Science.gov

Sample records for glycan microarray strategy

  1. Novel Fluorescent Glycan Microarray Strategy Reveals Ligands for Galectins

    PubMed Central

    Song, Xuezheng; Xia, Baoyun; Stowell, Sean R.; Lasanajak, Yi; Smith, David F.; Cummings, Richard D.

    2009-01-01

    Summary Galectin-1 (Gal-1) and galectin-3 (Gal-3) are widely expressed galectins with immunoregulatory functions in animals. To explore their glycan specificity, we developed microarrays of naturally occurring glycans using a novel bifunctional fluorescent linker, 2-amino-N-(2-aminoethyl)-benzamide (AEAB), directly conjugated through its arylamine group by reductive amination to free glycans to form glycan-AEABs (GAEABs). Glycans from natural sources were used to prepare over 200 GAEABs, which were purified by multidimensional HPLC and covalently immobilized onto NHS-activated glass slides via their free alkylamine. Fluorescence-based screening demonstrated that Gal-1 recognizes a wide variety of complex N-glycans, whereas Gal-3 primarily recognizes poly-N-acetyllactosamine-containing glycans independent of N-glycan presentation. GAEABs provide a general solution to glycan microarray preparation from natural sources for defining the specificity of glycan-binding proteins. PMID:19171304

  2. Chemistry of Natural Glycan Microarray

    PubMed Central

    Song, Xuezheng; Heimburg-Molinaro, Jamie; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Glycan microarrays have become indispensable tools for studying protein-glycan interactions. Along with chemo-enzymatic synthesis, glycans isolated from natural sources have played important roles in array development and will continue to be a major source of glycans. N- and O-glycans from glycoproteins, and glycans from glycosphingolipids can be released from corresponding glycoconjugates with relatively mature methods, although isolation of large numbers and quantities of glycans are still very challenging. Glycosylphosphatidylinositol (GPI)-anchors and glycosaminoglycans (GAGs) are less represented on current glycan microarrays. Glycan microarray development has been greatly facilitated by bifunctional fluorescent linkers, which can be applied in a “Shotgun Glycomics” approach to incorporate isolated natural glycans. Glycan presentation on microarrays may affect glycan binding by GBPs, often through multivalent recognition by the GBP. PMID:24487062

  3. Fluorescent glycosylamides produced by microscale derivatization of free glycans for natural glycan microarrays.

    PubMed

    Song, Xuezheng; Lasanajak, Yi; Xia, Baoyun; Smith, David F; Cummings, Richard D

    2009-09-18

    A novel strategy for creating naturally derived glycan microarrays has been developed. Glycosylamines are prepared from free reducing glycans and stabilized by reaction with acryloyl chloride to generate a glycosylamide in which the reducing monosaccharide has a closed-ring structure. Ozonolysis of the protected glycan yields an active aldehyde, to which a bifunctional fluorescent linker is coupled by reductive amination. The fluorescent derivatives are easily coupled through a residual primary alkylamine to generate glycan microarrays. This strategy preserves structural features of glycans required for antibody recognition and allows development of natural arrays of fluorescent glycans in which the cyclic pyranose structure of the reducing-end sugar residue is retained.

  4. Fluorescent Glycosylamides Produced by Microscale Derivatization of Free Glycans for Natural Glycan Microarrays

    PubMed Central

    Song, Xuezheng; Lasanajak, Yi; Xia, Baoyun; Smith, David F.; Cummings, Richard D.

    2009-01-01

    A novel strategy for creating naturally-derived glycan microarrays has been developed. Glycosylamines are prepared from free reducing glycans and stabilized by reaction with acryloyl chloride to generate a glycosylamide in which the reducing monosaccharide has a closed ring structure. Ozonolysis of the protected glycan yields an active aldehyde, to which a bifunctional fluorescent linker is coupled by reductive amination. The fluorescent derivatives are easily coupled through a residual primary alkylamine to generate glycan microarrays. This strategy preserves structural features of glycans required for antibody recognition, and allows development of natural arrays of fluorescent glycans in which the cyclic pyranose structure of the reducing-end sugar residue is retained. PMID:19618966

  5. Are glycan biosensors an alternative to glycan microarrays?

    PubMed Central

    Hushegyi, A.

    2016-01-01

    Complex carbohydrates (glycans) play an important role in nature and study of their interaction with proteins or intact cells can be useful for understanding many physiological and pathological processes. Such interactions have been successfully interrogated in a highly parallel way using glycan microarrays, but this technique has some limitations. Thus, in recent years glycan biosensors in numerous progressive configurations have been developed offering distinct advantages compared to glycan microarrays. Thus, in this review advances achieved in the field of label-free glycan biosensors are discussed. PMID:27231487

  6. Glycan Microarrays of Fluorescently-Tagged Natural Glycans

    PubMed Central

    Song, Xuezheng; Heimburg-Molinaro, Jamie; Smith, David F.; Cummings, Richard D.

    2015-01-01

    This review discusses the challenges facing research in ‘functional glycomics’ and the novel technologies that are being developed to advance the field. The structural complexity of glycans and glycoconjugates makes studies of both their structures and recognition difficult. However, these intricate structures can be captured from their natural sources, isolated and fluorescently-tagged for detailed structural analysis and for presentation on glycan microarrays for functional recognition by glycan-binding proteins. These advances in glycan preparation and manipulation enable the streamlining of functional glycomics studies and will help to propel the field forward in studying natural, biologically relevant glycans. PMID:25877830

  7. Clickable Polymeric Coating for Glycan Microarrays.

    PubMed

    Zilio, Caterina; Sola, Laura; Cretich, Marina; Bernardi, Anna; Chiari, Marcella

    2017-01-01

    The interaction of carbohydrates with a variety of biological targets, including antibodies, proteins, viruses, and cells are of utmost importance in many aspects of biology. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins. In this study, a novel microarray support is reported for the fabrication of glycan arrays that combines the higher sensitivity of a layered Si-SiO2 surface with a novel polymeric coating easily modifiable by subsequent click reaction. The alkyne-containing copolymer, adsorbed from an aqueous solution, produces a coating by a single step procedure and serves as a soft, tridimensional support for the oriented immobilization of carbohydrates via azide/alkyne Cu (I) catalyzed "click" reaction. The advantages of a functional 3D polymer coating making use of a click chemistry immobilization are combined with the high fluorescence sensitivity and superior signal-to-noise ratio of a Si-SiO2 substrate. The proposed approach enables the attachment of complex sugars on a silicon oxide surface by a method that does not require skilled personnel and chemistry laboratories.

  8. Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray

    PubMed Central

    Mickum, Megan L.; Prasanphanich, Nina Salinger; Song, Xuezheng; Dorabawila, Nelum; Mandalasi, Msano; Lasanajak, Yi; Luyai, Anthony; Secor, W. Evan; Wilkins, Patricia P.; Van Die, Irma; Smith, David F.; Nyame, A. Kwame

    2016-01-01

    Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis. PMID:26883596

  9. Glycan profiling of endometrial cancers using lectin microarray.

    PubMed

    Nishijima, Yoshihiro; Toyoda, Masashi; Yamazaki-Inoue, Mayu; Sugiyama, Taro; Miyazawa, Masaki; Muramatsu, Toshinari; Nakamura, Kyoko; Narimatsu, Hisashi; Umezawa, Akihiro; Mikami, Mikio

    2012-10-01

    Cell surface glycans change during the process of malignant transformation. To characterize and distinguish endometrial cancer and endometrium, we performed glycan profiling using an emerging modern technology, lectin microarray analysis. The three cell lines, two from endometrial cancers [well-differentiated type (G1) and poorly differentiated type (G3)] and one from normal endometrium, were successfully categorized into three independent groups by 45 lectins. Furthermore, in cancer cells, a clear difference between G1 and G3 type was observed for the glycans recognized with six lectins, Ulex europaeus agglutinin I (UEA-I), Sambucus sieboldiana agglutinin (SSA), Sambucus nigra agglutinin (SNA), Trichosanthes japonica agglutinin I (TJA-I), Amaranthus caudatus agglutinin (ACA), and Bauhinia purpurea lectin (BPL). The lectin microarray analysis using G3 type tissues demonstrated that stage I and stage III or IV were distinguished depending on signal pattern of three lectins, Dolichos biflorus agglutinin (DBA), BPL, and ACA. In addition, the analysis of the glycans on the ovarian cancer cells showed that only anticancer drug-sensitive cell lines had almost no activities to specific three lectins. Glycan profiling by the lectin microarray may be used to assess the characteristics of tumors and potentially to predict the success of chemotherapy treatment.

  10. Profiling glycosyltransferase activities by tritium imaging of glycan microarrays.

    PubMed

    Serna, Sonia; Hokke, Cornelis H; Weissenborn, Martin; Flitsch, Sabine; Martin-Lomas, Manuel; Reichardt, Niels-Christian

    2013-05-10

    High-throughput microarray technology has been combined with ultrasensitive and high-resolution tritium autoradiography to create a new platform for the quantitative detection of glycosyltransferase activity on glycan arrays. In addition, we show full compatibility with the use of fluorescently labeled lectins to help with the stereochemical assignment of newly formed glycoside linkages.

  11. Glycan microarray profiling of parasite infection sera identifies the LDNF glycan as a potential antigen for serodiagnosis of Trichinellosis

    PubMed Central

    Aranzamendi, Carmen; Tefsen, Boris; Jansen, Montse; Chiumiento, Lorena; Bruschi, Fabrizio; Kortbeek, Titia; Smith, David F.; Cummings, Richard D.; Pinelli, Elena; Die, Irma Van

    2012-01-01

    Diagnostic methods for parasite infections still highly depend on the identification of the parasites by direct methods such as microscopic examination of blood, stool and tissue biopsies. Serodiagnosis is often carried out to complement the direct methods, however few synthetic antigens with sufficient sensitivity and specificity are available. Here we evaluated a glycan microarray approach to select for synthetic glycan antigens that could be used for serodiagnosis of parasitic infections. Using a glycan array containing over 250 different glycan antigens, we identified GalNAcβ1-4(Fucα1-3)GlcNAc-R (LDNF) as a glycan antigen that is recognized by antibodies from Trichinella-infected individuals. We synthesized a neoglycoconjugate, consisting of 5 LDNF molecules covalently coupled to bovine serum albumin (BSA), and used this neoglycoconjugate as an antigen to develop a highly sensitive total-Ig ELISA for serological screening of trichinellosis. The results indicate that glycan microarrays constitute a promising technology for fast and specific identification of parasite glycan antigens to improve serodiagnosis of different parasitic infections, either using an ELISA format, or parasite-specific glycan-arrays. PMID:21893057

  12. Identification of aberrantly expressed glycans in gastric cancer by integrated lectin microarray and mass spectrometric analyses

    PubMed Central

    Li, Xiang; Guan, Feng; Li, Dongliang; Tan, Zengqi; Yang, Ganglong; Wu, Yanli; Huang, Zhaohui

    2016-01-01

    Cancer progression is usually associated with alterations of glycan expression patterns. Little is known regarding global glycomics in gastric cancer, the most common type of epithelial cancer. We integrated lectin microarray and mass spectrometry (MS) methods to profile glycan expression in three gastric cancer cell lines (SGC-7901, HGC-27, and MGC-803) and one normal gastric epithelial cell line (GES-1). Significantly altered glycans were confirmed by lectin staining and MALDI-TOF/TOF-MS. The three cancer cell lines showed increased levels of core-fucosylated N-glycans, GalNAcα-Ser/Thr (Tn antigen), and Sia2-6Galβ1-4GlcNAc N-glycans, but reduced levels of biantennary N-glycans, Galβ1-3GalNAcα-Ser/Thr (T antigen), and (GlcNAc)n N-glycans. Lectin histochemistry was used to validate aberrant expression of four representative glycans (core-fucosylation, Sia2-6Galβ1-4GlcNAc, biantennary N-glycans, T antigen, recognized respectively by lectins LCA, SNA, PHA-E+L, and ACA) in clinical gastric cancer samples. Lower binding capacity for ACA was correlated with significantly poorer patient prognosis. Our findings indicate for the first time that glycans recognized by LCA, ACA, and PHA-E+L are aberrantly expressed in gastric cancer, and suggest that ACA is a potential prognostic factor for gastric cancer. PMID:27895315

  13. Construction of N-glycan microarrays by using modular synthesis and on-chip nanoscale enzymatic glycosylation.

    PubMed

    Serna, Sonia; Etxebarria, Juan; Ruiz, Nerea; Martin-Lomas, Manuel; Reichardt, Niels-Christian

    2010-11-22

    An effective chemoenzymatic strategy is reported that has allowed the construction, for the first time, of a focused microarray of synthetic N-glycans. Based on modular approaches, a variety of N-glycan core structures have been chemically synthesized and covalently immobilized on a glass surface. The printed structures were then enzymatically diversified by the action of three different glycosyltransferases in nanodroplets placed on top of individual spots of the microarray by a printing robot. Conversion was followed by lectin binding specific for the terminal sugars. This enzymatic extension of surface-bound ligands in nanodroplets reduces the amount of precious glycosyltransferases needed by seven orders of magnitude relative to reactions carried out in the solution phase. Moreover, only those ligands that have been shown to be substrates to a specific glycosyltransferase can be individually chosen for elongation on the array. The methodology described here, combining focused modular synthesis and nanoscale on-chip enzymatic elongation, could open the way for the much needed rapid construction of large synthetic glycan arrays.

  14. Glycan labeling strategies and their use in identification and quantification

    PubMed Central

    Ruhaak, L. R.; Zauner, G.; Huhn, C.; Bruggink, C.; Deelder, A. M.

    2010-01-01

    Most methods for the analysis of oligosaccharides from biological sources require a glycan derivatization step: glycans may be derivatized to introduce a chromophore or fluorophore, facilitating detection after chromatographic or electrophoretic separation. Derivatization can also be applied to link charged or hydrophobic groups at the reducing end to enhance glycan separation and mass-spectrometric detection. Moreover, derivatization steps such as permethylation aim at stabilizing sialic acid residues, enhancing mass-spectrometric sensitivity, and supporting detailed structural characterization by (tandem) mass spectrometry. Finally, many glycan labels serve as a linker for oligosaccharide attachment to surfaces or carrier proteins, thereby allowing interaction studies with carbohydrate-binding proteins. In this review, various aspects of glycan labeling, separation, and detection strategies are discussed. Figure MALDI-FTICR-MS of 2AA-labeled total plasma N-glycans PMID:20225063

  15. The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data.

    PubMed

    Liu, Yan; McBride, Ryan; Stoll, Mark; Palma, Angelina S; Silva, Lisete; Agravat, Sanjay; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P; Costello, Catherine E; Dell, Anne; Haslam, Stuart M; Karlsson, Niclas G; Khoo, Kay-Hooi; Kolarich, Daniel; Novotny, Milos V; Packer, Nicolle H; Ranzinger, Rene; Rapp, Erdmann; Rudd, Pauline M; Struwe, Weston B; Tiemeyer, Michael; Wells, Lance; York, William S; Zaia, Joseph; Kettner, Carsten; Paulson, James C; Feizi, Ten; Smith, David F

    2016-11-22

    MIRAGE (Minimum Information Required for A Glycomics Experiment) is an initiative that was created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to produce guidelines for reporting results from the diverse types of experiments and analyses used in structural and functional studies of glycans in the scientific literature. As a sequel to the guidelines for sample preparation (Struwe et al. 2016, Glycobiology, 26:907-910) and mass spectrometry  data (Kolarich et al. 2013, Mol. Cell Proteomics, 12:991-995), here we present the first version of guidelines intended to improve the standards for reporting data from glycan microarray analyses. For each of eight areas in the workflow of a glycan microarray experiment, we provide guidelines for the minimal information that should be provided in reporting results. We hope that the MIRAGE glycan microarray guidelines proposed here will gain broad acceptance by the community, and will facilitate interpretation and reproducibility of the glycan microarray results with implications in comparison of data from different laboratories and eventual deposition of glycan microarray data in international databases.

  16. Generation of a natural glycan microarray using 9-fluorenylmethyl chloroformate (FmocCl) as a cleavable fluorescent tag.

    PubMed

    Song, Xuezheng; Lasanajak, Yi; Rivera-Marrero, Carlos; Luyai, Anthony; Willard, Margaret; Smith, David F; Cummings, Richard D

    2009-12-15

    Glycan microarray technology has become a successful tool for studying protein-carbohydrate interactions, but a limitation has been the laborious synthesis of glycan structures by enzymatic and chemical methods. Here we describe a new method to generate quantifiable glycan libraries from natural sources by combining widely used protease digestion of glycoproteins and Fmoc chemistry. Glycoproteins including chicken ovalbumin, bovine fetuin, and horseradish peroxidase (HRP) were digested by Pronase, protected by FmocCl, and efficiently separated by 2D-HPLC. We show that glycans from HRP glycopeptides separated by HPLC and fluorescence monitoring retained their natural reducing end structures, mostly core alpha1,3-fucose and core alpha1,2-xylose. After simple Fmoc deprotection, the glycans were printed on NHS-activated glass slides. The glycans were interrogated using plant lectins and antibodies in sera from mice infected with Schistosoma mansoni, which revealed the presence of both IgM and IgG antibody responses to HRP glycopeptides. This simple approach to glycopeptide purification and conjugation allows for the development of natural glycopeptide microarrays without the need to remove and derivatize glycans and potentially compromise their reducing end determinants.

  17. Generation of a Natural Glycan Microarray Using 9-Fluorenylmethyl Chloroformate (FmocCl) as a Cleavable Fluorescent Tag

    PubMed Central

    Song, Xuezheng; Lasanajak, Yi; Rivera-Marrero, Carlos; Luyai, Anthony; Willard, Margaret; Smith, David F.; Cummings, Richard D.

    2009-01-01

    Glycan microarray technology has become a successful tool for studying protein-carbohydrate interactions, but a limitation has been the laborious synthesis of glycan structures by enzymatic and chemical methods. Here we describe a new method to generate quantifiable glycan libraries from natural sources by combining widely used protease digestion of glycoproteins and Fmoc chemistry. Glycoproteins including chicken ovalbumin, bovine fetuin, and horseradish peroxidase (HRP) were digested by pronase, protected by FmocCl, and efficiently separated by 2D-HPLC. We show that glycans from HRP glycopeptides separated by HPLC and fluorescence monitoring retained their natural reducing end structures, mostly core α1,3-fucose and core α1,2-xylose. After simple Fmoc-deprotection, the glycans were printed on NHS-activated glass slides. The glycans were interrogated using plant lectins and antibodies in sera from mice infected with Schistosoma mansoni, which revealed the presence of both IgM and IgG antibody responses to HRP-glycopeptides. This simple approach to glycopeptide purification and conjugation allows for the development of natural glycopeptide microarrays without the need to remove and derivatize glycans and potentially compromise their reducing end determinants. PMID:19699706

  18. Correlation Index-Based Responsible-Enzyme Gene Screening (CIRES), a Novel DNA Microarray-Based Method for Enzyme Gene Involved in Glycan Biosynthesis

    PubMed Central

    Yamamoto, Harumi; Takematsu, Hiromu; Fujinawa, Reiko; Naito, Yuko; Okuno, Yasushi; Tsujimoto, Gozoh; Suzuki, Akemi; Kozutsumi, Yasunori

    2007-01-01

    Background Glycan biosynthesis occurs though a multi-step process that requires a variety of enzymes ranging from glycosyltransferases to those involved in cytosolic sugar metabolism. In many cases, glycan biosynthesis follows a glycan-specific, linear pathway. As glycosyltransferases are generally regulated at the level of transcription, assessing the overall transcriptional profile for glycan biosynthesis genes seems warranted. However, a systematic approach for assessing the correlation between glycan expression and glycan-related gene expression has not been reported previously. Methodology To facilitate genetic analysis of glycan biosynthesis, we sought to correlate the expression of genes involved in cell-surface glycan formation with the expression of the glycans, as detected by glycan-recognizing probes. We performed cross-sample comparisons of gene expression profiles using a newly developed, glycan-focused cDNA microarray. Cell-surface glycan expression profiles were obtained using flow cytometry of cells stained with plant lectins. Pearson's correlation coefficients were calculated for these profiles and were used to identify enzyme genes correlated with glycan biosynthesis. Conclusions This method, designated correlation index-based responsible-enzyme gene screening (CIRES), successfully identified genes already known to be involved in the biosynthesis of certain glycans. Our evaluation of CIRES indicates that it is useful for identifying genes involved in the biosynthesis of glycan chains that can be probed with lectins using flow cytometry. PMID:18043739

  19. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    PubMed Central

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-01-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2–6Galβ, human-origin viruses could bind glycans with Neu5Acα2–8Neu5Acα2–8Neu5Ac and Neu5Gcα2–6Galβ1–4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2–3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms. PMID:26508590

  20. Association analyses of large-scale glycan microarray data reveal novel host-specific substructures in influenza A virus binding glycans

    NASA Astrophysics Data System (ADS)

    Zhao, Nan; Martin, Brigitte E.; Yang, Chun-Kai; Luo, Feng; Wan, Xiu-Feng

    2015-10-01

    Influenza A viruses can infect a wide variety of animal species and, occasionally, humans. Infection occurs through the binding formed by viral surface glycoprotein hemagglutinin and certain types of glycan receptors on host cell membranes. Studies have shown that the α2,3-linked sialic acid motif (SA2,3Gal) in avian, equine, and canine species; the α2,6-linked sialic acid motif (SA2,6Gal) in humans; and SA2,3Gal and SA2,6Gal in swine are responsible for the corresponding host tropisms. However, more detailed and refined substructures that determine host tropisms are still not clear. Thus, in this study, we applied association mining on a set of glycan microarray data for 211 influenza viruses from five host groups: humans, swine, canine, migratory waterfowl, and terrestrial birds. The results suggest that besides Neu5Acα2-6Galβ, human-origin viruses could bind glycans with Neu5Acα2-8Neu5Acα2-8Neu5Ac and Neu5Gcα2-6Galβ1-4GlcNAc substructures; Galβ and GlcNAcβ terminal substructures, without sialic acid branches, were associated with the binding of human-, swine-, and avian-origin viruses; sulfated Neu5Acα2-3 substructures were associated with the binding of human- and swine-origin viruses. Finally, through three-dimensional structure characterization, we revealed that the role of glycan chain shapes is more important than that of torsion angles or of overall structural similarities in virus host tropisms.

  1. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): a novel glycan-relative quantification strategy.

    PubMed

    Walker, S Hunter; Taylor, Amber D; Muddiman, David C

    2013-09-01

    The Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT) strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction attributable to isotopic overlap and a post-acquisition normalization of the data to account for any systematic bias, a plot of the experimental H:L ratio versus the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics.

  2. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): A Novel Glycan-Relative Quantification Strategy

    NASA Astrophysics Data System (ADS)

    Walker, S. Hunter; Taylor, Amber D.; Muddiman, David C.

    2013-09-01

    The Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT) strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction attributable to isotopic overlap and a post-acquisition normalization of the data to account for any systematic bias, a plot of the experimental H:L ratio versus the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics.

  3. Host Tissue and Glycan Binding Specificities of Avian Viral Attachment Proteins Using Novel Avian Tissue Microarrays

    PubMed Central

    Ambepitiya Wickramasinghe, Iresha N.; de Vries, Robert P.; Eggert, Amber M.; Wandee, Nantaporn; de Haan, Cornelis A. M.; Gröne, Andrea; Verheije, Monique H.

    2015-01-01

    The initial interaction between viral attachment proteins and the host cell is a critical determinant for the susceptibility of a host for a particular virus. To increase our understanding of avian pathogens and the susceptibility of poultry species, we developed novel avian tissue microarrays (TMAs). Tissue binding profiles of avian viral attachment proteins were studied by performing histochemistry on multi-species TMA, comprising of selected tissues from ten avian species, and single-species TMAs, grouping organ systems of each species together. The attachment pattern of the hemagglutinin protein was in line with the reported tropism of influenza virus H5N1, confirming the validity of TMAs in profiling the initial virus-host interaction. The previously believed chicken-specific coronavirus (CoV) M41 spike (S1) protein displayed a broad attachment pattern to respiratory tissues of various avian species, albeit with lower affinity than hemagglutinin, suggesting that other avian species might be susceptible for chicken CoV. When comparing tissue-specific binding patterns of various avian coronaviral S1 proteins on the single-species TMAs, chicken and partridge CoV S1 had predominant affinity for the trachea, while pigeon CoV S1 showed marked preference for lung of their respective hosts. Binding of all coronaviral S1 proteins was dependent on sialic acids; however, while chicken CoV S1 preferred sialic acids type I lactosamine (Gal(1-3)GlcNAc) over type II (Gal(1-4)GlcNAc), the fine glycan specificities of pigeon and partridge CoVs were different, as chicken CoV S1-specific sialylglycopolymers could not block their binding to tissues. Taken together, TMAs provide a novel platform in the field of infectious diseases to allow identification of binding specificities of viral attachment proteins and are helpful to gain insight into the susceptibility of host and organ for avian pathogens. PMID:26035584

  4. Synthesis and microarray-assisted binding studies of core xylose and fucose containing N-glycans.

    PubMed

    Brzezicka, Katarzyna; Echeverria, Begoña; Serna, Sonia; van Diepen, Angela; Hokke, Cornelis H; Reichardt, Niels-Christian

    2015-05-15

    The synthesis of a collection of 33 xylosylated and core-fucosylated N-glycans found only in nonmammalian organisms such as plants and parasitic helminths has been achieved by employing a highly convergent chemo-enzymatic approach. The influence of these core modifications on the interaction with plant lectins, with the human lectin DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin), and with serum antibodies from schistosome-infected individuals was studied. Core xylosylation markedly reduced or completely abolished binding to several mannose-binding plant lectins and to DC-SIGN, a C-type lectin receptor present on antigen presenting cells. Employing the synthetic collection of core-fucosylated and core-xylosylated N-glycans in the context of a larger glycan array including structures lacking these core modifications, we were able to dissect core xylose and core fucose specific antiglycan antibody responses in S. mansoni infection sera, and we observed clear and immunologically relevant differences between children and adult groups infected with this parasite. The work presented here suggests that, quite similar to bisecting N-acetylglucosamine, core xylose distorts the conformation of the unsubstituted glycan, with important implications for the immunogenicity and protein binding properties of complex N-glycans.

  5. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays.

    PubMed

    Powers, Thomas W; Neely, Benjamin A; Shao, Yuan; Tang, Huiyuan; Troyer, Dean A; Mehta, Anand S; Haab, Brian B; Drake, Richard R

    2014-01-01

    A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.

  6. A lectin-based isolation/enrichment strategy for improved coverage of N-glycan analysis.

    PubMed

    Guan, Feng; Tan, Zengqi; Li, Xiang; Pang, Xingchen; Zhu, Yunlin; Li, Dongliang; Yang, Ganglong

    2015-10-30

    Glycomics provides an increasingly useful research tool as the genomes and proteomes of more and more animal species are elucidated. In view of the general complexity and heterogeneity of glycans, improved depth-of-coverage and sensitivity are required for glycosylation analysis. In this study, we established the lectin-based isolation/enrichment strategy for total glycomic information. Specific lectins are added onto the filter to capture corresponding glycans prior to release of N-glycans by peptide N-glycosidase F (PNGase F). Non-bound glycans and bound glycans are released and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), respectively. Application of the strategy to chicken ovalbumin, normal mouse mammary epithelial cells (NMuMG), and human serum resulted in detection of 5, 6, and 11 additional N-glycan structures, respectively. The strategy facilitates identification of intact N-glycans in biological samples, and can be extended to detailed analysis of O-glycome or glycoproteome.

  7. Microbial Glycan Microarrays Define Key Features of Host-Microbial Interactions

    PubMed Central

    Stowell, Sean R.; Arthur, Connie M.; McBride, Ryan; Berger, Oren; Razi, Nahid; Heimburg-Molinaro, Jamie; Rodrigues, Lilian C.; Gourdine, Jean-Philippe; Noll, Alexander J.; von Gunten, Stephan; Smith, David F.; Knirel, Yuriy A.; Paulson, James C.; Cummings, Richard D.

    2014-01-01

    Genomic approaches continue to provide unprecedented insight into the microbiome, yet host immune interactions with diverse microbiota can be difficult to study. We therefore generated a microbial microarray containing defined antigens isolated from a broad range of microbial flora to examine adaptive and innate immunity. Serological studies with this microarray show that immunoglobulins from multiple mammalian species exhibit unique patterns of reactivity, while exposure of animals to distinct microbes induces specific serological recognition. While adaptive immunity exhibited plasticity toward microbial antigens, immunological tolerance limits reactivity toward self. We discovered that several innate immune galectins exhibit specific recognition of microbes that express self-like antigens, leading to direct killing of a broad range of gram negative and positive microbes. Thus, host protection against microbes appears to represent a balance between adaptive and innate immunity to defend against evolving antigenic determinants while protecting against molecular mimicry. PMID:24814672

  8. Development of a highly sensitive glycan microarray for quantifying AFP-L3 for early prediction of hepatitis B virus-related hepatocellular carcinoma.

    PubMed

    Wu, Chen-Shiou; Lee, Teng-Yu; Chou, Ruey-Hwang; Yen, Chia-Jui; Huang, Wei-Chien; Wu, Chung-Yi; Yu, Yung-Luen

    2014-01-01

    The α-fetoprotein fraction L3 (AFP-L3), which is synthesized by malignant cells and incorporates a fucosylated oligosaccharide, has been investigated as a diagnostic and prognostic marker for hepatocellular carcinoma (HCC). Quantification of AFP-L3 by conventional enzyme-linked immunosorbent assay (ELISA) has not always produced reliable results for serum samples with low AFP, and thus we evaluated the clinical utility of quantifying AFP-L3 using a new and highly sensitive glycan microarray assay. Sera from 9 patients with chronic hepatitis B and 32 patients with hepatitis B virus (HBV)-related HCC were tested for AFP-L3 level using the glycan microarray. Additionally, we compared receiver operator characteristic curves for the ELISA and glycan microarray methods for determination of the AFP-L3: AFP-L1 ratio in patient samples. This ratio was calculated for 8 HCC patients who underwent transarterial embolization therapy pre- or post-treatment with AFP-L3. Glycan microarrays showed that the AFP-L3 ratio of HBV-related HCC patients was significantly higher than that measured for chronic hepatitis B patients. Overall parameters for estimating AFP-L3% in HCC samples were as follows: sensitivity, 53.13%; specificity, 88.89%; and area under the curve, 0.75. The elevated AFP-L3% in the 8 patients with HBV-related HCC was strongly associated with HCC progression. Following one month of transarterial embolization therapy, the relative mean AFP-L3% decreased significantly. In addition, we compared Fut8 gene expression between paired tumor and non-tumor tissues from 24 patients with HBV-related HCC. The Fut8 mRNA expression was significantly increased in tumorous tissues in these patients than that in non-tumor tissue controls. Higher expression of Fut8 mRNA in tumorous tissues in these patients was associated with poor differentiation than well and moderate differentiation. Our results describe a new glycan microarray for the sensitive and rapid quantification of

  9. Direct Enzymatic Branch-End Extension of Glycocluster-Presented Glycans: An Effective Strategy for Programming Glycan Bioactivity.

    PubMed

    Bayón, Carlos; He, Ning; Deir-Kaspar, Mario; Blasco, Pilar; André, Sabine; Gabius, Hans-Joachim; Rumbero, Ángel; Jiménez-Barbero, Jesús; Fessner, Wolf-Dieter; Hernáiz, María J

    2017-01-31

    The sequence of a glycan and its topology of presentation team up to determine the specificity and selectivity of recognition by saccharide receptors (lectins). Structure-activity analysis would be furthered if the glycan part of a glycocluster could be efficiently elaborated in situ while keeping all other parameters constant. By using a bacterial α2,6-sialyltransferase and a small library of bi- to tetravalent glycoclusters, we illustrate the complete conversion of scaffold-presented lactoside units into two different sialylated ligands based on N-acetyl/glycolyl-neuraminic acid incorporation. We assess the ensuing effect on their bioactivity for a plant toxin, and present an analysis of the noncovalent substrate binding contacts that the added sialic acid moiety makes to the lectin. Enzymatic diversification of a scaffold-presented glycan can thus be brought to completion in situ, offering a versatile perspective for rational glycocluster engineering.

  10. Glycan analysis of therapeutic glycoproteins

    PubMed Central

    Zhang, Lei; Luo, Shen; Zhang, Baolin

    2016-01-01

    ABSTRACT Therapeutic monoclonal antibodies (mAbs) are glycoproteins produced by living cell systems. The glycan moieties attached to the proteins can directly affect protein stability, bioactivity, and immunogenicity. Therefore, glycan variants of a glycoprotein product must be adequately analyzed and controlled to ensure product quality. However, the inherent complexity of protein glycosylation poses a daunting analytical challenge. This review provides an update of recent advances in glycan analysis, including the potential utility of lectin-based microarray for high throughput glycan profiling. Emphasis is placed on comparison of the major types of analytics for use in determining unique glycan features such as glycosylation site, glycan structure, and content. PMID:26599345

  11. Microarrays

    ERIC Educational Resources Information Center

    Plomin, Robert; Schalkwyk, Leonard C.

    2007-01-01

    Microarrays are revolutionizing genetics by making it possible to genotype hundreds of thousands of DNA markers and to assess the expression (RNA transcripts) of all of the genes in the genome. Microarrays are slides the size of a postage stamp that contain millions of DNA sequences to which single-stranded DNA or RNA can hybridize. This…

  12. Structural characterization by multistage mass spectrometry (MSn) of human milk glycans recognized by human rotaviruses.

    PubMed

    Ashline, David J; Yu, Ying; Lasanajak, Yi; Song, Xuezheng; Hu, Liya; Ramani, Sasirekha; Prasad, Venkataram; Estes, Mary K; Cummings, Richard D; Smith, David F; Reinhold, Vernon N

    2014-11-01

    We have shown that recombinant forms of VP8* domains of the human rotavirus outer capsid spike protein VP4 from human neonatal strains (N155(G10P[11]) and RV3(G3P[6]) and a bovine strain (B223) recognize unique glycans within the repertoire of human milk glycans. The accompanying study by Yu et al.(2), describes a human milk glycan shotgun glycan microarray that led to the identification of 32 specific glycans in the human milk tagged glycan library that were recognized by these human rotaviruses. These microarray analyses also provided a variety of metadata about the recognized glycan structures compiled from anti-glycan antibody and lectin binding before and after specific glycosidase digestions, along with compositional information from mass analysis by matrix-assisted laser desorption ionization-mass spectrometry. To deduce glycan sequence and utilize information predicted by analyses of metadata from each glycan, 28 of the glycan targets were retrieved from the tagged glycan library for detailed sequencing using sequential disassembly of glycans by ion-trap mass spectrometry. Our aim is to obtain a deeper structural understanding of these key glycans using an orthogonal approach for structural confirmation in a single ion trap mass spectrometer. This sequential ion disassembly strategy details the complexities of linkage and branching in multiple compositions, several of which contained isomeric mixtures including several novel structures. The application of this approach exploits both library matching with standard materials and de novo approaches. This combination together with the metadata generated from lectin and antibody-binding data before and after glycosidase digestions provide a heretofore-unavailable level of analytical detail to glycan structure analysis. The results of these studies showed that, among the 28 glycan targets analyzed, 27 unique structures were identified, and 23 of the human milk glycans recognized by human rotaviruses represent

  13. High-Throughput Profiling of Anti-Glycan Humoral Responses to SIV Vaccination and Challenge

    PubMed Central

    Campbell, Christopher T.; Llewellyn, Sean R.; Damberg, Thorsten; Morgan, Ian L.; Robert-Guroff, Marjorie; Gildersleeve, Jeffrey C.

    2013-01-01

    Recent progress toward an HIV vaccine highlights both the potential of vaccines to end the AIDS pandemic and the need to boost efficacy by incorporating additional vaccine strategies. Although many aspects of the immune response can contribute to vaccine efficacy, the key factors have not been defined fully yet. A particular area that may yield new insights is anti-glycan immune responses, such as those against the glycan shield that HIV uses to evade the immune system. In this study, we used glycan microarray technology to evaluate anti-glycan antibody responses induced by SIV vaccination and infection in a non-human primate model of HIV infection. This comprehensive profiling of circulating anti-glycan antibodies found changes in anti-glycan antibody levels after both vaccination with the Ad5hr-SIV vaccine and SIV infection. Notably, SIV infection produced generalized declines in anti-glycan IgM antibodies in a number of animals. Additionally, some infected animals generated antibodies to the Tn antigen, which is a cryptic tumor-associated antigen exposed by premature termination of O-linked glycans; however, the Ad5hr-SIV vaccine did not induce anti-Tn IgG antibodies. Overall, this study demonstrates the potential contributions that glycan microarrays can make for HIV vaccine development. PMID:24086502

  14. Global Identification and Differential Distribution Analysis of Glycans in Subcellular Fractions of Bladder Cells

    PubMed Central

    Yang, Ganglong; Huang, Luyu; Zhang, Jiaxu; Yu, Hanjie; Li, Zheng; Guan, Feng

    2016-01-01

    Compartmentalization of cellular components and their associated biological processes is crucial for cellular function. Protein glycosylation provides a basis for diversity of protein functions. Diversity of glycan composition in animal cells remains poorly understood. We used differential centrifugation techniques to isolate four subcellular protein fractions from homogenate of metastatic bladder YTS1 cells, low grade nonmuscle invasive bladder cancer KK47 cells and normal bladder epithelia HCV29 cells: microsomal (Mic), mitochondrial (Mito), nuclear (Nuc), and cytosolic (Cyto). An integrated strategy combining lectin microarray and mass spectrometry (MS) analysis was then applied to evaluate protein glycosylation of the four fractions. Lectin microarray analysis revealed significant differences among the four fractions in terms of glycan binding to the lectins LCA, AAL, MPL, WGA and PWM in YTS1 cell, STL, Jacalin, VVA, LCA and WGA in KK47, and ConA, GNA, VVA and ACA in HCV29 cell. Among a total of 40, 32 and 15 N-glycans in four fractions of three cells detected by MS analysis, high-mannose and fucosylated structures were predominant, 10 N-glycans in YTS1, 5 N-glycans in KK47 and 7 N-glycans in HCV29 were present in all four fractions; and 10 N-glycans in YTS1, 16 N-glycans in KK47, and 3 N-glycans in HCV29 were present in only one fraction. Glycans in the latter category are considered potential markers for the corresponding organelles. The integrated strategy described here allows detailed examination of glycomes subcellular fraction with high resolution and sensitivity, and will be useful for elucidation of the functional roles of glycans and corresponding glycosylated proteins in distinct organelles. PMID:27313494

  15. Quantitative analysis of glycans, related genes, and proteins in two human bone marrow stromal cell lines using an integrated strategy.

    PubMed

    Li, Xiang; Li, Dongliang; Pang, Xingchen; Yang, Ganglong; Deeg, H Joachim; Guan, Feng

    2015-09-01

    Altered expression of glycans is associated with cell-cell signal transduction and regulation of cell functions in the bone marrow micro-environment. Studies of this micro-environment often use two human bone marrow stromal cell lines, HS5 and HS27a, co-cultured with myeloid cells. We hypothesized that differential protein glycosylation between these two cell lines may contribute to functional differences in in vitro co-culture models. In this study, we applied an integrated strategy using genomic, proteomic, and functional glycomic techniques for global expression profiling of N-glycans and their related genes and enzymes in HS5 cells versus HS27a cells. HS5 cells had significantly enhanced levels of bisecting N-glycans (catalyzed by MGAT3 [β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase]), whereas HS27a cells had enhanced levels of Galβ1,4GlcNAc (catalyzed by β4GalT1 [β4-galactosyltransferase I]). This integrated strategy provides useful information regarding the functional roles of glycans and their related glycogenes and glycosyltransferases in the bone marrow microenvironment, and a basis for future studies of crosstalk among stromal cells and myeloma cells in co-culture.

  16. Novel microarray design strategy to study complex bacterial communities.

    PubMed

    Huyghe, Antoine; Francois, Patrice; Charbonnier, Yvan; Tangomo-Bento, Manuela; Bonetti, Eve-Julie; Paster, Bruce J; Bolivar, Ignacio; Baratti-Mayer, Denise; Pittet, Didier; Schrenzel, Jacques

    2008-03-01

    Assessing bacterial flora composition appears to be of increasing importance to fields as diverse as physiology, development, medicine, epidemiology, the environment, and the food industry. We report here the development and validation of an original microarray strategy that allows analysis of the phylogenic composition of complex bacterial mixtures. The microarray contains approximately 9,500 feature elements targeting 16S rRNA gene-specific regions. Probe design was performed by selecting oligonucleotide sequences specific to each node of the seven levels of the bacterial phylogenetic tree (domain, phylum, class, order, family, genus, and species). This approach, based on sequence information, allows analysis of the bacterial contents of complex bacterial mixtures to detect both known and unknown microorganisms. The presence of unknown organisms can be suspected and mapped on the phylogenetic tree, indicating where to refine analysis. Initial proof-of-concept experiments were performed on oral bacterial communities. Our results show that this hierarchical approach can reveal minor changes (

  17. PRACTICAL STRATEGIES FOR PROCESSING AND ANALYZING SPOTTED OLIGONUCLEOTIDE MICROARRAY DATA

    EPA Science Inventory

    Thoughtful data analysis is as important as experimental design, biological sample quality, and appropriate experimental procedures for making microarrays a useful supplement to traditional toxicology. In the present study, spotted oligonucleotide microarrays were used to profile...

  18. Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans.

    PubMed

    Pabst, Martin; Bondili, Jayakumar Singh; Stadlmann, Johannes; Mach, Lukas; Altmann, Friedrich

    2007-07-01

    Analysis of the numerous possible, often isobaric structures of protein-bound oligosaccharides calls for a high-performance two-dimensional method that combines liquid chromatography's ability to separate isomers and mass spectrometry's ability to determine glycan composition. Here we investigate the usefulness of porous graphitic carbon columns coupled to ESI-MS for the separation of N-glycans with two or more sialic acids. Internal standards helped to rectify retention time fluctuations and thus allowed elution times to play an essential role in the structural assignment of peaks. For generation of a retention time library, standards representing the possible isomers of diantennary non-, mono-, and disialylated N-glycans, differing in the linkage of galactose and sialic acids as well as isobaric hybrid-type N-glycans, were produced using recombinant glycosyltransferases. Once the retention times library was established, isomers could be identified by LC-ESI-MS in the positive mode without additional MS/MS experiments. The method was applied for the detailed structural analysis of fibrin(ogen) N-glycans from various species (human, cow, pig, mouse, rat, cat, dog, Chinese hamster, horse, sheep, and chicken). All fibrins contained diantennary N-glycans. They differed in the occurrence of beta1,3-linked galactose, alpha2,3-linked sialic acids, and N-glycolylneuraminic acid, in the mono/diantennary glycan ratio, and in the O-acetylation of neuraminic acids. The separation system's potential for analyzing tri- and tetrasialylated N-glycans was demonstrated.

  19. A Versatile Microarray Immobilization Strategy Based on a Biorthogonal Reaction Between Tetrazine and Trans-Cyclooctene.

    PubMed

    Wang, Ping; Gao, Liqian; Lei, Haipeng; Lee, Su Seong; Yao, Shao Q; Sun, Hongyan

    2017-01-01

    Given its increasing importance in transforming biomedical research in recent years, microarray technology has become highly popular as a powerful screening platform in detecting biomolecule interactions, discovering new inhibitors, and identifying biomarkers as well as diagnosing disease. The success of microarray technology in various biological applications is highly dependent on the accessibility, the functionality, and the density of the surface bound biomolecules. Therefore, compound immobilization represents a critical step for the successful implementation of microarray screening. Herein we describe a fast and site-specific microarray immobilization approach by using trans-cyclooctene-tetrazine ligation. This approach not only ensures fast immobilization and uniform display of biomolecules, but also allows the optimum orientation of biomolecules after immobilization. All these excellent properties facilitate subsequent interactions of the biomolecules and their interacting partners during the screening process. We envision that the immobilization strategy described here can find useful applications in many other microarray related studies.

  20. Oxidative Release of Natural Glycans for Functional Glycomics

    PubMed Central

    Song, Xuezheng; Ju, Hong; Lasanajak, Yi; Smith, David F.; Cummings, Richard D.

    2016-01-01

    Glycans have essential roles in biology and the etiology of many diseases. A major hurdle in studying glycans through functional glycomics is the lack of methods to release glycans from diverse types of biological samples. Here we describe an elegant yet simple oxidative strategy using household bleach to release all types of free reducing N-glycans and O-glycan-acids from glycoproteins, and glycan nitriles from glycosphingolipids. Released glycans are directly useful in glycomic analyses and can be derivatized fluorescently for functional glycomics. This chemical method overcomes the limitations in glycan generation and promotes archiving and characterization of human and animal glycomes and their functions. PMID:27135973

  1. CrossNorm: a novel normalization strategy for microarray data in cancers

    PubMed Central

    Cheng, Lixin; Lo, Leung-Yau; Tang, Nelson L. S.; Wang, Dong; Leung, Kwong-Sak

    2016-01-01

    Normalization is essential to get rid of biases in microarray data for their accurate analysis. Existing normalization methods for microarray gene expression data commonly assume a similar global expression pattern among samples being studied. However, scenarios of global shifts in gene expressions are dominant in cancers, making the assumption invalid. To alleviate the problem, here we propose and develop a novel normalization strategy, Cross Normalization (CrossNorm), for microarray data with unbalanced transcript levels among samples. Conventional procedures, such as RMA and LOESS, arbitrarily flatten the difference between case and control groups leading to biased gene expression estimates. Noticeably, applying these methods under the strategy of CrossNorm, which makes use of the overall statistics of the original signals, the results showed significantly improved robustness and accuracy in estimating transcript level dynamics for a series of publicly available datasets, including titration experiment, simulated data, spike-in data and several real-life microarray datasets across various types of cancers. The results have important implications for the past and the future cancer studies based on microarray samples with non-negligible difference. Moreover, the strategy can also be applied to other sorts of high-throughput data as long as the experiments have global expression variations between conditions. PMID:26732145

  2. Recognition of Microbial Glycans by Human Intelectin

    PubMed Central

    Wesener, Darryl A.; Wangkanont, Kittikhun; McBride, Ryan; Song, Xuezheng; Kraft, Matthew B.; Hodges, Heather L.; Zarling, Lucas C.; Splain, Rebecca A.; Smith, David F.; Cummings, Richard D.; Paulson, James C.; Forest, Katrina T.; Kiessling, Laura L.

    2015-01-01

    The glycans displayed on mammalian cells can differ markedly from those on microbes. Such differences could, in principle, be read by carbohydrate-binding proteins, or lectins. We used glycan microarrays to show that human intelectin-1 (hIntL-1) does not bind known human glycan epitopes but interacts with multiple glycan epitopes found exclusively on microbes: β-linked d-galactofuranose (β-Galf), d-phospho-glycerol-modified glycans, heptoses, d-glycero-d-talo-oct-2-ulosonic acid (KO) and 3-deoxy-d-manno-oct–2-ulosonic acid (KDO). The 1.6 Å resolution crystal structure of hIntL-1 bound to β-Galf revealed that hIntL-1 uses a bound calcium ion to coordinate terminal exocyclic 1,2-diols. N-Acetylneuraminic acid (Neu5Ac), a sialic acid widespread in human glycans, possesses an exocyclic 1,2-diol but does not bind hInt-1, likely due to unfavorable steric and electronic effects. Human IntL-1 marks only Streptococcus pneumoniae serotypes that display surface glycans with terminal 1,2-diol groups. This ligand selectivity suggests hIntL-1 functions in microbial surveillance. PMID:26148048

  3. Quantitative analysis of glycoprotein glycans.

    PubMed

    Orlando, Ron

    2013-01-01

    The ability to quantitatively determine changes in the N- and O-linked glycans is an essential component of comparative glycomics. Multiple strategies are available to by which this can be accomplished, including; both label free approaches and isotopic labeling strategies. The focus of this chapter is to describe each of these approaches while providing insight into their strengths and weaknesses, so that glycomic investigators can make an educated choice of the strategy that is best suited for their particular application.

  4. Alteration and localization of glycan-binding proteins in human hepatic stellate cells during liver fibrosis.

    PubMed

    Zhong, Yaogang; Qin, Yannan; Dang, Liuyi; Jia, Liyuan; Zhang, Zhiwei; Wu, Haoxiang; Cui, Jihong; Bian, Huijie; Li, Zheng

    2015-10-01

    Glycan-binding proteins (GBPs) play an important role in cell adhesion, bacterial/viral infection, and cellular signaling pathways. However, little is known about the precision alteration of GBPs referred to pathological changes in hepatic stellate cells (HSCs) during liver fibrosis. Here, the carbohydrate microarrays were used to probe the alteration of GBPs in the activated HSCs and quiescent HSCs. As a result, 12 carbohydrates (e.g. Gal, GalNAc, and Man-9Glycan) showed increased signal, while seven carbohydrates (e.g. NeuAc, Lac, and GlcNAc-O-Ser) showed decreased signal in activated HSCs. Three carbohydrates (Gal, GalNAc, and NeuAc) were selected and subsequently used to validate the results of the carbohydrate microarrays as well as assess the distribution and localization of their binding proteins in HSCs and liver tissues by cy/histochemistry; the results showed that GBPs mainly distributed in the cytoplasma membrane and perinuclear region of cytoplasm. The immunocytochemistry was further used to verify some GBPs really exist in Golgi apparatus of the cells. The precision alteration and localization of GBPs referred to pathological changes in HSCs may provide pivotal information to help understand the biological functions of glycans how to exert through their recognition by a wide variety of GBPs. This study could lead to the development of new anti-fibrotic strategies.

  5. Glycan and lectin biosensors

    PubMed Central

    Belický, Štefan; Katrlík, Jaroslav

    2016-01-01

    A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed. PMID:27365034

  6. E-Predict: a computational strategy for species identification based on observed DNA microarray hybridization patterns.

    PubMed

    Urisman, Anatoly; Fischer, Kael F; Chiu, Charles Y; Kistler, Amy L; Beck, Shoshannah; Wang, David; DeRisi, Joseph L

    2005-01-01

    DNA microarrays may be used to identify microbial species present in environmental and clinical samples. However, automated tools for reliable species identification based on observed microarray hybridization patterns are lacking. We present an algorithm, E-Predict, for microarray-based species identification. E-Predict compares observed hybridization patterns with theoretical energy profiles representing different species. We demonstrate the application of the algorithm to viral detection in a set of clinical samples and discuss its relevance to other metagenomic applications.

  7. Comparison of three microarray probe annotation pipelines: differences in strategies and their effect on downstream analysis

    PubMed Central

    Neerincx, Pieter BT; Casel, Pierrot; Prickett, Dennis; Nie, Haisheng; Watson, Michael; Leunissen, Jack AM; Groenen, Martien AM; Klopp, Christophe

    2009-01-01

    Background Reliable annotation linking oligonucleotide probes to target genes is essential for functional biological analysis of microarray experiments. We used the IMAD, OligoRAP and sigReannot pipelines to update the annotation for the ARK-Genomics Chicken 20 K array as part of a joined EADGENE/SABRE workshop. In this manuscript we compare their annotation strategies and results. Furthermore, we analyse the effect of differences in updated annotation on functional analysis for an experiment involving Eimeria infected chickens and finally we propose guidelines for optimal annotation strategies. Results IMAD, OligoRAP and sigReannot update both annotation and estimated target specificity. The 3 pipelines can assign oligos to target specificity categories although with varying degrees of resolution. Target specificity is judged based on the amount and type of oligo versus target-gene alignments (hits), which are determined by filter thresholds that users can adjust based on their experimental conditions. Linking oligos to annotation on the other hand is based on rigid rules, which differ between pipelines. For 52.7% of the oligos from a subset selected for in depth comparison all pipelines linked to one or more Ensembl genes with consensus on 44.0%. In 31.0% of the cases none of the pipelines could assign an Ensembl gene to an oligo and for the remaining 16.3% the coverage differed between pipelines. Differences in updated annotation were mainly due to different thresholds for hybridisation potential filtering of oligo versus target-gene alignments and different policies for expanding annotation using indirect links. The differences in updated annotation packages had a significant effect on GO term enrichment analysis with consensus on only 67.2% of the enriched terms. Conclusion In addition to flexible thresholds to determine target specificity, annotation tools should provide metadata describing the relationships between oligos and the annotation assigned to them

  8. Parvovirus glycan interactions.

    PubMed

    Huang, Lin-Ya; Halder, Sujata; Agbandje-McKenna, Mavis

    2014-08-01

    Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding. At the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan.

  9. A lectin-based cell microarray approach to analyze the mammalian granulosa cell surface glycosylation profile.

    PubMed

    Accogli, Gianluca; Desantis, Salvatore; Martino, Nicola Antonio; Dell'Aquila, Maria Elena; Gemeiner, Peter; Katrlík, Jaroslav

    2016-10-01

    The high complexity of glycome, the repertoire of glycans expressed in a cell or in an organism, is difficult to analyze and the use of new technologies has accelerated the progress of glycomics analysis. In the last decade, the microarray approaches, and in particular glycan and lectin microarrays, have provided new insights into evaluation of cell glycosylation status. Here we present a cell microarray method based on cell printing on microarray slides for the analysis of the glycosylation pattern of the cell glycocalyx. In order to demonstrate the reliability of the developed method, the glycome profiles of equine native uncultured mural granulosa cells (uGCs) and in vitro cultured mural granulosa cells (cGCs) were determined and compared. The method consists in the isolation of GCs, cell printing into arrays on microarray slide, incubation with a panel of biotinylated lectins, reaction with fluorescent streptavidin and signal intensity detection by a microarray scanner. Cell microarray technology revealed that glycocalyx of both uGCs and cGCs contains N-glycans, sialic acid terminating glycans, N-acetylglucosamine and O-glycans. The comparison of uGCs and cGCs glycan signals indicated an increase in the expression of sialic acids, N-acetylglucosamine, and N-glycans in cGCs. Glycan profiles determined by cell microarray agreed with those revealed by lectin histochemistry. The described cell microarray method represents a simple and sensitive procedure to analyze cell surface glycome in mammalian cells.

  10. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    PubMed Central

    Flannery, Andrea; Gerlach, Jared Q.; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i) conventional carbohydrate or glycan microarrays; (ii) whole mucin microarrays; and (iii) microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments. PMID:27600247

  11. Glycan arrays containing synthetic Clostridium difficile lipoteichoic acid oligomers as tools toward a carbohydrate vaccine.

    PubMed

    Martin, Christopher E; Broecker, Felix; Eller, Steffen; Oberli, Matthias A; Anish, Chakkumkal; Pereira, Claney L; Seeberger, Peter H

    2013-08-18

    Clostridium difficile is a leading cause of severe nosocomial infections. Cell-surface carbohydrate antigens are promising vaccine candidates. Here we report the first total synthesis of oligomers of the lipoteichoic acid antigen repeating unit. Synthetic glycan microarrays revealed anti-glycan antibodies in the blood of patients that help to define epitopes for vaccine development.

  12. Sugar-binding proteins from fish: selection of high affinity "lambodies" that recognize biomedically relevant glycans.

    PubMed

    Hong, Xia; Ma, Mark Z; Gildersleeve, Jeffrey C; Chowdhury, Sudipa; Barchi, Joseph J; Mariuzza, Roy A; Murphy, Michael B; Mao, Li; Pancer, Zeev

    2013-01-18

    Glycan-binding proteins are important for a wide variety of basic research and clinical applications, but proteins with high affinity and selectivity for carbohydrates are difficult to obtain. Here we describe a facile and cost-effective strategy to generate monoclonal lamprey antibodies, called lambodies, that target glycan determinants. We screened a library of yeast surface-displayed (YSD) lamprey variable lymphocyte receptors (VLR) for clones that can selectively bind various biomedically important glycotopes. These glycoconjugates included tumor-associated carbohydrate antigens (Tn and TFα), Lewis antigens (LeA and LeX), N-glycolylneuraminic acid, targets of broadly neutralizing HIV antibodies (poly-Man9 and the HIV gp120), and the glycoproteins asialo-ovine submaxillary mucin (aOSM) and asialo-human glycophorin A (aGPA). We isolated clones that bind each of these targets in a glycan-dependent manner and with very strong binding constants, for example, 6.2 nM for Man9 and 44.7 nM for gp120, determined by surface plasmon resonance (SPR). One particular lambody, VLRB.aGPA.23, was shown by glycan array analysis to be selective for the blood group H type 3 trisaccharide (BG-H3, Fucα1-2Galβ1-3GalNAcα), aGPA, and TFα (Galβ1-3GalNAcα), with affinity constants of 0.2, 1, and 8 nM, respectively. In human tissue microarrays this lambody selectively detected cancer-associated carbohydrate antigens in 14 different types of cancers. It stained 27% of non-small cell lung cancer (NSCLC) samples in a pattern that correlated with poor patient survival. Lambodies with exquisite affinity and selectivity for glycans may find myriad uses in glycobiology and biomedical research.

  13. Visualization and Curve-Parameter Estimation Strategies for Efficient Exploration of Phenotype Microarray Kinetics

    PubMed Central

    Vaas, Lea A. I.; Sikorski, Johannes; Michael, Victoria; Göker, Markus; Klenk, Hans-Peter

    2012-01-01

    Background The Phenotype MicroArray (OmniLog® PM) system is able to simultaneously capture a large number of phenotypes by recording an organism's respiration over time on distinct substrates. This technique targets the object of natural selection itself, the phenotype, whereas previously addressed ‘-omics’ techniques merely study components that finally contribute to it. The recording of respiration over time, however, adds a longitudinal dimension to the data. To optimally exploit this information, it must be extracted from the shapes of the recorded curves and displayed in analogy to conventional growth curves. Methodology The free software environment R was explored for both visualizing and fitting of PM respiration curves. Approaches using either a model fit (and commonly applied growth models) or a smoothing spline were evaluated. Their reliability in inferring curve parameters and confidence intervals was compared to the native OmniLog® PM analysis software. We consider the post-processing of the estimated parameters, the optimal classification of curve shapes and the detection of significant differences between them, as well as practically relevant questions such as detecting the impact of cultivation times and the minimum required number of experimental repeats. Conclusions We provide a comprehensive framework for data visualization and parameter estimation according to user choices. A flexible graphical representation strategy for displaying the results is proposed, including 95% confidence intervals for the estimated parameters. The spline approach is less prone to irregular curve shapes than fitting any of the considered models or using the native PM software for calculating both point estimates and confidence intervals. These can serve as a starting point for the automated post-processing of PM data, providing much more information than the strict dichotomization into positive and negative reactions. Our results form the basis for a freely

  14. Human DC-SIGN Binds Specific Human Milk Glycans

    PubMed Central

    Noll, Alexander J.; Yu, Ying; Lasanajak, Yi; Duska-McEwen, Geralyn; Buck, Rachael H.; Smith, David F.; Cummings, Richard D.

    2016-01-01

    Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys, and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBPs) expressed by dendritic cells (DC) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and Siglecs expressed by DC for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-SIGN showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglecs-5 and -9 showed weak binding to a few glycans. By contrast, most hGBPs bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2′-fucosyllactose (2′-FL) and 3-fucosyllactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2′-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2′-FL had an IC50 of ~1 mM for DC-SIGN, which is within the physiological concentration of 2′-FL in human milk. These results demonstrate that DC-SIGN among the many hGBPs expressed by DC binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant. PMID:26976925

  15. Differential expression of anti-glycan antibodies in schistosome-infected humans, rhesus monkeys and mice

    PubMed Central

    Luyai, Anthony E; Heimburg-Molinaro, Jamie; Prasanphanich, Nina Salinger; Mickum, Megan L; Lasanajak, Yi; Song, Xuezheng; Nyame, A Kwame; Wilkins, Patricia; Rivera-Marrero, Carlos A; Smith, David F; Van Die, Irma; Secor, W Evan; Cummings, Richard D

    2014-01-01

    Schistosomiasis is a debilitating parasitic disease of humans, endemic in tropical areas, for which no vaccine is available. Evidence points to glycan antigens as being important in immune responses to infection. Here we describe our studies on the comparative humoral immune responses to defined schistosome-type glycan epitopes in Schistosoma mansoni-infected humans, rhesus monkeys and mice. Rhesus anti-glycan responses over the course of infection were screened on a defined glycan microarray comprising semi-synthetic glycopeptides terminating with schistosome-associated or control mammalian-type glycan epitopes, as well as a defined glycan microarray of mammalian-type glycans representing over 400 glycan structures. Infected rhesus monkeys generated a high immunoglobulin G (IgG) antibody response to the core xylose/core α3 fucose epitope of N-glycans, which peaked at 8–11 weeks post infection, coinciding with maximal ability to kill schistosomula in vitro. By contrast, infected humans generated low antibody levels to this epitope. At 18 months following praziquantel therapy to eliminate the parasite, antibody levels were negligible. Mice chronically infected with S. mansoni generated high levels of anti-fucosylated LacdiNAc (GalNAcβ1, 4(Fucα1, 3)GlcNAc) IgM antibodies, but lacked a robust response to the core xylose/core α3 fucose N-glycan antigens compared with other species studied, and their sera demonstrated an intermediate level of schistosomula killing in vitro. These differential responses to parasite glycan antigens may be related to the ability of rhesus monkeys to self-cure in contrast to the chronic infection seen in humans and mice. Our results validate defined glycan microarrays as a useful technology to evaluate diagnostic and vaccine antigens for schistosomiasis and perhaps other infections. PMID:24727442

  16. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    PubMed

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  17. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry

    PubMed Central

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P.; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-01-01

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%. PMID:26999137

  18. Assessment of a direct hybridization microarray strategy for comprehensive monitoring of genetically modified organisms (GMOs).

    PubMed

    Turkec, Aydin; Lucas, Stuart J; Karacanli, Burçin; Baykut, Aykut; Yuksel, Hakki

    2016-03-01

    Detection of GMO material in crop and food samples is the primary step in GMO monitoring and regulation, with the increasing number of GM events in the world market requiring detection solutions with high multiplexing capacity. In this study, we test the suitability of a high-density oligonucleotide microarray platform for direct, quantitative detection of GMOs found in the Turkish feed market. We tested 1830 different 60nt probes designed to cover the GM cassettes from 12 different GM cultivars (3 soya, 9 maize), as well as plant species-specific and contamination controls, and developed a data analysis method aiming to provide maximum throughput and sensitivity. The system was able specifically to identify each cultivar, and in 10/12 cases was sensitive enough to detect GMO DNA at concentrations of ⩽1%. These GMOs could also be quantified using the microarray, as their fluorescence signals increased linearly with GMO concentration.

  19. The use of lectin microarray for assessing glycosylation of therapeutic proteins

    PubMed Central

    Zhang, Lei; Luo, Shen; Zhang, Baolin

    2016-01-01

    ABSTRACT Glycans or carbohydrates attached to therapeutic glycoproteins can directly affect product quality, safety and efficacy, and therefore must be adequately analyzed and controlled throughout product life cycles. However, the complexity of protein glycosylation poses a daunting analytical challenge. In this study, we evaluated the utility of a lectin microarray for assessing protein glycans. Using commercial lectin chips, which contain 45 lectins toward distinct glycan structures, we were able to determine the lectin binding patterns of a panel of 15 therapeutic proteins, including 8 monoclonal antibodies. Lectin binding signals were analyzed to generate glycan profiles that were generally consistent with the known glycan patterns for these glycoproteins. In particular, the lectin-based microarray was found to be highly sensitive to variations in the terminal carbohydrate structures such as galactose versus sialic acid epitopes. These data suggest that lectin microarray could be used for screening glycan patterns of therapeutic glycoproteins. PMID:26918373

  20. Sugar-Binding Proteins from Fish: Selection of High Affnity “Lambodies” That Recognize Biomedically Relevant Glycans

    PubMed Central

    Hong, Xia; Ma, Mark Z.; Gildersleeve, Jeffrey C.; Chowdhury, Sudipa; Barchi, Joseph J.; Mariuzza, Roy A.; Murphy, Michael B.; Mao, Li; Pancer, Zeev

    2013-01-01

    Glycan-binding proteins are important for a wide variety of basic research and clinical applications, but proteins with high affnity and selectivity for carbohydrates are diffcult to obtain. Here we describe a facile and cost-effective strategy to generate monoclonal lamprey antibodies, called lambodies, that target glycan determinants. We screened a library of yeast surface-displayed (YSD) lamprey variable lymphocyte receptors (VLR) for clones that can selectively bind various biomedically important glycotopes. These glycoconjugates included tumor-associated carbohydrate antigens (Tn and TFα), Lewis antigens (LeA and LeX), N-glycolylneuraminic acid, targets of broadly neutralizing HIV antibodies (poly-Man9 and the HIV gp120), and the glycoproteins asialo-ovine submaxillary mucin (aOSM) and asialo-human glycophorin A (aGPA). We isolated clones that bind each of these targets in a glycan-dependent manner and with very strong binding constants, for example, 6.2 nM for Man9 and 44.7 nM for gp120, determined by surface plasmon resonance (SPR). One particular lambody, VLRB.aGPA.23, was shown by glycan array analysis to be selective for the blood group H type 3 trisaccharide (BG-H3, Fucα1-2Galβ1-3GalNAcα), aGPA, and TFα (Galβ1-3GalNAcα), with affnity constants of 0.2, 1, and 8 nM, respectively. In human tissue microarrays this lambody selectively detected cancer-associated carbohydrate antigens in 14 different types of cancers. It stained 27% of non-small cell lung cancer (NSCLC) samples in a pattern that correlated with poor patient survival. Lambodies with exquisite affnity and selectivity for glycans may find myriad uses in glycobiology and biomedical research. PMID:23030719

  1. Chemical Approaches To Perturb, Profile, and Perceive Glycans

    PubMed Central

    2009-01-01

    Glycosylation is an essential form of post-translational modification that regulates intracellular and extracellular processes. Regrettably, conventional biochemical and genetic methods often fall short for the study of glycans, because their structures are often not precisely defined at the genetic level. To address this deficiency, chemists have developed technologies to perturb glycan biosynthesis, profile their presentation at the systems level, and perceive their spatial distribution. These tools have identified potential disease biomarkers and ways to monitor dynamic changes to the glycome in living organisms. Still, glycosylation remains the underexplored frontier of many biological systems. In this Account, we focus on research in our laboratory that seeks to transform the study of glycan function from a challenge to routine practice. In studies of proteins and nucleic acids, functional studies have often relied on genetic manipulations to perturb structure. Though not directly subject to mutation, we can determine glycan structure−function relationships by synthesizing defined glycoconjugates or by altering natural glycosylation pathways. Chemical syntheses of uniform glycoproteins and polymeric glycoprotein mimics have facilitated the study of individual glycoconjugates in the absence of glycan microheterogeneity. Alternatively, selective inhibition or activation of glycosyltransferases or glycosidases can define the biological roles of the corresponding glycans. Investigators have developed tools including small molecule inhibitors, decoy substrates, and engineered proteins to modify cellular glycans. Current approaches offer a precision approaching that of genetic control. Genomic and proteomic profiling form a basis for biological discovery. Glycans also present a rich matrix of information that adapts rapidly to changing environs. Glycomic and glycoproteomic analyses via microarrays and mass spectrometry are beginning to characterize alterations in

  2. An Intact Reducing Glycan Promotes the Specific Immune Response to Lacto-N-neotetraose-BSA Neoglycoconjugates

    PubMed Central

    Prasanphanich, Nina S.; Song, Xuezheng; Heimburg-Molinaro, Jamie; Luyai, Anthony E.; Lasanajak, Yi; Cutler, Christopher E.; Smith, David F.; Cummings, Richard D.

    2015-01-01

    The mammalian immune system responds to eukaryotic glycan antigens during infections, cancer, and autoimmune disorders, but the immunological bases for such responses are unclear. Conjugate vaccines containing bacterial polysaccharides linked to carrier proteins (neoglycoconjugates) have proven successful, but these often contain repeating epitopes and the reducing end of the glycan is less important, unlike typical glycan determinants in eukaryotes, which are shorter in length and may include the reducing end. Here we have compared the effects of two linkage methods, one that opens the ring at the reducing end of the glycan, and one that leaves the reducing end closed, on the glycan specificity of the vaccine response in rabbits and mice. We immunized rabbits and mice with bovine serum albumin (BSA) conjugates of synthetic open- and closed-ring forms (OR versus CR) of a simple tetrasaccharide lacto-N-neo-tetraose (LNnT, Galβ1-4GlcNAcβ1-3Galβ1-4Glc), and tested reactivity to the immunogens and several related glycans in both OR and CR versions on glycan microarrays. We found that in rabbits the immune response to the CR conjugate was directed toward the glycan, whereas the OR conjugate elicited antibodies to the reducing end of the glycan and linker region but not specifically to the glycan itself. Unexpectedly, mice did not generate a glycan-specific response to the CR conjugate. Our findings indicate that the reducing end of the sugar is crucial for generation of a glycan-specific response to some eukaryotic vaccine epitopes, and that there are species-specific differences in the ability to make a glycan-specific response to some glycoconjugates. These findings warrant further investigation with regard to rational design of glycoconjugate vaccines. PMID:25671348

  3. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses.

    PubMed

    Yu, Ying; Lasanajak, Yi; Song, Xuezheng; Hu, Liya; Ramani, Sasirekha; Mickum, Megan L; Ashline, David J; Prasad, B V Venkataram; Estes, Mary K; Reinhold, Vernon N; Cummings, Richard D; Smith, David F

    2014-11-01

    Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MS(n) analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MS(n) are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures.

  4. Human Milk Contains Novel Glycans That Are Potential Decoy Receptors for Neonatal Rotaviruses*

    PubMed Central

    Yu, Ying; Lasanajak, Yi; Song, Xuezheng; Hu, Liya; Ramani, Sasirekha; Mickum, Megan L.; Ashline, David J.; Prasad, B. V. Venkataram; Estes, Mary K.; Reinhold, Vernon N.; Cummings, Richard D.; Smith, David F.

    2014-01-01

    Human milk contains a rich set of soluble, reducing glycans whose functions and bioactivities are not well understood. Because human milk glycans (HMGs) have been implicated as receptors for various pathogens, we explored the functional glycome of human milk using shotgun glycomics. The free glycans from pooled milk samples of donors with mixed Lewis and Secretor phenotypes were labeled with a fluorescent tag and separated via multidimensional HPLC to generate a tagged glycan library containing 247 HMG targets that were printed to generate the HMG shotgun glycan microarray (SGM). To investigate the potential role of HMGs as decoy receptors for rotavirus (RV), a leading cause of severe gastroenteritis in children, we interrogated the HMG SGM with recombinant forms of VP8* domains of the RV outer capsid spike protein VP4 from human neonatal strains N155(G10P[11]) and RV3(G3P[6]) and a bovine strain, B223(G10P[11]). Glycans that were bound by RV attachment proteins were selected for detailed structural analyses using metadata-assisted glycan sequencing, which compiles data on each glycan based on its binding by antibodies and lectins before and after exo- and endo-glycosidase digestion of the SGM, coupled with independent MSn analyses. These complementary structural approaches resulted in the identification of 32 glycans based on RV VP8* binding, many of which are novel HMGs, whose detailed structural assignments by MSn are described in a companion report. Although sialic acid has been thought to be important as a surface receptor for RVs, our studies indicated that sialic acid is not required for binding of glycans to individual VP8* domains. Remarkably, each VP8* recognized specific glycan determinants within a unique subset of related glycan structures where specificity differences arise from subtle differences in glycan structures. PMID:25048705

  5. Chemoenzymatic synthesis and lectin array characterization of a class of N-glycan clusters.

    PubMed

    Huang, Wei; Wang, Denong; Yamada, Masao; Wang, Lai-Xi

    2009-12-16

    N-Glycans are major components of many glycoproteins. These sugar moieties are frequently involved in important physiological and disease processes via their interactions with a variety of glycan-binding proteins (GBP). Clustering effect is an important feature in many glycan-lectin interactions. We describe in this paper a chemoenzymatic synthesis of novel N-glycan clusters using a tandem endoglycosidase-catalyzed transglycosylation. It was found that the internal beta-1,2-linked GlcNAc moieties in the N-glycan core, once exposed in the nonreducing terminus, was able to serve as acceptors for transglycosylation catalyzed by Endo-A and EndoM-N175A. This efficient chemoenzymatic method allows a quick extension of the sugar chains to form a class of glycan clusters in which sugar residues are all connected by native glycosidic linkages found in natural N-glycans. In addition, a discriminative enzymatic reaction at the two GlcNAc residues could be fulfilled to afford novel hybrid clusters. Lectin microarray studies revealed unusual properties in glyco-epitope expression by this panel of structurally well-defined synthetic N-glycans. These new compounds are likely valuable for functional glycomics studies to unveil new functions of both glycans and carbohydrate-binding proteins.

  6. Chemoenzymatic Synthesis and Lectin Array Characterization of a Class of N-Glycan Clusters

    PubMed Central

    Huang, Wei; Wang, Denong; Yamada, Masao; Wang, Lai-Xi

    2009-01-01

    N-glycans are major components of many glycoproteins. These sugar moieties are frequently involved in important physiological and disease processes via their interactions with a variety of glycan-binding proteins (GBP). Clustering effect is an important feature in many glycan-lectin interactions. We describe in this paper a chemoenzymatic synthesis of novel N-glycan clusters using a tandem endoglycosidase-catalyzed transglycosylation. It was found that the internal β-1,2-linked GlcNAc moieties in the N-glycan core, once exposed in the non-reducing terminus, was able to serve as acceptors for transglycosylation catalyzed by Endo-A and EndoM-N175A. This efficient chemoenzymatic method allows a quick extension of the sugar chains to form a class of glycan clusters in which sugar residues are all connected by native glycosidic linkages found in natural N-glycans. In addition, a discriminative enzymatic reaction at the two GlcNAc residues could be fulfilled to afford novel hybrid clusters. Lectin microarray studies revealed unusual properties in glyco-epitope expression by this panel of structurally well-defined synthetic N-glycans. These new compounds are likely valuable for functional glycomics studies to unveil new functions of both glycans and carbohydrate-binding proteins. PMID:19916512

  7. Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry.

    PubMed

    Agarwal, Paresh; Beahm, Brendan J; Shieh, Peyton; Bertozzi, Carolyn R

    2015-09-21

    Vertebrate glycans constitute a large, important, and dynamic set of post-translational modifications that are notoriously difficult to manipulate and image. Although the chemical reporter strategy has been used in conjunction with bioorthogonal chemistry to image the external glycosylation state of live zebrafish and detect tumor-associated glycans in mice, the ability to image glycans systemically within a live organism has remained elusive. Here, we report a method that combines the metabolic incorporation of a cyclooctyne-functionalized sialic acid derivative with a ligation reaction of a fluorogenic tetrazine, allowing for the imaging of sialylated glycoconjugates within live zebrafish embryos.

  8. Human DC-SIGN binds specific human milk glycans.

    PubMed

    Noll, Alexander J; Yu, Ying; Lasanajak, Yi; Duska-McEwen, Geralyn; Buck, Rachael H; Smith, David F; Cummings, Richard D

    2016-05-15

    Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBP) expressed by dendritic cells (DCs) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed by DCs for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglec-5 and Siglec-9 showed weak binding to a few glycans. By contrast, most hGBP bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2'-fucosyl-lactose (2'-FL) and 3-fucosyl-lactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2'-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2'-FL had an IC50 of ∼1 mM for DC-SIGN, which is within the physiological concentration of 2'-FL in human milk. These results demonstrate that DC-SIGN among the many hGBP expressed by DCs binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant.

  9. Glycan-based high-affinity ligands for toxins and pathogen receptors.

    PubMed

    Kulkarni, Ashish A; Weiss, Alison A; Iyer, Suri S

    2010-03-01

    Glycans decorate over 95% of the mammalian cell surface in the form of glycolipids and glycoproteins. Several toxins and pathogens bind to these glycans to enter the cells. Understanding the fundamentals of the complex interplay between microbial pathogens and their glycan receptors at the molecular level could lead to the development of novel therapeutics and diagnostics. Using Shiga toxin and influenza virus as examples, we describe the complex biological interface between host glycans and these infectious agents, and recent strategies to develop glycan-based high-affinity ligands. These molecules are expected to ultimately be incorporated into diagnostics and therapeutics, and can be used as probes to study important biological processes. Additionally, by focusing on the specific glycans that microbial pathogens target, we can begin to decipher the "glycocode" and how these glycans participate in normal and aberrant cellular communication.

  10. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies

    NASA Astrophysics Data System (ADS)

    Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey

    2016-04-01

    A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.

  11. Surface expression patterns of defined glycan antigens change during Schistosoma mansoni cercarial transformation and development of schistosomula.

    PubMed

    Smit, Cornelis H; Homann, Arne; van Hensbergen, Vincent P; Schramm, Gabriele; Haas, Helmut; van Diepen, Angela; Hokke, Cornelis H

    2015-12-01

    During the complex lifecycle of Schistosoma mansoni, a large variety of glycans is expressed. To many of these glycans, antibodies are induced by the infected host and some might be targets for vaccines or diagnostic tests. Spatial changes in glycan expression during schistosome development are largely unexplored. To study the surface-exposed glycans during the important initial stages of infection, we analyzed the binding of a panel of anti-glycan monoclonal antibodies (mAbs) to cercariae and schistosomula up to 72 h after transformation by immunofluorescence microscopy. The mAb specificity toward their natural targets was studied using a microarray containing a wide range of schistosomal N-glycans, O-glycans and glycosphingolipid glycans. With the exception of GalNAcβ1-4(Fucα1-3)GlcNAc (LDN-F), mono- and multifucosylated GalNAcβ1-4GlcNAc (LDN)-motifs were exposed at the surface of all developmental stages studied. Multifucosylated LDN-motifs were present on cercarial glycocalyx-derived O-glycans as well as cercarial glycolipids. In contrast, the Galβ1-4(Fucα1-3)GlcNAc (Lewis X) and LDN-F-motifs, also expressed on cercarial glycolipids, and in addition on a range of cercarial N- and O-glycans, became surface expressed only after transformation of cercariae to schistosomula. In line with the documented shedding of the O-glycan-rich cercarial glycocalyx after transformation these observations suggest that surface accessible multifucosylated LDN-motifs are mostly expressed by O-glycans in cercariae, but principally by glycosphingolipids in schistosomula. We hypothesize that these temporal changes in surface exposure of glycan antigens are relevant to the interaction with the host during the initial stages of infection with schistosomes and discuss the potential of these glycan antigens as intervention targets.

  12. Community-Based Network Study of Protein-Carbohydrate Interactions in Plant Lectins Using Glycan Array Data

    PubMed Central

    Malik, Adeel; Lee, Juyong; Lee, Jooyoung

    2014-01-01

    Lectins play major roles in biological processes such as immune recognition and regulation, inflammatory responses, cytokine signaling, and cell adhesion. Recently, glycan microarrays have shown to play key roles in understanding glycobiology, allowing us to study the relationship between the specificities of glycan binding proteins and their natural ligands at the omics scale. However, one of the drawbacks in utilizing glycan microarray data is the lack of systematic analysis tools to extract information. In this work, we attempt to group various lectins and their interacting carbohydrates by using community-based analysis of a lectin-carbohydrate network. The network consists of 1119 nodes and 16769 edges and we have identified 3 lectins having large degrees of connectivity playing the roles of hubs. The community based network analysis provides an easy way to obtain a general picture of the lectin-glycan interaction and many statistically significant functional groups. PMID:24755681

  13. Substrate specificity of FUT8 and chemoenzymatic synthesis of core-fucosylated asymmetric N-glycans.

    PubMed

    Calderon, Angie D; Liu, Yunpeng; Li, Xu; Wang, Xuan; Chen, Xi; Li, Lei; Wang, Peng G

    2016-04-26

    Substrate specificity studies of human FUT8 using 77 structurally-defined N-glycans as acceptors showed a strict requirement towards the α1,3-mannose branch, but a great promiscuity towards the α1,6-mannose branch. Accordingly, a chemoenzymatic strategy was developed for the efficient synthesis of core-fucosylated asymmetric N-glycans.

  14. Fluorescently labelled glycans and their applications.

    PubMed

    Yan, Hongbin; Yalagala, Ravi Shekar; Yan, Fengyang

    2015-11-01

    This review summarises the literature on the synthesis and applications of fluorescently labelled carbohydrates. Due to the sensitivity of fluorescent detection, this approach provides a useful tool to study processes involving glycans. A few general categories of labelling are presented, in situ labelling of carbohydrates with fluorophores, fluorescently labelled glycolipids, fluorogenic glycans, pre-formed fluorescent glycans for intracellular applications, glycan-decorated fluorescent polymers, fluorescent glyconanoparticles, and other functional fluorescent glycans.

  15. Glycan family analysis for deducing N-glycan topology from single MS

    PubMed Central

    Goldberg, David; Bern, Marshall; North, Simon J.; Haslam, Stuart M.; Dell, Anne

    2009-01-01

    Motivation: In the past few years, mass spectrometry (MS) has emerged as the premier tool for identification and quantification of biological molecules such as peptides and glycans. There are two basic strategies: single-MS, which uses a single round of mass analysis, and MS/MS (or higher order MSn), which adds one or more additional rounds of mass analysis, interspersed with fragmentation steps. Single-MS offers higher throughput, broader mass coverage and more direct quantitation, but generally much weaker identification. Single-MS, however, does work fairly well for the case of N-glycan identification, which are more constrained than other biological polymers. We previously demonstrated single-MS identification of N-glycans to the level of ‘cartoons’ (monosaccharide composition and topology) by a system that incorporates an expert's detailed knowledge of the biological sample. In this article, we explore the possibility of ab initio single-MS N-glycan identification, with the goal of extending single-MS, or primarily-single-MS, identification to non-expert users, novel conditions and unstudied tissues. Results: We propose and test three cartoon-assignment algorithms that make inferences informed by biological knowledge about glycan synthesis. To test the algorithms, we used 71 single-MS spectra from a variety of tissues and organisms, containing more than 2800 manually annotated peaks. The most successful of the algorithms computes the most richly connected subgraph within a ‘cartoon graph’. This algorithm uniquely assigns the correct cartoon to more than half of the peaks in 41 out of the 71 spectra. Contact: goldberg@parc.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19073587

  16. Intramolecular N-Glycan/Polypeptide Interactions Observed at Multiple N-Glycan Remodeling Steps through [13C,15N]-N-Acetylglucosamine Labeling of Immunoglobulin G1

    PubMed Central

    2014-01-01

    Asparagine-linked (N) glycosylation is a common eukaryotic protein modification that affects protein folding, function, and stability through intramolecular interactions between N-glycan and polypeptide residues. Attempts to characterize the structure–activity relationship of each N-glycan are hindered by inherent properties of the glycoprotein, including glycan conformational and compositional heterogeneity. These limitations can be addressed by using a combination of nuclear magnetic resonance techniques following enzymatic glycan remodeling to simultaneously generate homogeneous glycoforms. However, widely applicable methods do not yet exist. To address this technological gap, immature glycoforms of the immunoglobulin G1 fragment crystallizable (Fc) were isolated in a homogeneous state and enzymatically remodeled with [13C,15N]-N-acetylglucosamine (GlcNAc). UDP-[13C,15N]GlcNAc was synthesized enzymatically in a one-pot reaction from [13C]glucose and [15N-amido]glutamine. Modifying Fc with recombinantly expressed glycosyltransferases (Gnt1 and Gnt2) and UDP-[13C,15N]GlcNAc resulted in complete glycoform conversion as judged by mass spectrometry. Two-dimensional heteronuclear single-quantum coherence spectra of the Gnt1 product, containing a single [13C,15N]GlcNAc residue on each N-glycan, showed that the N-glycan is stabilized through interactions with polypeptide residues. Similar spectra of homogeneous glycoforms, halted at different points along the N-glycan remodeling pathway, revealed the presence of an increased level of interaction between the N-glycan and polypeptide at each step, including mannose trimming, as the N-glycan was converted to a complex-type, biantennary form. Thus, conformational restriction increases as Fc N-glycan maturation proceeds. Gnt1 and Gnt2 catalyze fundamental reactions in the synthesis of every glycoprotein with a complex-type N-glycan; thus, the strategies presented herein can be applied to a broad range of glycoprotein

  17. Hydrazino-s-triazine based labelling reagents for highly sensitive glycan analysis via liquid chromatography-electrospray mass spectrometry.

    PubMed

    Zhao, Ming-Zhe; Zhang, Yi-Wei; Yuan, Fang; Deng, Yan; Liu, Jing-Xin; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2015-11-01

    Labelling strategy plays an important role in mass spectrometry (MS) based glycan analysis due to the high hydrophilicity and low ionization efficiency of glycans. Ten hydrazino-s-triazine based labelling reagents were synthesized under facile and controllable conditions for highly sensitive liquid chromatography-electrospray mass spectrometry glycan analysis in this work. Attached to N-glycans through non-reductive reactions, these new labelling reagents were evaluated in aspect of the differently enhanced glycan response to mass spectrometry. Three of the ten labelling reagents demonstrated to be reliable and remarkable for glycan analysis with satisfactory linearity and lowered limits of detection using maltoheptaose (DP7) as model. Furthermore, the most optimal labelling reagent was taken as an example for highly sensitive profiling of N-linked glycans both cleaved from chicken avidin and glycoproteins in human serum, indicating prospective availability for these labelling reagents in frontier of glycomics researches.

  18. Chemo-Enzymatic Synthesis of (13)C Labeled Complex N-Glycans As Internal Standards for the Absolute Glycan Quantification by Mass Spectrometry.

    PubMed

    Echeverria, Begoña; Etxebarria, Juan; Ruiz, Nerea; Hernandez, Álvaro; Calvo, Javier; Haberger, Markus; Reusch, Dietmar; Reichardt, Niels-Christian

    2015-11-17

    Methods for the absolute quantification of glycans are needed in glycoproteomics, during development and production of biopharmaceuticals and for the clinical analysis of glycan disease markers. Here we present a strategy for the chemo-enzymatic synthesis of (13)C labeled N-glycan libraries and provide an example for their use as internal standards in the profiling and absolute quantification of mAb glycans by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. A synthetic biantennary glycan precursor was (13)C-labeled on all four amino sugar residues and enzymatically derivatized to produce a library of 15 glycan isotopologues with a mass increment of 8 Da over the natural products. Asymmetrically elongated glycans were accessible by performing enzymatic reactions on partially protected UV-absorbing intermediates, subsequent fractionation by preparative HPLC, and final hydrogenation. Using a preformulated mixture of eight internal standards, we quantified the glycans in a monoclonal therapeutic antibody with excellent precision and speed.

  19. Fucosyltransferases as synthetic tools: glycan array based substrate selection and core fucosylation of synthetic N-glycans.

    PubMed

    Serna, Sonia; Yan, Shi; Martin-Lomas, Manuel; Wilson, Iain B H; Reichardt, Niels-Christian

    2011-10-19

    Two recombinant fucosyltransferases were employed as synthetic tools in the chemoenzymatic synthesis of core fucosylated N-glycan structures. Enzyme substrates were rapidly identified by incubating a microarray of synthetic N-glycans with the transferases and detecting the presence of core fucose with four lectins and one antibody. Selected substrates were then enzymatically fucosylated in solution on a preparative scale and characterized by NMR and MS. With this approach the chemoenzymatic synthesis of a series of α1,3-, α1,6-, and difucosylated structures was accomplished in very short time and with high yields, which otherwise would have required extensive additional synthetic effort and a complete redesign of existing synthetic routes. In addition, valuable information was gathered regarding the specificities of the lectins employed in this study.

  20. Determining the binding affinities of prostate-specific antigen to lectins: SPR and microarray approaches.

    PubMed

    Damborský, Pavel; Zámorová, Martina; Katrlík, Jaroslav

    2016-12-01

    Prostate cancer (PCa) is one of the most common newly diagnosed cancers among men and we focused on its traditional biomarker, prostate-specific antigen (PSA), using targeted glycomics-based strategies. The aberrant glycosylation pattern of PSA may serve as a valuable tool for improving PCa diagnosis including its early-stage. In this study, we evaluated the usability of two techniques, surface plasmon resonance and protein microarray assay, for the study and characterization of interactions of PSA (both free and complexed) with six lectins (SNA, ConA, RCA, AAL, WGA and MAA II). The information on the character of such interactions is important for the application of lectins as prospective bioreceptors for biomarker glycoprofiling in a follow-up biosensing assays. SPR as well as established bioanalytical techniques allowed determination of KD values of PSA-lectin interactions in a more reliable way than protein microarray. The protein microarray method did not allow accurate quantification of KD values. However, the features of a microarray approach, such as speed and costs, enabled the screening and estimation of the nature of lectin-glycan biomarker interaction in an effective and time-saving way. All of the tested lectins interacted with commercial PSA standard isolated from healthy persons, except MAA II which reacted only very weakly.

  1. Identifying human milk glycans that inhibit norovirus binding using surface plasmon resonance.

    PubMed

    Shang, Jing; Piskarev, Vladimir E; Xia, Ming; Huang, Pengwei; Jiang, Xi; Likhosherstov, Leonid M; Novikova, Olga S; Newburg, David S; Ratner, Daniel M

    2013-12-01

    Human milk glycans inhibit binding between norovirus and its host glycan receptor; such competitive inhibition by human milk glycans is associated with a reduced risk of infection. The relationship between the presence of specific structural motifs in the human milk glycan and its ability to inhibit binding by specific norovirus strains requires facile, accurate and miniaturized-binding assays. Toward this end, a high-throughput biosensor platform was developed based on surface plasmon resonance imaging (SPRi) of glycan microarrays. The SPRi was validated, and its utility was tested, by measuring binding specificities between defined human milk glycan epitopes and the capsids of two common norovirus strains, VA387 and Norwalk. Human milk oligosaccharide (HMOS)-based neoglycoconjugates, including chemically derived neoglycoproteins and oligosaccharide-glycine derivatives, were used to represent polyvalent glycoconjugates and monovalent oligosaccharides, respectively, in human milk. SPRi binding results established that the glycan motifs that bind norovirus capsids depend upon strain; VA387 capsid interacts with two neoglycoproteins, whereas Norwalk capsid binds to a different set of HMOS motifs in the form of both polyvalent neoglycoproteins and monovalent oligosaccharides. SPRi competitive binding assays further demonstrated that specific norovirus-binding glycans are able to inhibit norovirus capsid binding to their host receptors. A polyvalent neoglycoconjugate with clustered carbohydrate moieties is required for the inhibition of VA387 capsid binding to host receptor glycans, whereas both monovalent oligosaccharides and polyvalent neoglycoconjugates are able to inhibit Norwalk capsid binding to its host receptor. Binding of HMOS and HMOS-based neoglycoconjugates to norovirus capsids depends upon the specific strain characteristics, implying that HMOS and their polyvalent derivatives are potential anti-adhesive agents for norovirus prophylaxis.

  2. Identifying human milk glycans that inhibit norovirus binding using surface plasmon resonance

    PubMed Central

    Shang, Jing; Piskarev, Vladimir E; Xia, Ming; Huang, Pengwei; Jiang, Xi; Likhosherstov, Leonid M; Novikova, Olga S; Newburg, David S; Ratner, Daniel M

    2013-01-01

    Human milk glycans inhibit binding between norovirus and its host glycan receptor; such competitive inhibition by human milk glycans is associated with a reduced risk of infection. The relationship between the presence of specific structural motifs in the human milk glycan and its ability to inhibit binding by specific norovirus strains requires facile, accurate and miniaturized-binding assays. Toward this end, a high-throughput biosensor platform was developed based on surface plasmon resonance imaging (SPRi) of glycan microarrays. The SPRi was validated, and its utility was tested, by measuring binding specificities between defined human milk glycan epitopes and the capsids of two common norovirus strains, VA387 and Norwalk. Human milk oligosaccharide (HMOS)-based neoglycoconjugates, including chemically derived neoglycoproteins and oligosaccharide-glycine derivatives, were used to represent polyvalent glycoconjugates and monovalent oligosaccharides, respectively, in human milk. SPRi binding results established that the glycan motifs that bind norovirus capsids depend upon strain; VA387 capsid interacts with two neoglycoproteins, whereas Norwalk capsid binds to a different set of HMOS motifs in the form of both polyvalent neoglycoproteins and monovalent oligosaccharides. SPRi competitive binding assays further demonstrated that specific norovirus-binding glycans are able to inhibit norovirus capsid binding to their host receptors. A polyvalent neoglycoconjugate with clustered carbohydrate moieties is required for the inhibition of VA387 capsid binding to host receptor glycans, whereas both monovalent oligosaccharides and polyvalent neoglycoconjugates are able to inhibit Norwalk capsid binding to its host receptor. Binding of HMOS and HMOS-based neoglycoconjugates to norovirus capsids depends upon the specific strain characteristics, implying that HMOS and their polyvalent derivatives are potential anti-adhesive agents for norovirus prophylaxis. PMID:24026239

  3. Multievidence microarray mining.

    PubMed

    Seifert, Martin; Scherf, Matthias; Epple, Anton; Werner, Thomas

    2005-10-01

    Microarray mining is a challenging task because of the superposition of several processes in the data. We believe that the combination of microarray data-based analyses (statistical significance analysis of gene expression) with array-independent analyses (literature-mining and promoter analysis) enables some of the problems of traditional array analysis to be overcome. As a proof-of-principle, we revisited publicly available microarray data derived from an experiment with platelet-derived growth factor (PDGF)-stimulated fibroblasts. Our strategy revealed results beyond the detection of the major metabolic pathway known to be linked to the PDGF response: we were able to identify the crosstalking regulatory networks underlying the metabolic pathway without using a priori knowledge about the experiment.

  4. A Novel Strategy for Gene Selection of Microarray Data Based on Gene-to-Class Sensitivity Information

    PubMed Central

    Han, Fei; Sun, Wei; Ling, Qing-Hua

    2014-01-01

    To obtain predictive genes with lower redundancy and better interpretability, a hybrid gene selection method encoding prior information is proposed in this paper. To begin with, the prior information referred to as gene-to-class sensitivity (GCS) of all genes from microarray data is exploited by a single hidden layered feedforward neural network (SLFN). Then, to select more representative and lower redundant genes, all genes are grouped into some clusters by K-means method, and some low sensitive genes are filtered out according to their GCS values. Finally, a modified binary particle swarm optimization (BPSO) encoding the GCS information is proposed to perform further gene selection from the remainder genes. For considering the GCS information, the proposed method selects those genes highly correlated to sample classes. Thus, the low redundant gene subsets obtained by the proposed method also contribute to improve classification accuracy on microarray data. The experiments results on some open microarray data verify the effectiveness and efficiency of the proposed approach. PMID:24844313

  5. Surface characterization of carbohydrate microarrays.

    PubMed

    Scurr, David J; Horlacher, Tim; Oberli, Matthias A; Werz, Daniel B; Kroeck, Lenz; Bufali, Simone; Seeberger, Peter H; Shard, Alexander G; Alexander, Morgan R

    2010-11-16

    Carbohydrate microarrays are essential tools to determine the biological function of glycans. Here, we analyze a glycan array by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to gain a better understanding of the physicochemical properties of the individual spots and to improve carbohydrate microarray quality. The carbohydrate microarray is prepared by piezo printing of thiol-terminated sugars onto a maleimide functionalized glass slide. The hyperspectral ToF-SIMS imaging data are analyzed by multivariate curve resolution (MCR) to discern secondary ions from regions of the array containing saccharide, linker, salts from the printing buffer, and the background linker chemistry. Analysis of secondary ions from the linker common to all of the sugar molecules employed reveals a relatively uniform distribution of the sugars within the spots formed from solutions with saccharide concentration of 0.4 mM and less, whereas a doughnut shape is often formed at higher-concentration solutions. A detailed analysis of individual spots reveals that in the larger spots the phosphate buffered saline (PBS) salts are heterogeneously distributed, apparently resulting in saccharide concentrated at the rim of the spots. A model of spot formation from the evaporating sessile drop is proposed to explain these observations. Saccharide spot diameters increase with saccharide concentration due to a reduction in surface tension of the saccharide solution compared to PBS. The multivariate analytical partial least squares (PLS) technique identifies ions from the sugars that in the complex ToF-SIMS spectra correlate with the binding of galectin proteins.

  6. Glycan-Based Cell Targeting To Modulate Immune Responses.

    PubMed

    Johannssen, Timo; Lepenies, Bernd

    2017-04-01

    Glycosylation is an integral post-translational modification present in more than half of all eukaryotic proteins. It affects key protein functions, including folding, stability, and immunogenicity. Glycoengineering approaches, such as the use of bacterial N-glycosylation systems, or expression systems, including yeasts, insect cells, and mammalian cells, have enabled access to defined and homogenous glycoproteins. Given that glycan structures on proteins can be recognized by host lectin receptors, they may facilitate cell-specific targeting and immune modulation. Myeloid C-type lectin receptors (CLRs) expressed by antigen-presenting cells are attractive targets to shape immune responses. Multivalent glycan display on nanoparticles, liposomes, or dendrimers has successfully enabled CLR targeting. In this review, we discuss novel strategies to access defined glycan structures and highlight CLR targeting approaches for immune modulation.

  7. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  8. Site-specific and covalent attachment of his-tagged proteins by chelation assisted photoimmobilization: a strategy for microarraying of protein ligands.

    PubMed

    Ericsson, Emma M; Enander, Karin; Bui, Lan; Lundström, Ingemar; Konradsson, Peter; Liedberg, Bo

    2013-09-17

    A novel strategy for site-specific and covalent attachment of proteins has been developed, intended for robust and controllable immobilization of histidine (His)-tagged ligands in protein microarrays. The method is termed chelation assisted photoimmobilization (CAP) and was demonstrated using human IgG-Fc modified with C-terminal hexahistidines (His-IgGFc) as the ligand and protein A as the analyte. Alkanethiols terminated with either nitrilotriacetic acid (NTA), benzophenone (BP), or oligo(ethylene glycol) were synthesized and mixed self-assembled monolayers (SAMs) were prepared on gold and thoroughly characterized by infrared reflection absorption spectroscopy (IRAS), ellipsometry, and contact angle goniometry. In the process of CAP, NTA chelates Ni(2+) and the complex coordinates the His-tagged ligand in an oriented assembly. The ligand is then photoimmobilized via BP, which forms covalent bonds upon UV light activation. In the development of affinity biosensors and protein microarrays, site-specific attachment of ligands in a fashion where analyte binding sites are available is often preferred to random coupling. Analyte binding performance of ligands immobilized either by CAP or by standard amine coupling was characterized by surface plasmon resonance in combination with IRAS. The relative analyte response with randomly coupled ligand was 2.5 times higher than when site-specific attachment was used. This is a reminder that also when immobilizing ligands via residues far from the binding site, there are many other factors influencing availability and activity. Still, CAP provides a valuable expansion of protein immobilization techniques since it offers attractive microarraying possibilities amenable to applications within proteomics.

  9. Chromosome Microarray.

    PubMed

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed.

  10. Cell Surface Glycan Alterations in Epithelial Mesenchymal Transition Process of Huh7 Hepatocellular Carcinoma Cell

    PubMed Central

    Kang, Xiaonan; Sun, Chun; Jiang, Kai; Huang, Li; Lu, Yu; Sui, Jingzhe; Qin, Xue; Liu, Yinkun

    2013-01-01

    Background and Objective Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC) is high. It is well known that the epithelial mesenchymal transition (EMT) and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. Methodology HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. Results After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α) GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. Conclusions The findings of this study systematically clarify the alterations of cell surface glycan in cancer EMT, and

  11. The detection and discovery of glycan motifs in biological samples using lectins and antibodies: new methods and opportunities

    PubMed Central

    Tang, Huiyuan; Hsueh, Peter; Kletter, Doron; Bern, Marshall; Haab, Brian

    2015-01-01

    Recent research is uncovering unexpected ways that glycans contribute to biology, as well as new strategies for combatting disease using approaches involving glycans. To make full use of glycans for clinical applications, we need more detailed information on the location, nature, and dynamics of glycan expression in vivo. Such studies require the use of specimens acquired directly from patients. Effective studies of clinical specimens require low-volume assays, high precision measurements, and the ability to process many samples. Assays using affinity reagents—lectins and glycan-binding antibodies—can meet these requirements, but further developments are needed to make the methods routine and effective. Recent advances in the use of glycan-binding proteins could meet that need. The advances involve improved determination of specificity using glycan arrays; the availability of databases for mining and analyzing glycan array data; lectin engineering methods; and the ability to quantitatively interpret lectin measurements. Here we describe many of the challenges and opportunities involved in the application of these new approaches to the study of biological samples. The new tools hold promise for developing methods to improve the outcomes of patients afflicted with diseases characterized by aberrant glycan expression. PMID:25727148

  12. Characterization of the N-glycans of female Angiostrongylus cantonensis worms.

    PubMed

    Veríssimo, Carolina M; Morassutti, Alessandra L; von Itzstein, Mark; Sutov, Grigorij; Hartley-Tassell, Lauren; McAtamney, Sarah; Dell, Anne; Haslam, Stuart M; Graeff-Teixeira, Carlos

    2016-07-01

    Glycoconjugates play a crucial role in the host-parasite relationships of helminthic infections, including angiostrongyliasis. It has previously been shown that the antigenicity of proteins from female Angiostrongylus cantonensis worms may depend on their associated glycan moieties. Here, an N-glycan profile of A. cantonensis is reported. A total soluble extract (TE) was prepared from female A. cantonensis worms and was tested by western blot before and after glycan oxidation or N- and O-glycosidase treatment. The importance of N-glycans for the immunogenicity of A. cantonensis was demonstrated when deglycosylation of the TE with PNGase F completely abrogated IgG recognition. The TE was also fractionated using various lectin columns [Ulex europaeus (UEA), concanavalin A (Con A), Arachis hypogaea (PNA), Triticum vulgaris (WGA) and Lycopersicon esculentum (LEA)], and then each fraction was digested with PNGase F. Released N-glycans were analyzed with matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) and MALDI-TOF/TOF-MS/MS. Complex-type, high mannose, and truncated glycan structures were identified in all five fractions. Sequential MALDI-TOF-TOF analysis of the major MS peaks identified complex-type structures, with a α1-6 fucosylated core and truncated antennas. Glycoproteins in the TE were labeled with BodipyAF558-SE dye for a lectin microarray analysis. Fluorescent images were analyzed with ProScanArray imaging software followed by statistical analysis. A total of 29 lectins showed positive binding to the TE. Of these, Bandeiraea simplicifolia (BS-I), PNA, and Wisteria floribunda (WFA), which recognize galactose (Gal) and N-acetylgalactosamine (GalNAc), exhibited high affinity binding. Taken together, our findings demonstrate that female A. cantonensis worms have characteristic helminth N-glycans.

  13. HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual

    PubMed Central

    Coss, Karen P.; Vasiljevic, Snezana; Pritchard, Laura K.; Krumm, Stefanie A.; Glaze, Molly; Madzorera, Sharon; Moore, Penny L.

    2016-01-01

    ABSTRACT The HIV envelope glycoprotein (Env) is extensively modified with host-derived N-linked glycans. The high density of glycosylation on the viral spike limits enzymatic processing, resulting in numerous underprocessed oligomannose-type glycans. This extensive glycosylation not only shields conserved regions of the protein from the immune system but also acts as a target for anti-HIV broadly neutralizing antibodies (bnAbs). In response to the host immune system, the HIV glycan shield is constantly evolving through mutations affecting both the positions and numbers of potential N-linked glycosylation sites (PNGSs). Here, using longitudinal Env sequences from a clade C-infected individual (CAP256), we measured the impact of the shifting glycan shield during HIV infection on the abundance of oligomannose-type glycans. By analyzing the intrinsic mannose patch from a panel of recombinant CAP256 gp120s displaying high protein sequence variability and changes in PNGS number and positioning, we show that the intrinsic mannose patch persists throughout the course of HIV infection and correlates with the number of PNGSs. This effect of the glycan density on the processing state was also supported by the analysis of a cross-clade panel of recombinant gp120 glycoproteins. Together, these observations underscore the importance of glycan clustering for the generation of carbohydrate epitopes for anti-HIV bnAbs. The persistence of the intrinsic mannose patch over the course of HIV infection further highlights this epitope as an important target for HIV vaccine strategies. IMPORTANCE Development of an HIV vaccine is critical for control of the HIV pandemic, and elicitation of broadly neutralizing antibodies (bnAbs) is likely to be a key component of a successful vaccine response. The HIV envelope glycoprotein (Env) is covered in an array of host-derived N-linked glycans often referred to as the glycan shield. This glycan shield is a target for many of the recently isolated

  14. Competition between Serum IgG, IgM, and IgA Anti-Glycan Antibodies

    PubMed Central

    Muthana, Saddam M.; Xia, Li; Campbell, Christopher T.; Zhang, Yalong; Gildersleeve, Jeffrey C.

    2015-01-01

    Anti-glycan antibodies are an abundant subpopulation of serum antibodies with critical functions in many immune processes. Changes in the levels of these antibodies can occur with the onset of disease, exposure to pathogens, or vaccination. As a result, there has been significant interest in exploiting anti-glycan antibodies as biomarkers for many diseases. Serum contains a mixture of anti-glycan antibodies that can recognize the same antigen, and competition for binding can potentially influence the detection of antibody subpopulations that are more relevant to disease processes. The most abundant antibody isotypes in serum are IgG, IgM, and IgA, but little is known regarding how these different isotypes compete for the same glycan antigen. In this study, we developed a multiplexed glycan microarray assay and applied it to evaluate how different isotypes of anti-glycan antibodies (IgA, IgG, and IgM) compete for printed glycan antigens. While IgG and IgA antibodies typically outcompete IgM for peptide or protein antigens, we found that IgM outcompete IgG and IgA for many glycan antigens. To illustrate the importance of this effect, we provide evidence that IgM competition can account for the unexpected observation that IgG of certain antigen specificities appear to be preferentially transported from mothers to fetuses. We demonstrate that IgM in maternal sera compete with IgG resulting in lower than expected IgG signals. Since cord blood contains very low levels of IgM, competition only affects maternal IgG signals, making it appear as though certain IgG antibodies are higher in cord blood than matched maternal blood. Taken together, the results highlight the importance of competition for studies involving anti-glycan antibodies. PMID:25807519

  15. Glycan Engineering for Cell and Developmental Biology.

    PubMed

    Griffin, Matthew E; Hsieh-Wilson, Linda C

    2016-01-21

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate.

  16. Glycan Engineering for Cell and Developmental Biology

    PubMed Central

    Griffin, Matthew E.; Hsieh-Wilson, Linda C.

    2016-01-01

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. PMID:26933739

  17. Mucin glycan foraging in the human gut microbiome

    PubMed Central

    Tailford, Louise E.; Crost, Emmanuelle H.; Kavanaugh, Devon; Juge, Nathalie

    2015-01-01

    The availability of host and dietary carbohydrates in the gastrointestinal (GI) tract plays a key role in shaping the structure-function of the microbiota. In particular, some gut bacteria have the ability to forage on glycans provided by the mucus layer covering the GI tract. The O-glycan structures present in mucin are diverse and complex, consisting predominantly of core 1-4 mucin-type O-glycans containing α- and β- linked N-acetyl-galactosamine, galactose and N-acetyl-glucosamine. These core structures are further elongated and frequently modified by fucose and sialic acid sugar residues via α1,2/3/4 and α2,3/6 linkages, respectively. The ability to metabolize these mucin O-linked oligosaccharides is likely to be a key factor in determining which bacterial species colonize the mucosal surface. Due to their proximity to the immune system, mucin-degrading bacteria are in a prime location to influence the host response. However, despite the growing number of bacterial genome sequences available from mucin degraders, our knowledge on the structural requirements for mucin degradation by gut bacteria remains fragmented. This is largely due to the limited number of functionally characterized enzymes and the lack of studies correlating the specificity of these enzymes with the ability of the strain to degrade and utilize mucin and mucin glycans. This review focuses on recent findings unraveling the molecular strategies used by mucin-degrading bacteria to utilize host glycans, adapt to the mucosal environment, and influence human health. PMID:25852737

  18. Rapid and sensitive analysis of N-glycans by MALDI-MS using permanent charge derivatization and methylamidation.

    PubMed

    Gao, Wenjie; Li, Henghui; Liu, Yanyan; Liu, Yuhong; Feng, Xiaojun; Liu, Bi-Feng; Liu, Xin

    2016-12-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become an important technology for glycan analysis due to its ease of operation, short analysis time and impurity tolerance. However, the low ionization efficiency of N-glycans led to the difficulty in analyzing glycans of low abundance in complex biological samples due to the lack of basic site for protonation. Therefore, highly sensitive method for the glycans analysis is in urgent demand. Here we report a new strategy to introduce a permanent charge at the reducing end of N-linked glycans by a one pot reaction, where glycosylamines that were obtained by rapid deglycosylation within 5min were labeled with N-succinimidyloxycarbonylmethyl tris (2,4,6- trimethoxyphenyl) phosphonium bromide (TMPP-Ac-OSu). With TMPP-Ac labeling, more than 50 fold enhancement in the sensitivity of method was achieved for neutral glycans from ribonuclease B (RNase B) in comparison to their native counterparts. In combination with methylamidation of sialic acid residues, this novel developed strategy could also be used for sialylated glycans analysis from sialoglycoproteins and complex serum sample. As a result, more than 50 glycans were detected with only 25nL human serum sample.

  19. The Current Status of DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manufacturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthesized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microarrays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  20. The Current Status of DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Shi, Leming; Perkins, Roger G.; Tong, Weida

    DNA microarray technology that allows simultaneous assay of thousands of genes in a single experiment has steadily advanced to become a mainstream method used in research, and has reached a stage that envisions its use in medical applications and personalized medicine. Many different strategies have been developed for manufacturing DNA microarrays. In this chapter, we discuss the manu facturing characteristics of seven microarray platforms that were used in a recently completed large study by the MicroArray Quality Control (MAQC) consortium, which evaluated the concordance of results across these platforms. The platforms can be grouped into three categories: (1) in situ synthesis of oligonucleotide probes on microarrays (Affymetrix GeneChip® arrays based on photolithography synthesis and Agilent's arrays based on inkjet synthesis); (2) spotting of presynthe-sized oligonucleotide probes on microarrays (GE Healthcare's CodeLink system, Applied Biosystems' Genome Survey Microarrays, and the custom microarrays printed with Operon's oligonucleotide set); and (3) deposition of presynthesized oligonucleotide probes on bead-based microarrays (Illumina's BeadChip microar-rays). We conclude this chapter with our views on the challenges and opportunities toward acceptance of DNA microarray data in clinical and regulatory settings.

  1. Gene expression profiling and identification of resistance genes to aspergillus flavus infection in peanut through EST and microarray strategies.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus flavus and A. parasiticus infect peanut seeds and produce aflatoxins, which are associated with various diseases in domestic animals and humans throughout the world. The most cost-effective strategy to minimize aflatoxin contamination involves the development of peanut cultivars that are...

  2. Screening Complex Biological Samples with Peptide Microarrays: The Favorable Impact of Probe Orientation via Chemoselective Immobilization Strategies on Clickable Polymeric Coatings.

    PubMed

    Gori, Alessandro; Sola, Laura; Gagni, Paola; Bruni, Giulia; Liprino, Marta; Peri, Claudio; Colombo, Giorgio; Cretich, Marina; Chiari, Marcella

    2016-11-16

    The generation of robust analytical data using microarray platforms strictly relies on optimal ligand-target interaction at the sensor surface, which, in turn, is inherently bound to the correct immobilization scheme of the interrogated bioprobes. In the present work, we performed a rigorous comparative analysis of the impact of peptide ligands immobilization strategy in the screening of Burkholderia cepacia complex (BCC) infections in patients affected by cystic fibrosis (CF). We generated arrays of previously validated Burkholderia derived peptide probes that were selectively oriented on polymeric coatings by means of different click-type reactions including thiol maleimide, copper-catalyzed azide-alkyne cycloaddition (CuAAC), and strain-promoted azide-alkyne cycloaddition (SPAAC). We compared immobilization efficiency among the different chemoselective reactions, and we evaluated diagnostic performances at a statistically significant level, also in contrast to random immobilization strategies. Our findings clearly support the favorable role of correct bioprobe orientation in discriminating seronegative from infected individuals and, in the last analysis, in generating more-reliable and more-reproducible data. Spacing biomolecules from the sensor surface by means of small hydrophilic linkers also positively affects the analytical performance and leads to increased statistical significance of data. Overall, all of the click immobilization strategies that were considered displayed a good efficiency. Interestingly, SPAAC-mediated conjugation using DBCO cyclooctyne for some peptides resulted in sequence-dependent autofluorescence in the Cy5 emission range wavelength, which could be circumvented by using a different fluorescence detection channel. On the basis of our results, we critically discuss the immobilization parameters that need to be carefully considered for peptide ligand immobilization purposes.

  3. A new strategy of cooperativity of biclustering and hierarchical clustering: a case of analyzing yeast genomic microarray datasets.

    PubMed

    Mao, Daqing; Luo, Yi; Zhang, Jinghai; Zhu, Jun

    2005-05-01

    Hierarchical clustering is difficult to be deployed effectively in finding meaningful subtrees since genes rarely exhibit similar expression pattern across a wide range of conditions. It is also difficult to find a suitable level in cleaving a big hierarchy tree. Biclustering is a promising methodology in the field of the analysis of gene expression data of genechip. Generally it can be employed in identification of gene groups, which show a coherent expression profile across a subset of conditions. But in some cases of biclustering analysis of gene expressions, the genes in one bicluster are involved in more than one functional group, or all genes in one bicluster are involved in unknown functional groups (e.g. pattern VI and VIII in our studies). Then, how to predict the function of genes in these patterns? In the present research, we developed a new strategy of combining both of the clustering methods, hierarchical clustering and biclustering. The reserved conditions in datasets for hierarchical clustering were elicited according to the conditions in biclusters, and after hierarchical clustering, more detailed results in predicting unknown genes in certain patterns were obtained. This strategy of cooperating both of the methods during clustering procedure should be an effective guideline for functional predictions.

  4. Vaccination-induced IgG response to Galα1-3GalNAc glycan epitopes in lambs protected against Haemonchus contortus challenge infection

    PubMed Central

    van Stijn, Caroline M.W.; van den Broek, Marloes; Vervelde, Lonneke; Alvarez, Richard A.; Cummings, Richard D.; Tefsen, Boris; van Die, Irma

    2009-01-01

    Lambs vaccinated with Haemonchus contortus excretory/secretory (ES) glycoproteins in combination with the adjuvant Alhydrogel are protected against H. contortus challenge infection. Using glycan microarray analysis we showed that serum from such vaccinated lambs contains IgG antibodies that recognize the glycan antigen Galα1-3GalNAc-R and GalNAcβ1-4(Fucα1-3)GlcNAc-R. Our studies revealed that H. contortus glycoproteins contain Galα1-3Gal-R as well as significant levels of Galα1-3GalNAc-R, which has not been previously reported. Extracts from H. contortus adult worms contain a galactosyltransferase acting on glycan substrates with a terminal GalNAc, indicating that the worms possess the enzymatic potential to synthesize terminal Gal-GalNAc moieties. These data illustrate that glycan microarrays constitute a promising technology for fast and specific analysis of serum anti-glycan antibodies in vaccination studies. In addition, this approach facilitates the discovery of novel, antigenic parasite glycan antigens that may have potential for developing glycoconjugate vaccines or utilization in diagnostics. PMID:19695255

  5. The HIV glycan shield as a target for broadly neutralizing antibodies.

    PubMed

    Doores, Katie J

    2015-12-01

    The HIV envelope glycoprotein (Env) is the sole target for HIV broadly neutralizing antibodies (bnAbs). HIV Env is one of the most heavily glycosylated proteins known, with approximately half of its mass consisting of host-derived N-linked glycans. The high density of glycans creates a shield that impedes antibody recognition but, critically, some of the most potent and broadly active bnAbs have evolved to recognize epitopes formed by these glycans. Although the virus hijacks the host protein synthesis and glycosylation machinery to generate glycosylated HIV Env, studies have shown that HIV Env glycosylation diverges from that typically observed on host-derived glycoproteins. In particular, the high density of glycans leads to a nonself motif of underprocessed oligomannose-type glycans that forms the target of some of the most broad and potent HIV bnAbs. This review discusses the changing perception of the HIV glycan shield, and summarizes the protein-directed and cell-directed factors controlling HIV Env glycosylation that impact on HIV bnAb recognition and HIV vaccine design strategies.

  6. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review.

    PubMed

    Maverakis, Emanual; Kim, Kyoungmi; Shimoda, Michiko; Gershwin, M Eric; Patel, Forum; Wilken, Reason; Raychaudhuri, Siba; Ruhaak, L Renee; Lebrilla, Carlito B

    2015-02-01

    Herein we will review the role of glycans in the immune system. Specific topics covered include: the glycosylation sites of IgE, IgM, IgD, IgE, IgA, and IgG; how glycans can encode "self" identity by functioning as either danger associated molecular patterns (DAMPs) or self-associated molecular patterns (SAMPs); the role of glycans as markers of protein integrity and age; how the glycocalyx can dictate the migration pattern of immune cells; and how the combination of Fc N-glycans and Ig isotype dictate the effector function of immunoglobulins. We speculate that the latter may be responsible for the well-documented association between alterations of the serum glycome and autoimmunity. Due to technological limitations, the extent of these autoimmune-associated glycan alterations and their role in disease pathophysiology has not been fully elucidated. Thus, we also review the current technologies available for glycan analysis, placing an emphasis on Multiple Reaction Monitoring (MRM), a rapid high-throughput technology that has great potential for glycan biomarker research. Finally, we put forth The Altered Glycan Theory of Autoimmunity, which states that each autoimmune disease will have a unique glycan signature characterized by the site-specific relative abundances of individual glycan structures on immune cells and extracellular proteins, especially the site-specific glycosylation patterns of the different immunoglobulin(Ig) classes and subclasses.

  7. Glycans In The Immune system and The Altered Glycan Theory of Autoimmunity: A Critical Review

    PubMed Central

    Maverakis, Emanual; Kim, Kyoungmi; Shimoda, Michiko; Gershwin, M. Eric; Patel, Forum; Wilken, Reason; Raychaudhuri, Siba; Ruhaak, L. Renee; Lebrilla, Carlito B.

    2015-01-01

    Herein we will review the role of glycans in determining the functionality and specificity of various components of the immune system. Specific topics covered include: the specific glycosylation sites of IgE, IgM, IgD, IgE, IgA, and IgG; how glycans can encode “self” identity by functioning as either danger associated molecular patterns (DAMPs) or self-associated molecular patterns (SAMPs); the role of glycans as markers of protein integrity and age; how the glycocalyx can dictate the migration pattern of immune cells; and how the combination of Fc N-glycans and Ig isotype dictate the effector function of immunoglobulins. We speculate that the latter may be responsible for the well-documented association between alterations of the serum glycome and autoimmunity. Due to technological limitations, the extent of these autoimmune-associated glycan alterations and their role in disease pathophysiology has not been fully elucidated to date. Thus, we also review the current technologies available for glycan analysis, placing an emphasis on Multiple Reaction Monitoring (MRM), a rapid high-throughput technology that has great potential for glycan biomarker research. Finally, we put forth The Altered Glycan Theory of Autoimmunity, which states that each autoimmune disease will have a unique glycan signature characterized by the site-specific relative abundances of individual glycan structures on immune cells and serum proteins, especially the site-specific glycosylation patterns of specific antibody classes and subclasses. PMID:25578468

  8. Improved method for drawing of a glycan map, and the first page of glycan atlas, which is a compilation of glycan maps for a whole organism.

    PubMed

    Natsuka, Shunji; Masuda, Mayumi; Sumiyoshi, Wataru; Nakakita, Shin-ichi

    2014-01-01

    Glycan Atlas is a set of glycan maps over the whole body of an organism. The glycan map that includes data of glycan structure and quantity displays micro-heterogeneity of the glycans in a tissue, an organ, or cells. The two-dimensional glycan mapping is widely used for structure analysis of N-linked oligosaccharides on glycoproteins. In this study we developed a comprehensive method for the mapping of both N- and O-glycans with and without sialic acid. The mapping data of 150 standard pyridylaminated glycans were collected. The empirical additivity rule which was proposed in former reports was able to adapt for this extended glycan map. The adapted rule is that the elution time of pyridylamino glycans on high performance liquid chromatography (HPLC) is expected to be the simple sum of the partial elution times assigned to each monosaccharide residue. The comprehensive mapping method developed in this study is a powerful tool for describing the micro-heterogeneity of the glycans. Furthermore, we prepared 42 pyridylamino (PA-) glycans from human serum and were able to draw the map of human serum N- and O-glycans as an initial step of Glycan Atlas editing.

  9. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  10. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  11. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  12. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized,...

  13. Integration of the Transcriptome and Glycome for Identification of Glycan Cell Signatures

    PubMed Central

    Bennun, Sandra V.; Yarema, Kevin J.; Betenbaugh, Michael J.; Krambeck, Frederick J.

    2013-01-01

    Abnormalities in glycan biosynthesis have been conclusively linked to many diseases but the complexity of glycosylation has hindered the analysis of glycan data in order to identify glycoforms contributing to disease. To overcome this limitation, we developed a quantitative N-glycosylation model that interprets and integrates mass spectral and transcriptomic data by incorporating key glycosylation enzyme activities. Using the cancer progression model of androgen-dependent to androgen-independent Lymph Node Carcinoma of the Prostate (LNCaP) cells, the N-glycosylation model identified and quantified glycan structural details not typically derived from single-stage mass spectral or gene expression data. Differences between the cell types uncovered include increases in H(II) and Ley epitopes, corresponding to greater activity of α2-Fuc-transferase (FUT1) in the androgen-independent cells. The model further elucidated limitations in the two analytical platforms including a defect in the microarray for detecting the GnTV (MGAT5) enzyme. Our results demonstrate the potential of systems glycobiology tools for elucidating key glycan biomarkers and potential therapeutic targets. The integration of multiple data sets represents an important application of systems biology for understanding complex cellular processes. PMID:23326219

  14. Divergent modes of glycan recognition by a new family of carbohydrate-binding modules.

    PubMed

    Gregg, Katie J; Finn, Ron; Abbott, D Wade; Boraston, Alisdair B

    2008-05-02

    The genomes of myonecrotic Clostridium perfringens isolates contain genes encoding a large and fascinating array of highly modular glycoside hydrolase enzymes. Although the catalytic activities of many of these enzymes are somewhat predictable based on their amino acid sequences, the functions of their abundant ancillary modules are not and remain poorly studied. Here, we present the structural and functional analysis of a new family of ancillary carbohydrate-binding modules (CBMs), CBM51, which was previously annotated in data bases as the novel putative CBM domain. The high resolution crystal structures of two CBM51 members, GH95CBM51 and GH98CBM51, from a putative family 95 alpha-fucosidase and from a family 98 blood group A/B antigen-specific endo-beta-galactosidase, respectively, showed them to have highly similar beta-sandwich folds. However, GH95CBM51 was shown by glycan microarray screening, isothermal titration calorimetry, and x-ray crystallography to bind galactose residues, whereas the same analyses of GH98CBM51 revealed specificity for the blood group A/B antigens through non-conserved interactions. Overall, this work identifies a new family of CBMs with many members having apparent specificity for eukaryotic glycans, in keeping with the glycan-rich environment C. perfringens would experience in its host. However, a wider bioinformatic analysis of this CBM family also indicated a large number of members in non-pathogenic environmental bacteria, suggesting a role in the recognition of environmental glycans.

  15. Profiling of core fucosylated N-glycans using a novel bacterial lectin that specifically recognizes α1,6 fucosylated chitobiose

    PubMed Central

    Vainauskas, Saulius; Duke, Rebecca M.; McFarland, James; McClung, Colleen; Ruse, Cristian; Taron, Christopher H.

    2016-01-01

    A novel fucose-binding lectin (SL2-1) from the bacterium Streptomyces rapamycinicus was identified by analysis of metagenomic DNA sequences. SL2-1 belongs to a new group of bacterial fucose-specific lectins that have no similarity to known bacterial fucose-binding proteins, but are related to certain eukaryotic fucose-binding lectins. The 17 kDa protein was expressed recombinantly in E. coli and purified by affinity chromatography. Glycan microarray analysis with fluorescently labeled recombinant SL2-1 demonstrated its ability to bind to core α1-6 fucosylated N-glycans, but not to core α1-3 fucosylated N-glycans, or other α1-2, α1-3 and α1-4 fucosylated oligosaccharides. The minimal high affinity binding epitope of SL2-1 was α1-6 fucosylated di-n-acetylchitobiose. The recombinant lectin was efficient in detection of N-glycan core fucosylation using lectin blotting and lectin ELISA assays. Finally, a workflow using SL2-1 for selective and quantitative profiling of core fucosylated N-glycans using UPLC-HILIC-FLR analysis was established. The approach was validated for selective capture and analysis of core fucosylated N-glycans present in complex glycan mixtures derived from mammalian serum IgG. PMID:27678371

  16. Enzymatic Basis for N-Glycan Sialylation

    PubMed Central

    Meng, Lu; Forouhar, Farhad; Thieker, David; Gao, Zhongwei; Ramiah, Annapoorani; Moniz, Heather; Xiang, Yong; Seetharaman, Jayaraman; Milaninia, Sahand; Su, Min; Bridger, Robert; Veillon, Lucas; Azadi, Parastoo; Kornhaber, Gregory; Wells, Lance; Montelione, Gaetano T.; Woods, Robert J.; Tong, Liang; Moremen, Kelley W.

    2013-01-01

    Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases. PMID:24155237

  17. Dual Specificity of Langerin to Sulfated and Mannosylated Glycans via a Single C-type Carbohydrate Recognition Domain*

    PubMed Central

    Tateno, Hiroaki; Ohnishi, Koji; Yabe, Rikio; Hayatsu, Norihito; Sato, Takashi; Takeya, Motohiro; Narimatsu, Hisashi; Hirabayashi, Jun

    2010-01-01

    Langerin is categorized as a C-type lectin selectively expressed in Langerhans cells, playing roles in the first line of defense against pathogens and in Birbeck granule formation. Although these functions are thought to be exerted through glycan-binding activity of the C-type carbohydrate recognition domain, sugar-binding properties of Langerin have not been fully elucidated in relation to its biological functions. Here, we investigated the glycan-binding specificity of Langerin using comprehensive glycoconjugate microarray, quantitative frontal affinity chromatography, and conventional cell biological analyses. Langerin showed outstanding affinity to galactose-6-sulfated oligosaccharides, including keratan sulfate, while it preserved binding activity to mannose, as a common feature of the C-type lectins with an EPN motif. By a mutagenesis study, Lys-299 and Lys-313 were found to form extended binding sites for sulfated glycans. Consistent with the former observation, the sulfated Langerin ligands were found to be expressed in brain and spleen, where the transcript of keratan sulfate 6-O-sulfotransferase is expressed. Moreover, such sulfated ligands were up-regulated in glioblastoma relative to normal brain tissues, and Langerin-expressing cells were localized in malignant brain tissues. Langerin also recognized pathogenic fungi, such as Candida and Malassezia, expressing heavily mannosylated glycans. These observations provide strong evidence that Langerin mediates diverse functions on Langerhans cells through dual recognition of sulfated as well as mannosylated glycans by its uniquely evolved C-type carbohydrate-recognition domain. PMID:20026605

  18. Design of a covalently bonded glycosphingolipid microarray.

    PubMed

    Arigi, Emma; Blixt, Ola; Buschard, Karsten; Clausen, Henrik; Levery, Steven B

    2012-01-01

    Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vitro study of their functional interactions. However, with few exceptions, the most widely used microarray platforms display only the glycan moiety of GSLs, which not only ignores potential modulating effects of the lipid aglycone, but inherently limits the scope of application, excluding, for example, the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut agglutinin, a monoclonal antibody to sulfatide, Sulph 1; and a polyclonal antiserum reactive to asialo-G(M2)). Preliminary evaluation of the method indicated successful immobilization of the GSLs, and selective binding of test probes. The potential utility of this methodology for designing covalent microarrays that incorporate GSLs for serodiagnosis is discussed.

  19. Structural Feature Ions for Distinguishing N- and O-Linked Glycan Isomers by LC-ESI-IT MS/MS

    NASA Astrophysics Data System (ADS)

    Everest-Dass, Arun V.; Abrahams, Jodie L.; Kolarich, Daniel; Packer, Nicolle H.; Campbell, Matthew P.

    2013-06-01

    Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure-function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.

  20. Specific anti-glycan antibodies are sustained during and after parasite clearance in Schistosoma japonicum-infected rhesus macaques

    PubMed Central

    Yang, Y. Y. Michelle; Li, Xiao Hong; Brzezicka, Katarzyna; Reichardt, Niels-Christian; Wilson, R. Alan; van Diepen, Angela

    2017-01-01

    Background Human immunity to Schistosoma infection requires many years of exposure, and multiple infections and treatments to develop. Unlike humans, rhesus macaques clear an established schistosome infection naturally at the same time acquiring immunity towards re-infection. In macaques, schistosome egg production decreases after 8 weeks post-infection and by week 22, physiological impairment of the worm caused by unclarified antibody-mediated processes is observed. Since strong antibody responses have been observed against schistosome glycan antigens in human and animal infections, we here investigate if anti-glycan antibodies are associated with immunity against schistosome infections in macaques. Methods We used a microarray containing a large repertoire of glycoprotein- and glycolipid-derived glycans from different schistosome life stages to analyse anti-glycan serum IgG and IgM from S. japonicum-infected macaques during the course of infection and self-cure. We also used an in vitro schistosomula assay to investigate whether macaque sera containing anti-glycan antibodies can kill schistosomula. Conclusions/significance Antibody responses towards schistosome glycans at week 4 post-infection were dominated by IgM while IgG was high at week 8. The profound increase in IgG was observed mainly for antibodies towards a large subset of glycans that contain (multi-)fucosylated terminal GalNAcβ1-4GlcNAc (LDN), and Galβ1-4(Fucα1–3)GlcNAc (LeX) motifs. In general, glycans with a higher degree of fucosylation gave rise to stronger antibody responses than non-fucosylated glycans. Interestingly, even though many IgG and IgM responses had declined by week 22 post-infection, IgG towards O-glycans with highly fucosylated LDN motifs remained. When incubating macaque serum with schistosomula in vitro, schistosomula death was positively correlated with the duration of infection of macaques; macaque serum taken 22 weeks post-infection caused most schistosomula to die

  1. Automated synthesis of arabinoxylan-oligosaccharides enables characterization of antibodies that recognize plant cell wall glycans.

    PubMed

    Schmidt, Deborah; Schuhmacher, Frank; Geissner, Andreas; Seeberger, Peter H; Pfrengle, Fabian

    2015-04-07

    Monoclonal antibodies that recognize plant cell wall glycans are used for high-resolution imaging, providing important information about the structure and function of cell wall polysaccharides. To characterize the binding epitopes of these powerful molecular probes a library of eleven plant arabinoxylan oligosaccharides was produced by automated solid-phase synthesis. Modular assembly of oligoarabinoxylans from few building blocks was enabled by adding (2-naphthyl)methyl (Nap) to the toolbox of orthogonal protecting groups for solid-phase synthesis. Conjugation-ready oligosaccharides were obtained and the binding specificities of xylan-directed antibodies were determined on microarrays.

  2. Plasma Anti-Glycan Antibody Profiles Associated with Nickel level in Urine

    PubMed Central

    Vuskovic, Marko; Barbuti, Anna-Maria; Goldsmith-Rooney, Emma; Glassman, Laura; Bovin, Nicolai; Pass, Harvey; Tchou-Wong, Kam-Meng; Chen, Meichi; Yan, Bing; Niu, Jingping; Qu, Qingshan; Costa, Max; Huflejt, Margaret

    2014-01-01

    Nickel (Ni) compounds are widely used in industrial and commercial products including household and cooking utensils, jewelry, dental appliances and implants. Occupational exposure to nickel is associated with an increased risk for lung and nasal cancers, is the most common cause of contact dermatitis and has an extensive effect on the immune system. The purpose of this study was two-fold: (i) to evaluate immune response to the occupational exposure to nickel measured by the presence of anti-glycan antibodies (AGA) using a new biomarker-discovery platform based on printed glycan arrays (PGA), and (ii) to evaluate and compile a sequence of bioinformatics and statistical methods which are specifically relevant to PGA-derived information and to identification of putative “Ni toxicity signature”. The PGAs are similar to DNA microarrays, but contain deposits of various carbohydrates (glycans) instead of spotted DNAs. The study uses data derived from a set of 89 plasma specimens and their corresponding demographic information. The study population includes three subgroups: subjects directly exposed to Nickel that work in a refinery, subjects environmentally exposed to Nickel that live in a city where the refinery is located and subjects that live in a remote location. The paper describes the following sequence of nine data processing and analysis steps: (1) Analysis of inter-array reproducibility based on benchmark sera; (2) Analysis of intra-array reproducibility; (3) Screening of data - rejecting glycans which result in low intra-class correlation coefficient (ICC), high coefficient of variation and low fluorescent intensity; (4) Analysis of inter-slide bias and choice of data normalization technique; (5) Determination of discriminatory subsamples based on multiple bootstrap tests; (6) Determination of the optimal signature size (cardinality of selected feature set) based on multiple cross-validation tests; (7) Identification of the top discriminatory glycans and

  3. DNA Microarrays in Herbal Drug Research

    PubMed Central

    Chavan, Preeti; Joshi, Kalpana; Patwardhan, Bhushan

    2006-01-01

    Natural products are gaining increased applications in drug discovery and development. Being chemically diverse they are able to modulate several targets simultaneously in a complex system. Analysis of gene expression becomes necessary for better understanding of molecular mechanisms. Conventional strategies for expression profiling are optimized for single gene analysis. DNA microarrays serve as suitable high throughput tool for simultaneous analysis of multiple genes. Major practical applicability of DNA microarrays remains in DNA mutation and polymorphism analysis. This review highlights applications of DNA microarrays in pharmacodynamics, pharmacogenomics, toxicogenomics and quality control of herbal drugs and extracts. PMID:17173108

  4. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles.

    PubMed

    Zheng, Longtang; Wei, Jinhua; Lv, Xun; Bi, Yuhai; Wu, Peixing; Zhang, Zhenxing; Wang, Pengfei; Liu, Ruichen; Jiang, Jingwen; Cong, Haolong; Liang, Jingnan; Chen, Wenwen; Cao, Hongzhi; Liu, Wenjun; Gao, George F; Du, Yuguang; Jiang, Xingyu; Li, Xuebing

    2017-05-15

    Accurate diagnosis of influenza viruses is difficult and generally requires a complex process because of viral diversity and rapid mutability. In this study, we report a simple and rapid strategy for the detection and differentiation of influenza viruses using glycan-functionalized gold nanoparticles (gGNPs). This method is based on the aggregation of gGNP probes on the viral surface, which is mediated by the specific binding of the virus to the glycans. Using a set of gGNPs bearing different glycan structures, fourteen influenza virus strains, including the major subtypes currently circulating in human and avian populations, were readily differentiated from each other and from a human respiratory syncytial virus in a single-step colorimetric procedure. The results presented here demonstrate the potential of this gGNP-based system in the development of convenient and portable sensors for the clinical diagnosis and surveillance of influenza viruses.

  5. The Sweet Side of Immune Evasion: Role of Glycans in the Mechanisms of Cancer Progression

    PubMed Central

    Nardy, Ana Flávia Fernandes Ribas; Freire-de-Lima, Leonardo; Freire-de-Lima, Célio Geraldo; Morrot, Alexandre

    2016-01-01

    Glycans are part of the essential components of a cell. These compounds play a fundamental role in several physiopathological processes, including cell differentiation, adhesion, motility, signal transduction, host–pathogen interactions, tumor cell invasion, and metastasis development. Glycans are also able to exert control over the changes in tumor immunogenecity, interfering with tumor editing events and leading to immune-resistant cancer cells. The involvement of glycans in cancer progression is related to glycosylation alterations. Understanding such changes is, therefore, extremely useful to set the stage for their use as biomarkers, improving the diagnostics and therapeutic strategies. Herein, we discuss the basis of how modifications in glycosylation patterns may contribute to cancer genesis and progression as well as their importance in oncology field. PMID:27014629

  6. The Sweet Side of Immune Evasion: Role of Glycans in the Mechanisms of Cancer Progression.

    PubMed

    Nardy, Ana Flávia Fernandes Ribas; Freire-de-Lima, Leonardo; Freire-de-Lima, Célio Geraldo; Morrot, Alexandre

    2016-01-01

    Glycans are part of the essential components of a cell. These compounds play a fundamental role in several physiopathological processes, including cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumor cell invasion, and metastasis development. Glycans are also able to exert control over the changes in tumor immunogenecity, interfering with tumor editing events and leading to immune-resistant cancer cells. The involvement of glycans in cancer progression is related to glycosylation alterations. Understanding such changes is, therefore, extremely useful to set the stage for their use as biomarkers, improving the diagnostics and therapeutic strategies. Herein, we discuss the basis of how modifications in glycosylation patterns may contribute to cancer genesis and progression as well as their importance in oncology field.

  7. Notable Aspects of Glycan-Protein Interactions

    PubMed Central

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  8. MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney.

    PubMed

    Gustafsson, Ove J R; Briggs, Matthew T; Condina, Mark R; Winderbaum, Lyron J; Pelzing, Matthias; McColl, Shaun R; Everest-Dass, Arun V; Packer, Nicolle H; Hoffmann, Peter

    2015-03-01

    Recent developments in spatial proteomics have paved the way for retrospective in situ mass spectrometry (MS) analyses of formalin-fixed paraffin-embedded clinical tissue samples. This type of analysis is commonly referred to as matrix-assisted laser desorption/ionization (MALDI) imaging. Recently, formalin-fixed paraffin-embedded MALDI imaging analyses were augmented to allow in situ analyses of tissue-specific N-glycosylation profiles. In the present study, we outline an improved automated sample preparation method for N-glycan MALDI imaging, which uses in situ PNGase F-mediated release and measurement of N-linked glycans from sections of formalin-fixed murine kidney. The sum of the presented data indicated that N-glycans can be cleaved from proteins within formalin-fixed tissue and characterized using three strategies: (i) extraction and composition analysis through on-target MALDI MS and liquid chromatography coupled to electrospray ionization ion trap MS; (ii) MALDI profiling, where N-glycans are released and measured from large droplet arrays in situ; and (iii) MALDI imaging, which maps the tissue specificity of N-glycans at a higher resolution. Thus, we present a complete, straightforward method that combines MALDI imaging and characterization of tissue-specific N-glycans and complements existing strategies.

  9. Glycans in Medicinal Chemistry: An Underexploited Resource.

    PubMed

    Fernández-Tejada, Alberto; Cañada, F Javier; Jiménez-Barbero, Jesús

    2015-08-01

    The biological relevance of glycans as mediators of key physiological processes, including disease-related mechanisms, makes them attractive targets for a wide range of medical applications. Despite their important biological roles, especially as molecular recognition elements, carbohydrates have not been fully exploited as therapeutics mainly due to the scarcity of structure-activity correlations and their non-drug-like properties. A more detailed understanding of the complex carbohydrate structures and their associated functions should contribute to the development of new glycan-based pharmaceuticals. Recent significant progress in oligosaccharide synthesis and chemical glycobiology has renewed the interest of the medicinal chemistry community in carbohydrates. This promises to increase our possibilities to harness them in drug discovery efforts for the development of new and more effective, synthetic glycan-based therapeutics and vaccines.

  10. Overview of Protein Microarrays

    PubMed Central

    Reymond Sutandy, FX; Qian, Jiang; Chen, Chien-Sheng; Zhu, Heng

    2013-01-01

    Protein microarray is an emerging technology that provides a versatile platform for characterization of hundreds of thousands of proteins in a highly parallel and high-throughput way. Two major classes of protein microarrays are defined to describe their applications: analytical and functional protein microarrays. In addition, tissue or cell lysates can also be fractionated and spotted on a slide to form a reverse-phase protein microarray. While the fabrication technology is maturing, applications of protein microarrays, especially functional protein microarrays, have flourished during the past decade. Here, we will first review recent advances in the protein microarray technologies, and then present a series of examples to illustrate the applications of analytical and functional protein microarrays in both basic and clinical research. The research areas will include detection of various binding properties of proteins, study of protein posttranslational modifications, analysis of host-microbe interactions, profiling antibody specificity, and identification of biomarkers in autoimmune diseases. As a powerful technology platform, it would not be surprising if protein microarrays will become one of the leading technologies in proteomic and diagnostic fields in the next decade. PMID:23546620

  11. Exploring the specificities of glycan-binding proteins using glycan array data and the GlycoSearch software.

    PubMed

    Kletter, Doron; Curnutte, Bryan; Maupin, Kevin A; Bern, Marshall; Haab, Brian B

    2015-01-01

    The glycan array is a powerful tool for investigating the specificities of glycan-binding proteins. By incubating a glycan-binding protein on a glycan array, the relative binding to hundreds of different oligosaccharides can be quantified in parallel. Based on these data, much information can be obtained about the preference of a glycan-binding protein for specific subcomponents of oligosaccharides or motifs. In many cases, the analysis and interpretation of glycan array data can be time consuming and imprecise if done manually. Recently we developed software, called GlycoSearch, to facilitate the analysis and interpretation of glycan array data based on the previously developed methods called Motif Segregation and Outlier Motif Analysis. Here we describe the principles behind the software, the use of the software, and an example application. The automated, objective, and precise analysis of glycan array data should enhance the value of the data for a broad range of research applications.

  12. Inactivation of the β(1,2)-xylosyltransferase and the α(1,3)-fucosyltransferase genes in Nicotiana tabacum BY-2 Cells by a Multiplex CRISPR/Cas9 Strategy Results in Glycoproteins without Plant-Specific Glycans

    PubMed Central

    Mercx, Sébastien; Smargiasso, Nicolas; Chaumont, François; De Pauw, Edwin; Boutry, Marc; Navarre, Catherine

    2017-01-01

    Plants or plant cells can be used to produce pharmacological glycoproteins such as antibodies or vaccines. However these proteins carry N-glycans with plant-typical residues [β(1,2)-xylose and core α(1,3)-fucose], which can greatly impact the immunogenicity, allergenicity, or activity of the protein. Two enzymes are responsible for the addition of plant-specific glycans: β(1,2)-xylosyltransferase (XylT) and α(1,3)-fucosyltransferase (FucT). Our aim consisted of knocking-out two XylT genes and four FucT genes (12 alleles altogether) in Nicotiana tabacum BY-2 suspension cells using CRISPR/Cas9. Three XylT and six FucT sgRNAs were designed to target conserved regions. After transformation of N. tabacum BY-2 cells with genes coding for sgRNAs, Cas9, and a selectable marker (bar), transgenic lines were obtained and their extracellular as well as intracellular protein complements were analyzed by Western blotting using antibodies recognizing β(1,2)-xylose and α(1,3)-fucose. Three lines showed a strong reduction of β(1,2)-xylose and α(1,3)-fucose, while two lines were completely devoid of them, indicating complete gene inactivation. The absence of these carbohydrates was confirmed by mass spectrometry analysis of the extracellular proteins. PCR amplification and sequencing of the targeted region indicated small INDEL and/or deletions between the target sites. The KO lines did not show any particular morphology and grew as the wild-type. One KO line was transformed with genes encoding a human IgG2 antibody. The IgG2 expression level was as high as in a control transformant which had not been glycoengineered. The IgG glycosylation profile determined by mass spectrometry confirmed that no β(1,2)-xylose or α(1,3)-fucose were present on the glycosylation moiety and that the dominant glycoform was the GnGn structure. These data represent an important step toward humanizing the glycosylation of pharmacological proteins expressed in N. tabacum BY-2 cells.

  13. Array-assisted characterization of a fucosyltransferase required for the biosynthesis of complex core modifications of nematode N-glycans.

    PubMed

    Yan, Shi; Serna, Sonia; Reichardt, Niels-Christian; Paschinger, Katharina; Wilson, Iain B H

    2013-07-19

    Fucose is a common monosaccharide component of cell surfaces and is involved in many biological recognition events. Therefore, definition and exploitation of the specificity of the enzymes (fucosyltransferases) involved in fucosylation is a recurrent theme in modern glycosciences. Despite various studies, the specificities of many fucosyltransferases are still unknown, so new approaches are required to study these. The model nematode Caenorhabditis elegans expresses a wide range of fucosylated glycans, including N-linked oligosaccharides with unusual complex core modifications. Up to three fucose residues can be present on the standard N,N'-diacetylchitobiose unit of these N-glycans, but only the fucosyltransferases responsible for transfer of two of these (the core α1,3-fucosyltransferase FUT-1 and the core α1,6-fucosyltransferase FUT-8) were previously characterized. By use of a glycan library in both array and solution formats, we were able to reveal that FUT-6, another C. elegans α1,3-fucosyltransferase, modifies nematode glycan cores, specifically the distal N-acetylglucosamine residue; this result is in accordance with glycomic analysis of fut-6 mutant worms. This core-modifying activity of FUT-6 in vitro and in vivo is in addition to its previously determined ability to synthesize Lewis X epitopes in vitro. A larger scale synthesis of a nematode N-glycan core in vitro using all three fucosyltransferases was performed, and the nature of the glycosidic linkages was determined by NMR. FUT-6 is probably the first eukaryotic glycosyltransferase whose specificity has been redefined with the aid of glycan microarrays and so is a paradigm for the study of other unusual glycosidic linkages in model and parasitic organisms.

  14. Array-assisted Characterization of a Fucosyltransferase Required for the Biosynthesis of Complex Core Modifications of Nematode N-Glycans*

    PubMed Central

    Yan, Shi; Serna, Sonia; Reichardt, Niels-Christian; Paschinger, Katharina; Wilson, Iain B. H.

    2013-01-01

    Fucose is a common monosaccharide component of cell surfaces and is involved in many biological recognition events. Therefore, definition and exploitation of the specificity of the enzymes (fucosyltransferases) involved in fucosylation is a recurrent theme in modern glycosciences. Despite various studies, the specificities of many fucosyltransferases are still unknown, so new approaches are required to study these. The model nematode Caenorhabditis elegans expresses a wide range of fucosylated glycans, including N-linked oligosaccharides with unusual complex core modifications. Up to three fucose residues can be present on the standard N,N′-diacetylchitobiose unit of these N-glycans, but only the fucosyltransferases responsible for transfer of two of these (the core α1,3-fucosyltransferase FUT-1 and the core α1,6-fucosyltransferase FUT-8) were previously characterized. By use of a glycan library in both array and solution formats, we were able to reveal that FUT-6, another C. elegans α1,3-fucosyltransferase, modifies nematode glycan cores, specifically the distal N-acetylglucosamine residue; this result is in accordance with glycomic analysis of fut-6 mutant worms. This core-modifying activity of FUT-6 in vitro and in vivo is in addition to its previously determined ability to synthesize Lewis X epitopes in vitro. A larger scale synthesis of a nematode N-glycan core in vitro using all three fucosyltransferases was performed, and the nature of the glycosidic linkages was determined by NMR. FUT-6 is probably the first eukaryotic glycosyltransferase whose specificity has been redefined with the aid of glycan microarrays and so is a paradigm for the study of other unusual glycosidic linkages in model and parasitic organisms. PMID:23754284

  15. Analysis of Protein Glycosylation and Phosphorylation Using Liquid Phase Separation, Protein Microarray Technology, and Mass Spectrometry

    PubMed Central

    Zhao, Jia; Patwa, Tasneem H.; Pal, Manoj; Qiu, Weilian; Lubman, David M.

    2010-01-01

    Summary Protein glycosylation and phosphorylation are very common posttranslational modifications. The alteration of these modifications in cancer cells is closely related to the onset and progression of cancer and other disease states. In this protocol, strategies for monitoring the changes in protein glycosylation and phosphorylation in serum or tissue cells on a global scale and specifically characterizing these alterations are included. The technique is based on lectin affinity enrichment for glycoproteins, all liquid-phase two-dimensional fractionation, protein microarray, and mass spectrometry technology. Proteins are separated based on pI in the first dimension using chromatofocusing (CF) or liquid isoelectric focusing (IEF) followed by the second-dimension separation using nonporous silica RP-HPLC. Five lectins with different binding specificities to glycan structures are used for screening glycosylation patterns in human serum through a biotin–streptavidin system. Fluorescent phosphodyes and phosphospecific antibodies are employed to detect specific phosphorylated proteins in cell lines or human tissues. The purified proteins of interest are identified by peptide sequencing. Their modifications including glycosylation and phosphorylation could be further characterized by mass-spectrometry-based approaches. These strategies can be used in biological samples for large-scale glycoproteome/phosphoproteome screening as well as for individual protein modification analysis. PMID:19241043

  16. Analysis of O-glycans as 9-fluorenylmethyl derivatives and its application to the studies on glycan array.

    PubMed

    Yamada, Keita; Hirabayashi, Jun; Kakehi, Kazuaki

    2013-03-19

    A method is proposed for the analysis of O-glycans as 9-fluorenylmethyl (Fmoc) derivatives. After releasing the O-glycans from the protein backbone in the presence of ammonia-based media, the glycosylamines thus formed are conveniently labeled with Fmoc-Cl and analyzed by HPLC and MALDI-TOF MS after easy purification. Fmoc labeled O-glycans showed 3.5 times higher sensitivities than those labeled with 2-aminobenzoic acid in fluorescent detection. Various types of O-glycans having sialic acids, fucose, and/or sulfate residues were successfully labeled with Fmoc and analyzed by HPLC and MALDI-TOF MS. The method was applied to the comprehensive analysis of O-glycans expressed on MKN45 cells (human gastric adenocarcinoma). In addition, Fmoc-derivatized O-glycans were easily converted to free hemiacetal or glycosylamine-form glycans that are available for fabrication of glycan array and neoglycoproteins. To demonstrate the availability of our methods, we fabricate the glycan array with Fmoc labeled glycans derived from mucin samples and cancer cells. The model studies using the glycan array showed clear interactions between immobilized glycans and some lectins.

  17. Glycan Masking of Plasmodium vivax Duffy Binding Protein for Probing Protein Binding Function and Vaccine Development

    PubMed Central

    Janes, Joel; Gurumoorthy, Sairam; Gibson, Claire; Melcher, Martin; Chitnis, Chetan E.; Wang, Ruobing; Schief, William R.; Smith, Joseph D.

    2013-01-01

    Glycan masking is an emerging vaccine design strategy to focus antibody responses to specific epitopes, but it has mostly been evaluated on the already heavily glycosylated HIV gp120 envelope glycoprotein. Here this approach was used to investigate the binding interaction of Plasmodium vivax Duffy Binding Protein (PvDBP) and the Duffy Antigen Receptor for Chemokines (DARC) and to evaluate if glycan-masked PvDBPII immunogens would focus the antibody response on key interaction surfaces. Four variants of PVDBPII were generated and probed for function and immunogenicity. Whereas two PvDBPII glycosylation variants with increased glycan surface coverage distant from predicted interaction sites had equivalent binding activity to wild-type protein, one of them elicited slightly better DARC-binding-inhibitory activity than wild-type immunogen. Conversely, the addition of an N-glycosylation site adjacent to a predicted PvDBP interaction site both abolished its interaction with DARC and resulted in weaker inhibitory antibody responses. PvDBP is composed of three subdomains and is thought to function as a dimer; a meta-analysis of published PvDBP mutants and the new DBPII glycosylation variants indicates that critical DARC binding residues are concentrated at the dimer interface and along a relatively flat surface spanning portions of two subdomains. Our findings suggest that DARC-binding-inhibitory antibody epitope(s) lie close to the predicted DARC interaction site, and that addition of N-glycan sites distant from this site may augment inhibitory antibodies. Thus, glycan resurfacing is an attractive and feasible tool to investigate protein structure-function, and glycan-masked PvDBPII immunogens might contribute to P. vivax vaccine development. PMID:23853575

  18. A Novel Probe as Surface Glycan Marker of Pluripotent Stem Cells: Research Outcomes and Application to Regenerative Medicine.

    PubMed

    Hirabayashi, Jun; Tateno, Hiroaki; Onuma, Yasuko; Ito, Yuzuru

    2015-11-18

    Human pluripotent stem cells (hPSCs), represented by embryonic stem (hESCs) and induced pluripotent stem cells (hiPSCs), are attracting increasing attention in various research fields. However, their application in a clinical scenario must overcome an important hurdle given that these cells are potentially tumorigenic. This inherent problem becomes more significant as the number of transplanted cells becomes larger. In this Progress Report, recent findings concerning a novel glycan marker for hPSCs are described, as well as attempts made in relation to its practical application to regenerative medicine. In line with current thinking in the glycoscience field, it is assumed that cellular glycomes are closely related to cell functions. Based on this premise, hESCs and hiPSCs are analyzed by an advanced glycan profiling technology--the high-density lectin microarray. It is found that all human iPSCs derived from different tissular origins show essentially the same glycan profiles, which are typified by several characteristic structural features. In addition, a recombinant lectin probe, rBC2LCN, which shows rigorous specificity to H type 1 and 3 glycan structures, is found to serve as an excellent probe for hPSCs.

  19. Glycotherapy: new advances inspire a reemergence of glycans in medicine.

    PubMed

    Hudak, Jason E; Bertozzi, Carolyn R

    2014-01-16

    The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.

  20. Regulation of glycan structures in murine embryonic stem cells: combined transcript profiling of glycan-related genes and glycan structural analysis.

    PubMed

    Nairn, Alison V; Aoki, Kazuhiro; dela Rosa, Mitche; Porterfield, Mindy; Lim, Jae-Min; Kulik, Michael; Pierce, J Michael; Wells, Lance; Dalton, Stephen; Tiemeyer, Michael; Moremen, Kelley W

    2012-11-02

    The abundance and structural diversity of glycans on glycoproteins and glycolipids are highly regulated and play important roles during vertebrate development. Because of the challenges associated with studying glycan regulation in vertebrate embryos, we have chosen to study mouse embryonic stem (ES) cells as they differentiate into embryoid bodies (EBs) or into extraembryonic endodermal (ExE) cells as a model for cellular differentiation. We profiled N- and O-glycan structures isolated from these cell populations and examined transcripts encoding the corresponding enzymatic machinery for glycan biosynthesis in an effort to probe the mechanisms that drive the regulation of glycan diversity. During differentiation from mouse ES cells to either EBs or ExE cells, general trends were detected. The predominance of high mannose N-glycans in ES cells shifted to an equal abundance of complex and high mannose structures, increased sialylation, and increased α-Gal termination in the differentiated cell populations. Whereas core 1 O-glycan structures predominated in all three cell populations, increased sialylation and increased core diversity characterized the O-glycans of both differentiated cell types. Increased polysialylation was also found in both differentiated cell types. Differences between the two differentiated cell types included greater sialylation of N-glycans in EBs, whereas α-Gal-capped structures were more prevalent in ExE cells. Changes in glycan structures generally, but not uniformly, correlated with alterations in transcript abundance for the corresponding biosynthetic enzymes, suggesting that transcriptional regulation contributes significantly to the regulation of glycan expression. Knowledge of glycan structural diversity and transcript regulation should provide greater understanding of the roles of protein glycosylation in vertebrate development.

  1. Microarray in parasitic infections

    PubMed Central

    Sehgal, Rakesh; Misra, Shubham; Anand, Namrata; Sharma, Monika

    2012-01-01

    Modern biology and genomic sciences are rooted in parasitic disease research. Genome sequencing efforts have provided a wealth of new biological information that promises to have a major impact on our understanding of parasites. Microarrays provide one of the major high-throughput platforms by which this information can be exploited in the laboratory. Many excellent reviews and technique articles have recently been published on applying microarrays to organisms for which fully annotated genomes are at hand. However, many parasitologists work on organisms whose genomes have been only partially sequenced. This review is mainly focused on how to use microarray in these situations. PMID:23508469

  2. Orthogonal Assessment of Biotherapeutic Glycosylation: A Case Study Correlating N-Glycan Core Afucosylation of Herceptin with Mechanism of Action.

    PubMed

    Upton, Rosie; Bell, Leonard; Guy, Colin; Caldwell, Paul; Estdale, Sian; Barran, Perdita E; Firth, David

    2016-10-18

    In the development of therapeutic antibodies and biosimilars, an appropriate biopharmaceutical CMC control strategy that connects critical quality attributes with mechanism of action should enable product assessment at an early stage of development in order to mitigate risk. Here we demonstrate a new analytical workflow using trastuzumab which comprises "middle-up" analysis using a combination of IdeS and the endoglycosidases EndoS and EndoS2 to comprehensively map the glycan content. Enzymatic cleavage between the two N-acetyl glucosamine residues of the chitobiose core of N-glycans significantly simplifies the oligosaccharide component enabling facile distinction of GlcNAc from GlcNAc with core fucose. This approach facilitates quantitative determination of total Fc-glycan core-afucosylation, which was in turn correlated with receptor binding affinity by surface plasmon resonance and in vitro ADCC potency with a cell based bioassay. The strategy also quantifies Fc-glycan occupancy and the relative contribution from high mannose glycans.

  3. The Type B Flagellin of Hypervirulent Clostridium difficile Is Modified with Novel Sulfonated Peptidylamido-glycans*

    PubMed Central

    Bouché, Laura; Panico, Maria; Hitchen, Paul; Binet, Daniel; Sastre, Federico; Faulds-Pain, Alexandra; Valiente, Esmeralda; Vinogradov, Evgeny; Aubry, Annie; Fulton, Kelly; Twine, Susan; Logan, Susan M.; Wren, Brendan W.; Morris, Howard R.

    2016-01-01

    Glycosylation of flagellins is a well recognized property of many bacterial species. In this study, we describe the structural characterization of novel flagellar glycans from a number of hypervirulent strains of C. difficile. We used mass spectrometry (nano-LC-MS and MS/MS analysis) to identify a number of putative glycopeptides that carried a variety of glycoform substitutions, each of which was linked through an initial N-acetylhexosamine residue to Ser or Thr. Detailed analysis of a LLDGSSTEIR glycopeptide released by tryptic digestion, which carried two variant structures, revealed that the glycopeptide contained, in addition to carbohydrate moieties, a novel structural entity. A variety of electrospray-MS strategies using Q-TOF technology were used to define this entity, including positive and negative ion collisionally activated decomposition MS/MS, which produced unique fragmentation patterns, and high resolution accurate mass measurement to allow derivation of atomic compositions, leading to the suggestion of a taurine-containing peptidylamido-glycan structure. Finally, NMR analysis of flagellin glycopeptides provided complementary information. The glycan portion of the modification was assigned as α-Fuc3N-(1→3)-α-Rha-(1→2)-α-Rha3OMe-(1→3)-β-GlcNAc-(1→)Ser, and the novel capping moiety was shown to be comprised of taurine, alanine, and glycine. This is the first report of a novel O-linked sulfonated peptidylamido-glycan moiety decorating a flagellin protein. PMID:27758867

  4. Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research*

    PubMed Central

    Pedersen, Henriette L.; Fangel, Jonatan U.; McCleary, Barry; Ruzanski, Christian; Rydahl, Maja G.; Ralet, Marie-Christine; Farkas, Vladimir; von Schantz, Laura; Marcus, Susan E.; Andersen, Mathias C. F.; Field, Rob; Ohlin, Mats; Knox, J. Paul; Clausen, Mads H.; Willats, William G. T.

    2012-01-01

    Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes. PMID:22988248

  5. Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans.

    PubMed

    Broecker, Felix; Hanske, Jonas; Martin, Christopher E; Baek, Ju Yuel; Wahlbrink, Annette; Wojcik, Felix; Hartmann, Laura; Rademacher, Christoph; Anish, Chakkumkal; Seeberger, Peter H

    2016-04-19

    Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile. The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge. Less complex antigens providing similar immune responses are desirable for vaccine development. Based on molecular-level glycan-antibody interaction analyses, we here demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not participate in binding. We show that antibody avidity as a measure of antigenicity increases by about five orders of magnitude when disaccharides are compared with constructs containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope elicits weak but highly specific antibody responses to larger PS-I glycans in mice. This study highlights the potential of multivalently displaying small oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may result in more cost-efficient carbohydrate vaccines with reduced synthetic effort.

  6. Sequential glycan profiling at single cell level with the microfluidic lab-in-a-trench platform: a new era in experimental cell biology.

    PubMed

    O'Connell, Tríona M; King, Damien; Dixit, Chandra K; O'Connor, Brendan; Walls, Dermot; Ducrée, Jens

    2014-09-21

    It is now widely recognised that the earliest changes that occur on a cell when it is stressed or becoming diseased are alterations in its surface glycosylation. Current state-of-the-art technologies in glycoanalysis include mass spectrometry, protein microarray formats, techniques in cytometry and more recently, glyco-quantitative polymerase chain reaction (Glyco-qPCR). Techniques for the glycoprofiling of the surfaces of single cells are either limited to the analysis of large cell populations or are unable to handle multiple and/or sequential probing. Here, we report a novel approach of single live cell glycoprofiling enabled by the microfluidic "Lab-in-a-Trench" (LiaT) platform for performing capture and retention of cells, along with shear-free reagent loading and washing. The significant technical improvement on state-of-the-art is the demonstration of consecutive, spatio-temporally profiling of glycans on a single cell by sequential elution of the previous lectin probe using their corresponding free sugar. We have qualitatively analysed glycan density on the surface of individual cells. This has allowed us to qualitatively co-localise the observed glycans. This approach enables exhaustive glycoprofiling and glycan mapping on the surface of individual live cells with multiple lectins. The possibility of sequentially profiling glycans on cells will be a powerful new tool to add to current glycoanalytical techniques. The LiaT platform will enable cell biologists to perform many high sensitivity assays and also will also make a significant impact on biomarker research.

  7. Glycan evolution in response to collaboration, conflict, and constraint.

    PubMed

    Springer, Stevan A; Gagneux, Pascal

    2013-03-08

    Glycans, oligo- and polysaccharides secreted or attached to proteins and lipids, cover the surfaces of all cells and have a regulatory capacity and structural diversity beyond any other class of biological molecule. Glycans may have evolved these properties because they mediate cellular interactions and often face pressure to evolve new functions rapidly. We approach this idea two ways. First, we discuss evolutionary innovation. Glycan synthesis, regulation, and mode of chemical interaction influence the spectrum of new forms presented to evolution. Second, we describe the evolutionary conflicts that arise when alleles and individuals interact. Glycan regulation and diversity are integral to these biological negotiations. Glycans are tasked with such an amazing diversity of functions that no study of cellular interaction can begin without considering them. We propose that glycans predominate the cell surface because their physical and chemical properties allow the rapid innovation required of molecules on the frontlines of evolutionary conflict.

  8. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer

    PubMed Central

    Cagnoni, Alejandro J.; Pérez Sáez, Juan M.; Rabinovich, Gabriel A.; Mariño, Karina V.

    2016-01-01

    Aberrant glycosylation, a common feature associated with malignancy, has been implicated in important events during cancer progression. Our understanding of the role of glycans in cancer has grown exponentially in the last few years, concurrent with important advances in glycomics and glycoproteomic technologies, paving the way for the validation of a number of glycan structures as potential glycobiomarkers. However, the molecular bases underlying cancer-associated glycan modifications are still far from understood. Glycans exhibit a natural heterogeneity, crucial for their diverse functional roles as specific carriers of biologically relevant information. This information is decoded by families of proteins named lectins, including sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), C-type lectin receptors (CLRs), and galectins. Siglecs are primarily expressed on the surface of immune cells and differentially control innate and adaptive immune responses. Among CLRs, selectins are a family of cell adhesion molecules that mediate interactions between cancer cells and platelets, leukocytes, and endothelial cells, thus facilitating tumor cell invasion and metastasis. Galectins, a family of soluble proteins that bind β-galactoside-containing glycans, have been implicated in diverse events associated with cancer biology such as apoptosis, homotypic cell aggregation, angiogenesis, cell migration, and tumor-immune escape. Consequently, individual members of these lectin families have become promising targets for the design of novel anticancer therapies. During the past decade, a number of inhibitors of lectin–glycan interactions have been developed including small-molecule inhibitors, multivalent saccharide ligands, and more recently peptides and peptidomimetics have offered alternatives for tackling tumor progression. In this article, we review the current status of the discovery and development of chemical lectin inhibitors and discuss novel strategies to

  9. Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins.

    PubMed

    Garrido, Daniel; Nwosu, Charles; Ruiz-Moyano, Santiago; Aldredge, Danielle; German, J Bruce; Lebrilla, Carlito B; Mills, David A

    2012-09-01

    Breastfeeding is one of the main factors guiding the composition of the infant gut microbiota in the first months of life. This process is shaped in part by the high amounts of human milk oligosaccharides that serve as a carbon source for saccharolytic bacteria such as Bifidobacterium species. Infant-borne bifidobacteria have developed various molecular strategies for utilizing these oligosaccharides as a carbon source. We hypothesized that these species also interact with N-glycans found in host glycoproteins that are structurally similar to free oligosaccharides in human milk. Endo-β-N-acetylglucosaminidases were identified in certain isolates of Bifidobacterium longum subsp. longum, B. longum subsp. infantis, and Bifidobacterium breve, and their presence correlated with the ability of these strains to deglycosylate glycoproteins. An endoglycosidase from B. infantis ATCC 15697, EndoBI-1, was active toward all major types of N-linked glycans found in glycosylated proteins. Its activity was not affected by core fucosylation or extensive fucosylation, antenna number, or sialylation, releasing several N-glycans from human lactoferrin and immunoglobulins A and G. Extensive N-deglycosylation of whole breast milk was also observed after coincubation with this enzyme. Mutation of the active site of EndoBI-1 did not abolish binding to N-glycosylated proteins, and this mutant specifically recognized Man(3)GlcNAc(2)(α1-6Fuc), the core structure of human N-glycans. EndoBI-1 is constitutively expressed in B. infantis, and incubation of the bacterium with human or bovine lactoferrin led to the induction of genes associated to import and consumption of human milk oligosaccharides, suggesting linked regulatory mechanisms among these glycans. This work reveals an unprecedented interaction of bifidobacteria with host N-glycans and describes a novel endoglycosidase with broad specificity on diverse N-glycan types, potentially a useful tool for glycoproteomics studies.

  10. Nonenzymatic release of free reducing glycans from glycosphingolipids.

    PubMed

    Song, Xuezheng; Smith, David F; Cummings, Richard D

    2012-10-01

    A major limitation in studying the structures and functions of glycans in glycosphingolipids is the difficulty in releasing free glycans for analysis and derivatization. Here we show that reducing glycans can be released nonenzymatically from glycosphingolipids after a brief treatment with ozone followed by heating in neutral aqueous buffer (pHs 6.0-8.0). The released free reducing glycans are then available for glycomic analyses, including fluorescent labeling, permethylation, and mass spectrometry. This procedure is simple and highly efficient, with no base-catalyzed "peeling" reaction by-products observed.

  11. Glycan antagonists and inhibitors: a fount for drug discovery.

    PubMed

    Brown, Jillian R; Crawford, Brett E; Esko, Jeffrey D

    2007-01-01

    Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.

  12. Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins

    PubMed Central

    Ielasi, Francesco S.; Alioscha-Perez, Mitchel; Donohue, Dagmara; Claes, Sandra; Sahli, Hichem; Schols, Dominique

    2016-01-01

    ABSTRACT The first step in the infection of humans by microbial pathogens is their adherence to host tissue cells, which is frequently based on the binding of carbohydrate-binding proteins (lectin-like adhesins) to human cell receptors that expose glycans. In only a few cases have the human receptors of pathogenic adhesins been described. A novel strategy—based on the construction of a lectin-glycan interaction (LGI) network—to identify the potential human binding receptors for pathogenic adhesins with lectin activity was developed. The new approach is based on linking glycan array screening results of these adhesins to a human glycoprotein database via the construction of an LGI network. This strategy was used to detect human receptors for virulent Escherichia coli (FimH adhesin), and the fungal pathogens Candida albicans (Als1p and Als3p adhesins) and C. glabrata (Epa1, Epa6, and Epa7 adhesins), which cause candidiasis. This LGI network strategy allows the profiling of potential adhesin binding receptors in the host with prioritization, based on experimental binding data, of the most relevant interactions. New potential targets for the selected adhesins were predicted and experimentally confirmed. This methodology was also used to predict lectin interactions with envelope glycoproteins of human-pathogenic viruses. It was shown that this strategy was successful in revealing that the FimH adhesin has anti-HIV activity. PMID:27406561

  13. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    PubMed

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  14. Transduction of Glycan-Lectin Binding using Near Infrared Fluorescent Single Walled Carbon Nanotubes for Glycan Profiling

    NASA Astrophysics Data System (ADS)

    Reuel, Nigel; Ahn, Jin-Ho; Kim, Jong-Ho; Zhang, Jingqing; Boghossian, Ardemis; Mahal, Lara; Strano, Michael

    2012-02-01

    In this work, we demonstrate a sensor array employing recombinant lectins as glycan recognition sites tethered via Histidine tags to Ni2+ complexes that act as fluorescent quenchers for semi-conducting single walled carbon nanotubes embedded in a chitosan to measure binding kinetics of model glycans. Two higher-affined glycan-lectin pairs are explored: fucose (Fuc) to PA-IIL and N-acetylglucosamine (GlcNAc) to GafD. The dissociation constants (KD) for these pairs as free glycans (106 and 19 μM respectively) and streptavidin-tethered (142 and 50 μM respectively) were found. The absolute detection limit for the current platform was found to be 2 μg of glycosylated protein or 100 ng of free glycan to 20 μg of lectin. Glycan detection is demonstrated at the single nanotube level (GlcNAc to GafD). Over a population of 1000 nanotubes, 289 of the SWNT sensors had signals strong enough to yield kinetic information (KD of 250 ± 10 μM). We are also able to identify the locations of ``strong-transducers'' on the basis of dissociation constant (4 sensors with KD < 10 μM) or overall signal modulation (8 sensors with > 5% quench response). The ability to pinpoint strong-binding, single sensors is promising to build a nanoarray of glycan-lectin transducers as a method to profile glycans without protein labeling or glycan liberation pretreatment steps.

  15. Raman-based microarray readout: a review.

    PubMed

    Haisch, Christoph

    2016-07-01

    For a quarter of a century, microarrays have been part of the routine analytical toolbox. Label-based fluorescence detection is still the commonest optical readout strategy. Since the 1990s, a continuously increasing number of label-based as well as label-free experiments on Raman-based microarray readout concepts have been reported. This review summarizes the possible concepts and methods and their advantages and challenges. A common label-based strategy is based on the binding of selective receptors as well as Raman reporter molecules to plasmonic nanoparticles in a sandwich immunoassay, which results in surface-enhanced Raman scattering signals of the reporter molecule. Alternatively, capture of the analytes can be performed by receptors on a microarray surface. Addition of plasmonic nanoparticles again leads to a surface-enhanced Raman scattering signal, not of a label but directly of the analyte. This approach is mostly proposed for bacteria and cell detection. However, although many promising readout strategies have been discussed in numerous publications, rarely have any of them made the step from proof of concept to a practical application, let alone routine use. Graphical Abstract Possible realization of a SERS (Surface-Enhanced Raman Scattering) system for microarray readout.

  16. Site-Directed Glycosylation of Peptide/Protein with Homogeneous O-Linked Eukaryotic N-Glycans.

    PubMed

    Wu, Zhigang; Jiang, Kuan; Zhu, Hailiang; Ma, Cheng; Yu, Zaikuan; Li, Lei; Guan, Wanyi; Liu, Yunpeng; Zhu, He; Chen, Yanyi; Li, Shanshan; Li, Jing; Cheng, Jiansong; Zhang, Lianwen; Wang, Peng George

    2016-09-21

    Here we report a facile and efficient method for site-directed glycosylation of peptide/protein. The method contains two sequential steps: generation of a GlcNAc-O-peptide/protein, and subsequent ligation of a eukaryotic N-glycan to the GlcNAc moiety. A pharmaceutical peptide, glucagon-like peptide-1 (GLP-1), and a model protein, bovine α-Crystallin, were successfully glycosylated using such an approach. It was shown that the GLP-1 with O-linked N-glycan maintained an unchanged secondary structure after glycosylation, suggesting the potential application of this approach for peptide/protein drug production. In summary, the coupled approach provides a general strategy to produce homogeneous glycopeptide/glycoprotein bearing eukaryotic N-glycans.

  17. Posttranslational Modification Assays on Functional Protein Microarrays.

    PubMed

    Neiswinger, Johnathan; Uzoma, Ijeoma; Cox, Eric; Rho, HeeSool; Jeong, Jun Seop; Zhu, Heng

    2016-10-03

    Protein microarray technology provides a straightforward yet powerful strategy for identifying substrates of posttranslational modifications (PTMs) and studying the specificity of the enzymes that catalyze these reactions. Protein microarray assays can be designed for individual enzymes or a mixture to establish connections between enzymes and substrates. Assays for four well-known PTMs-phosphorylation, acetylation, ubiquitylation, and SUMOylation-have been developed and are described here for use on functional protein microarrays. Phosphorylation and acetylation require a single enzyme and are easily adapted for use on an array. The ubiquitylation and SUMOylation cascades are very similar, and the combination of the E1, E2, and E3 enzymes plus ubiquitin or SUMO protein and ATP is sufficient for in vitro modification of many substrates.

  18. DNA microarray technology. Introduction.

    PubMed

    Pollack, Jonathan R

    2009-01-01

    DNA microarray technology has revolutionized biological research by enabling genome-scale explorations. This chapter provides an overview of DNA microarray technology and its application to characterizing the physical genome, with a focus on cancer genomes. Specific areas discussed include investigations of DNA copy number alteration (and loss of heterozygosity), DNA methylation, DNA-protein (i.e., chromatin and transcription factor) interactions, DNA replication, and the integration of diverse genome-scale data types. Also provided is a perspective on recent advances and future directions in characterizing the physical genome.

  19. Validation of affinity reagents using antigen microarrays.

    PubMed

    Sjöberg, Ronald; Sundberg, Mårten; Gundberg, Anna; Sivertsson, Asa; Schwenk, Jochen M; Uhlén, Mathias; Nilsson, Peter

    2012-06-15

    There is a need for standardised validation of affinity reagents to determine their binding selectivity and specificity. This is of particular importance for systematic efforts that aim to cover the human proteome with different types of binding reagents. One such international program is the SH2-consortium, which was formed to generate a complete set of renewable affinity reagents to the SH2-domain containing human proteins. Here, we describe a microarray strategy to validate various affinity reagents, such as recombinant single-chain antibodies, mouse monoclonal antibodies and antigen-purified polyclonal antibodies using a highly multiplexed approach. An SH2-specific antigen microarray was designed and generated, containing more than 6000 spots displayed by 14 identical subarrays each with 406 antigens, where 105 of them represented SH2-domain containing proteins. Approximately 400 different affinity reagents of various types were analysed on these antigen microarrays carrying antigens of different types. The microarrays revealed not only very detailed specificity profiles for all the binders, but also showed that overlapping target sequences of spotted antigens were detected by off-target interactions. The presented study illustrates the feasibility of using antigen microarrays for integrative, high-throughput validation of various types of binders and antigens.

  20. Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans

    PubMed Central

    Broecker, Felix; Hanske, Jonas; Martin, Christopher E.; Baek, Ju Yuel; Wahlbrink, Annette; Wojcik, Felix; Hartmann, Laura; Rademacher, Christoph; Anish, Chakkumkal; Seeberger, Peter H.

    2016-01-01

    Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile. The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge. Less complex antigens providing similar immune responses are desirable for vaccine development. Based on molecular-level glycan–antibody interaction analyses, we here demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not participate in binding. We show that antibody avidity as a measure of antigenicity increases by about five orders of magnitude when disaccharides are compared with constructs containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope elicits weak but highly specific antibody responses to larger PS-I glycans in mice. This study highlights the potential of multivalently displaying small oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may result in more cost-efficient carbohydrate vaccines with reduced synthetic effort. PMID:27091615

  1. Advances in lectin microarray technology: Optimized protocols for piezoelectric print conditions

    PubMed Central

    Pilobello, Kanoelani T.; Agrawal, Praveen; Rouse, Richard; Mahal, Lara K.

    2015-01-01

    Lectin microarray technology has been used to profile the glycosylation of a multitude of biological and clinical samples, leading to new clinical biomarkers and advances in glycobiology. Lectin microarrays, which include over 90 plant lectins, recombinant lectins, and selected antibodies, are used to profile N-linked, O-linked, and glycolipid glycans. The specificity and depth of glycan profiling depends upon the carbohydrate-binding proteins arrayed. Our current set targets mammalian carbohydrates including fucose, high mannose, branched and complex N-linked, α- and β- Galactose and GalNAc, α-2,3- and α-2,6- sialic acid, LacNAc and Lewis X epitopes. In previous protocols, we have described the use of a contact microarray printer for lectin microarray manufacture. Herein, we present an updated protocol using a non-contact, piezoelectric printer, which leads to increased lectin activity on the array. We describe optimization of print conditions and sample hybridization, and methods of analysis. PMID:23788322

  2. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans

    PubMed Central

    Hall, M. Kristen; Weidner, Douglas A.; Zhu, Yong; Dayal, Sahil; Whitman, Austin A.; Schwalbe, Ruth A.

    2016-01-01

    Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9) technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO) cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro−5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell–cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell–cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell–cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties. PMID:27304954

  3. Comprehensive N-Glycan Profiling of Avian Immunoglobulin Y

    PubMed Central

    Millán Martín, Silvia; Wormald, Mark R.; Zapatero-Rodríguez, Julia; Conroy, Paul J.; O’Kennedy, Richard J.; Rudd, Pauline M.; Saldova, Radka

    2016-01-01

    Recent exploitation of the avian immune system has highlighted its suitability for the generation of high-quality, high-affinity antibodies to a wide range of antigens for a number of therapeutic and biotechnological applications. The glycosylation profile of potential immunoglobulin therapeutics is species specific and is heavily influenced by the cell-line/culture conditions used for production. Hence, knowledge of the carbohydrate moieties present on immunoglobulins is essential as certain glycan structures can adversely impact their physicochemical and biological properties. This study describes the detailed N-glycan profile of IgY polyclonal antibodies from the serum of leghorn chickens using a fully quantitative high-throughput N-glycan analysis approach, based on ultra-performance liquid chromatography (UPLC) separation of released glycans. Structural assignments revealed serum IgY to contain complex bi-, tri- and tetra-antennary glycans with or without core fucose and bisects, hybrid and high mannose glycans. High sialic acid content was also observed, with the presence of rare sialic acid structures, likely polysialic acids. It is concluded that IgY is heavily decorated with complex glycans; however, no known non-human or immunogenic glycans were identified. Thus, IgY is a potentially promising candidate for immunoglobulin-based therapies for the treatment of various infectious diseases. PMID:27459092

  4. GS-align for glycan structure alignment and similarity measurement

    PubMed Central

    Lee, Hui Sun; Jo, Sunhwan; Mukherjee, Srayanta; Park, Sang-Jun; Skolnick, Jeffrey; Lee, Jooyoung; Im, Wonpil

    2015-01-01

    Motivation: Glycans play critical roles in many biological processes, and their structural diversity is key for specific protein-glycan recognition. Comparative structural studies of biological molecules provide useful insight into their biological relationships. However, most computational tools are designed for protein structure, and despite their importance, there is no currently available tool for comparing glycan structures in a sequence order- and size-independent manner. Results: A novel method, GS-align, is developed for glycan structure alignment and similarity measurement. GS-align generates possible alignments between two glycan structures through iterative maximum clique search and fragment superposition. The optimal alignment is then determined by the maximum structural similarity score, GS-score, which is size-independent. Benchmark tests against the Protein Data Bank (PDB) N-linked glycan library and PDB homologous/non-homologous N-glycoprotein sets indicate that GS-align is a robust computational tool to align glycan structures and quantify their structural similarity. GS-align is also applied to template-based glycan structure prediction and monosaccharide substitution matrix generation to illustrate its utility. Availability and implementation: http://www.glycanstructure.org/gsalign. Contact: wonpil@ku.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25857669

  5. Site-specific protein glycosylation analysis with glycan isomer differentiation.

    PubMed

    Hua, Serenus; Nwosu, Charles C; Strum, John S; Seipert, Richard R; An, Hyun Joo; Zivkovic, Angela M; German, J Bruce; Lebrilla, Carlito B

    2012-05-01

    Glycosylation is one of the most common yet diverse post-translational modifications. Information on glycan heterogeneity and glycosite occupancy is increasingly recognized as crucial to understanding glycoprotein structure and function. Yet, no approach currently exists with which to holistically consider both the proteomic and glycomic aspects of a system. Here, we developed a novel method of comprehensive glycosite profiling using nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) that shows glycan isomer-specific differentiation on specific sites. Glycoproteins were digested by controlled non-specific proteolysis in order to produce informative glycopeptides. High-resolution, isomer-sensitive chromatographic separation of the glycopeptides was achieved using microfluidic chip-based capillaries packed with graphitized carbon. Integrated LC/MS/MS not only confirmed glycopeptide composition but also differentiated glycan and peptide isomers and yielded structural information on both the glycan and peptide moieties. Our analysis identified at least 13 distinct glycans (including isomers) corresponding to five compositions at the single N-glycosylation site on bovine ribonuclease B, 59 distinct glycans at five N-glycosylation sites on bovine lactoferrin, 13 distinct glycans at one N-glycosylation site on four subclasses of human immunoglobulin G, and 20 distinct glycans at five O-glycosylation sites on bovine κ-casein. Porous graphitized carbon provided effective separation of glycopeptide isomers. The integration of nano-LC with MS and MS/MS of non-specifically cleaved glycopeptides allows quantitative, isomer-sensitive, and site-specific glycoprotein analysis.

  6. Recombinant lectins: an array of tailor-made glycan-interaction biosynthetic tools.

    PubMed

    Oliveira, Carla; Teixeira, José A; Domingues, Lucília

    2013-03-01

    Lectins are a heterogeneous group of proteins found in plants, animals and microorganisms, which possess at least one non-catalytic domain that binds reversibly to specific mono- or oligosaccharides. The range of lectins and respective biological activities is unsurprising given the immense diversity and complexity of glycan structures and the multiple modes of interaction with proteins. Recombinant DNA technology has been traditionally used for cloning and characterizing newly discovered lectins. It has also been employed as a means of producing pure and sequence-defined lectins for different biotechnological applications. This review focuses on the production of recombinant lectins in heterologous organisms, and highlighting the Escherichia coli and Pichia pastoris expression systems, which are the most employed. The choice of expression host depends on the lectin. Non-glycosylated recombinant lectins are produced in E. coli and post-translational modified recombinant lectins are produced in eukaryotic organisms, namely P. pastoris and non-microbial hosts such as mammalian cells. Emphasis is given to the applications of the recombinant lectins especially (a) in cancer diagnosis and/or therapeutics, (b) as anti-microbial, anti-viral, and anti-insect molecules or (c) in microarrays for glycome profiling. Most reported applications are from recombinant plant lectins. These applications benefit from the tailor-made design associated with recombinant production and will aid in unraveling the complex biological mechanisms of glycan-interactions, bringing recombinant lectins to the forefront of glycobiology. In conclusion, recombinant lectins are developing into valuable biosynthetic tools for biomedical research.

  7. Protein Microarray Technology

    PubMed Central

    Hall, David A.; Ptacek, Jason

    2007-01-01

    Protein chips have emerged as a promising approach for a wide variety of applications including the identification of protein-protein interactions, protein-phospholipid interactions, small molecule targets, and substrates of proteins kinases. They can also be used for clinical diagnostics and monitoring disease states. This article reviews current methods in the generation and applications of protein microarrays. PMID:17126887

  8. Microarrays for Undergraduate Classes

    ERIC Educational Resources Information Center

    Hancock, Dale; Nguyen, Lisa L.; Denyer, Gareth S.; Johnston, Jill M.

    2006-01-01

    A microarray experiment is presented that, in six laboratory sessions, takes undergraduate students from the tissue sample right through to data analysis. The model chosen, the murine erythroleukemia cell line, can be easily cultured in sufficient quantities for class use. Large changes in gene expression can be induced in these cells by…

  9. The role of sialyl glycan recognition in host tissue tropism of the avian parasite Eimeria tenella.

    PubMed

    Lai, Livia; Bumstead, Janene; Liu, Yan; Garnett, James; Campanero-Rhodes, Maria A; Blake, Damer P; Palma, Angelina S; Chai, Wengang; Ferguson, David J P; Simpson, Peter; Feizi, Ten; Tomley, Fiona M; Matthews, Stephen

    2011-10-01

    Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates.

  10. Loss of intestinal O-glycans promotes spontaneous duodenal tumors.

    PubMed

    Gao, Nan; Bergstrom, Kirk; Fu, Jianxin; Xie, Biao; Chen, Weichang; Xia, Lijun

    2016-07-01

    Mucin-type O-glycans, primarily core 1- and core 3-derived O-glycans, are the major mucus barrier components throughout the gastrointestinal tract. Previous reports identified the biological role of O-glycans in the stomach and colon. However, the biological function of O-glycans in the small intestine remains unknown. Using mice lacking intestinal core 1- and core 3-derived O-glycans [intestinal epithelial cell C1galt1(-/-);C3GnT(-/-) or double knockout (DKO)], we found that loss of O-glycans predisposes DKO mice to spontaneous duodenal tumorigenesis by ∼1 yr of age. Tumor incidence did not increase with age; however, tumors advanced in aggressiveness by 20 mo. O-glycan deficiency was associated with reduced luminal mucus in DKO mice before tumor development. Altered intestinal epithelial homeostasis with enhanced baseline crypt proliferation characterizes these phenotypes as assayed by Ki67 staining. In addition, fluorescence in situ hybridization analysis reveals a significantly lower bacterial burden in the duodenum compared with the large intestine. This phenotype is not reduced with antibiotic treatment, implying O-glycosylation defects, rather than bacterial-induced inflammation, which causes spontaneous duodenal tumorigenesis. Moreover, inflammatory responses in DKO duodenal mucosa are mild as assayed with histology, quantitative PCR for inflammation-associated cytokines, and immunostaining for immune cells. Importantly, inducible deletion of intestinal O-glycans in adult mice leads to analogous spontaneous duodenal tumors, although with higher incidence and heightened severity compared with mice with O-glycans constitutive deletion. In conclusion, these studies reveal O-glycans within the small intestine are critical determinants of duodenal cancer risk. Future studies will provide insights into the pathogenesis in the general population and those at risk for this rare but deadly cancer.

  11. Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.

    PubMed

    Wang, Denong; Tang, Jin; Tang, Jiulai; Wang, Lai-Xi

    2015-03-12

    Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA), for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV), and human cytomegalovirus (HCMV). In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9)-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn). These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  12. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite

    PubMed Central

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-01-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440

  13. Structural Analysis of N- and O-glycans Using ZIC-HILIC/Dialysis Coupled to NMR Detection

    SciTech Connect

    Qu, Yi; Feng, Ju; Deng, Shuang; Cao, Li; Zhang, Qibin; Zhao, Rui; Zhang, Zhaorui; Jiang, Yuxuan; Zink, Erika M.; Baker, Scott E.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Hu, Jian Z.; Wu, Si

    2014-11-19

    Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation,) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we employed SEC, Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), and ZIC-HILIC coupled with dialysis strategies to enrich the glycopeptides from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is the most efficient, which was thus applied to the analysis of biological complex sample, the pronase E digest of the secreted proteins from the fungi Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled to dialysis is superior to the commonly used SEC separation to prepare glycopeptides for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.

  14. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.

    PubMed

    Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P

    2014-12-09

    The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.

  15. Analyzing Microarray Data.

    PubMed

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Because there is no widely used software for analyzing RNA-seq data that has a graphical user interface, this protocol provides an example of analyzing microarray data using Babelomics. This analysis entails performing quantile normalization and then detecting differentially expressed genes associated with the transgenesis of a human oncogene c-Myc in mice. Finally, hierarchical clustering is performed on the differentially expressed genes using the Cluster program, and the results are visualized using TreeView.

  16. Membrane-based microarrays

    NASA Astrophysics Data System (ADS)

    Dawson, Elliott P.; Hudson, James; Steward, John; Donnell, Philip A.; Chan, Wing W.; Taylor, Richard F.

    1999-11-01

    Microarrays represent a new approach to the rapid detection and identification of analytes. Studies to date have shown that the immobilization of receptor molecules (such as DNA, oligonucleotides, antibodies, enzymes and binding proteins) onto silicon and polymeric substrates can result in arrays able to detect hundreds of analytes in a single step. The formation of the receptor/analyte complex can, itself, lead to detection, or the complex can be interrogated through the use of fluorescent, chemiluminescent or radioactive probes and ligands.

  17. High Performance IT-MSn Sequencing of Glycans (Spatial Resolution of Ovalbumin Isomers)

    PubMed Central

    Jiao, Jenny; Zhang, Hailong; Reinhold, Vernon N.

    2011-01-01

    This report outlines and applies a high performance sequencing technology to evaluate the glycome of a common model glycoprotein, ovalbumin. The targets were the N-linked glycans enzymatically released from the protein, the N-glycoproteome. These product glycans were reduced, methylated and directly infused into the MS using a chip-based nanoelectrospray with the ions structurally characterized by sequential disassembly. Ten major ions were selected for detailed analysis. Isomer topologies (glycan connectivity) were determined from ion pathways of disassembly. Linkage information was revealed by specific cross-ring cleavage fragments within smaller oligomers. Both connectivity and linkage features were assisted with described bioinformatic tools and details confirmed with a standards library of fragments. The number of isomeric structures found within these 10 parent ions were 37, more than double earlier reports, and setting a new goal for developing technology. In this non-chromatographic, high performance spatial approach, the focus has been patterned to be comprehensive, and stay within the bounds of a plausible high throughput strategy consistent with automation. Selective structures are described in the text to appraise readers of the general approach; a more comprehensive coverage has been included in supplemental material. PMID:21686090

  18. Modifications of Glycans: Biological Significance and Therapeutic Opportunities

    PubMed Central

    Muthana, Saddam M.; Campbell, Christopher; Gildersleeve, Jeffrey C.

    2012-01-01

    Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate’s overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as postglycosylational modifications. PMID:22195988

  19. Glycan Determinants of Heparin-Tau Interaction.

    PubMed

    Zhao, Jing; Huvent, Isabelle; Lippens, Guy; Eliezer, David; Zhang, Anqiang; Li, Quanhong; Tessier, Peter; Linhardt, Robert J; Zhang, Fuming; Wang, Chunyu

    2017-03-14

    Tau aggregates into paired helical filaments within neurons, a pathological hallmark of Alzheimer's disease. Heparin promotes tau aggregation and recently has been shown to be involved in the cellular uptake of tau aggregates. Although the tau-heparin interaction has been extensively studied, little is known about the glycan determinants of this interaction. Here, we used surface plasmon resonance (SPR) and NMR spectroscopy to characterize the interaction between two tau fragments, K18 and K19, and several polysaccharides, including heparin, heparin oligosaccharides, chemically modified heparin, and related glycans. Using a heparin-immobilized chip, SPR revealed that tau K18 and K19 bind heparin with a KD of 0.2 and 70 μM, respectively. In SPR competition experiments, N-desulfation and 2-O-desulfation had no effect on heparin binding to K18, whereas 6-O-desulfation severely reduced binding, suggesting a critical role for 6-O-sulfation in the tau-heparin interaction. The tau-heparin interaction became stronger with longer-chain heparin oligosaccharides. As expected for an electrostatics-driven interaction, a moderate amount of salt (0.3 M NaCl) abolished binding. NMR showed the largest chemical-shift perturbation (CSP) in R2 in tau K18, which was absent in K19, revealing differential binding sites in K18 and K19 to heparin. Dermatan sulfate binding produced minimal CSP, whereas dermatan disulfate, with the additional 6-O-sulfo group, induced much larger CSP. 2-O-desulfated heparin induced much larger CSP in K18 than 6-O-desulfated heparin. Our data demonstrate a crucial role for the 6-O-sulfo group in the tau-heparin interaction, which to our knowledge has not been reported before.

  20. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family

    PubMed Central

    Stone, Jacquelyn A.; Nicola, Anthony V.; Baum, Linda G.; Aguilar, Hector C.

    2016-01-01

    O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses. PMID:26867212

  1. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family.

    PubMed

    Stone, Jacquelyn A; Nicola, Anthony V; Baum, Linda G; Aguilar, Hector C

    2016-02-01

    O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.

  2. Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles.

    PubMed

    Kinoshita, Mitsuhiro; Mitsui, Yosuke; Kakoi, Naotaka; Yamada, Keita; Hayakawa, Takao; Kakehi, Kazuaki

    2014-02-07

    Recently, we reported comparative analysis of glycoproteins which express cancer-specific N-glycans on various cancer cells and identified 24 glycoproteins having polylactosamine (polyLacNAc)-type N-glycans that are abundantly present in malignant cells [ Mitsui et al., J. Pharm. Biomed. Anal. 2012 , 70 , 718 - 726 ]. In the present study, we applied the technique to comparative studies on common glycoproteins present in the matched patient primary and metastatic melanoma cell lines. Metastatic melanoma cells (WM266-4) contained a large amount of polyLacNAc-type N-glycans in comparison with primary melanoma cells (WM115). To identify the glycoproteins expressing these N-glycans, glycopeptides having polyLacNAc-type N-glycans were captured by a Datura stramonium agglutinin (DSA)-immobilized agarose column. The captured glycopeptides were analyzed by LC/MS after removing N-glycans, and some glycoproteins such as basigin, lysosome-associated membrane protein-1 (LAMP-1), and chondroitin sulfate proteoglycan 4 (CSPG4) were identified in both WM115 and WM266-4 cells. The expression level of polyLacNAc of CSPG4 in WM266-4 cells was significantly higher than that in WM115 cells. In addition, sulfation patterns of chondroitin sulfate (CS) chains in CSPG4 showed dramatic changes between these cell lines. These data show that characteristic glycans attached to common proteins observed in different stages of cancer cells will be useful markers for determining degree of malignancies of tumor cells.

  3. Complex N-Glycans Are Essential, but Core 1 and 2 Mucin O-Glycans, O-Fucose Glycans, and NOTCH1 Are Dispensable, for Mammalian Spermatogenesis1

    PubMed Central

    Batista, Frank; Lu, Linchao; Williams, Suzannah A.; Stanley, Pamela

    2012-01-01

    ABSTRACT To identify roles in spermatogenesis for major subclasses of N- and O-glycans and Notch signaling, male mice carrying floxed C1galt1, Pofut1, Notch1 or Mgat1 alleles and a testis-specific Cre recombinase transgene were generated. T-synthase (C1GALT1) transfers Gal to generate core 1 and core 2 mucin O-glycans; POFUT1 transfers O-fucose to particular epidermal growth factor-like repeats and is essential for canonical Notch signaling; and MGAT1 (GlcNAcT-I) transfers GlcNAc to initiate hybrid and complex N-glycan synthesis. Cre recombinase transgenes driven by various promoters were investigated, including Stra8-iCre expressed in spermatogonia, Sycp1-Cre expressed in spermatocytes, Prm1-Cre expressed in spermatids, and AMH-Cre expressed in Sertoli cells. All Cre transgenes deleted floxed alleles, but efficiencies varied widely. Stra8-iCre was the most effective, deleting floxed Notch1 and Mgat1 alleles with 100% efficiency and floxed C1galt1 and Pofut1 alleles with ∼80% efficiency, based on transmission of deleted alleles. Removal of C1galt1, Pofut1, or Notch1 in spermatogonia had no effect on testicular weight, histology, or fertility. However, males in which the synthesis of complex N-glycans was blocked by deletion of Mgat1 in spermatogonia did not produce sperm. Spermatogonia, spermatocytes, and spermatids were generated, but most spermatids formed giant multinucleated cells or symplasts, and apoptosis was increased. Therefore, although core 1 and 2 mucin O-glycans, NOTCH1, POFUT1, O-fucose glycans, and Notch signaling are dispensable, MGAT1 and complex N-glycans are essential for spermatogenesis. PMID:22492969

  4. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  5. On-chip lectin microarray for glycoprofiling of different gastritis types and gastric cancer

    PubMed Central

    Roy, Bibhas; Chattopadhyay, Gautam; Mishra, Debasish; Das, Tamal; Chakraborty, Suman; Maiti, Tapas K.

    2014-01-01

    An on-chip lectin microarray based glycomic approach is employed to identify glyco markers for different gastritis and gastric cancer. Changes in protein glycosylation have impact on biological function and carcinogenesis. These altered glycosylation patterns in serum proteins and membrane proteins of tumor cells can be unique markers of cancer progression and hence have been exploited to diagnose various stages of cancer through lectin microarray technology. In the present work, we aimed to study the alteration of glycan structure itself in different stages of gastritis and gastric cancer thoroughly. In order to perform the study from both serum and tissue glycoproteins in an efficient and high-throughput manner, we indigenously developed and employed lectin microarray integrated on a microfluidic lab-on-a-chip platform. We analyzed serum and gastric biopsy samples from 8 normal, 15 chronic Type-B gastritis, 10 chronic Type-C gastritis, and 6 gastric adenocarcinoma patients and found that the glycoprofile obtained from tissue samples was more distinctive than that of the sera samples. We were able to establish signature glycoprofile for the three disease groups, that were absent in healthy normal individuals. In addition, our findings elucidated certain novel signature glycan expression in chronic gastritis and gastric cancer. In silico analysis showed that glycoprofile of chronic gastritis and gastric adenocarcinoma formed close clusters, confirming the previously hypothesized linkage between them. This signature can be explored further as gastric cancer marker to develop novel analytical tools and obtain in-depth understanding of the disease prognosis. PMID:24959308

  6. Fc glycans of therapeutic antibodies as critical quality attributes

    PubMed Central

    Reusch, Dietmar; Tejada, Max L

    2015-01-01

    Critical quality attributes (CQA) are physical, chemical, biological or microbiological properties or characteristics that must be within an appropriate limit, range or distribution to ensure the desired product quality, safety and efficacy. For monoclonal antibody therapeutics that rely on fraction crystalizable (Fc)-mediated effector function for their clinical activity, the terminal sugars of Fc glycans have been shown to be critical for safety or efficacy. Different glycosylation variants have also been shown to influence the pharmacodynamic and pharmacokinetic behavior while other Fc glycan structural elements may be involved in adverse immune reactions. This review focuses on the role of Fc glycans as CQAs. Fc glycan information from the published literature is summarized and evaluated for impact on patient safety, immunogenicity, bioactivity and pharmacodynamics/pharmacokinetics. PMID:26263923

  7. Toolboxes for a standardised and systematic study of glycans

    PubMed Central

    2014-01-01

    Background Recent progress in method development for characterising the branched structures of complex carbohydrates has now enabled higher throughput technology. Automation of structure analysis then calls for software development since adding meaning to large data collections in reasonable time requires corresponding bioinformatics methods and tools. Current glycobioinformatics resources do cover information on the structure and function of glycans, their interaction with proteins or their enzymatic synthesis. However, this information is partial, scattered and often difficult to find to for non-glycobiologists. Methods Following our diagnosis of the causes of the slow development of glycobioinformatics, we review the "objective" difficulties encountered in defining adequate formats for representing complex entities and developing efficient analysis software. Results Various solutions already implemented and strategies defined to bridge glycobiology with different fields and integrate the heterogeneous glyco-related information are presented. Conclusions Despite the initial stage of our integrative efforts, this paper highlights the rapid expansion of glycomics, the validity of existing resources and the bright future of glycobioinformatics. PMID:24564482

  8. Surface chemistries for antibody microarrays

    SciTech Connect

    Seurynck-Servoss, Shannon L.; Baird, Cheryl L.; Rodland, Karin D.; Zangar, Richard C.

    2007-05-01

    Enzyme-linked immunosorbent assay (ELISA) microarrays promise to be a powerful tool for the detection of disease biomarkers. The original technology for printing ELISA microarray chips and capturing antibodies on slides was derived from the DNA microarray field. However, due to the need to maintain antibody structure and function when immobilized, surface chemistries used for DNA microarrays are not always appropriate for ELISA microarrays. In order to identify better surface chemistries for antibody capture, a number of commercial companies and academic research groups have developed new slide types that could improve antibody function in microarray applications. In this review we compare and contrast the commercially available slide chemistries, as well as highlight some promising recent advances in the field.

  9. Production of sialylated O-linked glycans in Pichia pastoris.

    PubMed

    Hamilton, Stephen R; Cook, W James; Gomathinayagam, Sujatha; Burnina, Irina; Bukowski, John; Hopkins, Daniel; Schwartz, Shaina; Du, Min; Sharkey, Nathan J; Bobrowicz, Piotr; Wildt, Stefan; Li, Huijuan; Stadheim, Terrance A; Nett, Juergen H

    2013-10-01

    The methylotrophic yeast, Pichia pastoris, is an important organism used for the production of therapeutic proteins. Previously, we have reported the glycoengineering of this organism to produce human-like N-linked glycans but up to now no one has addressed engineering the O-linked glycosylation pathway. Typically, O-linked glycans produced by wild-type P. pastoris are linear chains of four to five α-linked mannose residues, which may be capped with β- or phospho-mannose. Previous genetic engineering of the N-linked glycosylation pathway of P. pastoris has eliminated both of these two latter modifications, resulting in O-linked glycans which are linear α-linked mannose structures. Here, we describe a method for the co-expression of an α-1,2-mannosidase, which reduces these glycans to primarily a single O-linked mannose residue. In doing so, we have reduced the potential of these glycans to interact with carbohydrate-binding proteins, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin. Furthermore, the introduction of the enzyme protein-O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, resulted in the capping of the single O-linked mannose residues with N-acetylglucosamine. Subsequently, this glycoform was extended into human-like sialylated glycans, similar in structure to α-dystroglycan-type glycoforms. As such, this represents the first example of sialylated O-linked glycans being produced in yeast and extends the utility of the P. pastoris production platform beyond N-linked glycosylated biotherapeutics to include molecules possessing O-linked glycans.

  10. Neutral glycans from sandfish skin can reduce friction of polymers

    PubMed Central

    Vihar, Boštjan; Hanisch, Franz Georg; Baumgartner, Werner

    2016-01-01

    The lizard Scincus scincus, also known as sandfish, can move through aeolian desert sand in a swimming-like manner. A prerequisite for this ability is a special integument, i.e. scales with a very low friction for sand and a high abrasion resistance. Glycans in the scales are causally related to the low friction. Here, we analysed the glycans and found that neutral glycans with five to nine mannose residues are important. If these glycans were covalently bound to acrylic polymers like poly(methyl methacrylate) or acrylic car coatings at a density of approximately one molecule per 4 nm², friction for and adhesion of sand particles could be reduced to levels close to those observed with sandfish scales. This was also found true, if the glycans were isolated from sources other than sandfish scales like plants such as almonds or mistletoe. We speculate that these neutral glycans act as low density spacers separating sand particles from the dense scales thereby reducing van der Waals forces. PMID:27030038

  11. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients

    PubMed Central

    Pochechueva, Tatiana; Chinarev, Alexander; Schoetzau, Andreas; Fedier, André; Bovin, Nicolai V.; Hacker, Neville F.; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2016-01-01

    Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2–6 vs. α2–3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers. PMID:27764122

  12. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics.

    PubMed

    Taniguchi, Naoyuki; Kizuka, Yasuhiko

    2015-01-01

    Glycosylation is catalyzed by various glycosyltransferase enzymes which are mostly located in the Golgi apparatus in cells. These enzymes glycosylate various complex carbohydrates such as glycoproteins, glycolipids, and proteoglycans. The enzyme activity of glycosyltransferases and their gene expression are altered in various pathophysiological situations including cancer. Furthermore, the activity of glycosyltransferases is controlled by various factors such as the levels of nucleotide sugars, acceptor substrates, nucleotide sugar transporters, chaperons, and endogenous lectin in cancer cells. The glycosylation results in various functional changes of glycoproteins including cell surface receptors and adhesion molecules such as E-cadherin and integrins. These changes confer the unique characteristic phenotypes associated with cancer cells. Therefore, glycans play key roles in cancer progression and treatment. This review focuses on glycan structures, their biosynthetic glycosyltransferases, and their genes in relation to their biological significance and involvement in cancer, especially cancer biomarkers, epithelial-mesenchymal transition, cancer progression and metastasis, and therapeutics. Major N-glycan branching structures which are directly related to cancer are β1,6-GlcNAc branching, bisecting GlcNAc, and core fucose. These structures are enzymatic products of glycosyltransferases, GnT-V, GnT-III, and Fut8, respectively. The genes encoding these enzymes are designated as MGAT5 (Mgat5), MGAT3 (Mgat3), and FUT8 (Fut8) in humans (mice in parenthesis), respectively. GnT-V is highly associated with cancer metastasis, whereas GnT-III is associated with cancer suppression. Fut8 is involved in expression of cancer biomarker as well as in the treatment of cancer. In addition to these enzymes, GnT-IV and GnT-IX (GnT-Vb) will be also discussed in relation to cancer.

  13. Recent Strategies Targeting HIV Glycans in Vaccine Design

    PubMed Central

    Horiya, Satoru; MacPherson, Iain S.; Krauss, Isaac J.

    2015-01-01

    Although efforts to develop a vaccine against HIV have so far met with little success, recent studies of HIV-positive patients with strongly neutralizing sera have shown that the human immune system is capable of producing potent and broadly-neutralizing antibodies (bnAbs), some of which neutralize up to 90 % of HIV strains. These antibodies bind to conserved vulnerable sites on the viral envelope glycoprotein gp120, and identification of these sites has provided tantalizing clues about the design of potentially effective vaccines. Carbohydrates play a key role in this field, as a large fraction of bnAbs bind to carbohydrates or combinations of carbohydrate and peptide elements on gp120. Additionally, carbohydrates partially mask some peptide surfaces recognized by bnAbs. The use of engineered glycoproteins and other glycostructures as vaccines to elicit antibodies with broad neutralizing activity is therefore a key area of interest in HIV vaccine design. PMID:25393493

  14. Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d0/d5)phenyl-3-methyl-5-pyrazolone followed by mass spectrometric analysis.

    PubMed

    Wang, Chengjian; Zhang, Ping; Jin, Wanjun; Li, Lingmei; Qiang, Shan; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2017-01-06

    Rapid, simple and versatile methods for quantitative analysis of glycoprotein O-glycans are urgently required for current studies on protein O-glycosylation patterns and the search for disease O-glycan biomarkers. Relative quantitation of O-glycans using stable isotope labeling followed by mass spectrometric analysis represents an ideal and promising technique. However, it is hindered by the shortage of reliable nonreductive O-glycan release methods as well as the too large or too small inconstant mass difference between the light and heavy isotope form derivatives of O-glycans, which results in difficulties during the recognition and quantitative analysis of O-glycans by mass spectrometry. Herein we report a facile and versatile O-glycan relative quantification strategy, based on an improved one-pot method that can quantitatively achieve nonreductive release and in situ chromophoric labeling of intact mucin-type O-glycans in one step. In this study, the one-pot method is optimized and applied for quantitative O-glycan release and tagging with either non-deuterated (d0-) or deuterated (d5-) 1-phenyl-3-methyl-5-pyrazolone (PMP). The obtained O-glycan derivatives feature a permanent 10-Da mass difference between the d0- and d5-PMP forms, allowing complete discrimination and comparative quantification of these isotopically labeled O-glycans by mass spectrometric techniques. Moreover, the d0- and d5-PMP derivatives of O-glycans also have a relatively high hydrophobicity as well as a strong UV adsorption, especially suitable for high-resolution separation and high-sensitivity detection by RP-HPLC-UV. We have refined the conditions for the one-pot reaction as well as the corresponding sample purification approach. The good quantitation feasibility, reliability and linearity of this strategy have been verified using bovine fetuin and porcine stomach mucin as model O-glycoproteins. Additionally, we have also successfully applied this method to the quantitative O

  15. Microarrays in cancer research.

    PubMed

    Grant, Geraldine M; Fortney, Amanda; Gorreta, Francesco; Estep, Michael; Del Giacco, Luca; Van Meter, Amy; Christensen, Alan; Appalla, Lakshmi; Naouar, Chahla; Jamison, Curtis; Al-Timimi, Ali; Donovan, Jean; Cooper, James; Garrett, Carleton; Chandhoke, Vikas

    2004-01-01

    Microarray technology has presented the scientific community with a compelling approach that allows for simultaneous evaluation of all cellular processes at once. Cancer, being one of the most challenging diseases due to its polygenic nature, presents itself as a perfect candidate for evaluation by this approach. Several recent articles have provided significant insight into the strengths and limitations of microarrays. Nevertheless, there are strong indications that this approach will provide new molecular markers that could be used in diagnosis and prognosis of cancers. To achieve these goals it is essential that there is a seamless integration of clinical and molecular biological data that allows us to elucidate genes and pathways involved in various cancers. To this effect we are currently evaluating gene expression profiles in human brain, ovarian, breast and hematopoetic, lung, colorectal, head and neck and biliary tract cancers. To address the issues we have a joint team of scientists, doctors and computer scientists from two Virginia Universities and a major healthcare provider. The study has been divided into several focus groups that include; Tissue Bank Clinical & Pathology Laboratory Data, Chip Fabrication, QA/QC, Tissue Devitalization, Database Design and Data Analysis, using multiple microarray platforms. Currently over 300 consenting patients have been enrolled in the study with the largest number being that of breast cancer patients. Clinical data on each patient is being compiled into a secure and interactive relational database and integration of these data elements will be accomplished by a common programming interface. This clinical database contains several key parameters on each patient including demographic (risk factors, nutrition, co-morbidity, familial history), histopathology (non genetic predictors), tumor, treatment and follow-up information. Gene expression data derived from the tissue samples will be linked to this database, which

  16. The Genopolis Microarray Database

    PubMed Central

    Splendiani, Andrea; Brandizi, Marco; Even, Gael; Beretta, Ottavio; Pavelka, Norman; Pelizzola, Mattia; Mayhaus, Manuel; Foti, Maria; Mauri, Giancarlo; Ricciardi-Castagnoli, Paola

    2007-01-01

    Background Gene expression databases are key resources for microarray data management and analysis and the importance of a proper annotation of their content is well understood. Public repositories as well as microarray database systems that can be implemented by single laboratories exist. However, there is not yet a tool that can easily support a collaborative environment where different users with different rights of access to data can interact to define a common highly coherent content. The scope of the Genopolis database is to provide a resource that allows different groups performing microarray experiments related to a common subject to create a common coherent knowledge base and to analyse it. The Genopolis database has been implemented as a dedicated system for the scientific community studying dendritic and macrophage cells functions and host-parasite interactions. Results The Genopolis Database system allows the community to build an object based MIAME compliant annotation of their experiments and to store images, raw and processed data from the Affymetrix GeneChip® platform. It supports dynamical definition of controlled vocabularies and provides automated and supervised steps to control the coherence of data and annotations. It allows a precise control of the visibility of the database content to different sub groups in the community and facilitates exports of its content to public repositories. It provides an interactive users interface for data analysis: this allows users to visualize data matrices based on functional lists and sample characterization, and to navigate to other data matrices defined by similarity of expression values as well as functional characterizations of genes involved. A collaborative environment is also provided for the definition and sharing of functional annotation by users. Conclusion The Genopolis Database supports a community in building a common coherent knowledge base and analyse it. This fills a gap between a local

  17. Evidence for a lectin specific for sulfated glycans in the salivary gland of the malaria vector, Anopheles gambiae.

    PubMed

    Francischetti, Ivo M B; Ma, Dongying; Andersen, John F; Ribeiro, José M C

    2014-01-01

    Salivary gland homogenate (SGH) from the female mosquitoes Anopheles gambiae, An. stephensi, An. freeborni, An. dirus and An. albimanus were found to exhibit hemagglutinating (lectin) activity. Lectin activity was not found for male An. gambiae, or female Ae aegypti, Culex quinquefasciatus, Phlebotomus duboscqi, and Lutzomyia longipalpis. With respect to species-specificity, An. gambiae SGH agglutinates red blood cells (RBC) from humans, horse, sheep, goat, pig, and cow; it is less active for rats RBC, and not detectable for guinea-pigs or chicken RBC. Notably, lectin activity was inhibited by low concentrations of dextran sulfate 50-500 K, fucoidan, heparin, laminin, heparin sulfate proteoglycan, sialyl-containing glycans (e.g. 3'-sialyl Lewis X, and 6'-sialyl lactose), and gangliosides (e.g. GM3, GD1, GD1b, GTB1, GM1, GQ1B), but not by simple sugars. These results imply that molecule(s) in the salivary gland target sulfated glycans. SGH from An. gambiae was also found to promote agglutination of HL-60 cells which are rich in sialyl Lewis X, a glycan that decorates PSGL-1, the neutrophils receptor that interacts with endothelial cell P-selectin. Accordingly, SGH interferes with HL-60 cells adhesion to immobilized P-selectin. Because An. gambiae SGH expresses galectins, one member of this family (herein named Agalectin) was expressed in E. coli. Recombinant Agalectin behaves as a non-covalent homodimer. It does not display lectin activity, and does not interact with 500 candidates tested in a Glycan microarray. Gel-filtration chromatography of the SGH of An. gambiae identified a fraction with hemagglutinating activity, which was analyzed by 1D PAGE followed by in-gel tryptic digestion, and nano-LC MS/MS. This approach identified several genes which emerge as candidates for a lectin targeting sulfated glycans, the first with this selectivity to be reported in the SGH of a blood-sucking arthropod. The role of salivary molecules (sialogenins) with lectin activity is

  18. DNA Microarray-Based Diagnostics.

    PubMed

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications.

  19. Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure

    PubMed Central

    Aas, Finn Erik; Vik, Åshild; Vedde, John; Koomey, Michael; Egge-Jacobsen, Wolfgang

    2007-01-01

    Neisseria gonorrhoeae expresses an O-linked protein glycosylation pathway that targets PilE, the major pilin subunit protein of the Type IV pilus colonization factor. Efforts to define glycan structure and thus the functions of pilin glycosylation (Pgl) components at the molecular level have been hindered by the lack of sensitive methodologies. Here, we utilized a ‘top-down’ mass spectrometric approach to characterize glycan status using intact pilin protein from isogenic mutants. These structural data enabled us to directly infer the function of six components required for pilin glycosylation and to define the glycan repertoire of strain N400. Additionally, we found that the N. gonorrhoeae pilin glycan is O-acetylated, and identified an enzyme essential for this unique modification. We also identified the N. gonorrhoeae pilin oligosaccharyltransferase using bioinformatics and confirmed its role in pilin glycosylation by directed mutagenesis. Finally, we examined the effects of expressing the PglA glycosyltransferase from the Campylobacter jejuni N-linked glycosylation system that adds N-acetylgalactosamine onto undecaprenylpyrophosphate-linked bacillosamine. The results indicate that the C. jejuni and N. gonorrhoeae pathways can interact in the synthesis of O-linked di- and trisaccharides, and therefore provide the first experimental evidence that biosynthesis of the N. gonorrhoeae pilin glycan involves a lipid-linked oligosaccharide precursor. Together, these findings underpin more detailed studies of pilin glycosylation biology in both N. gonorrhoeae and N. meningitidis, and demonstrate how components of bacterial O- and N-linked pathways can be combined in novel glycoengineering strategies. PMID:17608667

  20. Histochemical identification of sialylated glycans in Xenopus laevis testis

    PubMed Central

    Valbuena, Galder; Alonso, Edurne; Ubago, María Martínez; Madrid, Juan Francisco; Díaz-Flores, Lucio; Sáez, Francisco José

    2012-01-01

    Carbohydrate chains of glycoprotein and glycosphingolipids are highly diverse molecules involved in many cell functions, including cell recognition, adhesion and signalling. Sialylated glycans are of special interest because the terminal position of sialic acid (NeuAc) in glycans linked by different ways to subterminal monosaccharides has been shown to be involved in several biological processes, as occurs with gangliosides, which have been reported as being essential in spermatogenesis in mammals. Some glycan-binding proteins, the lectins, which specifically recognize glycan sequences, have been extensively used to characterize tissue and cell carbohydrates by means of cytochemical techniques. The aim of the present work was to determine the presence of NeuAc by means of histochemical techniques in the testis of Xenopus laevis, an animal model widely used in cell and molecular biology research. However, considering that some NeuAc-binding lectins are capable of binding to N-acetylglucosamine (GlcNAc), other GlcNAc-binding lectins were also assayed. The results showed that NeuAc is mainly expressed in the interstitium, and only a weak labelling in the male germ cells was observed. Most NeuAc was located in O-linked oligosaccharides, but some masked NeuAc in N-glycans were identified in primary and secondary spermatogonia and spermatocytes. By contrast, GlcNAc was widely expressed in all germ cell types. Deglycosylative pre-treatments suggest that both N- and O-glycans and/or glycolipids could be responsible for this labelling. In addition, GlcNAc in O-linked oligosaccharides has been identified in spermatogonial cells. The acrosome of spermatids was always negative. Variations of glycan expression have been found in different cell types, suggesting that glycosylation is modified during spermatogenetic development. PMID:22881213

  1. Glycans Are a Novel Biomarker of Chronological and Biological Ages

    PubMed Central

    Krištić, Jasminka; Vučković, Frano; Menni, Cristina; Klarić, Lucija; Keser, Toma; Beceheli, Ivona; Pučić-Baković, Maja; Novokmet, Mislav; Mangino, Massimo; Thaqi, Kujtim; Rudan, Pavao; Novokmet, Natalija; Šarac, Jelena; Missoni, Saša; Kolčić, Ivana; Polašek, Ozren; Rudan, Igor; Campbell, Harry; Hayward, Caroline; Aulchenko, Yurii; Valdes, Ana; Wilson, James F.; Gornik, Olga; Primorac, Dragan; Zoldoš, Vlatka; Spector, Tim

    2014-01-01

    Fine structural details of glycans attached to the conserved N-glycosylation site significantly not only affect function of individual immunoglobulin G (IgG) molecules but also mediate inflammation at the systemic level. By analyzing IgG glycosylation in 5,117 individuals from four European populations, we have revealed very complex patterns of changes in IgG glycosylation with age. Several IgG glycans (including FA2B, FA2G2, and FA2BG2) changed considerably with age and the combination of these three glycans can explain up to 58% of variance in chronological age, significantly more than other markers of biological age like telomere lengths. The remaining variance in these glycans strongly correlated with physiological parameters associated with biological age. Thus, IgG glycosylation appears to be closely linked with both chronological and biological ages. Considering the important role of IgG glycans in inflammation, and because the observed changes with age promote inflammation, changes in IgG glycosylation also seem to represent a factor contributing to aging. Significance Statement Glycosylation is the key posttranslational mechanism that regulates function of immunoglobulins, with multiple systemic repercussions to the immune system. Our study of IgG glycosylation in 5,117 individuals from four European populations has revealed very extensive and complex changes in IgG glycosylation with age. The combined index composed of only three glycans explained up to 58% of variance in age, considerably more than other biomarkers of age like telomere lengths. The remaining variance in these glycans strongly correlated with physiological parameters associated with biological age; thus, IgG glycosylation appears to be closely linked with both chronological and biological ages. The ability to measure human biological aging using molecular profiling has practical applications for diverse fields such as disease prevention and treatment, or forensics. PMID:24325898

  2. Living-cell microarrays.

    PubMed

    Yarmush, Martin L; King, Kevin R

    2009-01-01

    Living cells are remarkably complex. To unravel this complexity, living-cell assays have been developed that allow delivery of experimental stimuli and measurement of the resulting cellular responses. High-throughput adaptations of these assays, known as living-cell microarrays, which are based on microtiter plates, high-density spotting, microfabrication, and microfluidics technologies, are being developed for two general applications: (a) to screen large-scale chemical and genomic libraries and (b) to systematically investigate the local cellular microenvironment. These emerging experimental platforms offer exciting opportunities to rapidly identify genetic determinants of disease, to discover modulators of cellular function, and to probe the complex and dynamic relationships between cells and their local environment.

  3. Optimization of Cyanine Dye Stability and Analysis of FRET Interaction on DNA Microarrays

    PubMed Central

    von der Haar, Marcel; Heuer, Christopher; Pähler, Martin; von der Haar, Kathrin; Lindner, Patrick; Scheper, Thomas; Stahl, Frank

    2016-01-01

    The application of DNA microarrays for high throughput analysis of genetic regulation is often limited by the fluorophores used as markers. The implementation of multi-scan techniques is limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner laser light. This paper presents combined mechanical and chemical strategies which enhance the photostability of cyanine 3 and cyanine 5 as part of solid state DNA microarrays. These strategies are based on scanning the microarrays while the hybridized DNA is still in an aqueous solution with the presence of a reductive/oxidative system (ROXS). Furthermore, the experimental setup allows for the analysis and eventual normalization of Förster-resonance-energy-transfer (FRET) interaction of cyanine-3/cyanine-5 dye combinations on the microarray. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the comparability of microarray experiment results between labs. PMID:27916881

  4. Glyconectin glycans as the self-assembling nano-molecular-velcrosystem mediating self-nonself recognition and adhesion implicated in evolution of multicellularity.

    PubMed

    Misevic, Gradimir N; Misevic, Nikola; Popescu, Octavian

    2012-01-01

    The goal of this chapter is to make a specific contribution about glyconectin glycan as the self-assembling nano-molecular-velcro system mediating initial steps of self-nonself recognition and cell adhesion in Porifera, the first descendants of the most simple primordial multicellular organisms. Two original findings will be described: (i) Velcro like concept based on highly polyvalent and specific intermolecular glycan to glycan associations with extremely low affinity of the single binding site and (ii) novel structures of the large and newly emerging family of glyconectin like glycan molecules. The emphasis will be put on the interdisciplinary approach for studying structure to function relationship at the different size scale levels by combining the knowledge and technologies (instrumentation and methods) of physics, chemistry, biology and mathematics. Applying such strategy which is crossing the boundaries of different science disciplines enabled us to develop a new Atomic Force Microscopy (AFM) based nano-bio-technology and perform the first quantitative measurements of intermolecular binding forces at the single molecular level under physiological conditions. We propose that nano-velcro systems of the glyconectin glycans, which are the constituents on the cell surface that are the most exposed to the environment, were responsible for the molecular self-nonself recognition and adhesion processes that underpinned the emergence of multicellular life forms.

  5. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection

    PubMed Central

    Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A.; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D.

    2015-01-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein’s globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy. PMID:26587982

  6. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection.

    PubMed

    Sommerstein, Rami; Flatz, Lukas; Remy, Melissa M; Malinge, Pauline; Magistrelli, Giovanni; Fischer, Nicolas; Sahin, Mehmet; Bergthaler, Andreas; Igonet, Sebastien; Ter Meulen, Jan; Rigo, Dorothée; Meda, Paolo; Rabah, Nadia; Coutard, Bruno; Bowden, Thomas A; Lambert, Paul-Henri; Siegrist, Claire-Anne; Pinschewer, Daniel D

    2015-11-01

    Arenaviruses such as Lassa virus (LASV) can cause severe hemorrhagic fever in humans. As a major impediment to vaccine development, delayed and weak neutralizing antibody (nAb) responses represent a unifying characteristic of both natural infection and all vaccine candidates tested to date. To investigate the mechanisms underlying arenavirus nAb evasion we engineered several arenavirus envelope-chimeric viruses and glycan-deficient variants thereof. We performed neutralization tests with sera from experimentally infected mice and from LASV-convalescent human patients. NAb response kinetics in mice correlated inversely with the N-linked glycan density in the arenavirus envelope protein's globular head. Additionally and most intriguingly, infection with fully glycosylated viruses elicited antibodies, which neutralized predominantly their glycan-deficient variants, both in mice and humans. Binding studies with monoclonal antibodies indicated that envelope glycans reduced nAb on-rate, occupancy and thereby counteracted virus neutralization. In infected mice, the envelope glycan shield promoted protracted viral infection by preventing its timely elimination by the ensuing antibody response. Thus, arenavirus envelope glycosylation impairs the protective efficacy rather than the induction of nAbs, and thereby prevents efficient antibody-mediated virus control. This immune evasion mechanism imposes limitations on antibody-based vaccination and convalescent serum therapy.

  7. Engineering galectin–glycan interactions for immunotherapy and immunomodulation

    PubMed Central

    Farhadi, Shaheen A

    2016-01-01

    Galectins, a 15-member family of soluble carbohydrate-binding proteins, are receiving increasing interest as therapeutic targets for immunotherapy and immunomodulation due to their role as extracellular signals that regulate innate and adaptive immune cell phenotype and function. However, different galectins can have redundant, synergistic, or antagonistic signaling activity in normal immunological responses, such as resolution of inflammation and induction of antigen-specific tolerance. In addition, certain galectins can be hijacked to promote progression of immunopathologies, such as tumor immune privilege, metastasis, and viral infection, while others can inhibit these processes. Thus, eliciting a desired immunological outcome will likely necessitate therapeutics that can precisely enhance or inhibit particular galectin–glycan interactions. Multivalency is an important determinant of the affinity and specificity of natural galectin–glycan interactions, and is emerging as a key design element for therapeutics that can effectively manipulate galectin bioactivity. This minireview surveys current molecular and biomaterial engineering approaches to create therapeutics that can stabilize galectin multivalency or recapitulate natural glycan multivalency (i.e. “the glycocluster effect”). In particular, we highlight examples of using natural and engineered multivalent galectins for immunosuppression and immune tolerance, with a particular emphasis on treating autoimmune diseases or avoiding transplant rejection. In addition, we present examples of multivalent inhibitors of galectin–glycan interactions to maintain or restore T-cell function, with a particular emphasis on promoting antitumor immunity. Finally, we discuss emerging opportunities to further engineer galectin–glycan interactions for immunotherapy and immunomodulation. PMID:27229902

  8. N-glycan abnormalities in children with galactosemia.

    PubMed

    Coss, Karen P; Hawkes, Colin P; Adamczyk, Barbara; Stöckmann, Henning; Crushell, Ellen; Saldova, Radka; Knerr, Ina; Rubio-Gozalbo, Maria E; Monavari, Ardeshir A; Rudd, Pauline M; Treacy, Eileen P

    2014-02-07

    Galactose intoxication and over-restriction in galactosemia may affect glycosylation pathways and cause multisystem effects. In this study, we describe an applied hydrophilic interaction chromatography ultra-performance liquid chromatography high-throughput method to analyze whole serum and extracted IgG N-glycans with measurement of agalactosylated (G0), monogalactosylated (G1), and digalactosylated (G2) structures as a quantitative measure of galactose incorporation. This was applied to nine children with severe galactosemia (genotype Q188R/Q188R) and one child with a milder variant (genotype S135L/S135L). The profiles were also compared with those obtained from three age-matched children with PMM2-CDG (congenital disorder of glycosylation type Ia) and nine pediatric control samples. We have observed that severe N-glycan assembly defects correct in the neonate following dietary restriction of galactose. However, treated adult galactosemia patients continue to exhibit ongoing N-glycan processing defects. We have now applied informative galactose incorporation ratios as a method of studying the presence of N-glycan processing defects in children with galactosemia. We identified N-glycan processing defects present in galactosemia children from an early age. For G0/G1, G0/G2, and (G0/G1)/G2 ratios, the difference noted between galactosemia patients and controls was found to be statistically significant (p = 0.002, 0.01, and 0.006, respectively).

  9. A New Distribution Family for Microarray Data.

    PubMed

    Kelmansky, Diana Mabel; Ricci, Lila

    2017-02-10

    The traditional approach with microarray data has been to apply transformations that approximately normalize them, with the drawback of losing the original scale. The alternative stand point taken here is to search for models that fit the data, characterized by the presence of negative values, preserving their scale; one advantage of this strategy is that it facilitates a direct interpretation of the results. A new family of distributions named gpower-normal indexed by p∈R is introduced and it is proven that these variables become normal or truncated normal when a suitable gpower transformation is applied. Expressions are given for moments and quantiles, in terms of the truncated normal density. This new family can be used to model asymmetric data that include non-positive values, as required for microarray analysis. Moreover, it has been proven that the gpower-normal family is a special case of pseudo-dispersion models, inheriting all the good properties of these models, such as asymptotic normality for small variances. A combined maximum likelihood method is proposed to estimate the model parameters, and it is applied to microarray and contamination data. Rcodes are available from the authors upon request.

  10. Microarray simulator as educational tool.

    PubMed

    Ruusuvuori, Pekka; Nykter, Matti; Mäkiraatikka, Eeva; Lehmussola, Antti; Korpelainen, Tomi; Erkkilä, Timo; Yli-Harja, Olli

    2007-01-01

    As many real-world applications, microarray measurements are inapplicable for large-scale teaching purposes due to their laborious preparation process and expense. Fortunately, many phases of the array preparation process can be efficiently demonstrated by using a software simulator tool. Here we propose the use of microarray simulator as an aiding tool in teaching of computational biology. Three case studies on educational use of the simulator are presented, which demonstrate the effect of gene knock-out, synthetic time series, and effect of noise sources. We conclude that the simulator, used for teaching the principles of microarray measurement technology, proved to be a useful tool in education.

  11. Emerging Technologies for Making Glycan-Defined Glycoproteins

    PubMed Central

    Wang, Lai-Xi; Lomino, Joseph V.

    2011-01-01

    Protein glycosylation is a common and complex posttranslational modification of proteins, which expands functional diversity while boosting structural heterogeneity. Glycoproteins, the end products of such a modification, are typically produced as mixtures of glycoforms possessing the same polypeptide backbone but differ in the site of glycosylation and/or in the structures of pendant glycans, from which single glycoforms are difficult to isolate. The urgent need for glycan-defined glycoproteins in both detailed structure-function relationship studies and therapeutic applications has stimulated an extensive interest in developing various methods for manipulating protein glycosylation. This review highlights emerging technologies that hold great promise in making a variety of glycan-defined glycoproteins, with a particular emphasis in the following three areas: specific glycoengineering of host biosynthetic pathways, in vitro chemoenzymatic glycosylation remodeling, and chemo-selective and site-specific glycosylation of proteins. PMID:22141574

  12. Bridging Innate and Adaptive Antitumor Immunity Targeting Glycans

    PubMed Central

    Pashov, Anastas; Monzavi-Karbassi, Bejatolah; Raghava, Gajendra P. S.; Kieber-Emmons, Thomas

    2010-01-01

    Effective immunotherapy for cancer depends on cellular responses to tumor antigens. The role of major histocompatibility complex (MHC) in T-cell recognition and T-cell receptor repertoire selection has become a central tenet in immunology. Structurally, this does not contradict earlier findings that T-cells can differentiate between small hapten structures like simple glycans. Understanding T-cell recognition of antigens as defined genetically by MHC and combinatorially by T cell receptors led to the “altered self” hypothesis. This notion reflects a more fundamental principle underlying immune surveillance and integrating evolutionarily and mechanistically diverse elements of the immune system. Danger associated molecular patterns, including those generated by glycan remodeling, represent an instance of altered self. A prominent example is the modification of the tumor-associated antigen MUC1. Similar examples emphasize glycan reactivity patterns of antigen receptors as a phenomenon bridging innate and adaptive but also humoral and cellular immunity and providing templates for immunotherapies. PMID:20617150

  13. Parallel quantification of lectin-glycan interaction using ultrafiltration.

    PubMed

    Takeda, Yoichi; Seko, Akira; Sakono, Masafumi; Hachisu, Masakazu; Koizumi, Akihiko; Fujikawa, Kohki; Ito, Yukishige

    2013-06-28

    Using ultrafiltration membrane, a simple method for screening protein-ligand interaction was developed. The procedure comprises three steps: mixing ligand with protein, ultrafiltration of the solution, and quantification of unbound ligands by HPLC. By conducting analysis with variable protein concentrations, affinity constants were easily obtained. Multiple ligands can be analyzed simultaneously as a mixture, when concentration of ligands was controlled. Feasibility of this method for lectin-glycan interaction analysis was examined using fluorescently labeled high-mannose-type glycans and recombinant intracellular lectins or endo-α-mannosidase mutants. Estimated Ka values of malectin and VIP36 were in good agreement indeed with those evaluated by conventional methods such as isothermal titration calorimetry (ITC) or frontal affinity chromatography (FAC). Finally, several mutants of endo-α-mannosidase were produced and their affinities to monoglucosylated glycans were evaluated.

  14. Complicated N-linked glycans in simple organisms

    PubMed Central

    Schiller, Birgit; Hykollari, Alba; Yan, Shi; Paschinger, Katharina; Wilson, Iain B. H.

    2013-01-01

    Although countless genomes have now been sequenced, the glycomes of the vast majority of eukaryotes still present a series of unmapped frontiers. However, strides are being made in a few groups of invertebrate and unicellular organisms as regards their N-glycans and N-glycosylation pathways. Thereby, the traditional classification of glycan structures inevitably approaches its boundaries. Indeed, the glycomes of these organisms are rich in surprises including a multitude of modifications of the core regions of N-glycans and unusual antennae. From the actually rather limited glycomic information we have, it is nevertheless obvious that the biotechnological, developmental and immunological relevance of these modifications, especially in insect cell lines, model organisms and parasites means that deciphering unusual glycomes is of more than just academic interest. PMID:22944671

  15. Glycobiology of cell death: when glycans and lectins govern cell fate

    PubMed Central

    Lichtenstein, R G; Rabinovich, G A

    2013-01-01

    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings. PMID:23703323

  16. Using CRISPR-Cas9 to quantify the contributions of O-glycans, N-glycans and Glycosphingolipids to human leukocyte-endothelium adhesion

    PubMed Central

    Stolfa, Gino; Mondal, Nandini; Zhu, Yuqi; Yu, Xinheng; Buffone, Alexander; Neelamegham, Sriram

    2016-01-01

    There is often interest in dissecting the relative contributions of the N-glycans, O-glycans and glycosphingolipids (GSLs) in regulating complex biological traits like cell signaling, adhesion, development and metastasis. To address this, we developed a CRISPR-Cas9 toolkit to selectively truncate each of these commonly expressed glycan-types. Here, O-glycan biosynthesis was truncated by knocking-out Core 1 β3Gal-T Specific Molecular Chaperone (COSMC), N-glycans by targeting the β1,2 GlcNAc-transferase (MGAT1) and GSLs by deleting UDP-glucose ceramide glucosyltransferase (UGCG). These reagents were applied to reveal the glycoconjugates regulating human myeloid cell adhesion to selectins under physiological shear-flow observed during inflammation. These functional studies show that leukocyte rolling on P- and L-selectin is ablated in cells lacking O-glycans, with N-glycan truncation also increasing cell rolling velocity on L-selectin. All three glycan families contributed to E-selectin dependent cell adhesion with N-glycans contributing to all aspects of the leukocyte adhesion cascade, O-glycans only being important during initial recruitment, and GSLs stabilizing slow cell rolling and the transition to firm arrest. Overall, the genome editing tools developed here may be broadly applied in studies of cellular glycosylation. PMID:27458028

  17. Anti-glycan antibodies as biomarkers for diagnosis and prognosis.

    PubMed

    Dotan, N; Altstock, R T; Schwarz, M; Dukler, A

    2006-01-01

    Glycans (sugars or carbohydrates) are predominant surface components of cells such as erythrocytes, immune cells and microorganisms. As such, they give rise to high levels of anti-glycan antibodies of all classes. Antibodies to certain defined mono, di and oligosaccharides that are common in bacterial, fungal and parasite cells exist in human sera and can be profiled using glycan arrays. The use of glycan arrays for systematic screening of blood samples from multiple sclerosis (MS) and Crohn's disease (CD) patients in versus to blood samples from control groups, have lead to the discovery of a few anti glycan antibodies biomarkers enabling diagnosis and prognosis in MS and CD patients. Anti-Glc(alpha1,4)Glc(alpha) IgM antibodies were found to be specific for MS patients, enabling differentiation between MS patients and patients with other neurological diseases, with 54% sensitivity and 85% specificity. Anti-Glc(alpha1,4)Glc(alpha) IgM were found to be predictive for the conversion of patients in first acute neurological event to clinically defined MS. Anti-laminaribioside (ALCA), anti-mannobioside (AMCA) and anti-chitobioside (ACCA) antibodies were found to be specific for CD. The combined use of these antibodies enables improved diagnosis of CD versus ulcerative colitis and other gastrointestinal diseases, as well as stratification of CD patients with a more complicated disease and high risk for surgery. Anti-glycan antibodies profiling (AGAP) is a new and promising approach for development of biomarkers for diagnosis and prognosis.

  18. Glycan Node Analysis: A Bottom-up Approach to Glycomics.

    PubMed

    Zaare, Sahba; Aguilar, Jesús S; Hu, Yueming; Ferdosi, Shadi; Borges, Chad R

    2016-05-22

    Synthesized in a non-template-driven process by enzymes called glycosyltransferases, glycans are key players in various significant intra- and extracellular events. Many pathological conditions, notably cancer, affect gene expression, which can in turn deregulate the relative abundance and activity levels of glycoside hydrolase and glycosyltransferase enzymes. Unique aberrant whole glycans resulting from deregulated glycosyltransferase(s) are often present in trace quantities within complex biofluids, making their detection difficult and sometimes stochastic. However, with proper sample preparation, one of the oldest forms of mass spectrometry (gas chromatography-mass spectrometry, GC-MS) can routinely detect the collection of branch-point and linkage-specific monosaccharides ("glycan nodes") present in complex biofluids. Complementary to traditional top-down glycomics techniques, the approach discussed herein involves the collection and condensation of each constituent glycan node in a sample into a single independent analytical signal, which provides detailed structural and quantitative information about changes to the glycome as a whole and reveals potentially deregulated glycosyltransferases. Improvements to the permethylation and subsequent liquid/liquid extraction stages provided herein enhance reproducibility and overall yield by facilitating minimal exposure of permethylated glycans to alkaline aqueous conditions. Modifications to the acetylation stage further increase the extent of reaction and overall yield. Despite their reproducibility, the overall yields of N-acetylhexosamine (HexNAc) partially permethylated alditol acetates (PMAAs) are shown to be inherently lower than their expected theoretical value relative to hexose PMAAs. Calculating the ratio of the area under the extracted ion chromatogram (XIC) for each individual hexose PMAA (or HexNAc PMAA) to the sum of such XIC areas for all hexoses (or HexNAcs) provides a new normalization method that

  19. Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling

    PubMed Central

    Arabyan, Narine; Park, Dayoung; Foutouhi, Soraya; Weis, Allison M.; Huang, Bihua C.; Williams, Cynthia C.; Desai, Prerak; Shah, Jigna; Jeannotte, Richard; Kong, Nguyet; Lebrilla, Carlito B.; Weimer, Bart C.

    2016-01-01

    Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation. Gene expression analysis indicated that the host cell responded by regulating more than 50 genes resulting in remodeled glycans in response to Salmonella treatment. This study established the glycan structures on colonic epithelial cells, determined that Salmonella required two keystone GHs for internalization, and left remodeled host glycans as a result of infection. These data indicate that microbial GHs are undiscovered virulence factors. PMID:27389966

  20. A facile method for the construction of oligonucleotide microarrays.

    PubMed

    Sethi, Dalip; Kumar, A; Gupta, K C; Kumar, P

    2008-11-19

    In recent years, the oligonucleotide-based microarray technique has emerged as a powerful and promising tool for various molecular biological studies. Here, a facile protocol for the construction of an oligonucleotide microarray is demonstrated that involves immobilization of oligonucleotide-trimethoxysilyl conjugates onto virgin glass microslides. The projected immobilization strategy reflects high immobilization efficiency ( approximately 36-40%) and signal-to-noise ratio ( approximately 98), and hybridization efficiency ( approximately 32-35%). Using the proposed protocol, aminoalkyl, mercaptoalkyl, and phosphorylated oligonucleotides were immobilized onto virgin glass microslides. Briefly, modified oligonucleotides were reacted first with 3-glycidyloxypropyltriethoxysilane (GOPTS), and subsequently, the resultant conjugates were directly immobilized onto the virgin glass surface by making use of silanization chemistry. The constructed microarrays were then used for discrimination of base mismatches. On subjecting to different pH and thermal conditions, the microarray showed sufficient stability. Application of this chemistry to manufacture oligonucleotide probe-based microarrays for detection of bacterial meningitis is demonstrated. Single-step reaction for the formation of conjugates with the commercially available reagent (GOPTS), omission of capping step and surface modification, and efficient immobilization of oligonucleotides onto the virgin glass surface are the key features of the proposed strategy.

  1. N-glycan transition of the early developmental stage in Oryza sativa.

    PubMed

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2016-08-26

    N-Glycosylation is one of the post-translational modifications. In animals, N-glycans linked to proteins function in cell-cell recognition, sorting, transport, and other biological phenomena. However, in plants, N-glycan-mediated biological functions remain obscure. In a previous study, we showed that the main type of N-glycan transition is from the paucimannosidic to complex type before and after germination in Oryza sativa, suggesting that transitions of N-glycan, including those of glycoproteins and glycosyltransferases, are closely associated with plant growth. To further elucidate the relationship between N-glycan structure and plant growth, we analyzed the structures of N-glycans expressed in O. sativa seedlings grown under light conditions and performed comparative analyses of the structures in the shoot and root. The analyses show that fundamental N-glycan structures are common to the shoot and root, whereas paucimannosidic-type N-glycans dramatically decreased in the root grown under light conditions. Further, to investigate the effects of light on N-glycan structures in O. sativa seedlings, we analyzed N-glycan structures in O. sativa seedlings grown in the dark. Understandably, N-glycan expression in the root was almost unaffected by light. However, despite a marked difference in phenotype, N-glycan expression in the shoot was also unaffected by light. This result suggests that the shoot and root of O. sativa have different glycoproteins and distinct N-glycan synthetic systems. Thus, we propose that the N-glycan synthetic system of the O. sativa shoot is almost unaffected by light conditions and that many photosynthesis-related proteins are not modified by N-glycans.

  2. Dynamic evaluation of cell surface N-glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin A-integrating gold-nanoparticle-modified Ru(bpy)3(2+)-doped silica nanoprobe.

    PubMed

    Chen, Zhuhai; Liu, Yang; Wang, Yangzhong; Zhao, Xin; Li, Jinghong

    2013-05-07

    A sandwich electrogenerated chemiluminescence (ECL) biosensor was fabricated based on concanavalin A (Con A)-integrating gold-nanoparticle-modified Ru(bpy)3(2+)-doped silica nanoprobe (Au-RuSiO2 NPs) for in situ and dynamically evaluating cell surface N-glycan expression. Owing to the specific recognition of Con A with mannose and the core trimannoside fragment of N-glycan and the effective ECL amplification of Au-RuSiO2 NPs, the as-proposed biosensor exhibited excellent analytical performance toward the cytosensing of K562 cells with a wide detection linear range from 1.0 × 10(3) to 1.0 × 10(7) cells mL(-1) and a detection limit of 600 cells mL(-1). More importantly, the strategy was successfully applied to evaluate cell surface N-glycan expression under different external stimuli of inhibitors and enzyme. This biosensor is endowed with feasibility and reliability of generating sensitive insight into the majority of N-glycan expression on the cell surface. Furthermore, the biosensor was employed to dynamically profile cell surface N-glycan expression at different phases of cell growth in vitro. This biosensor is promising in studying and elucidating the N-glycan function in biological and physiological processes.

  3. Analysis of site-specific N-glycan remodeling in the endoplasmic reticulum and the Golgi

    PubMed Central

    Hang, Ivan; Lin, Chia-wei; Grant, Oliver C; Fleurkens, Susanna; Villiger, Thomas K; Soos, Miroslav; Morbidelli, Massimo; Woods, Robert J; Gauss, Robert; Aebi, Markus

    2015-01-01

    The hallmark of N-linked protein glycosylation is the generation of diverse glycan structures in the secretory pathway. Dynamic, non-template-driven processes of N-glycan remodeling in the endoplasmic reticulum and the Golgi provide the cellular setting for structural diversity. We applied newly developed mass spectrometry-based analytics to quantify site-specific N-glycan remodeling of the model protein Pdi1p expressed in insect cells. Molecular dynamics simulation, mutational analysis, kinetic studies of in vitro processing events and glycan flux analysis supported the defining role of the protein in N-glycan processing. PMID:26240167

  4. 21 CFR 172.898 - Bakers yeast glycan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Bakers yeast glycan. 172.898 Section 172.898 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives §...

  5. Fucosyltransferases produce N-glycans containing core l-galactose.

    PubMed

    Ohashi, Hiroyuki; Ohashi, Takao; Kajiura, Hiroyuki; Misaki, Ryo; Kitamura, Shinichi; Fujiyama, Kazuhito

    2017-01-29

    l-Galactose (l-Gal) containing N-glycans and cell wall polysaccharides have been detected in the l-Fuc deficient mur1 mutant of Arabidopsis thaliana. The l-Gal residue is thought to be transferred from GDP-l-Gal, which is a structurally related analog of GDP-l-Fuc, but in vitrol-galactosylation activity has never been detected. In this study, we carried out preparative scale GDP-l-Gal synthesis using recombinant A. thaliana GDP-mannose-3',5'-epimerase. We also demonstrated the l-galactosylation assay of mouse α1,6-fucosyltransferase (MmFUT8) and A. thaliana α1,3-fucosyltransferase (AtFucTA). Both fucosyltransferases showed l-galactosylation activity from GDP-l-Gal to asparagine-linked N-acetyl-β-d-glucosamine of asialo-agalacto-bi-antennary N-glycan instead of l-fucosylation. In addition, the apparent Km values of MmFUT8 and AtFucTA suggest that l-Fuc was preferentially transferred to N-glycan compared with l-Gal by fucosyltransferases. Our results clearly demonstrate that MmFUT8 and AtFucTA transfer l-Gal residues from GDP-l-Gal and synthesize l-Gal containing N-glycan in vitro.

  6. Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

    PubMed Central

    Sinitskiy, Anton V.; Stanley, Nathaniel H.; Hackos, David H.; Hanson, Jesse E.; Sellers, Benjamin D.; Pande, Vijay S.

    2017-01-01

    N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors. PMID:28378791

  7. Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine

    PubMed Central

    Nothaft, Harald; Davis, Brandi; Lock, Yee Ying; Perez-Munoz, Maria Elisa; Vinogradov, Evgeny; Walter, Jens; Coros, Colin; Szymanski, Christine M.

    2016-01-01

    Campylobacter jejuni is a predominant cause of human gastroenteritis worldwide. Source-attribution studies indicate that chickens are the main reservoir for infection, thus elimination of C. jejuni from poultry would significantly reduce the burden of human disease. We constructed glycoconjugate vaccines combining the conserved C. jejuni N-glycan with a protein carrier, GlycoTag, or fused to the Escherichia coli lipopolysaccharide-core. Vaccination of chickens with the protein-based or E. coli-displayed glycoconjugate showed up to 10-log reduction in C. jejuni colonization and induced N-glycan-specific IgY responses. Moreover, the live E. coli vaccine was cleared prior to C. jejuni challenge and no selection for resistant campylobacter variants was observed. Analyses of the chicken gut communities revealed that the live vaccine did not alter the composition or complexity of the microbiome, thus representing an effective and low-cost strategy to reduce C. jejuni in chickens and its subsequent entry into the food chain. PMID:27221144

  8. Glycan modification of antigen alters its intracellular routing in dendritic cells, promoting priming of T cells

    PubMed Central

    Streng-Ouwehand, Ingeborg; Ho, Nataschja I; Litjens, Manja; Kalay, Hakan; Boks, Martine Annemarie; Cornelissen, Lenneke AM; Kaur Singh, Satwinder; Saeland, Eirikur; Garcia-Vallejo, Juan J; Ossendorp, Ferry A; Unger, Wendy WJ; van Kooyk, Yvette

    2016-01-01

    Antigen uptake by dendritic cells and intracellular routing of antigens to specific compartments is regulated by C-type lectin receptors that recognize glycan structures. We show that the modification of Ovalbumin (OVA) with the glycan-structure LewisX (LeX) re-directs OVA to the C-type lectin receptor MGL1. LeX-modification of OVA favored Th1 skewing of CD4+ T cells and enhanced cross-priming of CD8+ T cells. While cross-presentation of native OVA requires high antigen dose and TLR stimuli, LeX modification reduces the required amount 100-fold and obviates its dependence on TLR signaling. The OVA-LeX-induced enhancement of T cell cross-priming is MGL1-dependent as shown by reduced CD8+ effector T cell frequencies in MGL1-deficient mice. Moreover, MGL1-mediated cross-presentation of OVA-LeX neither required TAP-transporters nor Cathepsin-S and was still observed after prolonged intracellular storage of antigen in Rab11+LAMP1+ compartments. We conclude that controlled neo-glycosylation of antigens can crucially influence intracellular routing of antigens, the nature and strength of immune responses and should be considered for optimizing current vaccination strategies. DOI: http://dx.doi.org/10.7554/eLife.11765.001 PMID:26999763

  9. O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer

    PubMed Central

    Santos, Sofia N.; Junqueira, Mara S.; Francisco, Guilherme; Vilanova, Manuel; Magalhães, Ana; Baruffi, Marcelo Dias; Chammas, Roger; Harris, Adrian L.; Reis, Celso A.; Bernardes, Emerson S.

    2016-01-01

    ST6GalNAc-I, the sialyltransferase responsible for sialyl-Tn (sTn) synthesis, has been previously reported to be positively associated with cancer aggressiveness. Here we describe a novel sTn-dependent mechanism for chemotherapeutic resistance. We show that sTn protects cancer cells against chemotherapeutic-induced cell death by decreasing the interaction of cell surface glycan receptors with galectin-3 and increasing its intracellular accumulation. Moreover, exogenously added galectin-3 potentiated the chemotherapeutics-induced cytotoxicity in sTn non-expressing cells, while sTn overexpressing cells were protected. We also found that the expression of sTn was associated with a reduction in galectin-3-binding sites in human gastric samples tumors. ST6GalNAc-I knockdown restored galectin-3-binding sites on the cell surface and chemotherapeutics sensibility. Our results clearly demonstrate that an interruption of O-glycans extension caused by ST6GalNAc-I enzymatic activity leads to tumor cells resistance to chemotherapeutic drugs, highlighting the need for the development of novel strategies to target galectin-3 and/or ST6GalNAc-I. PMID:27835877

  10. Paper analytical devices for dynamic evaluation of cell surface N-glycan expression via a bimodal biosensor based on multibranched hybridization chain reaction amplification.

    PubMed

    Liang, Linlin; Lan, Feifei; Li, Li; Ge, Shenguang; Yu, Jinghua; Ren, Na; Liu, Haiyun; Yan, Mei

    2016-12-15

    A novel colorimetric/fluorescence bimodal lab-on-paper cyto-device was fabricated based on concanavalin A (Con A)-integrating multibranched hybridization chain reaction (mHCR). The product of mHCR was modified PtCu nanochains (colorimetric signal label) and graphene quantum dot (fluorescence signal label) for in situ and dynamically evaluating cell surface N-glycan expression. In this strategy, preliminary detection was carried out through colorimetric method, if needed, then the fluorescence method was applied for a precise determination. Au-Ag-paper devices increased the surface areas and active sites for immobilizing larger amount of aptamers, and then specifically and efficiently captured more cancer cells. Moreover, it could effectively reduce the paper background fluorescence. Due to the specific recognition of Con A with mannose and the effective signal amplification of mHCR, the proposed strategy exhibited excellent high sensitivity for the cytosensing of MCF-7 cells ranging from 100 to 1.0×10(7) and 80-5.0×10(7) cellsmL(-1) with the detection limit of 33 and 26 cellsmL(-1) for colorimetric and fluorescence, respectively. More importantly, this strategy was successfully applied to dynamically monitor cell-surface multi-glycans expression on living cells under external stimuli of inhibitors as well as for N-glycan expression inhibitor screening. These results implied that this biosensor has potential in studying complex native glycan-related biological processes and elucidating the N-glycan-related diseases in biological and physiological processes.

  11. The bioinformatics of microarrays to study cancer: Advantages and disadvantages

    NASA Astrophysics Data System (ADS)

    Rodríguez-Segura, M. A.; Godina-Nava, J. J.; Villa-Treviño, S.

    2012-10-01

    Microarrays are devices designed to analyze simultaneous expression of thousands of genes. However, the process will adds noise into the information at each stage of the study. To analyze these thousands of data is necessary to use bioinformatics tools. The traditional analysis begins by normalizing data, but the obtained results are highly dependent on how it is conducted the study. It is shown the need to develop new strategies to analyze microarray. Liver tissue taken from an animal model in which is chemically induced cancer is used as an example.

  12. Microarray Technologies in Fungal Diagnostics.

    PubMed

    Rupp, Steffen

    2017-01-01

    Microarray technologies have been a major research tool in the last decades. In addition they have been introduced into several fields of diagnostics including diagnostics of infectious diseases. Microarrays are highly parallelized assay systems that initially were developed for multiparametric nucleic acid detection. From there on they rapidly developed towards a tool for the detection of all kind of biological compounds (DNA, RNA, proteins, cells, nucleic acids, carbohydrates, etc.) or their modifications (methylation, phosphorylation, etc.). The combination of closed-tube systems and lab on chip devices with microarrays further enabled a higher automation degree with a reduced contamination risk. Microarray-based diagnostic applications currently complement and may in the future replace classical methods in clinical microbiology like blood cultures, resistance determination, microscopic and metabolic analyses as well as biochemical or immunohistochemical assays. In addition, novel diagnostic markers appear, like noncoding RNAs and miRNAs providing additional room for novel nucleic acid based biomarkers. Here I focus an microarray technologies in diagnostics and as research tools, based on nucleic acid-based arrays.

  13. Comparing Bacterial DNA Microarray Fingerprints

    SciTech Connect

    Willse, Alan R.; Chandler, Darrell P.; White, Amanda M.; Protic, Miroslava; Daly, Don S.; Wunschel, Sharon C.

    2005-08-15

    Detecting subtle genetic differences between microorganisms is an important problem in molecular epidemiology and microbial forensics. In a typical investigation, gel electrophoresis is used to compare randomly amplified DNA fragments between microbial strains, where the patterns of DNA fragment sizes are proxies for a microbe's genotype. The limited genomic sample captured on a gel is often insufficient to discriminate nearly identical strains. This paper examines the application of microarray technology to DNA fingerprinting as a high-resolution alternative to gel-based methods. The so-called universal microarray, which uses short oligonucleotide probes that do not target specific genes or species, is intended to be applicable to all microorganisms because it does not require prior knowledge of genomic sequence. In principle, closely related strains can be distinguished if the number of probes on the microarray is sufficiently large, i.e., if the genome is sufficiently sampled. In practice, we confront noisy data, imperfectly matched hybridizations, and a high-dimensional inference problem. We describe the statistical problems of microarray fingerprinting, outline similarities with and differences from more conventional microarray applications, and illustrate the statistical fingerprinting problem for 10 closely related strains from three Bacillus species, and 3 strains from non-Bacillus species.

  14. Electron Capture Dissociation of Divalent Metal-adducted Sulfated N-Glycans Released from Bovine Thyroid Stimulating Hormone

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Håkansson, Kristina

    2013-11-01

    Sulfated N-glycans released from bovine thyroid stimulating hormone (bTSH) were ionized with the divalent metal cations Ca2+, Mg2+, and Co by electrospray ionization (ESI). These metal-adducted species were subjected to infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) and the corresponding fragmentation patterns were compared. IRMPD generated extensive glycosidic and cross-ring cleavages, but most product ions suffered from sulfonate loss. Internal fragments were also observed, which complicated the spectra. ECD provided complementary structural information compared with IRMPD, and all observed product ions retained the sulfonate group, allowing sulfonate localization. To our knowledge, this work represents the first application of ECD towards metal-adducted sulfated N-glycans released from a glycoprotein. Due to the ability of IRMPD and ECD to provide complementary structural information, the combination of the two strategies is a promising and valuable tool for glycan structural characterization. The influence of different metal ions was also examined. Calcium adducts appeared to be the most promising species because of high sensitivity and ability to provide extensive structural information.

  15. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.

    PubMed

    Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis

    2017-03-10

    Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.

  16. A Machine Learning Based Approach to de novo Sequencing of Glycans from Tandem Mass Spectrometry Spectrum.

    PubMed

    Kumozaki, Shotaro; Sato, Kengo; Sakakibara, Yasubumi

    2015-01-01

    Recently, glycomics has been actively studied and various technologies for glycomics have been rapidly developed. Currently, tandem mass spectrometry (MS/MS) is one of the key experimental tools for identification of structures of oligosaccharides. MS/MS can observe MS/MS peaks of fragmented glycan ions including cross-ring ions resulting from internal cleavages, which provide valuable information to infer glycan structures. Thus, the aim of de novo sequencing of glycans is to find the most probable assignments of observed MS/MS peaks to glycan substructures without databases. However, there are few satisfiable algorithms for glycan de novo sequencing from MS/MS spectra. We present a machine learning based approach to de novo sequencing of glycans from MS/MS spectrum. First, we build a suitable model for the fragmentation of glycans including cross-ring ions, and implement a solver that employs Lagrangian relaxation with a dynamic programming technique. Then, to optimize scores for the algorithm, we introduce a machine learning technique called structured support vector machines that enable us to learn parameters including scores for cross-ring ions from training data, i.e., known glycan mass spectra. Furthermore, we implement additional constraints for core structures of well-known glycan types including N-linked glycans and O-linked glycans. This enables us to predict more accurate glycan structures if the glycan type of given spectra is known. Computational experiments show that our algorithm performs accurate de novo sequencing of glycans. The implementation of our algorithm and the datasets are available at http://glyfon.dna.bio.keio.ac.jp/.

  17. Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows

    PubMed Central

    Rouquié, Camille; Maga, Elizabeth A.; Bunyatratchata, Apichaya; Barile, Daniela

    2017-01-01

    Lactoferrin (LF) is one of the most abundant bioactive glycoproteins in human milk. Glycans attached through N-glycosidic bonds may contribute to Lactoferrin functional activities. In contrast, LF is present in trace amounts in bovine milk. Efforts to increase LF concentration in bovine milk led to alternative approaches using transgenic cows to express human lactoferrin (hLF). This study investigated and compared N-glycans in recombinant human lactoferrin (rhLF), bovine lactoferrin (bLF) and human lactoferrin by Nano-LC-Chip-Q-TOF Mass Spectrometry. The results revealed a high diversity of N-glycan structures, including fucosylated and sialylated complex glycans that may contribute additional bioactivities. rhLF, bLF and hLF had 23, 27 and 18 N-glycans respectively with 8 N-glycan in common overall. rhLF shared 16 N-glycan with bLF and 9 N-glycan with hLF while bLF shared 10 N-glycan with hLF. Based on the relative abundances of N-glycan types, rhLF and hLF appeared to contain mostly neutral complex/hybrid N-glycans (81% and 52% of the total respectively) whereas bLF was characterized by high mannose glycans (65%). Interestingly, the majority of hLF N-glycans were fucosylated (88%), whereas bLF and rhLF had only 9% and 20% fucosylation, respectively. Overall, this study suggests that rhLF N-glycans share more similarities to bLF than hLF. PMID:28170415

  18. PNA microarrays for hybridisation of unlabelled DNA samples

    PubMed Central

    Brandt, Ole; Feldner, Julia; Stephan, Achim; Schröder, Markus; Schnölzer, Martina; Arlinghaus, Heinrich F.; Hoheisel, Jörg D.; Jacob, Anette

    2003-01-01

    Several strategies have been developed for the production of peptide nucleic acid (PNA) microarrays by parallel probe synthesis and selective coupling of full-length molecules. Such microarrays were used for direct detection of the hybridisation of unlabelled DNA by time-of-flight secondary ion mass spectrometry. PNAs were synthesised by an automated process on filter-bottom microtitre plates. The resulting molecules were released from the solid support and attached without any purification to microarray surfaces via the terminal amino group itself or via modifications, which had been chemically introduced during synthesis. Thus, only full-length PNA oligomers were attached whereas truncated molecules, produced during synthesis because of incomplete condensation reactions, did not bind. Different surface chemistries and fitting modifications of the PNA terminus were tested. For an examination of coupling selectivity, bound PNAs were cleaved off microarray surfaces and analysed by MALDI-TOF mass spectrometry. Additionally, hybridisation experiments were performed to compare the attachment chemistries, with fully acetylated PNAs spotted as controls. Upon hybridisation of unlabelled DNA to such microarrays, binding events could be detected by visualisation of phosphates, which are an integral part of nucleic acids but missing entirely in PNA probes. Overall best results in terms of selectivity and sensitivity were obtained with thiol-modified PNAs on maleimide surfaces. PMID:14500847

  19. Recent advances in immobilization strategies for glycosidases.

    PubMed

    Karav, Sercan; Cohen, Joshua L; Barile, Daniela; de Moura Bell, Juliana Maria Leite Nobrega

    2017-01-01

    Glycans play important biological roles in cell-to-cell interactions, protection against pathogens, as well as in proper protein folding and stability, and are thus interesting targets for scientists. Although their mechanisms of action have been widely investigated and hypothesized, their biological functions are not well understood due to the lack of deglycosylation methods for large-scale isolation of these compounds. Isolation of glycans in their native state is crucial for the investigation of their biological functions. However, current enzymatic and chemical deglycosylation techniques require harsh pretreatment and reaction conditions (high temperature and use of detergents) that hinder the isolation of native glycan structures. Indeed, the recent isolation of new endoglycosidases that are able to cleave a wider variety of linkages and efficiently hydrolyze native proteins has opened up the opportunity to elucidate the biological roles of a higher variety of glycans in their native state. As an example, our research group recently isolated a novel Endo-β-N-acetylglucosaminidase from Bifidobacterium longum subsp. infantis ATCC 15697 (EndoBI-1) that cleaves N-N'-diacetyl chitobiose moieties found in the N-linked glycan (N-glycan) core of high mannose, hybrid, and complex N-glycans. This enzyme is also active on native proteins, which enables native glycan isolation, a key advantage when evaluating their biological activities. Efficient, stable, and economically viable enzymatic release of N-glycans requires the selection of appropriate immobilization strategies. In this review, we discuss the state-of-the-art of various immobilization techniques (physical adsorption, covalent binding, aggregation, and entrapment) for glycosidases, as well as their potential substrates and matrices. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:104-112, 2017.

  20. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search

    PubMed Central

    Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T.; Campbell, Matthew P.; Lisacek, Frederique

    2015-01-01

    Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues. PMID:26656740

  1. Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search.

    PubMed

    Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T; Campbell, Matthew P; Lisacek, Frederique

    2015-01-01

    Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues.

  2. Highly sensitive glycosylamine labelling of O-glycans using non-reductive β-elimination.

    PubMed

    Furuki, Kenichiro; Toyo'oka, Toshimasa; Ban, Kazutoshi

    2017-01-14

    When developing biopharmaceuticals, glycans are the most important posttranslational protein modifications that must be addressed because they affect the between-protein interactions that maintain homeostasis. The glycan profile may be defined as a critical quality attribute of a biopharmaceutical. Comprehensive analysis of protein glycosylation must overcome challenges such as the release, labelling, separation and detection of O-glycans. In contrast, N-glycans can be readily released non-reductively from peptide backbones using an enzyme such as peptide N-glycosidase F. We developed a highly sensitive protocol using RapiFluor-MS to label glycosylamines for O-glycan analysis combined with a non-enzyme treatment for efficient release of the reduced O-glycans from the glycoproteins. Here we used the cytotoxic T lymphocyte associated protein 4-immunoglobulin G (Ig) fusion protein and fetuin as models for O-glycan analysis and compared the analytical methods glycopeptide mapping, 2-AB labelling and RapiFluor-MS labelling. The structures of major O-glycans and low-abundance O-glycans were successfully identified using the third technique, which detected the O-glycans with high sensitivity.

  3. Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojiao; He, Yao; Zhang, Youyu; Liu, Meiling; Liu, Yang; Li, Jinghong

    2014-09-01

    A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode interface, affording fast and highly sensitive ECL cytosensing and cell surface glycan evaluation. Combining the multivalent aptamer interface and ALP nanoprobes, the ECL cytosensor showed a detection limit of 38 CCRF-CEM cells per mL in human serum samples, broad dynamic range and excellent selectivity. In addition, the proposed biosensor provided a valuable insight into dynamic profiling of the expression of different glycans on cell surfaces, based on the carbohydrates recognized by lectins applied to the nanoprobes. This biosensor exhibits great promise in clinical diagnosis and drug screening.A multivalent recognition and alkaline phosphatase (ALP)-responsive electrogenerated chemiluminescence (ECL) biosensor for cancer cell detection and in situ evaluation of cell surface glycan expression was developed on a poly(amidoamine) (PAMAM) dendrimer-conjugated, chemically reduced graphene oxide (rGO) electrode interface. In this strategy, the multivalency and high affinity of the cell-targeted aptamers on rGO provided a highly efficient cell recognition platform on the electrode. The ALP and concanavalin A (Con A) coated gold nanoparticles (Au NPs) nanoprobes allowed the ALP enzyme-catalyzed production of phenols that inhibited the ECL reaction of Ru(bpy)32+ on the rGO electrode

  4. The fecal bifidobacterial transcriptome of adults: a microarray approach.

    PubMed

    Klaassens, Eline S; Ben-Amor, Kaouther; Vriesema, Aldwin; Vaughan, Elaine E; de Vos, Willem

    2011-01-01

    Bifidobacteria are a predominant group present among adult human intestinal microbiota and are considered to be beneficial to host health. Both the dynamics and functional activity of bifidobacteria from the intestinal tract of four adults, following ingestion of a mix consisting of short chain galactooligosaccharides, long chain fructooligosaccharides and acidic oligosaccharides from pectin hydrolysate (GFP), was investigated. The percentage of total bifidobacteria, monitored by quantitative real time PCR, was not significantly altered but marked species-specific changes occurred in all individuals over time, indicating a dynamic bifidobacterial community. Insight into the functional activity of the bifidobacteria was acquired using a clone library-based microarray comprising the genomes of various bifidobacteria to reveal the bifidobacterial transcriptome within the fecal community. Total RNA from the fecal microbial community was hybridized to the microarray and 310 clones were selected for sequencing which revealed genes belonging to a wide range of functional groups demonstrating substantial metabolic activity. While the intake of GFP did not have a significant effect on the overall change in gene expression, 82 genes showed a significant change. Most of the predicted genes were involved in metabolism of carbohydrates of plant origin, house keeping functions such as DNA replication and transcription, followed by membrane transport of a wide variety of substrates including sugars and metals and amino acid metabolism. Other genes were involved in transport, nucleotide metabolism, amino acid metabolism, environmental information processing and cellular processes and signalling. A smaller number of genes were involved in general metabolism, glycan metabolism, energy metabolism, lipid metabolism and cell surface. These results support the notion that bifidobacteria utilize mainly indigestible polysaccharides as their main source of energy and biosynthesis of

  5. Microfluidic microarray systems and methods thereof

    SciTech Connect

    West, Jay A. A.; Hukari, Kyle W.; Hux, Gary A.

    2009-04-28

    Disclosed are systems that include a manifold in fluid communication with a microfluidic chip having a microarray, an illuminator, and a detector in optical communication with the microarray. Methods for using these systems for biological detection are also disclosed.

  6. Hitting the sweet spot-glycans as targets of fungal defense effector proteins.

    PubMed

    Künzler, Markus

    2015-05-06

    Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparably low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous) fungi against microbial competitors and animal predators.

  7. Assessment of weak sugar-binding ability using lectin tetramer and membrane-based glycans.

    PubMed

    Yamamoto, Kazuo

    2014-01-01

    To consider biological significance of glycosylation of proteins, it is necessary to evaluate the importance of sugar-recognition processes mediated by lectins. Though the interaction between sugars and proteins, especially animal lectins, is quite weak with K d approximately 10(-4) M, cellular and molecular recognitions mediated via sugar-protein interaction increase their avidity by 1-3 orders of magnitude by the self-association of both receptors and their ligands on cell surfaces. To assess the weak interaction between lectins and their sugar ligands, we established lectin tetramer binding to cell surface glycans using flow cytometry. This strategy is highly sensitive, and useful to determine whether or not a putative lectin domain may have sugar-binding ability.

  8. GUcal: An integrated application for capillary electrophoresis based glycan analysis.

    PubMed

    Jarvas, Gabor; Szigeti, Marton; Guttman, Andras

    2015-12-01

    Recent emergence in the use of monoclonal antibody therapeutics and other glycoprotein biopharmaceuticals requires high-throughput, robust, and automated techniques for their glycosylation analysis. Capillary electrophoresis is one of the high-performance methods of choice; however, while the necessary instrumentation is well developed, the related bioinformatics tools are lacked behind. In this paper, we introduce an integrated toolset dubbed as GUcal, to automatically calculate the glucose unit (GU) values for all sample components of interest in an electropherogram with a concomitant database search for structural assignment. The database comprises CE GUs and suggested structures of N-glycans released from human IgG. The app is freely available online (www.lendulet.uni-pannon.hu/gucal) and readily facilitates CE-based glycan analysis.

  9. The N-Glycan Cluster from Xanthomonas campestris pv. campestris

    PubMed Central

    Dupoiron, Stéphanie; Zischek, Claudine; Ligat, Laetitia; Carbonne, Julien; Boulanger, Alice; Dugé de Bernonville, Thomas; Lautier, Martine; Rival, Pauline; Arlat, Matthieu; Jamet, Elisabeth; Lauber, Emmanuelle; Albenne, Cécile

    2015-01-01

    N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle. PMID:25586188

  10. DNA display of glycoconjugates to emulate oligomeric interactions of glycans

    PubMed Central

    2015-01-01

    Summary Glycans (carbohydrate portion of glycoproteins and glycolipids) frequently exert their function through oligomeric interactions involving multiple carbohydrate units. In efforts to recapitulate the diverse spatial arrangements of the carbohydrate units, assemblies based on hybridization of nucleic acid conjugates have been used to display simplified ligands with tailored interligand distances and valences. The programmability of the assemblies lends itself to a combinatorial display of multiple ligands. Recent efforts in the synthesis and applications of such conjugates are discussed. PMID:26113879

  11. N-linked glycan profiling in neuroblastoma cell lines.

    PubMed

    Hu, Yunli; Mayampurath, Anoop; Khan, Saira; Cohen, Joanna K; Mechref, Yehia; Volchenboum, Samuel L

    2015-05-01

    Although MYCN amplification has been associated with aggressive neuroblastoma, the molecular mechanisms that differentiate low-risk, MYCN-nonamplified neuroblastoma from high-risk, MYCN-amplified disease are largely unknown. Genomic and proteomic studies have been limited in discerning differences in signaling pathways that account for this heterogeneity. N-Linked glycosylation is a common protein modification resulting from the attachment of sugars to protein residues and is important in cell signaling and immune response. Aberrant N-linked glycosylation has been routinely linked to various cancers. In particular, glycomic markers have often proven to be useful in distinguishing cancers from precancerous conditions. Here, we perform a systematic comparison of N-linked glycomic variation between MYCN-nonamplified SY5Y and MYCN-amplified NLF cell lines with the aim of identifying changes in sugar abundance linked to high-risk neuroblastoma. Through a combination of liquid chromatography-mass spectrometry and bioinformatics analysis, we identified 16 glycans that show a statistically significant change in abundance between NLF and SY5Y samples. Closer examination revealed the preference for larger (in terms of total monosaccharide count) and more sialylated glycan structures in the MYCN-amplified samples in comparison to smaller, nonsialylated glycans that are more dominant in the MYCN-nonamplified samples. These results offer clues for deriving marker candidates for accurate neuroblastoma risk diagnosis.

  12. The Microarray Revolution: Perspectives from Educators

    ERIC Educational Resources Information Center

    Brewster, Jay L.; Beason, K. Beth; Eckdahl, Todd T.; Evans, Irene M.

    2004-01-01

    In recent years, microarray analysis has become a key experimental tool, enabling the analysis of genome-wide patterns of gene expression. This review approaches the microarray revolution with a focus upon four topics: 1) the early development of this technology and its application to cancer diagnostics; 2) a primer of microarray research,…

  13. Profiling human serum antibodies with a carbohydrate antigen microarray

    PubMed Central

    Oyelaran, Oyindasola; McShane, Lisa M.; Dodd, Lori; Gildersleeve, Jeffrey C.

    2009-01-01

    Carbohydrate antigen arrays (glycan arrays) have been recently developed for the high-throughput analysis of carbohydrate macromolecule interactions. When profiling serum, information about experimental variability, inter-individual biological variability, and intra-individual temporal variability is critical. In this report, we describe the characterization of a carbohydrate antigen array and assay for profiling human serum. Through optimization of assay conditions and development of a normalization strategy, we obtain highly reproducible results with a within-experiment coefficient of variation (CV) of 10.8% and an overall CV (across multiple batches of slides and days) of 28.5%. We also report antibody profiles for 48 human subjects and evaluate for the first time the effects of age, race, sex, geographic location, and blood type on antibody profiles for a large set of carbohydrate antigens. We found significant dependence on age and blood type of antibody levels for a variety of carbohydrates. Finally, we conducted a longitudinal study with a separate group of 7 serum donors to evaluate the variation in anti-carbohydrate antibody levels within an individual over a period ranging from 3 to 13 weeks and found that, for nearly all antigens on our array, antibody levels are generally stable over this period. The results presented here provide the most comprehensive evaluation of experimental and biological variation reported to date for a glycan array and have significant implications for studies involving human serum profiling. PMID:19624168

  14. Glycan Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Geissner, Andreas; Seeberger, Peter H.

    2016-06-01

    A major branch of glycobiology and glycan-focused biomedicine studies the interaction between carbohydrates and other biopolymers, most importantly, glycan-binding proteins. Today, this research into glycan-biopolymer interaction is unthinkable without glycan arrays, tools that enable high-throughput analysis of carbohydrate interaction partners. Glycan arrays offer many applications in basic biochemical research, for example, defining the specificity of glycosyltransferases and lectins such as immune receptors. Biomedical applications include the characterization and surveillance of influenza strains, identification of biomarkers for cancer and infection, and profiling of immune responses to vaccines. Here, we review major applications of glycan arrays both in basic and applied research. Given the dynamic nature of this rapidly developing field, we focus on recent findings.

  15. CEM-designer: design of custom expression microarrays in the post-ENCODE Era.

    PubMed

    Arnold, Christian; Externbrink, Fabian; Hackermüller, Jörg; Reiche, Kristin

    2014-11-10

    Microarrays are widely used in gene expression studies, and custom expression microarrays are popular to monitor expression changes of a customer-defined set of genes. However, the complexity of transcriptomes uncovered recently make custom expression microarray design a non-trivial task. Pervasive transcription and alternative processing of transcripts generate a wealth of interweaved transcripts that requires well-considered probe design strategies and is largely neglected in existing approaches. We developed the web server CEM-Designer that facilitates microarray platform independent design of custom expression microarrays for complex transcriptomes. CEM-Designer covers (i) the collection and generation of a set of unique target sequences from different sources and (ii) the selection of a set of sensitive and specific probes that optimally represents the target sequences. Probe design itself is left to third party software to ensure that probes meet provider-specific constraints. CEM-Designer is available at http://designpipeline.bioinf.uni-leipzig.de.

  16. Quantitation of Permethylated N-Glycans through Multiple-Reaction Monitoring (MRM) LC-MS/MS

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyue; Hu, Yunli; DeSantos-Garcia, Janie L.; Mechref, Yehia

    2015-04-01

    The important biological roles of glycans and their implications in disease development and progression have created a demand for the development of sensitive quantitative glycomics methods. Quantitation of glycans existing at low abundance is still analytically challenging. In this study, an N-linked glycans quantitation method using multiple-reaction monitoring (MRM) on a triple quadrupole instrument was developed. Optimum normalized collision energy (CE) for both sialylated and fucosylated N-glycan was determined to be 30%, whereas it was found to be 35% for either fucosylated or sialylated N-glycans. The optimum CE for mannose and complex type N-glycan was determined to be 35%. Additionally, the use of three transitions was shown to facilitate reliable quantitation. A total of 88 N-glycan compositions in human blood serum were quantified using this MRM approach. Reliable detection and quantitation of these glycans was achieved when the equivalence of 0.005 μL of blood serum was analyzed. Accordingly, N-glycans down to the 100th of a μL level can be reliably quantified in pooled human blood serum, spanning a dynamic concentration range of three orders of magnitude. MRM was also effectively utilized to quantitatively compare the expression of N-glycans derived from brain-targeting breast carcinoma cells (MDA-MB-231BR) and metastatic breast cancer cells (MDA-MB-231). Thus, the described MRM method of permethylated N-glycan enables a rapid and reliable identification and quantitation of glycans derived from glycoproteins purified or present in complex biological samples.

  17. The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing.

    PubMed

    Dupoiron, Stéphanie; Zischek, Claudine; Ligat, Laetitia; Carbonne, Julien; Boulanger, Alice; Dugé de Bernonville, Thomas; Lautier, Martine; Rival, Pauline; Arlat, Matthieu; Jamet, Elisabeth; Lauber, Emmanuelle; Albenne, Cécile

    2015-03-06

    N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.

  18. Cell Surface-Specific N-Glycan Profiling in Breast Cancer

    PubMed Central

    Yao, Yuanfei; Maitikabili, Alaiyi; Qu, Youpeng; Shi, Shuliang; Chen, Cuiying; Li, Yu

    2013-01-01

    Aberrant changes in specific glycans have been shown to be associated with immunosurveillance, tumorigenesis, tumor progression and metastasis. In this study, the N-glycan profiling of membrane proteins from human breast cancer cell lines and tissues was detected using modified DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE). The N-glycan profiles of membrane proteins were analyzed from 7 breast cancer cell lines and MCF 10A, as well as from 100 pairs of breast cancer and corresponding adjacent tissues. The results showed that, compared with the matched adjacent normal tissue samples, two biantennary N-glycans (NA2 and NA2FB) were significantly decreased (p <0.0001) in the breast cancer tissue samples, while the triantennary glycan (NA3FB) and a high-mannose glycan (M8) were dramatically increased (p = 0.001 and p <0.0001, respectively). Moreover, the alterations in these specific N-glycans occurred through the oncogenesis and progression of breast cancer. These results suggested that the modified method based on DSA-FACE is a high-throughput detection technology that is suited for analyzing cell surface N-glycans. These cell surface-specific N-glycans may be helpful in recognizing the mechanisms of tumor cell immunologic escape and could be potential targets for new breast cancer drugs. PMID:24009699

  19. Atomic visualization of a flipped-back conformation of bisected glycans bound to specific lectins

    PubMed Central

    Nagae, Masamichi; Kanagawa, Mayumi; Morita-Matsumoto, Kana; Hanashima, Shinya; Kizuka, Yasuhiko; Taniguchi, Naoyuki; Yamaguchi, Yoshiki

    2016-01-01

    Glycans normally exist as a dynamic equilibrium of several conformations. A fundamental question concerns how such molecules bind lectins despite disadvantageous entropic loss upon binding. Bisected glycan, a glycan possessing bisecting N-acetylglucosamine (GlcNAc), is potentially a good model for investigating conformational dynamics and glycan-lectin interactions, owing to the unique ability of this sugar residue to alter conformer populations and thus modulate the biological activities. Here we analyzed bisected glycan in complex with two unrelated lectins, Calsepa and PHA-E. The crystal structures of the two complexes show a conspicuous flipped back glycan structure (designated ‘back-fold’ conformation), and solution NMR analysis also provides evidence of ‘back-fold’ glycan structure. Indeed, statistical conformational analysis of available bisected and non-bisected glycan structures suggests that bisecting GlcNAc restricts the conformations of branched structures. Restriction of glycan flexibility by certain sugar residues may be more common than previously thought and impinges on the mechanism of glycoform-dependent biological functions. PMID:26971576

  20. Roles of glycans in interactions between gp120 and HIV broadly neutralizing antibodies.

    PubMed

    Qi, Yifei; Jo, Sunhwan; Im, Wonpil

    2016-03-01

    Many novel broadly neutralizing antibodies against human immunodeficiency virus (HIV) have been identified during the past decade, providing promising templates for the development of an effective HIV-1 vaccine. Structural studies reveal that the epitopes of some of these antibodies involve one or more crucial glycans, without which the binding is completely abolished. In this study, we have investigated the critical roles of glycans in interactions between HIV-1 gp120 and two broadly neutralizing antibodies PG9 (targeting V1/V2) and PGT128 (targeting V3) that are able to neutralize more than 70% of HIV-1 isolates. We have performed molecular dynamics simulations of a number of systems including antibody-gp120 complex with and without glycans, antibody, gp120 with and without glycans, and glycan-only systems. The simulation results show that the complex structures are stabilized by the glycans, and the multivalent interactions between the antibody and gp120 promote cooperativities to further enhance the binding. In the free gp120, the glycans increase the flexibility of the V1/V2 and V3 loops, which likely increases the entropy cost of the antibody recognition. However, the antibodies are able to bind the flexible interface by recognizing the preexisting glycan conformation, and penetrating the glycan shield with flexible complementarity determining region loops that sample the bound conformations occasionally.

  1. Comparative analysis of N-glycans in the ungerminated and germinated stages of Oryza sativa.

    PubMed

    Horiuchi, Risa; Hirotsu, Naoki; Miyanishi, Nobumitsu

    2015-12-11

    All fundamental information such as signal transduction, metabolic control, infection, cell-to-cell signaling, and cell differentiation related to the growth of plants are preserved in germs. In preserving these information, glycans have a key role and are involved in the development and differentiation of organisms. Glycans which exist in rice germ are expected to have an important role in germination. In this study, we performed structural and correlation analysis of the N-glycans in rice germ before and after germination. Our results confirmed that the N-glycans in the ungerminated stage of the rice germ had low number of N-glycans consisting only of six kinds especially with high-mannose and paucimannose type N-glycans being 16.0% and 76.7%, respectively. On the other hand, after 48 hours germinated germ stage, there was an increase in the complex type N-glycans with the appearance of Lewis a structure, the most complex type and a decrease in paucimannose types. These results suggest that at least six kinds of N-glycans are utilized for long time preservation of rice seed, while the diversification of most complex types of N-glycans is produced an environment dependent for shoot formation of rice.

  2. Microarray analysis in pulmonary hypertension

    PubMed Central

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea

    2016-01-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. PMID:27076594

  3. DNA microarray technology in dermatology.

    PubMed

    Kunz, Manfred

    2008-03-01

    In recent years, DNA microarray technology has been used for the analysis of gene expression patterns in a variety of skin diseases, including malignant melanoma, psoriasis, lupus erythematosus, and systemic sclerosis. Many of the studies described herein confirmed earlier results on individual genes or functional groups of genes. However, a plethora of new candidate genes, gene patterns, and regulatory pathways have been identified. Major progresses were reached by the identification of a prognostic gene pattern in malignant melanoma, an immune signaling cluster in psoriasis, and a so-called interferon signature in systemic lupus erythematosus. In future, interference with genes or regulatory pathways with the use of different RNA interference technologies or targeted therapy may not only underscore the functional significance of microarray data but also may open interesting therapeutic perspectives. Large-scale gene expression analyses may also help to design more individualized treatment approaches of cutaneous diseases.

  4. Microarray analysis in pulmonary hypertension.

    PubMed

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea; Kwapiszewska, Grazyna

    2016-07-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance.

  5. Comprehensive analysis of the N-glycan biosynthetic pathway using bioinformatics to generate UniCorn: A theoretical N-glycan structure database.

    PubMed

    Akune, Yukie; Lin, Chi-Hung; Abrahams, Jodie L; Zhang, Jingyu; Packer, Nicolle H; Aoki-Kinoshita, Kiyoko F; Campbell, Matthew P

    2016-08-05

    Glycan structures attached to proteins are comprised of diverse monosaccharide sequences and linkages that are produced from precursor nucleotide-sugars by a series of glycosyltransferases. Databases of these structures are an essential resource for the interpretation of analytical data and the development of bioinformatics tools. However, with no template to predict what structures are possible the human glycan structure databases are incomplete and rely heavily on the curation of published, experimentally determined, glycan structure data. In this work, a library of 45 human glycosyltransferases was used to generate a theoretical database of N-glycan structures comprised of 15 or less monosaccharide residues. Enzyme specificities were sourced from major online databases including Kyoto Encyclopedia of Genes and Genomes (KEGG) Glycan, Consortium for Functional Glycomics (CFG), Carbohydrate-Active enZymes (CAZy), GlycoGene DataBase (GGDB) and BRENDA. Based on the known activities, more than 1.1 million theoretical structures and 4.7 million synthetic reactions were generated and stored in our database called UniCorn. Furthermore, we analyzed the differences between the predicted glycan structures in UniCorn and those contained in UniCarbKB (www.unicarbkb.org), a database which stores experimentally described glycan structures reported in the literature, and demonstrate that UniCorn can be used to aid in the assignment of ambiguous structures whilst also serving as a discovery database.

  6. Microarrays, antiobesity and the liver

    PubMed Central

    Castro-Chávez, Fernando

    2013-01-01

    In this review, the microarray technology and especially oligonucleotide arrays are exemplified with a practical example taken from the perilipin−/− mice and using the dChip software, available for non-lucrative purposes. It was found that the liver of perilipin−/− mice was healthy and normal, even under high-fat diet when compared with the results published for the scd1−/− mice, which under high-fat diets had a darker liver, suggestive of hepatic steatosis. Scd1 is required for the biosynthesis of monounsaturated fatty acids and plays a key role in the hepatic synthesis of triglycerides and of very-low-density lipoproteins. Both models of obesity resistance share many similar phenotypic antiobesity features, however, the perilipin−/− mice had a significant downregulation of stearoyl CoA desaturases scd1 and scd2 in its white adipose tissue, but a normal level of both genes inside the liver, even under high-fat diet. Here, different microarray methodologies are discussed, and also some of the most recent discoveries and perspectives regarding the use of microarrays, with an emphasis on obesity gene expression, and a personal remark on my findings of increased expression for hemoglobin transcripts and other hemo related genes (hemo-like), and for leukocyte like (leuko-like) genes inside the white adipose tissue of the perilipin−/− mice. In conclusion, microarrays have much to offer in comparative studies such as those in antiobesity, and also they are methodologies adequate for new astounding molecular discoveries [free full text of this article PMID:15657555

  7. Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells.

    PubMed

    An, Hyun Joo; Gip, Phung; Kim, Jaehan; Wu, Shuai; Park, Kun Wook; McVaugh, Cheryl T; Schaffer, David V; Bertozzi, Carolyn R; Lebrilla, Carlito B

    2012-04-01

    Most cell membrane proteins are known or predicted to be glycosylated in eukaryotic organisms, where surface glycans are essential in many biological processes including cell development and differentiation. Nonetheless, the glycosylation on cell membranes remains not well characterized because of the lack of sensitive analytical methods. This study introduces a technique for the rapid profiling and quantitation of N- and O-glycans on cell membranes using membrane enrichment and nanoflow liquid chromatography/mass spectrometry of native structures. Using this new method, the glycome analysis of cell membranes isolated from human embryonic stem cells and somatic cell lines was performed. Human embryonic stem cells were found to have high levels of high mannose glycans, which contrasts with IMR-90 fibroblasts and a human normal breast cell line, where complex glycans are by far the most abundant and high mannose glycans are minor components. O-Glycosylation affects relatively minor components of cell surfaces. To verify the quantitation and localization of glycans on the human embryonic stem cell membranes, flow cytometry and immunocytochemistry were performed. Proteomics analyses were also performed and confirmed enrichment of plasma membrane proteins with some contamination from endoplasmic reticulum and other membranes. These findings suggest that high mannose glycans are the major component of cell surface glycosylation with even terminal glucoses. High mannose glycans are not commonly presented on the surfaces of mammalian cells or in serum yet may play important roles in stem cell biology. The results also mean that distinguishing stem cells from other mammalian cells may be facilitated by the major difference in the glycosylation of the cell membrane. The deep structural analysis enabled by this new method will enable future mechanistic studies on the biological significance of high mannose glycans on stem cell membranes and provide a general tool to examine

  8. Online nanoliquid chromatography-mass spectrometry and nanofluorescence detection for high-resolution quantitative N-glycan analysis.

    PubMed

    Kalay, Hakan; Ambrosini, Martino; van Berkel, Patrick H C; Parren, Paul W H I; van Kooyk, Yvette; García Vallejo, Juan J

    2012-04-01

    The characterization of the repertoire of glycans at the quantitative and qualitative levels on cells and glycoproteins is a necessary step to the understanding of glycan functions in biology. In addition, there is an increasing demand in the field of biotechnology for the monitoring of glycosylation of recombinant glycoproteins, an important issue with regard to their safety and biological activity. The enzymatic release followed by fluorescent derivatization of glycans and separation by normal phase high-performance liquid chromatography (HPLC) has proven for many years to be a powerful approach to the quantification of glycans. Characterization of glycans has classically been performed by mass spectrometry (MS) with external standardization. Here, we report a new method for the simultaneous quantification and characterization of the N-glycans on glycoproteins without the need for external standardization. This method, which we call glycan nanoprofiling, uses nanoLC-coupled electrospray ionization (ESI)-MS with an intercalated nanofluorescence reader and provides effective single glycan separation with subpicomolar sensitivity. The method relies on the isolation and coumaric derivatization of enzymatically released glycans collected by solid phase extraction with porous graphitized carbon and their separation over polyamide-based nanoHPLC prior to serial nanofluorescence and nanoelectrospray mass spectrometric analysis. Glycan nanoprofiling is a broadly applicable and powerful approach that is sufficient to identify and quantify many glycan oligomers in a single run. Glycan nanoprofiling was successfully applied to resolve the glycans of monoclonal antibodies, showing that this method is a fast and sensitive alternative to available methods.

  9. Classical galactosaemia: novel insights in IgG N-glycosylation and N-glycan biosynthesis.

    PubMed

    Maratha, Ashwini; Stockmann, Henning; Coss, Karen P; Estela Rubio-Gozalbo, M; Knerr, Ina; Fitzgibbon, Maria; McVeigh, Terri P; Foley, Patricia; Moss, Catherine; Colhoun, Hugh-Owen; van Erven, Britt; Stephens, Kelly; Doran, Peter; Rudd, Pauline; Treacy, Eileen

    2016-07-01

    Classical galactosaemia (OMIM #230400), a rare disorder of carbohydrate metabolism, is caused by a deficient activity of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological and female fertility problems remains poorly understood. The lack of validated biomarkers to determine prognosis, monitor disease progression and responses to new therapies, pose a huge challenge. We report the detailed analysis of an automated robotic hydrophilic interaction ultra-performance liquid chromatography N-glycan analytical method of high glycan peak resolution applied to serum IgG. This has revealed specific N-glycan processing defects observed in 40 adult galactosaemia patients (adults and adolescents), in comparison with 81 matched healthy controls. We have identified a significant increase in core fucosylated neutral glycans (P<0.0001) and a significant decrease in core fucosylated (P<0.001), non-fucosylated (P<0.0001) bisected glycans and, of specific note, decreased N-linked mannose-5 glycans (P<0.0001), in galactosaemia patients. We also report the abnormal expression of a number of related relevant N-glycan biosynthesis genes in peripheral blood mononuclear cells from 32 adult galactosaemia patients. We have noted significant dysregulation of two key N-glycan biosynthesis genes: ALG9 upregulated (P<0.001) and MGAT1 downregulated (P<0.01) in galactosaemia patients, which may contribute to its ongoing pathophysiology. Our data suggest that the use of IgG N-glycosylation analysis with matched N-glycan biosynthesis gene profiles may provide useful biomarkers for monitoring response to therapy and interventions. They also indicate potential gene modifying steps in this N-glycan biosynthesis pathway, of relevance to galactosaemia and related N-glycan biosynthesis disorders.

  10. Microarray Technology for Major Chemical Contaminants Analysis in Food: Current Status and Prospects

    PubMed Central

    Zhang, Zhaowei; Li, Peiwu; Hu, Xiaofeng; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2012-01-01

    Chemical contaminants in food have caused serious health issues in both humans and animals. Microarray technology is an advanced technique suitable for the analysis of chemical contaminates. In particular, immuno-microarray approach is one of the most promising methods for chemical contaminants analysis. The use of microarrays for the analysis of chemical contaminants is the subject of this review. Fabrication strategies and detection methods for chemical contaminants are discussed in detail. Application to the analysis of mycotoxins, biotoxins, pesticide residues, and pharmaceutical residues is also described. Finally, future challenges and opportunities are discussed. PMID:23012541

  11. Viral Discovery and Sequence Recovery Using DNA Microarrays

    PubMed Central

    Wang, David; Urisman, Anatoly; Liu, Yu-Tsueng; Springer, Michael; Ksiazek, Thomas G; Erdman, Dean D; Mardis, Elaine R; Hickenbotham, Matthew; Magrini, Vincent; Eldred, James; Latreille, J. Phillipe; Wilson, Richard K; Ganem, Don

    2003-01-01

    Because of the constant threat posed by emerging infectious diseases and the limitations of existing approaches used to identify new pathogens, there is a great demand for new technological methods for viral discovery. We describe herein a DNA microarray-based platform for novel virus identification and characterization. Central to this approach was a DNA microarray designed to detect a wide range of known viruses as well as novel members of existing viral families; this microarray contained the most highly conserved 70mer sequences from every fully sequenced reference viral genome in GenBank. During an outbreak of severe acute respiratory syndrome (SARS) in March 2003, hybridization to this microarray revealed the presence of a previously uncharacterized coronavirus in a viral isolate cultivated from a SARS patient. To further characterize this new virus, approximately 1 kb of the unknown virus genome was cloned by physically recovering viral sequences hybridized to individual array elements. Sequencing of these fragments confirmed that the virus was indeed a new member of the coronavirus family. This combination of array hybridization followed by direct viral sequence recovery should prove to be a general strategy for the rapid identification and characterization of novel viruses and emerging infectious disease. PMID:14624234

  12. Gene expression profiling of mouse embryos with microarrays

    PubMed Central

    Sharov, Alexei A.; Piao, Yulan; Ko, Minoru S. H.

    2011-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing similarities or differences among two or multiple cell types; (5) to find regulatory pathways and/or networks affected by gene manipulations, such as overexpression or repression of gene expression; (6) to find downstream target genes of transcription factors; (7) to find downstream target genes of cell signaling; (8) to examine the effects of environmental manipulation of cells on gene expression patterns; and (9) to find the effects of genetic manipulation in embryos and adults. Here we describe strategies for executing these experiments and monitoring changes of cell state with gene expression microarrays in application to mouse embryology. Both statistical assessment and interpretation of data are discussed. We also present a protocol for performing microarray analysis on a small amount of embryonic materials. PMID:20699157

  13. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  14. A standardized method for lectin microarray-based tissue glycome mapping

    PubMed Central

    Zou, Xia; Yoshida, Maki; Nagai-Okatani, Chiaki; Iwaki, Jun; Matsuda, Atsushi; Tan, Binbin; Hagiwara, Kozue; Sato, Takashi; Itakura, Yoko; Noro, Erika; Kaji, Hiroyuki; Toyoda, Masashi; Zhang, Yan; Narimatsu, Hisashi; Kuno, Atsushi

    2017-01-01

    The significance of glycomic profiling has been highlighted by recent findings that structural changes of glycans are observed in many diseases, including cancer. Therefore, glycomic profiling of the whole body (glycome mapping) under different physiopathological states may contribute to the discovery of reliable biomarkers with disease-specific alterations. To achieve this, standardization of high-throughput and in-depth analysis of tissue glycome mapping is needed. However, this is a great challenge due to the lack of analytical methodology for glycans on small amounts of endogenous glycoproteins. Here, we established a standardized method of lectin-assisted tissue glycome mapping. Formalin-fixed, paraffin-embedded tissue sections were prepared from brain, liver, kidney, spleen, and testis of two C57BL/6J mice. In total, 190 size-adjusted fragments with different morphology were serially collected from each tissue by laser microdissection and subjected to lectin microarray analysis. The results and subsequent histochemical analysis with selected lectins were highly consistent with previous reports of mass spectrometry-based N- and/or O-glycome analyses and histochemistry. This is the first report to look at both N- and O-glycome profiles of various regions within tissue sections of five different organs. This simple and reproducible mapping approach is also applicable to various disease model mice to facilitate disease-related biomarker discovery. PMID:28262709

  15. A standardized method for lectin microarray-based tissue glycome mapping.

    PubMed

    Zou, Xia; Yoshida, Maki; Nagai-Okatani, Chiaki; Iwaki, Jun; Matsuda, Atsushi; Tan, Binbin; Hagiwara, Kozue; Sato, Takashi; Itakura, Yoko; Noro, Erika; Kaji, Hiroyuki; Toyoda, Masashi; Zhang, Yan; Narimatsu, Hisashi; Kuno, Atsushi

    2017-03-06

    The significance of glycomic profiling has been highlighted by recent findings that structural changes of glycans are observed in many diseases, including cancer. Therefore, glycomic profiling of the whole body (glycome mapping) under different physiopathological states may contribute to the discovery of reliable biomarkers with disease-specific alterations. To achieve this, standardization of high-throughput and in-depth analysis of tissue glycome mapping is needed. However, this is a great challenge due to the lack of analytical methodology for glycans on small amounts of endogenous glycoproteins. Here, we established a standardized method of lectin-assisted tissue glycome mapping. Formalin-fixed, paraffin-embedded tissue sections were prepared from brain, liver, kidney, spleen, and testis of two C57BL/6J mice. In total, 190 size-adjusted fragments with different morphology were serially collected from each tissue by laser microdissection and subjected to lectin microarray analysis. The results and subsequent histochemical analysis with selected lectins were highly consistent with previous reports of mass spectrometry-based N- and/or O-glycome analyses and histochemistry. This is the first report to look at both N- and O-glycome profiles of various regions within tissue sections of five different organs. This simple and reproducible mapping approach is also applicable to various disease model mice to facilitate disease-related biomarker discovery.

  16. Simultaneous Glycan-Peptide Characterization Using Hydrophilic Interaction Chromatography and Parallel Fragmentation by CID, Higher Energy Collisional Dissociation, and Electron Transfer Dissociation MS Applied to the N-Linked Glycoproteome of Campylobacter jejuni*

    PubMed Central

    Scott, Nichollas E.; Parker, Benjamin L.; Connolly, Angela M.; Paulech, Jana; Edwards, Alistair V. G.; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P.; Højrup, Peter; Packer, Nicolle H.; Larsen, Martin R.; Cordwell, Stuart J.

    2011-01-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous

  17. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni.

    PubMed

    Scott, Nichollas E; Parker, Benjamin L; Connolly, Angela M; Paulech, Jana; Edwards, Alistair V G; Crossett, Ben; Falconer, Linda; Kolarich, Daniel; Djordjevic, Steven P; Højrup, Peter; Packer, Nicolle H; Larsen, Martin R; Cordwell, Stuart J

    2011-02-01

    Campylobacter jejuni is a gastrointestinal pathogen that is able to modify membrane and periplasmic proteins by the N-linked addition of a 7-residue glycan at the strict attachment motif (D/E)XNX(S/T). Strategies for a comprehensive analysis of the targets of glycosylation, however, are hampered by the resistance of the glycan-peptide bond to enzymatic digestion or β-elimination and have previously concentrated on soluble glycoproteins compatible with lectin affinity and gel-based approaches. We developed strategies for enriching C. jejuni HB93-13 glycopeptides using zwitterionic hydrophilic interaction chromatography and examined novel fragmentation, including collision-induced dissociation (CID) and higher energy collisional (C-trap) dissociation (HCD) as well as CID/electron transfer dissociation (ETD) mass spectrometry. CID/HCD enabled the identification of glycan structure and peptide backbone, allowing glycopeptide identification, whereas CID/ETD enabled the elucidation of glycosylation sites by maintaining the glycan-peptide linkage. A total of 130 glycopeptides, representing 75 glycosylation sites, were identified from LC-MS/MS using zwitterionic hydrophilic interaction chromatography coupled to CID/HCD and CID/ETD. CID/HCD provided the majority of the identifications (73 sites) compared with ETD (26 sites). We also examined soluble glycoproteins by soybean agglutinin affinity and two-dimensional electrophoresis and identified a further six glycosylation sites. This study more than doubles the number of confirmed N-linked glycosylation sites in C. jejuni and is the first to utilize HCD fragmentation for glycopeptide identification with intact glycan. We also show that hydrophobic integral membrane proteins are significant targets of glycosylation in this organism. Our data demonstrate that peptide-centric approaches coupled to novel mass spectrometric fragmentation techniques may be suitable for application to eukaryotic glycoproteins for simultaneous

  18. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives

    NASA Astrophysics Data System (ADS)

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-02-01

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a ``click'' chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with

  19. Piperidine-based glycodendrons as protein N-glycan prosthetics.

    PubMed

    Hudak, Jason E; Belardi, Brian; Appel, Mason J; Solania, Angelo; Robinson, Peter V; Bertozzi, Carolyn R

    2016-10-15

    The generation of homogeneously glycosylated proteins is essential for defining glycoform-specific activity and improving protein-based therapeutics. We present a novel glycodendron prosthetic which can be site-selectively appended to recombinant proteins to create 'N-glycosylated' glycoprotein mimics. Using computational modeling, we designed the dendrimer scaffold and protein attachment point to resemble the native N-glycan architecture. Three piperidine-melamine glycodendrimers were synthesized via a chemoenzymatic route and attached to human growth hormone and the Fc region of human IgG. These products represent a new class of engineered biosimilars bearing novel glycodendrimer structures.

  20. Regulating billions of blood platelets: glycans and beyond

    PubMed Central

    Grozovsky, Renata; Giannini, Silvia; Falet, Hervé

    2015-01-01

    The human body produces and removes 1011 platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets. PMID:26330242

  1. Regulating billions of blood platelets: glycans and beyond.

    PubMed

    Grozovsky, Renata; Giannini, Silvia; Falet, Hervé; Hoffmeister, Karin M

    2015-10-15

    The human body produces and removes 10(11) platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets.

  2. Clinical implications of serum N-glycan profiling as a diagnostic and prognostic biomarker in germ-cell tumors.

    PubMed

    Narita, Takuma; Hatakeyama, Shingo; Yoneyama, Tohru; Narita, Shintaro; Yamashita, Shinichi; Mitsuzuka, Koji; Sakurai, Toshihiko; Kawamura, Sadafumi; Tochigi, Tatsuo; Takahashi, Ippei; Nakaji, Shigeyuki; Tobisawa, Yuki; Yamamoto, Hayato; Koie, Takuya; Tsuchiya, Norihiko; Habuchi, Tomonori; Arai, Yoichi; Ohyama, Chikara

    2017-03-20

    Serum biomarker monitoring is essential for management of germ-cell tumors (GCT). However, not all GCT are positive for conventional tumor markers. We examined whether serum N-glycan-based biomarkers can be applied for detection and prognosis in patients with GCT. We performed a comprehensive N-glycan structural analysis of sera from 54 untreated GCT patients and 103 age-adjusted healthy volunteers using glycoblotting methods and mass spectrometry. Candidate N-glycans were selected from those with the highest association; cutoff concentration values were established, and an N-glycan score was created based on the number of positive N-glycans present. The validity of this score for diagnosis and prognosis was analyzed using a receiver operating characteristic (ROC) curve. We identified five candidate N-glycans significantly associated with GCT patients. The accuracy of the N-glycan score for GCT was significant with an area-under-the-curve (AUC) value of 0.87. Diagnostically, the N-glycan score detected 10 of 12 (83%) patients with negative conventional tumor markers. Prognostically, the N-glycan score comprised four candidate N-glycans. The predictive value of the prognostic N-glycan score was significant, with an AUC value of 0.89. A high value prognostic N-glycan score was significantly associated with poor prognosis. Finally, to identify a potential carrier protein, immunoglobulin (Ig) fractions of sera were subjected to N-glycan analysis and compared to whole sera. Candidate N-glycans in Ig-fractions were significantly decreased; therefore, the carrier protein for candidate N-glycans is likely not an immunoglobulin. In summary, our newly developed N-glycan score seems to be a practical diagnostic and prognostic method for GCT.

  3. Glycan Profiling Shows Unvaried N-Glycomes in MSC Clones with Distinct Differentiation Potentials

    PubMed Central

    Wilson, Katherine M.; Thomas-Oates, Jane E.; Genever, Paul G.; Ungar, Daniel

    2016-01-01

    Different cell types have different N-glycomes in mammals. This means that cellular differentiation is accompanied by changes in the N-glycan profile. Yet when the N-glycomes of cell types with differing fates diverge is unclear. We have investigated the N-glycan profiles of two different clonal populations of mesenchymal stromal cells (MSCs). One clone (Y101), when differentiated into osteoblasts, showed a marked shift in the glycan profile toward a higher abundance of complex N-glycans and more core fucosylation. Yet chemical inhibition of complex glycan formation during osteogenic differentiation did not prevent the formation of functional osteoblasts. However, the N-glycan profile of another MSC clone (Y202), which cannot differentiate into osteoblasts, was not significantly different from that of the clone that can. Interestingly, incubation of Y202 cells in osteogenic medium caused a similar reduction of oligomannose glycan content in this non-differentiating cell line. Our analysis implies that the N-glycome changes seen upon differentiation do not have direct functional links to the differentiation process. Thus N-glycans may instead be important for self-renewal rather than for cell fate determination. PMID:27303666

  4. Glycan Profiling Shows Unvaried N-Glycomes in MSC Clones with Distinct Differentiation Potentials.

    PubMed

    Wilson, Katherine M; Thomas-Oates, Jane E; Genever, Paul G; Ungar, Daniel

    2016-01-01

    Different cell types have different N-glycomes in mammals. This means that cellular differentiation is accompanied by changes in the N-glycan profile. Yet when the N-glycomes of cell types with differing fates diverge is unclear. We have investigated the N-glycan profiles of two different clonal populations of mesenchymal stromal cells (MSCs). One clone (Y101), when differentiated into osteoblasts, showed a marked shift in the glycan profile toward a higher abundance of complex N-glycans and more core fucosylation. Yet chemical inhibition of complex glycan formation during osteogenic differentiation did not prevent the formation of functional osteoblasts. However, the N-glycan profile of another MSC clone (Y202), which cannot differentiate into osteoblasts, was not significantly different from that of the clone that can. Interestingly, incubation of Y202 cells in osteogenic medium caused a similar reduction of oligomannose glycan content in this non-differentiating cell line. Our analysis implies that the N-glycome changes seen upon differentiation do not have direct functional links to the differentiation process. Thus N-glycans may instead be important for self-renewal rather than for cell fate determination.

  5. Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor

    PubMed Central

    Hushegyi, András; Pihíková, Dominika; Bertók, Tomáš; Adam, Vojtech; Kizek, René; Tkac, Jan

    2016-01-01

    An ultrasensitive impedimetric glycan-based biosensor for reliable and selective detection of inactivated, but intact influenza viruses H3N2 was developed. Such glycan-based approach has a distinct advantage over antibody-based detection of influenza viruses since glycans are natural viral receptors with a possibility to selectively distinguish between potentially pathogenic influenza subtypes by the glycan-based biosensors. Build-up of the biosensor was carefully optimized with atomic force microscopy applied for visualization of the biosensor surface after binding of viruses with the topology of an individual viral particle H3N2 analyzed. The glycan biosensor could detect a glycan binding lectin with a limit of detection (LOD) of 5 aM. The biosensor was finally applied for analysis of influenza viruses H3N2 with LOD of 13 viral particles in 1 μl, what is the lowest LOD for analysis of influenza viral particles by the glycan-based device achieved so far. The biosensor could detect H3N2 viruses selectively with a sensitivity ratio of 30 over influenza viruses H7N7. The impedimetric biosensor presented here is the most sensitive glycan-based device for detection of influenza viruses and among the most sensitive antibody or aptamer based biosensor devices. PMID:26765527

  6. An Accurate de novo Algorithm for Glycan Topology Determination from Mass Spectra.

    PubMed

    Dong, Liang; Shi, Bing; Tian, Guangdong; Li, YanBo; Wang, Bing; Zhou, MengChu

    2015-01-01

    Determining the glycan topology automatically from mass spectra represents a great challenge. Existing methods fall into approximate and exact ones. The former including greedy and heuristic ones can reduce the computational complexity, but suffer from information lost in the procedure of glycan interpretation. The latter including dynamic programming and exhaustive enumeration are much slower than the former. In the past years, nearly all emerging methods adopted a tree structure to represent a glycan. They share such problems as repetitive peak counting in reconstructing a candidate structure. Besides, tree-based glycan representation methods often have to give different computational formulas for binary and ternary glycans. We propose a new directed acyclic graph structure for glycan representation. Based on it, this work develops a de novo algorithm to accurately reconstruct the tree structure iteratively from mass spectra with logical constraints and some known biosynthesis rules, by a single computational formula. The experiments on multiple complex glycans extracted from human serum show that the proposed algorithm can achieve higher accuracy to determine a glycan topology than prior methods without increasing computational burden.

  7. Loss of Core 1-derived O-Glycans Decreases Breast Cancer Development in Mice*

    PubMed Central

    Song, Kai; Herzog, Brett H.; Fu, Jianxin; Sheng, Minjia; Bergstrom, Kirk; McDaniel, J. Michael; Kondo, Yuji; McGee, Samuel; Cai, Xiaofeng; Li, Ping; Chen, Hong; Xia, Lijun

    2015-01-01

    Mucin-type core 1-derived O-glycans, one of the major types of O-glycans, are highly expressed in mammary gland epithelium. Abnormal O-glycans such as Tn antigen are found in over 90% of breast cancers; however, the in vivo role of these aberrant O-glycans in the etiology of breast cancer is unclear. We generated mice with mammary epithelial specific deletion of core 1-derived O-glycans. By crossing with two spontaneous mouse breast cancer models, we determined that loss of core 1-derived O-glycans delays the onset and progression of breast cancer development. Deficiency of core 1 O-glycosylation impaired the localization of Muc1, a major O-glycoprotein, on the apical surfaces of mammary epithelium. Signaling mediated by Muc1, which is critical for breast cancer development, was also defective in the absence of core 1 O-glycans. This study reveals an unexpected role of core 1-derived O-glycans in breast cancer development in mice. PMID:26124270

  8. N-Linked glycans on dengue viruses grown in mammalian and insect cells

    PubMed Central

    Hacker, Kari; White, Laura; de Silva, Aravinda M.

    2009-01-01

    This study compared the ability of mosquito and mammalian cell-derived dengue virus (DENV) to infect human dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN)-expressing cells and characterized the structure of envelope (E) protein N-linked glycans on DENV derived from the two cell types. DENVs derived from both cell types were equally effective at infecting DC-SIGN-expressing human monocytes and dendritic cells. The N-linked glycans on mosquito cell-derived virus were a mix of high-mannose and paucimannose glycans. In virus derived from mammalian cells, the N-linked glycans were a mix of high-mannose and complex glycans. These results indicate that N-linked glycans are incompletely processed during DENV egress from cells, resulting in high-mannose glycans on viruses derived from both cell types. Studies with full-length and truncated E protein demonstrated that incomplete processing was most likely a result of the poor accessibility of glycans on the membrane-anchored protein. PMID:19494052

  9. Serum glycoprotein-derived N- and O-linked glycans as cancer biomarkers

    PubMed Central

    Lan, Ying; Hao, Cui; Zeng, Xuan; He, Yanli; Zeng, Pengjiao; Guo, Zhihua; Zhang, Lijuan

    2016-01-01

    Early detection of cancer is the key to improving survival. Since most clinically used serum cancer biomarkers are either glycoproteins or glycan structures that can be recognized by specific monoclonal antibodies, developing glycan structure-based biomarkers from human serum/plasma glycoproteins through mass spectrometry (MS) analysis are active research field during the past decades. Numerous studies have shown that changes in serum/plasma glycan structures occur during cancer initiation, progression, and treatment. This review describes N- and O-linked glycan structures identified from serum/plasma glycoprotein (s) by MS analysis with focus on alterations associated with different types of human cancers. The global changes in serum N- and O-linked glycan structures, especially the glycans that are not made by cancer cells such as B lymphocyte-derived IgG and liver-synthesized haptoglobin and α1 acid glycoprotein, suggest that glycans might be the long sought diagnostic biomarkers associated with system malfunction in the blood circulation of cancer patients. Therefore, N- and O-linked glycan structures have great potential to serve as cancer diagnosis, prognosis, and treatment monitoring biomarkers to facilitate personalized medicine. PMID:27904760

  10. Malonic acid suppresses mucin-type O-glycan degradation during hydrazine treatment of glycoproteins.

    PubMed

    Goso, Yukinobu

    2016-03-01

    Hydrazine treatment is frequently used for releasing mucin-type O-glycans (O-glycans) from glycoproteins because the method provides O-glycans that retain a reducible GalNAc at their reducing end, which is available for fluorescent labeling. However, many O-glycans are degraded by "peeling" during this treatment. In the current study, it was found that malonic acid suppressed O-glycan degradation during hydrazine treatment of bovine fetuin or porcine gastric mucin in both the gas and liquid phases. This is paradoxical because the release of O-glycans from glycoproteins occurs under alkaline conditions. However, malonic acid seems to prevent the degradation through its acidic property given that other weak acids also prevented the degradation. Accordingly, disodium malonate did not suppress O-glycan degradation. Application of this method to rat gastric mucin demonstrated that the majority of the major O-glycans obtained in the presence of malonic acid were intact, whereas those obtained in the absence of malonic acid were degraded. These results suggest that hydrazine treatment in the presence of malonic acid would allow glycomic analysis of native mucin glycoproteins.

  11. Xylose Migration During Tandem Mass Spectrometry of N-Linked Glycans

    NASA Astrophysics Data System (ADS)

    Hecht, Elizabeth S.; Loziuk, Philip L.; Muddiman, David C.

    2017-01-01

    Understanding the rearrangement of gas-phase ions via tandem mass spectrometry is critical to improving manual and automated interpretation of complex datasets. N-glycan analysis may be carried out under collision induced (CID) or higher energy collision dissociation (HCD), which favors cleavage at the glycosidic bond. However, fucose migration has been observed in tandem MS, leading to the formation of new bonds over four saccharide units away. In the following work, we report the second instance of saccharide migration ever to occur for N-glycans. Using horseradish peroxidase as a standard, the beta-1,2 xylose was observed to migrate from a hexose to a glucosamine residue on the (Xyl)Man3GlcNac2 glycan. This investigation was followed up in a complex N-linked glycan mixture derived from stem differentiating xylem tissue, and the rearranged product ion was observed for 75% of the glycans. Rearrangement was not favored in isomeric glycans with a core or antennae fucose and unobserved in glycans predicted to have a permanent core-fucose modification. As the first empirical observation of this rearrangement, this work warrants dissemination so it may be searched in de novo sequencing glycan workflows.

  12. An update on pathobiologic roles of anti-glycan antibodies in Guillain-Barré syndrome

    PubMed Central

    Zhang, Gang

    2010-01-01

    Anti-glycan antibodies directed against gangliosides are now considered the major immune effectors that induce damage to intact nerve fibers in some variants of the monophasic neuropathic disorders that comprise Guillain-Barré syndrome. Recent experimental studies elucidating the complexity of anti-glycan antibody-mediated pathobiologic effects on intact and injured nerves undergoing repair are discussed. PMID:20948812

  13. A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield

    SciTech Connect

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L.; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W.; Ogohara, Cassandra; Paulson, James C.; Feizi, Ten; Scanlan, Christopher N.; Wong, Chi-Huey; Moore, John P.; Olson, William C.; Ward, Andrew B.; Poignard, Pascal; Schief, William R.; Burton, Dennis R.; Wilson, Ian A.

    2015-10-15

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.

  14. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield.

    PubMed

    Pejchal, Robert; Doores, Katie J; Walker, Laura M; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W; Ogohara, Cassandra; Paulson, James C; Feizi, Ten; Scanlan, Christopher N; Wong, Chi-Huey; Moore, John P; Olson, William C; Ward, Andrew B; Poignard, Pascal; Schief, William R; Burton, Dennis R; Wilson, Ian A

    2011-11-25

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificity. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.

  15. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield

    PubMed Central

    Pejchal, Robert; Doores, Katie J.; Walker, Laura M.; Khayat, Reza; Huang, Po-Ssu; Wang, Sheng-Kai; Stanfield, Robyn L.; Julien, Jean-Philippe; Ramos, Alejandra; Crispin, Max; Depetris, Rafael; Katpally, Umesh; Marozsan, Andre; Cupo, Albert; Maloveste, Sebastien; Liu, Yan; McBride, Ryan; Ito, Yukishige; Sanders, Rogier W.; Ogohara, Cassandra; Paulson, James C.; Feizi, Ten; Scanlan, Christopher N.; Wong, Chi-Huey; Moore, John P.; Olson, William C.; Ward, Andrew B.; Poignard, Pascal; Schief, William R.; Burton, Dennis R.; Wilson, Ian A.

    2012-01-01

    The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of Fabs PGT 127 and 128 with Man9 at 1.65 and 1.29 Å resolution, respectively, and glycan binding data delineate a specific high mannose binding site. Fab PGT 128 complexed with a fully-glycosylated gp120 outer domain at 3.25 Å reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 IgGs may be mediated by cross-linking Env trimers on the viral surface. PMID:21998254

  16. Ligand identification of carbohydrate-binding proteins employing a biotinylated glycan binding assay and tandem mass spectrometry.

    PubMed

    Wuhrer, Manfred; van Remoortere, Alexandra; Balog, Crina I A; Deelder, André M; Hokke, Cornelis H

    2010-11-15

    Characterization of protein-carbohydrate interactions at the molecular level is important for understanding many glycan-mediated processes. Here we present a method for the identification of glycan ligands of carbohydrate-binding proteins. The glycans released from natural sources are labeled with biotinamidocaproyl hydrazide (BACH) and subsequently fractionated by high-performance liquid chromatography. Glycan fractions are screened for binding to carbohydrate-binding proteins (CBPs) using a microtitration plate binding assay; CBPs are immobilized, BACH-glycan fractions are added, and bound BACH-glycans are detected using alkaline phosphatase-conjugated streptavidin. The glycan structures in binding fractions are studied by (tandem) mass spectrometry, exoglycosidase treatment, and rechromatography, thereby revealing the glycan motifs recognized by the CBPs. Subsequent surface plasmon resonance experiments using a reverse setup with immobilization of the BACH-glycan ligands on streptavidin-coated surfaces provide more information on glycan-CBP interactions via association and dissociation curves. The presented method is easy and fast, and the required instrumentation is available in many laboratories. The assay is very sensitive given that both the mass spectrometric analysis and the microtitration plate binding assay can be performed on femtomole amounts of BACH-glycans. This approach should be generally applicable to study and structurally identify carbohydrate ligands of anti-glycan antibodies and lectins.

  17. Glycomic and Proteomic Profiling of Pancreatic Cyst Fluids Identifies Hyperfucosylated Lactosamines on the N-linked Glycans of Overexpressed Glycoproteins*

    PubMed Central

    Mann, Benjamin F.; Goetz, John A.; House, Michael G.; Schmidt, C. Max; Novotny, Milos V.

    2012-01-01

    Pancreatic cancer is now the fourth leading cause of cancer deaths in the United States, and it is associated with an alarmingly low 5-year survival rate of 5%. However, a patient's prognosis is considerably improved when the malignant lesions are identified at an early stage of the disease and removed by surgical resection. Unfortunately, the absence of a practical screening strategy and clinical diagnostic test for identifying premalignant lesions within the pancreas often prevents early detection of pancreatic cancer. To aid in the development of a molecular screening system for early detection of the disease, we have performed glycomic and glycoproteomic profiling experiments on 21 pancreatic cyst fluid samples, including fluids from mucinous cystic neoplasms and intraductal papillary mucinous neoplasms, two types of mucinous cysts that are considered high risk to undergo malignant transformation. A total of 80 asparagine-linked (N-linked) glycans, including high mannose and complex structures, were identified. Of special interest was a series of complex N-linked glycans containing two to six fucose residues, located predominantly as substituents on β-lactosamine extensions. Following the observation of these “hyperfucosylated” glycans, bottom-up proteomics experiments utilizing a label-free quantitative approach were applied to the investigation of two sets of tryptically digested proteins derived from the cyst fluids: 1) all soluble proteins in the raw samples and 2) a subproteome of the soluble cyst fluid proteins that were selectively enriched for fucosylation through the use of surface-immobilized Aleuria aurantia lectin. A comparative analysis of these two proteomic data sets identified glycoproteins that were significantly enriched by lectin affinity. Several candidate glycoproteins that appear hyperfucosylated were identified, including triacylglycerol lipase and pancreatic α-amylase, which were 20- and 22-fold more abundant, respectively

  18. Mucins and associated O-glycans based immunoprofile for stratification of colorectal polyps: clinical implication for improved colon surveillance

    PubMed Central

    Krishn, Shiv Ram; Kaur, Sukhwinder; Sheinin, Yuri M.; Smith, Lynette M.; Gautam, Shailendra K.; Patel, Asish; Jain, Maneesh; Juvvigunta, Vasthala; Pai, Priya; Lazenby, Audrey J.; Roy, Hemant K.; Batra, Surinder K.

    2017-01-01

    Sessile serrated adenoma/polyps (SSA/P) are premalignant lesions of colorectal cancer that are difficult to distinguish histologically from hyperplastic polyps (HP) of minimal to no malignant potential. Specific markers for differentiating SSA/P from HP can aid clinicians for optimizing colon surveillance intervals. The present study investigates the potential of mucins and associated O-glycans to distinguish SSA/P from HP. Expression of colonic mucins (MUC1, MUC4, MUC17, MUC2, and MUC5AC) and O-glycans [Sialyl LewisA (CA19-9) and Tn/Sialyl-Tn on MUC1] were analyzed in HP (n=33), SSA/P (n=39), and tubular adenoma (TA) (n=36) samples by immunohistochemistry. A significantly reduced expression of MUC4 (p=0.0066), elevated expression of MUC17 (p=0.0002), and MUC5AC (p<0.0001) was observed in SSA/P cases in comparison to HP cases. Interestingly, significantly higher number of SSA/P cases (p<0.0001) exhibited MUC5AC expression in the goblet cells as well as filled the crypt lumen compared to only goblet cells in majority of the HP cases. Improved diagnostic potential was revealed by multivariate logistic regression analysis where combinatorial panel of MUC5AC/MUC17 discriminated SSA/P from HP (SN/SP=85/82%). Finally, the decision tree model based marker panel (CA19-9/MUC17/MUC5AC) predicted HP, SSA/P and TA with SN/SP of 58%/95%, 79%/90% and 97%/83%, respectively. Overall, the mucin and associated O-glycan based panel defined in the present study could aid in discriminating SSA/P from HP to devise better colon surveillance strategies. PMID:27705923

  19. Diagnostic challenges for multiplexed protein microarrays.

    PubMed

    Master, Stephen R; Bierl, Charlene; Kricka, Larry J

    2006-11-01

    Multiplexed protein analysis using planar microarrays or microbeads is growing in popularity for simultaneous assays of antibodies, cytokines, allergens, drugs and hormones. However, this new assay format presents several new operational issues for the clinical laboratory, such as the quality control of protein-microarray-based assays, the release of unrequested test data and the use of diagnostic algorithms to transform microarray data into diagnostic results.

  20. Automated Microarray Image Analysis Toolbox for MATLAB

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Willse, Alan R.; Protic, Miroslava; Chandler, Darrell P.

    2005-09-01

    The Automated Microarray Image Analysis (AMIA) Toolbox for MATLAB is a flexible, open-source microarray image analysis tool that allows the user to customize analysis of sets of microarray images. This tool provides several methods of identifying and quantify spot statistics, as well as extensive diagnostic statistics and images to identify poor data quality or processing. The open nature of this software allows researchers to understand the algorithms used to provide intensity estimates and to modify them easily if desired.

  1. N-acetylgalactosamine glycans function in cancer cell adhesion to endothelial cells: A role for truncated O-glycans in metastatic mechanisms.

    PubMed

    Bapu, Deepashree; Runions, John; Kadhim, Munira; Brooks, Susan Ann

    2016-06-01

    Failure in O-glycan chain extension exposing Tn antigen (GalNAc-O-Ser/Thr) is clinically associated with cancer metastasis. This study provides evidence of a functional role for aberrant GalNAc-glycans in cancer cell capture from blood flow and/or adhesion to endothelium. Adhesion of breast cancer cells to human umbilical vein endothelial cell monolayers was modelled under sweeping flow. Adhesion of metastatic, GalNAc glycan-rich, MCF7 and ZR 75 1 cells to endothelium increased over timepoints up to 1.5 hour, after which it plateaued. Adhesion was significantly inhibited (p < 0.001) when cell surface GalNAc-glycans were masked, an effect not seen in GalNAc glycan-poor, non-metastatic BT 474 cells. Masking irrelevant galactose- and mannose-glycans had no inhibitory effect. Imaging of cells post-adhesion over a 24 hour time course using confocal and scanning electron microscopy revealed that up to 6 hours post-adhesion, motile, rounded cancer cells featuring lamellipodia-like processes crawled on an intact endothelial monolayer. From 6-12 hours post-adhesion, cancer cells became stationary, adopted a smooth, circular flattened morphology, and endothelial cells retracted from around them leaving cleared zones in which the cancer cells proceeded to form colonies through cell division.

  2. THE ABRF MARG MICROARRAY SURVEY 2005: TAKING THE PULSE ON THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years microarray technology has evolved into a critical component of any discovery based program. Since 1999, the Association of Biomolecular Resource Facilities (ABRF) Microarray Research Group (MARG) has conducted biennial surveys designed to generate a pr...

  3. The multiple roles of epidermal growth factor repeat O-glycans in animal development

    PubMed Central

    Haltom, Amanda R; Jafar-Nejad, Hamed

    2015-01-01

    The epidermal growth factor (EGF)-like repeat is a common, evolutionarily conserved motif found in secreted proteins and the extracellular domain of transmembrane proteins. EGF repeats harbor six cysteine residues which form three disulfide bonds and help generate the three-dimensional structure of the EGF repeat. A subset of EGF repeats harbor consensus sequences for the addition of one or more specific O-glycans, which are initiated by O-glucose, O-fucose or O-N-acetylglucosamine. These glycans are relatively rare compared to mucin-type O-glycans. However, genetic experiments in model organisms and cell-based assays indicate that at least some of the glycosyltransferases involved in the addition of O-glycans to EGF repeats play important roles in animal development. These studies, combined with state-of-the-art biochemical and structural biology experiments have started to provide an in-depth picture of how these glycans regulate the function of the proteins to which they are linked. In this review, we will discuss the biological roles assigned to EGF repeat O-glycans and the corresponding glycosyltransferases. Since Notch receptors are the best studied proteins with biologically-relevant O-glycans on EGF repeats, a significant part of this review is devoted to the role of these glycans in the regulation of the Notch signaling pathway. We also discuss recently identified proteins other than Notch which depend on EGF repeat glycans to function properly. Several glycosyltransferases involved in the addition or elongation of O-glycans on EGF repeats are mutated in human diseases. Therefore, mechanistic understanding of the functional roles of these carbohydrate modifications is of interest from both basic science and translational perspectives. PMID:26175457

  4. Exquisite specificity of mitogenic lectin from Cephalosporium curvulum to core fucosylated N-glycans.

    PubMed

    Inamdar, Shashikala R; Eligar, Sachin M; Ballal, Suhas; Belur, Shivakumar; Kalraiya, Rajiv D; Swamy, Bale M

    2016-02-01

    Lectins are carbohydrate binding proteins that are gaining attention as important tools for the identification of specific glycan markers expressed during different stages of the cancer. We earlier reported the purification of a mitogenic lectin from human pathogenic fungus Cephalosporium curvulum (CSL) that has complex sugar specificity when analysed by hapten inhibition assay. In the present study, we report the fine sugar specificity of CSL as determined by glycan array analysis. The results revealed that CSL has exquisite specificity towards core fucosylated N-glycans. Fucosylated trimannosyl core is the basic structure required for the binding of CSL. The presence of fucose in the side chain further enhances the avidity of CSL towards such glycans. The affinity of CSL is drastically reduced towards the non-core fucosylated glycans, in spite of their side chain fucosylation. CSL showed no binding to the tested O-glycans and monosaccharides. These observations suggest the unique specificity of CSL towards core fucosylated N-glycans, which was further validated by binding of CSL to human colon cancer epithelial and hepatocarcinoma cell lines namely HT29 and HepG2, respectively, that are known to express core fucosylated N-glycans, using AOL and LCA as positive controls. LCA and AOL are fucose specific lectins that are currently being used clinically for the diagnosis of hepatocellular carcinomas. Most of the gastrointestinal markers express core fucosylated N-glycans. The high affinity and exclusive specificity of CSL towards α1-6 linkage of core fucosylated glycans compared to other fucose specific lectins, makes it a promising molecule that needs to be further explored for its application in the diagnosis of gastrointestinal cancer.

  5. Living Cell Microarrays: An Overview of Concepts

    PubMed Central

    Jonczyk, Rebecca; Kurth, Tracy; Lavrentieva, Antonina; Walter, Johanna-Gabriela; Scheper, Thomas; Stahl, Frank

    2016-01-01

    Living cell microarrays are a highly efficient cellular screening system. Due to the low number of cells required per spot, cell microarrays enable the use of primary and stem cells and provide resolution close to the single-cell level. Apart from a variety of conventional static designs, microfluidic microarray systems have also been established. An alternative format is a microarray consisting of three-dimensional cell constructs ranging from cell spheroids to cells encapsulated in hydrogel. These systems provide an in vivo-like microenvironment and are preferably used for the investigation of cellular physiology, cytotoxicity, and drug screening. Thus, many different high-tech microarray platforms are currently available. Disadvantages of many systems include their high cost, the requirement of specialized equipment for their manufacture, and the poor comparability of results between different platforms. In this article, we provide an overview of static, microfluidic, and 3D cell microarrays. In addition, we describe a simple method for the printing of living cell microarrays on modified microscope glass slides using standard DNA microarray equipment available in most laboratories. Applications in research and diagnostics are discussed, e.g., the selective and sensitive detection of biomarkers. Finally, we highlight current limitations and the future prospects of living cell microarrays. PMID:27600077

  6. Clustering Short Time-Series Microarray

    NASA Astrophysics Data System (ADS)

    Ping, Loh Wei; Hasan, Yahya Abu

    2008-01-01

    Most microarray analyses are carried out on static gene expressions. However, the dynamical study of microarrays has lately gained more attention. Most researches on time-series microarray emphasize on the bioscience and medical aspects but few from the numerical aspect. This study attempts to analyze short time-series microarray mathematically using STEM clustering tool which formally preprocess data followed by clustering. We next introduce the Circular Mould Distance (CMD) algorithm with combinations of both preprocessing and clustering analysis. Both methods are subsequently compared in terms of efficiencies.

  7. Marine sulfated glycans with serpin-unrelated anticoagulant properties.

    PubMed

    Glauser, Bianca F; Mourão, Paulo A S; Pomin, Vitor H

    2013-01-01

    Marine organisms are a rich source of sulfated polysaccharides with unique structures. Fucosylated chondroitin sulfate (FucCS) from the sea cucumber Ludwigothurea grisea and sulfated galactan from the red alga Botryocladia occidentalis are one of these unusual molecules. Besides their uncommon structures, they also exhibit high anticoagulant and antithrombotic effects. Earlier, it was considered that the anticoagulant activities of these two marine glycans were driven mainly by a catalytic serpin-dependent mechanism likewise the mammalian heparins. Its serpin-dependent anticoagulant action relies on promoting thrombin and/or factor Xa inhibition by their specific natural inhibitors (the serpins antithrombin and heparin cofactor II). However, as opposed to heparins, these two previously mentioned marine glycans were proved still capable in promoting coagulation inhibition using serpin-free plasmas. This puzzle observation was further investigated and clearly demonstrated that the cucumber FucCS and the red algal sulfated galactan have an unusual serpin-independent anticoagulant effect by inhibiting the formation of factor Xa and/or thrombin through the procoagulants tenase and prothrombinase complexes, respectively. These marine polysaccharides with unusual anticoagulant effects open clearly new perspectives for the development of new antithrombotic drugs as well as push the glycomics project.

  8. Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo

    PubMed Central

    Sawa, Masaaki; Hsu, Tsui-Ling; Itoh, Takeshi; Sugiyama, Masakazu; Hanson, Sarah R.; Vogt, Peter K.; Wong, Chi-Huey

    2006-01-01

    Glycomics is emerging as a new field for the biology of complex glycoproteins and glycoconjugates. The lack of versatile glycan-labeling methods has presented a major obstacle to visualizing at the cellular level and studying glycoconjugates. To address this issue, we developed a fluorescent labeling technique based on the Cu(I)-catalyzed [3 + 2] cycloaddition, or click chemistry, which allows rapid, versatile, and specific covalent labeling of cellular glycans bearing azide groups. The method entails generating a fluorescent probe from a nonfluorescent precursor, 4-ethynyl-N-ethyl-1,8-naphthalimide, by clicking the fluorescent trigger, the alkyne at the 4 position, with an azido-modified sugar. Using this click-activated fluorescent probe, we demonstrate incorporation of an azido-containing fucose analog into glycoproteins via the fucose salvage pathway. Distinct fluorescent signals were observed by flow cytometry when cells treated with 6-azidofucose were labeled with the click-activated fluorogenic probe or biotinylated alkyne. The intracellular localization of fucosylated glycoconjugates was visualized by using fluorescence microscopy. This technique will allow dynamic imaging of cellular fucosylation and facilitate studies of fucosylated glycoproteins and glycolipids. PMID:16895981

  9. DNA nanostructure-based universal microarray platform for high-efficiency multiplex bioanalysis in biofluids.

    PubMed

    Li, Zhenhua; Zhao, Bin; Wang, Dongfang; Wen, Yanli; Liu, Gang; Dong, Haoqing; Song, Shiping; Fan, Chunhai

    2014-10-22

    Microarrays of biomolecules have greatly promoted the development of the fields of genomics, proteomics, and clinical assays because of their remarkably parallel and high-throughput assay capability. Immobilization strategies for biomolecules on a solid support surface play a crucial role in the fabrication of high-performance biological microarrays. In this study, rationally designed DNA tetrahedra carrying three amino groups and one single-stranded DNA extension were synthesized by the self-assembly of four oligonucleotides, followed by high-performance liquid chromatography purification. We fabricated DNA tetrahedron-based microarrays by covalently coupling the DNA tetrahedron onto glass substrates. After their biorecognition capability was evaluated, DNA tetrahedron microarrays were utilized for the analysis of different types of bioactive molecules. The gap hybridization strategy, the sandwich configuration, and the engineering aptamer strategy were employed for the assay of miRNA biomarkers, protein cancer biomarkers, and small molecules, respectively. The arrays showed good capability to anchor capture biomolecules for improving biorecognition. Addressable and high-throughput analysis with improved sensitivity and specificity had been achieved. The limit of detection for let-7a miRNA, prostate specific antigen, and cocaine were 10 fM, 40 pg/mL, and 100 nM, respectively. More importantly, we demonstrated that the microarray platform worked well with clinical serum samples and showed good relativity with conventional chemical luminescent immunoassay. We have developed a novel approach for the fabrication of DNA tetrahedron-based microarrays and a universal DNA tetrahedron-based microarray platform for the detection of different types of bioactive molecules. The microarray platform shows great potential for clinical diagnosis.

  10. THE ABRF-MARG MICROARRAY SURVEY 2004: TAKING THE PULSE OF THE MICROARRAY FIELD

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. The goal of the surve...

  11. 2008 Microarray Research Group (MARG Survey): Sensing the State of Microarray Technology

    EPA Science Inventory

    Over the past several years, the field of microarrays has grown and evolved drastically. In its continued efforts to track this evolution and transformation, the ABRF-MARG has once again conducted a survey of international microarray facilities and individual microarray users. Th...

  12. Microarray analysis of gene expression in medicinal plant research.

    PubMed

    Youns, M; Efferth, T; Hoheisel, J D

    2009-10-01

    Expression profiling analysis offers great opportunities for the identification of novel molecular targets, drug discovery, development, and validation. The beauty of microarray analysis of gene expression is that it can be used to screen the expression of tens of thousands of genes in parallel and to identify appropriate molecular targets for therapeutic intervention. Toward identifying novel therapeutic options, natural products, notably from medicinal plants used in traditional Chinese medicine (TCM), have been thoroughly investigated. Increased knowledge of the molecular mechanisms of TCM-derived drugs could be achieved through application of modern molecular technologies including transcript profiling. In the present review, we introduce a brief introduction to the field of microarray technology and disclose its role in target identification and validation. Moreover, we provide examples for applications regarding molecular target discovery in medicinal plants derived TCM. This could be an attractive strategy for the development of novel and improved therapeutics.

  13. Lectin-based protein microarray analysis of differences in serum alpha-2-macroglobulin glycosylation between patients with colorectal cancer and persons without cancer.

    PubMed

    Šunderić, Miloš; Šedivá, Alena; Robajac, Dragana; Miljuš, Goran; Gemeiner, Peter; Nedić, Olgica; Katrlík, Jaroslav

    2016-07-01

    Glycosylation is co- and posttranslational modifications affecting proteins. The glycopattern changes are associated with changes in biological function and are involved in many diseases including cancer. We present the lectin-based protein microarray method enabling determination of differences in protein glycosylation. The method involves isolation of targeted protein from samples by immunoprecipitation, spotting of protein from multiple samples into arrays on a microarray slide, incubation with set of biotinylated lectins, the reaction with fluorescent conjugate of streptavidin, and detection of fluorescent intensities by microarray scanner. Lectin-based protein microarray was applied in investigation of differences in alpha-2-macroglobulin (α2M) glycosylation isolated from sera samples of healthy persons and patients with colorectal cancer (CC). From 14 lectins used in analysis, statistically significant differences (Student's t-test, P < 0.05) between two groups of samples (persons without cancer and CC patients) were found for 5 of them. α2M molecules isolated from sera of CC patients have higher content of α2,6 sialic acid, N-acetylglucosamine and mannose residues, and tri-/tetraantennary complex type high-mannose N-glycans. A novel lectin-based protein microarray developed and described can serve as a suitable analytical technique for sensitive, simple, fast, and high-throughput determination of differences in protein glycosylation isolated from serum or other samples.

  14. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  15. Assessing the reliability of amplified RNA used in microarrays: a DUMB table approach.

    PubMed

    Bearden, Edward D; Simpson, Pippa M; Peterson, Charlotte A; Beggs, Marjorie L

    2006-01-01

    A certain minimal amount of RNA from biological samples is necessary to perform a microarray experiment with suitable replication. In some cases, the amount of RNA available is insufficient, necessitating RNA amplification prior to target synthesis. However, there is some uncertainty about the reliability of targets that have been generated from amplified RNA, because of nonlinearity and preferential amplification. This current work develops a straightforward strategy to assess the reliability of microarray data obtained from amplified RNA. The tabular method we developed, which utilises a Down-Up-Missing-Below (DUMB) classification scheme, shows that microarrays generated with amplified RNA targets are reliable within constraints. There was an increase in false negatives because of the need for increased filtering. Furthermore, this analysis method is generic and can be broadly applied to evaluate all microarray data. A copy of the Microsoft Excel spreadsheet is available upon request from Edward Bearden.

  16. Plasma High-Mannose and Complex/Hybrid N-Glycans Are Associated with Hypercholesterolemia in Humans and Rabbits

    PubMed Central

    Bai, Liang; Li, Qianwei; Li, Lingmei; Lin, Yan; Zhao, Sihai; Wang, Weirong; Wang, Rong; Li, Yongqin; Yuan, Jiangbei; Wang, Chengjian; Wang, Zhongfu; Fan, Jianglin; Liu, Enqi

    2016-01-01

    N-glycans play important roles in various pathophysiological processes and can be used as clinical diagnosis markers. However, plasma N-glycans change and their pathophysiological significance in the setting of hypercholesterolemia, a major risk factor for atherosclerosis, is unknown. Here, we collected plasma from both hypercholesterolemic patients and cholesterol-fed hypercholesterolemic rabbits, and determined the changes in the whole-plasma N-glycan profile by electrospray ionization mass spectrometry. We found that both the hypercholesterolemic patients and rabbits showed a dramatic change in their plasma glycan profile. Compared with healthy subjects, the hypercholesterolemic patients exhibited higher plasma levels of a cluster of high-mannose and complex/hybrid N-glycans (mainly including undecorated or sialylated glycans), whereas only a few fucosylated or fucosylated and sialylated N-glycans were increased. Additionally, cholesterol-fed hypercholesterolemic rabbits also displayed increased plasma levels of high-mannose in addition to high complex/hybrid N-glycan levels. The whole-plasma glycan profiles revealed that the plasma N-glycan levels were correlated with the plasma cholesterol levels, implying that N-glycans may be a target for treatment of hypercholesterolemia. PMID:26999365

  17. Introducing N-glycans into natural products through a chemoenzymatic approach**

    PubMed Central

    Huang, Wei; Ochiai, Hirofumi; Zhang, Xinyu; Wang, Lai-Xi

    2008-01-01

    The present study describes an efficient chemoenzymatic method for introducing a core N-glycan of glycoprotein origin into various lipophilic natural products. It was found that the endo-β-N-acetylglucosaminidase from Arthrobactor protophormiae (Endo-A) had broad substrate specificity and can accommodate a wide range of glucose (Glc)- or N-acetylglucosamine (GlcNAc)-containing natural products as acceptors for transglycosylation, when an N-glycan oxazoline was used as a donor substrate. Using lithocholic acid as a model compound, we have shown that introduction of an N-glycan could be achieved by a two-step approach: chemical glycosylation to introduce a monosaccharide (Glc or GlcNAc) as a handle, and then Endo-A catalyzed transglycosylation to accomplish the site-specific N-glycan attachment. For those natural products that already carry terminal Glc or GlcNAc residues, direct enzymatic transglycosylation using sugar oxazoline as the donor substrate was achievable to introduce an N-glycan. It was also demonstrated that simultaneous double glycosylation could be fulfilled when the natural product contains two Glc residues. This chemoenzymatic method is concise, site-specific, and highly convergent. Because N-glycans of glycoprotein origin can serve as ligands for diverse lectins and cell-surface receptors, introduction of a defined N-glycan into biologically significant natural products may bestow novel properties onto these natural products for drug discovery and development. PMID:18805520

  18. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    DOE PAGES

    Hu, Liya; Ramani, Sasirekha; Czako, Rita; ...

    2015-09-30

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type IImore » precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.« less

  19. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice.

    PubMed

    Fu, Jianxin; Wei, Bo; Wen, Tao; Johansson, Malin E V; Liu, Xiaowei; Bradford, Emily; Thomsson, Kristina A; McGee, Samuel; Mansour, Lilah; Tong, Maomeng; McDaniel, J Michael; Sferra, Thomas J; Turner, Jerrold R; Chen, Hong; Hansson, Gunnar C; Braun, Jonathan; Xia, Lijun

    2011-04-01

    Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell-specific deficiency of core 1-derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1-derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1-derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase-specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC.

  20. LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition.

    PubMed

    van den Berg, Timo K; Honing, Henk; Franke, Niels; van Remoortere, Alexandra; Schiphorst, Wietske E C M; Liu, Fu-Tong; Deelder, André M; Cummings, Richard D; Hokke, Cornelis H; van Die, Irma

    2004-08-01

    Although Gal beta 1-4GlcNAc (LacNAc) moieties are the most common constituents of N-linked glycans on vertebrate proteins, GalNAc beta 1-4GlcNAc (LacdiNAc, LDN)-containing glycans are widespread in invertebrates, such as helminths. We postulated that LDN might be a molecular pattern for recognition of helminth parasites by the immune system. Using LDN-based affinity chromatography and mass spectrometry, we have identified galectin-3 as the major LDN-binding protein in macrophages. By contrast, LDN binding was not observed with galectin-1. Surface plasmon resonance (SPR) analysis and a solid phase binding assay demonstrated that galectin-3 binds directly to neoglycoconjugates carrying LDN glycans. In addition, galectin-3 bound to Schistosoma mansoni soluble egg Ags and a mAb against the LDN glycan inhibited this binding, suggesting that LDN glycans within S. mansoni soluble egg Ags contribute to galectin-3 binding. Immunocytochemistry demonstrated high levels of galectin-3 in liver granulomas of S. mansoni-infected hamsters, and a colocalization of galectin-3 and LDN glycans was observed on the parasite eggshells. Finally, we demonstrate that galectin-3 can mediate recognition and phagocytosis of LDN-coated particles by macrophages. These findings provide evidence that LDN-glycans constitute a parasite pattern for galectin-3-mediated immune recognition.

  1. Glycomics: an integrated systems approach to structure-function relationships of glycans.

    PubMed

    Raman, Rahul; Raguram, S; Venkataraman, Ganesh; Paulson, James C; Sasisekharan, Ram

    2005-11-01

    In comparison with genomics and proteomics, the advancement of glycomics has faced unique challenges in the pursuit of developing analytical and biochemical tools and biological readouts to investigate glycan structure-function relationships. Glycans are more diverse in terms of chemical structure and information density than are DNA and proteins. This diversity arises from glycans' complex nontemplate-based biosynthesis, which involves several enzymes and isoforms of these enzymes. Consequently, glycans are expressed as an 'ensemble' of structures that mediate function. Moreover, unlike protein-protein interactions, which can be generally viewed as 'digital' in regulating function, glycan-protein interactions impinge on biological functions in a more 'analog' fashion that can in turn 'fine-tune' a biological response. This fine-tuning by glycans is achieved through the graded affinity, avidity and multivalency of their interactions. Given the importance of glycomics, this review focuses on areas of technologies and the importance of developing a bioinformatics platform to integrate the diverse datasets generated using the different technologies to allow a systems approach to glycan structure-function relationships.

  2. Immunization with outer membrane vesicles displaying designer glycotopes yields class-switched, glycan-specific antibodies

    PubMed Central

    Valentine, Jenny L.; Chen, Linxiao; Perregaux, Emily C.; Weyant, Kevin B.; Rosenthal, Joseph A.; Heiss, Christian; Azadi, Parastoo; Fisher, Adam C.; Putnam, David; Moe, Gregory R.; Merritt, Judith H.; DeLisa, Matthew P.

    2016-01-01

    Summary The development of antibodies against specific glycan epitopes poses a significant challenge due to difficulties obtaining desired glycans at sufficient quantity and purity, and the fact that glycans are usually weakly immunogenic. To address this challenge, we leveraged the potent immunostimulatory activity of bacterial outer membrane vesicles (OMVs) to deliver designer glycan epitopes to the immune system. This approach involved heterologous expression of two clinically important glycans, namely polysialic acid (PSA) and Thomsen-Friedenreich antigen (T antigen) in hypervesiculating strains of non-pathogenic Escherichia coli. The resulting glycOMVs displayed structural mimics of PSA or T antigen on their surfaces, and induced high titers of glycan-specific IgG antibodies following immunization in mice. In the case of PSA glycOMVs, serum antibodies potently killed Neisseria meningitidis serogroup B (MenB), whose outer capsule is PSA, in a serum bactericidal assay. These findings demonstrate the potential of glycOMVs for inducing class-switched, humoral immune responses against glycan antigens. PMID:27341433

  3. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

    SciTech Connect

    Doores, Katie J.; Fulton, Zara; Hong, Vu; Patel, Mitul K.; Scanlan, Christopher N.; Wormald, Mark R.; Finn, M.G.; Burton, Dennis R.; Wilson, Ian A.; Davis, Benjamin G.

    2011-08-24

    Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.

  4. Presence of galactosylated core fucose on N-glycans in the planaria Dugesia japonica.

    PubMed

    Paschinger, Katharina; Razzazi-Fazeli, Ebrahim; Furukawa, Kiyoshi; Wilson, Iain B H

    2011-06-01

    Planarial species are of especial interest to biologists due to the phenomenon of pluripotency and, in comparison to other developmental processes, it can be hypothesised that glycan-lectin interactions may play a role. In order to examine the N-glycans of one of these organisms, Dugesia japonica, peptide:N-glycosidase A was employed and the released glycans were subject to pyridylamination, HPLC and mass spectrometric analysis. A range of oligomannosidic glycans was observed with a trimethylated Man(5) GlcNAc(2) structure being the dominant species. Three glycans were also observed to contain deoxyhexose; in particular, a glycan with the composition Hex(4) HexNAc(2) Fuc(1) Me(2) was revealed by exoglycosidase digestion, in combination with MS/MS, to contain a galactosylated core α1,6-fucose residue, whereas this core modification was found to be capped with a methylhexose residue in the case of a Hex(5) HexNAc(2) Fuc(1) Me(3) structure. This is the first report of these types of structures in a platyhelminth and indicates that the 'GalFuc' modification of N-glycans is not just restricted to molluscs and nematodes.

  5. ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY

    PubMed Central

    Mechref, Yehia

    2012-01-01

    The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203

  6. Structural basis of glycan specificity in neonate-specific bovine-human reassortant rotavirus

    SciTech Connect

    Hu, Liya; Ramani, Sasirekha; Czako, Rita; Sankaran, Banumathi; Yu, Ying; Smith, David F.; Cummings, Richard D.; Estes, Mary K.; Venkataram Prasad, B. V.

    2015-09-30

    We report that strain-dependent variation of glycan recognition during initial cell attachment of viruses is a critical determinant of host specificity, tissue-tropism and zoonosis. Rotaviruses (RVs), which cause life-threatening gastroenteritis in infants and children, display significant genotype-dependent variations in glycan recognition resulting from sequence alterations in the VP8* domain of the spike protein VP4. The structural basis of this genotype-dependent glycan specificity, particularly in human RVs, remains poorly understood. Here, from crystallographic studies, we show how genotypic variations configure a novel binding site in the VP8* of a neonate-specific bovine-human reassortant to uniquely recognize either type I or type II precursor glycans, and to restrict type II glycan binding in the bovine counterpart. In conclusion, such a distinct glycan-binding site that allows differential recognition of the precursor glycans, which are developmentally regulated in the neonate gut and abundant in bovine and human milk provides a basis for age-restricted tropism and zoonotic transmission of G10P[11] rotaviruses.

  7. Tissue Microarrays in Clinical Oncology

    PubMed Central

    Voduc, David; Kenney, Challayne; Nielsen, Torsten O.

    2008-01-01

    The tissue microarray is a recently-implemented, high-throughput technology for the analysis of molecular markers in oncology. This research tool permits the rapid assessment of a biomarker in thousands of tumor samples, using commonly available laboratory assays such as immunohistochemistry and in-situ hybridization. Although introduced less than a decade ago, the TMA has proven to be invaluable in the study of tumor biology, the development of diagnostic tests, and the investigation of oncological biomarkers. This review describes the impact of TMA-based research in clinical oncology and its potential future applications. Technical aspects of TMA construction, and the advantages and disadvantages inherent to this technology are also discussed. PMID:18314063

  8. Analysis of DNA microarray expression data.

    PubMed

    Simon, Richard

    2009-06-01

    DNA microarrays are powerful tools for studying biological mechanisms and for developing prognostic and predictive classifiers for identifying the patients who require treatment and are best candidates for specific treatments. Because microarrays produce so much data from each specimen, they offer great opportunities for discovery and great dangers or producing misleading claims. Microarray based studies require clear objectives for selecting cases and appropriate analysis methods. Effective analysis of microarray data, where the number of measured variables is orders of magnitude greater than the number of cases, requires specialized statistical methods which have recently been developed. Recent literature reviews indicate that serious problems of analysis exist a substantial proportion of publications. This manuscript attempts to provide a non-technical summary of the key principles of statistical design and analysis for studies that utilize microarray expression profiling.

  9. Microarray Applications in Microbial Ecology Research.

    SciTech Connect

    Gentry, T.; Schadt, C.; Zhou, J.

    2006-04-06

    Microarray technology has the unparalleled potential tosimultaneously determine the dynamics and/or activities of most, if notall, of the microbial populations in complex environments such as soilsand sediments. Researchers have developed several types of arrays thatcharacterize the microbial populations in these samples based on theirphylogenetic relatedness or functional genomic content. Several recentstudies have used these microarrays to investigate ecological issues;however, most have only analyzed a limited number of samples withrelatively few experiments utilizing the full high-throughput potentialof microarray analysis. This is due in part to the unique analyticalchallenges that these samples present with regard to sensitivity,specificity, quantitation, and data analysis. This review discussesspecific applications of microarrays to microbial ecology research alongwith some of the latest studies addressing the difficulties encounteredduring analysis of complex microbial communities within environmentalsamples. With continued development, microarray technology may ultimatelyachieve its potential for comprehensive, high-throughput characterizationof microbial populations in near real-time.

  10. In control: systematic assessment of microarray performance.

    PubMed

    van Bakel, Harm; Holstege, Frank C P

    2004-10-01

    Expression profiling using DNA microarrays is a powerful technique that is widely used in the life sciences. How reliable are microarray-derived measurements? The assessment of performance is challenging because of the complicated nature of microarray experiments and the many different technology platforms. There is a mounting call for standards to be introduced, and this review addresses some of the issues that are involved. Two important characteristics of performance are accuracy and precision. The assessment of these factors can be either for the purpose of technology optimization or for the evaluation of individual microarray hybridizations. Microarray performance has been evaluated by at least four approaches in the past. Here, we argue that external RNA controls offer the most versatile system for determining performance and describe how such standards could be implemented. Other uses of external controls are discussed, along with the importance of probe sequence availability and the quantification of labelled material.

  11. N-linked glycans of the human insulin receptor and their distribution over the crystal structure.

    PubMed

    Sparrow, Lindsay G; Lawrence, Michael C; Gorman, Jeffrey J; Strike, Phillip M; Robinson, Christine P; McKern, Neil M; Ward, Colin W

    2008-04-01

    The human insulin receptor (IR) homodimer is heavily glycosylated and contains a total of 19 predicted N-linked glycosylation sites in each monomer. The recent crystal structure of the IR ectodomain shows electron density consistent with N-linked glycosylation at the majority of sites present in the construct. Here, we describe a refined structure of the IR ectodomain that incorporates all of the N-linked glycans and reveals the extent to which the attached glycans mask the surface of the IR dimer from interaction with antibodies or other potential therapeutic binding proteins. The usefulness of Fab complexation in the crystallization of heavily glycosylated proteins is also discussed. The compositions of the glycans on IR expressed in CHO-K1 cells and the glycosylation deficient Lec8 cell line were determined by protease digestion, glycopeptide purification, amino acid sequence analysis, and mass spectrometry. Collectively the data reveal: multiple species of complex glycan at residues 25, 255, 295, 418, 606, 624, 742, 755, and 893 (IR-B numbering); multiple species of high-mannose glycan at residues 111 and 514; a single species of complex glycan at residue 671; and a single species of high-mannose glycan at residue 215. Residue 16 exhibited a mixture of complex, hybrid, and high-mannose glycan species. Of the remaining five predicted N-linked sites, those at residues 397 and 906 were confirmed by amino acid sequencing to be glycosylated, while that at residue 78 and the atypical (NKC) site at residue 282 were not glycosylated. The peptide containing the final site at residue 337 was not recovered but is seen to be glycosylated in the electron density maps of the IR ectodomain. The model of the fully glycosylated IR reveals that the sites carrying high-mannose glycans lie at positions of relatively low steric accessibility.

  12. Automated Glycan Sequencing from Tandem Mass Spectra of N-Linked Glycopeptides.

    PubMed

    Yu, Chuan-Yih; Mayampurath, Anoop; Zhu, Rui; Zacharias, Lauren; Song, Ehwang; Wang, Lei; Mechref, Yehia; Tang, Haixu

    2016-06-07

    Mass spectrometry has become a routine experimental tool for proteomic biomarker analysis of human blood samples, partly due to the large availability of informatics tools. As one of the most common protein post-translational modifications (PTMs) in mammals, protein glycosylation has been observed to alter in multiple human diseases and thus may potentially be candidate markers of disease progression. While mass spectrometry instrumentation has seen advancements in capabilities, discovering glycosylation-related markers using existing software is currently not straightforward. Complete characterization of protein glycosylation requires the identification of intact glycopeptides in samples, including identification of the modification site as well as the structure of the attached glycans. In this paper, we present GlycoSeq, an open-source software tool that implements a heuristic iterated glycan sequencing algorithm coupled with prior knowledge for automated elucidation of the glycan structure within a glycopeptide from its collision-induced dissociation tandem mass spectrum. GlycoSeq employs rules of glycosidic linkage as defined by glycan synthetic pathways to eliminate improbable glycan structures and build reasonable glycan trees. We tested the tool on two sets of tandem mass spectra of N-linked glycopeptides cell lines acquired from breast cancer patients. After employing enzymatic specificity within the N-linked glycan synthetic pathway, the sequencing results of GlycoSeq were highly consistent with the manually curated glycan structures. Hence, GlycoSeq is ready to be used for the characterization of glycan structures in glycopeptides from MS/MS analysis. GlycoSeq is released as open source software at https://github.com/chpaul/GlycoSeq/ .

  13. Assessment of glycan interactions of clinical and avian isolates of Campylobacter jejuni

    PubMed Central

    2013-01-01

    Background Campylobacter jejuni strain 11168 was demonstrated to have a broad specificity for eukaryotic surface glycosylation using glycan array analysis. The initial screen indicated that sialic acid and mannose are important binding partners after environmental stress, while galactose and fucose structures are likely to be involved in persistent infection. Results In this broader study, five additional human/clinical isolates and six chicken isolates were fully assessed to determine their glycan binding capacity using an extended glycan array. C. jejuni 11168 was rescreened here due to the presence of glycoaminoglycan (GAG) and other structures that were not available on our previous glycan array. The current array analysis of additional C. jejuni strains confirmed the growth condition dependent differences in glycan binding that was previously observed for C. jejuni 11168. We noted strain to strain variations, particularly for the human isolates C. jejuni 520 and 81116 and the chicken isolate C. jejuni 331, with the majority of differences observed in galactose, mannose and GAG binding. Chicken isolates were found to bind to a broader range of glycans compared to the human isolates, recognising branched mannose and carageenan (red seaweed) glycans. Glycan array data was confirmed using cell-based lectin inhibition assays with the fucose (UEA-I) and mannose (ConA) binding lectins. Conclusions This study confirms that all C. jejuni strains tested bind to a broad range of glycans, with the majority of strains (all except 81116) altering recognition of sialic acid and mannose after environmental stress. Galactose and fucose structures were bound best by all strains when C. jejuni was grown under host like conditions confirming the likelihood of these structures being involved in persistent infection. PMID:24119179

  14. Enhanced sensitivity of LC-MS analysis of permethylated N-glycans through online purification.

    PubMed

    Desantos-Garcia, Janie L; Khalil, Sarah I; Hussein, Ahmed; Hu, Yunli; Mechref, Yehia

    2011-12-01

    Aberrant glycosylation of proteins and lipids has been implicated in many human diseases, thus prompting the need for reliable analytical methods that permit dependable quantification of glycans originating from biological specimens. MS of permethylated glycans is currently employed to monitor disease-related aberrant glycosylation of proteins and lipids. However, enhancing the sensitivity of this type of analysis is still needed. Here, analysis of permethylated glycans at enhanced sensitivity is attained through miniaturized solid-phase permethylation and online solid-phase purification. Solid-phase permethylation method was miniaturized by reducing the amount of sodium hydroxide beads (one-third the original amount) packed in microspin columns. The efficiency of glycan permethylation was not adversely affected by this reduction. Online solid-phase purification of permethylated N-glycans derived from model glycoproteins, such as fetuin, α-1 acid glycoprotein and ribonuclease B, offered more sensitive and reproducible results than offline liquid-liquid and solid-phase extractions. Online solid-phase purification method described here permitted a 75% increase in signal intensities of permethylated glycans relative to offline purification methods. This is mainly due to the minimized sample handling associated with an online cleaning procedure. The efficiency and utility of online solid-phase purification was also demonstrated here for N-glycans derived from human blood serum. Online solid-phase purification permitted the detection of 73 N-glycan structures, while only 63 glycan structures were detected in the case of samples purified through liquid-liquid extraction. The intensities of the 63 structures that were detected in both cases were 75% higher for samples that were purified through the online method.

  15. Chaotic mixer improves microarray hybridization.

    PubMed

    McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

    2004-02-15

    Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

  16. Suggestive Evidence for Darwinian Selection against Asparagine-Linked Glycans of Plasmodium falciparum and Toxoplasma gondii ▿ †

    PubMed Central

    Bushkin, G. Guy; Ratner, Daniel M.; Cui, Jike; Banerjee, Sulagna; Duraisingh, Manoj T.; Jennings, Cameron V.; Dvorin, Jeffrey D.; Gubbels, Marc-Jan; Robertson, Seth D.; Steffen, Martin; O'Keefe, Barry R.; Robbins, Phillips W.; Samuelson, John

    2010-01-01

    We are interested in asparagine-linked glycans (N-glycans) of Plasmodium falciparum and Toxoplasma gondii, because their N-glycan structures have been controversial and because we hypothesize that there might be selection against N-glycans in nucleus-encoded proteins that must pass through the endoplasmic reticulum (ER) prior to threading into the apicoplast. In support of our hypothesis, we observed the following. First, in protists with apicoplasts, there is extensive secondary loss of Alg enzymes that make lipid-linked precursors to N-glycans. Theileria makes no N-glycans, and Plasmodium makes a severely truncated N-glycan precursor composed of one or two GlcNAc residues. Second, secreted proteins of Toxoplasma, which uses its own 10-sugar precursor (Glc3Man5GlcNAc2) and the host 14-sugar precursor (Glc3Man9GlcNAc2) to make N-glycans, have very few sites for N glycosylation, and there is additional selection against N-glycan sites in its apicoplast-targeted proteins. Third, while the GlcNAc-binding Griffonia simplicifolia lectin II labels ER, rhoptries, and surface of plasmodia, there is no apicoplast labeling. Similarly, the antiretroviral lectin cyanovirin-N, which binds to N-glycans of Toxoplasma, labels ER and rhoptries, but there is no apicoplast labeling. We conclude that possible selection against N-glycans in protists with apicoplasts occurs by eliminating N-glycans (Theileria), reducing their length (Plasmodium), or reducing the number of N-glycan sites (Toxoplasma). In addition, occupation of N-glycan sites is markedly reduced in apicoplast proteins versus some secretory proteins in both Plasmodium and Toxoplasma. PMID:19783771

  17. Neonatal Gut Microbiota and Human Milk Glycans Cooperate to Attenuate Infection and Inflammation.

    PubMed

    Newburg, David S; He, Yingying

    2015-12-01

    Glycans of the intestinal mucosa and oligosaccharides of human milk influence the early colonization of the infant gut and establishment of mucosal homeostasis, and differences in colonization of the gut influence the ontogeny of glycans on the surface of the intestinal mucosa, proinflammatory signaling, homeostasis, and resilience to insult. This interkingdom reciprocal interaction is typical of a mutualistic symbiotic relationship. The period in which the infant gut most needs protection from hypersensitive inflammation overlaps with the recommended period of exclusive nursing; electively substituting artificial formula that lacks human milk protective glycans seems ill advised, especially for premature infants.

  18. Sialidase specificity determined by chemoselective modification of complex sialylated glycans.

    PubMed

    Parker, Randy B; McCombs, Janet E; Kohler, Jennifer J

    2012-09-21

    Sialidases hydrolytically remove sialic acids from sialylated glycoproteins and glycolipids. Sialidases are widely distributed in nature and sialidase-mediated desialylation is implicated in normal and pathological processes. However, mechanisms by which sialidases exert their biological effects remain obscure, in part because sialidase substrate preferences are poorly defined. Here we report the design and implementation of a sialidase substrate specificity assay based on chemoselective labeling of sialosides. We show that this assay identifies components of glycosylated substrates that contribute to sialidase specificity. We demonstrate that specificity of sialidases can depend on structure of the underlying glycan, a characteristic difficult to discern using typical sialidase assays. Moreover, we discovered that Streptococcus pneumoniae sialidase NanC strongly prefers sialosides containing the Neu5Ac form of sialic acid versus those that contain Neu5Gc. We propose using this approach to evaluate sialidase preferences for diverse potential substrates.

  19. Fc glycan-modulated immunoglobulin G effector functions.

    PubMed

    Quast, Isaak; Lünemann, Jan D

    2014-07-01

    Immunoglobulin G (IgG) molecules are glycoproteins and residues in the sugar moiety attached to the IgG constant fragment (Fc) are essential for IgG functionality such as binding to cellular Fc receptors and complement activation. The core of this sugar moiety consists of a bi-antennary heptameric structure of mannose and N-acetylglucosamine (GlcNAc), further decorated with terminal and branching residues including galactose, sialic acid, fucose, and GlcNAc. Presence or absence of distinct residues such as fucose and sialic acid can dramatically alter pro- and anti-inflammatory IgG activities which could be harnessed for immunotherapeutic purposes. Here we review recent advances in understanding the role of the IgG-Fc glycan during immune responses and for immunotherapy with a focus on sialic acid and intravenous immunoglobulin (IVIG) treatment.

  20. Glycan complexity dictates microbial resource allocation in the large intestine

    PubMed Central

    Rogowski, Artur; Briggs, Jonathon A.; Mortimer, Jennifer C.; Tryfona, Theodora; Terrapon, Nicolas; Lowe, Elisabeth C.; Baslé, Arnaud; Morland, Carl; Day, Alison M.; Zheng, Hongjun; Rogers, Theresa E.; Thompson, Paul; Hawkins, Alastair R.; Yadav, Madhav P.; Henrissat, Bernard; Martens, Eric C.; Dupree, Paul; Gilbert, Harry J.; Bolam, David N.

    2015-01-01

    The structure of the human gut microbiota is controlled primarily through the degradation of complex dietary carbohydrates, but the extent to which carbohydrate breakdown products are shared between members of the microbiota is unclear. We show here, using xylan as a model, that sharing the breakdown products of complex carbohydrates by key members of the microbiota, such as Bacteroides ovatus, is dependent on the complexity of the target glycan. Characterization of the extensive xylan degrading apparatus expressed by B. ovatus reveals that the breakdown of the polysaccharide by the human gut microbiota is significantly more complex than previous models suggested, which were based on the deconstruction of xylans containing limited monosaccharide side chains. Our report presents a highly complex and dynamic xylan degrading apparatus that is fine-tuned to recognize the different forms of the polysaccharide presented to the human gut microbiota. PMID:26112186

  1. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  2. Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation

    PubMed Central

    Nie, Huan; Liu, Xia; Zhang, Yubao; Li, Tingting; Zhan, Chao; Huo, Wenjuan; He, Anshun; Yao, Yuanfei; Jin, Yu; Qu, Youpeng; Sun, Xue-Long; Li, Yu

    2015-01-01

    Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p < 0.01). Additionally, the change of NA3Fb was not influenced by Hepatitis B virus (HBV)and cirrhosis. Furthermore, the mRNA and protein expression of N-acetylglucosaminyltransferase IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC. PMID:26537865

  3. Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation.

    PubMed

    Nie, Huan; Liu, Xia; Zhang, Yubao; Li, Tingting; Zhan, Chao; Huo, Wenjuan; He, Anshun; Yao, Yuanfei; Jin, Yu; Qu, Youpeng; Sun, Xue-Long; Li, Yu

    2015-11-05

    Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p < 0.01). Additionally, the change of NA3Fb was not influenced by Hepatitis B virus (HBV)and cirrhosis. Furthermore, the mRNA and protein expression of N-acetylglucosaminyltransferase IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC.

  4. Use of Genomic DNA as A Reference in DNA Microarrays

    SciTech Connect

    Yang, Yunfeng

    2009-01-01

    DNA microarray has become a mainstream technology to explore gene expression profiles, identify novel genes involved in a biological process of interest and predict their function, and determine biomarkers that are relevant to a given phenotype or disease. Typical two-channel microarray studies use an experimental design called the complementary DNA (cDNA) reference method, in which samples from test and control conditions are compared directly on a microarray slide. A substantial limitation of this strategy is that it is nearly impossible to compare data between experiments because the reference sample composition is subjected to changes at the level of experimental design and thereby not consistent from one experiment to another. Using genomic DNA as common reference will effectively overcome this limitation. This chapter describes detailed methods to prepare genomic DNA of high quality, label with fluorescent dye, co-hybridize with cDNA samples, and the subsequent data analyses. In addition, notes are provided to help the readers to obtain optimal results using the procedure.

  5. A New Distribution Family for Microarray Data †

    PubMed Central

    Kelmansky, Diana Mabel; Ricci, Lila

    2017-01-01

    The traditional approach with microarray data has been to apply transformations that approximately normalize them, with the drawback of losing the original scale. The alternative standpoint taken here is to search for models that fit the data, characterized by the presence of negative values, preserving their scale; one advantage of this strategy is that it facilitates a direct interpretation of the results. A new family of distributions named gpower-normal indexed by p∈R is introduced and it is proven that these variables become normal or truncated normal when a suitable gpower transformation is applied. Expressions are given for moments and quantiles, in terms of the truncated normal density. This new family can be used to model asymmetric data that include non-positive values, as required for microarray analysis. Moreover, it has been proven that the gpower-normal family is a special case of pseudo-dispersion models, inheriting all the good properties of these models, such as asymptotic normality for small variances. A combined maximum likelihood method is proposed to estimate the model parameters, and it is applied to microarray and contamination data. R codes are available from the authors upon request. PMID:28208652

  6. Chemical microarray: a new tool for drug screening and discovery.

    PubMed

    Ma, Haiching; Horiuchi, Kurumi Y

    2006-07-01

    HTS with microtiter plates has been the major tool used in the pharmaceutical industry to explore chemical diversity space and to identify active compounds and pharmacophores for specific biological targets. However, HTS faces a daunting challenge regarding the fast-growing numbers of drug targets arising from genomic and proteomic research, and large chemical libraries generated from high-throughput synthesis. There is an urgent need to find new ways to profile the activity of large numbers of chemicals against hundreds of biological targets in a fast, low-cost fashion. Chemical microarray can rise to this challenge because it has the capability of identifying and evaluating small molecules as potential therapeutic reagents. During the past few years, chemical microarray technology, with different surface chemistries and activation strategies, has generated many successes in the evaluation of chemical-protein interactions, enzyme activity inhibition, target identification, signal pathway elucidation and cell-based functional analysis. The success of chemical microarray technology will provide unprecedented possibilities and capabilities for parallel functional analysis of tremendous amounts of chemical compounds.

  7. Microarray-integrated optoelectrofluidic immunoassay system.

    PubMed

    Han, Dongsik; Park, Je-Kyun

    2016-05-01

    A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection.

  8. MARS: Microarray analysis, retrieval, and storage system

    PubMed Central

    Maurer, Michael; Molidor, Robert; Sturn, Alexander; Hartler, Juergen; Hackl, Hubert; Stocker, Gernot; Prokesch, Andreas; Scheideler, Marcel; Trajanoski, Zlatko

    2005-01-01

    Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System) provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS), a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at . PMID:15836795

  9. A common glycan structure on immunoglobulin G for enhancement of effector functions

    PubMed Central

    Lin, Chin-Wei; Tsai, Ming-Hung; Li, Shiou-Ting; Tsai, Tsung-I; Chu, Kuo-Ching; Liu, Ying-Chih; Lai, Meng-Yu; Wu, Chia-Yu; Tseng, Yung-Chieh; Shivatare, Sachin S.; Wang, Chia-Hung; Chao, Ping; Wang, Shi-Yun; Shih, Hao-Wei; Zeng, Yi-Fang; You, Tsai-Hong; Liao, Jung-Yu; Tu, Yu-Chen; Lin, Yih-Shyan; Chuang, Hong-Yang; Chen, Chia-Lin; Tsai, Charng-Sheng; Huang, Chiu-Chen; Lin, Nan-Horng; Ma, Che; Wu, Chung-Yi; Wong, Chi-Huey

    2015-01-01

    Antibodies have been developed as therapeutic agents for the treatment of cancer, infection, and inflammation. In addition to binding activity toward the target, antibodies also exhibit effector-mediated activities through the interaction of the Fc glycan and the Fc receptors on immune cells. To identify the optimal glycan structures for individual antibodies with desired activity, we have developed an effective method to modify the Fc-glycan structures to a homogeneous glycoform. In this study, it was found that the biantennary N-glycan structure with two terminal alpha-2,6-linked sialic acids is a common and optimized structure for the enhancement of antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antiinflammatory activities. PMID:26253764

  10. GlycoBase and autoGU: resources for interpreting HPLC-glycan data.

    PubMed

    Campbell, Matthew P; Royle, Lousie; Rudd, Pauline M

    2015-01-01

    The biological relevance of protein glycosylation has made glycomics, the comprehensive study to identify all glycans in an organism, indispensable in many research fields. Determining the structure and functional relationship of glycoproteins requires the comprehensive characterization of glycan structures by a range of analytical methods. High performance liquid chromatography (HPLC) is a well-established technology commonly used for the complete structural elucidation of N- and O-linked glycans; however, the analysis of data is a major bottleneck and robust bioinformatic solutions are required. This chapter describes the availability of databases and tools, GlycoBase and autoGU developed in conjunction with the EUROCarbDB initiative, to assist the interpretation of HPLC-glycan data collections.

  11. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies

    PubMed Central

    Pritchard, Laura K.; Spencer, Daniel I. R.; Royle, Louise; Bonomelli, Camille; Seabright, Gemma E.; Behrens, Anna-Janina; Kulp, Dan; Menis, Sergey; Krumm, Stefanie A.; Dunlop, D. Cameron; Crispin, Daniel J.; Bowden, Thomas A.; Ward, Andrew B.; Schief, William R.; Doores, Katie J.; Crispin, Max

    2015-01-01

    The envelope spike of HIV-1 employs a ‘glycan shield’ to protect itself from antibody-mediated neutralization. Paradoxically, however, potent broadly neutralizing antibodies (bnAbs) have been isolated which target this shield. The unusually high glycan density on the gp120 subunit limits processing during biosynthesis, leaving a region of under-processed oligomannose-type structures which is a primary target of these bnAbs. Here we investigate the contribution of individual glycosylation sites to formation of this so-called intrinsic mannose patch. Deletion of individual sites has a limited effect on the overall size of the intrinsic mannose patch but leads to changes in the processing of neighboring glycans. These structural changes are largely tolerated by a panel of glycan-dependent bnAbs targeting these regions, indicating a degree of plasticity in their recognition. These results support the intrinsic mannose patch as a stable target for vaccine design. PMID:26105115

  12. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates.

    PubMed

    Simpson, David J; Sacher, Jessica C; Szymanski, Christine M

    2015-10-01

    There is an unprecedented interest in glycobiology due to the increasing appreciation of its impact on all aspects of life. Likewise, bacteriophage biology is enjoying a new renaissance as the post-antibiotic era fuels the search for novel ways to control harmful bacteria. Phages have spent the last 3 billion years developing ways of recognizing and manipulating bacterial surface glycans. Therefore, phages comprise a massive reservoir of glycan-binding and -hydrolyzing proteins with the potential to be exploited for glycan analysis, bacterial diagnostics and therapeutics. We discuss phage tail proteins that recognize bacterial surface polysaccharides, endolysins that bind and cleave peptidoglycan, Ig-like proteins that attach to mucin glycans, and phage effector proteins that recognize both bacterial and eukaryotic oligosaccharides.

  13. Progress in the application of DNA microarrays.

    PubMed Central

    Lobenhofer, E K; Bushel, P R; Afshari, C A; Hamadeh, H K

    2001-01-01

    Microarray technology has been applied to a variety of different fields to address fundamental research questions. The use of microarrays, or DNA chips, to study the gene expression profiles of biologic samples began in 1995. Since that time, the fundamental concepts behind the chip, the technology required for making and using these chips, and the multitude of statistical tools for analyzing the data have been extensively reviewed. For this reason, the focus of this review will be not on the technology itself but on the application of microarrays as a research tool and the future challenges of the field. PMID:11673116

  14. N-Glycans of Phaeodactylum tricornutum Diatom and Functional Characterization of Its N-Acetylglucosaminyltransferase I Enzyme*

    PubMed Central

    Baïet, Bérengère; Burel, Carole; Saint-Jean, Bruno; Louvet, Romain; Menu-Bouaouiche, Laurence; Kiefer-Meyer, Marie-Christine; Mathieu-Rivet, Elodie; Lefebvre, Thomas; Castel, Hélène; Carlier, Aude; Cadoret, Jean-Paul; Lerouge, Patrice; Bardor, Muriel

    2011-01-01

    N-Glycosylation, a major co- and post-translational event in the synthesis of proteins in eukaryotes, is unknown in aquatic photosynthetic microalgae. In this paper, we describe the N-glycosylation pathway in the diatom Phaeodactylum tricornutum. Bio-informatic analysis of its genome revealed the presence of a complete set of sequences potentially encoding for proteins involved in the synthesis of the lipid-linked Glc3Man9GlcNAc2-PP-dolichol N-glycan, some subunits of the oligosaccharyltransferase complex, as well as endoplasmic reticulum glucosidases and chaperones required for protein quality control and, finally, the α-mannosidase I involved in the trimming of the N-glycan precursor into Man-5 N-glycan. Moreover, one N-acetylglucosaminyltransferase I, a Golgi glycosyltransferase that initiates the synthesis of complex type N-glycans, was predicted in the P. tricornutum genome. We demonstrated that this gene encodes for an active N-acetylglucosaminyltransferase I, which is able to restore complex type N-glycans maturation in the Chinese hamster ovary Lec1 mutant, defective in its endogeneous N-acetylglucosaminyltransferase I. Consistent with these data, the structural analyses of N-linked glycans demonstrated that P. tricornutum proteins carry mainly high mannose type N-glycans ranging from Man-5 to Man-9. Although representing a minor glycan population, paucimannose N-glycans were also detected, suggesting the occurrence of an N-acetylglucosaminyltransferase I-dependent maturation of N-glycans in this diatom. PMID:21169367

  15. Profiling N-glycans of the egg jelly coat of the sea urchin Paracentrotus lividus by MALDI-TOF mass spectrometry and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectrometry systems.

    PubMed

    Şahar, Umut; Deveci, Remziye

    2017-03-10

    Sea urchin eggs are surrounded by a carbohydrate-rich layer, termed the jelly coat, that consists of polysaccharides and glycoproteins. In the present study, we describe two mass spectrometric strategies to characterize the N-glycosylation of the Paracentrotus lividus egg jelly coat, which has an alecithal-type extracellular matrix like mammalian eggs. Egg jelly was isolated, lyophilized, and dialysed, followed by peptide N-glycosidase F (PNGase-F) treatment to release N-glycans from their protein chain. These N-glycans were then derivatized by permethylation reaction, and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and capillary liquid chromatography electrospray ionization-ion trap tandem mass spectroscopy (CapLC ESI-Ion trap-MS/MS). N-glycans in the egg jelly coat glycoproteins were indicated by sodiated molecules at m/z 1579.8, 1783.9, 1988.0, 2192.0, and 2397.1 for permethylated oligosaccharides on MALDI-TOF MS. Fragmentation and structural characterization of these oligosaccharides were performed by ESI-Ion trap MS/MS. Then, MALDI-TOF-MS and ESI-Ion trap-MS/MS spectra were interpreted using the GlycoWorkbench software suite, a tool for building, displaying, and profiling glycan masses to identify the original oligosaccharide structures. The oligosaccharides of the isolated egg jelly coat were mainly of the high mannose type. This article is protected by copyright. All rights reserved.

  16. Worms to the rescue: can worm glycans protect from autoimmune diseases?

    PubMed

    Kuijk, Loes M; van Die, Irma

    2010-04-01

    Autoimmune and autoinflammatory diseases represent a significant health burden, especially in Western societies. For the majority of these diseases, no cure exists. Recently, research on parasitic worms (helminths) has demonstrated great potential for whole worms, their eggs or their excretory/secretory proteins in down-regulating inflammatory responses both in vitro and in vivo, in various disease models and, in some cases, even in clinical trials. The worms are thought to induce Th2 and regulatory T cells, interfere with Toll-like receptor (TLR) signaling and to down-regulate Th17 and Th1 responses. The molecular mechanisms underlying the worms' ability to modulate the host immune response are not well understood, and many hypotheses have been proposed to explain the observed immune modulation. Increasing evidence suggests that carbohydrate structures (glycans), for example, phosphorylcholine-modified glycans or Galbeta1-4(Fucalpha1-3)GlcNAc- (Lewis X, Le(X)) containing glycans, expressed by the worms contribute to these modulating properties by their interaction with antigen presenting cells. Helminths express a broad variety of protein- and lipid-linked glycans on their surface and on secretory products. These glycans differ in amount and composition and several of these structures are species specific. However, worms also express glycan antigens that are found in a wide variety of different species. Some of these "common" worm glycans are particularly interesting with regard to regulating host responses, because they have the potential to interact with C-type lectins on dendritic cells and thereby may interfere with T-cell polarization. Helminths and helminth-derived molecules form a novel and promising group of therapeutics for autoinflammatory diseases. However, much has to be learned about the molecular mechanisms behind the helminth-mediated antiinflammatory properties. This review will describe some of the emerging evidence in selected disease areas as

  17. Porcine Sperm Bind to Specific 6-Sialylated Biantennary Glycans to Form the Oviduct Reservoir1

    PubMed Central

    Kadirvel, Govindasamy; Machado, Sergio A.; Korneli, Claudia; Collins, Emily; Miller, Paul; Bess, Kelsey N.; Aoki, Kazuhiro; Tiemeyer, Michael; Bovin, Nicolai; Miller, David J.

    2012-01-01

    ABSTRACT After mating, many female mammals store a subpopulation of sperm in the lower portion of the oviduct, forming a reservoir. The reservoir lengthens sperm lifespan, regulates sperm capacitation, controls polyspermy, and selects normal sperm. It is believed that sperm bind to glycans on the oviduct epithelium to form the reservoir, but the specific adhesion molecules that retain sperm are unclear. Herein, using a glycan array to test 377 glycans for their ability to bind porcine sperm, we found two glycan motifs in common among all glycans with sperm-binding ability: the Lewis X trisaccharide and biantennary structures containing a mannose core with 6-sialylated lactosamine at one or more termini. Binding to both motifs was specific; isomers of each motif did not bind sperm. Further work focused on sialylated lactosamine. Sialylated lactosamine was found abundantly on the apical side of epithelial cells collected from the oviduct isthmus, among N-linked and O-linked glycans. Sialylated lactosamine bound to the head of sperm, the region that interacts with the oviduct epithelium. After capacitation, sperm lost affinity for sialylated lactosamine. Receptor modification may contribute to release from the reservoir so that sperm can move to the site of fertilization. Sialylated lactosamine was required for sperm to bind oviduct cells. Simbucus nigra agglutinin or an antibody specific to sialylated lactosamine with a preference for Neu5Acalpha2-6Gal rather than Neu5Acalpha2-3Gal reduced sperm binding to oviduct isthmic cells, as did occupying putative receptors on sperm with sialylated biantennary glycans. These results demonstrate that sperm binding to oviduct 6-sialylated biantennary glycans is necessary for normal adhesion to the oviduct. PMID:23115267

  18. N-glycans in cell survival and death: Cross-talk between glycosyltransferases☆

    PubMed Central

    Banerjee, Dipak K.

    2012-01-01

    Asparagine-linked (N-linked) protein glycosylation is one of the most important protein modifications. N-glycans with “high mannose”, “hybrid”, or “complex” type sugar chains participate in a multitude of cellular processes. These include cell–cell/cell–matrix/receptor–ligand interaction, cell signaling/growth and differentiation, to name a few. Many diseases such as disorders of blood clotting, congenital disorder of glycosylation, diseases of blood vessels, cancer, neo-vascularization, i.e., angiogenesis essential for breast and other solid tumor progression and metastasis are associated with N-glycan expression. Biosynthesis of N-glycans requires multiple steps and multiple cellular compartments. Following transcription and translation the proteins migrate to the endoplasmic reticulum (ER) lumen to acquire glycan chain(s) with a defined glycoform, i.e., a tetradecasaccharide. These are further modified, i.e., edited in ER lumen and in Golgi prior to moving to their respective destinations. The tetradecasaccharide is pre-assembled on a poly-isoprenoid lipid called dolichol, and becomes an essential component of the supply chain. Therefore, dolichol cycle synthesizing the lipid-linked oligosaccharide (LLO) is a hallmark for all N-linked glycoproteins. It is expected that there is a great deal of crosstalk between the participating glycosyltransferases and any missed step would express defective N-glycans that could have fatal consequences. The positive impact of the structurally altered N-glycans could lead to discovery of an N-glycan signature for a disease and/or help developing glycotherapeutic treating cancer or other human diseases. The purpose of this review is to identify the gaps of N-glycan biology and help developing appropriate technology for biomedical applications. This article is part of a Special Issue entitled Glycoproteomics. PMID:22326428

  19. Synthesis of a hybrid type N-glycan heptasaccharide oxazoline for Endo M catalysed glycosylation.

    PubMed

    Priyanka, Pragya; Fairbanks, Antony J

    2016-05-13

    Endo-β-N-acetylglucosaminidases (ENGases) are versatile biocatalysts that allow access to a wide variety of defined homogenous N-linked glycoconjugates in a convergent manner. A hybrid-type N-glycan was accessed by total synthesis, converted to an oxazoline, and used as a donor substrate with both wild type Endo M and an N175Q glycosynthase Endo M mutant allowing the convergent synthesis of a glycosylated amino acid bearing a hybrid N-glycan structure.

  20. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo.

  1. Two types of galactosylated fucose motifs are present on N-glycans of Haemonchus contortus.

    PubMed

    Paschinger, Katharina; Wilson, Iain B H

    2015-06-01

    N-Glycans from the nematode Haemonchus contortus (barber pole worm), a parasite of sheep and cattle, were the first to be described to possess up to three fucose residues associated with the N,N'-diacetylchitobiosyl core, two being on the reducing-terminal proximal GlcNAc and one on the distal core GlcNAc residue. The assumption was that truncated glycans from this organism with three hexose residues have the composition Man3GlcNAc2Fuc1-3. In this study, we have performed HPLC and MALDI-TOF MS/MS in combination with selected digestions of N-glycans from Haemonchus. A dominant trifucosylated Hex3HexNAc2Fuc3 glycan was modified not only with α1,6-fucose but also with a proximal core α1,3-fucose and a galactosylated distal α1,3-fucose; thereby, only two of the hexose residues were mannose. Other N-glycans displayed galactosylation of the core α1,6-fucose, antennal fucosylation or modification with phosphorylcholine. Thus, the N-glycans of Haemonchus contain a number of potentially immunogenic glycan epitopes also found in other parasites and our proposed structures are in line with the previously defined specificity of nematode glycosyltransferases as we show that distal fucosylation and the presence of an α1,6-mannose are apparently mutually exclusive. These data are thereby of importance for engineering cell lines capable of mimicking Haemonchus-type N-glycans in the preparation of recombinant proteins as vaccine candidates.

  2. Overexpression of α2,3sialyl T-antigen in breast cancer determined by miniaturized glycosyltransferase assays and confirmed using tissue microarray immunohistochemical analysis

    PubMed Central

    Patil, Shilpa A.; Bshara, Wiam; Morrison, Carl; Chandrasekaran, E. V.; Matta, Khushi L.; Neelamegham, Sriram

    2014-01-01

    Glycan structure alterations during cancer regulate disease progression and represent clinical biomarkers. The study determined the degree to which changes in glycosyl transferase activities during cancer can be related to aberrant cell-surface tumor associated carbohydrate structures (TACA). To this end, changes in sialyltransferase (sialylT), fucosyltransferase (fucT) and galactosyltransferase (galT) activity were measured in normal and tumor tissue using a miniaturized enzyme activity assay and synthetic glycoconjugates bearing terminal LacNAc Type-I (Galβ1,3GlcNAc), LacNAc Type-II (Galβ1,4GlcNAc), and mucin core-1/Type-III (Galβ1,3GalNAc) structures. These data were related to TACA using tissue microarrays containing 115 breast and 26 colon cancer specimen. The results show that primary human breast and colon tumors, but not adjacent normal tissue, express elevated β1,3 galT and α2,3sialylT activity that can form α2,3sialylated Type-III glycans (Siaα2,3Galβ1,3GalNAc). Prostate tumors did not exhibit such elevated enzymatic activities. α1,3/4fucT activity was higher in breast, but not colon tissue. The enzymology based prediction of enhanced α2,3sialylated Type-III structures in breast tumors was verified using histochemical analysis of tissue sections and tissue microarrays. Here, the binding of two markers that recognize Galβ1,3GalNAc (peanut lectin and mAb A78-G/A7) was elevated in breast tumor, but not normal control, only upon sialidase treatment. These antigens were also upregulated in colon tumors though to a lesser extent. α2,3sialylated Type-III expression correlated inversely with patient HER2 expression and breast metastatic potential. Overall, enzymology measurements of glycoT activity predict glycan structure changes during cancer. High expression of the α2,3sialylated T-antigen O-glycans occur in breast tumors. A transformation from linear core-1 glycan to other epitopes may accompany metastasis. PMID:25142811

  3. Mutational analysis using oligonucleotide microarrays

    PubMed Central

    Hacia, J.; Collins, F.

    1999-01-01

    The development of inexpensive high throughput methods to identify individual DNA sequence differences is important to the future growth of medical genetics. This has become increasingly apparent as epidemiologists, pathologists, and clinical geneticists focus more attention on the molecular basis of complex multifactorial diseases. Such undertakings will rely upon genetic maps based upon newly discovered, common, single nucleotide polymorphisms. Furthermore, candidate gene approaches used in identifying disease associated genes necessitate screening large sequence blocks for changes tracking with the disease state. Even after such genes are isolated, large scale mutational analyses will often be needed for risk assessment studies to define the likely medical consequences of carrying a mutated gene.
This review concentrates on the use of oligonucleotide arrays for hybridisation based comparative sequence analysis. Technological advances within the past decade have made it possible to apply this technology to many different aspects of medical genetics. These applications range from the detection and scoring of single nucleotide polymorphisms to mutational analysis of large genes. Although we discuss published scientific reports, unpublished work from the private sector12 could also significantly affect the future of this technology.


Keywords: mutational analysis; oligonucleotide microarrays; DNA chips PMID:10528850

  4. Integrating Microarray Data and GRNs.

    PubMed

    Koumakis, L; Potamias, G; Tsiknakis, M; Zervakis, M; Moustakis, V

    2016-01-01

    With the completion of the Human Genome Project and the emergence of high-throughput technologies, a vast amount of molecular and biological data are being produced. Two of the most important and significant data sources come from microarray gene-expression experiments and respective databanks (e,g., Gene Expression Omnibus-GEO (http://www.ncbi.nlm.nih.gov/geo)), and from molecular pathways and Gene Regulatory Networks (GRNs) stored and curated in public (e.g., Kyoto Encyclopedia of Genes and Genomes-KEGG (http://www.genome.jp/kegg/pathway.html), Reactome (http://www.reactome.org/ReactomeGWT/entrypoint.html)) as well as in commercial repositories (e.g., Ingenuity IPA (http://www.ingenuity.com/products/ipa)). The association of these two sources aims to give new insight in disease understanding and reveal new molecular targets in the treatment of specific phenotypes.Three major research lines and respective efforts that try to utilize and combine data from both of these sources could be identified, namely: (1) de novo reconstruction of GRNs, (2) identification of Gene-signatures, and (3) identification of differentially expressed GRN functional paths (i.e., sub-GRN paths that distinguish between different phenotypes). In this chapter, we give an overview of the existing methods that support the different types of gene-expression and GRN integration with a focus on methodologies that aim to identify phenotype-discriminant GRNs or subnetworks, and we also present our methodology.

  5. Investigation of glycan evolution based on a comprehensive analysis of glycosyltransferases using phylogenetic profiling

    PubMed Central

    Tomono, Takayoshi; Kojima, Hisao; Fukuchi, Satoshi; Tohsato, Yukako; Ito, Masahiro

    2015-01-01

    Glycans play important roles in such cell-cell interactions as signaling and adhesion, including processes involved in pathogenic infections, cancers, and neurological diseases. Glycans are biosynthesized by multiple glycosyltransferases (GTs), which function sequentially. Excluding mucin-type O-glycosylation, the non-reducing terminus of glycans is biosynthesized in the Golgi apparatus after the reducing terminus is biosynthesized in the ER. In the present study, we performed genome-wide analyses of human GTs by investigating the degree of conservation of homologues in other organisms, as well as by elucidating the phylogenetic relationship between cephalochordates and urochordates, which has long been controversial in deuterostome phylogeny. We analyzed 173 human GTs and functionally linked glycan synthesis enzymes by phylogenetic profiling and clustering, compiled orthologous genes from the genomes of other organisms, and converted them into a binary sequence based on the presence (1) or absence (0) of orthologous genes in the genomes. Our results suggest that the non-reducing terminus of glycans is biosynthesized by newly evolved GTs. According to our analysis, the phylogenetic profiles of GTs resemble the phylogenetic tree of life, where deuterostomes, metazoans, and eukaryotes are resolved into separate branches. Lineage-specific GTs appear to play essential roles in the divergence of these particular lineages. We suggest that urochordates lose several genes that are conserved among metazoans, such as those expressing sialyltransferases, and that the Golgi apparatus acquires the ability to synthesize glycans after the ER acquires this function. PMID:27493855

  6. Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins

    PubMed Central

    Jo, Sunhwan; Qi, Yifei; Im, Wonpil

    2016-01-01

    N-linked glycans are on protein surfaces and have direct and water/ion-mediated interactions with surrounding amino acids. Such contacts could restrict their conformational freedom compared to the same glycans free in solution. In this work, we have examined the conformational freedom of the N-glycan core pentasaccharide moiety in solution using standard molecular dynamics (MD) simulations as well as temperature replica-exchange MD simulations. Both simulations yield the comparable conformational variability of the pentasaccharide in solution, indicating the convergence of both simulations. The glycoprotein crystal structures are analyzed to compare the conformational freedom of the N-glycan on the protein surface with the simulation result. Surprisingly, the pentasaccharide free in solution shows more restricted conformational variability than the N-glycan on the protein surface. The interactions between the carbohydrate and the protein side chain appear to be responsible for the increased conformational diversity of the N-glycan on the protein surface. Finally, the transfer entropy analysis of the simulation trajectory also reveals an unexpected causality relationship between intramolecular hydrogen bonds and the conformational states in that the hydrogen bonds play a role in maintaining the conformational states rather than driving the change in glycosidic torsional states. PMID:26405106

  7. Glycan Reader: Automated Sugar Identification and Simulation Preparation for Carbohydrates and Glycoproteins

    PubMed Central

    Jo, Sunhwan; Song, Kevin C.; Desaire, Heather; MacKerell, Alexander D.; Im, Wonpil

    2011-01-01

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics. PMID:21815173

  8. Phylogeny, structure, function, biosynthesis and evolution of sulfated galactose-containing glycans.

    PubMed

    Pomin, Vitor H

    2016-03-01

    Glycans are ubiquitous components of all organisms. The specificity of glycan structures works in molecular recognition in multiple biological processes especially cell-cell and cell-matrix signaling events. These events are mostly driven by functional proteins whose activities are ultimately regulated by interactions with carbohydrate moieties of cell surface glycoconjugates. Galactose is a common composing monosaccharide in glycoconjugates. Sulfation at certain positions of the galactose residues does not only increase affinity for some binding proteins but also makes the structures of the controlling glycans more specific to molecular interactions. Here the phylogenetic distribution of glycans containing the sulfated galactose unit is examined across numerous multicellular organisms. Analysis includes autotrophs and heterotrophs from both terrestrial and marine environments. Information exists more regarding the marine species. Although future investigations in molecular biology must be still performed in order to assure certain hypotheses, empirical evidences based on structural biology of the sulfated galactose-containing glycans among different species particularly their backbone and sulfation patterns clearly indicate great specificity in terms of glycosyltransferase and sulfotransferase activity. This set of information suggests that evolution has shaped the biosynthetic machinery of these glycans somewhat related to their potential functions in the organisms.

  9. Plant-type N-glycans containing fucose and xylose in Bryophyta (mosses) and Tracheophyta (ferns).

    PubMed

    Mega, Tomohiro

    2007-12-01

    The presence of typical plant-type N-glycans (eg, M3FX, Gn2M3FX, and Le(a)2M3FX) in mosses, ferns, and other organisms was examined to determine which plant initially acquired glycosyltransferases to produce plant-type N-glycans during organic evolution. No M3FX-type N-glycan was detected in lichens (Cladonia humilis) or in any one of the three preland plants Enteromorpha prolifera, Ulva pertusa Kjellman, and Chara braunii Gmelin. In Bryophyta, M3FX-type N-glycan was detected at trace amounts in Anthocerotopsida (hornworts) and at certain amounts in Bryopsida (mosses), but not in Hepaticopsida (liverworts). Le(a)2M3FX was detected in some Bryopsida of relatively high M3FX content. Most Tracheophyta (ferns and higher plants) contained the three typical M3FX-type glycans as the main N-glycans in different ratios. These results suggest that organisms acquired xylosyltransferase and fucosyltransferase during the development of mosses from liverworts, and that later all plants retained both enzymes. Bryopsida have also obtained galactosyltransferase and fucosyltransferase to synthesize the Le(a) antigen.

  10. Characterization of novel O-glycans isolated from tear and saliva of ocular rosacea patients.

    PubMed

    Ozcan, Sureyya; An, Hyun Joo; Vieira, Ana C; Park, Gun Wook; Kim, Jae Han; Mannis, Mark J; Lebrilla, Carlito B

    2013-03-01

    O-Glycans in saliva and tear isolated from patients suffering from ocular rosacea, a form of inflammatory ocular surface disease, were profiled, and their structures were elucidated using high resolution mass spectrometry. We have previously shown that certain structures, particularly sulfated oligosaccharides, increased in the tear and saliva of rosacea patients. In this study, the structures of these glycans were elucidated using primarily tandem mass spectrometry. There were important similarities in the glycan profiles of tears and saliva with the majority of the structures in common. The structures of the most abundant species common to both tear and saliva, which were also the most abundant species in both, were elucidated. For sulfated species, the positions of the sulfate groups were localized. The majority of the structures were new, with the sulfated glycans comprising mucin core 1- and core 2-type structures. As both saliva and tear are rich in mucins, it is suggested that the O-glycans are mainly components of mucins. The study further illustrates the strong correspondence between the glycans in the tear and saliva of ocular rosacea patients.

  11. Glycoblocks: a schematic three-dimensional representation for glycans and their interactions

    PubMed Central

    McNicholas, Stuart

    2017-01-01

    The close-range interactions provided by covalently linked glycans are essential for the correct folding of glycoproteins and also play a pivotal role in recognition processes. Being able to visualise protein–glycan and glycan–glycan contacts in a clear way is thus of great importance for the understanding of these biological processes. In structural terms, glycosylation sugars glue the protein together via hydrogen bonds, whereas non-covalently bound glycans frequently harness additional stacking interactions. Finding an unobscured molecular view of these multipartite scenarios is usually far from trivial; in addition to the need to show the interacting protein residues, glycans may contain many branched sugars, each composed of more than ten non-H atoms and offering more than three potential bonding partners. With structural glycoscience finally gaining popularity and steadily increasing the deposition rate of three-dimensional structures of glycoproteins, the need for a clear way of depicting these interactions is more pressing than ever. Here a schematic representation, named Glycoblocks, is introduced which combines a simplified bonding-network depiction (covering hydrogen bonds and stacking interactions) with the familiar two-dimensional glycan notation used by the glycobiology community, brought into three dimensions by the CCP4 molecular graphics project (CCP4mg). PMID:28177314

  12. Glycan Reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins.

    PubMed

    Jo, Sunhwan; Song, Kevin C; Desaire, Heather; MacKerell, Alexander D; Im, Wonpil

    2011-11-15

    Understanding how glycosylation affects protein structure, dynamics, and function is an emerging and challenging problem in biology. As a first step toward glycan modeling in the context of structural glycobiology, we have developed Glycan Reader and integrated it into the CHARMM-GUI, http://www.charmm-gui.org/input/glycan. Glycan Reader greatly simplifies the reading of PDB structure files containing glycans through (i) detection of carbohydrate molecules, (ii) automatic annotation of carbohydrates based on their three-dimensional structures, (iii) recognition of glycosidic linkages between carbohydrates as well as N-/O-glycosidic linkages to proteins, and (iv) generation of inputs for the biomolecular simulation program CHARMM with the proper glycosidic linkage setup. In addition, Glycan Reader is linked to other functional modules in CHARMM-GUI, allowing users to easily generate carbohydrate or glycoprotein molecular simulation systems in solution or membrane environments and visualize the electrostatic potential on glycoprotein surfaces. These tools are useful for studying the impact of glycosylation on protein structure and dynamics.

  13. Galactosyltransferase 4 is a major control point for glycan branching in N-linked glycosylation

    PubMed Central

    McDonald, Andrew G.; Hayes, Jerrard M.; Bezak, Tania; Głuchowska, Sonia A.; Cosgrave, Eoin F. J.; Struwe, Weston B.; Stroop, Corné J. M.; Kok, Han; van de Laar, Teun; Rudd, Pauline M.; Tipton, Keith F.; Davey, Gavin P.

    2014-01-01

    ABSTRACT Protein N-glycosylation is a common post-translational modification that produces a complex array of branched glycan structures. The levels of branching, or antennarity, give rise to differential biological activities for single glycoproteins. However, the precise mechanism controlling the glycan branching and glycosylation network is unknown. Here, we constructed quantitative mathematical models of N-linked glycosylation that predicted new control points for glycan branching. Galactosyltransferase, which acts on N-acetylglucosamine residues, was unexpectedly found to control metabolic flux through the glycosylation pathway and the level of final antennarity of nascent protein produced in the Golgi network. To further investigate the biological consequences of glycan branching in nascent proteins, we glycoengineered a series of mammalian cells overexpressing human chorionic gonadotropin (hCG). We identified a mechanism in which galactosyltransferase 4 isoform regulated N-glycan branching on the nascent protein, subsequently controlling biological activity in an in vivo model of hCG activity. We found that galactosyltransferase 4 is a major control point for glycan branching decisions taken in the Golgi of the cell, which might ultimately control the biological activity of nascent glycoprotein. PMID:25271059

  14. Methylated glycans as conserved targets of animal and fungal innate defense

    PubMed Central

    Wohlschlager, Therese; Butschi, Alex; Grassi, Paola; Sutov, Grigorij; Gauss, Robert; Hauck, Dirk; Schmieder, Stefanie S.; Knobel, Martin; Titz, Alexander; Dell, Anne; Haslam, Stuart M.; Hengartner, Michael O.; Aebi, Markus; Künzler, Markus

    2014-01-01

    Effector proteins of innate immune systems recognize specific non-self epitopes. Tectonins are a family of β-propeller lectins conserved from bacteria to mammals that have been shown to bind bacterial lipopolysaccharide (LPS). We present experimental evidence that two Tectonins of fungal and animal origin have a specificity for O-methylated glycans. We show that Tectonin 2 of the mushroom Laccaria bicolor (Lb-Tec2) agglutinates Gram-negative bacteria and exerts toxicity toward the model nematode Caenorhabditis elegans, suggesting a role in fungal defense against bacteria and nematodes. Biochemical and genetic analysis of these interactions revealed that both bacterial agglutination and nematotoxicity of Lb-Tec2 depend on the recognition of methylated glycans, namely O-methylated mannose and fucose residues, as part of bacterial LPS and nematode cell-surface glycans. In addition, a C. elegans gene, termed samt-1, coding for a candidate membrane transport protein for the presumptive donor substrate of glycan methylation, S-adenosyl-methionine, from the cytoplasm to the Golgi was identified. Intriguingly, limulus lectin L6, a structurally related antibacterial protein of the Japanese horseshoe crab Tachypleus tridentatus, showed properties identical to the mushroom lectin. These results suggest that O-methylated glycans constitute a conserved target of the fungal and animal innate immune system. The broad phylogenetic distribution of O-methylated glycans increases the spectrum of potential antagonists recognized by Tectonins, rendering this conserved protein family a universal defense armor. PMID:24879441

  15. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation.

    PubMed

    Lau, Ken S; Partridge, Emily A; Grigorian, Ani; Silvescu, Cristina I; Reinhold, Vernon N; Demetriou, Michael; Dennis, James W

    2007-04-06

    The number of N-glycans (n) is a distinct feature of each glycoprotein sequence and cooperates with the physical properties of the Golgi N-glycan-branching pathway to regulate surface glycoprotein levels. The Golgi pathway is ultrasensitive to hexosamine flux for the production of tri- and tetra-antennary N-glycans, which bind to galectins and form a molecular lattice that opposes glycoprotein endocytosis. Glycoproteins with few N-glycans (e.g., TbetaR, CTLA-4, and GLUT4) exhibit enhanced cell-surface expression with switch-like responses to increasing hexosamine concentration, whereas glycoproteins with high numbers of N-glycans (e.g., EGFR, IGFR, FGFR, and PDGFR) exhibit hyperbolic responses. Computational and experimental data reveal that these features allow nutrient flux stimulated by growth-promoting high-n receptors to drive arrest/differentiation programs by increasing surface levels of low-n glycoproteins. We have identified a mechanism for metabolic regulation of cellular transition between growth and arrest in mammals arising from apparent coevolution of N-glycan number and branching.

  16. Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis

    PubMed Central

    Mkhikian, Haik; Mortales, Christie-Lynn; Zhou, Raymond W; Khachikyan, Khachik; Wu, Gang; Haslam, Stuart M; Kavarian, Patil; Dell, Anne; Demetriou, Michael

    2016-01-01

    Essential biological systems employ self-correcting mechanisms to maintain cellular homeostasis. Mammalian cell function is dynamically regulated by the interaction of cell surface galectins with branched N-glycans. Here we report that N-glycan branching deficiency triggers the Golgi to generate bioequivalent N-glycans that preserve galectin-glycoprotein interactions and cellular homeostasis. Galectins bind N-acetyllactosamine (LacNAc) units within N-glycans initiated from UDP-GlcNAc by the medial-Golgi branching enzymes as well as the trans-Golgi poly-LacNAc extension enzyme β1,3-N-acetylglucosaminyltransferase (B3GNT). Marginally reducing LacNAc content by limiting N-glycans to three branches results in T-cell hyperactivity and autoimmunity; yet further restricting branching does not produce a more hyperactive state. Rather, new poly-LacNAc extension by B3GNT maintains galectin binding and immune homeostasis. Poly-LacNAc extension is triggered by redistribution of unused UDP-GlcNAc from the medial to trans-Golgi via inter-cisternal tubules. These data demonstrate the functional equivalency of structurally dissimilar N-glycans and suggest a self-correcting feature of the Golgi that sustains cellular homeostasis. DOI: http://dx.doi.org/10.7554/eLife.14814.001 PMID:27269286

  17. Development, Characterization and Experimental Validation of a Cultivated Sunflower (Helianthus annuus L.) Gene Expression Oligonucleotide Microarray

    PubMed Central

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement. PMID:23110046

  18. Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray.

    PubMed

    Fernandez, Paula; Soria, Marcelo; Blesa, David; DiRienzo, Julio; Moschen, Sebastian; Rivarola, Maximo; Clavijo, Bernardo Jose; Gonzalez, Sergio; Peluffo, Lucila; Príncipi, Dario; Dosio, Guillermo; Aguirrezabal, Luis; García-García, Francisco; Conesa, Ana; Hopp, Esteban; Dopazo, Joaquín; Heinz, Ruth Amelia; Paniego, Norma

    2012-01-01

    Oligonucleotide-based microarrays with accurate gene coverage represent a key strategy for transcriptional studies in orphan species such as sunflower, H. annuus L., which lacks full genome sequences. The goal of this study was the development and functional annotation of a comprehensive sunflower unigene collection and the design and validation of a custom sunflower oligonucleotide-based microarray. A large scale EST (>130,000 ESTs) curation, assembly and sequence annotation was performed using Blast2GO (www.blast2go.de). The EST assembly comprises 41,013 putative transcripts (12,924 contigs and 28,089 singletons). The resulting Sunflower Unigen Resource (SUR version 1.0) was used to design an oligonucleotide-based Agilent microarray for cultivated sunflower. This microarray includes a total of 42,326 features: 1,417 Agilent controls, 74 control probes for sunflower replicated 10 times (740 controls) and 40,169 different non-control probes. Microarray performance was validated using a model experiment examining the induction of senescence by water deficit. Pre-processing and differential expression analysis of Agilent microarrays was performed using the Bioconductor limma package. The analyses based on p-values calculated by eBayes (p<0.01) allowed the detection of 558 differentially expressed genes between water stress and control conditions; from these, ten genes were further validated by qPCR. Over-represented ontologies were identified using FatiScan in the Babelomics suite. This work generated a curated and trustable sunflower unigene collection, and a custom, validated sunflower oligonucleotide-based microarray using Agilent technology. Both the curated unigene collection and the validated oligonucleotide microarray provide key resources for sunflower genome analysis, transcriptional studies, and molecular breeding for crop improvement.

  19. Protein Microarrays: Novel Developments and Applications

    PubMed Central

    Berrade, Luis; Garcia, Angie E.

    2011-01-01

    Protein microarray technology possesses some of the greatest potential for providing direct information on protein function and potential drug targets. For example, functional protein microarrays are ideal tools suited for the mapping of biological pathways. They can be used to study most major types of interactions and enzymatic activities that take place in biochemical pathways and have been used for the analysis of simultaneous multiple biomolecular interactions involving protein-protein, protein-lipid, protein-DNA and protein-small molecule interactions. Because of this unique ability to analyze many kinds of molecular interactions en masse, the requirement of very small sample amount and the potential to be miniaturized and automated, protein microarrays are extremely well suited for protein profiling, drug discovery, drug target identification and clinical prognosis and diagnosis. The aim of this review is to summarize the most recent developments in the production, applications and analysis of protein microarrays. PMID:21116694

  20. Influenza Virus Hemagglutinin Glycoproteins with Different N-Glycan Patterns Activate Dendritic Cells In Vitro

    PubMed Central

    Liu, Wen-Chun; Lin, Yu-Li; Spearman, Maureen; Cheng, Pei-Yun; Butler, Michael

    2016-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) N-glycans play important regulatory roles in the control of virus virulence, antigenicity, receptor-binding specificity, and viral escape from the immune response. Considered essential for controlling innate and adaptive immune responses against influenza virus infections, dendritic cells (DCs) trigger proinflammatory and adaptive immune responses in hosts. In this study, we engineered Chinese hamster ovary (CHO) cell lines expressing recombinant HA from pandemic H1, H5, and H7 influenza viruses. rH1HA, rH5HA, and rH7HA were obtained as wild-type proteins or in the presence of kifunensine (KIF) or further with endo-β-N-acetylglucosaminidase-treated KIF (KIF+E) to generate single-N-acetylglucosamine (GlcNAc) N-glycans consisting of (i) terminally sialylated complex-type N-glycans, (ii) high-mannose-type N-glycans, and (iii) single-GlcNAc-type N-glycans. Our results show that high-mannose-type and single-GlcNAc-type N-glycans, but not complex-type N-glycans, are capable of inducing more active hIL12 p40, hIL12 p70, and hIL-10 production in human DCs. Significantly higher HLA-DR, CD40, CD83, and CD86 expression levels, as well reduced endocytotic capacity in human DCs, were noted in the high-mannose-type rH1HA and single-GlcNAc-type rH1HA groups than in the complex-type N-glycan rH1HA group. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). The high-mannose-type or single-GlcNAc-type N-glycans of both avian and human HA types are more stimulatory than the complex-type N-glycans. HA-stimulated DC activation was accomplished partially through a mannose receptor(s). These results provide more understanding of the contribution of glycosylation of viral proteins to the immune responses and may have implications for vaccine development. IMPORTANCE Influenza viruses trigger seasonal epidemics or pandemics with mild-to-severe consequences for human and

  1. Contributions to Statistical Problems Related to Microarray Data

    ERIC Educational Resources Information Center

    Hong, Feng

    2009-01-01

    Microarray is a high throughput technology to measure the gene expression. Analysis of microarray data brings many interesting and challenging problems. This thesis consists three studies related to microarray data. First, we propose a Bayesian model for microarray data and use Bayes Factors to identify differentially expressed genes. Second, we…

  2. PATMA: parser of archival tissue microarray.

    PubMed

    Roszkowiak, Lukasz; Lopez, Carlos

    2016-01-01

    Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images.

  3. PATMA: parser of archival tissue microarray

    PubMed Central

    2016-01-01

    Tissue microarrays are commonly used in modern pathology for cancer tissue evaluation, as it is a very potent technique. Tissue microarray slides are often scanned to perform computer-aided histopathological analysis of the tissue cores. For processing the image, splitting the whole virtual slide into images of individual cores is required. The only way to distinguish cores corresponding to specimens in the tissue microarray is through their arrangement. Unfortunately, distinguishing the correct order of cores is not a trivial task as they are not labelled directly on the slide. The main aim of this study was to create a procedure capable of automatically finding and extracting cores from archival images of the tissue microarrays. This software supports the work of scientists who want to perform further image processing on single cores. The proposed method is an efficient and fast procedure, working in fully automatic or semi-automatic mode. A total of 89% of punches were correctly extracted with automatic selection. With an addition of manual correction, it is possible to fully prepare the whole slide image for extraction in 2 min per tissue microarray. The proposed technique requires minimum skill and time to parse big array of cores from tissue microarray whole slide image into individual core images. PMID:27920955

  4. The Impact of Photobleaching on Microarray Analysis

    PubMed Central

    von der Haar, Marcel; Preuß, John-Alexander; von der Haar, Kathrin; Lindner, Patrick; Scheper, Thomas; Stahl, Frank

    2015-01-01

    DNA-Microarrays have become a potent technology for high-throughput analysis of genetic regulation. However, the wide dynamic range of signal intensities of fluorophore-based microarrays exceeds the dynamic range of a single array scan by far, thus limiting the key benefit of microarray technology: parallelization. The implementation of multi-scan techniques represents a promising approach to overcome these limitations. These techniques are, in turn, limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner’s laser light. In this paper the photobleaching characteristics of cyanine-3 and cyanine-5 as part of solid state DNA microarrays are studied. The effects of initial fluorophore intensity as well as laser scanner dependent variables such as the photomultiplier tube’s voltage on bleaching and imaging are investigated. The resulting data is used to develop a model capable of simulating the expected degree of signal intensity reduction caused by photobleaching for each fluorophore individually, allowing for the removal of photobleaching-induced, systematic bias in multi-scan procedures. Single-scan applications also benefit as they rely on pre-scans to determine the optimal scanner settings. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the lab-to-lab comparability of microarray experiment results. PMID:26378589

  5. Anti-Group B Streptococcus Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation.

    PubMed

    Nilo, Alberto; Morelli, Laura; Passalacqua, Irene; Brogioni, Barbara; Allan, Martin; Carboni, Filippo; Pezzicoli, Alfredo; Zerbini, Francesca; Maione, Domenico; Fabbrini, Monica; Romano, Maria Rosaria; Hu, Qi-Ying; Margarit, Immaculada; Berti, Francesco; Adamo, Roberto

    2015-07-17

    Gram-positive Streptococcus agalactiae or group B Streptococcus (GBS) is a leading cause of invasive infections in pregnant women, newborns, and elderly people. Vaccination of pregnant women represents the best strategy for prevention of neonatal disease, and GBS polysaccharide-based conjugate vaccines are currently under clinical testing. The potential of GBS pilus proteins selected by genome-based reverse vaccinology as protective antigens for anti-streptococcal vaccines has also been demonstrated. Dressing pilus proteins with surface glycan antigens could be an attractive approach to extend vaccine coverage. We have recently developed an efficient method for tyrosine-directed ligation of large glycans to proteins via copper-free azide-alkyne [3 + 2] cycloaddition. This method enables targeting of predetermined sites of the protein, ensuring that protein epitopes are preserved prior to glycan coupling and a higher consistency in glycoconjugate batches. Herein, we compared conjugates of the GBS type II polysaccharide (PSII) and the GBS80 pilus protein obtained by classic lysine random conjugation and by the recently developed tyrosine-directed ligation. PSII conjugated to CRM197, a carrier protein used for vaccines in the market, was used as a control. We found that the constructs made from PSII and GBS80 were able to elicit murine antibodies recognizing individually the glycan and protein epitopes on the bacterial surface. The generated antibodies were efficacious in mediating opsonophagocytic killing of strains expressing exclusively PSII or GBS80 proteins. The two glycoconjugates were also effective in protecting newborn mice against GBS infection following vaccination of the dams. Altogether, these results demonstrated that polysaccharide-conjugated GBS80 pilus protein functions as a carrier comparably to CRM197, while maintaining its properties of protective protein antigen. Glycoconjugation and reverse vaccinology can, therefore, be combined to design

  6. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases.

    PubMed

    Barrett, Dianah; Wang, Tsung-Shing Andrew; Yuan, Yanqiu; Zhang, Yi; Kahne, Daniel; Walker, Suzanne

    2007-11-02

    Bacterial cells are surrounded by a cross-linked polymer called peptidoglycan, the integrity of which is necessary for cell survival. The carbohydrate chains that form the backbone of peptidoglycan are made by peptidoglycan glycosyltransferases (PGTs), highly conserved membrane-bound enzymes that are thought to be excellent targets for the development of new antibacterials. Although structural information on these enzymes recently became available, their mechanism is not well understood because of a dearth of methods to monitor PGT activity. Here we describe a direct, sensitive, and quantitative SDS-PAGE method to analyze PGT reactions. We apply this method to characterize the substrate specificity and product length profile for two different PGT domains, PBP1A from Aquifex aeolicus and PBP1A from Escherichia coli. We show that both disaccharide and tetrasaccharide diphospholipids (Lipid II and Lipid IV) serve as substrates for these PGTs, but the product distributions differ significantly depending on which substrate is used as the starting material. Reactions using the disaccharide substrate are more processive and yield much longer glycan products than reactions using the tetrasaccharide substrate. We also show that the SDS-PAGE method can be applied to provide information on the roles of invariant residues in catalysis. A comprehensive mutational analysis shows that the biggest contributor to turnover of 14 mutated residues is an invariant glutamate located in the center of the active site cleft. The assay and results described provide new information about the process by which PGTs assemble bacterial cell walls.

  7. Assembly of ordered microsphere arrays: Platforms for microarrays

    NASA Astrophysics Data System (ADS)

    Xu, Wanling

    Microarrays are powerful tools in gene expression assessment, protein profiling, and protein function screening, as well as cell and tissue analysis. With thousands of small array spots assembled in an ordered array, these small devices makes it possible to screen for multiple targets in a fast, parallel, high-throughput manner. The well-developed technology of DNA microarrays, also called DNA chips, has proved successful in all kinds of biological experiments, including the human genome-sequencing project. The development of protein arrays has lagged behind that of DNA arrays mainly because of the greater complexity of proteins. Some parts of the microarray technology can be transplanted into the realm of protein arrays, while others cannot. The challenges from the complexity of protein targets demand more robust and powerful devices. Traditional planar arrays, in which proteins bind directly to a planar surface, have a drawback in that some proteins will be denatured or cluster together after immobilization. Microsphere-based microarrays represent a more advanced strategy. The functional proteins are first attached to microspheres; these microspheres are then immobilized in arrays on a planar surface. In this dissertation, two approaches to assembling arrays of microspheres will be discussed. The hydrodynamic approach uses surface micromachining and Deep Reactive Ion Etching techniques to form an array of channels through a silicon wafer. By drawing fluid containing the microspheres through the channels they become trapped in the channels and thereby immobilized. In the magnetic approach, permalloy films are deposited on a silicon substrate and subsequently patterned to form magnetic attachment sites. An external magnetic field is then applied and the magnetic microspheres then assemble on these sites. Both devices are able to immobilize microspheres in an ordered array, as opposed to coarsely grouping them in array spots. The assembled arrays are robust in that

  8. Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates.

    PubMed

    Saunders, Kevin O; Nicely, Nathan I; Wiehe, Kevin; Bonsignori, Mattia; Meyerhoff, R Ryan; Parks, Robert; Walkowicz, William E; Aussedat, Baptiste; Wu, Nelson R; Cai, Fangping; Vohra, Yusuf; Park, Peter K; Eaton, Amanda; Go, Eden P; Sutherland, Laura L; Scearce, Richard M; Barouch, Dan H; Zhang, Ruijun; Von Holle, Tarra; Overman, R Glenn; Anasti, Kara; Sanders, Rogier W; Moody, M Anthony; Kepler, Thomas B; Korber, Bette; Desaire, Heather; Santra, Sampa; Letvin, Norman L; Nabel, Gary J; Montefiori, David C; Tomaras, Georgia D; Liao, Hua-Xin; Alam, S Munir; Danishefsky, Samuel J; Haynes, Barton F

    2017-02-28

    Induction of broadly neutralizing antibodies (bnAbs) that target HIV-1 envelope (Env) is a goal of HIV-1 vaccine development. A bnAb target is the Env third variable loop (V3)-glycan site. To determine whether immunization could induce antibodies to the V3-glycan bnAb binding site, we repetitively immunized macaques over a 4-year period with an Env expressing V3-high mannose glycans. Env immunizations elicited plasma antibodies that neutralized HIV-1 expressing only high-mannose glycans-a characteristic shared by early bnAb B cell lineage members. A rhesus recombinant monoclonal antibody from a vaccinated macaque bound to the V3-glycan site at the same amino acids as broadly neutralizing antibodies. A structure of the antibody bound to glycan revealed that the three variable heavy-chain complementarity-determining regions formed a cavity into which glycan could insert and neutralized multiple HIV-1 isolates with high-mannose glycans. Thus, HIV-1 Env vaccination induced mannose-dependent antibodies with characteristics of V3-glycan bnAb precursors.

  9. High-mannose N-glycan-specific lectin from the red alga Kappaphycus striatum (Carrageenophyte).

    PubMed

    Hung, Le Dinh; Sato, Yuichiro; Hori, Kanji

    2011-06-01

    From a fresh sample (1 kg) of cultivated red alga Kappaphycus striatum, three isolectins, KSA-1 (15.1 mg), KSA-2 (58.0 mg) and KSA-3 (6.9 mg), were isolated by a combination of extraction with aqueous ethanol, ethanol precipitation, and ion exchange chromatography. Isolated KSAs were monomeric proteins of about 28kDa having identical 20N-terminal amino acid sequences to each other. Their hemagglutination activities were not inhibited by monosaccharides, but inhibited by glycoproteins bearing high-mannose N-glycans. In a binding experiment with pyridylaminated oligosaccharides by centrifugal ultrafiltration-HPLC assay, the isolectin KSA-2 was exclusively bound to high-mannose type N-glycans, but not to other glycans. Including complex types and a pentasaccharide core of N-glycans, indicating that it recognized branched oligomannosides. The binding activity of KSA-2 was slightly different among high-mannose N-glycans examined, indicating that the lectin has a higher affinity for those having the exposed (α1-3) Man in the D2 arm. On the other hand, KSA-2 did not bind to a free oligomannose that is a constituent of the branched oligomannosides, implying that the portion of the core GlcNAc residue(s) of the N-glycans is also essential for binding. Thus, KSA-2 appears to recognize the extended carbohydrate structure with a minimal length of a tetrasaccharide, Man(α1-3)Man(α1-6)Man(β1-4)GlcNAc. This study indicates that K. striatum, which has extensively been cultivated as a source of carrageenan, is a good source of a valuable lectin(s) that is strictly specific for high-mannose N-glycans.

  10. IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking

    PubMed Central

    Nolz, Jeffrey C.; Harty, John T.

    2014-01-01

    Memory and naive CD8+ T cells exhibit distinct trafficking patterns. Specifically, memory but not naive CD8+ T cells are recruited to inflamed tissues in an antigen-independent manner. However, the molecular mechanisms that regulate memory CD8+ T cell trafficking are largely unknown. Here, using murine models of infection and T cell transfer, we found that memory but not naive CD8+ T cells dynamically regulate expression of core 2 O-glycans, which interact with P- and E-selectins to modulate trafficking to inflamed tissues. Following infection, antigen-specific effector CD8+ T cells strongly expressed core 2 O-glycans, but this glycosylation pattern was lost by most memory CD8+ T cells. After unrelated infection or inflammatory challenge, memory CD8+ T cells synthesized core 2 O-glycans independently of antigen restimulation. The presence of core 2 O-glycans subsequently directed these cells to inflamed tissue. Memory and naive CD8+ T cells exhibited the opposite pattern of epigenetic modifications at the Gcnt1 locus, which encodes the enzyme that initiates core 2 O-glycan synthesis. The open chromatin configuration in memory CD8+ T cells permitted de novo generation of core 2 O-glycans in a TCR-independent, but IL-15–dependent, manner. Thus, IL-15 stimulation promotes antigen-experienced memory CD8+ T cells to generate core 2 O-glycans, which subsequently localize them to inflamed tissues. These findings suggest that CD8+ memory T cell trafficking potentially can be manipulated to improve host defense and immunotherapy. PMID:24509081

  11. Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans

    PubMed Central

    Pudlo, Nicholas A.; Urs, Karthik; Kumar, Supriya Suresh; German, J. Bruce; Mills, David A.

    2015-01-01

    ABSTRACT Many symbiotic gut bacteria possess the ability to degrade multiple polysaccharides, thereby providing nutritional advantages to their hosts. Like microorganisms adapted to other complex nutrient environments, gut symbionts give different metabolic priorities to substrates present in mixtures. We investigated the responses of Bacteroides thetaiotaomicron, a common human intestinal bacterium that metabolizes more than a dozen different polysaccharides, including the O-linked glycans that are abundant in secreted mucin. Experiments in which mucin glycans were presented simultaneously with other carbohydrates show that degradation of these host carbohydrates is consistently repressed in the presence of alternative substrates, even by B. thetaiotaomicron previously acclimated to growth in pure mucin glycans. Experiments with media containing systematically varied carbohydrate cues and genetic mutants reveal that transcriptional repression of genes involved in mucin glycan metabolism is imposed by simple sugars and, in one example that was tested, is mediated through a small intergenic region in a transcript-autonomous fashion. Repression of mucin glycan-responsive gene clusters in two other human gut bacteria, Bacteroides massiliensis and Bacteroides fragilis, exhibited variable and sometimes reciprocal responses compared to those of B. thetaiotaomicron, revealing that these symbionts vary in their preference for mucin glycans and that these differences occur at the level of controlling individual gene clusters. Our results reveal that sensing and metabolic triaging of glycans are complex processes that vary among species, underscoring the idea that these phenomena are likely to be hidden drivers of microbiota community dynamics and may dictate which microorganisms preferentially commit to various niches in a constantly changing nutritional environment. PMID:26556271

  12. Loss of intestinal core 1–derived O-glycans causes spontaneous colitis in mice

    PubMed Central

    Fu, Jianxin; Wei, Bo; Wen, Tao; Johansson, Malin E.V.; Liu, Xiaowei; Bradford, Emily; Thomsson, Kristina A.; McGee, Samuel; Mansour, Lilah; Tong, Maomeng; McDaniel, J. Michael; Sferra, Thomas J.; Turner, Jerrold R.; Chen, Hong; Hansson, Gunnar C.; Braun, Jonathan; Xia, Lijun

    2011-01-01

    Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell–specific deficiency of core 1–derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1–derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1–derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase–specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC. PMID:21383503

  13. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation.

    PubMed

    Yin, Bojiao; Gao, Yuan; Chung, Cheng-Yu; Yang, Shuang; Blake, Emily; Stuczynski, Mark C; Tang, Juechun; Kildegaard, Helene F; Andersen, Mikael R; Zhang, Hui; Betenbaugh, Michael J

    2015-11-01

    Sialic acid, a terminal residue on complex N-glycans, and branching or antennarity can play key roles in both the biological activity and circulatory lifetime of recombinant glycoproteins of therapeutic interest. In order to examine the impact of glycosyltransferase expression on the N-glycosylation of recombinant erythropoietin (rEPO), a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells. Sialylation increased on both EPO and CHO cellular proteins as observed by SNA lectin analysis, and HPLC profiling revealed that the sialic acid content of total glycans on EPO increased by 26%. The increase in sialic acid content was further verified by detailed profiling of the N-glycan structures using mass spectra (MS) analysis. In order to enhance antennarity/branching, UDP-N-acetylglucosamine: α-1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (GnTIV/Mgat4) and UDP-N-acetylglucosamine:α-1,6-D-mannoside β1,6-N-acetylglucosaminyltransferase (GnTV/Mgat5), was incorporated into CHO-K1 together with ST6Gal1. Tri- and tetraantennary N-glycans represented approximately 92% of the total N-glycans on the resulting EPO as measured using MS analysis. Furthermore, sialic acid content of rEPO from these engineered cells was increased ∼45% higher with tetra-sialylation accounting for ∼10% of total sugar chains compared to ∼3% for the wild-type parental CHO-K1. In this way, coordinated overexpression of these three glycosyltransferases for the first time in model CHO-K1 cell lines provides a mean for enhancing both N-glycan branching complexity and sialylation with opportunities to generate tailored complex N-glycan structures on therapeutic glycoproteins in the future.

  14. N-Glycans Modulate the Function of Human Corticosteroid-Binding Globulin*

    PubMed Central

    Sumer-Bayraktar, Zeynep; Kolarich, Daniel; Campbell, Matthew P.; Ali, Sinan; Packer, Nicolle H.; Thaysen-Andersen, Morten

    2011-01-01

    Human corticosteroid-binding globulin (CBG), a heavily glycosylated protein containing six N-linked glycosylation sites, transports cortisol and other corticosteroids in blood circulation. Here, we investigate the biological importance of the N-glycans of CBG derived from human serum by performing a structural and functional characterization of CBG N-glycosylation. Liquid chromatography-tandem MS-based glycoproteomics and glycomics combined with exoglycosidase treatment revealed 26 complex type N-glycoforms, all of which were terminated with α2,3-linked neuraminic acid (NeuAc) residues. The CBG N-glycans showed predominantly bi- and tri-antennary branching, but higher branching was also observed. N-glycans from all six N-glycosylation sites were identified with high site occupancies (70.5–99.5%) and glycoforms from all sites contained a relatively low degree of core-fucosylation (0–34.9%). CBG showed site-specific glycosylation and the site-to-site differences in core-fucosylation and branching could be in silico correlated with the accessibility to the individual glycosylation sites on the maturely folded protein. Deglycosylated and desialylated CBG analogs were generated to investigate the biological importance of CBG N-glycans. As a functional assay, MCF-7 cells were challenged with native and glycan-modified CBG and the amount of cAMP, which is produced as a quantitative response upon CBG binding to its cell surface receptor, was used to evaluate the CBG:receptor interaction. The removal of both CBG N-glycans and NeuAc residues increased the production of cAMP significantly. This confirms that N-glycans are involved in the CBG:receptor interaction and indicates that the modulation is performed by steric and/or electrostatic means through the terminal NeuAc residues. PMID:21558494

  15. Characterization of N-Glycans from Arabidopsis. Application to a Fucose-Deficient Mutant1

    PubMed Central

    Rayon, Catherine; Cabanes-Macheteau, Marion; Loutelier-Bourhis, Corinne; Salliot-Maire, Isabelle; Lemoine, Jérome; Reiter, Wolf-Dieter; Lerouge, Patrice; Faye, Loïc

    1999-01-01

    The structures of glycans N-linked to Arabidopsis proteins have been fully identified. From immuno- and affinodetections on blots, chromatography, nuclear magnetic resonance, and glycosidase sequencing data, we show that Arabidopsis proteins are N-glycosylated by high-mannose-type N-glycans from Man5GlcNAc2 to Man9GlcNAc2, and by xylose- and fucose (Fuc)-containing oligosaccharides. However, complex biantenary structures containing the terminal Lewis a epitope recently reported in the literature (A.-C. Fitchette-Lainé, V. Gomord, M. Cabanes, J.-C. Michalski, M. Saint Macary, B. Foucher, B. Cavalier, C. Hawes, P. Lerouge, and L. Faye [1997] Plant J 12: 1411–1417) were not detected. A similar study was done on the Arabidopsis mur1 mutant, which is affected in the biosynthesis of l-Fuc. In this mutant, one-third of the Fuc residues of the xyloglucan has been reported to be replaced by l-galactose (Gal) (E. Zablackis, W.S. York, M. Pauly, S. Hantus, W.D. Reiter, C.C.S. Chapple, P. Albersheim, and A. Darvill [1996] Science 272: 1808–1810). N-linked glycans from the mutant were identified and their structures were compared with those isolated from the wild-type plants. In about 95% of all N-linked glycans from the mur1 plant, l-Fuc residues were absent and were not replaced by another monosaccharide. However, in the remaining 5%, l-Fuc was found to be replaced by a hexose residue. From nuclear magnetic resonance and mass spectrometry data of the mur1 N-glycans, and by analogy with data reported on mur1 xyloglucan, this subpopulation of N-linked glycans was proposed to be l-Gal-containing N-glycans resulting from the replacement of l-Fuc by l-Gal. PMID:9952469

  16. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis

    PubMed Central

    Wapner, Ronald J.; Martin, Christa Lese; Levy, Brynn; Ballif, Blake C.; Eng, Christine M.; Zachary, Julia M.; Savage, Melissa; Platt, Lawrence D.; Saltzman, Daniel; Grobman, William A.; Klugman, Susan; Scholl, Thomas; Simpson, Joe Leigh; McCall, Kimberly; Aggarwal, Vimla S.; Bunke, Brian; Nahum, Odelia; Patel, Ankita; Lamb, Allen N.; Thom, Elizabeth A.; Beaudet, Arthur L.; Ledbetter, David H.; Shaffer, Lisa G.; Jackson, Laird

    2013-01-01

    Background Chromosomal microarray analysis has emerged as a primary diagnostic tool for the evaluation of developmental delay and structural malformations in children. We aimed to evaluate the accuracy, efficacy, and incremental yield of chromosomal microarray analysis as compared with karyotyping for routine prenatal diagnosis. Methods Samples from women undergoing prenatal diagnosis at 29 centers were sent to a central karyotyping laboratory. Each sample was split in two; standard karyotyping was performed on one portion and the other was sent to one of four laboratories for chromosomal microarray. Results We enrolled a total of 4406 women. Indications for prenatal diagnosis were advanced maternal age (46.6%), abnormal result on Down’s syndrome screening (18.8%), structural anomalies on ultrasonography (25.2%), and other indications (9.4%). In 4340 (98.8%) of the fetal samples, microarray analysis was successful; 87.9% of samples could be used without tissue culture. Microarray analysis of the 4282 nonmosaic samples identified all the aneuploidies and unbalanced rearrangements identified on karyotyping but did not identify balanced translocations and fetal triploidy. In samples with a normal karyotype, microarray analysis revealed clinically relevant deletions or duplications in 6.0% with a structural anomaly and in 1.7% of those whose indications were advanced maternal age or positive screening results. Conclusions In the context of prenatal diagnostic testing, chromosomal microarray analysis identified additional, clinically significant cytogenetic information as compared with karyotyping and was equally efficacious in identifying aneuploidies and unbalanced rearrangements but did not identify balanced translocations and triploidies. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT01279733.) PMID:23215555

  17. Optimization of the Small Glycan Presentation for Binding a Tumor-Associated Antibody: Application to the Construction of an Ultrasensitive Glycan Biosensor.

    PubMed

    Kveton, Filip; Blšáková, Anna; Hushegyi, Andras; Damborsky, Pavel; Blixt, Ola; Jansson, Bo; Tkac, Jan

    2017-03-21

    The main aim of the study was to optimize the interfacial presentation of a small antigen-a Tn antigen (N-acetylgalactosamine)-for binding to its analyte anti-Tn antibody. Three different methods for the interfacial display of a small glycan are compared here, including two methods based on the immobilization of the Tn antigen on a mixed self-assembled monolayer (SAM) (2D biosensor) and the third one utilizing a layer of a human serum albumin (HSA) for the immobilization of a glycan forming a 3D interface. Results showed that the 3D interface with the immobilized Tn antigen is the most effective bioreceptive surface for binding its analyte. The 3D impedimetric glycan biosensor exhibited a limit of detection of 1.4 aM, a wide linear range (6 orders of magnitude), and high assay reproducibility with an average relative standard deviation of 4%. The buildup of an interface was optimized using various techniques with the visualization of the glycans on the biosensor surface by atomic force microscopy. The study showed that the 3D biosensor is not only the most sensitive compared to other two biosensor platforms but that the Tn antigen on the 3D biosensor surface is more accessible for antibody binding with better kinetics of binding (t50% = 137 s, t50% = the time needed to attain 50% of a steady-state signal) compared to the 2D biosensor configuration with t50% = 354 s. The 3D glycan biosensor was finally applied for the analysis of a human serum sample spiked with an analyte.

  18. Studies of patterned surfaces for biological microarrays

    NASA Astrophysics Data System (ADS)

    Gillmor, Susan Dale

    Over the past 10 years, biological microarrays have developed into an invaluable tool for genetic and protein research. The task to draw meaningful conclusions between variations of genes and their expression requires millions of comparisons between standard and stressed samples, usually the cDNA, RNA, or proteins within cells. For such a project, high-information-density, highly pure arrays are required. In fabricating an array on a uniform or an unpatterned substrate, droplets of solution, if placed too closely, can bleed into each other and can cross-contaminate several array sites. Therefore, a uniform surface limits the density of droplets that can be placed to create an array. When the surface is patterned with a barrier between the droplets, then the density of array sites can be significantly larger (uniform surface, ˜200--500mum center-to-center; patterned surface, 100mum center-to-center and less with present loading technology). We have explored the patterning of surfaces to construct biological microarrays, via altering the surface chemically to create array sites with gold-thiol chemistry, and via a template placed on the surface to outline the elements. In the template strategy, we have investigated poly(dimethyl siloxane) (PDMS) films (5--10mum) with holes in a regular array. However, the hydrophobic PDMS repels water to such an extent that the droplets do not wet the template and cannot travel down the wall of the PDMS hole to interact with the surface. As a consequence, if not accurately placed in the array sites, they also do not load into the holes to form filled features. Our current studies focus on altering the surface of the PDMS to allow the droplets to fall into the PDMS holes. To alter the surface and not the bulk, we have experimented with plasma chemistry. To create a temporary contact angle change, oxygen plasma has been employed. However, the PDMS recovers and reverts to it characteristically hydrophobic surface. When we expose PDMS

  19. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates

    PubMed Central

    Yoshino, Timothy P.; Wu, Xiao-Jun; Gonzalez, Laura A.; Hokke, Cornelis H.

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval S. mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins, as well as

  20. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates.

    PubMed

    Yoshino, Timothy P; Wu, Xiao-Jun; Gonzalez, Laura A; Hokke, Cornelis H

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval Schistosoma mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins

  1. Synthetic glycopeptides reveal the glycan specificity of HIV-neutralizing antibodies

    PubMed Central

    Amin, Mohammed N.; McLellan, Jason S.; Huang, Wei; Orwenyo, Jared; Burton, Dennis R.; Koff, Wayne C.; Kwong, Peter D.

    2013-01-01

    A new class of glycan-reactive HIV-neutralizing antibodies, including PG9 and PG16, has been recently discovered that appear to recognize novel glycopeptide epitopes on HIV-1 gp120. However, further characterization and reconstitution of the precise neutralizing epitopes are complicated by the heterogeneity of glycosylation. We report here the design, synthesis, and antigenic evaluation of novel cyclic V1V2 glycopeptides carrying defined N-linked glycans at the conserved glycosylation sites (N160 and N156/N173) derived from gp120 of two HIV-1 isolates. Antibody binding studies confirmed the necessity of a Man5GlcNAc2 glycan at N160 for recognition by PG9 and PG16, and further revealed a critical role of a sialylated N-glycan at the secondary site (N156/N173) in the context of glycopeptides for antibody binding. In addition to defining the glycan specificities of PG9 and PG16, the identified synthetic glycopeptides provide a valuable template for HIV-1 vaccine design. PMID:23831758

  2. Comparisons of Caenorhabditis Fucosyltransferase Mutants Reveal a Multiplicity of Isomeric N-Glycan Structures.

    PubMed

    Yan, Shi; Jin, Chunsheng; Wilson, Iain B H; Paschinger, Katharina

    2015-12-04

    Recent studies have shown a remarkable degree of plasticity in the N-glycome of the model nematode Caenorhabditis elegans; ablation of glycosylation-relevant genes can result in radically altered N-glycan profiles despite only minor biological phenotypic effects. Up to four fucose residues and five different linkages of fucose are known on the N-glycans of C. elegans. Due to the complexity in the wild type, we established three mutant strains defective in two core fucosyltransferases each (fut-1;fut-6, fut-1;fut-8, and fut-6;fut-8). Enzymatically released N-glycans were subject to HPLC and MALDI-TOF MS/MS, in combination with various treatments, to verify structural details. The N-glycome of the fut-1;fut-6 mutant was the most complex of the three double-mutant strains due to the extension of the core α1,6-fucose as well as the presence of fucose on the bisecting galactose. In contrast, maximally two fucoses were found on N-glycans of the fut-1;fut-8 and fut-6;fut-8 strains. The different locations and capping of fucose meant that up to 13 isomeric structures, many highly galactosylated, were determined for some single masses. These data not only show the high variability of the N-glycomic capacity of a "simple" nematode but also exemplify the need for multiple approaches to reveal individual glycan structures within complex invertebrate glycomes.

  3. Glycosylated proteins preserved over millennia: N-glycan analysis of Tyrolean Iceman, Scythian Princess and Warrior

    PubMed Central

    Ozcan, Sureyya; Kim, Bum Jin; Ro, Grace; Kim, Jae-Han; Bereuter, Thomas L.; Reiter, Christian; Dimapasoc, Lauren; Garrido, Daniel; Mills, David A.; Grimm, Rudolf; Lebrilla, Carlito B.; An, Hyun Joo

    2014-01-01

    An improved understanding of glycosylation will provide new insights into many biological processes. In the analysis of oligosaccharides from biological samples, a strict regime is typically followed to ensure sample integrity. However, the fate of glycans that have been exposed to environmental conditions over millennia has not yet been investigated. This is also true for understanding the evolution of the glycosylation machinery in humans as well as in any other biological systems. In this study, we examined the glycosylation of tissue samples derived from four mummies which have been naturally preserved: – the 5,300 year old “Iceman called Oetzi”, found in the Tyrolean Alps; the 2,400 year old “Scythian warrior” and “Scythian Princess”, found in the Altai Mountains; and a 4 year old apartment mummy, found in Vienna/Austria. The number of N-glycans that were identified varied both with the age and the preservation status of the mummies. More glycan structures were discovered in the contemporary sample, as expected, however it is significant that glycan still exists in the ancient tissue samples. This discovery clearly shows that glycans persist for thousands of years, and these samples provide a vital insight into ancient glycosylation, offering us a window into the distant past. PMID:24831691

  4. SugarBindDB, a resource of glycan-mediated host–pathogen interactions

    PubMed Central

    Mariethoz, Julien; Khatib, Khaled; Alocci, Davide; Campbell, Matthew P.; Karlsson, Niclas G.; Packer, Nicolle H.; Mullen, Elaine H.; Lisacek, Frederique

    2016-01-01

    The SugarBind Database (SugarBindDB) covers knowledge of glycan binding of human pathogen lectins and adhesins. It is a curated database; each glycan–protein binding pair is associated with at least one published reference. The core data element of SugarBindDB is a set of three inseparable components: the pathogenic agent, a lectin/adhesin and a glycan ligand. Each entity (agent, lectin or ligand) is described by a range of properties that are summarized in an entity-dedicated page. Several search, navigation and visualisation tools are implemented to investigate the functional role of glycans in pathogen binding. The database is cross-linked to protein and glycan-relaled resources such as UniProtKB and UniCarbKB. It is tightly bound to the latter via a substructure search tool that maps each ligand to full structures where it occurs. Thus, a glycan–lectin binding pair of SugarBindDB can lead to the identification of a glycan-mediated protein–protein interaction, that is, a lectin–glycoprotein interaction, via substructure search and the knowledge of site-specific glycosylation stored in UniCarbKB. SugarBindDB is accessible at: http://sugarbind.expasy.org. PMID:26578555

  5. Improvement of N-glycan site occupancy of therapeutic glycoproteins produced in Pichia pastoris.

    PubMed

    Choi, Byung-Kwon; Warburton, Shannon; Lin, Heping; Patel, Rohan; Boldogh, Istvan; Meehl, Michael; Meehl, Meehl; d'Anjou, Marc; Pon, Liza; Stadheim, Terrance A; Sethuraman, Natarajan

    2012-08-01

    Yeast is capable of performing posttranslational modifications, such as N- or O-glycosylation. It has been demonstrated that N-glycans play critical biological roles in therapeutic glycoproteins by modulating pharmacokinetics and pharmacodynamics. However, N-glycan sites on recombinant glycoproteins produced in yeast can be underglycosylated, and hence, not completely occupied. Genomic homology analysis indicates that the Pichia pastoris oligosaccharyltransferase (OST) complex consists of multiple subunits, including OST1, OST2, OST3, OST4, OST5, OST6, STT3, SWP1, and WBP1. Monoclonal antibodies produced in P. pastoris show that N-glycan site occupancy ranges from 75-85 % and is affected mainly by the OST function, and in part, by process conditions. In this study, we demonstrate that N-glycan site occupancy of antibodies can be improved to greater than 99 %, comparable to that of antibodies produced in mammalian cells (CHO), by overexpressing Leishmania major STT3D (LmSTT3D) under the control of an inducible alcohol oxidase 1 (AOX1) promoter. N-glycan site occupancy of non-antibody glycoproteins such as recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was also significantly improved, suggesting that LmSTT3D has broad substrate specificity. These results suggest that the glycosylation status of recombinant proteins can be improved by heterologous STT3 expression, which will allow for the customization of therapeutic protein profiles.

  6. Manipulation of the Glycan-Specific Natural Antibody Repertoire for Immunotherapy

    PubMed Central

    New, J. Stewart; King, R. Glenn; Kearney, John F.

    2015-01-01

    Summary Natural immunoglobulin derived from innate-like B lymphocytes plays important roles in the suppression of inflammatory responses and represents a promising therapeutic target in a growing number of allergic and autoimmune diseases. These antibodies are commonly autoreactive and incorporate evolutionarily conserved specificities, including certain glycan-specific antibodies. Despite this conservation, exposure to bacterial polysaccharides during innate-like B lymphocyte development, through either natural exposure or immunization, induces significant changes in clonal representation within the glycan-reactive B cell pool. Glycan-reactive natural antibodies have been reported to play protective and pathogenic roles in autoimmune and inflammatory diseases. An understanding of the composition and functions of a healthy glycan-reactive natural antibody repertoire is therefore paramount. A more thorough understanding of natural antibody repertoire development holds promise for the design of both biological diagnostics and therapies. In this article we review the development and functions of natural antibodies and examine three glycan specificities, represented in the innate-like B cell pool, to illustrate the complex roles environmental antigens play in natural antibody repertoire development. We also discuss the implications of increased clonal plasticity of the innate-like B cell repertoire during neonatal and perinatal periods, and the prospect of targeting B cell development with interventional therapies and correct defects in this important arm of the adaptive immune system. PMID:26864103

  7. Preventing Ralstonia solanacearum adhesion with glycans from cashew, cocoa, coffee, pumpkin, and tomato seed extract.

    PubMed

    Rachmaninov, Ofra; Zinger-Yosovich, Keren D; Gilboa-Garber, Nechama

    2012-07-01

    Ralstonia solanacearum wilts many plants, causing heavy agricultural losses. Its pathogenic strain ATCC 11696 produces 2 hemagglutinating lectins: RSL and RS-IIL. These lectins may bind to terminal l-fucose-, d-arabinose-, and d-mannose-bearing seedling xylem cell wall glycans, thus enabling pathogen adhesion to them, with devastating infection establishment. Blocking the active sites of these lectins with seed embryo-surrounding oligo- and poly-saccharides hampers binding of the lectins to the embryos. The current study shows that seeds of cashew, cocoa, coffee, pumpkin, and tomato contain low and high molecular mass glycans that block RSL and RS-IIL (like its homologous Pseudomonas aeruginosa PA-IIL lectin). The blocking of the pathogen lectins, which is attributable to the documented composition of the oligo- and poly-saccharides of these seeds, is similar to that observed with animal glycoproteins of avian egg whites (protecting their embryos from infections) and of milk and royal jelly, which likewise protect mammal and bee neonates, respectively. RSL was most strongly inhibited by cashew seed glycans, and RS-IIL by coffee seed glycans. Western blot analyses with these lectins instead of antibodies revealed the hitherto undescribed presence of lectin-binding glycoproteins in the coffee, pumpkin, tomato, and cashew (but not cocoa) seeds. The use of these lectins for unveiling potent embryo-protecting seed glycans might be helpful for seedling-bioprotection projects similar to those planned for animal protection against antibiotic-resistant infections.

  8. Tegaserod mimics the neurostimulatory glycan polysialic acid and promotes nervous system repair

    PubMed Central

    Bushman, J.; Mishra, B.; Ezra, M.; Gul, S.; Schulze, C.; Chaudhury, S.; Ripoll, D.; Wallqvist, A.; Kohn, J.; Schachner, M.; Loers, G.

    2015-01-01

    Glycans attached to the cell surface via proteins or lipids or exposed in the extracellular matrix affect many cellular processes, including neuritogenesis, cell survival and migration, as well as synaptic activity and plasticity. These functions make glycans attractive molecules for stimulating repair of the injured nervous system. Yet, glycans are often difficult to synthesize or isolate and have the disadvantage to be unstable in a complex tissue environment. To circumvent these issues, we have screened a library of small organic compounds to search for structural and functional mimetics of the neurostimulatory glycan polysialic acid (PSA) and identified the 5-HT4 receptor agonist tegaserod as a PSA mimetic. The PSA mimicking activity of tegaserod was shown in cultures of central and peripheral nervous system cells of the mouse and found to be independent of its described function as a serotonin (5-HT4) receptor agonist. In an in vivo model for peripheral nerve regeneration, mice receiving tegaserod at the site of injury showed enhanced recovery compared to control mice receiving vehicle control as evidenced by functional measurements and histology. These data indicate that tegaserod could be repurposed for treatment of nervous system injuries and underscores the potential of using small molecules as mimetics of neurostimulatory glycans. PMID:24067923

  9. Regulation of Notch signaling during T- and B-cell development by O-fucose glycans.

    PubMed

    Stanley, Pamela; Guidos, Cynthia J

    2009-07-01

    Notch signaling is required for the development of all T cells and marginal zone (MZ) B cells. Specific roles in T- and B-cell differentiation have been identified for different Notch receptors, the canonical Delta-like (Dll) and Jagged (Jag) Notch ligands, and downstream effectors of Notch signaling. Notch receptors and ligands are post-translationally modified by the addition of glycans to extracellular domain epidermal growth factor-like (EGF) repeats. The O-fucose glycans of Notch cell-autonomously modulate Notch-ligand interactions and the strength of Notch signaling. These glycans are initiated by protein O-fucosyltransferase 1 (Pofut1), and elongated by the transfer of N-acetylglucosamine (GlcNAc) to the fucose by beta1,3GlcNAc-transferases termed lunatic, manic, or radical fringe. This review discusses T- and B-cell development from progenitors deficient in O-fucose glycans. The combined data show that Lfng and Mfng regulate T-cell development by enhancing the interactions of Notch1 in T-cell progenitors with Dll4 on thymic epithelial cells. In the spleen, Lfng and Mfng cooperate to modify Notch2 in MZ B progenitors, enhancing their interaction with Dll1 on endothelial cells and regulating MZ B-cell production. Removal of O-fucose affects Notch signaling in myelopoiesis and lymphopoiesis, and the O-fucose glycan in the Notch1 ligand-binding domain is required for optimal T-cell development.

  10. IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia.

    PubMed

    Coss, K P; Byrne, J C; Coman, D J; Adamczyk, B; Abrahams, J L; Saldova, R; Brown, A Y; Walsh, O; Hendroff, U; Carolan, C; Rudd, P M; Treacy, E P

    2012-02-01

    N-glycan processing and assembly defects have been demonstrated in untreated and partially treated patients with Classical Galactosaemia. These defects may contribute to the ongoing pathophysiology of this disease. The aim of this study was to develop an informative method of studying differential galactose tolerance levels and diet control in individuals with Galactosaemia, compared to the standard biochemical markers. Ten Galactosaemia adults with normal intellectual outcomes were analyzed in the study. Five subjects followed galactose liberalization, increments of 300 mg to 4000 mg/day over 16 weeks, and were compared to five adult Galactosaemia controls on a galactose restricted diet. All study subjects underwent clinical and biochemical monitoring of red blood cell galactose-1-phosphate (RBC Gal-1-P) and urinary galactitol levels. Serum N-glycans were isolated and analyzed by normal phase high-performance liquid chromatography (NP-HPLC) with galactosylation of IgG used as a specific biomarker of galactose tolerance. IgG N-glycan profiles showed consistent individual alterations in response to diet liberalization. The individual profiles were improved for all, but one study subject, at a galactose intake of 1000 mg/day, with decreases in agalactosylated (G0) and increases in digalactosylated (G2) N-glycans. We conclude that IgG N-glycan profiling is an improved method of monitoring variable galactosylation and determining individual galactose tolerance in Galactosaemia compared to the standard methods.

  11. Integrated glycoprotein immobilization method for glycopeptide and glycan analysis of cardiac hypertrophy.

    PubMed

    Yang, Shuang; Mishra, Sumita; Chen, Lijun; Zhou, Jian-Ying; Chan, Daniel W; Chatterjee, Subroto; Zhang, Hui

    2015-10-06

    Post-translational modifications of proteins can have a major role in disease initiation and progression. Incredible efforts have recently been made to study the regulation of glycoproteins for disease prognosis and diagnosis. It is essential to elucidate glycans and intact glycoproteins to understand the role of glycosylation in diseases. Sialylated N-glycans play crucial roles in physiological and pathological processes; however, it is laborious to study sialylated glycoproteins due to the labile nature of sialic acid residues. In this study, an integrated platform is developed for the analysis of intact glycoproteins and glycans using a chemoenzymatic approach for immobilization and derivatization of sialic acids. N-Glycans, deglycosylated proteins, and intact glycoproteins from heart tissues of wild type (WT) and transverse aortic constriction (TAC) mouse models were analyzed. We identified 291 unique glycopeptides from 195 glycoproteins; the comparative studies between WT and TAC mice indicate the overexpression of extracellular proteins for heart matrix remodeling and the down-regulation of proteins associated with energy metabolism in cardiac hypertrophy. The integrated platform is a powerful tool for the analysis of glycans and glycoproteins in the discovery of potential cardiac hypertrophy biomarkers.

  12. Differentiation of Sialyl Linkage Isomers by One-Pot Sialic Acid Derivatization for Mass Spectrometry-Based Glycan Profiling.

    PubMed

    Nishikaze, Takashi; Tsumoto, Hiroki; Sekiya, Sadanori; Iwamoto, Shinichi; Miura, Yuri; Tanaka, Koichi

    2017-02-21

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used for high-throughput glycan profiling analysis. In spite of the biological importance of sialic acids on nonreducing ends of glycans, it is still difficult to analyze glycans containing sialic acid residues due to their instability and the presence of linkage isomers. In this Article, we describe a one-pot glycan purification/derivatization method employing a newly developed linkage-specific sialic acid derivatization for MS-based glycan profiling with differentiation of sialyl linkage isomer. The derivatization, termed sialic acid linkage specific alkylamidation (SALSA), consists of sequential two-step alkylamidations. As a result of the reactions, α2,6- and α2,3-linked sialic acids are selectively amidated with different length of alkyl chains, allowing distinction of α2,3-/α2,6-linkage isomers from given mass spectra. Our studies using N-glycan standards with known sialyl linkages proved high suitability of SALSA for reliable relative quantification of α2,3-/α2,6-linked sialic acids compared with existing sialic acid derivatization approaches. SALSA fully stabilizes both α2,3- and α2,6-linked sialic acids by alkylamidation; thereby, it became possible to combine SALSA with existing glycan analysis/preparation methods as follows. The combination of SALSA and chemoselective glycan purification using hydrazide beads allows easy one-pot purification of glycans from complex biological samples, together with linkage-specific sialic acid stabilization. Moreover, SALSA-derivatized glycans can be labeled via reductive amination without causing byproducts such as amide decomposition. This solid-phase SALSA followed by glycan labeling has been successfully applied to human plasma N-glycome profiling.

  13. The glycan keratan sulfate in inner ear crystals

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D. S.; Li, Y. T.; Li, S. C.

    1995-01-01

    The otoconial matrix (OM) of chicks (Gallus domesticus) inner ear was analyzed. Histochemically the OM was reacted with phosphotungstic acid (PTA) and immunohistochemically with the monoclonal antibody antikeratan sulfate (antiKS). The OM was digested with the enzyme endo-beta-galactosidase (E beta Galase) or separated by 1D and 2D gel electrophoresis. PTA which reacts with glycoproteins precipitated the OM, suggesting that the OM contains glycoproteins. A central core in each crystal had no PTA staining, suggesting that the core lacked glycoproteins. Anti KS antibody stained the OM with increased density in older embryos as determined by color thresholding. E beta Galase, which cleaves the lactosamine repeating units in KS, decreased the immunostain by 30% in the OM and by 20% in the cartilage. The OM from the utricle, saccule and macula lagena contained similar molecular weight bands. Five dense bands in the OM were less dense in tissue and blood controls, suggesting that such bands are enriched in the OM. Isoelectric focusing of the OM showed a negatively charged high molecular weight smear not present in blood and faint in tissue controls. The high affinity of the OM for the cationic PTA stain, the strong immunohistochemical reaction of the OM with anti KS antibody and high molecular weight negative smear in 2D gels taken together suggest that: a) the OM contains large amounts of glycoproteins and glycans, one of which is keratan sulfate, because its immuno stain with antiKS antibody was decreased by the enzyme E beta Galase, b) the utricle, saccule and macula lagena may have similar composition, and c) the concentration of KS may increase gradually until complete mineralization of the OM is reached.

  14. Structural features of N-glycans linked to glycoproteins expressed in three kinds of water plants: Predominant occurrence of the plant complex type N-glycans bearing Lewis a epitope.

    PubMed

    Maeda, Megumi; Tani, Misato; Yoshiie, Takeo; Vavricka, Christopher J; Kimura, Yoshinobu

    2016-11-29

    The Japanese cedar pollen allergen (Cry j1) and the mountain cedar pollen allergen (Jun a1) are glycosylated with plant complex type N-glycans bearing Lewis a epitope(s) (Galβ1-3[Fucα1-4]GlcNAc-). The biological significance of Lewis a type plant N-glycans and their effects on the human immune system remain to be elucidated. Since a substantial amount of such plant specific N-glycans are required to evaluate immunological activity, we have searched for good plant-glycan sources to characterize Lewis a epitope-containing plant N-glycans. In this study, we have found that three water plants, Elodea nuttallii, Egeria densa, and Ceratophyllum demersum, produce glycoproteins bearing Lewis a units. Structural analysis of the N-glycans revealed that almost all glycoproteins expressed in these three water plants predominantly carry plant complex type N-glycans including the Lewis a type, suggesting that these water plants are good sources for preparation of Lewis a type plant N-glycans in substantial amounts.

  15. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  16. Optimized LOWESS normalization parameter selection for DNA microarray data

    PubMed Central

    Berger, John A; Hautaniemi, Sampsa; Järvinen, Anna-Kaarina; Edgren, Henrik; Mitra, Sanjit K; Astola, Jaakko

    2004-01-01

    Background Microarray data normalization is an important step for obtaining data that are reliable and usable for subsequent analysis. One of the most commonly utilized normalization techniques is the locally weighted scatterplot smoothing (LOWESS) algorithm. However, a much overlooked concern with the LOWESS normalization strategy deals with choosing the appropriate parameters. Parameters are usually chosen arbitrarily, which may reduce the efficiency of the normalization and result in non-optimally normalized data. Thus, there is a need to explore LOWESS parameter selection in greater detail. Results and discussion In this work, we discuss how to choose parameters for the LOWESS method. Moreover, we present an optimization approach for obtaining the fraction of data points utilized in the local regression and analyze results for local print-tip normalization. The optimization procedure determines the bandwidth parameter for the local regression by minimizing a cost function that represents the mean-squared difference between the LOWESS estimates and the normalization reference level. We demonstrate the utility of the systematic parameter selection using two publicly available data sets. The first data set consists of three self versus self hybridizations, which allow for a quantitative study of the optimization method. The second data set contains a collection of DNA microarray data from a breast cancer study utilizing four breast cancer cell lines. Our results show that different parameter choices for the bandwidth window yield dramatically different calibration results in both studies. Conclusions Results derived from the self versus self experiment indicate that the proposed optimization approach is a plausible solution for estimating the LOWESS parameters, while results from the breast cancer experiment show that the optimization procedure is readily applicable to real-life microarray data normalization. In summary, the systematic approach to obtain critical

  17. Overview of DNA microarrays: types, applications, and their future.

    PubMed

    Bumgarner, Roger

    2013-01-01

    This unit provides an overview of DNA microarrays. Microarrays are a technology in which thousands of nucleic acids are bound to a surface and are used to measure the relative concentration of nucleic acid sequences in a mixture via hybridization and subsequent detection of the hybridization events. This overview first discusses the history of microarrays and the antecedent technologies that led to their development. This is followed by discussion of the methods of manufacture of microarrays and the most common biological applications. The unit ends with a brief description of the limitations of microarrays and discusses how microarrays are being rapidly replaced by DNA sequencing technologies.

  18. Analysis of High-Throughput ELISA Microarray Data

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Zangar, Richard C.

    2011-02-23

    Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

  19. The use of microarrays in microbial ecology

    SciTech Connect

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  20. An oligonucleotide-based microarray for detection of plant RNA viruses.

    PubMed

    Nicolaisen, Mogens

    2011-04-01

    Currently, some of the methods used most widely for diagnosis and detection of plant viruses are ELISA, PCR, bioassays and electron microscopy. These methods only target one or a few species in each assay or they are time consuming and require expertise. Microarray-based approaches offer an alternative to these methods as microarrays with virus-specific probes could be capable of detecting an almost unlimited number of virus species in one assay. In the present study, the feasibility of this strategy was studied by constructing a microarray with 150 probes potentially capable of detecting 52 viruses from a broad range of genera. The array was printed in 16 subarrays to allow testing of several samples on each slide. Hybridizations with cDNA from plants infected with 52 different virus species showed that out of the 52 species tested, 49 were positive and identified correctly to species level. This array represents the largest published microarray for plant virus detection in terms of the number of targeted species and is thus an important milestone towards the construction of a generic microarray able to detect most, if not all, plant RNA viruses.

  1. Improved microarray-based decision support with graph encoded interactome data.

    PubMed

    Daemen, Anneleen; Signoretto, Marco; Gevaert, Olivier; Suykens, Johan A K; De Moor, Bart

    2010-04-19

    In the past, microarray studies have been criticized due to noise and the limited overlap between gene signatures. Prior biological knowledge should therefore be incorporated as side information in models based on gene expression data to improve the accuracy of diagnosis and prognosis in cancer. As prior knowledge, we investigated interaction and pathway information from the human interactome on different aspects of biological systems. By exploiting the properties of kernel methods, relations between genes with similar functions but active in alternative pathways could be incorporated in a support vector machine classifier based on spectral graph theory. Using 10 microarray data sets, we first reduced the number of data sources relevant for multiple cancer types and outcomes. Three sources on metabolic pathway information (KEGG), protein-protein interactions (OPHID) and miRNA-gene targeting (microRNA.org) outperformed the other sources with regard to the considered class of models. Both fixed and adaptive approaches were subsequently considered to combine the three corresponding classifiers. Averaging the predictions of these classifiers performed best and was significantly better than the model based on microarray data only. These results were confirmed on 6 validation microarray sets, with a significantly improved performance in 4 of them. Integrating interactome data thus improves classification of cancer outcome for the investigated microarray technologies and cancer types. Moreover, this strategy can be incorporated in any kernel method or non-linear version of a non-kernel method.

  2. Species-Specific Dynamic Responses of Gut Bacteria to a Mammalian Glycan

    PubMed Central

    Raghavan, Varsha

    2015-01-01

    ABSTRACT The mammalian intestine provides nutrients to hundreds of bacterial species. Closely related species often harbor homologous nutrient utilization genes and cocolonize the gut, raising questions regarding the strategies mediating their stable coexistence. Here we reveal that related Bacteroides species that can utilize the mammalian glycan chondroitin sulfate (CS) have diverged in the manner in which they temporally regulate orthologous CS utilization genes. Whereas certain Bacteroides species display a transient surge in CS utilization transcripts upon exposure to CS, other species exhibit sustained activation of these genes. Remarkably, species-specific expression dynamics are retained even when the key players governing a particular response are replaced by those from a species with a dissimilar response. Bacteroides species exhibiting distinct expression behaviors in the presence of CS can be cocultured on CS. However, they vary in their responses to CS availability and to the composition of the bacterial community when CS is the sole carbon source. Our results indicate that diversity resulting from regulation of polysaccharide utilization genes may enable the coexistence of gut bacterial species using a given nutrient. IMPORTANCE Genes mediating a specific task are typically conserved in related microbes. For instance, gut Bacteroides species harbor orthologous nutrient breakdown genes and may face competition from one another for these nutrients. How, then, does the gut microbial composition maintain such remarkable stability over long durations? We establish that in the case of genes conferring the ability to utilize the nutrient chondroitin sulfate (CS), microbial species vary in how they temporally regulate these genes and exhibit subtle growth differences on the basis of CS availability and community composition. Similarly to how differential regulation of orthologous genes enables related species to access new environments, gut bacteria may

  3. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans.

    PubMed

    Li, Tiehai; Huang, Min; Liu, Lin; Wang, Shuo; Moremen, Kelley W; Boons, Geert-Jan

    2016-12-23

    A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharide that is common to all mammalian core fucosylated N-glycans. Antennae-selective enzymatic extension of the undecasaccharide using a panel of glycosyl transferases afforded core fucosylated asymmetrical triantennary N-glycan isomers, which are potential biomarkers for breast cancer. A unique aspect of our approach is that a fucosidase (FucA1) has been identified that selectively can cleave a core-fucoside without affecting the fucoside of a sialyl Lewis(X) epitope to give easy access to core-unmodified compounds.

  4. Solution structure of the glycosylphosphatidylinositol membrane anchor glycan of Trypanosoma brucei variant surface glycoprotein

    SciTech Connect

    Homans, S.W.; Edge, C.J.; Ferguson, M.A.J.; Dwek, R.A.; Rademacher, T.W. )

    1989-04-04

    The average solution conformation of the glycosylphosphatidylinositol (GPI) membrane anchor of Trypanosoma brucei variant surface glycoprotein (VSG) has been determined by using a combination of two-dimensional {sup 1}H-{sup 1}H NMR methods together with molecular orbital calculations and restrained molecular dynamics simulations. This allows the generation of a model to describe the orientation of the glycan with respect to the membrane. This shows that the glycan exists in an extended configuration along the plane of the membrane and spans an area of 600 {angstrom}{sup 2}, which is similar to the cross-sectional area of a monomeric N-terminal VSG domain. Taken together, these observations suggest a possible space-filling role for the GPI anchor that may maintain the integrity of the VSG coat. The potential importance of the GPI glycan as a chemotherapeutic target is discussed in light of these observations.

  5. Synthetic Lipoteichoic Acid Glycans Are Potential Vaccine Candidates to Protect from Clostridium difficile Infections.

    PubMed

    Broecker, Felix; Martin, Christopher E; Wegner, Erik; Mattner, Jochen; Baek, Ju Yuel; Pereira, Claney L; Anish, Chakkumkal; Seeberger, Peter H

    2016-08-18

    Infections with Clostridium difficile increasingly cause morbidity and mortality worldwide. Bacterial surface glycans including lipoteichoic acid (LTA) were identified as auspicious vaccine antigens to prevent colonization. Here, we report on the potential of synthetic LTA glycans as vaccine candidates. We identified LTA-specific antibodies in the blood of C. difficile patients. Therefore, we evaluated the immunogenicity of a semi-synthetic LTA-CRM197 glycoconjugate. The conjugate elicited LTA-specific antibodies in mice that recognized natural LTA epitopes on the surface of C. difficile bacteria and inhibited intestinal colonization of C. difficile in mice in vivo. Our findings underscore the promise of synthetic LTA glycans as C. difficile vaccine candidates.

  6. Recognition of protein-linked glycans as a determinant of peptidase activity.

    PubMed

    Noach, Ilit; Ficko-Blean, Elizabeth; Pluvinage, Benjamin; Stuart, Christopher; Jenkins, Meredith L; Brochu, Denis; Buenbrazo, Nakita; Wakarchuk, Warren; Burke, John E; Gilbert, Michel; Boraston, Alisdair B

    2017-01-31

    The vast majority of proteins are posttranslationally altered, with the addition of covalently linked sugars (glycosylation) being one of the most abundant modifications. However, despite the hydrolysis of protein peptide bonds by peptidases being a process essential to all life on Earth, the fundamental details of how peptidases accommodate posttranslational modifications, including glycosylation, has not been addressed. Through biochemical analyses and X-ray crystallographic structures we show that to hydrolyze their substrates, three structurally related metallopeptidases require the specific recognition of O-linked glycan modifications via carbohydrate-specific subsites immediately adjacent to their peptidase catalytic machinery. The three peptidases showed selectivity for different glycans, revealing protein-specific adaptations to particular glycan modifications, yet always cleaved the peptide bond immediately preceding the glycosylated residue. This insight builds upon the paradigm of how peptidases recognize substrates and provides a molecular understanding of glycoprotein degradation.

  7. When Galectins Recognize Glycans: From Biochemistry to Physiology and Back Again

    PubMed Central

    Di Lella, Santiago; Sundblad, Victoria; Cerliani, Juan P.; Guardia, Carlos M.; Estrin, Dario A.; Vasta, Gerardo R.; Rabinovich, Gabriel A.

    2012-01-01

    In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings. PMID:21848324

  8. LC-MS/MS Peptide Mapping with Automated Data Processing for Routine Profiling of N-Glycans in Immunoglobulins

    NASA Astrophysics Data System (ADS)

    Shah, Bhavana; Jiang, Xinzhao Grace; Chen, Louise; Zhang, Zhongqi

    2014-06-01

    Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.

  9. Isomer-Specific Analysis of Released N-Glycans by LC-ESI MS/MS with Porous Graphitized Carbon.

    PubMed

    Kolarich, Daniel; Windwarder, Markus; Alagesan, Kathirvel; Altmann, Friedrich

    2015-01-01

    The combination of porous graphitized carbon (PGC) liquid chromatography (LC) with mass spectrometric (MS) detection probably constitutes the most elaborate single stage analysis for isomer-specific N-glycan analysis. Here, we describe sample preparation and analysis procedures for the identification of released N-glycans using PGC-LC-ESI-MS and MS/MS.

  10. Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses

    SciTech Connect

    Zheng, Xueyun; Zhang, Xing; Schocker, Nathaniel S.; Renslow, Ryan S.; Orton, Daniel J.; Khamsi, Jamal; Ashmus, Roger A.; Almeida, Igor C.; Tang, Keqi; Costello, Catherine E.; Smith, Richard D.; Michael, Katja; Baker, Erin S.

    2016-09-07

    Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules such as proteins and lipids, and alter their properties and functions, so understanding the effect glycans have on cellular systems is essential. However the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS.

  11. Impact of sialic acids on the molecular dynamic of bi-antennary and tri-antennary glycans

    PubMed Central

    Guillot, Alexandre; Dauchez, Manuel; Belloy, Nicolas; Jonquet, Jessica; Duca, Laurent; Romier, Beatrice; Maurice, Pascal; Debelle, Laurent; Martiny, Laurent; Durlach, Vincent; Baud, Stephanie; Blaise, Sebastien

    2016-01-01

    Sialic acids (SA) are monosaccharides that can be located at the terminal position of glycan chains on a wide range of proteins. The post-translational modifications, such as N-glycan chains, are fundamental to protein functions. Indeed, the hydrolysis of SA by specific enzymes such as neuraminidases can lead to drastic modifications of protein behavior. However, the relationship between desialylation of N-glycan chains and possible alterations of receptor function remains unexplored. Thus, the aim of the present study is to establish the impact of SA removal from N-glycan chains on their conformational behavior. We therefore undertook an in silico investigation using molecular dynamics to predict the structure of an isolated glycan chain. We performed, for the first time, 3 independent 500 ns simulations on bi-antennary and tri-antennary glycan chains displaying or lacking SA. We show that desialylation alters both the preferential conformation and the flexibility of the glycan chain. This study suggests that the behavior of glycan chains induced by presence or absence of SA may explain the changes in the protein function. PMID:27759083

  12. Cervical mucins carry alpha(1,2)fucosylated glycans that partly protect from experimental vaginal candidiasis.

    PubMed

    Domino, Steven E; Hurd, Elizabeth A; Thomsson, Kristina A; Karnak, David M; Holmén Larsson, Jessica M; Thomsson, Elisabeth; Bäckström, Malin; Hansson, Gunnar C

    2009-12-01

    Cervical mucins are glycosylated proteins that form a protective cervical mucus. To understand the role of mucin glycans in Candida albicans infection, oligosaccharides from mouse cervical mucins were analyzed by liquid chromatography-mass spectrometry. Cervical mucins carry multiple alpha(1-2)fucosylated glycans, but alpha(1,2)fucosyltransferase Fut2-null mice are devoid of these epitopes. Epithelial cells in vaginal lavages from Fut2-null mice lacked Ulex europaeus agglutinin-1 (UEA-I) staining for alpha(1-2)fucosylated glycans. Hysterectomy to remove cervical mucus eliminated UEA-I and acid mucin staining in vaginal epithelial cells from wild type mice indicating the cervix as the source of UEA-I positive epithelial cells. To assess binding of alpha(1-2) fucosylated glycans on C. albicans infection, an in vitro adhesion assay was performed with vaginal epithelial cells from wild type and Fut2-null mice. Vaginal epithelial cells from Fut2-null mice were found to bind increased numbers of C. albicans compared to vaginal epithelial cells obtained from wild type mice. Hysterectomy lessened the difference between Fut2-null and wild type mice in binding of C. ablicans in vitro and susceptibility to experimental C. albicans vaginitis in vivo. We generated a recombinant fucosylated MUC1 glycanpolymer to test whether the relative protection of wild type mice compared to Fut2-null mice could be mimicked with exogenous mucin. While a small portion of the recombinant MUC1 epitopes displayed alpha(1-2)fucosylated glycans, the predominant epitopes were sialylated due to endogenous sialyltransferases in the cultured cells. Intravaginal instillation of recombinant MUC1 glycanpolymer partially reduced experimental yeast vaginitis suggesting that a large glycanpolymer, with different glycan epitopes, may affect fungal burden.

  13. Metabolic Reprogramming by Hexosamine Biosynthetic and Golgi N-Glycan Branching Pathways

    PubMed Central

    Ryczko, Michael C.; Pawling, Judy; Chen, Rui; Abdel Rahman, Anas M.; Yau, Kevin; Copeland, Julia K.; Zhang, Cunjie; Surendra, Anu; Guttman, David S.; Figeys, Daniel; Dennis, James W.

    2016-01-01

    De novo uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis requires glucose, glutamine, acetyl-CoA and uridine, however GlcNAc salvaged from glycoconjugate turnover and dietary sources also makes a significant contribution to the intracellular pool. Herein we ask whether dietary GlcNAc regulates nutrient transport and intermediate metabolism in C57BL/6 mice by increasing UDP-GlcNAc and in turn Golgi N-glycan branching. GlcNAc added to the drinking water showed a dose-dependent increase in growth of young mice, while in mature adult mice fat and body-weight increased without affecting calorie-intake, activity, energy expenditure, or the microbiome. Oral GlcNAc increased hepatic UDP-GlcNAc and N-glycan branching on hepatic glycoproteins. Glucose homeostasis, hepatic glycogen, lipid metabolism and response to fasting were altered with GlcNAc treatment. In cultured cells GlcNAc enhanced uptake of glucose, glutamine and fatty-acids, and enhanced lipid synthesis, while inhibition of Golgi N-glycan branching blocked GlcNAc-dependent lipid accumulation. The N-acetylglucosaminyltransferase enzymes of the N-glycan branching pathway (Mgat1,2,4,5) display multistep ultrasensitivity to UDP-GlcNAc, as well as branching-dependent compensation. Indeed, oral GlcNAc rescued fat accumulation in lean Mgat5−/− mice and in cultured Mgat5−/− hepatocytes, consistent with N-glycan branching compensation. Our results suggest GlcNAc reprograms cellular metabolism by enhancing nutrient uptake and lipid storage through the UDP-GlcNAc supply to N-glycan branching pathway. PMID:26972830

  14. DNA Microarray and Proteomic Strategies for Understanding Alcohol Action

    PubMed Central

    Sikela, James M.; MacLaren, Erik J.; Kim, Young; Karimpour-Fard, Anis; Cai, Wei-Wen; Pollack, Jonathan; Hitzemann, Robert; Belknap, John; McWeeney, Shannon; Kerns, Robnet T.; Downing, Chris; Johnson, Thomas E.; Grant, Kathleen J.; Tabakoff, Boris; Hoffman, Paula; Wu, Christine C.; Miles, Michael F.

    2009-01-01

    This article summarizes the proceedings of a symposium presented at the 2005 annual meeting of the Research Society on Alcoholism in Santa Barbara, California. The organizer was James M. Sikela, and he and Michael F. Miles were chairs. The presentations were (1) Genomewide Surveys of Gene Copy Number Variation in Human and Mouse: Implications for the Genetics of Alcohol Action, by James M. Sikela; (2) Regional Differences in the Regulation of Brain Gene Expression: Relevance to the Detection of Genes Associated with Alcohol-Related Traits, by Robert Hitzemann; (3) Identification of Ethanol Quantitative Trait Loci Candidate Genes by Expression Profiling in Inbred Long Sleep/Inbred Short Sleep Congenic Mice, by Robnet T. Kerns; and (4) Quantitative Proteomic Analysis of AC7-Modified Mice, by Kathleen J. Grant. PMID:16573589

  15. The antiviral lectin cyanovirin-N: probing multivalency and glycan recognition through experimental and computational approaches.

    PubMed

    Woodrum, Brian W; Maxwell, Jason D; Bolia, Ashini; Ozkan, S Banu; Ghirlanda, Giovanna

    2013-10-01

    CVN (cyanovirin-N), a small lectin isolated from cyanobacteria, exemplifies a novel class of anti-HIV agents that act by binding to the highly glycosylated envelope protein gp120 (glycoprotein 120), resulting in inhibition of the crucial viral entry step. In the present review, we summarize recent work in our laboratory and others towards determining the crucial role of multivalency in the antiviral activity, and we discuss features that contribute to the high specificity and affinity for the glycan ligand observed in CVN. An integrated approach that encompasses structural determination, mutagenesis analysis and computational work holds particular promise to clarify aspects of the interactions between CVN and glycans.

  16. Glycans in post-Golgi apical targeting: sorting signals or structural props?

    PubMed

    Rodriguez-Boulan, E; Gonzalez, A

    1999-08-01

    A recent model proposed that N-glycans serve as apical targeting signals for soluble and membrane proteins in epithelial cells and neurons by interacting with lectin sorters in the trans-Golgi network. However, we believe that a number of experimental observations support an alternative hypothesis, that N-glycans play a facilitative role, by providing structural support or preventing aggregation of the proteins for example, thereby allowing interaction of proteinaceous apical sorting signals with the sorting machinery. This article discusses the experimental data currently available and how they relate to the proposed models.

  17. Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm*

    PubMed Central

    Martens, Eric C.; Koropatkin, Nicole M.; Smith, Thomas J.; Gordon, Jeffrey I.

    2009-01-01

    Trillions of microbes inhabit the distal gut of adult humans. They have evolved to compete efficiently for nutrients, including a wide array of chemically diverse, complex glycans present in our diets, secreted by our intestinal mucosa, and displayed on the surfaces of other gut microbes. Here, we review how members of the Bacteroidetes, one of two dominant gut-associated bacterial phyla, process complex glycans using a series of similarly patterned, cell envelope-associated multiprotein systems. These systems provide insights into how gut, as well as terrestrial and aquatic, Bacteroidetes survive in highly competitive ecosystems. PMID:19553672

  18. Mannosyl- and Xylosyl-Containing Glycans Promote Tomato (Lycopersicon esculentum Mill.) Fruit Ripening.

    PubMed

    Priem, B; Gross, K C

    1992-01-01

    The oligosaccharide glycans mannosylalpha1-6(mannosylalpha1-3)mannosylalpha1-6(mannosylalpha1-3) mannosylbeta1-4-N-acetylglucosamine and mannosylalpha1-6(mannosylalpha1-3)(xylosylbeta1-2) mannosylbeta1-4-N-acetylglucosaminyl(fucosylalpha1-3) N-acetylglucosamine were infiltrated into mature green tomato fruit (Lycopersicon esculentum Mill., cv Rutgers). Coinfiltration of 1 nanogram per gram fresh weight of the glycans with 40 micrograms per gram fresh weight galactose, a level of galactose insufficient to promote ripening, stimulated ripening as measured by red coloration and ethylene production.

  19. DISC-BASED IMMUNOASSAY MICROARRAYS. (R825433)

    EPA Science Inventory

    Microarray technology as applied to areas that include genomics, diagnostics, environmental, and drug discovery, is an interesting research topic for which different chip-based devices have been developed. As an alternative, we have explored the principle of compact disc-based...

  20. Annotating nonspecific SAGE tags with microarray data.

    PubMed

    Ge, Xijin; Jung, Yong-Chul; Wu, Qingfa; Kibbe, Warren A; Wang, San Ming

    2006-01-01

    SAGE (serial analysis of gene expression) detects transcripts by extracting short tags from the transcripts. Because of the limited length, many SAGE tags are shared by transcripts from different genes. Relying on sequence information in the general gene expression database has limited power to solve this problem due to the highly heterogeneous nature of the deposited sequences. Considering that the complexity of gene expression at a single tissue level should be much simpler than that in the general expression database, we reasoned that by restricting gene expression to tissue level, the accuracy of gene annotation for the nonspecific SAGE tags should be significantly improved. To test the idea, we developed a tissue-specific SAGE annotation database based on microarray data (). This database contains microarray expression information represented as UniGene clusters for 73 normal human tissues and 18 cancer tissues and cell lines. The nonspecific SAGE tag is first matched to the database by the same tissue type used by both SAGE and microarray analysis; then the multiple UniGene clusters assigned to the nonspecific SAGE tag are searched in the database under the matched tissue type. The UniGene cluster presented solely or at higher expression levels in the database is annotated to represent the specific gene for the nonspecific SAGE tags. The accuracy of gene annotation by this database was largely confirmed by experimental data. Our study shows that microarray data provide a useful source for annotating the nonspecific SAGE tags.

  1. Analytical Protein Microarrays: Advancements Towards Clinical Applications

    PubMed Central

    Sauer, Ursula

    2017-01-01

    Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems. PMID:28146048

  2. Analytical Protein Microarrays: Advancements Towards Clinical Applications.

    PubMed

    Sauer, Ursula

    2017-01-29

    Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.

  3. Microarrays (DNA Chips) for the Classroom Laboratory

    ERIC Educational Resources Information Center

    Barnard, Betsy; Sussman, Michael; BonDurant, Sandra Splinter; Nienhuis, James; Krysan, Patrick

    2006-01-01

    We have developed and optimized the necessary laboratory materials to make DNA microarray technology accessible to all high school students at a fraction of both cost and data size. The primary component is a DNA chip/array that students "print" by hand and then analyze using research tools that have been adapted for classroom use. The…

  4. Diagnostic Oligonucleotide Microarray Fingerprinting of Bacillus Isolates

    SciTech Connect

    Chandler, Darrell P.; Alferov, Oleg; Chernov, Boris; Daly, Don S.; Golova, Julia; Perov, Alexander N.; Protic, Miroslava; Robison, Richard; Shipma, Matthew; White, Amanda M.; Willse, Alan R.

    2006-01-01

    A diagnostic, genome-independent microbial fingerprinting method using DNA oligonucleotide microarrays was used for high-resolution differentiation between closely related Bacillus strains, including two strains of Bacillus anthracis that are monomorphic (indistinguishable) via amplified fragment length polymorphism fingerprinting techniques. Replicated hybridizations on 391-probe nonamer arrays were used to construct a prototype fingerprint library for quantitative comparisons. Descriptive analysis of the fingerprints, including phylogenetic reconstruction, is consistent with previous taxonomic organization of the genus. Newly developed statistical analysis methods were used to quantitatively compare and objectively confirm apparent differences in microarray fingerprints with the statistical rigor required for microbial forensics and clinical diagnostics. These data suggest that a relatively simple fingerprinting microarray and statistical analysis method can differentiate between species in the Bacillus cereus complex, and between strains of B. anthracis. A synthetic DNA standard was used to understand underlying microarray and process-level variability, leading to specific recommendations for the development of a standard operating procedure and/or continued technology enhancements for microbial forensics and diagnostics.

  5. MICROARRAY DATA ANALYSIS USING MULTIPLE STATISTICAL MODELS

    EPA Science Inventory

    Microarray Data Analysis Using Multiple Statistical Models

    Wenjun Bao1, Judith E. Schmid1, Amber K. Goetz1, Ming Ouyang2, William J. Welsh2,Andrew I. Brooks3,4, ChiYi Chu3,Mitsunori Ogihara3,4, Yinhe Cheng5, David J. Dix1. 1National Health and Environmental Effects Researc...

  6. Shrinkage covariance matrix approach for microarray data

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n < p. This leads to a biased estimate of the covariance matrix. In this study, the Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  7. Antibodies elicited by yeast glycoproteins recognize HIV-1 virions and potently neutralize virions with high mannose N-glycans

    PubMed Central

    Zhang, Hong; Fu, Hu; Luallen, Robert J.; Liu, Bingfen; Lee, Fang-Hua; Doms, Robert W.; Geng, Yu

    2015-01-01

    The glycan shield on the human immunodeficiency virus 1 (HIV-1) envelope (Env) glycoprotein has drawn attention as a target for HIV-1 vaccine design given that an increasing number of potent and broadly neutralizing antibodies (bNAbs) recognize epitopes entirely or partially comprised of high mannose type N-linked glycans. In an attempt to generate immunogens that target the glycan shield of HIV-1, we previously engineered a triple mutant (TM) strain of Saccharomyces cerevisiae that results in exclusive presentation of high mannose type N-glycans, and identified five TM yeast glycoproteins that support strong binding of 2G12, a bNAb that targets a cluster of high mannose glycans on the gp120 subunit of Env. Here, we further analyzed the antigenicity and immunogenicity of these proteins in inducing anti-HIV responses. Our study demonstrated that the 2G12-reactive TM yeast glycoproteins efficiently bound to recently identified bNAbs including PGT125–130 and PGT135 that recognize high mannose glycan-dependent epitopes. Immunization of rabbits with a single TM yeast glycoprotein (Gp38 or Pst1), when conjugated to a promiscuous T-cell epitope peptide and coadministered with a Toll-like receptor 2 agonist, induced glycan-specific HIV-1 Env cross-reactive antibodies. The immune sera bound to both synthetic mannose oligosaccharides and gp120 proteins from a broad range of HIV-1 strains. The purified antibodies recognized and captured virions that contain both complex- and high mannose-type of N-glycans, and potently neutralized virions from different HIV-1 clades but only when the virions were enforced to retain high mannose N-glycans. This study provides insights into the elicitation of anti-carbohydrate, HIV-1 Env-cross reactive antibodies with a heterologous glycoprotein and may have applications in the design and administration of immunogens that target the viral glycan shield for development of an effective HIV-1 vaccine. PMID:26277072

  8. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV

    PubMed Central

    Sok, Devin; Doores, Katie J.; Briney, Bryan; Le, Khoa M.; Saye-Francisco, Karen F.; Ramos, Alejandra; Kulp, Daniel W.; Julien, Jean-Philippe; Menis, Sergey; Wickramasinghe, Lalinda; Seaman, Michael S.; Schief, William R.; Wilson, Ian A.; Poignard, Pascal; Burton, Dennis R.

    2014-01-01

    Broadly neutralizing monoclonal antibodies (bnMAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates as they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viraemia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnMAbs can utilize alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/334 glycan site and up to 66% coverage for viruses that lack the N332/334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near equivalent coverage as a combination of bnMAbs targeting multiple epitopes. Additionally, the ability of some bnMAbs to utilize other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnMAbs to the high-mannose patch for optimal anti-viral activity either in protective or therapeutic modalities. PMID:24828077

  9. Novel O-linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus

    PubMed Central

    Hewitson, James P.; Nguyen, D. Linh; van Diepen, Angela; Smit, Cornelis H.; Koeleman, Carolien A.; McSorley, Henry J.; Murray, Janice; Maizels, Rick M.; Hokke, Cornelis H.

    2016-01-01

    Glycan molecules from helminth parasites have been associated with diverse biological functions ranging from interactions with neighbouring host cell populations to down-modulation of specific host immunity. Glycoproteins secreted by the intestinal nematode Heligmosomoides polygyrus are of particular interest as the excretory–secretory products (termed HES) of this parasite contain both heat-labile and heat-stable components with immunomodulatory effects. We used MALDI-TOF-MS and LC–MS/MS to analyse the repertoire of N- and O-linked glycans released from Heligmosomoides polygyrus excretory–secretory products by PNGase A and F, β-elimination and hydrazinolysis revealing a broad range of structures including novel methylhexose- and methylfucose-containing glycans. Monoclonal antibodies to two immunodominant glycans of H. polygyrus, previously designated Glycans A and B, were found to react by glycan array analysis to a methyl-hexose-rich fraction and to a sulphated LacDiNAc (LDN; GalNAcβ1–4GlcNAc) structure, respectively. We also analysed the glycan repertoire of a major glycoprotein in Heligmosomoides polygyrus excretory–secretory products, VAL-2, which contains many glycan structures present in Heligmosomoides polygyrus excretory–secretory products including Glycan A. However, it was found that this set of glycans is not responsible for the heat-stable immunomodulatory properties of Heligmosomoides polygyrus excretory–secretory products, as revealed by the inability of VAL-2 to inhibit allergic lung inflammation. Taken together, these studies reveal that H. polygyrus secretes a diverse range of antigenic glycoconjugates, and provides a framework to explore the biological and immunomodulatory roles they may play within the mammalian host. PMID:26688390

  10. A Method of Microarray Data Storage Using Array Data Type

    PubMed Central

    Tsoi, Lam C.; Zheng, W. Jim

    2009-01-01

    A well-designed microarray database can provide valuable information on gene expression levels. However, designing an efficient microarray database with minimum space usage is not an easy task since designers need to integrate the microarray data with the information of genes, probe annotation, and the descriptions of each microarray experiment. Developing better methods to store microarray data can greatly improve the efficiency and usefulness of such data. A new schema is proposed to store microarray data by using array data type in an object-relational database management system – PostgreSQL. The implemented database can store all the microarray data from the same chip in an array data structure. The variable length array data type in PostgreSQL can store microarray data from same chip. The implementation of our schema can help to increase the data retrieval and space efficiency. PMID:17392028

  11. N-glycans and metastasis in galectin-3 transgenic mice.

    PubMed

    More, Shyam K; Srinivasan, Nithya; Budnar, Srikanth; Bane, Sanjay M; Upadhya, Archana; Thorat, Rahul A; Ingle, Arvind D; Chiplunkar, Shubhada V; Kalraiya, Rajiv D

    2015-05-01

    Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3

  12. Examining microarray slide quality for the EPA using SNL's hyperspectral microarray scanner.

    SciTech Connect

    Rohde, Rachel M.; Timlin, Jerilyn Ann

    2005-11-01

    This report summarizes research performed at Sandia National Laboratories (SNL) in collaboration with the Environmental Protection Agency (EPA) to assess microarray quality on arrays from two platforms of interest to the EPA. Custom microarrays from two novel, commercially produced array platforms were imaged with SNL's unique hyperspectral imaging technology and multivariate data analysis was performed to investigate sources of emission on the arrays. No extraneous sources of emission were evident in any of the array areas scanned. This led to the conclusions that either of these array platforms could produce high quality, reliable microarray data for the EPA toxicology programs. Hyperspectral imaging results are presented and recommendations for microarray analyses using these platforms are detailed within the report.

  13. Identifying Fishes through DNA Barcodes and Microarrays

    PubMed Central

    Kochzius, Marc; Seidel, Christian; Antoniou, Aglaia; Botla, Sandeep Kumar; Campo, Daniel; Cariani, Alessia; Vazquez, Eva Garcia; Hauschild, Janet; Hervet, Caroline; Hjörleifsdottir, Sigridur; Hreggvidsson, Gudmundur; Kappel, Kristina; Landi, Monica; Magoulas, Antonios; Marteinsson, Viggo; Nölte, Manfred; Planes, Serge; Tinti, Fausto; Turan, Cemal; Venugopal, Moleyur N.; Weber, Hannes; Blohm, Dietmar

    2010-01-01

    Background International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of “DNA barcoding” and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the “position of label” effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products. PMID

  14. Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers.

    PubMed

    Yu, Hualong; Hong, Shufang; Yang, Xibei; Ni, Jun; Dan, Yuanyuan; Qin, Bin

    2013-01-01

    DNA microarray technology can measure the activities of tens of thousands of genes simultaneously, which provides an efficient way to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to produce inaccurate results. Some studies have considered this problem, yet they merely focus on binary-class problem. In this paper, we dealt with multiclass imbalanced classification problem, as encountered in cancer DNA microarray, by using ensemble learning. We utilized one-against-all coding strategy to transform multiclass to multiple binary classes, each of them carrying out feature subspace, which is an evolving version of random subspace that generates multiple diverse training subsets. Next, we introduced one of two different correction technologies, namely, decision threshold adjustment or random undersampling, into each training subset to alleviate the damage of class imbalance. Specifically, support vector machine was used as base classifier, and a novel voting rule called counter voting was presented for making a final decision. Experimental results on eight skewed multiclass cancer microarray datasets indicate that unlike many traditional classification approaches, our methods are insensitive to class imbalance.

  15. The nematode Caenorhabditis elegans synthesizes unusual O-linked glycans: identification of glucose-substituted mucin-type O-glycans and short chondroitin-like oligosaccharides.

    PubMed Central

    Guérardel, Y; Balanzino, L; Maes, E; Leroy, Y; Coddeville, B; Oriol, R; Strecker, G

    2001-01-01

    The free-living nematode Caenorhabditis elegans is a relevant model for studies on the role of glycoconjugates during development of multicellular organisms. Several genes coding for glycosyltransferases involved in the synthesis of N- and O-linked glycans have already been isolated, but, apart from repetitive dimers of glycosaminoglycans, no detailed structure of either type of component has been published so far. This study aimed to establish the structures of the major O-glycans synthesized by C. elegans to give an insight into the endogenous glycosyltransferase activities expressed in this organism. By the use of NMR and MS, we have resolved the sequence of seven of these components that present very unusual features. Most of them were characterized by the type-1 core substituted on Gal and/or GalNAc by (beta1-4)Glc and (beta1-6)Glc residues. Another compound exhibited the GalNAc(beta1-4)N-acetylglucosaminitol sequence in the terminal position, to which was attached a tetramer of beta-Gal substituted by both Fuc and 2-O-methyl-fucose residues. Our experimental procedure led also to the isolation of glycosaminoglycan-like components and oligomannosyl-type N-glycans. In particular, the data confirmed that C. elegans synthesizes the ubiquitous linker sequence GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl. PMID:11415447

  16. Non-volatile copolymer compositions for fabricating gel element microarrays

    PubMed Central

    Golova, Julia B.; Chernov, Boris K.; Perov, Alexander N.; Reynolds, Jennifer; Linger, Yvonne L.; Kukhtin, Alexander; Chandler, Darrell P.

    2011-01-01

    By modifying polymer compositions and cross-linking reagents, we have developed a simple yet effective manufacturing strategy for copolymerized three-dimensional gel element arrays. A new gel-forming monomer (2-(hydroxyethyl) methacrylamide; HEMAA) was used that possesses low volatility and improves the stability of copolymerized gel element arrays to on-chip thermal cycling procedures relative to previously used monomers. Probe immobilization efficiency within the new polymer was 55%, equivalent to that obtained with acrylamide (AA) and methacrylamide (MA) monomers. Non-specific binding of single stranded targets was equivalent for all monomers. Increasing cross-linker chain length improved hybridization kinetics and end-point signal intensities relative to N,N-methylenebisacrylamide (Bis). The new copolymer formulation was successfully applied to a model orthopox array. Because HEMAA greatly simplifies gel element