1.92 vs. 2.08cm 3 /g, 0.95 vs. 1.03, 319.8 vs. 376.1g, and 28.03% vs. 29.01%, respectively) compared with the traditional cakes baked with eggs. Structurally, this formulation comprised dominant gliadin aggregates in the size range of 100-200nm and glutenin networking structures containing fewer but larger porosities. The results suggest that a mixture of soybean proteins and emulsifier is a promising substitute for eggs in cakes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Proteomic analysis of the impacts of powdery mildew on wheat grain.
Li, Jie; Liu, Xinhao; Yang, Xiwen; Li, Yongchun; Wang, Chenyang; He, Dexian
2018-09-30
Powdery mildew of wheat is one of the major foliar diseases, causing significant yield loss and flour quality change. In this study, grain protein and starch response to powdery mildew infection were investigated. Total protein, glutenin and gliadin exhibited a greater increase in grains from infected wheat, while the content of total starch and amylopectin was decreased. Comparative proteomic analysis demonstrated that the overabundant protein synthesis-related proteins might facilitate the accumulation of storage proteins in grains from infected plants. The significant increase in triticin, serpin and HMW-GS in grains from infected wheat might relate to the superior gluten quality. In addition, overabundant carbohydrate metabolism-related proteins in grains from infected wheat were conducive to the depletion of starch, whereas the decreased abundance of ADP glucose pyrophosphorylase might be related to the deficiency of starch synthesis. These results provide a deeper understanding on the change of wheat quality under powdery mildew infection. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of mixing time on the structural characteristics of noodle dough under vacuum.
Liu, Rui; Xing, Yanan; Zhang, Yingquan; Zhang, Bo; Jiang, Xuju; Wei, Yimin
2015-12-01
The structural characteristics of noodle dough under different vacuum mixing times were investigated using three flour samples by texture profile analysis (TPA), SEM, FTIR micro-imaging, and by measuring the glutenin macropolymer and free -SH content. The sheeted dough mixed for 8 min presented better textural properties and a more compact and even microstructure. Insufficient mixing resulted in an uneven distribution and an inadequately developed gluten network, especially for weak-gluten flour (Jimai 22). Excessive mixing was detrimental to the developed dough network and decreased the uniformity of component spatial distribution. Furthermore, excessive mixing led to a decrease in GMP content as well as the increase in free -SH content. Flours with different protein characteristics behaved differently. The TPA, microstructure and free -SH content of dough of Zhengmai 366 was less affected by mixing time than that of Jimai 22, suggesting that strong-gluten flour has better noodle dough mixing tolerance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten.
Li, Haili; Byrne, Keren; Galiamov, Renata; Mendoza-Porras, Omar; Bose, Utpal; Howitt, Crispin A; Colgrave, Michelle L
2018-07-15
A strict, lifelong gluten-free (GF) diet is currently the only treatment for coeliac disease (CD). Vinegar and soy sauce are fermented condiments that often include wheat and/or barley. During fermentation cereal proteins are partially degraded by enzymes to yield peptide fragments and amino acids. Whether these fermented products contain intact or degraded gluten proteins and if they are safe for people with CD remains in question. LC-MS offers the benefit of being able to detect hydrolysed gluten that might be present in commercial vinegar and soy sauce products. LC-MS revealed the presence of gluten in malt vinegar, wherein the identified peptides derived from B-, D- and γ-hordein from barley, as well as γ-gliadin, and HMW- and LMW-glutenins from wheat that are known to contain immunopathogenic epitopes. No gluten was detected in the soy sauces examined despite wheat being a labelled ingredient indicating extensive hydrolysis of gluten during soy sauce production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Panda, Rakhi; Fiedler, Katherine L; Cho, Chung Y; Cheng, Raymond; Stutts, Whitney L; Jackson, Lauren S; Garber, Eric A E
2015-12-09
The effectiveness of a proline endopeptidase (PEP) in hydrolyzing gluten and its putative immunopathogenic sequences was examined using antibody-based methods and mass spectrometry (MS). Based on the results of the antibody-based methods, fermentation of wheat gluten containing sorghum beer resulted in a reduction in the detectable gluten concentration. The addition of PEP further reduced the gluten concentration. Only one sandwich ELISA was able to detect the apparent low levels of gluten present in the beers. A competitive ELISA using a pepsin-trypsin hydrolysate calibrant was unreliable because the peptide profiles of the beers were inconsistent with that of the hydrolysate calibrant. Analysis by MS indicated that PEP enhanced the loss of a fragment of an immunopathogenic 33-mer peptide in the beer. However, Western blot results indicated partial resistance of the high molecular weight (HMW) glutenins to the action of PEP, questioning the ability of PEP in digesting all immunopathogenic sequences present in gluten.
Du, Xuye; Ma, Xin; Min, Jingzhi; Zhang, Xiaocun; Jia, Zhenzhen
2018-03-01
A wheat- Aegilops searsii substitution line GL1402, in which chromosome 1B was substituted with 1S s from Ae. searsii , was developed and detected using SDS-PAGE and GISH. The SDS-PAGE analysis showed that the HMW-GS encoded by the Glu-B1 loci of Chinese Spring was replaced by the HMW-GS encoded by the Glu-1S s loci of Ae. searsii . Glutenin macropolymer (GMP) investigation showed that GL1402 had a much higher GMP content than Chinese Spring did. A dough quality comparison of GL1402 and Chinese Spring indicated that GL1402 showed a significantly higher protein content and middle peak time (MPT), and a smaller right peak slope (RPS). Quality tests of Chinese steamed bread (CSB) showed that the GL1402 also produced good steamed bread quality. These results suggested that the substitution line is a valuable breeding material for improving the wheat processing quality.
Comparative study on the freeze stability of yeast and chemical leavened steamed bread dough.
Wang, Pei; Yang, Runqiang; Gu, Zhenxin; Xu, Xueming; Jin, Zhengyu
2017-04-15
The present study comparatively evaluated the evolution of yeast and chemical leavened steamed bread dough (YLD/CLD) quality during freeze/thaw (FT) cycles. The steamed bread quality of CLD was more freeze-stable than that of the YLD after 3 FT cycles. Decreased yeast viability contributed to the loss of gassing power in YLD while no significant differences were observed for CLD during FT cycles. However, faster gas release rate in frozen CLD indicated gas retention loss due to the distortion of gluten network. Glutenin macropolymers (GMP) depolymerization via breakage of inter-chain disulfide (SS) bonds and conversions of α-helix and β-turn to β-sheet structures were the main indicators of gluten deterioration. Gluten network was more vulnerable in frozen YLD, resulting in detectable loss of viscoelasticity. The results suggested that supplement of chemical leavener contributed to a more freeze-tolerant gluten network besides its stable gassing power. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ooms, Nand; Jansens, Koen J A; Pareyt, Bram; Reyniers, Stijn; Brijs, Kristof; Delcour, Jan A
2018-03-01
Gluten proteins functionality during pastry production was examined by including redox agents in the ingredient bill. Addition of reducing and oxidizing agents respectively increased and decreased dough height during fermentation. The presence of large gas bubbles in the samples with oxidizing agents may have caused a 'stacking'-effect and a more effective dough lift. During baking, the level of extractable proteins decreased to comparable values for all samples, except when potassium iodate (KIO 3 ) was used in the recipe. As a result of its use, a lower level of gliadin was incorporated into the gluten polymer and dough layers tended to 'slide' apart during baking, thereby causing collapse. Most likely, KIO 3 caused glutenin oxidation within each individual dough layer to such extent during the dough stage that insufficient thiol groups were available for forming dough layer interconnections during baking, after margarine melting. Furthermore, addition of redox agents impacted the product's crumb structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Subunit association of gamma-glutamyltranspeptidase of Escherichia coli K-12.
Hashimoto, W; Suzuki, H; Nohara, S; Tachi, H; Yamamoto, K; Kumagai, H
1995-12-01
gamma-Glutamyltranspeptidase [EC 2.3.2.2] of Escherichia coli K-12 consists of one large subunit and one small subunit, which can be separated from each other by high-performance liquid chromatography. Using ion spray mass spectrometry, the masses of the large and the small subunit were determined to be 39,207 and 20,015, respectively. The large subunit exhibited no gamma-glutamyltranspeptidase activity and the small subunit had little enzymatic activity, but a mixture of the two subunits showed partial recovery of the enzymatic activity. The results of native-polyacrylamide gel electrophoresis suggested that they could partially recombine, and that the recombined dimer exhibited enzymatic activity. The gene of gamma-glutamyltranspeptidase encoded a signal peptide, and the large and small subunits in a single open reading frame in that order. Two kinds of plasmid were constructed encoding the signal peptide and either the large or the small subunit. A gamma-glutamyltranspeptidase-less mutant of E. coli K-12 was transformed with each plasmid or with both of them. The strain harboring the plasmid encoding each subunit produced a small amount of the corresponding subunit protein in the periplasmic space but exhibited no enzymatic activity. The strain transformed with both plasmids together exhibited the enzymatic activity, but its specific activity was approximately 3% of that of a strain harboring a plasmid encoding the intact structural gene. These results indicate that a portion of the separated large and small subunits can be reconstituted in vitro and exhibit the enzymatic activity, and that the expressed large and small subunits independently are able to associate in vivo and be folded into an active structure, though the specific activity of the associated subunits was much lower than that of native enzyme. This suggests that the synthesis of gamma-glutamyltranspeptidase in a single precursor polypeptide and subsequent processing are more effective to construct the intact structure of gamma-glutamyltranspeptidase than the association of the separated large and small subunits.
The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Kanako; Department of Anesthesiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501; Kanno, Takeshi
2008-03-07
The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression ofmore » the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.« less
Mahony, J B; Brown, I R
1979-11-22
Intravenous injection of (+)-lysergic acid diethylamide into young rabbits induced a transient brain-specific disaggregation of polysomes to monosomes. Investigation of the fate of mRNA revealed that brain poly(A+)mRNA was conserved. In particular, mRNA coding for brain-specific S100 protein was not degraded, nor was it released into free ribonucleoprotein particles. Following the (+)-lysergic acid diethylamide-induced disaggregation of polysomes, mRNA shifted from polysomes and accumulated on monosomes. Formation of a blocked monosome complex, which contained intact mRNA and 40-S plus 60-S ribosomal subunits but lacked nascent peptide chains, suggested that (+)-lysergic acid diethylamide inhibited brain protein synthesis at a specific stage of late initiation or early elongation.
McKinney, Jeffrey; Guerrier-Takada, Cecilia; Wesolowski, Donna; Altman, Sidney
2001-01-01
Narrow spectrum antimicrobial activity has been designed to reduce the expression of two essential genes, one coding for the protein subunit of RNase P (C5 protein) and one for gyrase (gyrase A). In both cases, external guide sequences (EGS) have been designed to complex with either mRNA. Using the EGS technology, the level of microbial viability is reduced to less than 10% of the wild-type strain. The EGSs are additive when used together and depend on the number of nucleotides paired when attacking gyrase A mRNA. In the case of gyrase A, three nucleotides unpaired out of a 15-mer EGS still favor complete inhibition by the EGS but five unpaired nucleotides do not. PMID:11381134
The complete mitochondrial genome of Glaucidium brodiei (Strigiformes: Strigidae).
Sun, Xiaonan; Zhou, Wenliang; Sun, Zhonglou; Qian, Lifu; Zhang, Yanan; Pan, Tao; Zhang, Baowei
2016-07-01
In this paper, the complete mitochondrial genome of Glaucidium brodiei is sequenced and reported for the first time. The mitochondrial genome is a circular molecule of 17,318 bp in length, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and a control region. Overall base composition of the complete mitochondrial DNA is A (29.9%), G (14.1%), C (32.1%) and T (23.9%), the percentage of A and T (53.8%) is slightly higher than G and C (46.2%). All the genes in G. brodiei are distributed on the H-strand, except for the ND6 subunit gene and nine tRNA genes, which are encoded on the L-strand.
Plant Mediator complex and its critical functions in transcription regulation.
Yang, Yan; Li, Ling; Qu, Li-Jia
2016-02-01
The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted. © 2015 Institute of Botany, Chinese Academy of Sciences.
USDA-ARS?s Scientific Manuscript database
Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A-C5 gene that encodes the catalytic subunit 5 o...
Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity.
Higgins, N P; Peebles, C L; Sugino, A; Cozzarelli, N R
1978-04-01
Extensively purified DNA gyrase from Escherichia coli is inhibited by nalidixic acid and by novobiocin. The enzyme is composed of two subunits, A and B, which were purified as separate components. Subunit A is the product of the gene controlling sensitivity to nalidixic acid (nalA) because: (i) the electrophoretic mobility of subunit A in the presence of sodium dodecyl sulfate is identical to that of the 105,000-dalton nalA gene product; (ii) mutants that are resistant to nalidixic acid (nalA(r)) produce a drug-resistant subunit A; and (iii) wild-type subunit A confers drug sensitivity to in vitro synthesis of varphiX174 DNA directed by nalA(r) mutants. Subunit B contains a 95,000-dalton polypeptide and is controlled by the gene specifying sensitivity to novobiocin (cou) because cou(r) mutants produce a novobiocin-resistant subunit B and novobiocin-resitant gyrase is made drug sensitive by wild-type subunit B. Subunits A and B associate, so that gyrase was also purified as a complex containing 105,000- and 95,000-dalton polypeptides. This enzyme and gyrase reconstructed from subunits have the same drug sensitivity, K(m) for ATP, and catalytic properties. The same ratio of subunits gives efficient reconstitution of the reactions intrinsic to DNA gyrase, including catalysis of supercoiling of closed duplex DNA, relaxation of supercoiled DNA in the absence of ATP, and site-specific cleavage of DNA induced by sodium dodecyl sulfate.
Soybean glycinin subunits: Characterization of physicochemical and adhesion properties.
Mo, Xiaoqun; Zhong, Zhikai; Wang, Donghai; Sun, Xiuzhi
2006-10-04
Soybean proteins have shown great potential for applications as renewable and environmentally friendly adhesives. The objective of this work was to study physicochemical and adhesion properties of soy glycinin subunits. Soybean glycinin was extracted from soybean flour and then fractionated into acidic and basic subunits with an estimated purity of 90 and 85%, respectively. Amino acid composition of glycinin subunits was determined. The high hydrophobic amino acid content is a major contributor to the solubility behavior and water resistance of the basic subunits. Acidic subunits and glycinin had similar solubility profiles, showing more than 80% solubility at pH 2.0-4.0 or 6.5-12.0, whereas basic subunits had considerably lower solubility with the minimum at pH 4.5-8.0. Thermal analysis using a differential scanning calorimeter suggested that basic subunits form new oligomeric structures with higher thermal stability than glycinin but no highly ordered structures present in isolated acidic subunits. The wet strength of basic subunits was 160% more than that of acidic subunits prepared at their respective isoelectric points (pI) and cured at 130 degrees C. Both pH and the curing temperature significantly affected adhesive performance. High-adhesion water resistance was usually observed for adhesives from protein prepared at their pI values and cured at elevated temperatures. Basic subunits are responsible for the water resistance of glycinin and are a good starting material for the development of water-resistant adhesives.
Nishio, Kazuaki; Iwamoto-Kihara, Atsuko; Yamamoto, Akitsugu; Wada, Yoh; Futai, Masamitsu
2002-01-01
ATP synthase FoF1 (α3β3γδɛab2c10–14) couples an electrochemical proton gradient and a chemical reaction through the rotation of its subunit assembly. In this study, we engineered FoF1 to examine the rotation of the catalytic F1 β or membrane sector Fo a subunit when the Fo c subunit ring was immobilized; a biotin-tag was introduced onto the β or a subunit, and a His-tag onto the c subunit ring. Membrane fragments were obtained from Escherichia coli cells carrying the recombinant plasmid for the engineered FoF1 and were immobilized on a glass surface. An actin filament connected to the β or a subunit rotated counterclockwise on the addition of ATP, and generated essentially the same torque as one connected to the c ring of FoF1 immobilized through a His-tag linked to the α or β subunit. These results established that the γɛc10–14 and α3β3δab2 complexes are mechanical units of the membrane-embedded enzyme involved in rotational catalysis. PMID:12357031
Localization of yeast RNA polymerase I core subunits by immunoelectron microscopy.
Klinger, C; Huet, J; Song, D; Petersen, G; Riva, M; Bautz, E K; Sentenac, A; Oudet, P; Schultz, P
1996-01-01
Immunoelectron microscopy was used to determine the spatial organization of the yeast RNA polymerase I core subunits on a three-dimensional model of the enzyme. Images of antibody-labeled enzymes were compared with the native enzyme to determine the localization of the antibody binding site on the surface of the model. Monoclonal antibodies were used as probes to identify the two largest subunits homologous to the bacterial beta and beta' subunits. The epitopes for the two monoclonal antibodies were mapped using subunit-specific phage display libraries, thus allowing a direct correlation of the structural data with functional information on conserved sequence elements. An epitope close to conserved region C of the beta-like subunit is located at the base of the finger-like domain, whereas a sequence between conserved regions C and D of the beta'-like subunit is located in the apical region of the enzyme. Polyclonal antibodies outlined the alpha-like subunit AC40 and subunit AC19 which were found co-localized also in the apical region of the enzyme. The spatial location of the subunits is correlated with their biological activity and the inhibitory effect of the antibodies. Images PMID:8887555
Rotation of Subunits During Catalysis by Escherichia coli F_1-ATPase
NASA Astrophysics Data System (ADS)
Duncan, Thomas M.; Bulygin, Vladimir V.; Zhou, Yuantai; Hutcheon, Marcus L.; Cross, Richard L.
1995-11-01
During oxidative and photo-phosphorylation, F_0F_1-ATP synthases couple the movement of protons down an electrochemical gradient to the synthesis of ATP. One proposed mechanistic feature that has remained speculative is that this coupling process requires the rotation of subunits within F_0F_1. Guided by a recent, high-resolution structure for bovine F_1 [Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. (1994) Nature (London) 370, 621-628], we have developed a critical test for rotation of the central γ subunit relative to the three catalytic β subunits in soluble F_1 from Escherichia coli. In the bovine F_1 structure, a specific point of contact between the γ subunit and one of the three catalytic β subunits includes positioning of the homolog of E. coli γ-subunit C87 (γC87) close to the β-subunit 380DELSEED386 sequence. A βD380C mutation allowed us to induce formation of a specific disulfide bond between β and γC87 in soluble E. coli F_1. Formation of the crosslink inactivated βD380C-F_1, and reduction restored full activity. Using a dissociation/reassembly approach with crosslinked βD380C-F_1, we incorporated radiolabeled β subunits into the two noncrosslinked β-subunit positions of F_1. After reduction of the initial nonradio-active β-γ crosslink, only exposure to conditions for catalytic turnover results in similar reactivities of unlabeled and radiolabeled β subunits with γC87 upon reoxidation. The results demonstrate that γ subunit rotates relative to the β subunits during catalysis.
The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels
Campiglio, Marta; Flucher, Bernhard E
2015-01-01
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α1 subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein–protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein–protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity. J. Cell. Physiol. 999: 00–00, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. J. Cell. Physiol. 230: 2019–2031, 2015. © 2015 Wiley Periodicals, Inc. PMID:25820299
Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.
Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C
2006-09-08
The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.
Ezaki, J; Takeda-Ezaki, M; Kominami, E
2000-09-01
The specific accumulation of a hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of NCL (LINCL) is caused by a defect in the CLN2 gene product, tripeptidyl peptidase I (TPP-I). The data here show that TPP-I is involved in the initial degradation of subunit c in lysosomes and suggest that its absence leads directly to the lysosomal accumulation of subunit c. The inclusion of a specific inhibitor of TPP-I, Ala-Ala-Phe-chloromethylketone (AAF-CMK), in the culture medium of normal fibroblasts induced the lysosomal accumulation of subunit c. In an in vitro incubation experiment the addition of AAF-CMK to mitochondrial-lysosomal fractions from normal cells inhibited the proteolysis of subunit c, but not the b-subunit of ATP synthase. The use of two antibodies that recognize the aminoterminal and the middle portion of subunit c revealed that the subunit underwent aminoterminal proteolysis, when TPP-I, purified from rat spleen, was added to the mitochondrial fractions. The addition of both purified TPP-I and the soluble lysosomal fractions, which contain various proteinases, to the mitochondrial fractions resulted in rapid degradation of the entire molecule of subunit c, whereas the degradation of subunit c was markedly delayed through the specific inhibition of TPP-I in lysosomal extracts by AAF-CMK. The stable subunit c in the mitochondrial-lysosomal fractions from cells of a patient with LINCL was degraded on incubation with purified TPP-I. The presence of TPP-I led to the sequential cleavage of tripeptides from the N-terminus of the peptide corresponding to the amino terminal sequence of subunit c.
GABAA receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors.
Has, Ahmad Tarmizi Che; Chebib, Mary
2018-05-15
GABAA receptors (GABAARs) are members of the Cys-loop ligand-gated ion channel (LGIC) superfamily, which includes nicotinic acetylcholine, glycine, and serotonin (5HT3) receptors [1,2,3,4]. LGICs typically mediate fast synaptic transmission via the movement of ions through channels gated by neurotransmitters, such as acetylcholine for nicotinic receptors and GABA for GABAARs [5]. The term Cys-loop receptors originates from the presence of a conserved disulphide bond (or bridge) which holds together two cysteine amino acids of the loop that forms from the structure of polypeptides in the extracellular domain of the receptor's subunit [6]. GABAARs are pentameric transmembrane protein complexes consisting of five subunits from a variety of polypeptide subunits [7,8]. All of these subunits are pseudo-symmetrically organized in the plane of the membrane, with a Cl--selective channel in the middle of the complex. To date, nineteen GABAAR subunits have been identified and categorized into eight classes, α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ1-3, but their variety is further broadened by the existence of several splice forms for certain subunits (e.g., α6, β2 and γ2) [9,10,11,12]. The subunits within each class have an amino acid sequence homology of 70% or more, whereas those with a sequence homology of 30% or less are grouped into different classes [13,14]. A subunit consists of four transmembrane domains (TM1-TM4), each forming an α-helix; a large extracellular N-terminal domain that incorporates part of the orthosteric agonist/antagonist binding site; a large intracellular loop between the TM3 and TM4; a small intracellular loop between TM1 and TM2; a small extracellular loop between TM2 and TM3; and a C-terminal extracellular domain [15,16]. Each subunit is arranged in such a way as to create principal and complementary interfaces with the other subunits, and in a position such that the TM2 of each subunit forms the wall of the channel pore [17,18,19]. The major subunit combination found in the brain comprises α1, β2 and γ2 subunits with the stoichiometry 2α1:2β2:1γ2 [18,20]. For the GABAA α1β2γ2 receptors, the subunits form a specific arrangement in which α1 and β2 subunits alternate with each other and are connected by a γ2 subunit (Figure A) [16,20,21]. For minor subtypes, different α and β subunits have been detected to co-exist as proven by the existence of GABAARs containing α1α2, α1α3, α1α5, α2α3, α3α5, α4α1, α4α2 and α4α3 in the central nervous system [22,23]. Meanwhile, the same pattern has been detected with β and γ subunits, at least the co-occurrence of β in the same GABAAR as well as γ2 with γ3, indicating that these subunits have the capacity to co-exist with each other [24,25,26]. Since different subunits can actually occur in one receptor, GABAARs are considered to exist in a multi-subunit arrangement, leading to ambiguity in the determination of a receptor's stoichiometry. In this review, we first briefly discuss the different subunit arrangements of α1 and β3 subunits in the binary α1β3 receptors. Then we review the GABAA ε-containing receptors predominantly in terms of the ability of ε subunit to present in different position in the ternary α1β3ε receptors, which introduce distinct populations of receptor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hu, Yau-Chung; Chu, Keng-Fu; Yang, Wen-Kai; Lee, Tsung-Han
2017-10-01
The euryhaline milkfish (Chanos chanos) is a popular aquaculture species that can be cultured in fresh water, brackish water, or seawater in Southeast Asia. In gills of the milkfish, Na + , K + -ATPase (i.e., NKA; sodium pump) responds to salinity challenges including changes in mRNA abundance, protein amount, and activity. The functional pump is composed of a heterodimeric protein complex composed of α- and β-subunits. Among the NKA genes, α1-β1 isozyme comprises the major form of NKA subunits in mammalian osmoregulatory organs; however, most studies on fish gills have focused on the α1 subunit and did not verify the α1-β1 isozyme. Based on the sequenced milkfish transcriptome, an NKA β1 subunit gene was identified that had the highest amino acid homology to β233, a NKA β1 subunit paralog originally identified in the eel. Despite this high level of homology to β233, phylogenetic analysis and the fact that only a single NKA β1 subunit gene exists in the milkfish suggest that the milkfish gene should be referred to as the NKA β1 subunit gene. The results of accurate domain prediction of the β1 subunit, co-localization of α1 and β1 subunits in epithelial ionocytes, and co-immunoprecipitation of α1 and β1 subunits, indicated the formation of a α1-β1 complex in milkfish gills. Moreover, when transferred to hyposmotic media (fresh water) from seawater, parallel increases in branchial mRNA and protein expression of NKA α1 and β1 subunits suggested their roles in hypo-osmoregulation of euryhaline milkfish. This study molecularly characterized the NKA β1 subunit and provided the first evidence for an NKA α1-β1 association in gill ionocytes of euryhaline teleosts.
Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel
2002-01-01
Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102
Snyder, P M; Cheng, C; Prince, L S; Rogers, J C; Welsh, M J
1998-01-09
Members of the DEG/ENaC protein family form ion channels with diverse functions. DEG/ENaC subunits associate as hetero- and homomultimers to generate channels; however the stoichiometry of these complexes is unknown. To determine the subunit stoichiometry of the human epithelial Na+ channel (hENaC), we expressed the three wild-type hENaC subunits (alpha, beta, and gamma) with subunits containing mutations that alter channel inhibition by methanethiosulfonates. The data indicate that hENaC contains three alpha, three beta, and three gamma subunits. Sucrose gradient sedimentation of alphahENaC translated in vitro, as well as alpha-, beta-, and gammahENaC coexpressed in cells, was consistent with complexes containing nine subunits. FaNaCh and BNC1, two related DEG/ENaC channels, produced complexes of similar mass. Our results suggest a novel nine-subunit stoichiometry for the DEG/ENaC family of ion channels.
Rat lung glutathione S-transferases. Evidence for two distinct types of 22000-Mr subunits.
Singh, S V; Partridge, C A; Awasthi, Y C
1984-01-01
Two immunologically distinct types of 22000-Mr subunits are present in rat lung glutathione S-transferases. One of these subunits is probably similar to Ya subunits of rat liver glutathione S-transferases, whereas the other subunit Ya' is immunologically distinct. Glutathione S-transferase II (pI7.2) of rat lung is a heterodimer (YaYa') of these subunits, and glutathione S-transferase VI (pI4.8) of rat lung is a homodimer of Ya' subunits. On hybridization in vitro of the subunits of glutathione S-transferase II of rat lung three active dimers having pI values 9.4, 7.2 and 4.8 are obtained. Immunological properties and substrate specificities indicate that the hybridized enzymes having pI7.2 and 4.8 correspond to glutathione S-transferases II and VI of rat lung respectively. Images Fig. 1. Fig. 5. PMID:6433888
Kawasaki-Nishi, Shoko; Nishi, Tsuyoshi; Forgac, Michael
2003-10-24
Proton translocation by the vacuolar (H+)-ATPase (or V-ATPase) has been shown by mutagenesis to be dependent upon charged residues present within transmembrane segments of subunit a as well as the three proteolipid subunits (c, c', and c"). Interaction between R735 in TM7 of subunit a and the glutamic acid residue in the middle of TM4 of subunits c and c' or TM2 of subunit c" has been proposed to be essential for proton release to the luminal compartment. In order to determine whether the helical face of TM7 of subunit a containing R735 is capable of interacting with the helical face of TM4 of subunit c' containing the essential glutamic acid residue (Glu-145), cysteine-mediated cross-linking between these subunits in yeast has been performed. Cys-less forms of subunits a and c' as well as forms containing unique cysteine residues were constructed, introduced together into a strain disrupted in both endogenous subunits, and tested for growth at neutral pH, for assembly competence and for cross-linking in the presence of cupric-phenanthroline by SDS-PAGE and Western blot analysis. Four different cysteine mutants of subunit a were each tested pairwise with ten different unique cysteine mutants of subunit c'. Strong cross-linking was observed for the pairs aS728C/c'I142C, aA731C/c'E145C, aA738C/c'F143C, aA738C/c'L147C, and aL739C/c'L147C. Partial cross-linking was observed for an additional 13 of 40 pairs analyzed. When arrayed on a helical wheel diagram, the results suggest that the helical face of TM7 of subunit a containing Arg-735 interacts with the helical face of TM4 of subunit c' centered on Val-146 and bounded by Glu-145 and Leu-147. The results are consistent with a possible rotational flexibility of one or both of these transmembrane segments as well as some flexibility of movement perpendicular to the membrane.
Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition.
Doherty, Geoff P; Fogg, Mark J; Wilkinson, Anthony J; Lewis, Peter J
2010-12-01
Bacterial RNA polymerases (RNAPs) contain several small auxiliary subunits known to co-purify with the core α, β and β' subunits. The ω subunit is conserved between Gram-positive and Gram-negative bacteria, while the δ subunit is conserved within, but restricted to, Gram-positive bacteria. Although various functions have been assigned to these subunits via in vitro assays, very little is known about their in vivo roles. In this work we constructed a pair of vectors to investigate the subcellular localization of the δ and ω subunits in Bacillus subtilis with respect to the core RNAP. We found these subunits to be closely associated with RNAP involved in transcribing both mRNA and rRNA operons. Quantification of these subunits revealed δ to be present at equimolar levels with RNAP and ω to be present at around half the level of core RNAP. For comparison, the localization and quantification of RNAP β' and ω subunits in Escherichia coli was also investigated. Similar to B. subtilis, β' and ω closely associated with the nucleoid and formed subnucleoid regions of high green fluorescent protein intensity, but, unlike ω in B. subtilis, ω levels in E. coli were close to parity with those of β'. These results indicate that δ is likely to be an integral RNAP subunit in Gram-positives, whereas ω levels differ substantially between Gram-positives and -negatives. The ω subunit may be required for RNAP assembly and subsequently be turned over at different rates or it may play roles in Gram-negative bacteria that are performed by other factors in Gram-positives.
Muyan, M; Boime, I
1998-05-01
The placental hormone human CG (hCG) consists of two noncovalently linked alpha- and beta-subunits similar to the other glycoprotein hormones LH, FSH, and TSH. These heterodimers share a common alpha subunit but differ in their structurally distinct beta subunits. The CGbeta subunit is distinguished among the beta subunits by the presence of a C-terminal extension with four serine-linked oligosaccharides (carboxyl terminal peptide or CTP). In previous studies we observed that deleting this sequence decreased assembly of the truncated CGbeta subunit (CGbeta114) with the alpha-subunit and increased the heterogeneity of the secreted forms of the uncombined subunit synthesized in transfected Chinese hamster ovary (CHO) cells. The latter result was attributed to alterations in the processing of the two N-linked oligosaccharides. To examine at what step this heterogeneity occurs, the CGbeta and CGbeta114 genes were transfected into wild-type and mutant CHO cell lines that are defective in the late steps of the N-linked carbohydrate-processing pathway. We show here that removal of the CTP alters the processing of the core mannosyl unit of the subunit to complex forms at both glycosylation sites and that the oligosaccharides contain polylactosamine. Although it has been presumed that there is little intramolecular interaction between the CTP and the proximal domains of the subunit, our data suggest that the CTP sequence participates in the folding of the newly synthesized subunit, which is manifest by the posttranslational changes observed here.
Orio, Patricio; Torres, Yolima; Rojas, Patricio; Carvacho, Ingrid; Garcia, Maria L.; Toro, Ligia; Valverde, Miguel A.; Latorre, Ramon
2006-01-01
High conductance, calcium- and voltage-activated potassium (BK, MaxiK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (β) subunits. The most remarkable effects of β1 and β2 subunits are an increase of the calcium sensitivity and the slow down of channel kinetics. However, the detailed characteristics of channels formed by α and β1 or β2 are dissimilar, the most remarkable difference being a reduction of the voltage sensitivity in the presence of β1 but not β2. Here we reveal the molecular regions in these β subunits that determine their differential functional coupling with the pore-forming α-subunit. We made chimeric constructs between β1 and β2 subunits, and BK channels formed by α and chimeric β subunits were expressed in Xenopus laevis oocytes. The electrophysiological characteristics of the resulting channels were determined using the patch clamp technique. Chimeric exchange of the different regions of the β1 and β2 subunits demonstrates that the NH3 and COOH termini are the most relevant regions in defining the behavior of either subunit. This strongly suggests that the intracellular domains are crucial for the fine tuning of the effects of these β subunits. Moreover, the intracellular domains of β1 are responsible for the reduction of the BK channel voltage dependence. This agrees with previous studies that suggested the intracellular regions of the α-subunit to be the target of the modulation by the β1-subunit. PMID:16446507
Brice, Nicola L; Dolphin, Annette C
1999-01-01
Voltage-dependent calcium channels (VDCCs) show a highly non-uniform distribution in many cell types, including neurons and other polarized secretory cells. We have examined whether this can be mimicked in a polarized epithelial cell line (Madin-Darby canine kidney), which has been used extensively to study the targeting of proteins. We expressed the VDCC α1A, α1B or α1C subunits either alone or in combination with accessory subunits α2-δ and the different β subunits, and examined their localization immunocytochemically. An α1 subunit was only targeted to the plasma membrane if co-expressed with the accessory subunits. The combination α1C/α2-δ and all β subunits was always localized predominantly to the basolateral membrane. It has been suggested that this is equivalent to somatodendritic targeting in neurons. In contrast, the α1B subunit was expressed at the apical membrane with all the accessory subunit combinations, by 24 h after microinjection. This membrane destination shows some parallels with axonal targeting in neurons. The α1A subunit was consistently observed at the apical membrane in the combinations α1A/α2-δ/β1b or β4. In contrast, when co-expressed with α2-δ/β2a, α1A was clearly targeted to the basolateral membrane. In conclusion, the VDCC α1 subunit appears to be the primary determinant for targeting the VDCC complex, but the β subunit can modify this destination, particularly for α1A. PMID:10066897
USDA-ARS?s Scientific Manuscript database
Background: The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to better u...
Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.
Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O
1994-05-26
Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.
Sahlan, Muhamad; Kanzaki, Taro; Zako, Tamotsu; Maeda, Mizuo; Yohda, Masafumi
2010-09-01
Prefoldin is a co-chaperone that captures an unfolded protein substrate and transfers it to the group II chaperonin for completion of protein folding. Group II chaperonin of a hyperthermophilic archaeon, Thermococcus strain KS-1, interacts and cooperates with archaeal prefoldins. Although the interaction sites within chaperonin and prefoldin have been analyzed, the binding mode between jellyfish-like hexameric prefoldin and the double octameric ring group II chaperonin remains unclear. As prefoldin binds the chaperonin beta subunit more strongly than the alpha subunit, we analyzed the binding mode between prefoldin and chaperonin in the context of Thermococcus group II chaperonin complexes of various subunit compositions and arrangements. The oligomers exhibited various affinities for prefoldins according to the number and order of subunits. Binding affinity increased with the number of Cpnbeta subunits. Interestingly, chaperonin complexes containing two beta subunits adjacently exhibited stronger affinities than other chaperonin complexes containing the same number of beta subunits. The result suggests that all four beta tentacles of prefoldin interact with the helical protrusions of CPN in the PFD-CPN complex as the previously proposed model that two adjacent PFD beta subunits seem to interact with two CPN adjacent subunits. Copyright © 2010 Elsevier B.V. All rights reserved.
Gajadeera, Chathurada S; Weber, Joachim
2013-09-13
The "stator stalk" of F1Fo-ATP synthase is essential for rotational catalysis as it connects the nonrotating portions of the enzyme. In Escherichia coli, the stator stalk consists of two (identical) b subunits and the δ subunit. In mycobacteria, one of the b subunits and the δ subunit are replaced by a b/δ fusion protein; the remaining b subunit is of the shorter b' type. In the present study, it is shown that it is possible to generate a functional E. coli ATP synthase containing a b/δ fusion protein. This construct allowed the analysis of the roles of the individual b subunits. The full-length b subunit (which in this case is covalently linked to δ in the fusion protein) is responsible for connecting the stalk to the catalytic F1 subcomplex. It is not required for interaction with the membrane-embedded Fo subcomplex, as its transmembrane helix can be removed. Attachment to Fo is the function of the other b subunit which in turn has only a minor (if any at all) role in binding to δ. Also in E. coli the second b subunit can be shortened to a b' type.
Genetic analysis of neuronal ionotropic glutamate receptor subunits
Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A
2011-01-01
Abstract In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca2+ permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein. PMID:21768264
Genetic analysis of neuronal ionotropic glutamate receptor subunits.
Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A
2011-09-01
In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.
Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R
2017-11-01
While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with immunolabeling at perisynaptic locations in Fmr1 KO mice. While α4 immunogold particles were also reduced at perisynaptic locations in the Fmr1 KO mice, the labeling was increased at synaptic sites. Together these findings suggest that, in the dentate gyrus, altered surface expression of the δ subunit, rather than a decrease in δ subunit expression alone, could be limiting δ subunit-mediated tonic inhibition in this model of FXS. Finding ways to increase surface expression of the δ subunit of the GABA A R could be a novel approach to treatment of hyperexcitability-related alterations in FXS. Copyright © 2017 Elsevier Inc. All rights reserved.
Pelin, Adrian; Pombert, Jean-François; Salvioli, Alessandra; Bonen, Linda; Bonfante, Paola; Corradi, Nicolas
2012-05-01
• Arbuscular mycorrhizal fungi (AMF) are ubiquitous organisms that benefit ecosystems through the establishment of an association with the roots of most plants: the mycorrhizal symbiosis. Despite their ecological importance, however, these fungi have been poorly studied at the genome level. • In this study, total DNA from the AMF Gigaspora margarita was subjected to a combination of 454 and Illumina sequencing, and the resulting reads were used to assemble its mitochondrial genome de novo. This genome was annotated and compared with those of other relatives to better comprehend the evolution of the AMF lineage. • The mitochondrial genome of G. margarita is unique in many ways, exhibiting a large size (97 kbp) and elevated GC content (45%). This genome also harbors molecular events that were previously unknown to occur in fungal mitochondrial genomes, including trans-splicing of group I introns from two different genes coding for the first subunit of the cytochrome oxidase and for the small subunit of the rRNA. • This study reports the second published genome from an AMF organelle, resulting in relevant DNA sequence information from this poorly studied fungal group, and providing new insights into the frequency, origin and evolution of trans-spliced group I introns found across the mitochondrial genomes of distantly related organisms. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Saba, Reuben; Medina, Sarah J; Booth, Stephanie A
2014-10-01
The involvement of SNPs in miRNA target sites remains poorly investigated in neurodegenerative disease. In addition to associations with disease risk, such genetic variations can also provide novel insight into mechanistic pathways that may be responsible for disease etiology and/or pathobiology. To identify SNPs associated specifically with degenerating neurons, we restricted our analysis to genes that are dysregulated in CA1 hippocampal neurons of mice during early, preclinical phase of Prion disease. The 125 genes chosen are also implicated in other numerous degenerative and neurological diseases and disorders and are therefore likely to be of fundamental importance. We predicted those SNPs that could increase, decrease, or have neutral effects on miRNA binding. This group of genes was more likely to possess DNA variants than were genes chosen at random. Furthermore, many of the SNPs are common within the human population, and could contribute to the growing awareness that miRNAs and associated SNPs could account for detrimental neurological states. Interestingly, SNPs that overlapped miRNA-binding sites in the 3'-UTR of GABA-receptor subunit coding genes were particularly enriched. Moreover, we demonstrated that SNP rs9291296 would strengthen miR-26a-5p binding to a highly conserved site in the 3'-UTR of gamma-aminobutyric acid receptor subunit alpha-4. © 2014 WILEY PERIODICALS, INC.
Rousseau-Gueutin, Mathieu; Huang, Xun; Higginson, Emily; Ayliffe, Michael; Day, Anil; Timmis, Jeremy N.
2013-01-01
Eukaryotic cells originated when an ancestor of the nucleated cell engulfed bacterial endosymbionts that gradually evolved into the mitochondrion and the chloroplast. Soon after these endosymbiotic events, thousands of ancestral prokaryotic genes were functionally transferred from the endosymbionts to the nucleus. This process of functional gene relocation, now rare in eukaryotes, continues in angiosperms. In this article, we show that the chloroplastic acetyl-CoA carboxylase subunit (accD) gene that is present in the plastome of most angiosperms has been functionally relocated to the nucleus in the Campanulaceae. Surprisingly, the nucleus-encoded accD transcript is considerably smaller than the plastidic version, consisting of little more than the carboxylase domain of the plastidic accD gene fused to a coding region encoding a plastid targeting peptide. We verified experimentally the presence of a chloroplastic transit peptide by showing that the product of the nuclear accD fused to green fluorescent protein was imported in the chloroplasts. The nuclear gene regulatory elements that enabled the erstwhile plastidic gene to become functional in the nuclear genome were identified, and the evolution of the intronic and exonic sequences in the nucleus is described. Relocation and truncation of the accD gene is a remarkable example of the processes underpinning endosymbiotic evolution. PMID:23435694
Liu, Mingjian; Fan, Xinpeng; Gao, Feng; Gao, Shan; Yu, Yuhe; Warren, Alan; Huang, Jie
2016-11-01
A cryptic species of the Tetrahymena pyriformis complex, Tetrahymena australis, has been known for a long time but never properly diagnosed based on taxonomic methods. The species name is thus invalid according to the International Code of Zoological Nomenclature. Recently, a population isolated from a freshwater lake in Wuhan, China was investigated using live observations, silver staining methods and gene sequence data. This organism can be separated from other described species of the T. pyriformis complex by its relatively small body size, the number of somatic kineties and differences in sequences of two genes, namely the small subunit ribosomal RNA (SSU rRNA) and the mitochondrial cytochrome c oxidase subunit I (cox1). We compared the SSU rRNA gene sequences of all available Tetrahymena species to reveal the nucleotide differences within this genus. The sequence of the Wuhan population is identical to two sequences of a previously isolated strain of T. australis (ATCC #30831). Phylogenetic analyses indicate that these three sequences (X56167, M98015, KT334373) cluster with Tetrahymena shanghaiensis (EF070256) in a polytomy. However, sequence divergence of the cox1 gene between the Wuhan population and another strain of T. australis (ATCC #30271) is 1.4%, suggesting that these may represent different subspecies. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
NASA Technical Reports Server (NTRS)
Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.
2002-01-01
Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.
Aging impact on biochemical activities and gene expression of Drosophila melanogaster mitochondria.
Dubessay, Pascal; Garreau-Balandier, Isabelle; Jarrousse, Anne-Sophie; Fleuriet, Annie; Sion, Benoit; Debise, Roger; Alziari, Serge
2007-08-01
The consequences of aging are characterized by a decline in the main cellular functions, including those of the mitochondria. Although these consequences have been much studied, efforts have often focused solely on a few parameters used to assess the "state" of mitochondrial function during aging. We performed comparative measurements of several parameters in young (a few days) and old (8 and 12 weeks) adult male Drosophila melanogaster: respiratory complex activities, mitochondrial respiration, ATP synthesis, lipid composition of the inner membrane, concentrations of respiratory complex subunits, expression of genes (nuclear and mitochondrial) coding for mitochondrial proteins. Our results show that, in the mitochondria of "old" flies, the activities of three respiratory complexes (I, III, IV) are greatly diminished, ATP synthesis is decreased, and the lipid composition of the inner membrane (fatty acids, cardiolipin) is modified. However, the respiration rate and subunit concentrations measured by Western blot are unaffected. Although cellular mitochondrial DNA (mtDNA) content remains constant, there is a decrease in concentrations of nuclear and mitochondrial transcripts apparently coordinated. The expression of nuclear genes encoding the transcription factors TFAM, TFB1, TFB2, and DmTTF, which are essential for the maintenance and expression of mtDNA are also decreased. The decrease in nuclear and mitochondrial transcript concentrations may be one of the principal effects of aging on mitochondria, and could explain observed decreases in mitochondrial efficiency.
Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest.
Suárez, Juan Pablo; Weiss, Michael; Abele, Andrea; Garnica, Sigisfredo; Oberwinkler, Franz; Kottke, Ingrid
2006-11-01
The mycorrhizal state of epiphytic orchids has been controversially discussed, and the state and mycobionts of the pleurothallid orchids, occurring abundantly and with a high number of species on stems of trees in the Andean cloud forest, were unknown. Root samples of 77 adult individuals of the epiphytic orchids Stelis hallii, S. superbiens, S. concinna and Pleurothallis lilijae were collected in a tropical mountain rainforest of southern Ecuador. Ultrastructural evidence of symbiotic interaction was combined with molecular sequencing of fungi directly from the mycorrhizas and isolation of mycobionts. Ultrastructural analyses displayed vital orchid mycorrhizas formed by fungi with an imperforate parenthesome and cell wall slime bodies typical for the genus Tulasnella. Three different Tulasnella isolates were obtained in pure culture. Phylogenetic analysis of nuclear rDNA sequences from coding regions of the ribosomal large subunit (nucLSU) and the 5.8S subunit, including parts of the internal transcribed spacers, obtained directly from the roots and from the fungal isolates, yielded seven distinct Tulasnella clades. Tulasnella mycobionts in Stelis concinna were restricted to two Tulasnella sequence types while the other orchids were associated with up to six Tulasnella sequence types. All Tulasnella sequences are new to science and distinct from known sequences of mycobionts of terrestrial orchids. The results indicate that tulasnelloid fungi, adapted to the conditions on tree stems, might be important for orchid growth and maintenance in the Andean cloud forest.
van Keulen, H; Gutell, R R; Gates, M A; Campbell, S R; Erlandsen, S L; Jarroll, E L; Kulda, J; Meyer, E A
1993-01-01
Complete small-subunit rRNA (SSU-rRNA) coding region sequences were determined for two species of the intestinal parasite Giardia: G. ardeae and G. muris, both belonging to the order Diplomonadida, and a free-living member of this order, Hexamita sp. These sequences were compared to published SSU-rDNA sequences from a third member of the genus Giardia, G. duodenalis (often called G. intestinalis or G. lamblia) and various representative organisms from other taxa. Of the three Giardia sequences analyzed, the SSU-rRNA from G. muris is the smallest (1432 bases as compared to 1435 and 1453 for G. ardeae and G. duodenalis, respectively) and has the lowest G+C content (58.9%). The Hexamita SSU-rRNA is the largest in this group, containing 1550 bases. Because the sizes of the SSU-rRNA are prokaryotic rather than typically eukaryotic, the secondary structures of the SSU-rRNAs were constructed. These structures show a number of typically eukaryotic signature sequences. Sequence alignments based on constraints imposed by secondary structure were used for construction of a phylogenetic tree for these four taxa. The results show that of the four diplomonads represented, the Giardia species form a distinct group. The other diplomonad Hexamita and the microsporidium Vairimorpha necatrix appear to be distinct from Giardia.
Achilleos, Annita; Neben, Cynthia L.; Merrill, Amy E.; Trainor, Paul A.
2016-01-01
Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention. PMID:27448281
Tuncel, Aytug; Kawaguchi, Joe; Ihara, Yasuharu; Matsusaka, Hiroaki; Nishi, Aiko; Nakamura, Tetsuhiro; Kuhara, Satoru; Hirakawa, Hideki; Nakamura, Yasunori; Cakir, Bilal; Nagamine, Ai; Okita, Thomas W; Hwang, Seon-Kap; Satoh, Hikaru
2014-06-01
Although an alternative pathway has been suggested, the prevailing view is that starch synthesis in cereal endosperm is controlled by the activity of the cytosolic isoform of ADPglucose pyrophosphorylase (AGPase). In rice, the cytosolic AGPase isoform is encoded by the OsAGPS2b and OsAGPL2 genes, which code for the small (S2b) and large (L2) subunits of the heterotetrameric enzyme, respectively. In this study, we isolated several allelic missense and nonsense OsAGPL2 mutants by N-methyl-N-nitrosourea (MNU) treatment of fertilized egg cells and by TILLING (Targeting Induced Local Lesions in Genomes). Interestingly, seeds from three of the missense mutants (two containing T139I and A171V) were severely shriveled and had seed weight and starch content comparable with the shriveled seeds from OsAGPL2 null mutants. Results from kinetic analysis of the purified recombinant enzymes revealed that the catalytic and allosteric regulatory properties of these mutant enzymes were significantly impaired. The missense heterotetramer enzymes and the S2b homotetramer had lower specific (catalytic) activities and affinities for the activator 3-phosphoglycerate (3-PGA). The missense heterotetramer enzymes showed more sensitivity to inhibition by the inhibitor inorganic phosphate (Pi) than the wild-type AGPase, while the S2b homotetramer was profoundly tolerant to Pi inhibition. Thus, our results provide definitive evidence that starch biosynthesis during rice endosperm development is controlled predominantly by the catalytic activity of the cytoplasmic AGPase and its allosteric regulation by the effectors. Moreover, our results show that the L2 subunit is essential for both catalysis and allosteric regulatory properties of the heterotetramer enzyme. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Suzuki, Yoshiaki; Ohya, Susumu; Yamamura, Hisao; Giles, Wayne R; Imaizumi, Yuji
2016-11-11
Large conductance Ca 2+ -activated K + (BK) channels play essential roles in both excitable and non-excitable cells. For example, in chondrocytes, agonist-induced Ca 2+ release from intracellular store activates BK channels, and this hyperpolarizes these cells, augments Ca 2+ entry, and forms a positive feed-back mechanism for Ca 2+ signaling and stimulation-secretion coupling. In the present study, functional roles of a newly identified splice variant in the BK channel α subunit (BKαΔe2) were examined in a human chondrocyte cell line, OUMS-27, and in a HEK293 expression system. Although BKαΔe2 lacks exon2, which codes the intracellular S0-S1 linker (Glu-127-Leu-180), significant expression was detected in several tissues from humans and mice. Molecular image analyses revealed that BKαΔe2 channels are not expressed on plasma membrane but can traffic to the plasma membrane after forming hetero-tetramer units with wild-type BKα (BKαWT). Single-channel current analyses demonstrated that BKα hetero-tetramers containing one, two, or three BKαΔe2 subunits are functional. These hetero-tetramers have a smaller single channel conductance and exhibit lower trafficking efficiency than BKαWT homo-tetramers in a stoichiometry-dependent manner. Site-directed mutagenesis of residues in exon2 identified Helix2 and the linker to S1 (Trp-158-Leu-180, particularly Arg-178) as an essential segment for channel function including voltage dependence and trafficking. BKαΔe2 knockdown in OUMS-27 chondrocytes increased BK current density and augmented the responsiveness to histamine assayed as cyclooxygenase-2 gene expression. These findings provide significant new evidence that BKαΔe2 can modulate cellular responses to physiological stimuli in human chondrocyte and contribute under pathophysiological conditions, such as osteoarthritis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhang, Rong; Dzhura, Igor; Grueter, Chad E; Thiel, William; Colbran, Roger J; Anderson, Mark E
2005-09-01
L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.
NASA Astrophysics Data System (ADS)
Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael
2003-08-01
We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.
The role of TcdB and TccC subunits in secretion of the Photorhabdus Tcd toxin complex.
Yang, Guowei; Waterfield, Nicholas R
2013-01-01
The Toxin Complex (TC) is a large multi-subunit toxin encoded by a range of bacterial pathogens. The best-characterized examples are from the insect pathogens Photorhabdus, Xenorhabdus and Yersinia. They consist of three large protein subunits, designated A, B and C that assemble in a 5∶1∶1 stoichiometry. Oral toxicity to a range of insects means that some have the potential to be developed as pest control technology. The three subunit proteins do not encode any recognisable export sequences and as such little progress has been made in understanding their secretion. We have developed heterologous TC production and secretion models in E. coli and used them to ascribe functions to different domains of the crucial B+C sub-complex. We have determined that the B and C subunits use a secretion mechanism that is either encoded by the proteins themselves or employ an as yet undefined system common to laboratory strains of E. coli. We demonstrate that both the N-terminal domains of the B and C subunits are required for secretion of the whole complex. We propose a model whereby the N-terminus of the C-subunit toxin exports the B+C sub-complex across the inner membrane while that of the B-subunit allows passage across the outer membrane. We also demonstrate that even in the absence of the B-subunit, that the C-subunit can also facilitate secretion of the larger A-subunit. The recognition of this novel export system is likely to be of importance to future protein secretion studies. Finally, the identification of homologues of B and C subunits in diverse bacterial pathogens, including Burkholderia and Pseudomonas, suggests that these toxins are likely to be important in a range of different hosts, including man.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T.; Weintraub, B.D.
1985-04-01
The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing (/sup 14/C)alanine and (/sup 3/H) glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, (/supmore » 14/C)alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. (/sup 3/H)Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function.« less
Shirakihara, Yasuo; Shiratori, Aya; Tanikawa, Hiromi; Nakasako, Masayoshi; Yoshida, Masasuke; Suzuki, Toshiharu
2015-08-01
F1-ATPase (F1) is the catalytic sector in F(o)F1-ATP synthase that is responsible for ATP production in living cells. In catalysis, its three catalytic β-subunits undergo nucleotide occupancy-dependent and concerted open-close conformational changes that are accompanied by rotation of the γ-subunit. Bacterial and chloroplast F1 are inhibited by their own ε-subunit. In the ε-inhibited Escherichia coli F1 structure, the ε-subunit stabilizes the overall conformation (half-closed, closed, open) of the β-subunits by inserting its C-terminal helix into the α3β3 cavity. The structure of ε-inhibited thermophilic F1 is similar to that of E. coli F1, showing a similar conformation of the ε-subunit, but the thermophilic ε-subunit stabilizes another unique overall conformation (open, closed, open) of the β-subunits. The ε-C-terminal helix 2 and hook are conserved between the two structures in interactions with target residues and in their positions. Rest of the ε-C-terminal domains are in quite different conformations and positions, and have different modes of interaction with targets. This region is thought to serve ε-inhibition differently. For inhibition, the ε-subunit contacts the second catches of some of the β- and α-subunits, the N- and C-terminal helices, and some of the Rossmann fold segments. Those contacts, as a whole, lead to positioning of those β- and α- second catches in ε-inhibition-specific positions, and prevent rotation of the γ-subunit. Some of the structural features are observed even in IF1 inhibition in mitochondrial F1. © 2015 FEBS.
Lange, Karen I.; Heinrichs, Jeffrey; Cheung, Karen; Srayko, Martin
2013-01-01
Summary Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B′, B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo. PMID:23336080
Lange, Karen I; Heinrichs, Jeffrey; Cheung, Karen; Srayko, Martin
2013-01-15
Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B', B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.
Khiroug, Serguei S; Harkness, Patricia C; Lamb, Patricia W; Sudweeks, Sterling N; Khiroug, Leonard; Millar, Neil S; Yakel, Jerrel L
2002-01-01
Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including α7-containing receptors that have properties unlike those expected for homomeric α7 nAChRs. We previously reported a strong correlation between expression of the α7 and of the β2 subunits in individual neurons. To explore whether co-assembly of the α7 and β2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the β2 subunit, both wild-type and mutant forms, with the α7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric α7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both α7 and β2 subunits. In addition the EC50 values for all three agonists significantly increased when the β2 subunit was co-expressed with the α7 subunit. Co-expression with the β2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the α7 and β2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR α7 and β2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric α7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system. PMID:11956333
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machaalani, R., E-mail: rita.machaalani@sydney.edu.au; Bosch Institute, The University of Sydney, NSW 2006; The Children's Hospital at Westmead, NSW 2145
Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and comparedmore » mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.« less
Tse, R; Wu, Y J; Vavougios, G; Hou, Y; Hinek, A; Mahuran, D J
1996-08-20
There are three human beta-hexosaminidase isozymes which are composed of all possible dimeric combinations of an alpha and/or a beta subunit; A (alpha beta), and B (beta beta), and S (alpha alpha). The amino acid sequences of the two subunits are 60% identical. The homology between the two chains varies with the middle > the carboxy-terminal > > the amino-terminal portions. Although dimerization is required for activity, each subunit contains its own active site and differs in its substrate specificity and thermal stability. The presence of the beta subunit in hexosaminidase A also influences the substrate specificity of the alpha subunit; e.g., in vivo only the A heterodimer can hydrolyze GM2 ganglioside. In this report, we localize functional regions in the two subunits by cellular expression of alpha/beta fusion proteins joined at adjacently aligned residues. First, a chimeric alpha/beta chain was made by replacing the least well-conserved amino-terminal section of the beta chain with the corresponding alpha section. The biochemical characteristics of this protein were nearly identical to hexosaminidase B. Therefore, the most dissimilar regions in the subunits are not responsible for their dissimilar biochemical properties. A second fusion protein was made that also included the more homologous middle section of the alpha chain. This protein expressed the substrate specificity unique to isozymes containing an alpha subunit (A and S). We conclude that the region responsible for the ability of the alpha subunit to bind negatively charged substrates is located within residues alpha 132-283. Interestingly, the remaining carboxy-terminal section from the beta chain, beta 316-556, was sufficient to allow this chimera to hydrolyze GM2 ganglioside with 10% the specific activity of heterodimeric hexosaminidase A. Thus, the carboxy-terminal section of each subunit is likely involved in subunit-subunit interactions.
Kirby, R W; Martelli, A; Calderone, V; McKay, N G; Lawson, K
2013-07-15
Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α+β1-subunit complex. Channel activity was determined using a non-radioactive Rb(+) efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb(+) efflux both in cells expressing α-subunit alone or α+β1-subunits. Co-expression of the β1-subunit modified the Rb(+) efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α+β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α+β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α+β1-subunit expressing cells. In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; ...
2014-10-02
Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yieldsmore » at least two sub-types of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.« less
Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; Sidorenko, Lyudmila; Nicora, Carrie D.; Norbeck, Angela D.; Irsigler, Andre; LaRue, Huachun; Brzeski, Jan; McGinnis, Karen; Ivashuta, Sergey; Pasa-Tolic, Ljiljana; Chandler, Vicki L.; Pikaard, Craig S.
2014-01-01
Summary Unlike nuclear multisubunit RNA polymerases I, II and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA Polymerases IV and V are non-essential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their twelve subunits, respectively, and differ from one another in three subunits, proteomic analyses show that maize Pols IV and V differ from Pol II in six subunits, but differ from each other only in their largest subunits. Use of alternative catalytic second-subunits, which are non-redundant for development and paramutation, yields at least two subtypes of Pol IV, and three subtypes of Pol V in maize. Pol IV/V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis. PMID:25284785
Crystal structure of a protein phosphatase 2A heterotrimeric holoenzyme.
Cho, Uhn Soo; Xu, Wenqing
2007-01-04
Protein phosphatase 2A (PP2A) is a principal Ser/Thr phosphatase, the deregulation of which is associated with multiple human cancers, Alzheimer's disease and increased susceptibility to pathogen infections. How PP2A is structurally organized and functionally regulated remains unclear. Here we report the crystal structure of an AB'C heterotrimeric PP2A holoenzyme. The structure reveals that the HEAT repeats of the scaffold A subunit form a horseshoe-shaped fold, holding the catalytic C and regulatory B' subunits together on the same side. The regulatory B' subunit forms pseudo-HEAT repeats and interacts with the C subunit near the active site, thereby defining substrate specificity. The methylated carboxy-terminal tail of the C subunit interacts with a highly negatively charged region at the interface between A and B' subunits, suggesting that the C-terminal carboxyl methylation of the C subunit promotes B' subunit recruitment by neutralizing charge repulsion. Together, our structural results establish a crucial foundation for understanding PP2A assembly, substrate recruitment and regulation.
Wang, Yaqiong; Ma, Hong
2015-09-01
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Subunit mass fingerprinting of mitochondrial complex I.
Morgner, Nina; Zickermann, Volker; Kerscher, Stefan; Wittig, Ilka; Abdrakhmanova, Albina; Barth, Hans-Dieter; Brutschy, Bernhard; Brandt, Ulrich
2008-10-01
We have employed laser induced liquid bead ion desorption (LILBID) mass spectrometry to determine the total mass and to study the subunit composition of respiratory chain complex I from Yarrowia lipolytica. Using 5-10 pmol of purified complex I, we could assign all 40 known subunits of this membrane bound multiprotein complex to peaks in LILBID subunit fingerprint spectra by comparing predicted protein masses to observed ion masses. Notably, even the highly hydrophobic subunits encoded by the mitochondrial genome were easily detectable. Moreover, the LILBID approach allowed us to spot and correct several errors in the genome-derived protein sequences of complex I subunits. Typically, the masses of the individual subunits as determined by LILBID mass spectrometry were within 100 Da of the predicted values. For the first time, we demonstrate that LILBID spectrometry can be successfully applied to a complex I band eluted from a blue-native polyacrylamide gel, making small amounts of large multiprotein complexes accessible for subunit mass fingerprint analysis even if they are membrane bound. Thus, the LILBID subunit mass fingerprint method will be of great value for efficient proteomic analysis of complex I and its assembly intermediates, as well as of other water soluble and membrane bound multiprotein complexes.
Subunit arrangement in P2X receptors.
Jiang, Lin-Hua; Kim, Miran; Spelta, Valeria; Bo, Xuenong; Surprenant, Annmarie; North, R Alan
2003-10-01
ATP-gated ionotropic receptors (P2X receptors) are distributed widely in the nervous system. For example, a hetero-oligomeric receptor containing both P2X2 and P2X3 subunits is involved in primary afferent sensation. Each subunit has two membrane-spanning domains. We have used disulfide bond formation between engineered cysteines to demonstrate close proximity between the outer ends of the first transmembrane domain of one subunit and the second transmembrane domain of another. After expression in HEK 293 cells of such modified P2X2 or P2X4 subunits, the disulfide bond formation is evident because an ATP-evoked channel opening requires previous reduction with dithiothreitol. In the hetero-oligomeric P2X2/3 receptor the coexpression of doubly substituted subunits with wild-type partners allows us to deduce that the hetero-oligomeric channel contains adjacent P2X3 subunits but does not contain adjacent P2X2 subunits. The results suggest a "head-to-tail" subunit arrangement in the quaternary structure of P2X receptors and show that a trimeric P2X2/3 receptor would have the composition P2X2(P2X3)2.
Lestrate, P.; Dricot, A.; Delrue, R.-M.; Lambert, C.; Martinelli, V.; De Bolle, X.; Letesson, J.-J.; Tibor, A.
2003-01-01
For this study, we screened 1,152 signature-tagged mutagenesis mutants of Brucella melitensis 16M in a mouse model of infection and found 36 of them to be attenuated in vivo. Molecular characterization of transposon insertion sites showed that for four mutants, the affected genes were only present in Rhizobiaceae. Another mutant contained a disruption in a gene homologous to mosA, which is involved in rhizopine biosynthesis in some strains of Rhizobium, suggesting that this sugar may be involved in Brucella pathogenicity. A mutant was disrupted in a gene homologous to fliF, a gene potentially coding for the MS ring, a basal component of the flagellar system. Surprisingly, a mutant was affected in the rpoA gene, coding for the essential α-subunit of the RNA polymerase. This disruption leaves a partially functional protein, impaired for the activation of virB transcription, as demonstrated by the absence of induction of the virB promoter in the Tn5::rpoA background. The results presented here highlight the fact that the ability of Brucella to induce pathogenesis shares similarities with the molecular mechanisms used by both Rhizobium and Agrobacterium to colonize their hosts. PMID:14638795
Zhong, Hua-Ming; Zhang, Hong-Hai; Sha, Wei-Lai; Zhang, Cheng-De; Chen, Yu-Cai
2010-04-01
The whole mitochondrial genome sequence of red fox (Vuples vuples) was determined. It had a total length of 16 723 bp. As in most mammal mitochondrial genome, it contained 13 protein coding genes, two ribosome RNA genes, 22 transfer RNA genes and one control region. The base composition was 31.3% A, 26.1% C, 14.8% G and 27.8% T, respectively. The codon usage of red fox, arctic fox, gray wolf, domestic dog and coyote followed the same pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 3 gene in the red fox. A long tandem repeat rich in AC was found between conserved sequence block 1 and 2 in the control region. In order to confirm the phylogenetic relationships of red fox to other canids, phylogenetic trees were reconstructed by neighbor-joining and maximum parsimony methods using 12 concatenated heavy-strand protein-coding genes. The result indicated that arctic fox was the sister group of red fox and they both belong to the red fox-like clade in family Canidae, while gray wolf, domestic dog and coyote belong to wolf-like clade. The result was in accordance with existing phylogenetic results.
Genetic structure of the mating-type locus of Chlamydomonas reinhardtii.
Ferris, Patrick J; Armbrust, E Virginia; Goodenough, Ursula W
2002-01-01
Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change. PMID:11805055
Chromatin-bound RNA and the neurobiology of psychiatric disease.
Tushir, J S; Akbarian, S
2014-04-04
A large, and still rapidly expanding literature on epigenetic regulation in the nervous system has provided fundamental insights into the dynamic regulation of DNA methylation and post-translational histone modifications in the context of neuronal plasticity in health and disease. Remarkably, however, very little is known about the potential role of chromatin-bound RNAs, including many long non-coding transcripts and various types of small RNAs. Here, we provide an overview on RNA-mediated regulation of chromatin structure and function, with focus on histone lysine methylation and psychiatric disease. Examples of recently discovered chromatin-bound long non-coding RNAs important for neuronal health and function include the brain-derived neurotrophic factor antisense transcript (Bdnf-AS) which regulates expression of the corresponding sense transcript, and LOC389023 which is associated with human-specific histone methylation signatures at the chromosome 2q14.1 neurodevelopmental risk locus by regulating expression of DPP10, an auxillary subunit for voltage-gated K(+) channels. We predict that the exploration of chromatin-bound RNA will significantly advance our current knowledge base in neuroepigenetics and biological psychiatry. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
[Development of oral vaccines based on recombinant proteins derived from cholera toxin].
Sánchez, J; Solórzano, R M
1992-01-01
In this paper a new approach to create antigens through genetic engineering is discussed. In this particular case the subunits of V. cholerae toxin are used as heterologous epitope carries. In this paper the manipulation of A and B subunits is described. This manipulation allows both the insertion of epitopes to the B subunit and the use of subunit A in the construction of recombinant antigens similar to the ones derived from subunit B.
Immunochemical analysis of Micrococcus lysodeikticus (luteus) F1-ATPase and its subunits.
Urban, C; Salton, M R
1983-08-31
The F1-ATPase from Micrococcus lysodeikticus has been purified to 95% protein homogeneity in this laboratory and as all other bacterial F1S, possesses five distinct subunits with molecular weights ranging from 60 000 to 10 000 (Huberman, M. and Salton, M.R.J. (1979) Biochim. Biophys. Acta 547, 230-240). In this communication, we demonstrate the immunochemical reactivities of antibodies to native and SDS-dissociated subunits with the native and dissociated F1-ATPase and show that: (1) the antibodies generated to the native or SDS-dissociated subunits react with the native molecule; (2) all of the subunits comprising the F1 are antigenically unique as determined by crossed immunoelectrophoresis and the Ouchterlony double-diffusion techniques; (3) antibodies to the SDS-denatured individual delta- and epsilon-subunits can be used to destabilize the interaction of these specific subunits with the rest of the native F1; and (4) all subunit antibodies as well as anti-native F1 were found to inhibit ATPase activity to varying degrees, the strongest inhibition being seen with antibodies to the total F1 and anti-alpha- and anti-beta-subunit antibodies. The interaction of specific subunit antibodies may provide a new and novel way to study further and characterize the catalytic portions of F1-ATPases and in general may offer an additional method for the examination of multimeric proteins.
Asher, O; Jensen, B S; Lupu-Meiri, M; Oron, Y; Fuchs, S
1998-04-17
The mongoose AChR alpha-subunit has been cloned and shown to be highly homologous to other AChR alpha-subunits, with only six differences in amino acid residues at positions that are conserved in animal species that bind alpha-bungarotoxin (alpha-BTX). Four of these six substitutions cluster in the ligand binding site, and one of them, Asn-187, forms a consensus N-glycosylation site. The mongoose glycosylated alpha-subunit has a higher apparent molecular mass than that of the rat glycosylated alpha-subunit, probably resulting from the additional glycosylation at Asn-187 of the mongoose subunit. The in vitro translated mongoose alpha-subunit, in a glycosylated or non-glycosylated form, does not bind alpha-BTX, indicating that lack of alpha-BTX binding can be achieved also in the absence of glycosylation.
Kida, Hiroshi; Sugano, Yuri; Iizuka, Ryo; Fujihashi, Masahiro; Yohda, Masafumi; Miki, Kunio
2008-11-14
Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of alpha and beta subunits and forms a "jellyfish-like" structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two alpha and two beta subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of alpha (alpha1 and alpha2) and beta subunits (beta1 and beta2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD beta1 subunit at 1.9 A resolution and its functional analysis. TsPFD beta1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The beta hairpin linkers of beta1 subunits assemble to form a beta barrel "body" around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the beta1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric beta1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD beta1 subunits act as molecular chaperones in living cells of some archaea.
The Kv7.2/Kv7.3 heterotetramer assembles with a random subunit arrangement.
Stewart, Andrew P; Gómez-Posada, Juan Camilo; McGeorge, Jessica; Rouhani, Maral J; Villarroel, Alvaro; Murrell-Lagnado, Ruth D; Edwardson, J Michael
2012-04-06
Voltage-gated K(+) channels composed of Kv7.2 and Kv7.3 are the predominant contributors to the M-current, which plays a key role in controlling neuronal activity. Various lines of evidence have indicated that Kv7.2 and Kv7.3 form a heteromeric channel. However, the subunit stoichiometry and arrangement within this putative heteromer are so far unknown. Here, we have addressed this question using atomic force microscopy imaging of complexes between isolated Kv7.2/Kv7.3 channels and antibodies to epitope tags on the two subunits, Myc on Kv7.2 and HA on Kv7.3. Initially, tsA 201 cells were transiently transfected with equal amounts of cDNA for the two subunits. The heteromer was isolated through binding of either tag to immunoaffinity beads and then decorated with antibodies to the other tag. In both cases, the distribution of angles between pairs of bound antibodies had two peaks, at around 90° and around 180°, and in both cases the 90° peak was about double the size of the 180° peak. These results indicate that the Kv7.2/Kv7.3 heteromer generated by cells expressing approximately equal amounts of the two subunits assembles as a tetramer with a predominantly 2:2 subunit stoichiometry and with a random subunit arrangement. When the DNA ratio for the two subunits was varied, copurification experiments indicated that the subunit stoichiometry was variable and not fixed at 2:2. Hence, there are no constraints on either the subunit stoichiometry or the subunit arrangement.
Deciphering the BAR code of membrane modulators.
Salzer, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina
2017-07-01
The BAR domain is the eponymous domain of the "BAR-domain protein superfamily", a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Brugna-Guiral, Marianne; Tron, Pascale; Nitschke, Wolfgang; Stetter, Karl-Otto; Burlat, Benedicte; Guigliarelli, Bruno; Bruschi, Mireille; Giudici-Orticoni, Marie Thérèse
2003-04-01
Genes potentially coding for three distinct [NiFe] hydrogenases are present in the genome of Aquifex aeolicus. We have demonstrated that all three hydrogenases are expressed under standard growth conditions of the organism. Two hydrogenases were further purified to homogeneity. A periplasmically oriented hydrogenase was obtained in two forms, i.e., as a soluble enzyme containing only the two essential subunits and as a detergent-solubilized complex additionally containing a membrane-integral b-type cytochrome. The second hydrogenase purified was identified as a soluble cytoplasmic enzyme. The isolated enzymes were characterized with respect to biochemical/biophysical parameters, activity, thermostability, and substrate specificity. The phylogenetic positioning of all three hydrogenases was analyzed. A model for the metabolic roles of the three enzymes is proposed on the basis of the obtained results.
Repressor-mediated tissue-specific gene expression in plants
Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA
2009-02-17
Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.
The complete mitochondrial genome of black-footed ferret, Mustela nigripes (Mustela, Mustelinae).
Zhao, Ren-Bin; Zhou, Chao-Yang; Lu, Zhi-Xiang; Hu, Peng; Liu, Jian-Qiong; Tan, Wei-Wei; Yang, Tong-Hua
2016-05-01
In this study, the complete mitochondrial genome sequence of black-footed ferret, Mustela nigripes, is determined for the first time. This mitogenome is 16,556 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region (D-loop). The overall base composition is A (32.9%), C (26.1%), G (13.8%), and T (27.2%), so the percentage of A and T (60.1%) is higher than that of G and C. Most of the genes are encoded on H-strand, except for the ND6 subunit gene and six tRNA genes. The complete mitochondrial genome sequence reported here would be useful for further phylogenetic analysis and conservation genetic studies in M. nigripes.
Cross-linking of hCG to luteal receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, T.H.; Ji, I.
1985-01-01
Photoaffinity labeling of the lutropin/choriogonadotropin (LH/hCG) receptor system on porcine granulosa cells has demonstrated that both the ..cap alpha.. and ..beta.. subunits of hCG directly photoaffinity label the hormone receptor. Three new bands appear on SDS-PAGE as a consequence of photoaffinity labeling by each subunit: the molecular weights of the three bands (106K, 88K, and 83K) produced by the subunit are larger by approximately 10K than those of the three bands (96K, 76K, and 73K) labeled by the ..cap alpha.. subunit. Although it could be a coincidence that the molecular weight of the ..beta.. subunit is approximately 10K larger thanmore » that of the ..cap alpha.. subunit, the similarity in these differences suggests the possibility that both the ..cap alpha.. and ..beta.. subunits have labeled the same polypeptides.« less
Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don
2016-01-01
Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.
Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don
2016-01-01
Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698
NASA Astrophysics Data System (ADS)
Digard, Paul; Williams, Kevin P.; Hensley, Preston; Brooks, Ian S.; Dahl, Charles E.; Coen, Donald M.
1995-02-01
The herpes simplex virus DNA polymerase consists of two subunits-a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial α-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of α-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase δ and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.
Lewis, Brian A
2010-01-15
The regulation of transcription and of many other cellular processes involves large multi-subunit protein complexes. In the context of transcription, it is known that these complexes serve as regulatory platforms that connect activator DNA-binding proteins to a target promoter. However, there is still a lack of understanding regarding the function of these complexes. Why do multi-subunit complexes exist? What is the molecular basis of the function of their constituent subunits, and how are these subunits organized within a complex? What is the reason for physical connections between certain subunits and not others? In this article, I address these issues through a model of network allostery and its application to the eukaryotic RNA polymerase II Mediator transcription complex. The multiple allosteric networks model (MANM) suggests that protein complexes such as Mediator exist not only as physical but also as functional networks of interconnected proteins through which information is transferred from subunit to subunit by the propagation of an allosteric state known as conformational spread. Additionally, there are multiple distinct sub-networks within the Mediator complex that can be defined by their connections to different subunits; these sub-networks have discrete functions that are activated when specific subunits interact with other activator proteins.
Vacher, Helene; Trimmer, James S.
2012-01-01
Voltage-gated ion channels are a diverse family of signaling proteins that mediate rapid electrical signaling events. Among these, voltage-gated potassium or Kv channels are the most diverse, in part due to the large number of principal (or α) subunits and auxiliary subunits that can assemble in different combinations to generate Kv channel complexes with distinct structures and functions. The diversity of Kv channels underlies much of the variability in the active properties between different mammalian central neurons, and the dynamic changes that lead to experience-dependent plasticity in intrinsic excitability. Recent studies have revealed that Kv channel α subunits and auxiliary subunits are extensively phosphorylated, contributing to additional structural and functional diversity. Here we highlight recent studies that show that auxiliary subunits exert some of their profound effects on dendritic Kv4 and axonal Kv1 channels through phosphorylation-dependent mechanisms, either due to phosphorylation on the auxiliary subunit itself, or by influencing the extent and/or impact of α subunit phosphorylation. The complex effects of auxiliary subunits and phosphorylation provide a potent mechanism to generate additional diversity in the structure and function of Kv4 and Kv1 channels, as well as allowing for dynamic reversible regulation of these important ion channels. PMID:21822597
1985-01-01
An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP- dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density. PMID:2993318
Li, Min; Chang, Shan; Yang, Longjin; Shi, Jingyi; McFarland, Kelli; Yang, Xiao; Moller, Alyssa; Wang, Chunguang; Zou, Xiaoqin; Chi, Chengwu; Cui, Jianmin
2014-02-21
BK channel β subunits (β1-β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.
Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA
Naveau, Marie; Lazennec-Schurdevin, Christine; Panvert, Michel; Dubiez, Etienne; Mechulam, Yves; Schmitt, Emmanuelle
2013-01-01
Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2–GDPNP–tRNA complex. PMID:23193270
O-linked oligosaccharides on insulin receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, E.; Gorden, P.
1991-02-01
The insulin receptor, an integral membrane glycoprotein, is synthesized as a single-chain precursor that is cleaved to produce two mature subunits, both of which contain N-linked oligosaccharide chains and covalently linked fatty acids. We report that the beta-subunit also contains O-linked oligosaccharides. The proreceptor, alpha-subunit, and beta-subunit were labeled with (3H)mannose and (3H)galactose in the presence or absence of an inhibitor of O-linked glycosylation. Tryptic peptides from each component were separated by reverse-phase high-performance liquid chromatography. N- and O-linked oligosaccharide chains were identified on these peptides by specific enzymatic digestions. The proreceptor and alpha-subunit contained only N-linked oligosaccharides, whereas themore » beta-subunit contained both N- and O-linked oligosaccharides. The O-linked oligosaccharide chains were attached to a single tryptic fraction of the beta-subunit, which also contained N-linked chains. This fraction was further localized to the NH2-terminal tryptic peptide of the beta-subunit by specific immunoprecipitation with an anti-peptide antibody with specificity for this region. Binding of insulin and autophosphorylation of the beta-subunit were not dependent on O-linked glycosylation, because cells grown in the presence of the inhibitor exhibited a normal dose response to insulin. Therefore, the insulin receptor contains O-linked oligosaccharides on the NH2-terminal tryptic peptide of the beta-subunit, and these O-linked oligosaccharides are not necessary to the binding or autophosphorylation function of the receptor.« less
NASA Technical Reports Server (NTRS)
Weitman, D.; Etlinger, J. D.
1992-01-01
Monoclonal antibodies (mAbs) were generated to proteasome purified from human erythrocytes. Five of six proteasome-specific mAbs reacted with three subunits in the molecular mass range of 25-28 kDa, indicating a common epitope. The other mAb (AP5C10) exhibited a more restricted reactivity, recognizing a 32-kDa subunit of the proteasome purified in its latent state. However, when the proteasome is isolated in its active state, AP5C10 reacts with a 28-kDa subunit, evidence for processing of the proteasome subunits during purification. Purified proteasome preparations which exhibited partial latency have both AP5C10 reactive subunits. Although the 32-kDa subunit appears required for latency, loss of this component and generation of the 28-kDa component are not obligatory for activation. The 32- and 28-kDa subunits can each be further resolved into three components by isoelectric focusing. The apparent loss of 4 kDa during the conversion of the 32- to 28-kDa subunit is accompanied by a shift to a more basic pI for each polypeptide. Western blots of the early steps of proteasome purification reveal an AP5C10-reactive protein at 41 kDa. This protein was separated from proteasomes by sizing chromatography and may represent a pool of precursor subunits. Since the 32-kDa subunit appears necessary for latency, it is speculated to play a regulatory role in ATP-dependent proteolytic activity.
NASA Technical Reports Server (NTRS)
Henry, R. L.; Armbrust, T.; Gallegos, G.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1992-01-01
The structure and supramolecular assembly of the soybean photosystem 1 (PS 1) chlorophyll a/b-binding antenna (LHC 1) was examined. We identified the subunit composition of LHC 1 in soybean and followed the accumulation of individual subunits during light-induced assembly. We observed four LHC 1 subunits, at 23, 22, 21 and 20.5 kDa, obtained partial sequence information by amino-terminal sequence analysis, and classified the 20.5, 22, and 21 kDa subunits as being encoded by type I, II, and IV chlorophyll a/b binding protein genes, respectively. Antisera against LHC 1 subunits were used to follow the accumulation of individual subunits during the light-initiated transition from etioplast to chloroplast. Several points are noteworthy. First, monospecific antibody against the 22 kDa subunit decorated a 25 kDa peptide in etiolated tissue, which declined during maturation. This decline correlated with the light-induced appearance of mature 22 kDa peptide, suggesting a precursor/product relationship. Second, the same antibody identified a 22 kDa protein in mature corn, but not a larger band in etiolated corn, suggesting that LHC 1 accumulation is regulated differently between species before the onset of chlorophyll biosynthesis. Third, the mature 22 kDa subunit appeared somewhat later than the other LHC 1 peptides during greening, implying that this subunit is less intimately associated with the PS1 core than are the subunits appearing earlier in development.
Nmd3p Is a Crm1p-Dependent Adapter Protein for Nuclear Export of the Large Ribosomal Subunit
Ho, Jennifer Hei-Ngam; Kallstrom, George; Johnson, Arlen W.
2000-01-01
In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway. PMID:11086007
Ferrero, Rut; Torres, Magdalena
2002-01-01
Background Soluble guanylyl cyclase (sGC) is the main receptor for nitric oxide (NO) when the latter is produced at low concentrations. This enzyme exists mainly as a heterodimer consisting of one α and one β subunit and converts GTP to the second intracellular messenger cGMP. In turn, cGMP plays a key role in regulating several physiological processes in the nervous system. The aim of the present study was to explore the effects of a NO donor on sGC activity and its protein and subunit mRNA levels in a neural cell model. Results Continuous exposure of bovine adrenal chromaffin cells in culture to the nitric oxide donor, diethylenetriamine NONOate (DETA/NO), resulted in a lower capacity of the cells to synthesize cGMP in response to a subsequent NO stimulus. This effect was not prevented by an increase of intracellular reduced glutathione level. DETA/NO treatment decreased sGC subunit mRNA and β1 subunit protein levels. Both sGC activity and β1 subunit levels decreased more rapidly in chromaffin cells exposed to NO than in cells exposed to the protein synthesis inhibitor, cycloheximide, suggesting that NO decreases β1 subunit stability. The presence of cGMP-dependent protein kinase (PKG) inhibitors effectively prevented the DETA/NO-induced down regulation of sGC subunit mRNA and partially inhibited the reduction in β1 subunits. Conclusions These results suggest that activation of PKG mediates the drop in sGC subunit mRNA levels, and that NO down-regulates sGC activity by decreasing subunit mRNA levels through a cGMP-dependent mechanism, and by reducing β1 subunit stability. PMID:12350235
Structure and Location of the Regulatory β Subunits in the (αβγδ)4 Phosphorylase Kinase Complex* ♦
Nadeau, Owen W.; Lane, Laura A.; Xu, Dong; Sage, Jessica; Priddy, Timothy S.; Artigues, Antonio; Villar, Maria T.; Yang, Qing; Robinson, Carol V.; Zhang, Yang; Carlson, Gerald M.
2012-01-01
Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)4 complex that regulates glycogenolysis in skeletal muscle. Activity of the catalytic γ subunit is regulated by allosteric activators targeting the regulatory α, β, and δ subunits. Three-dimensional EM reconstructions of PhK show it to be two large (αβγδ)2 lobes joined with D2 symmetry through interconnecting bridges. The subunit composition of these bridges was unknown, although indirect evidence suggested the β subunits may be involved in their formation. We have used biochemical, biophysical, and computational approaches to not only address the quaternary structure of the β subunits within the PhK complex, i.e. whether they compose the bridges, but also their secondary and tertiary structures. The secondary structure of β was determined to be predominantly helical by comparing the CD spectrum of an αγδ subcomplex with that of the native (αβγδ)4 complex. An atomic model displaying tertiary structure for the entire β subunit was constructed using chemical cross-linking, MS, threading, and ab initio approaches. Nearly all this model is covered by two templates corresponding to glycosyl hydrolase 15 family members and the A subunit of protein phosphatase 2A. Regarding the quaternary structure of the β subunits, they were directly determined to compose the four interconnecting bridges in the (αβγδ)4 kinase core, because a β4 subcomplex was observed through both chemical cross-linking and top-down MS of PhK. The predicted model of the β subunit was docked within the bridges of a cryoelectron microscopic density envelope of PhK utilizing known surface features of the subunit. PMID:22969083
Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A
2018-02-21
Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.
Blednov, Y.A.; Benavidez, J.M.; Black, M.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Harris, R.A.
2012-01-01
GABA type A receptors (GABAA-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABAA-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011) and indicate this aversive property of ethanol is dependent on ethanol action on α2-containing GABAA-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor-incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABAA-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 and α3 (-/-) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. PMID:23147414
Takaesu, Azusa; Watanabe, Kiyotaka; Takai, Shinji; Sasaki, Yukako; Orino, Koichi
2008-01-01
Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit). Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR) fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas). The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98) ; L: 98–100%). The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed. PMID:18954429
G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity.
Stott, Jennifer B; Povstyan, Oleksandr V; Carr, Georgina; Barrese, Vincenzo; Greenwood, Iain A
2015-05-19
Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein βγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K(+) currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gβγ subunits (2-250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein-coupled receptors. Gallein, an inhibitor of Gβγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gβγ subunit inhibitors (GRK2i and a β-subunit antibody) abolished Kv7 channel currents in the absence of either Gβγ subunit enrichment or G-protein-coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gβγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gβγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gβγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone.
G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity
Stott, Jennifer B.; Povstyan, Oleksandr V.; Carr, Georgina; Barrese, Vincenzo; Greenwood, Iain A.
2015-01-01
Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein βγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K+ currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gβγ subunits (2–250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein–coupled receptors. Gallein, an inhibitor of Gβγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gβγ subunit inhibitors (GRK2i and a β-subunit antibody) abolished Kv7 channel currents in the absence of either Gβγ subunit enrichment or G-protein–coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gβγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gβγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gβγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone. PMID:25941381
Matsuyoshi, Hiroko; Takimoto, Koichi; Yunoki, Takakazu; Erickson, Vickie L; Tyagi, Pradeep; Hirao, Yoshihiko; Wanaka, Akio; Yoshimura, Naoki
2012-09-17
Dorsal root ganglia contain heterogeneous populations of primary afferent neurons that transmit various sensory stimuli. This functional diversity may be correlated with differential expression of voltage-gated K(+) (Kv) channels. Here, we examine cellular distributions of Kv4 pore-forming and ancillary subunits that are responsible for fast-inactivating A-type K(+) current. Expression pattern of Kv α-subunit, β-subunit and auxiliary subunit was investigated using immunohistochemistry, in situ hybridization and RT-PCR technique. The two pore-forming subunits Kv4.1 and Kv4.3 show distinct cellular distributions: Kv4.3 is predominantly in small-sized C-fiber neurons, whereas Kv4.1 is seen in DRG neurons in various sizes. Furthermore, the two classes of Kv4 channel auxiliary subunits are also distributed in different-sized cells. KChIP3 is the only significantly expressed Ca(2+)-binding cytosolic ancillary subunit in DRGs and present in medium to large-sized neurons. The membrane-spanning auxiliary subunit DPP6 is seen in a large number of DRG neurons in various sizes, whereas DPP10 is restricted in small-sized neurons. Distinct combinations of Kv4 pore-forming and auxiliary subunits may constitute A-type channels in DRG neurons with different physiological roles. Kv4.1 subunit, in combination with KChIP3 and/or DPP6, form A-type K(+) channels in medium to large-sized A-fiber DRG neurons. In contrast, Kv4.3 and DPP10 may contribute to A-type K(+) current in non-peptidergic, C-fiber somatic afferent neurons. Copyright © 2012 Elsevier Inc. All rights reserved.
Heidelberg, Laura S.; Warren, James W.
2013-01-01
Many drugs used to treat anxiety are positive modulators of GABAA receptors, which mediate fast inhibitory neurotransmission. The GABAA receptors can be assembled from a combination of at least 16 different subunits. The receptor’s subunit composition determines its pharmacologic and functional properties, and subunit expression varies throughout the brain. A primary goal for new treatments targeting GABAA receptors is the production of subunit-selective modulators acting upon a discrete population of receptors. The anxiolytic 4-amino-7-hydroxy-2-methyl-5,6,7,8,-tetrahydrobenzo[b]thieno[2,3-b]pyridine-3-carboxylic acid, but-2-ynyl ester (SB-205384) is widely considered to be selective for α3-containing GABAA receptors. However, it has been tested only on α1-, α2-, and α3-containing receptors. We examined the activity of SB-205384 at recombinant receptors containing the six different α subunits and found that receptors containing the α3, α5, and α6 subunits were potentiated by SB-205384, with the α6 subunit conferring the greatest responsiveness. Properties associated with chimeric α1/α6 subunits suggested that multiple structural domains influence sensitivity to SB-205384. Point mutations of residues within the extracellular N-terminal domain identified a leucine residue located in loop E of the agonist binding site as an important determinant of high sensitivity to modulation. In the α6 subunit the identity of this residue is species-dependent, with the leucine found in rat subunits but not in human. Our results indicate that SB-205384 is not an α3-selective modulator, and instead acts at several GABAA receptor isoforms. These findings have implications for the side-effect profile of this anxiolytic as well as for its use in neuronal and animal studies as a marker for contribution from α3-containing receptors. PMID:23902941
Pinske, Constanze; Sawers, R. Gary
2012-01-01
During anaerobic growth Escherichia coli synthesizes two membrane-associated hydrogen-oxidizing [NiFe]-hydrogenases, termed hydrogenase 1 and hydrogenase 2. Each enzyme comprises a catalytic subunit containing the [NiFe] cofactor, an electron-transferring small subunit with a particular complement of [Fe-S] (iron-sulfur) clusters and a membrane-anchor subunit. How the [Fe-S] clusters are delivered to the small subunit of these enzymes is unclear. A-type carrier (ATC) proteins of the Isc (iron-sulfur-cluster) and Suf (sulfur mobilization) [Fe-S] cluster biogenesis pathways are proposed to traffic pre-formed [Fe-S] clusters to apoprotein targets. Mutants that could not synthesize SufA had active hydrogenase 1 and hydrogenase 2 enzymes, thus demonstrating that the Suf machinery is not required for hydrogenase maturation. In contrast, mutants devoid of the IscA, ErpA or IscU proteins of the Isc machinery had no detectable hydrogenase 1 or 2 activities. Lack of activity of both enzymes correlated with the absence of the respective [Fe-S]-cluster-containing small subunit, which was apparently rapidly degraded. During biosynthesis the hydrogenase large subunits receive their [NiFe] cofactor from the Hyp maturation machinery. Subsequent to cofactor insertion a specific C-terminal processing step occurs before association of the large subunit with the small subunit. This processing step is independent of small subunit maturation. Using western blotting experiments it could be shown that although the amount of each hydrogenase large subunit was strongly reduced in the iscA and erpA mutants, some maturation of the large subunit still occurred. Moreover, in contrast to the situation in Isc-proficient strains, these processed large subunits were not membrane-associated. Taken together, our findings demonstrate that both IscA and ErpA are required for [Fe-S] cluster delivery to the small subunits of the hydrogen-oxidizing hydrogenases; however, delivery of the Fe atom to the active site might have different requirements. PMID:22363723
Modulation of Gain-of-function α6*-Nicotinic Acetylcholine Receptor by β3 Subunits*
Dash, Bhagirathi; Lukas, Ronald J.
2012-01-01
We previously have shown that β3 subunits either eliminate (e.g. for all-human (h) or all-mouse (m) α6β4β3-nAChR) or potentiate (e.g. for hybrid mα6hβ4hβ3- or mα6mβ4hβ3-nAChR containing subunits from different species) function of α6*-nAChR expressed in Xenopus oocytes, and that nAChR hα6 subunit residues Asn-143 and Met-145 in N-terminal domain loop E are important for dominant-negative effects of nAChR hβ3 subunits on hα6*-nAChR function. Here, we tested the hypothesis that these effects of β3 subunits would be preserved even if nAChR α6 subunits harbored gain-of-function, leucine- or valine-to-serine mutations at 9′ or 13′ positions (L9′S or V13′S) in their second transmembrane domains, yielding receptors with heightened functional activity and more amenable to assessment of effects of β3 subunit incorporation. However, coexpression with β3 subunits potentiates rather than suppresses function of all-human, all-mouse, or hybrid α6(L9′S or V13′S)β4*- or α6(N143D+M145V)L9′Sβ2*-nAChR. This contrasts with the lack of consistent function when α6(L9′S or V13′S) and β2 subunits are expressed alone or in the presence of wild-type β3 subunits. These results provide evidence that gain-of-function hα6hβ2*-nAChR (i.e. hα6(N143D+M145V)L9′Shβ2hβ3 nAChR) could be produced in vitro. These studies also indicate that nAChR β3 subunits can be assembly partners in functional α6*-nAChR and that 9′ or 13′ mutations in the nAChR α6 subunit second transmembrane domain can act as gain-of-function and/or reporter mutations. Moreover, our findings suggest that β3 subunit coexpression promotes function of α6*-nAChR. PMID:22315221
Waldvogel, H J; Kubota, Y; Trevallyan, S C; Kawaguchi, Y; Fritschy, J M; Mohler, H; Faull, R L
1997-10-01
The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon terminals. The type 2 neurons comprised 20% of the total population of alpha1-subunit-immunoreactive neurons. The remaining large-sized alpha1-immunoreactive cells were designated type 3 cells; they were positive for parvalbumin and were distinguished by long branching dendrites extending dorsally for 600-800 microm into the striatum. These neurons comprised 5% of the total population of alpha1-subunit-immunoreactive neurons and were surrounded by enkephalin-immunoreactive terminals. Electron microscopy showed that the alpha1-subunit type 3 neurons had an indented nuclear membrane and were densely covered with small axon terminals which established alpha1-subunit-immunoreactive symmetrical synaptic contacts with the soma and dendrites. These results provide a detailed characterization of the distribution, morphology and chemical characteristics of the alpha1-subunit-immunoreactive neurons in the rat striatum and suggest that the type 1 and type 2 neurons comprise of separate populations of striatal interneurons while the type 3 neurons may represent the large striatonigral projection neurons described by Bolam et al. [Bolam J. P., Somogyi P., Totterdell S. and Smith A. D. (1981) Neuroscience 6, 2141-2157.].
Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil.
Ke, Xiubin; Angel, Roey; Lu, Yahai; Conrad, Ralf
2013-08-01
The dynamics of populations and activities of ammonia-oxidizing and nitrite-oxidizing microorganisms were investigated in rice microcosms treated with two levels of nitrogen. Different soil compartments (surface, bulk, rhizospheric soil) and roots (young and old roots) were collected at three time points (the panicle initiation, heading and maturity periods) of the season. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of their amoA genes (coding for a subunit of ammonia monooxygenase), that of nitrite oxidizers (NOB) by quantifying the nxrA gene (coding for a subunit of nitrite oxidase of Nitrobacter spp.) and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by measuring the rates of potential ammonia oxidation and nitrite oxidation and by quantifying the copy numbers of amoA and nxrA transcripts. Potential nitrite oxidation activity was much higher than potential ammonia oxidation activity and was not directly affected by nitrogen amendment demonstrating the importance of ammonia oxidizers as pace makers for nitrite oxidizer populations. Marked differences in the distribution of bacterial and archaeal ammonia oxidizers, and of Nitrobacter-like and Nitrospira-like nitrite oxidizers were found in the different compartments of planted paddy soil indicating niche differentiation. In bulk soil, ammonia-oxidizing bacteria (Nitrosospira and Nitrosomonas) were at low abundance and displayed no activity, but in surface soil their activity and abundance was high. Nitrite oxidation in surface soil was dominated by Nitrospira spp. By contrast, ammonia-oxidizing Thaumarchaeota and Nitrobacter spp. seemed to dominate nitrification in rhizospheric soil and on rice roots. In contrast to soil compartment, the level of N fertilization and the time point of sampling had only little effect on the abundance, composition and activity of the nitrifying communities. The results of our study show that in rice fields population dynamics and activity of nitrifiers is mainly differentiated by the soil compartments rather than by nitrogen amendment or season. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.
2007-01-01
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256
Exact Length Distribution of Filamentous Structures Assembled from a Finite Pool of Subunits.
Harbage, David; Kondev, Jané
2016-07-07
Self-assembling filamentous structures made of protein subunits are ubiquitous in cell biology. These structures are often highly dynamic, with subunits in a continuous state of flux, binding to and falling off of filaments. In spite of this constant turnover of their molecular parts, many cellular structures seem to maintain a well-defined size over time, which is often required for their proper functioning. One widely discussed mechanism of size regulation involves the cell maintaining a finite pool of protein subunits available for assembly. This finite pool mechanism can control the length of a single filament by having assembly proceed until the pool of free subunits is depleted to the point when assembly and disassembly are balanced. Still, this leaves open the question of whether the same mechanism can provide size control for multiple filamentous structures that are assembled from a common pool of protein subunits, as is often the case in cells. We address this question by solving the steady-state master equation governing the stochastic assembly and disassembly of multifilament structures made from a shared finite pool of subunits. We find that, while the total number of subunits within a multifilament structure is well-defined, individual filaments within the structure have a wide, power-law distribution of lengths. We also compute the phase diagram for two multifilament structures competing for the same pool of subunits and identify conditions for coexistence when both have a well-defined size. These predictions can be tested in cell experiments in which the size of the subunit pool or the number of filament nucleators is tuned.
Mehta, Ashok K; Marutha Ravindran, C R; Ticku, Maharaj K
2007-08-24
In the present study, we investigated the co-localization pattern of the delta subunit with other subunits of GABA(A) receptors in the rat brain using immunoprecipitation and Western blotting techniques. Furthermore, we investigated whether low concentrations of ethanol affect the delta-subunit-containing GABA(A) receptor assemblies in the rat brain using radioligand binding to the rat brain membrane homogenates as well as to the immunoprecipitated receptor assemblies. Our results revealed that delta subunit is not co-localized with gamma(2) subunit but it is associated with the alpha(1), alpha(4) or alpha(6), beta(2) and/or beta(3) subunit(s) of GABA(A) receptors in the rat brain. Ethanol (1-50 mM) neither affected [(3)H]muscimol (3 nM) binding nor diazepam-insensitive [(3)H]Ro 15-4513 (2 nM) binding in the rat cerebellum and cerebral cortex membranes. However, a higher concentration of ethanol (500 mM) inhibited the binding of these radioligands to the GABA(A) receptors partially in the rat cerebellum and cerebral cortex. Similarly, ethanol (up to 50 mM) did not affect [(3)H]muscimol (15 nM) binding to the immunoprecipitated delta-subunit-containing GABA(A) receptor assemblies in the rat cerebellum and hippocampus but it inhibited the binding partially at a higher concentration (500 mM). These results suggest that the native delta-subunit-containing GABA(A) receptors do not play a major role in the pharmacology of clinically relevant low concentrations of ethanol.
Jin, Zhe; Bhandage, Amol K; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis
2014-01-01
The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence.
Jin, Zhe; Bhandage, Amol K.; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R.; Birnir, Bryndis
2014-01-01
The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838
Hull, Jacob M; Isom, Lori L
2018-04-01
Voltage gated sodium channels (VGSCs) were first identified in terms of their role in the upstroke of the action potential. The underlying proteins were later identified as saxitoxin and scorpion toxin receptors consisting of α and β subunits. We now know that VGSCs are heterotrimeric complexes consisting of a single pore forming α subunit joined by two β subunits; a noncovalently linked β1 or β3 and a covalently linked β2 or β4 subunit. VGSC α subunits contain all the machinery necessary for channel cell surface expression, ion conduction, voltage sensing, gating, and inactivation, in one central, polytopic, transmembrane protein. VGSC β subunits are more than simple accessories to α subunits. In the more than two decades since the original cloning of β1, our knowledge of their roles in physiology and pathophysiology has expanded immensely. VGSC β subunits are multifunctional. They confer unique gating mechanisms, regulate cellular excitability, affect brain development, confer distinct channel pharmacology, and have functions that are independent of the α subunits. The vast array of functions of these proteins stems from their special station in the channelome: being the only known constituents that are cell adhesion and intra/extracellular signaling molecules in addition to being part of channel complexes. This functional trifecta and how it goes awry demonstrates the power outside the pore in ion channel signaling complexes, broadening the term channelopathy beyond defects in ion conduction. This article is part of the Special Issue entitled 'Channelopathies.' Copyright © 2017 Elsevier Ltd. All rights reserved.
Sharma, Manoj Kumar; Jani, Dewal; Thungapathra, M; Gautam, J K; Meena, L S; Singh, Yogendra; Ghosh, Amit; Tyagi, Akhilesh Kumar; Sharma, Arun Kumar
2008-05-20
In earlier study from our group, cholera toxin B subunit had been expressed in tomato for developing a plant-based vaccine against cholera. In the present investigation, gene for accessory colonization factor (acf) subunit A, earlier reported to be essential for efficient colonization in the intestine, has been expressed in Escherichia coli as well as tomato plants. Gene encoding for a chimeric protein having a fusion of cholera toxin B subunit and accessory colonization factor A was also expressed in tomato to generate more potent combinatorial antigen. CaMV35S promoter with a duplicated enhancer sequence was used for expression of these genes in tomato. Integration of transgenes into tomato genome was confirmed by PCR and Southern hybridization. Expression of the genes was confirmed at transcript and protein levels. Accessory colonization factor A and cholera toxin B subunit fused to this protein accumulated up to 0.25% and 0.08% of total soluble protein, respectively, in the fruits of transgenic plants. Whereas protein purified from E. coli, in combination with cholera toxin B subunit can be used for development of conventional subunit vaccine, tomato fruits expressing these proteins can be used together with tomato plants expressing cholera toxin B subunit for development of oral vaccine against cholera.
R, Elakkiya; K, Selvamani
2017-09-22
Subunit segmenting and modelling in medical sign language is one of the important studies in linguistic-oriented and vision-based Sign Language Recognition (SLR). Many efforts were made in the precedent to focus the functional subunits from the view of linguistic syllables but the problem is implementing such subunit extraction using syllables is not feasible in real-world computer vision techniques. And also, the present recognition systems are designed in such a way that it can detect the signer dependent actions under restricted and laboratory conditions. This research paper aims at solving these two important issues (1) Subunit extraction and (2) Signer independent action on visual sign language recognition. Subunit extraction involved in the sequential and parallel breakdown of sign gestures without any prior knowledge on syllables and number of subunits. A novel Bayesian Parallel Hidden Markov Model (BPaHMM) is introduced for subunit extraction to combine the features of manual and non-manual parameters to yield better results in classification and recognition of signs. Signer independent action aims in using a single web camera for different signer behaviour patterns and for cross-signer validation. Experimental results have proved that the proposed signer independent subunit level modelling for sign language classification and recognition has shown improvement and variations when compared with other existing works.
Schep, Daniel G.; Rubinstein, John L.
2016-01-01
Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669
[Chymotripsin-like activity and subunit composition of proteasomes in human cancers].
Kondakova, I V; Spirina, L V; Koval, V D; Shashova, E E; Choinzonov, E L; Ivanova, E V; Kolomiets, L A; Chernyshova, A L; Slonimskaya, E M; Usynin, E A; Afanasyev, S G
2014-01-01
Activity of the proteasome, polyfunctional enzymatic complex, is known to undergo changes during cancer development. This phenomenon is, probably, caused by the changes in subunit composition of proteasomes. In present work, we studied chymotrypsin-like activity of proteasomes, subunit composition and their association in breast cancer, head and neck squamous cell carcinoma, endometrial cancer, renal cancer, bladder cancer, stomach cancer and colorectal cancer. The increase of proteasome activity was revealed in most cancer tissues compared with adjacent tissues except for the renal cell carcinoma. Changes in proteasome activity in cancer tissues compared with correspondent normal tissues were accompanied by modification of its subunit composition. High proteasome activity was observed in combination with an increased expression of immune subunits and/or proteasome activator PA28, associated with activity of 20S proteasome. In breast cancer, head and neck squamous cell carcinoma, bladder cancer, stomach cancer and colorectal cancer we additionally found higher expression of Rpt6 subunit of 26S proteasome. Correlations between chymotrypsin like proteasome activity and subunit expressions were found in human cancer tissues. In summary, we suggest that proteasome ac- tivation and changes in its subunit composition plays an important role in cancer pathogenesis.
He, Xi; Han, Ning; Wang, Yan-Ping
2016-01-01
Lactobacillus kefiranofaciens ZW3 was obtained from kefir grains, which have high lactose hydrolytic activity. In this study, a heterodimeric LacLM-type β-galactosidase gene (lacLM) from ZW3 was isolated, which was composed of two overlapping genes, lacL (1,884 bp) and lacM (960 bp) encoding large and small subunits with calculated molecular masses of 73,620 and 35,682 Da, respectively. LacLM, LacL, and LacM were expressed in Escherichia coli BL21(DE3) and these recombinant proteins were purified and characterized. The results showed that, compared with the recombinant holoenzyme, the recombinant large subunit exhibits obviously lower thermostability and hydrolytic activity. Moreover, the optimal temperature and pH of the holoenzyme and large subunit are 60°C and 7.0, and 50°C and 8.0, respectively. However, the recombinant small subunit alone has no activity. Interestingly, the activity and thermostability of the large subunit were greatly improved after mixing it with the recombinant small subunit. Therefore, the results suggest that the small subunit might play an important role in maintaining the stability of the structure of the catalytic center located in the large subunit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, D.C.; Northup, J.K.; Malbon, C.C.
1987-05-01
Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with (/sup 32/P)NAD/sup +/ and pertussis toxin and to prevent by more than 90% the labelling with (/sup 32/P)NAD/sup +/ and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased themore » amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study.« less
Kv channel subunits that contribute to voltage-gated K+ current in renal vascular smooth muscle.
Fergus, Daniel J; Martens, Jeffrey R; England, Sarah K
2003-03-01
The rat renal arterial vasculature displays differences in K(+) channel current phenotypes along its length. Small arcuate to cortical radial arteries express a delayed rectifier phenotype, while the predominant Kv current in larger arcuate and interlobar arteries is composed of both transient and sustained components. We sought to determine whether Kvalpha subunits in the rat renal interlobar and arcuate arteries form heterotetramers, which may account for the unique currents, and whether modulatory Kvbeta subunits are present in renal vascular smooth muscle cells. RT-PCR indicated the presence of several different Kvalpha subunit isoform transcripts. Co-immunoprecipitation with immunoblotting and immunohistochemical evidence suggests that a portion of the K(+) current phenotype is a heteromultimer containing delayed-rectifier Kv1.2 and A-type Kv1.4 channel subunits. RT-PCR and immunoblot analyses also demonstrated the presence of both Kvbeta1.2 and Kvbeta1.3 in renal arteries. These results suggest that heteromultimeric formation of Kvalpha subunits and the presence of modulatory Kvbeta subunits are important factors in mediating Kv currents in the renal microvasculature and suggest a potentially critical role for these channel subunits in blood pressure regulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ream, Thomas S.; Haag, J. R.; Wierzbicki, A. T.
2009-01-30
In addition to RNA polymerases I, II, and III, the essential RNA polymerases present in all eukaryotes, plants have two additional nuclear RNA polymerases, abbreviated as Pol IV and Pol V, that play nonredundant roles in siRNA-directed DNA methylation and gene silencing. We show that Arabidopsis Pol IV and Pol V are composed of subunits that are paralogous or identical to the 12 subunits of Pol II. Four subunits of Pol IV are distinct from their Pol II paralogs, six subunits of Pol V are distinct from their Pol II paralogs, and four subunits differ between Pol IV and Polmore » V. Importantly, the subunit differences occur in key positions relative to the template entry and RNA exit paths. Our findings support the hypothesis that Pol IV and Pol V are Pol II-like enzymes that evolved specialized roles in the production of noncoding transcripts for RNA silencing and genome defense.« less
Functional conservation of RNA polymerase II in fission and budding yeasts.
Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P
2000-02-04
The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.
Lee, Jung Hyun; Han, Ji Seul; Kong, Jinuk; Ji, Yul; Lv, Xuchao; Lee, Junho; Li, Peng; Kim, Jae Bum
2016-01-01
Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIβ via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism. PMID:27496951
An α-subunit loop structure is required for GM2 activator protein binding by β-hexosaminidase A
Zarghooni, Maryam; Bukovac, Scott; Tropak, Michael; Callahan, John; Mahuran, Don
2010-01-01
The α- and/or β-subunits of human β-hexosaminidase A (αβ) and B (ββ) are ~60% identical. In vivo only β-hexosaminidase A can utilize GM2 ganglioside as a substrate, but requires the GM2 activator protein to bind GM2 ganglioside and then interact with the enzyme, placing the terminal GalNAc residue in the active site of the α-subunit. A model for this interaction suggests that two loop structures, present only in the α-subunit, may be critical to this binding. Three amino acids in one of these loops are not encoded in the HEXB gene, while four from the other are removed posttranslationally from the pro-β-subunit. Natural substrate assays with forms of hexosaminidase A containing mutant α-subunits demonstrate that only the site that is removed from the β-subunit during its maturation is critical for the interaction. Our data suggest an unexpected biological role for such proteolytic processing events. PMID:15485660
Suñol, Mariona; Cusi, Victoria; Cruz, Ofelia; Kiss, Robert; Lefranc, Florence
2011-03-01
The levels of expression of the α1 and α3 subunits of the Na(+)/K(+)-ATPase (the NaK sodium pump) in medulloblastomas are unclear. This study investigated the expression of the NaK subunits using immunohistochemical methods in 29 medulloblastomas including 23 classic, three large-cell/anaplastic and three nodular/desmoplastic medulloblastomas, as well as in three atypical teratoid/rhabdoid tumors (AT/RTs). There was overexpression of the α1 or α3 NaK subunits in more than half of the medulloblastomas and atypical AT/RTs, with about one-third of these tumours displaying overexpression of both subunits. These preliminary data suggest that targeting these subunits in AT/RTs and medulloblastomas that overexpress these proteins may lead to therapeutic benefit. These findings warrant confirmation in larger numbers of patients than those used in this study. Moreover, it should be determined whether inhibition of the α1/α3 NaK subunits can be integrated into the risk stratification schemes already in use for medulloblastoma patients.
The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.
1996-02-01
Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{submore » 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.« less
Gluten protein composition in several fractions obtained by shear induced separation of wheat flour.
van der Zalm, Elizabeth E J; Grabowska, Katarzyna J; Strubel, Maurice; van der Goot, Atze J; Hamer, Rob J; Boom, Remko M
2010-10-13
Recently, it was found that applying curvilinear shear flow in a cone-cone shearing device to wheat flour dough induces separation, resulting in a gluten-enriched fraction in the apex of the cone and gluten-depleted fraction at the outer part. This article describes whether fractionation of the various proteineous components occurs during and after separation of Soissons wheat flour. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion high performance liquid chromatography (SE-HPLC) were found to be suitable techniques for this. It is concluded that all protein fractions migrate to the center of the cone as a result of which the composition of the gluten-enriched fraction remains rather similar to that in the original flour. However, the larger glutenin polymer fraction migrated faster, as a result of which the concentration of large polymers was increased with a factor 2.4 compared to that of Soissons flour. The concentration of monomers in the gluten-enriched fraction was decreased to 70% of the original concentration in the original wheat flour.
Ceresino, Elaine B; de Melo, Ricardo R; Kuktaite, Ramune; Hedenqvist, Mikael S; Zucchi, Tiago D; Johansson, Eva; Sato, Helia H
2018-02-15
The popularity of transglutaminase (TG) by the food industry and the variation in functionality of this enzyme from different origins, prompted us to isolate and evaluate a high-yielding TG strain. Through the statistical approaches, Plackett-Burman and response surface methodology, a low cost fermentation media was obtained to produce 6.074±0.019UmL -1 of TG from a novel source; Streptomyces sp. CBMAI 1617 (SB6). Its potential exploitation was compared to commonly used TG, from Streptomyces mobaraensis. Biochemical and FT-IR studies indicated differences between SB6 and commercial TG (Biobond™ TG-M). Additions of TG to wheat protein and flour based doughs revealed that the dough stretching depended on the wheat protein fraction, TG amount and its origin. A higher degree of cross-linking of glutenins and of inclusion of gliadin in the polymers was seen for SB6 as compared to commercial TG. Thus, our results support the potential of SB6 to tailor wheat protein properties within various food applications. Copyright © 2017 Elsevier Ltd. All rights reserved.