Sample records for glycerol monooleate gmo

  1. A two-stage enzymatic process for synthesis of extremely pure high oleic glycerol monooleate.

    PubMed

    Zhu, Qisi; Li, Tie; Wang, Yonghua; Yang, Bo; Ma, Yongjun

    2011-02-08

    This paper presents a research interest concentrating on aims to establish a feasible industrial process for enzymatic production of highly pure glycerol monooleate (GMO). The synthesis of high oleic glycerol monooleate by enzymatic glycerolysis of high oleic sunflower oil, using Novozyme 435 as the biocatalyst, in a binary solvent mixture of tert-butanol and tert-pentanol (80/20, v/v), at a lab scale has been studied. A yield of 75.31% monoacylglycerol has been achieved at the first stage. A yield of 93.3% GMO was finally reached after further purification at the second stage. To evaluate the possibility of the process for industrialization, production of GMO was performed at a pilot-plant scale under the correspondingly adjusted conditions. A yield of 68.17% and 93.4% of GMO was obtained, respectively, at the end of the three stages. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Influence of reaction condition on viscosity of polyurethane modified epoxy based on glycerol monooleate

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-01-01

    Polyurethane modified epoxy based on glycerol monooleate (PME-GMO) was synthesized. GMO as polyol for synthesis of PME-GMO was synthesized via Fisher Esterification between oleic acid from palm oil and glycerol by using sulfuric acid as catalyst with time variation i.e. 3, 4, 5 and 6 hours at 160°C. Characterizations of GMO were carried out by analysis of acid number, hydroxyl value and FTIR. The data show that the conversion of oleic acid to ester compound is directly proportional with the increasing of reaction time but the enhancement is not significant after 3 hours. Furthermore, GMO product was used as polyol for modification of epoxy with polyurethane. Modification of epoxy with polyurethane was performed by reacted epoxy, tolonate and GMO simultaneously in one step. In this research, the reaction condition was varied i.e. time reaction (0.5; 1; 1.5; 2; 2.5 hours), composition of polyurethane used (10%, 20% toward epoxy) and rasio of tolonate and GMO (NCO/OH ratio) as component of polyurethane (1.5 and 2.5). Characterization of polyurethane modified epoxy based on glycerol (PME-GMO) was conducted by viscosity and FTIR analysis. The viscosity of PME-GMO increased with increasing of reaction time, polyurethane composition and NCO/OH ratio.

  3. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    DTIC Science & Technology

    2010-02-28

    evaporation induced self-assembly of aqueous silica precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating...film is first deposited, it has a relatively low contact angle with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins...Figure 8. A) Water contact angle of a GMO -templated silica film as a function of UV light and ozone exposure time, B) Localization of fluorescently

  4. Biocompatible and Biomimetic Self-Assembly of Functional

    DTIC Science & Technology

    2007-10-03

    rearrangement of the lipid/silica matrix to create a bio/nano interface quite similar to that formed by direct CDA. This approach has several advantages over CDA...precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating, spin-coating, drop-casting, or aerosol deposition...with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins to photodecompose and the silanol precursors become more

  5. Interaction of a Model Peptide with a Water--Bilayer System

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1994-01-01

    We discuss a molecular dynamics study of the alanine dipeptide at the interface between water and a glycerol-1-monooleate (GMO) bilayer. The dipeptide is interfacially active and incorporates into the bilayer without disrupting its structure. The interfacial region that is readily penetrated by the dipeptide spans the entire head group portion of the bilayer. The polar groups of the alanine dipeptide mostly remain well solvated by water and the oxygen atoms of GMO, and conformations of the dipeptide are characterized by (phi, psi) angles typical of alpha-helix and beta-sheet structures. When the molecule is deeper in the bilayer, the C(sub 7eq) state also becomes stable. The barrier to the isomerization reaction at the interface is lower than in bulk phases. After 7 ns of trajectories, the system is not fully equilibrated, due to slow collective motions involving GMO head groups. These result in decreased mobility and lower rates of isomerization of the dipeptide at the interface.

  6. Development of formulations and processes to incorporate wax oleogels in ice cream.

    PubMed

    Zulim Botega, Daniele C; Marangoni, Alejandro G; Smith, Alexandra K; Goff, H Douglas

    2013-12-01

    The objective of this study was to investigate the influence of emulsifiers, waxes, fat concentration, and processing conditions on the application of wax oleogel to replace solid fat content and create optimal fat structure in ice cream. Ice creams with 10% or 15% fat were formulated with rice bran wax (RBW), candelilla wax (CDW), or carnauba wax (CBW) oleogels, containing 10% wax and 90% high-oleic sunflower oil. The ice creams were produced using batch or continuous freezing processes. Transmission electron microscopy (TEM) and cryo-scanning electron microscopy were used to evaluate the microstructure of ice cream and the ultrastructure of oleogel droplets in ice cream mixes. Among the wax oleogels, RBW oleogel had the ability to form and sustain structure in 15% fat ice creams when glycerol monooleate (GMO) was used as the emulsifier. TEM images revealed that the high degree of fat structuring observed in GMO samples was associated with the RBW crystal morphology within the fat droplet, which was characterized by the growth of crystals at the outer edge of the droplet. Continuous freezing improved fat structuring compared to batch freezing. RBW oleogels established better structure compared to CDW or CBW oleogels. These results demonstrate that RBW oleogel has the potential to develop fat structure in ice cream in the presence of GMO and sufficiently high concentrations of oleogel. © 2013 Institute of Food Technologists®

  7. Characterization and optimization of GMO-based gels with long term release for intraarticular administration.

    PubMed

    Réeff, J; Gaignaux, A; Goole, J; Siepmann, J; Siepmann, F; Jerome, C; Thomassin, J M; De Vriese, C; Amighi, K

    2013-07-15

    Osteoarthritis is characterized by slow degenerative processes in the articular cartilage within synovial joints. It could be interesting to develop a sustained-release formulation that could be effective on both pain/inflammation and restoration of mechanical integrity of the joint. Recently, an injectable system based on glycerol monooleate (GMO), containing clonidine as a model hydrophilic analgesic/anti-inflammatory drug and hyaluronic acid as a viscoelastic scaffold, showed promising potential as a biodegradable and biocompatible preparation to sustain the drug activity. However, drug release from the system is relatively fast (complete within 1 week) and the underlying drug release mechanisms not fully understood. The aims of this study were: (i) to significantly improve this type of local controlled drug delivery system by further sustaining clonidine release, and (ii) to elucidate the underlying mass transport mechanisms. The addition of FDA-approved inactive ingredients such as sodium oleate or purified soybean oil was found to be highly effective. The release rate could be substantially reduced (e.g., 50% release after 10 days), due to the increased hydrophobicity of the systems, resulting in slower and reduced water uptake and reduced drug mobility. Interestingly, Fick's second law of diffusion could be used to quantitatively describe drug release. Copyright © 2013. Published by Elsevier B.V.

  8. Binary blend of glyceryl monooleate and glyceryl monostearate for magnetically induced thermo-responsive local drug delivery system.

    PubMed

    Mengesha, Abebe E; Wydra, Robert J; Hilt, J Zach; Bummer, Paul M

    2013-12-01

    To develop a novel monoglycerides-based thermal-sensitive drug delivery system, specifically for local intracavitary chemotherapy. Lipid matrices containing mixtures of glyceryl monooleate (GMO) and glyceryl monostearate (GMS) were evaluated for their potential application as magnetically induced thermo-responsive local drug delivery systems using a poorly water-soluble model drug, nifedipine (NF). Oleic acid-modified iron oxide (OA-Fe3O4) nanoparticles were embedded into the GMO-GMS matrix for remote activation of the drug release using an alternating magnetic field (AMF). The crystallization behavior of binary blends of GMO and GMS as characterized by DSC did show temperature dependent phase transition. GMO-GMS (75:25 wt%) blend showed a melting (T m ) and crystallization (T c ) points at 42°C and 37°C, respectively indicating the potential of the matrix to act as an 'on-demand' drug release. The matrix released only 35% of the loaded drug slowly in 10 days at 37°C whereas 96% release was obtained at 42°C. A concentration of 0.5% OA-Fe3O4 heated the matrix to 42.3 and 45.5°C within 5 min and 10 min of AMF exposure, respectively. The in vitro NF release profiles form the monoglycerides matrix containing 0.5% OA-Fe3O4 nanoparticles after AMF activation confirmed the thermo-responsive nature of the matrix that could provide pulsatile drug release 'on-demand'.

  9. Bioadhesive drug delivery system using glyceryl monooleate for the intravesical administration of paclitaxel.

    PubMed

    Lee, Seung-Ju; Kim, Sae Woong; Chung, Hesson; Park, Yeong Taek; Choi, Young Wook; Cho, Yong-Hyun; Yoon, Moon Soo

    2005-10-01

    Many reports have shown that the efficacy of intravesical therapy for bladder cancer is in part limited by the poor penetration of drugs into the urothelium. The present study evaluated the effect of glyceryl monooleate (GMO) on the absorption of intravesically administered paclitaxel in a rabbit model of bladder cancer. Urine, plasma, and tissue pharmacokinetics were determined in rabbits treated for 120 min with paclitaxel (500 microg/20 ml) by intravesical instillation. Two formulations of GMO/paclitaxel were evaluated using different proportions of water, 15 and 30%, and Taxol was used as a control. Animals were observed for clinical signs of toxicity and necropsy was performed. 120 min after instillation, the bladder was emptied and excised. In the urine, paclitaxel concentration was decreased by 39.6 and 41.2% in the two experimental groups and by 25.2% in the control group. The paclitaxel concentrations in the urothelium were 53 and 56% of the urine concentration in both experimental groups, but 11% in the control group. The concentration then declined exponentially in the underlying capillary-perfused tissues, reaching equilibrium at a depth of 1,400-1,700 microm. The plasma concentrations were extremely low compared with concentrations in urine and bladder tissues and were not associated with clinical toxicity. We conclude that GMO has a significantly increased bioadhesiveness to bladder mucosa. Therefore, intravesical administration of GMO/paclitaxel/water provides a significant advantage for drugs targeting the bladder tissue, and paclitaxel represents a viable option for intravesical bladder cancer therapy. Copyright 2005 S. Karger AG, Basel.

  10. The role of glycerol and phosphatidylcholine in solubilizing and enhancing insulin stability in reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Azulay, Doron; Mishraki, Tehila; Aserin, Abraham; Garti, Nissim

    2011-12-15

    The potential of reverse hexagonal mesophases based on monoolein (GMO) and glycerol (as cosolvent) to facilitate the solubilization of proteins, such as insulin was explored. H(II) mesophases composed of GMO/decane/water were compared to GMO/decane/glycerol/water and GMO/phosphatidylcholine (PC)/decane/glycerol/water systems. The stability of insulin was tested, applying external physical modifications such as low pH and heat treatment (up to 70°C), in which insulin is known to form ordered amyloid-like aggregates (that are associated with several neurodegenerative diseases) with a characteristic cross β-pleated sheet structure. The impact of insulin confinement within these carriers on its stability, unfolding, and aggregation pathways was studied by combining SAXS, FTIR, and AFM techniques. These techniques provided a better insight into the molecular level of the "component interplay" in solubilizing and stabilizing insulin and its conformational modifications that dictate its final aggregate morphology. PC enlarged the water channels while glycerol shrank them, yet both facilitated insulin solubilization within the channels. The presence of glycerol within the mesophase water channels led to the formation of stronger hydrogen bonds with the hosting medium that enhanced the thermal stability of the protein and remarkably affected the unfolding process even after heat treatment (at 70°C for 60 min). Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Transitions induced by solubilized fat into reverse hexagonal mesophases.

    PubMed

    Amar-Yuli, Idit; Garti, Nissim

    2005-06-25

    Lyotropic liquid crystals of glycerol monooleate (GMO) and water binary mixtures have been extensively studied and their resemblance to human membranes has intrigued many scientists. Biological systems as well as food mixtures are composed of lipids and fat components including triacylglycerols (TAGs, triglycerides) that can affect the nature of the assembly of the mesophase. The present study examines the effect of TAGs of different chain lengths (C(2)-C(18)) at various water/GMO compositions, on phase transitions from lamellar or cubic to reverse hexagonal (L(alpha)-H(II) and Q-H(II)). The ability of the triglycerides to promote the formation of an H(II) mesophase is chain length-dependent. It was found that TAG molecules with very short acyl chains (triacetin) can hydrate the head groups of the lipid and do not affect the critical packing parameter (CPP) of the amphiphile; therefore, they do not affect the self-assembly of the GMO in water, and the mesophase remains lamellar or cubic. However, TAGs with medium chain fatty acids will solvate the tails of the lipid, and will affect the CPP of the GMO, and transform the lamellar or cubic phases into hexagonal mesophase. TAGs with long chain fatty acids are very bulky, not very miscible with the GMO, and therefore, kinetically are very slow to solvate the lipid tails of the amphiphile and are difficult to accommodate into the lipophilic parts of the GMO. Their effect on the transitions from a lamellar or cubic phase to hexagonal is detected only after months of equilibration. In order to enhance the effect of the TAG on the phase transitions in the GMO/triglyceride/water systems, temperature and electrolytes effects were examined. In the presence of short and medium chain triglycerides, increasing temperature caused a transition from lamellar or hexagonal to L(2) phase (highest CPP value). However, in the presence of long chain TAGs, increasing temperature to ca. 40 degrees C caused a formation of H(II) mesophase. In addition, it was found that in tricaprylin/GMO/water systems, the increase in temperature caused a decrease in the lattice parameter. The effect of NaCl on the H(II) mesophase revealed interesting results. At low concentration of tricaprylin (5 wt%), the addition of only 0.1 wt% of NaCl was sufficient to cause the formation of well-defined H(II) mesophase, while further addition of electrolyte increased the hexagonal lattice parameters. At higher TAGs concentrations (10 wt%), addition of electrolyte resulted in the formation of H(II) with modifications of the lattice parameter. All the examined effects were more pronounced with increasing water content.

  12. 21 CFR 181.27 - Plasticizers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... CONSUMPTION (CONTINUED) PRIOR-SANCTIONED FOOD INGREDIENTS Specific Prior-Sanctioned Food Ingredients § 181.27... oxygen, minimum, 6.0 percent). Ethylphthalyl ethyl glycolate. Glycerol monooleate. Monoisopropyl citrate...

  13. Lyotropic Liquid Crystalline Nanoparticles of Amphotericin B: Implication of Phytantriol and Glyceryl Monooleate on Bioavailability Enhancement.

    PubMed

    Jain, Sanyog; Yadav, Pooja; Swami, Rajan; Swarnakar, Nitin Kumar; Kushwah, Varun; Katiyar, Sameer S

    2018-05-01

    Implication of different dietary specific lipids such as phytantriol (PT) and glyceryl monooleate (GMO) on enhancing the oral bioavailability of amphotericin B (AmB) was examined. Liquid crystalline nanoparticles (LCNPs) were prepared using hydrotrope method, followed by in vitro characterization, Caco-2 cell monolayer uptake, and in vivo pharmacokinetic and toxicity evaluation. Optimized AmB-LCNPs displayed small particle size (< 210 nm) with a narrow distribution (~ 0.2), sustained drug release and high gastrointestinal stability, and reduced hemolytic toxicity. PLCNPs presented slower release, i.e., ~ 80% as compared to ~ 90% release in case of GLCNPs after 120 h. Significantly higher uptake in Caco-2 monolayer substantiated the role of LCNPs in increasing the intestinal permeability followed by increased drug titer in plasma. Pharmacokinetic studies demonstrated potential of PT in enhancing the bioavailability (approximately sixfold) w.r.t. of its native counterpart with reduced nephrotoxicity as presented by reduced nephrotoxicity biomarkers and histology studies. These studies established usefulness of PLCNPs over GLCNPs and plain drug. It can be concluded that acid-resistant lipid, PT, can be utilized efficiently as an alternate lipid for the preparation of LCNPs to enhance bioavailability and to reduce nephrotoxicity of the drug as compared to other frequently used lipid, i.e., GMO.

  14. The effect of some general anaesthetics on the surface potential of lipid monolayers

    PubMed Central

    Bangham, A.D.; Mason, W.

    1979-01-01

    1 This study sought to investigate the report by Ginsberg (1978) that 0.7 M ethanol brought about a + 100 mV change (ΔΔV) in the surface potential of glyceryl monooleate (GMO) monolayers formed on KCl, although he predicted that a ΔΔV of -10 mV should have been found. 2 The effect of general anaesthetics such as n-alkyl alcohols and pentobarbitone on surface potential (ΔV) and surface tension (γ) of lipid monolayers formed on 145 mM KCl from either glyceryl monooleate (GMO) or phosphatidyl choline (PC) was examined with an Americium-241 air electrode assembly (ΔV) and a platinized platinum dipping plate and force balance (γ). 3 It was found that, as predicted by Ginsberg (1978), addition of 0.7 M ethanol to the aqueous phase bathing either PC or GMO monolayers brings about a negative-going change in interfacial potential (ΔΔV). 4 The magnitude of ΔΔV is dependent in a linear fashion on ethanol concentration. 5 Longer chain length alcohols up to n-decanol also bring about a negative going change in ΔΔV, and the dependence of ΔΔV on anaesthetic activity, with respect to increasing chain length of anaesthetic, is consistent with Traube's law. 6 Pentobarbitone added to the aqueous phase bathing the monolayer also elicits a negative ΔΔV, a finding which rules out the possibility of adsorption of the volatile alcohols to the measuring electrode. 7 The findings are discussed in terms of the proposition that increasing disorder in an array of fixed dipoles, such as might occur in a bilayer exposed to anaesthetic, would result in a lowering of the electrostatic barrier to the predominantly impermeable cation. PMID:465879

  15. Effect of Liquid Crystalline Systems Containing Antimicrobial Compounds on Infectious Skin Bacteria.

    PubMed

    Souza, Carla; Watanabe, Evandro; Aires, Carolina Patrícia; Lara, Marilisa Guimarães

    2017-08-01

    This study aimed (i) to prepare liquid crystalline systems (LCS) of glyceryl monooleate (GMO) and water containing antibacterial compounds and (ii) to evaluate their potential as drug delivery systems for topical treatment of bacterial infections. Therefore, LCS containing CPC (cetylpyridinium chloride) (LCS/CPC) and PHMB (poly(hexamethylene biguanide) hydrochloride) (LCS/PHMB) were prepared and the liquid crystalline phases were identified by polarizing light microscopy 24 h and 7 days after preparation. The in vitro drug release profile and in vitro antibacterial activity of the systems were assessed using the double layer agar diffusion method against Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Escherichia coli, and Enterococcus faecalis. The interaction between GMO and the drugs was evaluated by a drug absorption study. Stable liquid crystalline systems containing CPC and PHMB were obtained. LCS/PHMB decreased the PHMB release rate and exerted strong antibacterial activity against all the investigated bacteria. In contrast, CPC interacted with GMO so strongly that it became attached to the system; the amount released was not sufficient to exert antibacterial activity. Therefore, the studied liquid crystalline systems were suitable to deliver PHMB, but not CPC. Accordingly, it was demonstrated that GMO interacts with each drug differently, which may interfere in the final efficiency of GMO/water LCS.

  16. Electrochemical characterization of bilayer lipid membrane-semiconductor junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiao Kang; Baral, S.; Fendler, J.H.

    Three different systems of glyceryl monooleate (GMO), bilayer lipid membrane (BLM) supported semiconductor particles have been prepared and characterized. A single composition of particulate semiconductor deposited only on one side of the BLM constituted system A, two different compositions of particulate semiconductors sequentially deposited on the same side of the BLM represented system B, and two different compositions of particulate semiconductors deposited on the opposite sides of the BLM made up system C.

  17. Optimizing Cationic and Neutral Lipids for Efficient Gene Delivery at High Serum Content

    PubMed Central

    Majzoub, Ramsey N.; Hwu, Yeu-kuang; Liang, Keng S.; Leal, Cecília; Safinya, Cyrus R.

    2014-01-01

    Background Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential applications in gene therapy. A key challenge in creating CL-DNA complexes for applications is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of high serum contents on TE even though this may provide design guidelines for applications in vivo. Methods We prepared CL-DNA complexes in which we varied the neutral lipid (DOPC, glycerol-monooleate (GMO), cholesterol), the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). Results In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, in particular at high serum content. Conclusions Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We suggest guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. PMID:24753287

  18. Structure and functions of simple membrane-water interfaces. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1994-01-01

    The structure and functions of the earliest ancestors of contemporary cells are focal points in studies of the origin of life. Probably the first cell-like structures were vesicles - closed, spheroidal structures with aqueous medium trapped inside. The membranous walls of vesicles were most likely bilayers composed of simple amphiphilic material available on early earth. The membrane studied was composed of glycerol 1-monooleate (GMO). Glycerol forms the polar head group and the oily tail contains 18 carbon atoms. All head groups have been found to be located in two narrow regions at the interfaces with water. The membrane interior, formed by the hydrophobic tails, is quite fluid with chain disorder increasing towards the center of the bilayer. These results are in agreement with x-ray and neutron scattering data from related bilayers. The width of the membrane is not constant, but fluctuates in time and space. Occasional thinning defects in the membrane, observed during the course of the simulations, may have a significant influence on rates of passive transport of small molecules across membranes. It has been found that water penetrates the head group region but not the oily interior of the membrane. Water molecules near the interface are oriented by dipoles of the head groups. The resulting electrostatic potential across the interface, determined in our simulations, has been found to be markedly larger than across the water-oil interface. This quantity has been implicated as the source of selectivity, with respect to the sign of the charge, as an ion approaches the interface and during transport of hydrophobic ions across membranes.

  19. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  20. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems.

    PubMed

    Yariv, Doron; Efrat, Rivka; Libster, Dima; Aserin, Abraham; Garti, Nissim

    2010-07-01

    In this paper we examined feasible correlations between the structure of different lyotropic mesophases and transdermal administration of three diclofenac derivatives with varying degrees of kosmotropic or chaotropic properties, solubilized within the mesophases. It was found that the most chaotropic derivative of diclofenac diethyl amine (DEA-DFC) interacted with the polar heads of glycerol monooleate (GMO), thus expanding the water-lipid interface of the lamellar and cubic mesophases. This effect was detected by an increase in the lattice parameter of both mesophases, enhanced elastic properties, and increased solid-like response of the systems in the presence of DEA. Potassium diclofenac (K-DFC), a less chaotropic salt, had less pronounced effect on the structural features of the mesophases. Kosmotropic Na+ salt (Na-DFC) had only minor influence on both lamellar and cubic structures. The locus of solubilization of the molecules with the host mesophases was correlated with their delivery. It was suggested that transdermal delivery of kosmotropic Na-DFC was accelerated by the aqueous phase and less constrained by the interaction with monoglyceride. On the other hand, the chaotropic cations (K+ and DEA+), presumably entrapped in the water-lipid interface, interacted with monoglyceride headgroups, which is likely to be the key cause for their sustained administration. 2010 Elsevier B.V. All rights reserved.

  1. Molecular dynamics approach to water structure of HII mesophase of monoolein

    NASA Astrophysics Data System (ADS)

    Kolev, Vesselin; Ivanova, Anela; Madjarova, Galia; Aserin, Abraham; Garti, Nissim

    2012-02-01

    The goal of the present work is to study theoretically the structure of water inside the water cylinder of the inverse hexagonal mesophase (HII) of glyceryl monooleate (monoolein, GMO), using the method of molecular dynamics. To simplify the computational model, a fixed structure of the GMO tube is maintained. The non-standard cylindrical geometry of the system required the development and application of a novel method for obtaining the starting distribution of water molecules. A predictor-corrector schema is employed for generation of the initial density of water. Molecular dynamics calculations are performed at constant volume and temperature (NVT ensemble) with 1D periodic boundary conditions applied. During the simulations the lipid structure is kept fixed, while the dynamics of water is unrestrained. Distribution of hydrogen bonds and density as well as radial distribution of water molecules across the water cylinder show the presence of water structure deep in the cylinder (about 6 Å below the GMO heads). The obtained results may help understanding the role of water structure in the processes of insertion of external molecules inside the GMO/water system. The present work has a semi-quantitative character and it should be considered as the initial stage of more comprehensive future theoretical studies.

  2. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles

    PubMed Central

    Lai, Jie; Lu, Yi; Yin, Zongning; Hu, Fuqiang; Wu, Wei

    2010-01-01

    Efforts to improve the oral bioavailability of cyclosporine A (CyA) remains a challenge in the field of drug delivery. In this study, glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were evaluated as potential vehicles to improve the oral bioavailability of CyA. Cubic nanoparticles were prepared via the fragmentation of a bulk GMO/poloxamer 407 cubic phase gel by sonication and homogenization. The cubic inner structure formed was verified using Cryo-TEM. The mean diameters of the nanoparticles were about 180 nm, and the entrapment efficiency of these particles for CyA was over 85%. The in vitro release of CyA from these nanoparticles was less than 5% at 12 h. The results of a pharmacokinetic study in beagle dogs showed improved absorption of CyA from cubic nanoparticles as compared to microemulsion-based Neoral®; higher Cmax (1371.18 ± 37.34 vs 969.68 ± 176.3 ng mL−1), higher AUC0–t (7757.21 ± 1093.64 vs 4739.52 ± 806.30 ng h mL−1) and AUC0–∞ (9004.77 ± 1090.38 vs 5462.31 ± 930.76 ng h mL−1). The relative oral bioavailability of CyA cubic nanoparticles calculated on the basis of AUC0–∞ was about 178% as compared to Neoral®. The enhanced bioavailability of CyA is likely due to facilitated absorption by cubic nanoparticles rather than improved release. PMID:20161984

  3. Preparation of Emulsifying Wax/GMO Nanoparticles and Evaluation as a Delivery System for Repurposing Simvastatin in Bone Regeneration.

    PubMed

    Eskinazi-Budge, Aaron; Manickavasagam, Dharani; Czech, Tori; Novak, Kimberly; Kunzler, James; Oyewumi, Moses O

    2018-05-30

    Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia that has attracted so much attention in bone regeneration based on its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0-500 µg/mL) were prepared and showed an average particle size of about 150 nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy simvastatin-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.

  4. Formation and characterization of microcrystalline semiconductor particles on bilayer lipid membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baral, S.; Zhao, X.K.; Rolandi, R.

    Microcrystalline cadmium, indium, copper, and zinc sulfides were generated in situ on the surface of bilayer lipid membranes (BLMs) prepared from bovine-brain phosphatidylserine (PS), glyceryl monooleate (GMO), and a synthetic, polymerizable surfactant (n-C/sub 15/H/sub 31/CO/sub 2/(CH/sub 2/)/sub 2/)/sub 2/N/sup +/(CH/sub 3/)CH/sub 2/C/sub 6/H/sub 4/CH double bond CH/sub 2/, Cl/sup -/ (STYRS). Semiconductor-containing BLMs remained stable for days. Semiconductor formation on the BLM surface was monitored by optical microscopy, voltage-dependent capacitance measurements, and absorption and intracavity-laser-absorption spectroscopy. Band gap excitation of GMO- BLM-incorporated CdS resulted in the development of photovoltage. Irradiation of CdS incorporated into BLMs formed from STYRS (using amore » 350-nm cutoff filter) led to absorption losses due to the styrene moiety in the surfactant. Apparently, CdS sensitized the photopolymerization of STRYS BLMs.« less

  5. Fabrication of novel GMO/Eudragit E100 nanostructures for enhancing oral bioavailability of carvedilol.

    PubMed

    Patil, Sharvil S; Roy, Krishtey; Choudhary, Bhavana; Mahadik, Kakasaheb R

    2016-08-01

    In the present work, novel nanostructures comprising of glyceryl monooleate (GMO) and Eudragit E100 were prepared using high intensity ultrasonic homogenization. 3(2) Factorial design approach was used for optimization of nanostructures. Results of regression analysis revealed that the amount of GMO and Eudragit E100 had a drastic effect on particle size and percent entrapment efficiency. Optimized carvedilol-loaded nanostructures (Car-NS) were characterized by FTIR, TEM, DSC, in vitro drug release study. Pharmacokinetic parameters such as Cmax, Tmax, Ke, Ka, Vd and AUC were estimated for Car-NS upon its oral administration in Sprague-Dawley rats. Particle size of Car-NS was found to be 183 ± 2.43 nm with an entrapment efficiency of 81.4 ± 0.512%. FTIR studies revealed loading and chemical compatibility of carvedilol with the components of nanostructures. DSC thermograms did not show endothermic peak for melting of carvedilol which could be attributed to solubilization of carvedilol in molten GMO during DSC run. The prepared Car-NS released carvedilol in sustained manner over a period of 10 h as suggested by in vitro drug release study. The pharmacokinetic study of Car-NS showed significant improvement in Cmax (two fold, p < 0.001) and AUC (four folds, p < 0.001) of carvedilol when compared to carvedilol suspension. Car-NS were found to be stable for a period of 3 months. Thus, a stable, floating, multiparticulate GMO/Eudragit E100 nanostructures having ability to release the drug in sustained manner with enhanced oral bioavailability can prove to be a promising carrier system for poorly water soluble drugs.

  6. Effect of Moisture on the Thermoresponsive Properties of Binary Mixtures of Monoglycerides for Triggerable Drug Delivery Systems.

    PubMed

    Stonewall, Hannah D; Kessinger, Haley M; Mengesha, Abebe E

    2017-10-01

    The crystallization behavior and temperature-dependent phase transition of monoglycerides have been utilized to develop thermal-sensitive drug delivery systems. The presence of excess water has been reported to influence the phase transition. The present study investigates the effect of moisture on the thermal behavior of binary blends of monoglycerides. Various compositions (0-100 wt%) of glyceryl monooleate (GMO) and glyceryl monostearate (GMS) were prepared by fusion method, and exposed to varying relative humidity (RH) levels (0-100%). The moisture uptakes, sorption isotherm, and the thermal behavior of GMO-GMS samples were analyzed using differential scanning calorimeter (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The in vitro nifedipine (NF) release was studied at 37 and 42°C. Samples of GMO-GMS (25:75, 50:50, and 75:25 wt%) stored at 97%RH at 25°C for 3 weeks increased in weight by 14.0, 14.7, and 15.8%, respectively. Despite such high moisture uptake, the GMO-GMS matrices maintained crystalline structure. The melting point (T m ) and heat of fusion (ΔH f ) of the samples were reduced as the amount of moisture in the matrices increased. However, the heat of fusion calculated on dry basis remained constant at 139.4 ± 1.25, 102.7 ± 1.14, and 46.7 ± 1.16 J/g for GMO-GMS 25:75, 50:50, and 75:25 wt%, respectively. The comparison of the XRD measurements of the dry samples with those containing 30% water confirmed the preserved crystalline arrangement in the matrices. This study indicates that despite the high moisture uptakes, the GMO-GMS matrices retained their crystalline properties and provided temperature-dependent drug release indicating the potential application for thermoresponsive local drug delivery systems.

  7. Holographic interferometry of ultrasmall-pressure-induced curvature changes of bilayer lipid membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, G.; Schneider-Henriquez, J.E.; Fendler, J.H.

    Two-exposure interferometric holograms have been shown to sensitively report ultrasmall-pressure (10 natm)-induced curvature changes in glyceryl monooleate (GMO) bilayer lipid membranes (BLMs). The number of concentric fringes observed, and hence the lateral distance between the plane of the Teflon and the BLM, increased linearly with increasing transmembrane pressure and led to a value of 1.1 {plus minus} 0.05 dyn/cm for the surface tension of the BLM. BLMs with appreciable Plateau-Gibbs borders have been shown to undergo nonuniform deformation; the bilayer portion is distorted less than the surrounding Plateau-Gibbs border upon the application of a transmembrane pressure gradient.

  8. A bicontinuous tetrahedral structure in a liquid-crystalline lipid

    NASA Astrophysics Data System (ADS)

    Longley, William; McIntosh, Thomas J.

    1983-06-01

    The structure of most lipid-water phases can be visualized as an ordered distribution of two liquid media, water and hydrocarbons, separated by a continuous surface covered by the polar groups of the lipid molecules1. In the cubic phases in particular, rod-like elements are linked into three-dimensional networks1,2. Two of these phases (space groups Ia3d and Pn3m) contain two such three-dimensional networks mutually inter-woven and unconnected. Under the constraints of energy minimization3, the interface between the components in certain of these `porous fluids' may well resemble one of the periodic minimal surface structures of the type described mathematically by Schwarz4,5. A structure of this sort has been proposed for the viscous isotropic (cubic) form of glycerol monooleate (GMO) by Larsson et al.6 who suggested that the X-ray diagrams of Lindblom et al.7 indicated a body-centred crystal structure in which lipid bilayers might be arranged as in Schwarz's octahedral surface4. We have now found that at high water contents, a primitive cubic lattice better fits the X-ray evidence with the material in the crystal arranged in a tetrahedral way. The lipid appears to form a single bilayer, continuous in three dimensions, separating two continuous interlinked networks of water. Each of the water networks has the symmetry of the diamond crystal structure and the bilayer lies in the space between them following a surface resembling Schwarz's tetrahedral surface4.

  9. Development and characterization of novel hydrogel containing antimicrobial drug for treatment of burns

    PubMed Central

    Thakkar, Vaishali; Korat, Vaishali; Baldaniya, Lalji; Gohel, Mukesh; Gandhi, Tejal; Patel, Nirav

    2016-01-01

    Introduction: The aim of burn management and therapy is fast healing and epithelisation to prevent infection. The present study is concerned with the development and characterization of a novel nanaoparticulate system; cubosomes, loaded with silver sulfadiazine (SSD) and Aloe vera for topical treatment of infected burns. Methods: Cubosome dispersions were formulated by an emulsification technique using different concentrations of a lipid phase Glyceryl Monooleate (GMO) and Poloxamer 407. The optimum formulae were incorporated in an aloe vera gel containing carbopol 934, to form cubosomal hydrogels (cubogels). The cubogels were characterized by in vitro release of SSD, rheological properties, pH, bioadhesion, Transmission Electron Microscopy and in-vivo Wound Healing Study. Results: The results show that the different concentration of GMO had significant effect on particle size, % EE and in vitro drug release. From the in-vitro drug release pattern and similarity factor (f2), it was concluded that batch CG3 (15% GMO and 1% P407) exhibited complete and controlled drug release within 12 hour (i.e. 98.25%), better bio adhesion and superior burn healing as compared to the marketed product. Conclusion: The in vivo burns healing study in rats revealed that the prepared optimized cubogel containing SSD and aloe vera has superior burns healing rate than cubogel with only SSD and marketed preparation so, it may be successfully used in the treatment of deep second degree burn. PMID:27606259

  10. Development and characterization of novel hydrogel containing antimicrobial drug for treatment of burns.

    PubMed

    Thakkar, Vaishali; Korat, Vaishali; Baldaniya, Lalji; Gohel, Mukesh; Gandhi, Tejal; Patel, Nirav

    2016-01-01

    The aim of burn management and therapy is fast healing and epithelisation to prevent infection. The present study is concerned with the development and characterization of a novel nanaoparticulate system; cubosomes, loaded with silver sulfadiazine (SSD) and Aloe vera for topical treatment of infected burns. Cubosome dispersions were formulated by an emulsification technique using different concentrations of a lipid phase Glyceryl Monooleate (GMO) and Poloxamer 407. The optimum formulae were incorporated in an aloe vera gel containing carbopol 934, to form cubosomal hydrogels (cubogels). The cubogels were characterized by in vitro release of SSD, rheological properties, pH, bioadhesion, Transmission Electron Microscopy and in-vivo Wound Healing Study. The results show that the different concentration of GMO had significant effect on particle size, % EE and in vitro drug release. From the in-vitro drug release pattern and similarity factor (f2), it was concluded that batch CG3 (15% GMO and 1% P407) exhibited complete and controlled drug release within 12 hour (i.e. 98.25%), better bio adhesion and superior burn healing as compared to the marketed product. The in vivo burns healing study in rats revealed that the prepared optimized cubogel containing SSD and aloe vera has superior burns healing rate than cubogel with only SSD and marketed preparation so, it may be successfully used in the treatment of deep second degree burn.

  11. Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications.

    PubMed

    Libster, Dima; Aserin, Abraham; Garti, Nissim

    2011-04-15

    Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical composition and physical properties. Furthermore, we showed a promising opportunity for crystallization of CSA and LSZ in single crystal form as model biomacromolecules for crystallographic structure determination. The main outcomes of our research demonstrated that control of the physical properties of hexagonal LLC on different length scales is key for rational design of these systems as delivery vehicles and crystallization medium for biomacromolecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A new asymmetric diamide from the seed cake of Jatropha curcas L.

    PubMed

    Yao, Licheng; Han, Changri; Chen, Guangying; Song, Xiaoping; Chang, Yonghui; Zang, Wenxia

    2012-12-01

    A new asymmetric diamide (E)-N-(3-acetamidopropyl)-cinnamamide named curcamide (1) has been isolated from the ethanol extract of the seed cake of Jatropha curcas L. along with 7 known compounds identified as isoamericanin (2), isoprincepin (3), caffeoylaldehyde (4), isoferulaldehyde (5), glycerol monooleate (6), syringaldehyde (7), and β-ethyl-d-glucopyranoside (8). The synthesis and antibacterial activity of the new compound have been also studied. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution.

    PubMed

    Liu, Hongzhuo; Chen, Shichao; Zhou, Yanyan; Che, Xin; Bao, Zhihong; Li, Sanming; Xu, Jinghua

    2013-11-01

    The aim of this study is to elucidate the impact of surface charge of glycerol monooleate-based nanoparticles (NPs) on the cellular uptake and its distribution in the cochlea. These NPs are modified using varied concentration of anionic or cationic lipid. Upon dilution, these lipid mixtures self-assemble to form a series of cubic NPs with various surface charges, but with similar particle size. Positively charged NPs exhibited dose-dependent cytotoxicities against L929 cells proportional to the concentration of cationic lipid; whereas negatively charged NPs did not show obvious cytotoxic properties as compared to unmodified NPs. Meanwhile, confocal microscopy and flow cytometry results suggested that NPs with high positive surface charge were taken up more efficiently by L929 cells. The permeability of round window membrane (RWM) was high for highly positively charged NPs, which is likely due to their highly cellular uptake efficiency and consequently high concentration gradient between RWM and cochlear fluid. More importantly, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) modified NPs greatly facilitated broadly distribution in cochlea, favoring the treatment of hearing loss of low frequencies. Taken together, these findings about charge-dependent of NPs on RWM permeability and cochlear distribution could serve as guideline in the rational design of NP for drug and gene delivery to inner ear.

  14. Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy.

    PubMed

    Kundu, Paromita; Mohanty, Chandana; Sahoo, Sanjeeb K

    2012-07-01

    Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Supercritical fluid precipitation of ketoprofen in novel structured lipid carriers for enhanced mucosal delivery--a comparison with solid lipid particles.

    PubMed

    Gonçalves, V S S; Matias, A A; Rodríguez-Rojo, S; Nogueira, I D; Duarte, C M M

    2015-11-10

    Structured lipid carriers based on mixture of solid lipids with liquid lipids are the second generation of solid lipid particles, offering the advantage of improved drug loading capacity and higher storage stability. In this study, structured lipid carriers were successfully prepared for the first time by precipitation from gas saturated solutions. Glyceryl monooleate (GMO), a liquid glycerolipid, was selected in this work to be incorporated into three solid glycerolipids with hydrophilic-lipophilic balance (HLB) ranging from 1 to 13, namely Gelucire 43/01™, Geleol™ and Gelucire 50/13™. In general, microparticles with a irregular porous morphology and a wide particle size distribution were obtained. The HLB of the individual glycerolipids might be a relevant parameter to take into account during the processing of solid:liquid lipid blends. As expected, the addition of a liquid lipid into a solid lipid matrix led to increased stability of the lipid carriers, with no significant modifications in their melting enthalpy after 6 months of storage. Additionally, Gelucire 43/01™:GMO particles were produced with different mass ratios and loaded with ketoprofen. The drug loading capacity of the structured lipid carriers increased as the GMO content in the particles increased, achieving a maximum encapsulation efficiency of 97% for the 3:1 mass ratio. Moreover, structured lipid carriers presented an immediate release of ketoprofen from its matrix with higher permeation through a mucous-membrane model, while solid lipid particles present a controlled release of the drug with less permeation capacity. Copyright © 2015. Published by Elsevier B.V.

  16. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    PubMed

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  17. Development of a rectal nicotine delivery system for the treatment of ulcerative colitis.

    PubMed

    Dash, A K; Gong, Z; Miller, D W; Huai-Yan, H; Laforet, J

    1999-11-10

    The aims of this investigation were: i. to develop a rectal nicotine delivery system with bioadhesives for the treatment of ulcerative colitis and ii. to evaluate nicotine transport and cytotoxicity of the delivery system using Caco-2 cell culture systems. Rectal nicotine suppository formulations were prepared in semi-synthetic glyceride bases (Suppocire AM and AI, Gattefosse Inc.) by fusion method. The in vitro release of nicotine was carried out in modified USP dissolution apparatus 1. Differential scanning calorimetry (DSC) and powder X-ray diffraction were used to study the polymorphic changes if any in the formulations. An LC method was used for the assay of nicotine. The effect of bioadhesives (glyceryl monooleate (GMO), and Carbopol) on the nicotine flux was evaluated using Caco-2 cell permeability studies and Caco-2 cell viability was determined using the MTT toxicity assay. In vitro release studies indicated that the low melting AI base was superior to that of the AM base. Presence of GMO in the formulation enhanced the release of nicotine whereas Carbopol showed an opposite effect. The enhanced release of nicotine in the presence of GMO was found to be partly due to the melting point lowering effect of this compound. Caco-2 cell absorption studies showed that there was a decrease in the flux of nicotine in the presence of both the bioadhesives. The flux of the fluorescein marker which is used to study the integrity of the cell monolayers was found to be slightly higher only in the presence of 10% (w/w) Carbopol. Nicotine, Carbopol, and GMO do not have any cytotoxic effect on these cell monolayers within the concentration range used in the formulations. Rectal nicotine formulations containing bioadhesives were developed and characterized. Both in vitro release and cell culture studies have indicated that one can manipulate the nicotine release from these rectal delivery systems by incorporation of various bioadhesives or the use of different bases in the formulation. Nicotine concentration below 2% (w/v) and bioadhesive concentration below 10% (w/w) do not have any cytotoxic effect on Caco-2 cells.

  18. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    PubMed

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase with large water channels. Time-resolved X-ray diffraction (XRD) scans allowed us to detect metastable intermediate and coexisting structures and monitor the temperature-induced phase sequences of mixed systems containing glycerol monooleate, a soluble protein macromolecule, and an interfacial curvature modulating agent. These observed states correspond to the stages of the growth of the nanofluidic channel network. With the application of a thermal stimulus, the system becomes progressively more ordered into a double-diamond cubic lattice formed by a bicontinuous lipid membrane. High-resolution freeze-fracture electronic microscopy indicates that nanodomains are induced by the inclusion of proteins into nanopockets of the supramolecular cubosomic assemblies. These results contribute to the understanding of the structure and dynamics of functionalized self-assembled lipid nanosystems during stimuli-triggered LC phase transformations.

  19. Preparation and Oxidation Stability Evaluation of Tea Polyphenols-Loaded Inverse Micro-Emulsion.

    PubMed

    Lan, Xiaohong; Sun, Jingjing; Yang, Ying; Chen, Mengjie; Liu, Jianhua; Wu, Jinhong; Wang, Zhengwu

    2017-05-01

    Compared to synthetic antioxidants, tea polyphenols (TPs) has its own advantages in edible oil industry, however, the hydrophilic properties have restricted its applications. In this study, the ternary phase diagram of TPs-loaded micro-emulsion (ME) system was constructed, in which glyceryl monooleate (GMO), Tween80, linoleic acid as the surfactants, ethanol as the co-surfactant and soybean, corn, sunflower oil as the oil phase, have been used for the preparation of ME. The results indicated that a composition of ME (57.5% oil, 18% Tween80, 18% GMO, 4% Linolic acid, and 2.5% water+ethanol) could dissolve maximum water and could stable for 2 mo at room temperature with an average diameter of 6 to 7 nm, as detected by means of dynamic light scattering (DLS). The loaded of TPs into ME led to an increase of particle size to 15 to 16 nm, due to increased polarity of the water phase. The antioxidant capacity of TPs in ME was characterized by the peroxide value (POV) method. The addition of 1% water phase with 0.1 g/mL TPs could retain the POV at low value for 30 d at accelerating temperature 50 °C. Meanwhile, comparing the three edible oil, ME with corn oil has lower conductivity and higher value of POV during the storage. This work provides an efficient and environmentally friendly approach for the preparation of TPs-loaded ME, which is beneficial to the application of TPs in edible oil. © 2017 Institute of Food Technologists®.

  20. Periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Mackay, Alan L.

    1985-04-01

    A minimal surface is one for which, like a soap film with the same pressure on each side, the mean curvature is zero and, thus, is one where the two principal curvatures are equal and opposite at every point. For every closed circuit in the surface, the area is a minimum. Schwarz1 and Neovius2 showed that elements of such surfaces could be put together to give surfaces periodic in three dimensions. These periodic minimal surfaces are geometrical invariants, as are the regular polyhedra, but the former are curved. Minimal surfaces are appropriate for the description of various structures where internal surfaces are prominent and seek to adopt a minimum area or a zero mean curvature subject to their topology; thus they merit more complete numerical characterization. There seem to be at least 18 such surfaces3, with various symmetries and topologies, related to the crystallographic space groups. Recently, glyceryl mono-oleate (GMO) was shown by Longley and McIntosh4 to take the shape of the F-surface. The structure postulated is shown here to be in good agreement with an analysis of the fundamental geometry of periodic minimal surfaces.

  1. Semiconductor particles in bilayer lipid membranes. Formation, characterization, and photoelectrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, X.K.; Baral, S.B.; Rolandi, R.

    Bilayer lipid membranes (BLMs) have been formed from bovine brain phosphatidylserine (PS), glyceryl monooleate (GMO), and a ploymerizable surfactant, (n-C/sub 15/H/sub 31/CO/sub 2/(CH/sub 2/))/sub 2/N/sup +/(CH/sub 3/)CH/sub 2/C/sub 6/H/sub 4/CH==CH/sub 2/Cl/sup -/(STYRS). These BLMs were then used to provide matrices for the in situ generation of microcrystalline CdS, CuS, Cu/sub 2/S, PbS, ZnS, HgS, and In/sub 2/S/sub 3/. Semiconductors were formed by injecting appropriate metal ion precursors and H/sub 2/S into the bathing solutions on opposite sides of the BLM. Their presence was established by voltage-dependent capacitance measurements, absorption spectroscopy, and optical microscopy. Subsequent to the injection of H/sub 2/S,more » the first observable change was the appearance of fairly uniform white dots on the black film. These dots rapidly moved around and grew in size, forming islands that then merged with themselves and with a second generation of dots, which ultimately led to a continuous film that continued to grow in thickness. Film formation and growth were monitored by simultaneous optical thickness and capacitance measurements. These data were treated in terms of an equivalent R-C circuit and allowed for the assessment of the semiconductor penetration depth into the BLM. This value for a GMO-BLM-supported In/sub 2/S/sub 3/ film was determined to be 24 A. Bandgap excitation, by nanosecond-pulsed or continuous illumination of the BLM-supported semiconductor film, led to observable photoelectric effects. Visible light (lambda > 350 nm) excitation into STYRS-BLM-supported CdS led to polymerization of the styrene moiety of STYRS. BLM-supported semiconductors remained stable for days.« less

  2. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer.

    PubMed

    Salem, Heba F; Kharshoum, Rasha M; Abo El-Ela, Fatma I; F, Amr Gamal; Abdellatif, Khaled R A

    2018-06-01

    Tamoxifen citrate (TXC) is commonly indicated to prevent cell multiplication and development of breast cancer. However, it is usually associated with limited activity and development of toxicity and resistance. This study aimed to describe an in situ pH-responsive niosomes as a carrier for localized and sustained delivery of TXC. The thin film hydration method was utilized to produce TXC niosomes using sorbitan monostearate and cholesterol of 1:1 Molar ratio. The produced formula displayed nano-spherical shape with entrapment efficiency (EE) of 88.90 ± 0.72% and drug release of 49.2 ± 1.51% within 8 h. This formula was incorporated into chitosan/glyceryl monooleate (CH/GMO) as a localized in situ pH-responsive hydrogel delivery system. Different formulae were produced by Design-Expert software based on user-defined response surface design utilizing different chitosan concentration (A) and GMO concentration (B) characterized for mean viscosity (R 2 ) and in vitro release studies (R 1 ). The results displayed that R 1 was significantly antagonistic with both of A and B while R 2 was significantly synergistic with both of them. The optimum formula was selected and capped with gold as an ideal candidate for computed tomography (CT) to evaluate the efficacy and tissue distribution of TXC utilizing Ehrlich carcinoma mice model. The optimum formula showed localized TXC in a tumour and consequently a significant anti-tumour efficacy compared with free TXC. Based on these outcomes, the novel in situ pH-responsive TXC-loaded noisome could be a promising formula for the efficient treatment of breast cancer.

  3. Core-coat conductor of lipid bilayer and micromachined silicon.

    PubMed

    Fromherz, P; Klingler, J

    1991-02-11

    We have etched a groove into a (110) plane of silicon and have covered it with a bilayer of glycerol monooleate. We have varied the depth of the groove, the concentration of salt in the electrolyte and the density of gramicidin in the membrane. We have clamped one end of the groove at a constant voltage with respect to the bath keeping the other end sealed or electrically open with respect to the bath. We have measured (i) the voltage at the center of the groove and at the sealed distal end and (ii) the current through the system in sealed and open configuration. We have found that the spread of voltage is in quantitative agreement with the stationary solutions of Kelvin's equation for a homogeneous cable.

  4. 21 CFR 172.832 - Monoglyceride citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... monooleate and its citric acid monoester manufactured by the reaction of glyceryl monooleate with citric acid... additive meets the following specifications: Acid number, 70-100. Total citric acid (free and combined), 14...

  5. 21 CFR 172.832 - Monoglyceride citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... glyceryl monooleate and its citric acid monoester manufactured by the reaction of glyceryl monooleate with citric acid under controlled conditions may be safely used as a synergist and solubilizer for... food additive meets the following specifications: Acid number, 70-100. Total citric acid (free and...

  6. 21 CFR 172.832 - Monoglyceride citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glyceryl monooleate and its citric acid monoester manufactured by the reaction of glyceryl monooleate with citric acid under controlled conditions may be safely used as a synergist and solubilizer for... food additive meets the following specifications: Acid number, 70-100. Total citric acid (free and...

  7. 21 CFR 172.832 - Monoglyceride citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... glyceryl monooleate and its citric acid monoester manufactured by the reaction of glyceryl monooleate with citric acid under controlled conditions may be safely used as a synergist and solubilizer for... food additive meets the following specifications: Acid number, 70-100. Total citric acid (free and...

  8. 21 CFR 172.832 - Monoglyceride citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Monoglyceride citrate. A food additive that is a mixture of glyceryl monooleate and its citric acid monoester manufactured by the reaction of glyceryl monooleate with citric acid under controlled conditions may be safely..., 70-100. Total citric acid (free and combined), 14 percent-17 percent. (b) It is used, or intended for...

  9. Delivery of Dual Drug Loaded Lipid Based Nanoparticles across the Blood-Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson's Disease.

    PubMed

    Kundu, Paromita; Das, Manasi; Tripathy, Kalpalata; Sahoo, Sanjeeb K

    2016-12-21

    Parkinson's disease (PD) is the most widespread form of dementia where there is an age related degeneration of dopaminergic neurons in the substantia nigra region of the brain. Accumulation of α-synuclein (αS) protein aggregate, mitochondrial dysfunction, oxidative stress, and neuronal cell death are the pathological hallmarks of PD. In this context, amalgamation of curcumin and piperine having profound cognitive properties, and antioxidant activity seems beneficial. However, the blood-brain barrier (BBB) is the major impediment for delivery of neurotherapeutics to the brain. The present study involves formulation of curcumin and piperine coloaded glyceryl monooleate (GMO) nanoparticles coated with various surfactants with a view to enhance the bioavailability of curcumin and penetration of both drugs to the brain tissue crossing the BBB and to enhance the anti-parkinsonism effect of both drugs in a single platform. In vitro results demonstrated augmented inhibition of αS protein into oligomers and fibrils, reduced rotenone induced toxicity, oxidative stress, and apoptosis, and activation of autophagic pathway by dual drug loaded NPs compared to native counterpart. Further, in vivo studies revealed that our formulated dual drug loaded NPs were able to cross BBB, rescued the rotenone induced motor coordination impairment, and restrained dopaminergic neuronal degeneration in a PD mouse model.

  10. 21 CFR 184.1323 - Glyceryl monooleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prepared by esterification of commerical oleic acid that is derived either from edible sources or from tall oil fatty acids meeting the requirements of § 172.862 of this chapter. It contains glyceryl monooleate (C21H40O4, CAS Reg. No. 25496-72-4) and glyceryl esters of fatty acids present in commercial oleic acid. (b...

  11. 21 CFR 184.1323 - Glyceryl monooleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prepared by esterification of commerical oleic acid that is derived either from edible sources or from tall oil fatty acids meeting the requirements of § 172.862 of this chapter. It contains glyceryl monooleate (C21H40O4, CAS Reg. No. 25496-72-4) and glyceryl esters of fatty acids present in commercial oleic acid. (b...

  12. 21 CFR 184.1323 - Glyceryl monooleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... prepared by esterification of commerical oleic acid that is derived either from edible sources or from tall oil fatty acids meeting the requirements of § 172.862 of this chapter. It contains glyceryl monooleate (C21H40O4, CAS Reg. No. 25496-72-4) and glyceryl esters of fatty acids present in commercial oleic acid. (b...

  13. Experimental Investigations of Direct and Converse Flexoelectric Effect in Bilayer Lipid Membranes.

    NASA Astrophysics Data System (ADS)

    Todorov, Angelio Todorov

    Flexoelectric coefficients (direct and converse), electric properties (capacitance and resistivity) and mechanical properties (thickness and elastic coefficients) have been determined for bilayer lipid membranes (BLMs) prepared from egg yolk lecithin (EYL), glycerol monoleate (GMO), phosphatidyl choline (PC) and phosphatidyl serine (PS) as a function of frequency, pH and surface charge modifiers. Direct flexoelectric effect manifested itself in the development of microvolt range a.c. potential (U_{f}) upon subjecting one side of a BLM to an oscillating hydrostatic pressure, in the 100-1000 Hz range. Operationally, the flexoelectric coefficient (f) is expressed by the ratio between U_{f} and the change of curvature (c) which accompanied the flexing of the membrane. Membrane curvature was determined by means of either the electric method (capacitance microphone effect) or by the newly developed method of stroboscopic interferometry. Real-time stroboscopic interferometry coupled with simultaneous electric measurements, provided a direct method for the determination of f. Two different frequency regimes of f were recognized. At low frequencies (<300 Hz), associated with free mobility of the surfactant, f-values of 24.1 times 10^{-19} and 0.87 times 10^ {-19} Coulombs were obtained for PC and GMO BLMs. At high frequencies (>300 Hz), associated with blocked mobility of the surfactant, f-values of 16.5 times 10^ {-19} and 0.30 times 10^{-19} Coulombs were obtained for PC and GMO BLMs. The theoretically calculated value for the GMO BLM oscillating at high frequency (0.12 times 10^{-19 } Coulombs) agreed well with that determined experimentally (0.3 times 10 ^{-19} Coulombs). For charged bovine brain PS BLM the observed flexocoefficient was f = 4.0 times 10^{ -18} Coulombs. Converse flexoelectric effect manifested itself in voltage-induced BLM curvature. Observations were carried out on uranyl acetate (UA) stabilized PS BLM under a.c. excitation. Frequency dependence of f was revealed by means of real-time stroboscopic interferometry. Satisfactory agreement was observed between the direct and converse f-values, measured. Thus, both manifestations of flexoelectricity in BLMs have now received experimental confirmation. Theories developed in this dissertation (as well as those described previously) have been compared with and contrasted to the experimentally determined direct and converse flexoelectric coefficients.

  14. A dubious success: The NGO campaign against GMOs

    PubMed Central

    Paarlberg, Robert

    2014-01-01

    Genetically engineered agricultural crops are widely grown for animal feed (yellow corn, soybean meal) and for industrial purposes (such as cotton for fabric, or yellow corn for ethanol), but almost nobody grows GMO food staple crops. The only GMO food staple crop planted anywhere is white maize, and only in one country – the Republic of South Africa. It has been two decades now since GMO crops were first planted commercially, yet it is still not legal anywhere to plant GMO wheat or GMO rice. When it comes to GMO food crops, anti-GMO campaigners have thus won a remarkable yet dubious victory. They have not prevented rich countries from using GMO animal feed or GMO cotton, yet farmers and consumers in poor countries need increased productivity for food crops, not animal feed or industrial crops. Today's de facto global ban on GMO food crops therefore looks suspiciously like an outcome designed by the rich and for the rich, with little regard for the interests of the poor. PMID:25437241

  15. A dubious success: the NGO campaign against GMOs.

    PubMed

    Paarlberg, Robert

    2014-07-03

    Genetically engineered agricultural crops are widely grown for animal feed (yellow corn, soybean meal) and for industrial purposes (such as cotton for fabric, or yellow corn for ethanol), but almost nobody grows GMO food staple crops. The only GMO food staple crop planted anywhere is white maize, and only in one country--the Republic of South Africa. It has been two decades now since GMO crops were first planted commercially, yet it is still not legal anywhere to plant GMO wheat or GMO rice. When it comes to GMO food crops, anti-GMO campaigners have thus won a remarkable yet dubious victory. They have not prevented rich countries from using GMO animal feed or GMO cotton, yet farmers and consumers in poor countries need increased productivity for food crops, not animal feed or industrial crops. Today's de facto global ban on GMO food crops therefore looks suspiciously like an outcome designed by the rich and for the rich, with little regard for the interests of the poor.

  16. Governing GMOs in the USA: science, law and public health.

    PubMed

    Yang, Y Tony; Chen, Brian

    2016-04-01

    Controversy surrounds the production and consumption of genetically modified organisms (GMOs). Proponents argue that GMO food sources represent the only viable solution to food shortages in an ever-growing global population. Science reports no harm from GMO use and consumption so far. Opponents fear the potentially negative impact that GMO development and use could have on the environment and consumers, and are concerned about the lack of data on the long-term effects of GMO use. We discuss the development of GMO food sources, the history of legislation and policy for the labeling requirements of GMO food products, and the health, environmental, and legal rationale for and against GMO food labeling. The Food and Drug Administration regulates food with GMOs within a coordinated framework of federal agencies. Despite mounting scientific evidence that GMO foods are substantially equivalent to traditionally bred food sources, debate remains over the appropriateness of GMO food labeling. In fact, food manufacturers have mounted a First Amendment challenge against Vermont's passage of a law that requires GMO labeling. Mandatory GMO labeling is not supported by science. Compulsory GMO labels may not only hinder the development of agricultural biotechnology, but may also exacerbate the misconception that GMOs endanger people's health. © 2015 Society of Chemical Industry.

  17. Nanodesign of olein vesicles for the topical delivery of the antioxidant resveratrol.

    PubMed

    Pando, Daniel; Caddeo, Carla; Manconi, Maria; Fadda, Anna Maria; Pazos, Carmen

    2013-08-01

    The ex-vivo percutaneous absorption of the natural antioxidant resveratrol in liposomes and niosomes was investigated. The influence of vesicle composition on their physicochemical properties and stability was evaluated. Liposomes containing resveratrol were formulated using soy phosphatidylcholine (Phospholipon90G). Innovative niosomes were formulated using mono- or diglycerides: glycerol monooleate (Peceol) and polyglyceryl-3 dioleate (Plurol OleiqueCC), respectively, two suitable skin-compatible oleins used in pharmaceutical formulations as penetration enhancers. Small, negatively charged vesicles with a mean size of approximately 200 nm were prepared. The accelerated stability of vesicles was evaluated using Turbiscan Lab Expert, and the bilayer deformability was also assessed. Ex-vivo transdermal experiments were carried out in Franz diffusion cells, on newborn pig skin, to study the influence of the different vesicle formulations on resveratrol skin delivery. Results indicated a high cutaneous accumulation and a low transdermal delivery of resveratrol, especially when Peceol niosomes were used. Overall, niosomes formulated with Plurol oleique or Peceol showed a better behaviour than liposomes in the cutaneous delivery of resveratrol. © 2013 Royal Pharmaceutical Society.

  18. GMOtrack: generator of cost-effective GMO testing strategies.

    PubMed

    Novak, Petra Krau; Gruden, Kristina; Morisset, Dany; Lavrac, Nada; Stebih, Dejan; Rotter, Ana; Zel, Jana

    2009-01-01

    Commercialization of numerous genetically modified organisms (GMOs) has already been approved worldwide, and several additional GMOs are in the approval process. Many countries have adopted legislation to deal with GMO-related issues such as food safety, environmental concerns, and consumers' right of choice, making GMO traceability a necessity. The growing extent of GMO testing makes it important to study optimal GMO detection and identification strategies. This paper formally defines the problem of routine laboratory-level GMO tracking as a cost optimization problem, thus proposing a shift from "the same strategy for all samples" to "sample-centered GMO testing strategies." An algorithm (GMOtrack) for finding optimal two-phase (screening-identification) testing strategies is proposed. The advantages of cost optimization with increasing GMO presence on the market are demonstrated, showing that optimization approaches to analytic GMO traceability can result in major cost reductions. The optimal testing strategies are laboratory-dependent, as the costs depend on prior probabilities of local GMO presence, which are exemplified on food and feed samples. The proposed GMOtrack approach, publicly available under the terms of the General Public License, can be extended to other domains where complex testing is involved, such as safety and quality assurance in the food supply chain.

  19. The GMO-Nanotech (Dis)Analogy?

    ERIC Educational Resources Information Center

    Sandler, Ronald; Kay, W. D.

    2006-01-01

    The genetically-modified-organism (GMO) experience has been prominent in motivating science, industry, and regulatory communities to address the social and ethical dimensions of nanotechnology. However, there are some significant problems with the GMO-nanotech analogy. First, it overstates the likelihood of a GMO-like backlash against…

  20. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food.

  1. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences.

    PubMed

    Lee, David; La Mura, Maurizio; Allnutt, Theo R; Powell, Wayne

    2009-02-02

    The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  2. GMO Reignited in Science but Not in Law: A Flawed Framework Fuels France's Stalemate.

    PubMed

    Robbins, Patricia B

    2014-01-01

    Following a statement released by a multitude of prominent scientists contesting the idea that there is a consensus on the safety of genetically modified organisms ("GMO"), this article addresses the European Union's ("EU") GMO regulatory framework, which has reluctantly permitted France to maintain an illegal ban on. MON8 10 for over a decade now. It notes that while the statement did nothing more than reignite the debate on GMO, much could and should be done to improve the framework to accommodate for the lack of true scientific understanding about the effects of GMO. This article identifies the specific areas of weakness in the EU GMO regulatory framework and recommends specific alterations. It concludes that although France's MON810 ban is illegal under existing law, the country's fears are neither unfounded nor unsupported and that the EU should work to alter its existing legal structure to parallel today's scientific uncertainty regarding GMO safety.

  3. JRC GMO-Amplicons: a collection of nucleic acid sequences related to genetically modified organisms

    PubMed Central

    Petrillo, Mauro; Angers-Loustau, Alexandre; Henriksson, Peter; Bonfini, Laura; Patak, Alex; Kreysa, Joachim

    2015-01-01

    The DNA target sequence is the key element in designing detection methods for genetically modified organisms (GMOs). Unfortunately this information is frequently lacking, especially for unauthorized GMOs. In addition, patent sequences are generally poorly annotated, buried in complex and extensive documentation and hard to link to the corresponding GM event. Here, we present the JRC GMO-Amplicons, a database of amplicons collected by screening public nucleotide sequence databanks by in silico determination of PCR amplification with reference methods for GMO analysis. The European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) provides these methods in the GMOMETHODS database to support enforcement of EU legislation and GM food/feed control. The JRC GMO-Amplicons database is composed of more than 240 000 amplicons, which can be easily accessed and screened through a web interface. To our knowledge, this is the first attempt at pooling and collecting publicly available sequences related to GMOs in food and feed. The JRC GMO-Amplicons supports control laboratories in the design and assessment of GMO methods, providing inter-alia in silico prediction of primers specificity and GM targets coverage. The new tool can assist the laboratories in the analysis of complex issues, such as the detection and identification of unauthorized GMOs. Notably, the JRC GMO-Amplicons database allows the retrieval and characterization of GMO-related sequences included in patents documentation. Finally, it can help annotating poorly described GM sequences and identifying new relevant GMO-related sequences in public databases. The JRC GMO-Amplicons is freely accessible through a web-based portal that is hosted on the EU-RL GMFF website. Database URL: http://gmo-crl.jrc.ec.europa.eu/jrcgmoamplicons/ PMID:26424080

  4. JRC GMO-Amplicons: a collection of nucleic acid sequences related to genetically modified organisms.

    PubMed

    Petrillo, Mauro; Angers-Loustau, Alexandre; Henriksson, Peter; Bonfini, Laura; Patak, Alex; Kreysa, Joachim

    2015-01-01

    The DNA target sequence is the key element in designing detection methods for genetically modified organisms (GMOs). Unfortunately this information is frequently lacking, especially for unauthorized GMOs. In addition, patent sequences are generally poorly annotated, buried in complex and extensive documentation and hard to link to the corresponding GM event. Here, we present the JRC GMO-Amplicons, a database of amplicons collected by screening public nucleotide sequence databanks by in silico determination of PCR amplification with reference methods for GMO analysis. The European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) provides these methods in the GMOMETHODS database to support enforcement of EU legislation and GM food/feed control. The JRC GMO-Amplicons database is composed of more than 240 000 amplicons, which can be easily accessed and screened through a web interface. To our knowledge, this is the first attempt at pooling and collecting publicly available sequences related to GMOs in food and feed. The JRC GMO-Amplicons supports control laboratories in the design and assessment of GMO methods, providing inter-alia in silico prediction of primers specificity and GM targets coverage. The new tool can assist the laboratories in the analysis of complex issues, such as the detection and identification of unauthorized GMOs. Notably, the JRC GMO-Amplicons database allows the retrieval and characterization of GMO-related sequences included in patents documentation. Finally, it can help annotating poorly described GM sequences and identifying new relevant GMO-related sequences in public databases. The JRC GMO-Amplicons is freely accessible through a web-based portal that is hosted on the EU-RL GMFF website. Database URL: http://gmo-crl.jrc.ec.europa.eu/jrcgmoamplicons/. © The Author(s) 2015. Published by Oxford University Press.

  5. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  6. Spreading of dispersions of lipid nanoparticles on hydrophobic and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kumaraswamy, Guruswamy; Kumar, Manoj; Kulkarni, Mayuresh; Narendiran, Cg; Orpe, Ashish; Banpurkar, Arun

    Glycerol monooleate is a hydrophobic lipid that exhibits a rich phase behavior. At high water concentrations, it organizes to form a bicontinuous phase with Pn3m symmetry that is stable with excess water. It is therefore possible to obtain stable aqueous dispersions of polymer stabilized, lipid nanoparticles with internal Pn3m symmetry. Such particles, termed cubosomes, can carry payloads of both hydrophobic as well as hydrophilic molecules and hold promise for delivery of pharmaceuticals, agrochemicals, etc. We describe the behaviour of aqueous drops of cubosome dispersions as they impinge on hydrophobic and superhydrophobic surfaces. On impingement, the spreading of these drop is similar to that of water drops. However, while water drops retract and rebound from the surface, cubosome dispersions do not retract. We demonstrate that this can be attributed to rapid adsorption of cubosomes on the surface and their reorganization to form a thin, approximately 3 nm layer on the substrate. Remarkably, we show that while drops of water roll off inclined superhydrophobic lotus leaf surfaces, drops of cubosome dispersions do not. These results have implications for the delivery of agrochemicals to plant surfaces. Funding from DST, India is acknowledged.

  7. A high-throughput multiplex method adapted for GMO detection.

    PubMed

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  8. Consumer Perception of Genetically Modified Organisms and Sources of Information123

    PubMed Central

    Wunderlich, Shahla; Gatto, Kelsey A

    2015-01-01

    Genetically modified organisms (GMOs) have been available for commercial purchase since the 1990s, allowing producers to increase crop yields through bioengineering that creates herbicide-resistant and insect-resistant varieties. However, consumer knowledge about GMOs has not increased at the same rate as the adoption of GMO crops. Consumers worldwide are displaying limited understanding, misconceptions, and even unfamiliarity with GMO food products. Many consumers report that they receive information about GMO food products from the media, Internet, and other news sources. These sources may be less reliable than scientific experts whom consumers trust more to present the facts. Although many in the United States support mandatory GMO labeling (similar to current European standards), consumer awareness of current GMO labeling is low. A distinction must also be made between GMO familiarity and scientific understanding, because those who are more familiar with it tend to be more resistant to bioengineering, whereas those with higher scientific knowledge scores tend to have less negative attitudes toward GMOs. This brings to question the relation between scientific literacy, sources of information, and overall consumer knowledge and perception of GMO foods. PMID:26567205

  9. Current and New Approaches in GMO Detection: Challenges and Solutions

    PubMed Central

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; Deforce, Dieter; Roosens, Nancy H.

    2015-01-01

    In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability of food/feed products on the market and to protect the consumer freedom of choice. Therefore, several GMO detection strategies, mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR (qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with the qPCR technology, mainly owing to its inherent properties. To address these challenges, alternative GMO detection methods have been developed, allowing faster detections of single GM target (e.g., loop-mediated isothermal amplification), simultaneous detections of multiple GM targets (e.g., PCR capillary gel electrophoresis, microarray, and Luminex), more accurate quantification of GM targets (e.g., digital PCR), or characterization of partially known (e.g., DNA walking and Next Generation Sequencing (NGS)) or unknown (e.g., NGS) GMO. The benefits and drawbacks of these methods are discussed in this review. PMID:26550567

  10. Current and new approaches in GMO detection: challenges and solutions.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2015-01-01

    In many countries, genetically modified organisms (GMO) legislations have been established in order to guarantee the traceability of food/feed products on the market and to protect the consumer freedom of choice. Therefore, several GMO detection strategies, mainly based on DNA, have been developed to implement these legislations. Due to its numerous advantages, the quantitative PCR (qPCR) is the method of choice for the enforcement laboratories in GMO routine analysis. However, given the increasing number and diversity of GMO developed and put on the market around the world, some technical hurdles could be encountered with the qPCR technology, mainly owing to its inherent properties. To address these challenges, alternative GMO detection methods have been developed, allowing faster detections of single GM target (e.g., loop-mediated isothermal amplification), simultaneous detections of multiple GM targets (e.g., PCR capillary gel electrophoresis, microarray, and Luminex), more accurate quantification of GM targets (e.g., digital PCR), or characterization of partially known (e.g., DNA walking and Next Generation Sequencing (NGS)) or unknown (e.g., NGS) GMO. The benefits and drawbacks of these methods are discussed in this review.

  11. Retention Elasticity and Projection Model for U.S. Navy Medical Corps Officers

    DTIC Science & Technology

    2013-03-01

    Department of Defense DODFMR Department of Defense Financial Management Regulation FAP Financial Assistance Program FY Fiscal Year GMO General...deployers who were affected by the increased OPTEMPO. Bristol (2006) finds that increased OPTEMPO has a negative effect on GMO retention. A GMO who was... GMO ) and attrite before completion of obligation service. Furthermore, we do not have information on those who stayed in the Navy in FY2000 and who

  12. First-principles studies on infrared properties of semiconducting graphene monoxide

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Mattson, E. C.; Rhim, S. H.; Gajdardziksa-Josifovska, M.; Hirschmugl, C. J.; Weinert, M.; Chen, J. H.

    2013-10-01

    Graphene monoxide (GMO), a recently proposed 2D crystalline material in the graphene family, is attractive for next-generation nanoelectronics because of its predicted tunable band gap. As a guide to GMO experimental characterization, we calculate the vibrational properties and obtain three infrared active vibration modes (B1u, B2u, and B3u) and six Raman active modes (B1g, B2g, 2B3g, and 2Ag) for intrinsic GMO. The frequencies of the infrared active modes depend on both local structural deformations and interactions between adjacent GMO layers. These results are consistent with experimental observations and provide a means of estimating the number of layers in intrinsic GMO.

  13. Room temperature magnetic ordering, enhanced magnetization and exchange bias of GdMnO3 nanoparticles in (GdMnO3)0.70(CoFe2O4)0.30

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Mahapatra, A. S.; Mallick, A.; Chakrabarti, P. K.

    2017-02-01

    Nanoparticles of GdMnO3 (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe2O4 (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below 100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations.

  14. GMDD: a database of GMO detection methods.

    PubMed

    Dong, Wei; Yang, Litao; Shen, Kailin; Kim, Banghyun; Kleter, Gijs A; Marvin, Hans J P; Guo, Rong; Liang, Wanqi; Zhang, Dabing

    2008-06-04

    Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed. GMO Detection method Database (GMDD) has collected almost all the previous developed and reported GMOs detection methods, which have been grouped by different strategies (screen-, gene-, construct-, and event-specific), and also provide a user-friendly search service of the detection methods by GMO event name, exogenous gene, or protein information, etc. In this database, users can obtain the sequences of exogenous integration, which will facilitate PCR primers and probes design. Also the information on endogenous genes, certified reference materials, reference molecules, and the validation status of developed methods is included in this database. Furthermore, registered users can also submit new detection methods and sequences to this database, and the newly submitted information will be released soon after being checked. GMDD contains comprehensive information of GMO detection methods. The database will make the GMOs analysis much easier.

  15. See what you eat--broad GMO screening with microarrays.

    PubMed

    von Götz, Franz

    2010-03-01

    Despite the controversy of whether genetically modified organisms (GMOs) are beneficial or harmful for humans, animals, and/or ecosystems, the number of cultivated GMOs is increasing every year. Many countries and federations have implemented safety and surveillance systems for GMOs. Potent testing technologies need to be developed and implemented to monitor the increasing number of GMOs. First, these GMO tests need to be comprehensive, i.e., should detect all, or at least the most important, GMOs on the market. This type of GMO screening requires a high degree of parallel tests or multiplexing. To date, DNA microarrays have the highest number of multiplexing capabilities when nucleic acids are analyzed. This trend article focuses on the evolution of DNA microarrays for GMO testing. Over the last 7 years, combinations of multiplex PCR detection and microarray detection have been developed to qualitatively assess the presence of GMOs. One example is the commercially available DualChip GMO (Eppendorf, Germany; http://www.eppendorf-biochip.com), which is the only GMO screening system successfully validated in a multicenter study. With use of innovative amplification techniques, promising steps have recently been taken to make GMO detection with microarrays quantitative.

  16. Development and validation of a multiplex real-time PCR method to simultaneously detect 47 targets for the identification of genetically modified organisms.

    PubMed

    Cottenet, Geoffrey; Blancpain, Carine; Sonnard, Véronique; Chuah, Poh Fong

    2013-08-01

    Considering the increase of the total cultivated land area dedicated to genetically modified organisms (GMO), the consumers' perception toward GMO and the need to comply with various local GMO legislations, efficient and accurate analytical methods are needed for their detection and identification. Considered as the gold standard for GMO analysis, the real-time polymerase chain reaction (RTi-PCR) technology was optimised to produce a high-throughput GMO screening method. Based on simultaneous 24 multiplex RTi-PCR running on a ready-to-use 384-well plate, this new procedure allows the detection and identification of 47 targets on seven samples in duplicate. To comply with GMO analytical quality requirements, a negative and a positive control were analysed in parallel. In addition, an internal positive control was also included in each reaction well for the detection of potential PCR inhibition. Tested on non-GM materials, on different GM events and on proficiency test samples, the method offered high specificity and sensitivity with an absolute limit of detection between 1 and 16 copies depending on the target. Easy to use, fast and cost efficient, this multiplex approach fits the purpose of GMO testing laboratories.

  17. Consumer perception of genetically modified organisms and sources of information.

    PubMed

    Wunderlich, Shahla; Gatto, Kelsey A

    2015-11-01

    Genetically modified organisms (GMOs) have been available for commercial purchase since the 1990s, allowing producers to increase crop yields through bioengineering that creates herbicide-resistant and insect-resistant varieties. However, consumer knowledge about GMOs has not increased at the same rate as the adoption of GMO crops. Consumers worldwide are displaying limited understanding, misconceptions, and even unfamiliarity with GMO food products. Many consumers report that they receive information about GMO food products from the media, Internet, and other news sources. These sources may be less reliable than scientific experts whom consumers trust more to present the facts. Although many in the United States support mandatory GMO labeling (similar to current European standards), consumer awareness of current GMO labeling is low. A distinction must also be made between GMO familiarity and scientific understanding, because those who are more familiar with it tend to be more resistant to bioengineering, whereas those with higher scientific knowledge scores tend to have less negative attitudes toward GMOs. This brings to question the relation between scientific literacy, sources of information, and overall consumer knowledge and perception of GMO foods. © 2015 American Society for Nutrition.

  18. 20 CFR 435.80 - Appeal process.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Officer (GMO); and (2) Final appeal to the Commissioner of Social Security from an adverse decision... written decisions by the GMO may be appealed: (1) A disallowance or other determination denying payment of... decision and requirements of grantee response. The Grants Management Officer's (GMO) adverse post-award...

  19. 20 CFR 435.80 - Appeal process.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Officer (GMO); and (2) Final appeal to the Commissioner of Social Security from an adverse decision... written decisions by the GMO may be appealed: (1) A disallowance or other determination denying payment of... decision and requirements of grantee response. The Grants Management Officer's (GMO) adverse post-award...

  20. 20 CFR 435.80 - Appeal process.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Officer (GMO); and (2) Final appeal to the Commissioner of Social Security from an adverse decision... written decisions by the GMO may be appealed: (1) A disallowance or other determination denying payment of... decision and requirements of grantee response. The Grants Management Officer's (GMO) adverse post-award...

  1. 20 CFR 435.80 - Appeal process.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Officer (GMO); and (2) Final appeal to the Commissioner of Social Security from an adverse decision... written decisions by the GMO may be appealed: (1) A disallowance or other determination denying payment of... decision and requirements of grantee response. The Grants Management Officer's (GMO) adverse post-award...

  2. 20 CFR 435.80 - Appeal process.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Officer (GMO); and (2) Final appeal to the Commissioner of Social Security from an adverse decision... written decisions by the GMO may be appealed: (1) A disallowance or other determination denying payment of... decision and requirements of grantee response. The Grants Management Officer's (GMO) adverse post-award...

  3. Characterization of sida golden mottle virus isolated from Sida santaremensis Monteiro in Florida.

    PubMed

    Al-Aqeel, H A; Iqbal, Zafar; Polston, J E

    2018-06-21

    The genome of sida golden mottle virus (SiGMoV) (GU997691 and GU997692) isolated from Sida santaremensis Monteiro in Manatee County, Florida, was sequenced and characterized. SiGMoV was determined to be a bipartite virus belonging to the genus Begomovirus with a genome organization typical of the New World viruses in the genus. SiGMoV DNA-A had the highest identity scores (89%) and showed the closest evolutionary relationships to sida golden mosaic Buckup virus (SiGMBuV) (JX162591 and HQ008338). However, SiGMoV DNA-B had the highest identity scores (93%) and showed the closest evolutionary relationship to corchorus yellow spot virus (DQ875869), SiGMBuV (JX162592) and sida golden mosaic Florida virus (SiGMFlV) (HE806443). There was extensive recombination in the SiGMoV DNA-A and much less in DNA-B. Full-length clones of SiGMoV were infectious and were able to infect and cause symptoms in several plant species.

  4. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO.

    PubMed

    Fraiture, Marie-Alice; Saltykova, Assia; Hoffman, Stefan; Winand, Raf; Deforce, Dieter; Vanneste, Kevin; De Keersmaecker, Sigrid C J; Roosens, Nancy H C

    2018-05-21

    In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.

  5. Ontology Matching Across Domains

    DTIC Science & Technology

    2010-05-01

    matching include GMO [1], Anchor-Prompt [2], and Similarity Flooding [3]. GMO is an iterative structural matcher, which uses RDF bipartite graphs to...AFRL under contract# FA8750-09-C-0058. References [1] Hu, W., Jian, N., Qu, Y., Wang, Y., “ GMO : a graph matching for ontologies”, in: Proceedings of

  6. 20 CFR 435.81 - Initial appeal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... adverse decision rendered by the GMO by submitting to the ACOAG a written request for review of the... days after the date of the GMO's adverse decision. Any request for review that is received after the... should fully explain why the grantee disagrees with the GMO's decision, state the pertinent facts and law...

  7. 20 CFR 435.81 - Initial appeal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... adverse decision rendered by the GMO by submitting to the ACOAG a written request for review of the... days after the date of the GMO's adverse decision. Any request for review that is received after the... should fully explain why the grantee disagrees with the GMO's decision, state the pertinent facts and law...

  8. 20 CFR 435.81 - Initial appeal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... adverse decision rendered by the GMO by submitting to the ACOAG a written request for review of the... days after the date of the GMO's adverse decision. Any request for review that is received after the... should fully explain why the grantee disagrees with the GMO's decision, state the pertinent facts and law...

  9. 20 CFR 435.81 - Initial appeal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... adverse decision rendered by the GMO by submitting to the ACOAG a written request for review of the... days after the date of the GMO's adverse decision. Any request for review that is received after the... should fully explain why the grantee disagrees with the GMO's decision, state the pertinent facts and law...

  10. 20 CFR 435.81 - Initial appeal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... adverse decision rendered by the GMO by submitting to the ACOAG a written request for review of the... days after the date of the GMO's adverse decision. Any request for review that is received after the... should fully explain why the grantee disagrees with the GMO's decision, state the pertinent facts and law...

  11. Analysis of GMO Plum Plant Culture in System Operations Failure

    NASA Technical Reports Server (NTRS)

    Mercado, Dianne

    2017-01-01

    GMO plum trees are being evaluated at the Kennedy Space Center as a possible candidate for future space crops. Previously conducted horticultural testing compared the performance of several plum genotypes in controlled environment chambers, resulting in a down-selection to the NASA-11 genotype. Precursory studies determined the water use requirements to sustain the plants as well as the feasibility of grafting non-GMO plum scions onto GMO plum rootstocks of NASA-5, NASA-10, and NASA-11 genotypes. This study follows the growth and horticultural progress of plum trees and in-vitro cultures from August 2017 to November 2017, and provides supplemental support for future GMO plum studies. The presence of Hurricane Irma in early September 2017 resulted in the plants undergoing material deterioration from major changes to their overall horticultural progress.

  12. GMDD: a database of GMO detection methods

    PubMed Central

    Dong, Wei; Yang, Litao; Shen, Kailin; Kim, Banghyun; Kleter, Gijs A; Marvin, Hans JP; Guo, Rong; Liang, Wanqi; Zhang, Dabing

    2008-01-01

    Background Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed. Results GMO Detection method Database (GMDD) has collected almost all the previous developed and reported GMOs detection methods, which have been grouped by different strategies (screen-, gene-, construct-, and event-specific), and also provide a user-friendly search service of the detection methods by GMO event name, exogenous gene, or protein information, etc. In this database, users can obtain the sequences of exogenous integration, which will facilitate PCR primers and probes design. Also the information on endogenous genes, certified reference materials, reference molecules, and the validation status of developed methods is included in this database. Furthermore, registered users can also submit new detection methods and sequences to this database, and the newly submitted information will be released soon after being checked. Conclusion GMDD contains comprehensive information of GMO detection methods. The database will make the GMOs analysis much easier. PMID:18522755

  13. A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products.

    PubMed

    Huang, Lin; Zheng, Lei; Chen, Yinji; Xue, Feng; Cheng, Lin; Adeloju, Samuel B; Chen, Wei

    2015-04-15

    Since the introduction of genetically modified organisms (GMOs), there has been on-going and continuous concern and debates on the commercialization of products derived from GMOs. There is an urgent need for development of highly efficient analytical methods for rapid and high throughput screening of GMOs components, as required for appropriate labeling of GMO-derived foods, as well as for on-site inspection and import/export quarantine. In this study, we describe, for the first time, a multi-labeling based electrochemical biosensor for simultaneous detection of multiple DNA components of GMO products on the same sensing interface. Two-round signal amplification was applied by using both an exonuclease enzyme catalytic reaction and gold nanoparticle-based bio-barcode related strategies, respectively. Simultaneous multiple detections of different DNA components of GMOs were successfully achieved with satisfied sensitivity using this electrochemical biosensor. Furthermore, the robustness and effectiveness of the proposed approach was successfully demonstrated by application to various GMO products, including locally obtained and confirmed commercial GMO seeds and transgenetic plants. The proposed electrochemical biosensor demonstrated unique merits that promise to gain more interest in its use for rapid and on-site simultaneous multiple screening of different components of GMO products. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Relative quantification in seed GMO analysis: state of art and bottlenecks.

    PubMed

    Chaouachi, Maher; Bérard, Aurélie; Saïd, Khaled

    2013-06-01

    Reliable quantitative methods are needed to comply with current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) and GMO-derived food and feed products with a minimum GMO content of 0.9 %. The implementation of EU Commission Recommendation 2004/787/EC on technical guidance for sampling and detection which meant as a helpful tool for the practical implementation of EC Regulation 1830/2003, which states that "the results of quantitative analysis should be expressed as the number of target DNA sequences per target taxon specific sequences calculated in terms of haploid genomes". This has led to an intense debate on the type of calibrator best suitable for GMO quantification. The main question addressed in this review is whether reference materials and calibrators should be matrix based or whether pure DNA analytes should be used for relative quantification in GMO analysis. The state of the art, including the advantages and drawbacks, of using DNA plasmid (compared to genomic DNA reference materials) as calibrators, is widely described. In addition, the influence of the genetic structure of seeds on real-time PCR quantitative results obtained for seed lots is discussed. The specific composition of a seed kernel, the mode of inheritance, and the ploidy level ensure that there is discordance between a GMO % expressed as a haploid genome equivalent and a GMO % based on numbers of seeds. This means that a threshold fixed as a percentage of seeds cannot be used as such for RT-PCR. All critical points that affect the expression of the GMO content in seeds are discussed in this paper.

  15. How to Deal with the Upcoming Challenges in GMO Detection in Food and Feed

    PubMed Central

    Broeders, Sylvia R. M.; De Keersmaecker, Sigrid C. J.; Roosens, Nancy H. C.

    2012-01-01

    Biotech crops are the fastest adopted crop technology in the history of modern agriculture. The commercialisation of GMO is in many countries strictly regulated laying down the need for traceability and labelling. To comply with these legislations, detection methods are needed. To date, GM events have been developed by the introduction of a transgenic insert (i.e., promoter, coding sequence, terminator) into the plant genome and real-time PCR is the detection method of choice. However, new types of genetic elements will be used to construct new GMO and new crops will be transformed. Additionally, the presence of unauthorised GMO in food and feed samples might increase in the near future. To enable enforcement laboratories to continue detecting all GM events and to obtain an idea of the possible presence of unauthorised GMO in a food and feed sample, an intensive screening will become necessary. A pragmatic, cost-effective, and time-saving approach is presented here together with an overview of the evolution of the GMO and the upcoming needs. PMID:23193359

  16. Self-powdering and nonlinear optical domain structures in ferroelastic β‧-Gd2(MoO4)3 crystals formed in glass

    NASA Astrophysics Data System (ADS)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-08-01

    Ferroelastic β'-Gd 2(MoO 4) 3, (GMO), crystals are formed through the crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called "self-powdering phenomenon during crystallization" in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals.

  17. How to deal with the upcoming challenges in GMO detection in food and feed.

    PubMed

    Broeders, Sylvia R M; De Keersmaecker, Sigrid C J; Roosens, Nancy H C

    2012-01-01

    Biotech crops are the fastest adopted crop technology in the history of modern agriculture. The commercialisation of GMO is in many countries strictly regulated laying down the need for traceability and labelling. To comply with these legislations, detection methods are needed. To date, GM events have been developed by the introduction of a transgenic insert (i.e., promoter, coding sequence, terminator) into the plant genome and real-time PCR is the detection method of choice. However, new types of genetic elements will be used to construct new GMO and new crops will be transformed. Additionally, the presence of unauthorised GMO in food and feed samples might increase in the near future. To enable enforcement laboratories to continue detecting all GM events and to obtain an idea of the possible presence of unauthorised GMO in a food and feed sample, an intensive screening will become necessary. A pragmatic, cost-effective, and time-saving approach is presented here together with an overview of the evolution of the GMO and the upcoming needs.

  18. Development and application of absolute quantitative detection by duplex chamber-based digital PCR of genetically modified maize events without pretreatment steps.

    PubMed

    Zhu, Pengyu; Fu, Wei; Wang, Chenguang; Du, Zhixin; Huang, Kunlun; Zhu, Shuifang; Xu, Wentao

    2016-04-15

    The possibility of the absolute quantitation of GMO events by digital PCR was recently reported. However, most absolute quantitation methods based on the digital PCR required pretreatment steps. Meanwhile, singleplex detection could not meet the demand of the absolute quantitation of GMO events that is based on the ratio of foreign fragments and reference genes. Thus, to promote the absolute quantitative detection of different GMO events by digital PCR, we developed a quantitative detection method based on duplex digital PCR without pretreatment. Moreover, we tested 7 GMO events in our study to evaluate the fitness of our method. The optimized combination of foreign and reference primers, limit of quantitation (LOQ), limit of detection (LOD) and specificity were validated. The results showed that the LOQ of our method for different GMO events was 0.5%, while the LOD is 0.1%. Additionally, we found that duplex digital PCR could achieve the detection results with lower RSD compared with singleplex digital PCR. In summary, the duplex digital PCR detection system is a simple and stable way to achieve the absolute quantitation of different GMO events. Moreover, the LOQ and LOD indicated that this method is suitable for the daily detection and quantitation of GMO events. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development and validation of an integrated DNA walking strategy to detect GMO expressing cry genes.

    PubMed

    Fraiture, Marie-Alice; Vandamme, Julie; Herman, Philippe; Roosens, Nancy H C

    2018-06-27

    Recently, an integrated DNA walking strategy has been proposed to prove the presence of GMO via the characterisation of sequences of interest, including their transgene flanking regions and the unnatural associations of elements in their transgenic cassettes. To this end, the p35S, tNOS and t35S pCAMBIA elements have been selected as key targets, allowing the coverage of most of GMO, EU authorized or not. In the present study, a bidirectional DNA walking method anchored on the CryAb/c genes is proposed with the aim to cover additional GMO and additional sequences of interest. The performance of the proposed bidirectional DNA walking method anchored on the CryAb/c genes has been evaluated in a first time for its feasibility using several GM events possessing these CryAb/c genes. Afterwards, its sensitivity has been investigated through low concentrations of targets (as low as 20 HGE). In addition, to illustrate its applicability, the entire workflow has been tested on a sample mimicking food/feed matrices analysed in GMO routine analysis. Given the successful assessment of its performance, the present bidirectional DNA walking method anchored on the CryAb/c genes can easily be implemented in GMO routine analysis by the enforcement laboratories and allows completing the entire DNA walking strategy in targeting an additional transgenic element frequently found in GMO.

  20. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    PubMed

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  1. 77 FR 8089 - National Organic Program (NOP); Amendments to the National List of Allowed and Prohibited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ...-soy sources that are non-GMO and nonorganic would remain acceptable under Sec. 205.606, and accredited certifying agents would continue to require any nonorganic de-oiled lecithin to be sourced from non-GMO... non-GMO, non-allergenic lecithin. We have not made that change because we believe this request is...

  2. Food Labeling and Consumer Associations with Health, Safety, and Environment.

    PubMed

    Sax, Joanna K; Doran, Neal

    2016-12-01

    The food supply is complicated and consumers are increasingly calling for labeling on food to be more informative. In particular, consumers are asking for the labeling of food derived from genetically modified organisms (GMO) based on health, safety, and environmental concerns. At issue is whether the labels that are sought would accurately provide the information desired. The present study examined consumer (n = 181) perceptions of health, safety and the environment for foods labeled organic, natural, fat free or low fat, GMO, or non-GMO. Findings indicated that respondents consistently believed that foods labeled GMO are less healthy, safe and environmentally-friendly compared to all other labels (ps < .05). These results suggest that labels mean something to consumers, but that a disconnect may exist between the meaning associated with the label and the scientific consensus for GMO food. These findings may provide insight for the development of labels that provide information that consumers seek.

  3. Graphene Monoxide Bilayer As a High-Performance on/off Switching Media for Nanoelectronics.

    PubMed

    Woo, Jungwook; Yun, Kyung-Han; Chung, Yong-Chae

    2016-04-27

    The geometries and electronic characteristics of the graphene monoxide (GMO) bilayer are predicted via density functional theory (DFT) calculations. All the possible sequences of the GMO bilayer show the typical interlayer bonding characteristics of two-dimensional bilayer systems with a weak van der Waals interaction. The band gap energies of the GMO bilayers are predicted to be adequate for electronic device application, indicating slightly smaller energy gaps (0.418-0.448 eV) compared to the energy gap of the monolayer (0.536 eV). Above all, in light of the band gap engineering, the band gap of the GMO bilayer responds to the external electric field sensitively. As a result, a semiconductor-metal transition occurs at a small critical electric field (EC = 0.22-0.30 V/Å). It is therefore confirmed that the GMO bilayer is a strong candidate for nanoelectronics.

  4. Strain-induced band-gap engineering of graphene monoxide and its effect on graphene

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-02-01

    Using first-principles calculations we demonstrate the feasibility of band-gap engineering in two-dimensional crystalline graphene monoxide (GMO), a recently reported graphene-based material with a 1:1 carbon/oxygen ratio. The band gap of GMO, which can be switched between direct and indirect, is tunable over a large range (0-1.35 eV) for accessible strains. Electron and hole transport occurs predominantly along the zigzag and armchair directions (armchair for both) when GMO is a direct- (indirect-) gap semiconductor. A band gap of ˜0.5 eV is also induced in graphene at the K' points for GMO/graphene hybrid systems.

  5. Semiautomated TaqMan PCR screening of GMO labelled samples for (unauthorised) GMOs.

    PubMed

    Scholtens, Ingrid M J; Molenaar, Bonnie; van Hoof, Richard A; Zaaijer, Stephanie; Prins, Theo W; Kok, Esther J

    2017-06-01

    In most countries, systems are in place to analyse food products for the potential presence of genetically modified organisms (GMOs), to enforce labelling requirements and to screen for the potential presence of unauthorised GMOs. With the growing number of GMOs on the world market, a larger diversity of methods is required for informative analyses. In this paper, the specificity of an extended screening set consisting of 32 screening methods to identify different crop species (endogenous genes) and GMO elements was verified against 59 different GMO reference materials. In addition, a cost- and time-efficient strategy for DNA isolation, screening and identification is presented. A module for semiautomated analysis of the screening results and planning of subsequent event-specific tests for identification has been developed. The Excel-based module contains information on the experimentally verified specificity of the element methods and of the EU authorisation status of the GMO events. If a detected GMO element cannot be explained by any of the events as identified in the same sample, this may indicate the presence of an unknown unauthorised GMO that may not yet have been assessed for its safety for humans, animals or the environment.

  6. G. Marconi: A Data Relay Satellite for Mars Communications

    NASA Astrophysics Data System (ADS)

    Dionisio, C.; Marcozzi, M.; Landriani, C.

    2002-01-01

    Mars has always been a source of intrigue and fascination. Recent scientific discoveries have stimulated this longstanding interest, leading to a renaissance in Mars exploration. Future missions to Mars will be capable of long-distance surface mobility, hyperspectral imaging, subsurface exploration, and even life-detection. Manned missions and, eventually, colonies may follow. No mission to the Red Planet stands alone. New scientific and technological knowledge is passed on from one mission to the next, not only improving the journey into space, but also providing benefits here on Earth. The Mars Relay Network, an international constellation of Mars orbiters with relay radios, directly supports other Mars missions by relaying communications between robotic vehicles at Mars and ground stations on Earth. The ability of robotic visitors from Earth to explore Mars will take a gigantic leap forward in 2007 with the launch of the Guglielmo Marconi Orbiter (GMO), the first spacecraft primarily dedicated to providing communication relay, navigation and timing services at Mars. GMO will be the preeminent node of the Mars Relay Network. GMO will relay communications between Earth and robotic vehicles near Mars. GMO will also provide navigation services to spacecraft approaching Mars. GMO will receive transmissions from ground stations on Earth at X-band and will transmit to ground stations on Earth at X- and Ka-bands. GMO will transmit to robotic vehicles at Mars at UHF and receive from these vehicles at UHF and X-band. GMO's baseline 4450 km circular orbit provides complete coverage of the planet for telecommunication and navigation support. GMO will arrive at Mars in mid-2008, just before the NetLander and Mars Scout missions that will be its first users. GMO is designed for a nominal operating lifetime of 10 years and will support nominal commanding and data acquisition, as well as mission critical events such as Mars Orbit Insertion, Entry, Descent and Landing, and Mars Ascent Vehicle launch and Orbiting Sample Canister detection for the Mars Sample Return mission. The GMO mission is a close collaboration between the Italian and American national space agencies and two implementing organizations: Alenia Spazio in Italy and JPL in the United States. As the Italian prime contractor, Alenia Spazio is to design and fabricate the spacecraft bus, integrate the Italian and JPL payloads, support integration of the spacecraft with the launch vehicle, support launch, and conduct mission operations. GMO will use Alenia' s PRIMA spacecraft bus in a deep space configuration. The PRIMA bus is a new design concept, developed under ASI funding, that combines flexibility, low cost and high efficiency. Its modular design makes it adaptable for several classes of missions, including interplanetary.

  7. Military Air Cargo Containerization.

    DTIC Science & Technology

    1996-05-01

    MILITARY AIR CARGO CONTAINERIZATION GRADUATE RESEARCH PAPER Joseph W. Mancy, Major, USAF AFIT/ GMO /LAL/96J-4 : ."•" ’* ■- ’ DEPARTMENT OF...Approved to public release; Distribution UnHmlted ? DTIC QUALITY INSPECTED 1 AFIT/ GMO /LAL/96J-4 MILITARY AIR CARGO CONTAINERIZATION GRADUATE RESEARCH...PAPER Joseph W. Mancy, Major, USAF AFIT/ GMO /LAL/96J-4 19960617 134 Approved for public release; distribution unlimited The views expressed in this

  8. Evaluating the Effectiveness of Navy Medical Corps Accession Programs

    DTIC Science & Technology

    2012-03-01

    GAO General Accounting Office GME Graduate Medical Education GMO General Medical Officer GPA Grade Point Average xiv HPLRP Health...supersede, or automatically promote, to O-3. At this juncture, a student will begin internship training, followed by a General Medical Officer ( GMO ) or...medical students will not complete a GMO or FS tour, and they will instead continue on through residency and fellowship training. This is commonly

  9. A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation.

    PubMed

    Fu, Wei; Wang, Huiyu; Wang, Chenguang; Mei, Lin; Lin, Xiangmei; Han, Xueqing; Zhu, Shuifang

    2016-03-15

    The number of species and planting areas of genetically modified organisms (GMOs) has been rapidly developed during the past ten years. For the purpose of GMO inspection, quarantine and manipulation, we have now devised a high-throughput Bt-based GMOs screening method based on the liquid bead array. This novel method is based on the direct competitive recognition between biotinylated antibodies and beads-coupled antigens, searching for Bt presence in samples if it contains Bt Cry1 Aa, Bt Cry1 Ab, Bt Cry1 Ac, Bt Cry1 Ah, Bt Cry1 B, Bt Cry1 C, Bt Cry1 F, Bt Cry2 A, Bt Cry3 or Bt Cry9 C. Our method has a wide GMO species coverage so that more than 90% of the whole commercialized GMO species can be identified throughout the world. Under our optimization, specificity, sensitivity, repeatability and availability validation, the method shows a high specificity and 10-50 ng/mL sensitivity of quantification. We then assessed more than 1800 samples in the field and food market to prove capacity of our method in performing a high throughput screening work for GMO manipulation. Our method offers an applicant platform for further inspection and research on GMO plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Comparative study on nutrient composition, phytochemical, and functional characteristics of raw, germinated, and fermented Moringa oleifera seed flour

    PubMed Central

    Ijarotimi, Oluwole S; Adeoti, Oluwole A; Ariyo, Oluwaseun

    2013-01-01

    Moringa oleifera seeds were processed as raw M. oleifera (RMO), germinated M. oleifera (GMO), and fermented M. oleifera (FMO), and were evaluated for proximate, minerals, amino acids, fatty acids, phytochemicals/antinutrients, and functional properties. Protein content of GMO (23.69 ± 0.11 g/100 g) was higher than FMO (21.15 ± 0.08 g/100 g) and that of RMO (18.86 ± 0.09 g/100 g) (P < 0.05), respectively. Energy value of FMO (465.32 ± 0.48 kcal) was higher than GMO (438.62 ± 0.12 kcal) and that of RMO (409.04 ± 1.61 kcal), respectively. Mineral contents in GMO were significantly higher in iron, sodium, potassium, magnesium, and copper, while FMO were higher in calcium, phosphorus, and magnesium, and both were significantly lower than those in RMO (P < 0.05). Total essential amino acids (TEAAs) in FMO (31.07 mg/g crude protein) were higher than in GMO (26.52 mg/g crude protein), and were higher than that in RMO (23.56 mg/g crude protein). Linoleic acid (58.79 ± 0.02–62.05 ± 0.01 g/100 g) and behenic acid (0.13 ± 0.00–0.20 ± 0.06 g/100 g) were the predominant and least fatty acids, respectively. Phytochemical/antinutrient compositions in FMO samples were significantly lower than GMO, and both were significantly lower when compared with RMO samples (P < 0.05). The bulk density (pack and loose), foaming capacity, swelling capacity, and water absorption capacity (WAC) of FMO were significantly higher than those of GMO, and there was no significant difference between GMO and RMO samples. The study established that fermentation processing methods increased the protein content, essential amino acid, and polyunsaturated fatty acid profiles, and reduced antinutrient compositions of M. oleifera seed than germination processing techniques; hence, fermentation techniques should be encouraged in processing moringa seeds in food processing. PMID:24804056

  11. New GMO regulations for old: Determining a new future for EU crop biotechnology.

    PubMed

    Davison, John; Ammann, Klaus

    2017-01-02

    In this review, current EU GMO regulations are subjected to a point-by point analysis to determine their suitability for agriculture in modern Europe. Our analysis concerns present GMO regulations as well as suggestions for possible new regulations for genome editing and New Breeding Techniques (for which no regulations presently exist). Firstly, the present GMO regulations stem from the early days of recombinant DNA and are not adapted to current scientific understanding on this subject. Scientific understanding of GMOs has changed and these regulations are now, not only unfit for their original purpose, but, the purpose itself is now no longer scientifically valid. Indeed, they defy scientific, economic, and even common, sense. A major EU regulatory preconception is that GM crops are basically different from their parent crops. Thus, the EU regulations are "process based" regulations that discriminate against GMOs simply because they are GMOs. However current scientific evidence shows a blending of classical crops and their GMO counterparts with no clear demarcation line between them. Canada has a "product based" approach and determines the safety of each new crop variety independently of the process used to obtain it. We advise that the EC re-writes it outdated regulations and moves toward such a product based approach.  Secondly, over the last few years new genomic editing techniques (sometimes called New Breeding Techniques) have evolved. These techniques are basically mutagenesis techniques that can generate genomic diversity and have vast potential for crop improvement. They are not GMO based techniques (any more than mutagenesis is a GMO technique), since in many cases no new DNA is introduced. Thus they cannot simply be lumped together with GMOs (as many anti-GMO NGOs would prefer). The EU currently has no regulations to cover these new techniques. In this review, we make suggestions as to how these new gene edited crops may be regulated. The EU is at a turning point where the wrong decision could destroy European agricultural competitively for decades to come.

  12. Introduction to Nanotechnology for Defense Environment, Health & Safety (EHS) and Research Professionals in Support of the Acquisition Process

    DTIC Science & Technology

    2011-03-28

    www.denix.osd.mil/MERIT Ultra fine particles ~50 1713- Ramazzini described black 197 4- First GMO lung disease mouse created by Jaenisch Diesel...exhaust Engineered NP _____ _,.? • GMO Technology 1985- Oberdorster described inhalation toxicity of Ti02 2003-lssue recognized by EPA, NIOSH...other agencies 2004- California pass broad ban on GMO products Growing Body of EHS Research Far-reaching implications or singular exceptions

  13. DNA methods: critical review of innovative approaches.

    PubMed

    Kok, Esther J; Aarts, Henk J M; Van Hoef, A M Angeline; Kuiper, Harry A

    2002-01-01

    The presence of ingredients derived from genetically modified organisms (GMOs) in food products in the market place is subject to a number of European regulations that stipulate which product consisting of or containing GMO-derived ingredients should be labeled as such. In order to maintain these labeling requirements, a variety of different GMO detection methods have been developed to screen for either the presence of DNA or protein derived from (approved) GM varieties. Recent incidents where unapproved GM varieties entered the European market show that more powerful GMO detection and identification methods will be needed to maintain European labeling requirements in an adequate, efficient, and cost-effective way. This report discusses the current state-of-the-art as well as future developments in GMO detection.

  14. Off-label prescription of genetically modified organism medicines in europe: emerging conflicts of interest?

    PubMed

    Schagen, Frederik H E; Hoeben, Rob C; Hospers, Geke A P

    2014-10-01

    Recently, the first human medicine containing a genetically modified organism (GMO medicine) was authorized for use in the European market. Just as any medicinal product, the market authorization for a GMO medicine contains a precise description of the therapeutic use for which the medicinal product is intended. Within this use, the application of the GMO medicine is permitted, without the need for the institution to obtain a specific permit. In practice, however, medicinal products are also frequently prescribed for treatment outside the registered therapeutic use, a practice that is referred to as "off-label use." While off-label use of conventional medicines is permitted and has been very useful, the off-label use of GMO medicines is not covered in the European Union (EU) legislation or guidelines and falls under each member state's national environmental legislation. This implies that in the Netherlands and most other EU member states, an environmental permit will be required for any institution that uses the GMO medicine outside the registered application(s). In the Netherlands, this permit is identical to the permits required for the execution of clinical trials involving nonregistered GMOs. The application procedure for such permit is time-consuming. This process can therefore limit the therapeutic options for medical professionals. As a consequence, desired treatment regimens could be withheld for certain patient (groups). To make future off-label use of GMO medicines permissible in a way that is acceptable for all stakeholders, regulators should adopt a proactive attitude and formulate transparent legislative procedures for this. Only then the field can maintain the public acceptance of GMO medicines, while maintaining the freedom to operate of medical professionals.

  15. Is Global Warming Accelerating?

    NASA Astrophysics Data System (ADS)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  16. New GMO regulations for old: Determining a new future for EU crop biotechnology

    PubMed Central

    2017-01-01

    ABSTRACT In this review, current EU GMO regulations are subjected to a point-by point analysis to determine their suitability for agriculture in modern Europe. Our analysis concerns present GMO regulations as well as suggestions for possible new regulations for genome editing and New Breeding Techniques (for which no regulations presently exist). Firstly, the present GMO regulations stem from the early days of recombinant DNA and are not adapted to current scientific understanding on this subject. Scientific understanding of GMOs has changed and these regulations are now, not only unfit for their original purpose, but, the purpose itself is now no longer scientifically valid. Indeed, they defy scientific, economic, and even common, sense. A major EU regulatory preconception is that GM crops are basically different from their parent crops. Thus, the EU regulations are “process based” regulations that discriminate against GMOs simply because they are GMOs. However current scientific evidence shows a blending of classical crops and their GMO counterparts with no clear demarcation line between them. Canada has a “product based” approach and determines the safety of each new crop variety independently of the process used to obtain it. We advise that the EC re-writes it outdated regulations and moves toward such a product based approach.  Secondly, over the last few years new genomic editing techniques (sometimes called New Breeding Techniques) have evolved. These techniques are basically mutagenesis techniques that can generate genomic diversity and have vast potential for crop improvement. They are not GMO based techniques (any more than mutagenesis is a GMO technique), since in many cases no new DNA is introduced. Thus they cannot simply be lumped together with GMOs (as many anti-GMO NGOs would prefer). The EU currently has no regulations to cover these new techniques. In this review, we make suggestions as to how these new gene edited crops may be regulated. The EU is at a turning point where the wrong decision could destroy European agricultural competitively for decades to come. PMID:28278120

  17. GMOseek: a user friendly tool for optimized GMO testing.

    PubMed

    Morisset, Dany; Novak, Petra Kralj; Zupanič, Darko; Gruden, Kristina; Lavrač, Nada; Žel, Jana

    2014-08-01

    With the increasing pace of new Genetically Modified Organisms (GMOs) authorized or in pipeline for commercialization worldwide, the task of the laboratories in charge to test the compliance of food, feed or seed samples with their relevant regulations became difficult and costly. Many of them have already adopted the so called "matrix approach" to rationalize the resources and efforts used to increase their efficiency within a limited budget. Most of the time, the "matrix approach" is implemented using limited information and some proprietary (if any) computational tool to efficiently use the available data. The developed GMOseek software is designed to support decision making in all the phases of routine GMO laboratory testing, including the interpretation of wet-lab results. The tool makes use of a tabulated matrix of GM events and their genetic elements, of the laboratory analysis history and the available information about the sample at hand. The tool uses an optimization approach to suggest the most suited screening assays for the given sample. The practical GMOseek user interface allows the user to customize the search for a cost-efficient combination of screening assays to be employed on a given sample. It further guides the user to select appropriate analyses to determine the presence of individual GM events in the analyzed sample, and it helps taking a final decision regarding the GMO composition in the sample. GMOseek can also be used to evaluate new, previously unused GMO screening targets and to estimate the profitability of developing new GMO screening methods. The presented freely available software tool offers the GMO testing laboratories the possibility to select combinations of assays (e.g. quantitative real-time PCR tests) needed for their task, by allowing the expert to express his/her preferences in terms of multiplexing and cost. The utility of GMOseek is exemplified by analyzing selected food, feed and seed samples from a national reference laboratory for GMO testing and by comparing its performance to existing tools which use the matrix approach. GMOseek proves superior when tested on real samples in terms of GMO coverage and cost efficiency of its screening strategies, including its capacity of simple interpretation of the testing results.

  18. Mycobacteriocins produced by rapidly growing mycobacteria are Tween-hydrolyzing esterases.

    PubMed Central

    Saito, H; Tomioka, H; Watanabe, T; Yoneyama, T

    1983-01-01

    Smegmatocin, a protein produced by Mycobacterium smegmatis ATCC 14468, was found to have an esterase activity, hydrolyzing Tween 80, polyoxyethylene sorbitan monooleate, added to the assay medium for various "bacteriocins" from mycobacteria. Because M. diernhoferi ATCC 19340 (indicator strain for smegmatocin) is highly susceptible to oleic acid and smegmatocin requires Tween 80 for manifestation of its anti-M. diernhoferi activity, it is likely that smegmatocin-mediated antimicrobial action is caused by oleic acid generated by hydrolysis of Tween 80 by the inherent esterase action of smegmatocin. Other mycobacteriocins from rapidly growing mycobacteria also have inherent esterase activity against Tween 80 and require Tween 80 for expression of antimycobacterial action. Smegmatocin was found to hydrolyze various polyoxyethylene (sorbitan) fatty acyl esters but not sorbitan monooleate and glyceryl esters. Images PMID:6826523

  19. Test of SU(3) Symmetry in Hyperon Semileptonic Decays

    NASA Astrophysics Data System (ADS)

    Pham, T. N.

    2015-01-01

    Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann-Okubo (GMO) baryon mass formula which is satisfied to a few percents, showing evidence for a small SU(3) symmetry breaking effect in the GMO mass formula. In this talk, I would like to present a similar GMO relation obtained in a recent work for hyperon semileptonic decay axial vector current matrix elements. Using these generalized GMO relations for the measured axial vector current to vector current form factor ratios, it is shown that SU(3) symmetry breaking in hyperon semileptonic decays is of 5-11% and confirms the validity of the Cabibbo model for hyperon semi-leptonic decays.

  20. [Progress on biosafety assessment of marker genes in genetically modified foods].

    PubMed

    Yang, Lichen; Yang, Xiaoguang

    2003-05-01

    Marker genes are useful in facilitating the detection of genetically modified organisms(GMO). These genes play an important role during the early identification stage of GMO development, but they exist in the mature genetically modified crops. So the safety assessment of these genes could not be neglected. In this paper, all the study on the biosafety assessment of marker genes were reviewed, their possible hazards and risks were appraised, and the marker genes proved safe were list too. GMO Labeling the is one important regulations for the development of genetically modified foods in the market. The accurate detecting techniques for GMO are the basis for setting up labeling regulation. In addition, some methods used to remove marker genes in genetically modified foods were introduced in the paper, which can eliminate their biosafety concern thoroughly.

  1. Qualitative and quantitative evaluation of the genomic DNA extracted from GMO and non-GMO foodstuffs with four different extraction methods.

    PubMed

    Peano, Clelia; Samson, Maria Cristina; Palmieri, Luisa; Gulli, Mariolina; Marmiroli, Nelson

    2004-11-17

    The presence of DNA in foodstuffs derived from or containing genetically modified organisms (GMO) is the basic requirement for labeling of GMO foods in Council Directive 2001/18/CE (Off. J. Eur. Communities 2001, L1 06/2). In this work, four different methods for DNA extraction were evaluated and compared. To rank the different methods, the quality and quantity of DNA extracted from standards, containing known percentages of GMO material and from different food products, were considered. The food products analyzed derived from both soybean and maize and were chosen on the basis of the mechanical, technological, and chemical treatment they had been subjected to during processing. Degree of DNA degradation at various stages of food production was evaluated through the amplification of different DNA fragments belonging to the endogenous genes of both maize and soybean. Genomic DNA was extracted from Roundup Ready soybean and maize MON810 standard flours, according to four different methods, and quantified by real-time Polymerase Chain Reaction (PCR), with the aim of determining the influence of the extraction methods on the DNA quantification through real-time PCR.

  2. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  3. 75 FR 49918 - Combined Notice of Filings # 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Missouri Operations Company submits tariff filing per 35: KCP&L-GMO Baseline Compliance Filing to be.... Description: KCP&L Greater Missouri Operations Company submits tariff filing per 35.12: KCP&L-GMO OATT Volume...

  4. Inert Reassessment Document for Poly(oxyethylene)(5) sorbitan monooleate

    EPA Pesticide Factsheets

    The sorbitan fatty acid esters and polysorbates are inert ingredients used as surfactants, related adjuvants of surfactants, emulsifiers, buffering agents, and corrosion inhibitors in a variety of pesticide products.

  5. Cloned plasmid DNA fragments as calibrators for controlling GMOs: different real-time duplex quantitative PCR methods.

    PubMed

    Taverniers, Isabel; Van Bockstaele, Erik; De Loose, Marc

    2004-03-01

    Analytical real-time PCR technology is a powerful tool for implementation of the GMO labeling regulations enforced in the EU. The quality of analytical measurement data obtained by quantitative real-time PCR depends on the correct use of calibrator and reference materials (RMs). For GMO methods of analysis, the choice of appropriate RMs is currently under debate. So far, genomic DNA solutions from certified reference materials (CRMs) are most often used as calibrators for GMO quantification by means of real-time PCR. However, due to some intrinsic features of these CRMs, errors may be expected in the estimations of DNA sequence quantities. In this paper, two new real-time PCR methods are presented for Roundup Ready soybean, in which two types of plasmid DNA fragments are used as calibrators. Single-target plasmids (STPs) diluted in a background of genomic DNA were used in the first method. Multiple-target plasmids (MTPs) containing both sequences in one molecule were used as calibrators for the second method. Both methods simultaneously detect a promoter 35S sequence as GMO-specific target and a lectin gene sequence as endogenous reference target in a duplex PCR. For the estimation of relative GMO percentages both "delta C(T)" and "standard curve" approaches are tested. Delta C(T) methods are based on direct comparison of measured C(T) values of both the GMO-specific target and the endogenous target. Standard curve methods measure absolute amounts of target copies or haploid genome equivalents. A duplex delta C(T) method with STP calibrators performed at least as well as a similar method with genomic DNA calibrators from commercial CRMs. Besides this, high quality results were obtained with a standard curve method using MTP calibrators. This paper demonstrates that plasmid DNA molecules containing either one or multiple target sequences form perfect alternative calibrators for GMO quantification and are especially suitable for duplex PCR reactions.

  6. Regulatory science requirements of labeling of genetically modified food.

    PubMed

    Moghissi, A Alan; Jaeger, Lisa M; Shafei, Dania; Bloom, Lindsey L

    2018-05-01

    This paper provides an overview of the evolution of food labeling in the USA. It briefly describes the three phases of agricultural development consisting of naturally occurring, cross-bred, and genetically engineered, edited or modified crops, otherwise known as Genetically Modified Organisms (GMO). It uses the Best Available Regulatory Science (BARS) and Metrics for Evaluation of Regulatory Science Claims (MERSC) to evaluate the scientific validity of claims applicable to GMO and the Best Available Public Information (BAPI) to evaluate the pronouncements by public media and others. Subsequently claims on health risk, ecological risk, consumer choice, and corporate greed are evaluated based on BARS/MERSC and BAPI. The paper concludes by suggesting that labeling of food containing GMO should consider the consumer's choice, such as the food used by those who desire kosher and halal food. Furthermore, the consumer choice is already met by the exclusion of GMO in organic food.

  7. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-05-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  8. Development of a qualitative real-time PCR method to detect 19 targets for identification of genetically modified organisms.

    PubMed

    Peng, Cheng; Wang, Pengfei; Xu, Xiaoli; Wang, Xiaofu; Wei, Wei; Chen, Xiaoyun; Xu, Junfeng

    2016-01-01

    As the amount of commercially available genetically modified organisms (GMOs) grows recent years, the diversity of target sequences for molecular detection techniques are eagerly needed. Considered as the gold standard for GMO analysis, the real-time PCR technology was optimized to produce a high-throughput GMO screening method. With this method we can detect 19 transgenic targets. The specificity of the assays was demonstrated to be 100 % by the specific amplification of DNA derived from reference material from 20 genetically modified crops and 4 non modified crops. Furthermore, most assays showed a very sensitive detection, reaching the limit of ten copies. The 19 assays are the most frequently used genetic elements present in GM crops and theoretically enable the screening of the known GMO described in Chinese markets. Easy to use, fast and cost efficient, this method approach fits the purpose of GMO testing laboratories.

  9. Transgenic soybean pollen (Glycine max L.) in honey from the Yucatán peninsula, Mexico.

    PubMed

    Villanueva-Gutiérrez, R; Echazarreta-González, C; Roubik, D W; Moguel-Ordóñez, Y B

    2014-02-07

    Using precise pollen species determination by conventional microscopic methods, accompanied by molecular genetic markers, we found bees collect GMO (genetically modified) soybean pollen and incorporate it in Yucatan honey. Honey comb samples from Las Flores, Campeche, Mexico, often contained soybean pollen. Pollen in honey was analyzed in nine samples; six contained substantial soy pollen and two tested positive for soybean GMO. Our analyses confirm field observations that honey bees, Apis mellifera, gather soybean pollen and nectar. The resultant risk for honey production in the Yucatán Peninsula and Mexico is evident in wholesale price reduction of 12% when GMO products are detected and honey consignments are rejected. Although this affects only 1% of current export honey (2011-2013) GMO soybean is an unacknowledged threat to apiculture and its economics in one of the world's foremost honey producing areas.

  10. Transgenic soybean pollen (Glycine max L.) in honey from the Yucatán peninsula, Mexico

    PubMed Central

    Villanueva-Gutiérrez, R.; Echazarreta-González, C.; Roubik, D. W.; Moguel-Ordóñez, Y. B.

    2014-01-01

    Using precise pollen species determination by conventional microscopic methods, accompanied by molecular genetic markers, we found bees collect GMO (genetically modified) soybean pollen and incorporate it in Yucatan honey. Honey comb samples from Las Flores, Campeche, Mexico, often contained soybean pollen. Pollen in honey was analyzed in nine samples; six contained substantial soy pollen and two tested positive for soybean GMO. Our analyses confirm field observations that honey bees, Apis mellifera, gather soybean pollen and nectar. The resultant risk for honey production in the Yucatán Peninsula and Mexico is evident in wholesale price reduction of 12% when GMO products are detected and honey consignments are rejected. Although this affects only 1% of current export honey (2011–2013) GMO soybean is an unacknowledged threat to apiculture and its economics in one of the world's foremost honey producing areas. PMID:24503936

  11. Monitoring the presence of genetically modified food on the market of the Republic of Croatia.

    PubMed

    Cattunar, Albert; Capak, Krunoslav; Novak, Jelena Zafran; Mićović, Vladimir; Doko-Jelinić, Jagoda; Malatestinić, Dulija

    2011-12-01

    From the beginning of the human race people have been applying different methods to change the genetic material of either plants or animals in order to increase their yield as well as to improve the quality and quantity of food. Genetically modified organism (GMO) means an organism in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination. Analysing the presence of GMO in food is done by detecting the presence of either specific DNA sequences inserted in the genome of transgenic organism, or detecting proteins as a result of the expression of the inserted DNA. In this work food testing for the presence of genetically modified organisms was conducted during the period from 2004 to 2007 in the GMO laboratory of the Croatian National Institute of Public Health. According to the regulations, among the samples in which the presence of GMO was detected, all those which had more than 0.9% of GMO content were either rejected from the border or removed from the market, because such GM food has to be appropriately labelled. Among the food samples which were analysed in 2004: 127 (2.37%) of a total of 1226 samples contained more than 0.9% of GMOs; in 2005 there was only one in 512 (0.20%) samples in total; in 2006 there were 4 out of 404 samples (0.99%), and in 2007: 7 of a total of 655 samples (1.07%) had GMO content above the allowed threshold of 0.9%.

  12. Increased efficacy for in-house validation of real-time PCR GMO detection methods.

    PubMed

    Scholtens, I M J; Kok, E J; Hougs, L; Molenaar, B; Thissen, J T N M; van der Voet, H

    2010-03-01

    To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSD(r) and RSD(R)) were calculated. The results showed that not only the PCR reaction but also the factors 'DNA isolation' and 'PCR day' are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods.

  13. Engineer Novel Anticancer Bioagents

    DTIC Science & Technology

    2010-10-01

    selection (hence to create marker-free genetically modified organism – GMO as required by FDA regulations) have failed. The overall transformation...free genetically modified organism – GMO , as required by FDA regulations). Key Research Status 1. Reconstitution of a complete FK228 biosynthetic

  14. 75 FR 49923 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... filing per 35.12: KCP&L-GMO Baseline Filing (Market-Based Volume 28) to be effective 8/2/2010. Filed Date...: KCP&L Greater Missouri Operations Company submits tariff filing per 35.12: GMO Volume 33 (Cost-Based...

  15. 21 CFR 184.1323 - Glyceryl monooleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... esterification of commerical oleic acid that is derived either from edible sources or from tall oil fatty acids.... No. 25496-72-4) and glyceryl esters of fatty acids present in commercial oleic acid. (b) The...

  16. Gait Dynamics and Locomotor Metabolism

    DTIC Science & Technology

    2014-12-01

    26 47. Taylor CR, Heglund NC, Maloiy GMO . Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of...San Diego, CA: Academic Press, 1994. 110 47. Taylor CR, Heglund NC, Maloiy GMO . Energetics and mechanics of terrestrial locomotion. I. Metabolic

  17. At the end of the day everything boils down to politics: the evolving of German policy toward GMO crops and the existing stagnation.

    PubMed

    Katzek, Jens

    2014-07-03

    Today it is "en vogue" to oppose the use of GMO plants not only in the environmental- and consumer-protection movement, the Green and the Social Democratic Party in Germany, but also in the conservative parties of the political spectrum. This article describes how such an atmosphere was able to develop over the last twenty years. An atmosphere in which almost everyone in favor of GMO plants within these parties is now quiet-because the political price of supporting the technology would be simply too high.

  18. Distortion of genetically modified organism quantification in processed foods: influence of particle size compositions and heat-induced DNA degradation.

    PubMed

    Moreano, Francisco; Busch, Ulrich; Engel, Karl-Heinz

    2005-12-28

    Milling fractions from conventional and transgenic corn were prepared at laboratory scale and used to study the influence of sample composition and heat-induced DNA degradation on the relative quantification of genetically modified organisms (GMO) in food products. Particle size distributions of the obtained fractions (coarse grits, regular grits, meal, and flour) were characterized using a laser diffraction system. The application of two DNA isolation protocols revealed a strong correlation between the degree of comminution of the milling fractions and the DNA yield in the extracts. Mixtures of milling fractions from conventional and transgenic material (1%) were prepared and analyzed via real-time polymerase chain reaction. Accurate quantification of the adjusted GMO content was only possible in mixtures containing conventional and transgenic material in the form of analogous milling fractions, whereas mixtures of fractions exhibiting different particle size distributions delivered significantly over- and underestimated GMO contents depending on their compositions. The process of heat-induced nucleic acid degradation was followed by applying two established quantitative assays showing differences between the lengths of the recombinant and reference target sequences (A, deltal(A) = -25 bp; B, deltal(B) = +16 bp; values related to the amplicon length of the reference gene). Data obtained by the application of method A resulted in underestimated recoveries of GMO contents in the samples of heat-treated products, reflecting the favored degradation of the longer target sequence used for the detection of the transgene. In contrast, data yielded by the application of method B resulted in increasingly overestimated recoveries of GMO contents. The results show how commonly used food technological processes may lead to distortions in the results of quantitative GMO analyses.

  19. Self-powdering and nonlinear optical domain structures in ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3} crystals formed in glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukada, Y.; Honma, T.; Komatsu, T., E-mail: komatsu@mst.nagaokaut.ac.j

    Ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3}, (GMO), crystals are formed through the crystallization of 21.25Gd{sub 2}O{sub 3}-63.75MoO{sub 3}-15B{sub 2}O{sub 3} glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 {mu}m spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called 'self-powdering phenomenon during crystallization' in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and amore » spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO{sub 4}){sup 2-} tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals. - Graphical abstract: This figure shows the polarized optical photograph at room temperature for a particle (piece) obtained by a heat treatment of the glass at 590 deg. C for 2 h in an electric furnace in air. This particle was obtained through the self-powdering behavior in the crystallization of glass. The periodic domain structure is observed. Ferroelastic beta'-Gd{sub 2}(MoO{sub 4}){sub 3} crystals are formed in the particle, and second harmonic generations are detected, depending on the domain structure.« less

  20. Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Kondo, Kazunari; Tanaka, Asako; Liu, Ming S; Oguchi, Taichi; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro; Teshima, Reiko

    2008-03-26

    In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation.

  1. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K., E-mail: prafullaj@yahoo.com

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in themore » dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.« less

  2. Assessment of a direct hybridization microarray strategy for comprehensive monitoring of genetically modified organisms (GMOs).

    PubMed

    Turkec, Aydin; Lucas, Stuart J; Karacanli, Burçin; Baykut, Aykut; Yuksel, Hakki

    2016-03-01

    Detection of GMO material in crop and food samples is the primary step in GMO monitoring and regulation, with the increasing number of GM events in the world market requiring detection solutions with high multiplexing capacity. In this study, we test the suitability of a high-density oligonucleotide microarray platform for direct, quantitative detection of GMOs found in the Turkish feed market. We tested 1830 different 60nt probes designed to cover the GM cassettes from 12 different GM cultivars (3 soya, 9 maize), as well as plant species-specific and contamination controls, and developed a data analysis method aiming to provide maximum throughput and sensitivity. The system was able specifically to identify each cultivar, and in 10/12 cases was sensitive enough to detect GMO DNA at concentrations of ⩽1%. These GMOs could also be quantified using the microarray, as their fluorescence signals increased linearly with GMO concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. NAIMA as a solution for future GMO diagnostics challenges.

    PubMed

    Dobnik, David; Morisset, Dany; Gruden, Kristina

    2010-03-01

    In the field of genetically modified organism (GMO) diagnostics, real-time PCR has been the method of choice for target detection and quantification in most laboratories. Despite its numerous advantages, however, the lack of a true multiplexing option may render real-time PCR less practical in the face of future GMO detection challenges such as the multiplicity and increasing complexity of new transgenic events, as well as the repeated occurrence of unauthorized GMOs on the market. In this context, we recently reported the development of a novel multiplex quantitative DNA-based target amplification method, named NASBA implemented microarray analysis (NAIMA), which is suitable for sensitive, specific and quantitative detection of GMOs on a microarray. In this article, the performance of NAIMA is compared with that of real-time PCR, the focus being their performances in view of the upcoming challenge to detect/quantify an increasing number of possible GMOs at a sustainable cost and affordable staff effort. Finally, we present our conclusions concerning the applicability of NAIMA for future use in GMO diagnostics.

  4. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    PubMed

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  5. Practicable group testing method to evaluate weight/weight GMO content in maize grains.

    PubMed

    Mano, Junichi; Yanaka, Yuka; Ikezu, Yoko; Onishi, Mari; Futo, Satoshi; Minegishi, Yasutaka; Ninomiya, Kenji; Yotsuyanagi, Yuichi; Spiegelhalter, Frank; Akiyama, Hiroshi; Teshima, Reiko; Hino, Akihiro; Naito, Shigehiro; Koiwa, Tomohiro; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi

    2011-07-13

    Because of the increasing use of maize hybrids with genetically modified (GM) stacked events, the established and commonly used bulk sample methods for PCR quantification of GM maize in non-GM maize are prone to overestimate the GM organism (GMO) content, compared to the actual weight/weight percentage of GM maize in the grain sample. As an alternative method, we designed and assessed a group testing strategy in which the GMO content is statistically evaluated based on qualitative analyses of multiple small pools, consisting of 20 maize kernels each. This approach enables the GMO content evaluation on a weight/weight basis, irrespective of the presence of stacked-event kernels. To enhance the method's user-friendliness in routine application, we devised an easy-to-use PCR-based qualitative analytical method comprising a sample preparation step in which 20 maize kernels are ground in a lysis buffer and a subsequent PCR assay in which the lysate is directly used as a DNA template. This method was validated in a multilaboratory collaborative trial.

  6. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    PubMed

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  7. 78 FR 46260 - Sorbitan Monooleate Ethylene Oxide Adduct; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... not a dermal sensitizer in guinea pigs. Acute dermal toxicity was not observed in rabbits exposed to... them. Potentially affected entities may include: Crop production (NAICS code 111). Animal production...

  8. Learning and adherence to baby massage after two teaching strategies.

    PubMed

    Cruz, Cláudia Marchetti; Caromano, Fátima Aparecida; Gonçalves, Lia Lopes; Machado, Thais Gaiad; Voos, Mariana Callil

    2014-07-01

    Little is known about learning/adherence after different baby massage teaching strategies. We compared the learning/adherence after two strategies. Twenty mothers from the group manual-course (GMC) and 20 from the group manual-orientations (GMO) received a booklet. GMC participated in a course during the third trimester. GMO received verbal instructions during the postpartum hospital stay. Multiple-choice and practical tests assessed learning (GMC: performing strokes on a doll; GMO: on the baby). Adherence was measured 3 months after childbirth. No differences were found between the groups in learning/adherence. Both teaching strategies showed similar and positive results. © 2014, Wiley Periodicals, Inc.

  9. At the end of the day everything boils down to politics: The evolving of German policy toward GMO crops and the existing stagnation

    PubMed Central

    Katzek, Jens

    2014-01-01

    Today it is “en vogue” to oppose the use of GMO plants not only in the environmental- and consumer-protection movement, the Green and the Social Democratic Party in Germany, but also in the conservative parties of the political spectrum. This article describes how such an atmosphere was able to develop over the last twenty years. An atmosphere in which almost everyone in favor of GMO plants within these parties is now quiet—because the political price of supporting the technology would be simply too high. PMID:25437236

  10. The Pilot Staffing Conundrum: A Delphi Study

    DTIC Science & Technology

    2009-06-01

    Project, AFIT/ GMO /LAL/98J-2. School of Logistics and Acquisition Management, Air Force Institute of Technology (AU), Wright Patterson AFB, OH, June...Kafer, John H. Relationship of Airline Pilot Demand and Air Force Pilot Retention. Graduate Research Project, AFIT/ GMO /LAL/98J-11. School of Logistics

  11. The structuring of GMO release and evaluation in EU law.

    PubMed

    von Kries, Caroline; Winter, Gerd

    2012-04-01

    Genetically modified organisms (GMOs) and their behavior in the environment are complex and can only be assessed if the different components are distinguished. This article examines, how by EU law the real causation processes from the GMO release to various endpoints are dissected, individually analysed and then again viewed in their entirety. In addition, the articles includes, how the intellectual process of assessment is divided into the steps of tiered generation, shared submission and structured evaluation of relevant knowledge. The framework proposed for such an examination allows to identify strengths and weaknesses of GMO risk assessment in the EU. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Physician Retention in the Army Medical Department

    DTIC Science & Technology

    2009-03-16

    Fifteen years ago, these jobs were filled by General Medical Officers ( GMO ) -- graduates of internships who spent some time “muddying their boots” in the...field while waiting a year or two for the residency position of their choice. Today, the GMO is an endangered species. In an effort to provide the best

  13. Set Up to Fail: Charter Passenger Airlines and the Civil Reserve Air Fleet

    DTIC Science & Technology

    2011-08-21

    1. 16 Teagan, Shawn E. CRAF 2002-An Analysis of CRAF Participation Since September 2001. Graduate Research Project. AFIT/ GMO /ENS/02E-12. Graduate...Teagan, Shawn E. CRAF 2002-An Analysis of CRAF Participation Since September 2001. Graduate Research Project. AFIT/ GMO /ENS/02E-12. Graduate School

  14. A comparison of protein and phenolic compounds in seed from GMO and non-GMO soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean protein is a valuable and important component in human and animal diets. Approximately 94% of the soybean planted in the US is genetically modified (GM) to enhance quality and productivity. Since value-added traits are continuously being developed by genetic modification, it is important t...

  15. SURFACTANT-ENHANCED SOLUBILIZATION OF RESIDUAL DODECANE IN SOIL COLUMNS - 1. EXPERIMANTAL INVESTIGATION

    EPA Science Inventory

    The solubilization of dodecane by polyoxyethylene (20) sorbitan monooleate, a nonionic surfactant, was investigated as a potential means of recoveringnonaqueous-phase liquids from contaminated aquifers. Residual saturations of dodecane were established by injecting 14C...

  16. [Genetically modified food--unnecessary controversy?].

    PubMed

    Tchórz, Michał; Radoniewicz-Chagowska, Anna; Lewandowska-Stanek, Hanna; Szponar, Elzbieta; Szponar, Jarosław

    2012-01-01

    Fast development of genetic engineering and biotechnology allows use of genetically modified organisms (GMO) more and more in different branches of science and economy. Every year we can see an increase of food amount produced with the use of modification of genetic material. In our supermarkets we can find brand new types of plants, products including genetically modified ingredients or meat from animals fed with food containing GMO. This article presents general information about genetically modified organisms, it also explains the range of genetic manipulation, use of newly developed products and current field area for GMO in the world. Based on scientific data the article presents benefits from development of biotechnology in reference to modified food. It also presents the voice of skeptics who are extremely concerned about the impact of those organisms on human health and natural environment. Problems that appear or can appear as a result of an increase of GMO are very important not only from a toxicologist's or a doctor's point of view but first of all from the point of view of ordinary consumers--all of us.

  17. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed.

    PubMed

    Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich

    2013-10-30

    Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.

  18. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms.

    PubMed

    Demeke, Tigst; Dobnik, David

    2018-07-01

    The number of genetically modified organisms (GMOs) on the market is steadily increasing. Because of regulation of cultivation and trade of GMOs in several countries, there is pressure for their accurate detection and quantification. Today, DNA-based approaches are more popular for this purpose than protein-based methods, and real-time quantitative PCR (qPCR) is still the gold standard in GMO analytics. However, digital PCR (dPCR) offers several advantages over qPCR, making this new technique appealing also for GMO analysis. This critical review focuses on the use of dPCR for the purpose of GMO quantification and addresses parameters which are important for achieving accurate and reliable results, such as the quality and purity of DNA and reaction optimization. Three critical factors are explored and discussed in more depth: correct classification of partitions as positive, correctly determined partition volume, and dilution factor. This review could serve as a guide for all laboratories implementing dPCR. Most of the parameters discussed are applicable to fields other than purely GMO testing. Graphical abstract There are generally three different options for absolute quantification of genetically modified organisms (GMOs) using digital PCR: droplet- or chamber-based and droplets in chambers. All have in common the distribution of reaction mixture into several partitions, which are all subjected to PCR and scored at the end-point as positive or negative. Based on these results GMO content can be calculated.

  19. Detection limits of the strip test and PCR for genetically modified corn in Brazil.

    PubMed

    Nascimento, V E; Von Pinho, É V R; Von Pinho, R G; do Nascimento, A D

    2012-08-16

    Brazilian legislation establishes a labeling limit for products that contain more than 1% material from genetically modified organisms (GMOs). We assessed the sensitivity of the lateral flow strip test in detection of the GMO corn varieties Bt11 and MON810 and the specificity and sensitivity of PCR techniques for their detection. For the strip test, the GMO seeds were mixed with conventional seeds at levels of 0.2, 0.4 and 0.8% for Bt11, and 0.4, 0.8 and 1.6% for MON810. Three different methodologies were assessed and whole seeds, their endosperm and embryonic axis were used. For the PCR technique, the GMO seeds of each of the two varieties were mixed with conventional seeds at levels of 20, 10, 5, 2, 1, and 0.5%. The seeds were ground and the DNA extracted. For detection of the GMO material, specific primers were used for MON810 and Bt11 and maize zein as an endogenous control. The sensitivity of the strip test varied for both maize varieties and methodologies. The test was positive for Bt11 only at 0.8%, in contrast with the detection limit of 0.4% indicated by the manufacturer. In the multiplex PCR, the primers proved to be specific for the different varieties. These varieties were detected in samples with one GMO seed in 100. Thus, this technique proved to be efficient in detecting contaminations equal to or greater than 1%.

  20. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    USDA-ARS?s Scientific Manuscript database

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  1. Genetic modification through oligonucleotide-mediated mutagenesis. A GMO regulatory challenge?

    PubMed

    Breyer, Didier; Herman, Philippe; Brandenburger, Annick; Gheysen, Godelieve; Remaut, Erik; Soumillion, Patrice; Van Doorsselaere, Jan; Custers, René; Pauwels, Katia; Sneyers, Myriam; Reheul, Dirk

    2009-01-01

    In the European Union, the definition of a GMO is technology-based. This means that a novel organism will be regulated under the GMO regulatory framework only if it has been developed with the use of defined techniques. This approach is now challenged with the emergence of new techniques. In this paper, we describe regulatory and safety issues associated with the use of oligonucleotide-mediated mutagenesis to develop novel organisms. We present scientific arguments for not having organisms developed through this technique fall within the scope of the EU regulation on GMOs. We conclude that any political decision on this issue should be taken on the basis of a broad reflection at EU level, while avoiding discrepancies at international level.

  2. Rationalizing the GMO Debate: The Ordonomic Approach to Addressing Agricultural Myths

    PubMed Central

    Hielscher, Stefan; Pies, Ingo; Valentinov, Vladislav; Chatalova, Lioudmila

    2016-01-01

    The public discourse on the acceptability of genetically modified organisms (GMOs) is not only controversial, but also infused with highly emotional and moralizing rhetoric. Although the assessment of risks and benefits of GMOs must be a scientific exercise, many debates on this issue seem to remain impervious to scientific evidence. In many cases, the moral psychology attributes of the general public create incentives for both GMO opponents and proponents to pursue misleading public campaigns, which impede the comprehensive assessment of the full spectrum of the risks and benefits of GMOs. The ordonomic approach to economic ethics introduced in this research note is helpful for disentangling the socio-economic and moral components of the GMO debate by re- and deconstructing moral claims. PMID:27171102

  3. Rationalizing the GMO Debate: The Ordonomic Approach to Addressing Agricultural Myths.

    PubMed

    Hielscher, Stefan; Pies, Ingo; Valentinov, Vladislav; Chatalova, Lioudmila

    2016-05-09

    The public discourse on the acceptability of genetically modified organisms (GMOs) is not only controversial, but also infused with highly emotional and moralizing rhetoric. Although the assessment of risks and benefits of GMOs must be a scientific exercise, many debates on this issue seem to remain impervious to scientific evidence. In many cases, the moral psychology attributes of the general public create incentives for both GMO opponents and proponents to pursue misleading public campaigns, which impede the comprehensive assessment of the full spectrum of the risks and benefits of GMOs. The ordonomic approach to economic ethics introduced in this research note is helpful for disentangling the socio-economic and moral components of the GMO debate by re- and deconstructing moral claims.

  4. Molecular Dynamics of a Water-Lipid Bilayer Interface

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Pohorille, Andrew

    1994-01-01

    We present results of molecular dynamics simulations of a glycerol 1-monooleate bilayer in water. The total length of analyzed trajectories is 5ns. The calculated width of the bilayer agrees well with the experimentally measured value. The interior of the membrane is in a highly disordered fluid state. Atomic density profile, orientational and conformational distribution functions, and order parameters indicate that disorder increases toward the center of the bilayer. Analysis of out-of-plane thermal fluctuations of the bilayer surfaces occurring at the time scale of the present calculations reveals that the distribution of modes agrees with predictions of the capillary wave model. Fluctuations of both bilayer surfaces are uncorrelated, yielding Gaussian distribution of instantaneous widths of the membrane. Fluctuations of the width produce transient thinning defects in the bilayer which occasionally span almost half of the membrane. The leading mechanism of these fluctuations is the orientational and conformational motion of head groups rather than vertical motion of the whole molecules. Water considerably penetrates the head group region of the bilayer but not its hydrocarbon core. The total net excess dipole moment of the interfacial water points toward the aqueous phase, but the water polarization profile is non-monotonic. Both water and head groups significantly contribute to the surface potential across the interface. The calculated sign of the surface potential is in agreement with that from experimental measurements, but the value is markedly overestimated. The structural and electrical properties of the water-bilayer system are discussed in relation to membrane functions, in particular transport of ions and nonelectrolytes across membranes.

  5. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Wilson, M. A.

    1996-01-01

    The excess chemical potentials of five small, structurally related solutes, CH4, CH3F, CH2F2, CHF3, and CF4, across the water-glycerol 1-monooleate bilayer and water-hexane interfaces were calculated at 300, 310, and 340 K using the particle insertion method. The excess chemical potentials of nonpolar molecules (CH4 and CF4) decrease monotonically or nearly monotonically from water to a nonpolar phase. In contrast, for molecules that possess permanent dipole moments (CH3F, CH2F, and CHF3), the excess chemical potentials exhibit an interfacial minimum that arises from superposition of two monotonically and oppositely changing contributions: electrostatic and nonelectrostatic. The nonelectrostatic term, dominated by the reversible work of creating a cavity that accommodates the solute, decreases, whereas the electrostatic term increases across the interface from water to the membrane interior. In water, the dependence of this term on the dipole moment is accurately described by second order perturbation theory. To achieve the same accuracy at the interface, third order terms must also be included. In the interfacial region, the molecular structure of the solvent influences both the excess chemical potential and solute orientations. The excess chemical potential across the interface increases with temperature, but this effect is rather small. Our analysis indicates that a broad range of small, moderately polar molecules should be surface active at the water-membrane and water-oil interfaces. The biological and medical significance of this result, especially in relation to the mechanism of anesthetic action, is discussed.

  6. Non-GMO genetically edited crop plants.

    PubMed

    Kanchiswamy, Chidananda Nagamangala; Malnoy, Mickael; Velasco, Riccardo; Kim, Jin-Soo; Viola, Roberto

    2015-09-01

    Direct delivery of purified Cas9 protein with guide RNA into plant cells, as opposed to plasmid-mediated delivery, displays high efficiency and reduced off-target effects. Following regeneration from edited cells, the ensuing plant is also likely to bypass genetically modified organism (GMO) legislation as the genome editing complex is degraded in the recipient cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Uninformed and disinformed society and the GMO market.

    PubMed

    Twardowski, Tomasz; Małyska, Aleksandra

    2015-01-01

    The EU has a complicated regulatory framework, and this is slowing down the approval process of new genetically modified (GM) crops. Currently, labeling of GM organisms (GMOs) is mandatory in all Member States. However, the USA, in which GMO labeling is not mandatory, continues to lead the production of biotech crops, biopharmaceuticals, biomaterials, and bioenergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A theoretical introduction to "combinatory SYBRGreen qPCR screening", a matrix-based approach for the detection of materials derived from genetically modified plants.

    PubMed

    Van den Bulcke, Marc; Lievens, Antoon; Barbau-Piednoir, Elodie; MbongoloMbella, Guillaume; Roosens, Nancy; Sneyers, Myriam; Casi, Amaya Leunda

    2010-03-01

    The detection of genetically modified (GM) materials in food and feed products is a complex multi-step analytical process invoking screening, identification, and often quantification of the genetically modified organisms (GMO) present in a sample. "Combinatory qPCR SYBRGreen screening" (CoSYPS) is a matrix-based approach for determining the presence of GM plant materials in products. The CoSYPS decision-support system (DSS) interprets the analytical results of SYBRGREEN qPCR analysis based on four values: the C(t)- and T(m) values and the LOD and LOQ for each method. A theoretical explanation of the different concepts applied in CoSYPS analysis is given (GMO Universe, "Prime number tracing", matrix/combinatory approach) and documented using the RoundUp Ready soy GTS40-3-2 as an example. By applying a limited set of SYBRGREEN qPCR methods and through application of a newly developed "prime number"-based algorithm, the nature of subsets of corresponding GMO in a sample can be determined. Together, these analyses provide guidance for semi-quantitative estimation of GMO presence in a food and feed product.

  9. Environmental risk assessment in GMO analysis.

    PubMed

    Pirondini, Andrea; Marmiroli, Nelson

    2010-01-01

    Genetically modified or engineered organisms (GMOs, GEOs) are utilised in agriculture, expressing traits of interest, such as insect or herbicide resistance. Soybean, maize, cotton and oilseed rape are the GM crops with the largest acreage in the world. The distribution of GM acreage in the different countries is related with the different positions concerning labelling of GMO products: based on the principle of substantial equivalence, or rather based on the precautionary principle. The paper provides an overview on how the risks associated with release of GMO in the environments can be analysed and predicted, in view of a possible coexistence of GM and non-GM organisms in agriculture.Risk assessment procedures, both qualitative and quantitative, are compared in the context of application to GMOs considering also legislation requirements (Directive 2001/18/EC). Criteria and measurable properties to assess harm for human health and environmental safety are listed, and the possible consequences are evaluated in terms of significance.Finally, a mapping of the possible risks deriving from GMO release is reported, focusing on gene transfer to related species, horizontal gene transfer, direct and indirect effects on non target organisms, development of resistance in target organisms, and effects on biodiversity.

  10. Environmental risk assessment in GMO analysis.

    PubMed

    Pirondini, Andrea; Marmiroli, Nelson

    2008-01-01

    Genetically modified or engineered organisms (GMOs, GEOs) are utilised in agriculture, expressing traits of interest, such as insect or herbicide resistance. Soybean, maize, cotton and oilseed rape are the GM crops with the largest acreage in the world. The distribution of GM acreage in the different countries is related with the different positions concerning labelling of GMO products: based on the principle of substantial equivalence, or rather based on the precautionary principle. The paper provides an overview on how the risks associated with release of GMO in the environments can be analysed and predicted, in view of a possible coexistence of GM and non-GM organisms in agriculture.Risk assessment procedures, both qualitative and quantitative, are compared in the context of application to GMOs considering also legislation requirements (Directive 2001/18/EC). Criteria and measurable properties to assess harm for human health and environmental safety are listed, and the possible consequences are evaluated in terms of significance.Finally, a mapping of the possible risks deriving from GMO release is reported, focusing on gene transfer to related species, horizontal gene transfer, direct and indirect effects on non target organisms, development of resistance in target organisms, and effects on biodiversity.

  11. Using Geophysical Data in the Texas High School Course, Geology, Meteorology, and Oceanography

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Olson, H.; Pulliam, J.; Schott, M. J.

    2002-12-01

    Science educators working directly with scientists to develop inquiry-based instructional materials in Earth science yield some of the best results. The TEXTEAMS (Texas Teachers Empowered for Achievement in Mathematics and Science) Leadership Training for the Texas high school science course, Geology, Meteorology and Oceanography (GMO) is one example of a successful program that provides high-quality training to master teachers using geophysical data collected by scientists at The University of Texas Institute for Geophysics (UTIG). TEXTEAMS is a certification program of professional development and leadership training sponsored by the National Science Foundation that is part of the Texas Statewide Systemic Initiative. UTIG scientists teamed with science educators at the Charles A. Dana Center for Mathematics and Science Education at UT and the Texas Education Agency to develop inquiry-based instructional materials for eight GMO modules. Our learning activities help students and teachers understand how Earth scientists interpret the natural world and test their hypotheses, and provide opportunities for the use of technology in classroom science learning; they are aligned with national and state teaching standards. Examples of TEXTEAMS GMO learning activities that use geophysical data. 1. Neotectonics: radiocarbon dates and elevation above current sea level of raised coral reefs in the New Georgia Islands are used to calculate rates of tectonic uplift and as a basis for the development of a conceptual model to explain the pattern of uplift that emerges from the data. 2. Large Igneous Provinces:geophysical logging data collected on ODP Leg 183 (Kerguelen Plateau) are analyzed to identify the transition from sediment to basement rock. 3. The Search for Black Gold: petroleum exploration requires the integration of geology, geophysics, petrophysics and geochemistry. Knowledge gained in previous GMO modules is combined with fundamental knowledge about economics to construct a petroleum prospect for a small oil and gas company. TEXTEAMS GMO Leadership Training uses mentoring of teachers by fellow teachers to implement effective teaching strategies and rigorous science curricula. More than 75 GMO teachers participated in the institutes and they in turn have trained about 2,250 other teachers. The number of students reached is about 67,500. The success of the GMO institutes have led to new partnerships between scientists and educators, and allowed UTIG to secure additional funds to promote K-12 Earth science education in Texas. They can serve as a template for other programs that are relevant to local communities and which utilize geophysical data and science.

  12. A Statistical Analysis of the Career Intentions of Mobilized Selected Reservists (SELRES)

    DTIC Science & Technology

    2007-06-01

    Personnel Data System, and the Individuals Pay File, Bristol constructed separate retention behavior models for General Medical Officers ( GMO ) and...specialists. For the GMO , the results indicated that being black, Hispanic, single with dependents and having an increased operational tempo were... advantages and disadvantages. Compared to the Administrative community (ADMIN), which perform paperwork duty in a pleasant working environments, the other

  13. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    PubMed

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for the final evaluation. After the second evaluation, the final amplification curves and melting curves have been achieved.

  14. Possibilities of using the German Federal States' permanent soil monitoring program for the monitoring of potential effects of genetically modified organisms (GMO).

    PubMed

    Toschki, Andreas; Jänsch, Stephan; Roß-Nickoll, Martina; Römbke, Jörg; Züghart, Wiebke

    2015-01-01

    In the Directive 2001/18/EC on the deliberate release of genetically modified organisms (GMO) into the environment, a monitoring of potential risks is prescribed after their deliberate release or placing on the market. Experience and data of already existing monitoring networks should be included. The present paper summarizes the major findings of a project funded by the Federal Agency for Nature Conservation (Nutzungsmöglichkeiten der Boden-Dauerbeobachtung der Länder für das Monitoring der Umweltwirkungen gentechnisch veränderter Pflanzen. BfN Skripten, Bonn-Bad Godesberg 369, 2014). The full report in german language can be accessed on http://www.bfn.de and is available as Additional file 1. The aim of the project was to check if it is possible to use the German permanent soil monitoring program (PSM) for the monitoring of GMO. Soil organism communities are highly diverse and relevant with respect to the sustainability of soil functions. They are exposed to GMO material directly by feeding or indirectly through food chain interactions. Other impacts are possible due to their close association to soil particles. The PSM program can be considered as representative with regard to different soil types and ecoregions in Germany, but not for all habitat types relevant for soil organisms. Nevertheless, it is suitable as a basic grid for monitoring the potential effects of GMO on soil invertebrates. PSM sites should be used to derive reference values, i.e. range of abundance and presence of different relevant species of soil organisms. Based on these references, it is possible to derive threshold values to define the limit of acceptable change or impact. Therefore, a minimum set of sites and minimum set of standardized methods are needed, i.e. characterization of each site, sampling of selected soil organism groups, adequate adaptation of methods for the purpose of monitoring of potential effects of GMO. Finally, and probably most demanding, it is needed to develop a harmonized evaluation concept.

  15. The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants.

    PubMed

    Block, Annette; Debode, Frédéric; Grohmann, Lutz; Hulin, Julie; Taverniers, Isabel; Kluga, Linda; Barbau-Piednoir, Elodie; Broeders, Sylvia; Huber, Ingrid; Van den Bulcke, Marc; Heinze, Petra; Berben, Gilbert; Busch, Ulrich; Roosens, Nancy; Janssen, Eric; Žel, Jana; Gruden, Kristina; Morisset, Dany

    2013-08-22

    Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs' molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms.

  16. Public health issues related with the consumption of food obtained from genetically modified organisms.

    PubMed

    Paparini, Andrea; Romano-Spica, Vincenzo

    2004-01-01

    Genetically Modified Organisms (GMOs) are a fact of modern agriculture and a major field of discussion in biotechnology. As science incessantly achieves innovative and unexpected breakthroughs, new medical, political, ethical and religious debates arise over the production and consumption of transgenic organisms. Despite no described medical condition being directly associated with a diet including approved GM crops in large exposed populations such as 300,000,000 Americans and a billion Chinese, public opinion seems to look at this new technology with either growing concern or even disapproval. It is generally recognized that a high level of vigilance is necessary and highly desirable, but it should also be considered that GMOs are a promising new challenge for the III Millennium societies, with remarkable impact on many disciplines and fields related to biotechnology. To acquire a basic knowledge on GMO production, GM-food consumption, GMO interaction with humans and environment is of primary importance for risk assessment. It requires availability of clear data and results from rigorous experiments. This review will focus on public health risks related with a GMO-containing diet. The objective is to summarize state of the art research, provide fundamental technical information, point out problems and perspectives, and make available essential tools for further research. Are GMO based industries and GMO-derived foods safe to human health? Can we consider both social, ethical and public health issues by means of a constant and effective monitoring of the food chain and by a clear, informative labeling of the products? Which are the so far characterized or alleged hazards of GMOs? And, most importantly, are these hazards actual, potential or merely contrived? Several questions remain open; answers and solutions belong to science, to politics and to the personal opinion of each social subject.

  17. The GMOseek matrix: a decision support tool for optimizing the detection of genetically modified plants

    PubMed Central

    2013-01-01

    Background Since their first commercialization, the diversity of taxa and the genetic composition of transgene sequences in genetically modified plants (GMOs) are constantly increasing. To date, the detection of GMOs and derived products is commonly performed by PCR-based methods targeting specific DNA sequences introduced into the host genome. Information available regarding the GMOs’ molecular characterization is dispersed and not appropriately organized. For this reason, GMO testing is very challenging and requires more complex screening strategies and decision making schemes, demanding in return the use of efficient bioinformatics tools relying on reliable information. Description The GMOseek matrix was built as a comprehensive, online open-access tabulated database which provides a reliable, comprehensive and user-friendly overview of 328 GMO events and 247 different genetic elements (status: 18/07/2013). The GMOseek matrix is aiming to facilitate GMO detection from plant origin at different phases of the analysis. It assists in selecting the targets for a screening analysis, interpreting the screening results, checking the occurrence of a screening element in a group of selected GMOs, identifying gaps in the available pool of GMO detection methods, and designing a decision tree. The GMOseek matrix is an independent database with effective functionalities in a format facilitating transferability to other platforms. Data were collected from all available sources and experimentally tested where detection methods and certified reference materials (CRMs) were available. Conclusions The GMOseek matrix is currently a unique and very valuable tool with reliable information on GMOs from plant origin and their present genetic elements that enables further development of appropriate strategies for GMO detection. It is flexible enough to be further updated with new information and integrated in different applications and platforms. PMID:23965170

  18. Loop-Mediated Isothermal Amplification for Detection of Endogenous Sad1 Gene in Cotton: An Internal Control for Rapid Onsite GMO Testing.

    PubMed

    Singh, Monika; Bhoge, Rajesh K; Randhawa, Gurinderjit

    2018-04-20

    Background : Confirming the integrity of seed samples in powdered form is important priorto conducting a genetically modified organism (GMO) test. Rapid onsite methods may provide a technological solution to check for genetically modified (GM) events at ports of entry. In India, Bt cotton is the commercialized GM crop with four approved GM events; however, 59 GM events have been approved globally. GMO screening is required to test for authorized GM events. The identity and amplifiability of test samples could be ensured first by employing endogenous genes as an internal control. Objective : A rapid onsite detection method was developed for an endogenous reference gene, stearoyl acyl carrier protein desaturase ( Sad1 ) of cotton, employing visual and real-time loop-mediated isothermal amplification (LAMP). Methods : The assays were performed at a constant temperature of 63°C for 30 min for visual LAMP and 62ºC for 40 min for real-time LAMP. Positive amplification was visualized as a change in color from orange to green on addition of SYBR ® Green or detected as real-time amplification curves. Results : Specificity of LAMP assays was confirmed using a set of 10 samples. LOD for visual LAMP was up to 0.1%, detecting 40 target copies, and for real-time LAMP up to 0.05%, detecting 20 target copies. Conclusions : The developed methods could be utilized to confirm the integrity of seed powder prior to conducting a GMO test for specific GM events of cotton. Highlights : LAMP assays for the endogenous Sad1 gene of cotton have been developed to be used as an internal control for onsite GMO testing in cotton.

  19. JRC GMO-Matrix: a web application to support Genetically Modified Organisms detection strategies.

    PubMed

    Angers-Loustau, Alexandre; Petrillo, Mauro; Bonfini, Laura; Gatto, Francesco; Rosa, Sabrina; Patak, Alexandre; Kreysa, Joachim

    2014-12-30

    The polymerase chain reaction (PCR) is the current state of the art technique for DNA-based detection of Genetically Modified Organisms (GMOs). A typical control strategy starts by analyzing a sample for the presence of target sequences (GM-elements) known to be present in many GMOs. Positive findings from this "screening" are then confirmed with GM (event) specific test methods. A reliable knowledge of which GMOs are detected by combinations of GM-detection methods is thus crucial to minimize the verification efforts. In this article, we describe a novel platform that links the information of two unique databases built and maintained by the European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) at the Joint Research Centre (JRC) of the European Commission, one containing the sequence information of known GM-events and the other validated PCR-based detection and identification methods. The new platform compiles in silico determinations of the detection of a wide range of GMOs by the available detection methods using existing scripts that simulate PCR amplification and, when present, probe binding. The correctness of the information has been verified by comparing the in silico conclusions to experimental results for a subset of forty-nine GM events and six methods. The JRC GMO-Matrix is unique for its reliance on DNA sequence data and its flexibility in integrating novel GMOs and new detection methods. Users can mine the database using a set of web interfaces that thus provide a valuable support to GMO control laboratories in planning and evaluating their GMO screening strategies. The platform is accessible at http://gmo-crl.jrc.ec.europa.eu/jrcgmomatrix/ .

  20. Detection of genetically modified soybean in crude soybean oil.

    PubMed

    Nikolić, Zorica; Vasiljević, Ivana; Zdjelar, Gordana; Ðorđević, Vuk; Ignjatov, Maja; Jovičić, Dušica; Milošević, Dragana

    2014-02-15

    In order to detect presence and quantity of Roundup Ready (RR) soybean in crude oil extracted from soybean seed with a different percentage of GMO seed two extraction methods were used, CTAB and DNeasy Plant Mini Kit. The amplifications of lectin gene, used to check the presence of soybean DNA, were not achieved in all CTAB extracts of DNA, while commercial kit gave satisfactory results. Comparing actual and estimated GMO content between two extraction methods, root mean square deviation for kit is 0.208 and for CTAB is 2.127, clearly demonstrated superiority of kit over CTAB extraction. The results of quantification evidently showed that if the oil samples originate from soybean seed with varying percentage of RR, it is possible to monitor the GMO content at the first stage of processing crude oil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The GMO Sumrule and the πNN Coupling Constant

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.

    The isovector GMO sumrule for forward πN scattering is critically evaluated using the precise π-p and π-d scattering lengths obtained recently from pionic atom measurements. The charged πNN coupling constant is then deduced with careful analysis of systematic and statistical sources of uncertainties. This determination gives directly from data gc2(GMO)/4π = 14.17±0.09 (statistic) ±0.17 (systematic) or fc2/ 4π=0.078(11). This value is half-way between that of indirect methods (phase-shift analyses) and the direct evaluation from from backward np differential scattering cross sections (extrapolation to pion pole). From the π-p and π-d scattering lengths our analysis leads also to accurate values for (1/2)(aπ-p+aπ-n) and (1/2) (aπ-p-aπ-n).

  2. Phenomenological Considerations of the Electric Field Induced Transitions in Improper Ferroelectrics and Ferroelastics. III. Application to Gd2(MoO4)3

    NASA Astrophysics Data System (ADS)

    Suzuki, Ikuo; Ishibashi, Yoshihiro

    1987-02-01

    The electric field induced phase transitions are discussed in the improper ferroelectrics and ferroelastics, where the high symmetry phase is assumed to be piezoelectric as in the gadolinium molybdate (GMO). The dependence on the electric field of the polarization is discussed, and the D-E hysteresis loops are compared with the one experimentally observed in GMO.

  3. Male mating strategy and the introgression of a growth hormone transgene.

    PubMed

    Valosaari, Kata-Riina; Aikio, Sami; Kaitala, Veijo

    2008-11-01

    Escaped transgenic organisms (GMO's) may threaten the populations of their wild relatives if able to hybridize with each other. The introgression of a growth enhancement transgene into a wild Atlantic salmon population may be affected by the transgene's effects not only on fitness parameters, but also on mating behaviour. Large anadromous GMO males are most preferred in mating, but a transgene can also give the large sneakers a reproductive advantage over the smaller wild individuals. With a simulation model, we studied whether the increase in the proportion and mating success of sneakers in transgenic and hybrid genotypes could facilitate the introgression of a transgene into wild population after the release of GMOs. The model combines population dynamics and Mendelian inheritance of a transgenic trait. We found that the introgression of the transgene is strongly affected by the greater mating preference of large GMO males. Furthermore, the difference in reproductive success between the anadromous versus sneaker strategy defines how much GMO's have to be preferred to be able to invade. These results emphasize the importance of detailed knowledge of reproductive systems and the effect of a transgene on the phenotype and behaviour of GMOs when assessing the consequences of their release or escape to the wild.

  4. Development and application of a general plasmid reference material for GMO screening.

    PubMed

    Wu, Yuhua; Li, Jun; Wang, Yulei; Li, Xiaofei; Li, Yunjing; Zhu, Li; Li, Jun; Wu, Gang

    The use of analytical controls is essential when performing GMO detection through screening tests. Additionally, the presence of taxon-specific sequences is analyzed mostly for quality control during GMO detection. In this study, 11 commonly used genetic elements involving three promoters (P-35S, P-FMV35S and P-NOS), four marker genes (Bar, NPTII, HPT and Pmi), and four terminators (T-NOS, T-35S, T-g7 and T-e9), together with the reference gene fragments from six major crops of maize, soybean, rapeseed, rice, cotton and wheat, were co-integrated into the same single plasmid to construct a general reference plasmid pBI121-Screening. The suitability test of pBI121-Screening plasmid as reference material indicated that the non-target sequence on the pBI121-Screening plasmid did not affect the PCR amplification efficiencies of screening methods and taxon-specific methods. The sensitivity of screening and taxon-specific assays ranged from 5 to 10 copies of pBI121-Screening plasmid, meeting the sensitivity requirement of GMO detection. The construction of pBI121-Screening solves the lack of a general positive control for screening tests, thereby reducing the workload and cost of preparing a plurality of the positive control. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Potential of cross-priming amplification and DNA-based lateral-flow strip biosensor for rapid on-site GMO screening.

    PubMed

    Huang, Xin; Zhai, Congcong; You, Qimin; Chen, Hongjun

    2014-07-01

    The requirement to monitor the presence of genetically modified organisms (GMO) in a variety of marked products has generated an increasing demand for reliable, rapid, and time and cost-effective analytical methods. Here we report an on-site method for rapid detection of cauliflower mosaic virus promoter (CaMV 35S), a common element present in most GMO, using cross-priming amplification (CPA) technology. Detection was achieved using a DNA-based contamination-proof strip biosensor. The limit of detection was 30 copies for the pBI121 plasmid containing the CaMV 35S gene. The certified reference sample of GM maize line MON810 was detectable even at the low relative mass concentration of 0.05%. The developed CPA method had high specificity for the CaMV 35S gene, as compared with other GM lines not containing this gene and non-GM products. The method was further validated using nine real-world samples, and the results were confirmed by real-time PCR analysis. Because of its simplicity, rapidity, and high sensitivity, this method of detecting the CaMV 35S gene has great commercial prospects for rapid GMO screening of high-consumption food and agriculture products.

  6. Event-specific qualitative and quantitative PCR detection of the GMO carnation (Dianthus caryophyllus) variety Moonlite based upon the 5'-transgene integration sequence.

    PubMed

    Li, P; Jia, J W; Jiang, L X; Zhu, H; Bai, L; Wang, J B; Tang, X M; Pan, A H

    2012-04-27

    To ensure the implementation of genetically modified organism (GMO)-labeling regulations, an event-specific detection method was developed based on the junction sequence of an exogenous integrant in the transgenic carnation variety Moonlite. The 5'-transgene integration sequence was isolated by thermal asymmetric interlaced PCR. Based upon the 5'-transgene integration sequence, the event-specific primers and TaqMan probe were designed to amplify the fragments, which spanned the exogenous DNA and carnation genomic DNA. Qualitative and quantitative PCR assays were developed employing the designed primers and probe. The detection limit of the qualitative PCR assay was 0.05% for Moonlite in 100 ng total carnation genomic DNA, corresponding to about 79 copies of the carnation haploid genome; the limit of detection and quantification of the quantitative PCR assay were estimated to be 38 and 190 copies of haploid carnation genomic DNA, respectively. Carnation samples with different contents of genetically modified components were quantified and the bias between the observed and true values of three samples were lower than the acceptance criterion (<25%) of the GMO detection method. These results indicated that these event-specific methods would be useful for the identification and quantification of the GMO carnation Moonlite.

  7. Highly Sensitive GMO Detection Using Real-Time PCR with a Large Amount of DNA Template: Single-Laboratory Validation.

    PubMed

    Mano, Junichi; Hatano, Shuko; Nagatomi, Yasuaki; Futo, Satoshi; Takabatake, Reona; Kitta, Kazumi

    2018-03-01

    Current genetically modified organism (GMO) detection methods allow for sensitive detection. However, a further increase in sensitivity will enable more efficient testing for large grain samples and reliable testing for processed foods. In this study, we investigated real-time PCR-based GMO detection methods using a large amount of DNA template. We selected target sequences that are commonly introduced into many kinds of GM crops, i.e., 35S promoter and nopaline synthase (NOS) terminator. This makes the newly developed method applicable to a wide range of GMOs, including some unauthorized ones. The estimated LOD of the new method was 0.005% of GM maize events; to the best of our knowledge, this method is the most sensitive among the GM maize detection methods for which the LOD was evaluated in terms of GMO content. A 10-fold increase in the DNA amount as compared with the amount used under common testing conditions gave an approximately 10-fold reduction in the LOD without PCR inhibition. Our method is applicable to various analytical samples, including processed foods. The use of other primers and fluorescence probes would permit highly sensitive detection of various recombinant DNA sequences besides the 35S promoter and NOS terminator.

  8. Identification of potentially hazardous human gene products in GMO risk assessment.

    PubMed

    Bergmans, Hans; Logie, Colin; Van Maanen, Kees; Hermsen, Harm; Meredyth, Michelle; Van Der Vlugt, Cécile

    2008-01-01

    Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in their new context. Examples of such potentially hazardous gene products (PHGPs) are: protein toxins, products of dominant alleles that have a role in hereditary diseases, gene products and sequences involved in genome rearrangements, gene products involved in immunomodulation or with an endocrine function, gene products involved in apoptosis, activated proto-oncogenes. For contained use of a GMO that carries a construct encoding a PHGP, the precautionary principle dictates that safety measures should be applied on a "worst case" basis, until the risks of the specific case have been assessed. The potential hazard of cloned genes can be estimated before empirical data on the actual GMO become available. Preliminary data may be used to focus hazard identification and risk assessment. Both predictive and empirical data may also help to identify what further information is needed to assess the risk of the GMO. A two-step approach, whereby a PHGP is evaluated for its conceptual dangers, then checked by data bank searches, is delineated here.

  9. Male mating strategy and the introgression of a growth hormone transgene

    PubMed Central

    Valosaari, Kata-Riina; Aikio, Sami; Kaitala, Veijo

    2008-01-01

    Escaped transgenic organisms (GMO's) may threaten the populations of their wild relatives if able to hybridize with each other. The introgression of a growth enhancement transgene into a wild Atlantic salmon population may be affected by the transgene's effects not only on fitness parameters, but also on mating behaviour. Large anadromous GMO males are most preferred in mating, but a transgene can also give the large sneakers a reproductive advantage over the smaller wild individuals. With a simulation model, we studied whether the increase in the proportion and mating success of sneakers in transgenic and hybrid genotypes could facilitate the introgression of a transgene into wild population after the release of GMOs. The model combines population dynamics and Mendelian inheritance of a transgenic trait. We found that the introgression of the transgene is strongly affected by the greater mating preference of large GMO males. Furthermore, the difference in reproductive success between the anadromous versus sneaker strategy defines how much GMO's have to be preferred to be able to invade. These results emphasize the importance of detailed knowledge of reproductive systems and the effect of a transgene on the phenotype and behaviour of GMOs when assessing the consequences of their release or escape to the wild. PMID:25567801

  10. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum.

    PubMed

    Mattson, Eric C; Pu, Haihui; Cui, Shumao; Schofield, Marvin A; Rhim, Sonny; Lu, Ganhua; Nasse, Michael J; Ruoff, Rodney S; Weinert, Michael; Gajdardziska-Josifovska, Marija; Chen, Junhong; Hirschmugl, Carol J

    2011-12-27

    As silicon-based electronics are reaching the nanosize limits of the semiconductor roadmap, carbon-based nanoelectronics has become a rapidly growing field, with great interest in tuning the properties of carbon-based materials. Chemical functionalization is a proposed route, but syntheses of graphene oxide (G-O) produce disordered, nonstoichiometric materials with poor electronic properties. We report synthesis of an ordered, stoichiometric, solid-state carbon oxide that has never been observed in nature and coexists with graphene. Formation of this material, graphene monoxide (GMO), is achieved by annealing multilayered G-O. Our results indicate that the resulting thermally reduced G-O (TRG-O) consists of a two-dimensional nanocrystalline phase segregation: unoxidized graphitic regions are separated from highly oxidized regions of GMO. GMO has a quasi-hexagonal unit cell, an unusually high 1:1 O:C ratio, and a calculated direct band gap of ∼0.9 eV.

  11. An integrated strategy combining DNA walking and NGS to detect GMOs.

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; Papazova, Nina; De Loose, Marc; Deforce, Dieter; Ruttink, Tom; Roosens, Nancy H

    2017-10-01

    Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. 21 CFR 184.1323 - Glyceryl monooleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... commerical oleic acid that is derived either from edible sources or from tall oil fatty acids meeting the...) and glyceryl esters of fatty acids present in commercial oleic acid. (b) The ingredient must be of a... this chapter; nonalcoholic beverages and beverage bases as defined in § 170.3(n)(3) of this chapter...

  13. Formulation and Evaluation of Solid Lipid Nanoparticles of Ramipril

    PubMed Central

    Ekambaram, P; Abdul, Hasan Sathali A

    2011-01-01

    Solid lipid nanoparticles are typically spherical with an average diameter between 1 and 1000 nm. It is an alternative carrier system to tradition colloidal carriers, such as, emulsions, liposomes, and polymeric micro and nanoparticles. Ramipril is an antihypertensive agent used in the treatment of hypertension. Its oral bioavailability is 28% and it is rapidly excreted through the renal route. This drug has many side effects such as, postural hypotension, hyperkalemia, and angioedema, when given as an immediate dosage form. To overcome the side effects and to increase the bioavailability of ramipril, solid lipid nanoparticles of ramipril are prepared by using lipids (glyceryl monostearate and glyceryl monooleate) with stabilizers (tween 80, poloxamer 188, and span 20). The prepared formulations have been evaluated for entrapment efficiency, drug content, in-vitro drug release, particle size analysis, scanning electron spectroscopy, Fourier transform-infrared studies, and stability. A formulation containing glyceryl monooleate, stabilized with span 20 as surfactant showed prolonged drug release, smaller particle size, and narrow particle size distribution, as compared to other formulations with different surfactants and lipids. PMID:21897661

  14. Comparison of milk oligosaccharides between goats with and without the genetic ability to synthesize αs1-casein

    PubMed Central

    Meyrand, M.; Dallas, D.C.; Caillat, H.; Bouvier, F.; Martin, P.; Barile, D.

    2014-01-01

    Milk oligosaccharides (OS)—free complex carbohydrates—confer unique health benefits to the nursing neonate. Though human digestive enzymes cannot degrade these sugars, they provide nourishment to specific commensal microbes and act as decoys to prevent the adhesion of pathogenic micro-organisms to gastrointestinal cells. At present, the limited quantities of human milk oligosaccharides (HMO) impede research on these molecules and their potential applications in functional food formulations. Considerable progress has been made in the study of OS structures; however, the synthetic pathways leading to their synthesis in the mammary gland are poorly understood. Recent studies show that complex OS with fucose and N-acetyl neuraminic acid (key structural elements of HMO bioactivity) exist in goat milk. Polymorphisms in the CSN1S1 locus, which is responsible for synthesis of αs1-casein, affect lipid and casein micelle structure in goat milk. The present study sought to determine whether CSN1S1 polymorphisms also influence goat milk oligosaccharide (GMO) production and secretion. The GMO compositions of thirty-two goat milk samples, half of which were from genotype A/A (αs1-casein producers) and half from genotype O/O (αs1-casein non-producers), were determined with nanoflow liquid chromatography high-accuracy mass spectrometry. This study represents the most exhaustive characterization of GMO to date. A systematic and comprehensive GMO library was created, consolidating information available in the literature with the new findings. Nearly 30 GMO, 11 of which were novel, were confirmed via tandem mass spectrometric analyses. Six fucosylated OS were identified; 4 of these matched HMO compositions and three were identified for the first time in goat milk. Importantly, multivariate statistical analysis demonstrated that the OS profiles of the A/A and O/O genotype milks could be discriminated by the fucosylated OS. Quantitative analysis revealed that the goat milk samples contained 1.17 g/L of OS; however, their concentration in milks from A/A and O/O genotypes was not different. This study provides evidence of a genetic influence on specific OS biosynthesis but not total OS production. The presence of fucosylated GMO suggests that goat milk represents a potential source of bioactive milk OS suitable as a functional food ingredient. PMID:24587592

  15. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.

    PubMed

    Nouraei, Mehdi; Acosta, Edgar J

    2017-06-01

    Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Oseltamivir phosphate released from injectable Pickering emulsions over an extended term disables human pancreatic cancer cell survival

    PubMed Central

    Wood, Kurt; Szewczuk, Myron R.; Rousseau, Dérick; Neufeld, Ronald J.

    2018-01-01

    Pickering emulsions are colloidal dispersions stabilized by particles that either migrate to, or are formed at, the oil-water interface during emulsification. Here, we fabricated and characterized Pickering water-in-oil emulsions where molten glycerol monostearate crystallized at the surface of micron-sized water droplets and formed protective solid shells. We tested this emulsion as a reservoir delivery platform for the sustained release of low molecular weight hydrophilic molecules including sodium chloride (NaCl) and sodium citrate as model compounds, and the therapeutic oseltamivir phosphate (OP), the delivery of which was the ultimate goal of this research. The objective was to achieve long-term (30-day) release of challenging to encapsulate actives and ultimately demonstrate the sustained release of OP for 20–30 days from an injectable formulation. OP was used because of its anticancer properties targeting mammalian neuraminidase 1 (Neu1) involved in multistage tumorigenesis. All actives including OP encapsulated in Pickering emulsions displayed a near linear release profile over 30 days. It was demonstrated that the release could be modulated by the addition of a second, competing surfactant sorbitan monooleate, Span 80, to the emulsion at levels above its critical micelle concentration. OP released from the emulsions significantly reduced cell viability in the human PANC-1 pancreatic cancer cell line for up to 30 days. The findings from this study indicate a simple, potentially injectable formulation and method that is easily upscaled resulting in a stable product with the potential to fully retain small hydrophilic molecules/drugs for sustained, near linear release over days, weeks, and potentially months. PMID:29560107

  17. Theater Airlift -- An Analysis of Star Routes vs Optimized Scheduling

    DTIC Science & Technology

    2003-06-01

    Therrien, Major, USAF AFIT/ GMO /ENS/03E-13 The views expressed in this paper are those of the author and...must be a better way to use our resources, and that will be the focus of this paper. AFIT/ GMO /ENS/03E-13 x Abstract This paper will...which category of cargo (class) was the most important, for example: POL, ammunition, or food and water. This FORTRAN based program then used these

  18. Ship’s Stores Automation Modernization (SSAM) - Phase I Report.

    DTIC Science & Technology

    1982-05-01

    Fleet Accounting and Disbursing Center FI0o.1 Function 10 sub-function 1 GFS General Fund Survey GMO Game Machine Operator ICR Inventory Control...PERFORMERS: SSO, BSO, Food Service Officer (FSO), RSO, highest ranking Supply Officer (SO), Commanding Officer (CO) DESCRIPTION: Issues to Enlisted Dining...also counted from vending machines by the VMO and from the game machines by the GMO and turned over to the CA. The procedure is the same. The collection

  19. Detection of nonauthorized genetically modified organisms using differential quantitative polymerase chain reaction: application to 35S in maize.

    PubMed

    Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves

    2008-05-15

    Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.

  20. A screening method for the detection of the 35S promoter and the nopaline synthase terminator in genetically modified organisms in a real-time multiplex polymerase chain reaction using high-resolution melting-curve analysis.

    PubMed

    Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko

    2009-11-01

    To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.

  1. Practical experiences with an extended screening strategy for genetically modified organisms (GMOs) in real-life samples.

    PubMed

    Scholtens, Ingrid; Laurensse, Emile; Molenaar, Bonnie; Zaaijer, Stephanie; Gaballo, Heidi; Boleij, Peter; Bak, Arno; Kok, Esther

    2013-09-25

    Nowadays most animal feed products imported into Europe have a GMO (genetically modified organism) label. This means that they contain European Union (EU)-authorized GMOs. For enforcement of these labeling requirements, it is necessary, with the rising number of EU-authorized GMOs, to perform an increasing number of analyses. In addition to this, it is necessary to test products for the potential presence of EU-unauthorized GMOs. Analysis for EU-authorized and -unauthorized GMOs in animal feed has thus become laborious and expensive. Initial screening steps may reduce the number of GMO identification methods that need to be applied, but with the increasing diversity also screening with GMO elements has become more complex. For the present study, the application of an informative detailed 24-element screening and subsequent identification strategy was applied in 50 animal feed samples. Almost all feed samples were labeled as containing GMO-derived materials. The main goal of the study was therefore to investigate if a detailed screening strategy would reduce the number of subsequent identification analyses. An additional goal was to test the samples in this way for the potential presence of EU-unauthorized GMOs. Finally, to test the robustness of the approach, eight of the samples were tested in a concise interlaboratory study. No significant differences were found between the results of the two laboratories.

  2. A statistical approach to quantification of genetically modified organisms (GMO) using frequency distributions.

    PubMed

    Gerdes, Lars; Busch, Ulrich; Pecoraro, Sven

    2014-12-14

    According to Regulation (EU) No 619/2011, trace amounts of non-authorised genetically modified organisms (GMO) in feed are tolerated within the EU if certain prerequisites are met. Tolerable traces must not exceed the so-called 'minimum required performance limit' (MRPL), which was defined according to the mentioned regulation to correspond to 0.1% mass fraction per ingredient. Therefore, not yet authorised GMO (and some GMO whose approvals have expired) have to be quantified at very low level following the qualitative detection in genomic DNA extracted from feed samples. As the results of quantitative analysis can imply severe legal and financial consequences for producers or distributors of feed, the quantification results need to be utterly reliable. We developed a statistical approach to investigate the experimental measurement variability within one 96-well PCR plate. This approach visualises the frequency distribution as zygosity-corrected relative content of genetically modified material resulting from different combinations of transgene and reference gene Cq values. One application of it is the simulation of the consequences of varying parameters on measurement results. Parameters could be for example replicate numbers or baseline and threshold settings, measurement results could be for example median (class) and relative standard deviation (RSD). All calculations can be done using the built-in functions of Excel without any need for programming. The developed Excel spreadsheets are available (see section 'Availability of supporting data' for details). In most cases, the combination of four PCR replicates for each of the two DNA isolations already resulted in a relative standard deviation of 15% or less. The aims of the study are scientifically based suggestions for minimisation of uncertainty of measurement especially in -but not limited to- the field of GMO quantification at low concentration levels. Four PCR replicates for each of the two DNA isolations seem to be a reasonable minimum number to narrow down the possible spread of results.

  3. Inactivation of Escherichia coli O157:H7 in vitro and on the surface of spinach leaves by biobased surfactants

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the effect of biosurfactants on the populations of Escherichia coli O157:H7 in suspension and on spinach leaves. Eight surfactants including four soybean oil-based biosurfactants, sodium dodecyl sulfate (SDS), polyoxyethylene sorbitan monooleate (Tween 80), sopho...

  4. Transporting Government Agencies on Department of Defense Aircraft

    DTIC Science & Technology

    2000-06-01

    AFIT/ GMO /ENS/00E-5 TRANSPORTING GOVERNMENT AGENCIES ON DEPARTMENT OF DEFENSE AIRCRAFT GRADUATE RESEARCH PROJECT...Scenario #3 …………………………………………………………29 iv AFIT/ GMO /ENA/00E-5 Abstract The paper examines how the Department of Defense transports other...Development (USAID) responsible for providing non- food , humanitarian assistance in response to international crises and disasters (7). The OFDA determined

  5. A System Approach to Navy Medical Education and Training. Volume 1

    DTIC Science & Technology

    1974-08-31

    each of the four major pro - ducts complement one another, they form, in fact, a single major product, that of the technology for improved training...the course of determining the functional limits and con - tent areas peculiar to potentially delegable tasks, it is highly desirable to be able to...NISTOS CYTO CLINICAL X-RAY LAS AST LAB ASST LAB AS SI AS SL ABI ASITO LA LAB STMIL OPERATIONS PATIENT CARE OP -- PC -- GMo GMO M.D. M.D. M.D MD M

  6. Emerging Role of the Army Family Physician in Primary Health Care Delivery.

    DTIC Science & Technology

    1976-12-13

    practice in the civilian community and had handled a variety of primary care problems. They volunteered to come into the Army , joined training pro ...the end of the draft came and with it the reality that adequate numbers of General Medical Officers ( GMO ’s) were no longer available. The typical... GMO , a product of the draft, came into the Army at the end of his year of internship. He was usually assigned all the unpleasant and mundane duties that

  7. The GMO case in France: Politics, lawlessness and postmodernism

    PubMed Central

    Kuntz, Marcel

    2014-01-01

    The GMO debacle in France is analyzed in the light of the balance of forces around this controversy, the changes in position of governments and the opponents’ strategic use of intimidation. These factors have caused insurmountable difficulties for scientific experimentations and assessment of the technology, as well as for farmers attempting to grow GM maize in this country. The change from a “modern” to a “postmodern” framing of official public debates and scientific institutions has not appeased confrontations concerning GMOs. PMID:25437234

  8. Destruction of public and governmental experiments of GMO in Europe.

    PubMed

    Kuntz, Marcel

    2012-01-01

    The purpose of this article is to compile the destruction of GMO trials from academic or governmental research institutes in Europe, in a factual manner and to highlight their main characteristics. About 80 acts of vandalism against academic or governmental research on GMOs are identified, mainly in 4 countries; namely France, Germany, the United Kingdom and Switzerland. Examples are also provided for Italy and Belgium. The general conclusions that can be drawn from these acts are also discussed.

  9. The GMO case in France: politics, lawlessness and postmodernism.

    PubMed

    Kuntz, Marcel

    2014-07-03

    The GMO debacle in France is analyzed in the light of the balance of forces around this controversy, the changes in position of governments and the opponents' strategic use of intimidation. These factors have caused insurmountable difficulties for scientific experimentations and assessment of the technology, as well as for farmers attempting to grow GM maize in this country. The change from a "modern" to a "postmodern" framing of official public debates and scientific institutions has not appeased confrontations concerning GMOs.

  10. PCR-free quantitative detection of genetically modified organism from raw materials – A novel electrochemiluminescence-based bio-barcode method

    PubMed Central

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.

    2018-01-01

    Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909

  11. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    PubMed

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  12. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  13. The central dogma, "GMO" and defective epistemology.

    PubMed

    Tagliabue, Giovanni

    2017-10-02

    The expression "Genetically Modified Organisms" was coined to indicate a group of agricultural products (mostly crops and vegetables), modified through direct DNA recombination in order to obtain useful phenotypic traits or to inhibit undesirable characteristics. But the border between rDNA ("GMO") and other biotech methods is blurred. Moreover, the ill-assorted group is frequently charged with having peculiar, negative characteristics: many activists, part of the public and a few social science scholars think that "GMOs" are all dubious, even inherently dangerous. However, theoretical justifications of this alleged problematic nature which is supposed to be necessarily linked to the "splicing" of DNA, only when applied to agricultural products, are missing: the only text which tries to go in depth on the subject, an article by biologist Barry Commoner, takes aim at the wrong target, misunderstanding the Central Dogma. "GMO" is a term that has no clear reference, let alone in a detrimental sense. The only attempt to give it epistemological dignity fails.

  14. Fuzzy-logic based strategy for validation of multiplex methods: example with qualitative GMO assays.

    PubMed

    Bellocchi, Gianni; Bertholet, Vincent; Hamels, Sandrine; Moens, W; Remacle, José; Van den Eede, Guy

    2010-02-01

    This paper illustrates the advantages that a fuzzy-based aggregation method could bring into the validation of a multiplex method for GMO detection (DualChip GMO kit, Eppendorf). Guidelines for validation of chemical, bio-chemical, pharmaceutical and genetic methods have been developed and ad hoc validation statistics are available and routinely used, for in-house and inter-laboratory testing, and decision-making. Fuzzy logic allows summarising the information obtained by independent validation statistics into one synthetic indicator of overall method performance. The microarray technology, introduced for simultaneous identification of multiple GMOs, poses specific validation issues (patterns of performance for a variety of GMOs at different concentrations). A fuzzy-based indicator for overall evaluation is illustrated in this paper, and applied to validation data for different genetically modified elements. Remarks were drawn on the analytical results. The fuzzy-logic based rules were shown to be applicable to improve interpretation of results and facilitate overall evaluation of the multiplex method.

  15. Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Pradhan, S. K.; Mishra, P.; Sekhar, B. R.; Behera, Debdhyan; Rout, P. P.; Das, S. K.; Sahu, D. R.; Roul, B. K.

    2013-08-01

    This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO3. Room temperature dielectric constant (ɛr) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO3 at room temperature as multifunctional materials.

  16. Toward a workable biosafety system for regulating genetically modified organisms in Ethiopia: balancing conservation and competitiveness.

    PubMed

    Abraham, Adane

    2013-01-01

    On September 9, 2009, Ethiopia enacted a highly restrictive biosafety law firmly based on precautionary principles as a foundation for its GMO regulation system. Its drafting process, led by the country's Environmental Protection Authority, was judged as biased, focusing only on protecting the environment from perceived risks, giving little attention to potential benefits of GMOs. Many of its provisions are very stringent, exceeding those of Cartagena Protocol on Biosafety, while others cannot be fulfilled by applicants, collectively rendering the emerged biosafety system unworkable. These provisions include requirements for advance informed agreement and rigorous socioeconomic assessment in risk evaluation for all GMO transactions, including contained research use-which requires the head of the competent national authority of the exporting country to take full responsibility for GMO-related information provided-and stringent labeling, insurance and monitoring requirements for all GMO activities. Furthermore, there is no provision to establish an independent national biosafety decision-making body(ies). As a result, foreign technology owners that provide highly demanded technologies like Bt cotton declined to work with Ethiopia. There is a fear that the emerged biosafety system might also continue to suppress domestic genetic engineering research and development. Thus, to benefit from GMOs, Ethiopia has to revise its biosafety system, primarily by making changes to some provisions of the law in a way that balances its diverse interests of conserving biodiversity, protecting the environment and enhancing competition in agricultural and other economic sectors.

  17. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways.

    PubMed

    Kerwin, Bruce A

    2008-08-01

    Polysorbates 20 and 80 (Tween 20 and Tween 80) are used in the formulation of biotherapeutic products for both preventing surface adsorption and as stabilizers against protein aggregation. The polysorbates are amphipathic, nonionic surfactants composed of fatty acid esters of polyoxyethylene sorbitan being polyoxyethylene sorbitan monolaurate for polysorbate 20 and polyoxyethylene sorbitan monooleate for polysorbate 80. The polysorbates used in the formulation of biopharmaceuticals are mixtures of different fatty acid esters with the monolaurate fraction of polysorbate 20 making up only 40-60% of the mixture and the monooleate fraction of polysorbate 80 making up >58% of the mixture. The polysorbates undergo autooxidation, cleavage at the ethylene oxide subunits and hydrolysis of the fatty acid ester bond. Autooxidation results in hydroperoxide formation, side-chain cleavage and eventually formation of short chain acids such as formic acid all of which could influence the stability of a biopharmaceutical product. Oxidation of the fatty acid moiety while well described in the literature has not been specifically investigated for polysorbate. This review focuses on the chemical structure of the polysorbates, factors influencing micelle formation and factors and excipients influencing stability and degradation of the polyoxyethylene and fatty acid ester linkages.

  18. The current state of GMO governance: are we ready for GM animals?

    PubMed

    Vàzquez-Salat, Núria; Salter, Brian; Smets, Greet; Houdebine, Louis-Marie

    2012-01-01

    Given the history of GMO conflict and debate, the GM animal future is dependent on the response of the regulatory landscape and its associated range of interest groups at national, regional and international levels. Focusing on the EU and the USA, this article examines the likely form of that multi-level response, the increased role of cultural values, the contribution of new and existing interest groups and the consequent implications for the commercialization of both green and red GM animal biotechnology. Copyright © 2012. Published by Elsevier Inc.

  19. Tracing transgenic maize as affected by breadmaking process and raw material for the production of a traditional maize bread, broa.

    PubMed

    Fernandes, Telmo J R; Oliveira, M Beatriz P P; Mafra, Isabel

    2013-05-01

    Broa is a maize bread highly consumed and appreciated, especially in the north and central zones of Portugal. In the manufacturing of broa, maize flour and maize semolina might be used, besides other cereals such as wheat and rye. Considering the needs for genetically modified organism (GMO) traceability in highly processed foods, the aim of this work was to assess DNA degradation, DNA amplification and GMO quantification along breadmaking process of broa. DNA degradation was noticed by its decrease of integrity after dough baking and in all parts of bread sampling. The PCR amplification results of extracted DNA from the three distinct maize breads (broa 1, 2 and 3) showed that sequences for maize invertase gene and for events MON810 and TC1507 were easily detected with strong products. Real-time PCR revealed that quantification of GMO was feasible in the three different breads and that sampling location of baked bread might have a limited influence since the average quantitative results of both events after baking were very close to the actual values in the case of broa 1 (prepared with maize semolina). In the other two maize breads subjected to the same baking treatment, the contents of MON810 maize were considerably underestimated, leading to the conclusion that heat-processing was not the responsible parameter for that distortion, but the size of particle and mechanical processing of raw maize play also a major role in GMO quantification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Development of a real-time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum tuberosum), tomato (Solanum lycopersicum), eggplant (Solanum melongena), and pepper (Capsicum annuum).

    PubMed

    Chaouachi, Maher; El Malki, Redouane; Berard, Aurélie; Romaniuk, Marcel; Laval, Valérie; Brunel, Dominique; Bertheau, Yves

    2008-03-26

    The labeling of products containing genetically modified organisms (GMO) is linked to their quantification since a threshold for the presence of fortuitous GMOs in food has been established. This threshold is calculated from a combination of two absolute quantification values: one for the specific GMO target and the second for an endogenous reference gene specific to the taxon. Thus, the development of reliable methods to quantify GMOs using endogenous reference genes in complex matrixes such as food and feed is needed. Plant identification can be difficult in the case of closely related taxa, which moreover are subject to introgression events. Based on the homology of beta-fructosidase sequences obtained from public databases, two couples of consensus primers were designed for the detection, quantification, and differentiation of four Solanaceae: potato (Solanum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum annuum), and eggplant (Solanum melongena). Sequence variability was studied first using lines and cultivars (intraspecies sequence variability), then using taxa involved in gene introgressions, and finally, using taxonomically close taxa (interspecies sequence variability). This study allowed us to design four highly specific TaqMan-MGB probes. A duplex real time PCR assay was developed for simultaneous quantification of tomato and potato. For eggplant and pepper, only simplex real time PCR tests were developed. The results demonstrated the high specificity and sensitivity of the assays. We therefore conclude that beta-fructosidase can be used as an endogenous reference gene for GMO analysis.

  1. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.

  2. New trends in bioanalytical tools for the detection of genetically modified organisms: an update.

    PubMed

    Michelini, Elisa; Simoni, Patrizia; Cevenini, Luca; Mezzanotte, Laura; Roda, Aldo

    2008-10-01

    Despite the controversies surrounding genetically modified organisms (GMOs), the production of GM crops is increasing, especially in developing countries. Thanks to new technologies involving genetic engineering and unprecedented access to genomic resources, the next decade will certainly see exponential growth in GMO production. Indeed, EU regulations based on the precautionary principle require any food containing more than 0.9% GM content to be labeled as such. The implementation of these regulations necessitates sampling protocols, the availability of certified reference materials and analytical methodologies that allow the accurate determination of the content of GMOs. In order to qualify for the validation process, a method should fulfil some criteria, defined as "acceptance criteria" by the European Network of GMO Laboratories (ENGL). Several methods have recently been developed for GMO detection and quantitation, mostly based on polymerase chain reaction (PCR) technology. PCR (including its different formats, e.g., double competitive PCR and real-time PCR) remains the technique of choice, thanks to its ability to detect even small amounts of transgenes in raw materials and processed foods. Other approaches relying on DNA detection are based on quartz crystal microbalance piezoelectric biosensors, dry reagent dipstick-type sensors and surface plasmon resonance sensors. The application of visible/near-infrared (vis/NIR) spectroscopy or mass spectrometry combined with chemometrics techniques has also been envisaged as a powerful GMO detection tool. Furthermore, in order to cope with the multiplicity of GMOs released onto the market, the new challenge is the development of routine detection systems for the simultaneous detection of numerous GMOs, including unknown GMOs.

  3. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  4. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology.

    PubMed

    Chen, Junfan; Liu, Desheng; Shi, Bo; Wang, Hai; Cheng, Yongqiang; Zhang, Wenjing

    2013-03-01

    Glucomanno-oligosaccharides (GMO), usually produced from hydrolysis of konjac tubers with a high content of glucomannan, have a positive effect on Bifidobacterium as well as a variety of other physiological activities. Response surface methodology (RSM) was employed to optimize the hydrolysis time, hydrolysis temperature, pH and enzyme to substrate ratio (E/S) to obtain a high GMO yield from konjac tubers. From the signal-factor experiments, it was concluded that the change in the direct reducing sugar (DRS) is consistent with total reducing sugar (TRS) but contrary to the degree of polymerization (DP). DRS was used as an indicator of the content of GMO in the RSM study. The optimum RSM operating conditions were: reaction time of 3.4 h, reaction temperature of 41.0°C, pH of 7.1 and E/S of 0.49. The results suggested that the enzymatic hydrolysis was enhanced by temperature, pH and incubation time. Model validation showed good agreement between experimental results and the predicted responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A new QRT-PCR assay designed for the differentiation between elements provided from Agrobacterium sp. in GMOs plant events and natural Agrobacterium sp. bacteria.

    PubMed

    Nabi, Nesrine; Chaouachi, Maher; Zellama, Mohamed Salem; Ben Hafsa, Ahmed; Mrabet, Besma; Saïd, Khaled; Fathia, Harzallah Skhiri

    2016-04-01

    The question asked in the present work was how to differentiate between contamination of field samples with and GM plants contained sequences provided from this bacterium in order to avoid false positives in the frame of the detection and the quantification of GMO. For this, new set of primers and corresponding TaqMan Minor Groove Binder (MGB) probes were designed to target Agrobacterium sp. using the tumor-morphology-shooty gene (TMS1). Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log (colony forming units) per milliliter) via linear regression. The method designed was highly specific and sensitive, with a detection limit of 10CFU/ml. No significant cross-reaction was observed. Results from this study showed that TaqMan real-time PCR, is potentially an effective method for the rapid and reliable quantification of Agrobacterium sp. in samples containing GMO or non GMO samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A high-throughput method for GMO multi-detection using a microfluidic dynamic array.

    PubMed

    Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J

    2014-02-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.

  7. Crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    NASA Astrophysics Data System (ADS)

    Zhong, M. J.; Han, Y. M.; Liu, L. P.; Zhou, P.; Du, Y. Y.; Guo, Q. T.; Ma, H. L.; Dai, Y.

    2010-12-01

    We report the formation of β'-Gd 2(MoO 4) 3 (GMO) crystal on the surface of the 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1, 240 cm -1, 466 cm -1, 664 cm -1 and 994 cm -1which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  8. Development and applicability of a ready-to-use PCR system for GMO screening.

    PubMed

    Rosa, Sabrina F; Gatto, Francesco; Angers-Loustau, Alexandre; Petrillo, Mauro; Kreysa, Joachim; Querci, Maddalena

    2016-06-15

    With the growing number of GMOs introduced to the market, testing laboratories have seen their workload increase significantly. Ready-to-use multi-target PCR-based detection systems, such as pre-spotted plates (PSP), reduce analysis time while increasing capacity. This paper describes the development and applicability to GMO testing of a screening strategy involving a PSP and its associated web-based Decision Support System. The screening PSP was developed to detect all GMOs authorized in the EU in one single PCR experiment, through the combination of 16 validated assays. The screening strategy was successfully challenged in a wide inter-laboratory study on real-life food/feed samples. The positive outcome of this study could result in the adoption of a PSP screening strategy across the EU; a step that would increase harmonization and quality of GMO testing in the EU. Furthermore, this system could represent a model for other official control areas where high-throughput DNA-based detection systems are needed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Can Systematic Reviews Inform GMO Risk Assessment and Risk Management?

    PubMed

    Kohl, Christian; Frampton, Geoff; Sweet, Jeremy; Spök, Armin; Haddaway, Neal Robert; Wilhelm, Ralf; Unger, Stefan; Schiemann, Joachim

    2015-01-01

    Systematic reviews represent powerful tools to identify, collect, synthesize, and evaluate primary research data on specific research questions in a highly standardized and reproducible manner. They enable the defensible synthesis of outcomes by increasing precision and minimizing bias whilst ensuring transparency of the methods used. This makes them especially valuable to inform evidence-based risk analysis and decision making in various topics and research disciplines. Although seen as a "gold standard" for synthesizing primary research data, systematic reviews are not without limitations as they are often cost, labor and time intensive and the utility of synthesis outcomes depends upon the availability of sufficient and robust primary research data. In this paper, we (1) consider the added value systematic reviews could provide when synthesizing primary research data on genetically modified organisms (GMO) and (2) critically assess the adequacy and feasibility of systematic review for collating and analyzing data on potential impacts of GMOs in order to better inform specific steps within GMO risk assessment and risk management. The regulatory framework of the EU is used as an example, although the issues we discuss are likely to be more widely applicable.

  10. A temperature-tolerant multiplex elements and genes screening system for genetically modified organisms based on dual priming oligonucleotide primers and capillary electrophoresis.

    PubMed

    Fu, Wei; Wei, Shuang; Wang, Chenguang; Du, Zhixin; Zhu, Pengyu; Wu, Xiyang; Wu, Gang; Zhu, Shuifang

    2017-08-15

    High throughput screening systems are the preferred solution to meet the urgent requirement of increasing number of genetically modified organisms (GMOs). In this study, we have successfully developed a multiplex GMO element screening system with dual priming oligonucleotide (DPO) primers. This system can detect the cauliflower mosaic virus 35S (CaMV 35S), terminator of nopaline synthase gene (NOS), figwort mosaic virus 35S (FMV 35S) promoter, neomycin phosphotransferaseII (NPTII), Bt Cry 1Ab, phosphinothricin acetyltransferase genes (bar) and Streptomyces viridochromogenes (pat) simultaneously, which covers more than 90% of all authorized GMO species worldwide. This system exhibits a high tolerance to annealing temperatures, high specificity and a limit of detection equal to conventional PCR. A total of 214 samples from markets, national entry-exit agencies, the Institute for Reference Materials and Measurement (IRMM) and the American Oil Chemists' Society (AOCS) were also tested for applicability. This screening system is therefore suitable for GMO screening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Laboratory Evaluation of a Colorimetric Hydrazine Dosimeter

    DTIC Science & Technology

    1990-06-12

    4.5 4.5 4 4.3 012 3 3.5 4 3.5 4 4.5 4.5 4.3 59456 014 5 5 5 5.0 5 5.5 5 5.2 014 5.5 6 5 5.5 6 6 6 6.0 GMO COLOR BADGE LOG SHEET TEST 30 1.0. BADGE...3 3.5 3.3 38959 CON .164 0 1.5 1.5 1.5 2 2 2.0 2 2 2.0 2 2 2.0 GMO COLOR BADGE LOG SHEET TEST 84 I.D. BADGE DATE INTER- MMH TIME DOSE RH TEMP POST

  12. Worldwide Emerging Environmental Issues Affecting the U.S. Military. April 2010

    DTIC Science & Technology

    2010-04-01

    the Marine Environment…………………………...…7 8.3 Genetic Patenting and GMO Face New Challenges………………………………….8 8.4 India Further Loosens Already Lax Rules on...News/Press-Release/tabid/427/language/en-US/ Default.aspx?DocumentID=620&ArticleID=6521&Lang=en 8.3 Genetic Patenting and GMO Face New Challenges...economic and environmental benefits of GMOs use. In the U.S., GM crops account for more than 80% of soybeans, corn, and cotton. The first U.S

  13. Van der Waals corrected DFT study of adsorption of groups VA and VIA hydrides on graphene monoxide

    NASA Astrophysics Data System (ADS)

    Notash, M. Yaghoobi; Ebrahimzadeh, A. Rastkar

    2016-06-01

    Adsorption properties of H2O, H2S, NH3 and PH3 on graphene monoxide (GMO) nano flack are investigated using density functional theory (DFT). Calculations were carried out by van der Waals correction and general gradient approximation. The adsorption energies and charge transfer between species are obtained and discussed for the considered positions of adsorbate molecules. Charge transfer analysis show that the gas molecules act as an electron acceptor in all cases. The analysis of the adsorption energies suggest GMO can be a good candidate for the adsorption of these molecules.

  14. The development and standardization of testing methods for genetically modified organisms and their derived products.

    PubMed

    Zhang, Dabing; Guo, Jinchao

    2011-07-01

    As the worldwide commercialization of genetically modified organisms (GMOs) increases and consumers concern the safety of GMOs, many countries and regions are issuing labeling regulations on GMOs and their products. Analytical methods and their standardization for GM ingredients in foods and feed are essential for the implementation of labeling regulations. To date, the GMO testing methods are mainly based on the inserted DNA sequences and newly produced proteins in GMOs. This paper presents an overview of GMO testing methods as well as their standardization. © 2011 Institute of Botany, Chinese Academy of Sciences.

  15. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.

    PubMed

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-05-01

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  16. Biological/Horticultural Internship Final Report

    NASA Technical Reports Server (NTRS)

    Palmer, Shane R.; Spencer, Lashelle (Editor)

    2017-01-01

    A study was conducted to determine water use requirements of genetically modified (GMO) dwarf plum. GMO plum and unmodified standard plum plants were grown in a controlled environment chamber under varying CO2 concentrations (400 ppm, 1500 ppm, and 5000 ppm). Pepper plants were also grown in the chamber for additional comparison. Leaf stomatal conductance, biomass accumulation, soil moisture and pot weights were measured; Stomatal conductance of GMO plum and pepper plants decreased at sustained elevated CO2 concentrations. The stomatal conductance rates of the standard plums, however, increased at sustained elevated CO2 concentrations. Further data analysis (statistical analysis, biomass, soil moisture and pot weight measurements) is ongoing and required to gain better understanding of the data. An additional proof-of-concept study was undertaken to determine the feasibility of grafting unmodified standard plum scions onto genetically modified rootstocks as a propagation method. Bud grafts were performed on three GMO plum rootstocks: NASA-5, NASA-10, and NASA-11. All of the standard plum buds grafted onto NASA-5 and NASA-10 rootstocks began growing, indicating that this grafting method is highly successful for the formation of a graft union and initial bud growth. However, bud growth during stem elongation was curtailed on several grafts due to a combination of nutritional deficiency and physical damage/obstruction of the grafted tissues. Bud growth on the NASA-5 rootstock occurred sooner than in grafts on the NASA-10 rootstock, while only one bud graft has shown growth on the NASA-11 rootstock thus far. These marked differences in the onset of bud growth suggest genotypic differences between the rootstocks may affect bud graft vigor. Mature standard plum scions grown on the NASA-5 rootstock appeared to retain most or all of the physical characteristics of the standard plum donor plant.

  17. Development of a qualitative, multiplex real-time PCR kit for screening of genetically modified organisms (GMOs).

    PubMed

    Dörries, Hans-Henno; Remus, Ivonne; Grönewald, Astrid; Grönewald, Cordt; Berghof-Jäger, Kornelia

    2010-03-01

    The number of commercially available genetically modified organisms (GMOs) and therefore the diversity of possible target sequences for molecular detection techniques are constantly increasing. As a result, GMO laboratories and the food production industry currently are forced to apply many different methods to reliably test raw material and complex processed food products. Screening methods have become more and more relevant to minimize the analytical effort and to make a preselection for further analysis (e.g., specific identification or quantification of the GMO). A multiplex real-time PCR kit was developed to detect the 35S promoter of the cauliflower mosaic virus, the terminator of the nopaline synthase gene of Agrobacterium tumefaciens, the 35S promoter from the figwort mosaic virus, and the bar gene of the soil bacterium Streptomyces hygroscopicus as the most widely used sequences in GMOs. The kit contains a second assay for the detection of plant-derived DNA to control the quality of the often processed and refined sample material. Additionally, the plant-specific assay comprises a homologous internal amplification control for inhibition control. The determined limits of detection for the five assays were 10 target copies/reaction. No amplification products were observed with DNAs of 26 bacterial species, 25 yeasts, 13 molds, and 41 not genetically modified plants. The specificity of the assays was further demonstrated to be 100% by the specific amplification of DNA derived from reference material from 22 genetically modified crops. The applicability of the kit in routine laboratory use was verified by testing of 50 spiked and unspiked food products. The herein described kit represents a simple and sensitive GMO screening method for the reliable detection of multiple GMO-specific target sequences in a multiplex real-time PCR reaction.

  18. Spontaneous polarization and pyroelectric effect in the improper ferroelectrics-ferroelastics Gd2(MoO4)3 and Tb2(MoO4)3 at low temperatures

    NASA Astrophysics Data System (ADS)

    Matyjasik, S.; Shaldin, Yu. V.

    2013-11-01

    The experimental variations in the spontaneous polarization ΔPs(T) and pyroelectric coefficient γs(T) for Gd2(MoO4)3 (GMO) and Tb2(MoO4)3 (TMO) at low temperatures reported here differ from those for intrinsic ferroelectrics. A fundamental difference is found in the repolarization behavior of samples of GMO and TMO at fixed temperatures of 300 and 4.2 K. While the single domain formation temperature essentially has no effect on the measurements for TMO, a fundamental difference is observed in the case of GMO: single domain formation in the latter at 4.2 K leads to an order of magnitude increase in ΔPs at T > 85 K and distinct anomalies are observed in γs(T), at one of which the pyroelectric coefficient reaches a record peak of 3 × 10-4 C/(m2.K) at T = 25 K. At T = 200 K the pyroelectric coefficients equal -1.45 and -1.8 in units of 10-6 C/(m2.K). Based on these results and taking published data on the rotational structural transformation in the (001) plane and symmetry considerations into account, we propose a crystal physical model for GMO-type improper ferroelectrics consisting of four mesotetrahedra, each of which is made up of three different types (a, b, c) of MoO4 coordination tetrahedra. The physical significance of the pseudodeviator coefficient Q12*, which initiates the phase transition at T > 433 K from one non-centrally symmetric phase (mm2) into another (4¯2m), is discussed in terms of this model.

  19. Multiplex electrochemical DNA platform for femtomolar-level quantification of genetically modified soybean.

    PubMed

    Manzanares-Palenzuela, C Lorena; de-Los-Santos-Álvarez, Noemí; Lobo-Castañón, María Jesús; López-Ruiz, Beatriz

    2015-06-15

    Current EU regulations on the mandatory labeling of genetically modified organisms (GMOs) with a minimum content of 0.9% would benefit from the availability of reliable and rapid methods to detect and quantify DNA sequences specific for GMOs. Different genosensors have been developed to this aim, mainly intended for GMO screening. A remaining challenge, however, is the development of genosensing platforms for GMO quantification, which should be expressed as the number of event-specific DNA sequences per taxon-specific sequences. Here we report a simple and sensitive multiplexed electrochemical approach for the quantification of Roundup-Ready Soybean (RRS). Two DNA sequences, taxon (lectin) and event-specific (RR), are targeted via hybridization onto magnetic beads. Both sequences are simultaneously detected by performing the immobilization, hybridization and labeling steps in a single tube and parallel electrochemical readout. Hybridization is performed in a sandwich format using signaling probes labeled with fluorescein isothiocyanate (FITC) or digoxigenin (Dig), followed by dual enzymatic labeling using Fab fragments of anti-Dig and anti-FITC conjugated to peroxidase or alkaline phosphatase, respectively. Electrochemical measurement of the enzyme activity is finally performed on screen-printed carbon electrodes. The assay gave a linear range of 2-250 pM for both targets, with LOD values of 650 fM (160 amol) and 190 fM (50 amol) for the event-specific and the taxon-specific targets, respectively. Results indicate that the method could be applied for GMO quantification below the European labeling threshold level (0.9%), offering a general approach for the rapid quantification of specific GMO events in foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Assessment of allergenicity of genetically modified food crops].

    PubMed

    Schauzu, M; Pöting, A; Rubin, D; Lampen, A

    2012-03-01

    The placing on the European Union's market of genetically modified crops requires authorization by the European Commission which is based on the proof that the derived foods are as safe as their conventional counterparts. The assessment of potential allergenicity is part of the necessary investigations recommended in the updated Guidance Document of the Scientific Panel on Genetically Modified Organisms (GMO) of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. All genetically modified crops which so far have been authorized in the European Union were evaluated by the EFSA GMO Panel which considered it unlikely that their overall allergenicity has been altered.

  1. Investigation of terbium in the ferroelectric crystal, gadolinium molybdate, as a potential laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouch, J.E.

    A preliminary non-stimulated study of the laser host combination Gd(2 - x)Tb(x)(MoO4)3 is made. The host material, gadolinium molybdate (GMO), is a ferroelectric/ferroelastic crystal. An investigation of temperature and external electric field affects on the absorption and fluorescence of the crystal did not produce any unusual results. The terbium ion, Tb(3+), peak cross section in GMO for the 5D sub 4 to 7F sub 5 transition is 10 x 10 to the minus twenty first power sq. cm. at 300K. The wavelength of this four level laser transition is 543 nm. (GRA)

  2. Improving Patient Throughput in the Winn Army Community Hospital Department of Emergency Medicine

    DTIC Science & Technology

    1999-05-01

    and replaced them with potted plants and dimming lights. Nurses displayed their names in each treatment room, and wrote the type and purpose of each...outlines the number of full time equivalent (FTE) staff members the WACH DEM has employed since February 1997. Abbreviations are as follows: GMO ...FTEs FEB MAR APR MAY JUN JUL AUG SPT OCT NOV DEC JAN Emergency MD 2 2 1 1 1 2 3 3 3 3 3 3 G/L 0/0 1/1 0/1 0/0 0/0 1/0 1/0 0/0 0/0 0/0 0/0 0/0 GMO 2 1

  3. Analytical challenges: bridging the gap from regulation to enforcement.

    PubMed

    Van den Eede, Guy; Kay, Simon; Anklam, Elke; Schimmel, Heinz

    2002-01-01

    An overview is presented of the analytical steps that may be needed to determine the presence of genetically modified organisms (GMOs) or for analysis of GMO-derived produce. The analytical aspects necessary for compliance with labeling regulations are discussed along with bottlenecks that may develop when a plant product or a food sample is analyzed for conformity with current European Union GMO legislation. In addition to sampling and testing, other topics deal with complications that arise from biological and agricultural realities that may influence testing capabilities. The issues presented are intended to serve as elements to examine the different challenges that enforcement laboratories might face.

  4. Development of a peptide nucleic acid polymerase chain reaction clamping assay for semiquantitative evaluation of genetically modified organism content in food.

    PubMed

    Peano, C; Lesignoli, F; Gulli, M; Corradini, R; Samson, M C; Marchelli, R; Marmiroli, N

    2005-09-15

    In the present study a peptide nucleic acid (PNA)-mediated polymerase chain reaction (PCR) clamping method was developed and applied to the detection of genetically modified organisms (GMO), to test PCR products for band identity and to obtain a semiquantitative evaluation of GMO content. The minimal concentration of PNA necessary to block the PCR was determined by comparing PCRs containing a constant amount of DNA in the presence of increasing concentration of target-specific PNA. The lowest PNA concentration at which specific inhibition took place, by the inhibition of primer extension and/or steric hindrance, was the most efficient condition. Optimization of PCR clamping by PNA was observed by testing five different PNAs with a minimum of 13 bp to a maximum of 15 bp, designed on the target sequence of Roundup Ready soybean. The results obtained on the DNA extracted from Roundup Ready soybean standard flour were verified also on DNA extracted from standard flours of maize GA21, Bt176, Bt11, and MON810. A correlation between the PNA concentration necessary for inducing PCR clamping and the percentage of the GMO target sequence in the sample was found.

  5. Threshold Level and Traceability of Roundup Ready® Soybeans in Tofu Production

    PubMed Central

    2017-01-01

    Summary The aim of this study is to assess DNA degradation, DNA amplification, and GMO quantity during tofu production. Soybean seeds were spiked with Roundup Ready® soybeans (RRS) at 0.9, 2, 3 and 5% (by mass), to assess the level of RSS that would be of practical interest for threshold labelling. Real-time polymerase chain reaction (PCR) was more effective than conventional PCR in the analysis of raw soymilk, okara, boiled soymilk and tofu. The negative effect of grinding and mechanical manipulation was obvious in the okara sample prepared with 3 and 5% RRS, where GMO content was reduced to (2.28±0.23) and (2.74±0.26) %, respectively. However, heating at 100 °C for 10 min did not cause significant degradation of DNA in all samples. The content of RRS in the final product, tofu, was reduced tenfold during processing, ranging from 0.07 to 0.46%, which was below the labelling threshold level. The results are discussed in terms of global harmonization of GMO standards, which could have the positive effect on the trade of lightly processed foodstuffs such as tofu, especially regarding the labelling policies. PMID:29540978

  6. Role of the "National Reference Centre for Genetically Modified Organisms (GMO) detection" in the official control of food and feed.

    PubMed

    Ciabatti, I; Marchesi, U; Froiio, A; Paternò, A; Ruggeri, M; Amaddeo, D

    2005-08-01

    The National Reference Centre for Genetically Modified Organisms (GMO) detection was established in 2002 within the Istituto Zooprofilattico Sperimentale Lazio e Toscana, with the aim of providing scientific and technical support to the National Health System and to the Ministry of Health within the scope of the regulation of GMO use in food and feed.The recently adopted EU legislation on GMOs (Regulation CE no. 1829/2003 and no. 1830/2003) introduced more rigorous procedures for the authorisation, labelling and analytical control of food and feed consisting, containing or derived from GMOs. The National Reference Centre, besides its institutional tasks as one of the laboratories of the Italian National Health System, collects and analyses data and results of the national official control of GMOs; carries out scientific research aimed at developing, improving, validating and harmonising detection and quantification methods, in cooperation with other scientific institutions, the Community Reference Laboratory and within the European Network of GMOs laboratories (ENGL); collaborates with the Ministry of Health in the definition of control programmes and promotes educational and training initiatives. Objectives defined for 2004-2006, activities in progress and goals already achieved are presented.

  7. Threshold Level and Traceability of Roundup Ready® Soybeans in Tofu Production.

    PubMed

    Nikolić, Zorica; Petrović, Gordana; Panković, Dejana; Ignjatov, Maja; Marinković, Dragana; Stojanović, Milan; Đorđević, Vuk

    2017-12-01

    The aim of this study is to assess DNA degradation, DNA amplification, and GMO quantity during tofu production. Soybean seeds were spiked with Roundup Ready ® soybeans (RRS) at 0.9, 2, 3 and 5% (by mass), to assess the level of RSS that would be of practical interest for threshold labelling. Real-time polymerase chain reaction (PCR) was more effective than conventional PCR in the analysis of raw soymilk, okara, boiled soymilk and tofu. The negative effect of grinding and mechanical manipulation was obvious in the okara sample prepared with 3 and 5% RRS, where GMO content was reduced to (2.28±0.23) and (2.74±0.26) %, respectively. However, heating at 100 °C for 10 min did not cause significant degradation of DNA in all samples. The content of RRS in the final product, tofu, was reduced tenfold during processing, ranging from 0.07 to 0.46%, which was below the labelling threshold level. The results are discussed in terms of global harmonization of GMO standards, which could have the positive effect on the trade of lightly processed foodstuffs such as tofu, especially regarding the labelling policies.

  8. A mitocentric view of Alzheimer's disease suggests multi-faceted treatments.

    PubMed

    Gibson, Gary E; Shi, Qingli

    2010-01-01

    Alzheimer's disease (AD) is defined by senile plaques made of amyloid-beta peptide (Abeta), neurofibrillary tangles made of hyperphosphorylated tau proteins, and memory deficits. Thus, the events initiating the cascade leading to these end points may be more effective therapeutic targets than treating each facet individually. In the small percentage of cases of AD that are genetic (or animal models that reflect this form of AD), the factor initiating AD is clear (e.g., genetic mutations lead to high Abeta1-42 or hyperphosphorylated tau proteins). In the vast majority of AD cases, the cause is unknown. Substantial evidence now suggests that abnormalities in glucose metabolism/mitochondrial function/oxidative stress (GMO) are an invariant feature of AD and occur at an early stage of the disease process in both genetic and non-genetic forms of AD. Indeed, decreases in brain glucose utilization are diagnostic for AD. Changes in calcium homeostasis also precede clinical manifestations of AD. Abnormal GMO can lead to plaques, tangles, and the calcium abnormalities that accompany AD. Abnormalities in GMO diminish the ability of the brain to adapt. Therapies targeting mitochondria may ameliorate abnormalities in plaques, tangles, calcium homeostasis, and cognition that comprise AD.

  9. Can Systematic Reviews Inform GMO Risk Assessment and Risk Management?

    PubMed Central

    Kohl, Christian; Frampton, Geoff; Sweet, Jeremy; Spök, Armin; Haddaway, Neal Robert; Wilhelm, Ralf; Unger, Stefan; Schiemann, Joachim

    2015-01-01

    Systematic reviews represent powerful tools to identify, collect, synthesize, and evaluate primary research data on specific research questions in a highly standardized and reproducible manner. They enable the defensible synthesis of outcomes by increasing precision and minimizing bias whilst ensuring transparency of the methods used. This makes them especially valuable to inform evidence-based risk analysis and decision making in various topics and research disciplines. Although seen as a “gold standard” for synthesizing primary research data, systematic reviews are not without limitations as they are often cost, labor and time intensive and the utility of synthesis outcomes depends upon the availability of sufficient and robust primary research data. In this paper, we (1) consider the added value systematic reviews could provide when synthesizing primary research data on genetically modified organisms (GMO) and (2) critically assess the adequacy and feasibility of systematic review for collating and analyzing data on potential impacts of GMOs in order to better inform specific steps within GMO risk assessment and risk management. The regulatory framework of the EU is used as an example, although the issues we discuss are likely to be more widely applicable. PMID:26322307

  10. Emotional attitudes of young people completing secondary schools towards genetic modification of organisms (GMO) and genetically modified foods (GMF).

    PubMed

    Jurkiewicz, Anna; Zagórski, Jerzy; Bujak, Franciszek; Lachowski, Stanisław; Florek-Łuszczki, Magdalena

    2014-01-01

    The objective of the study was recognition of the opinions of adolescents completing secondary schools concerning genetically modified organisms and genetically modified food, especially the respondents' emotional attitude towards scientific achievements in the area of live genetically modified organisms. The study covered a group of 500 school adolescents completing secondary school at the level of maturity examination. The study was conducted by the method of a diagnostic survey using a self-designed questionnaire form. Knowledge concerning the possible health effects of consumption of food containing GMO among adolescents competing secondary schools is on a relatively low level; the adolescents examined 'know rather little' or 'very little know' about this problem. In respondents' opinions the results of reliable studies pertaining to the health effects of consumption of GMO 'rather do not exist'. The respondents are against the cultivation of GM plants and breeding of GM animals on own farm in the future. Secondary school adolescents considered that the production of genetically modified food means primarily the enrichment of biotechnological companies, higher income for food producers, and not the elimination of hunger in the world or elimination of many diseases haunting humans.

  11. Glycerol uptake is by passive diffusion in the heart but by facilitated transport in RBCs at high glycerol levels in cold acclimated rainbow smelt (Osmerus mordax).

    PubMed

    Clow, Kathy A; Driedzic, William R

    2012-04-15

    Rainbow smelt (Osmerus mordax) is a small fish that accumulates glycerol at low winter seawater temperatures. In laboratory-held fish, glycerol concentration typically reaches 225 mM in plasma and in all cells. Glycerol uptake by the heart and red blood cells (RBCs) was assessed by tracking [(14)C(U)]glycerol into the acid-soluble pool. In fish acclimated to 9-10°C a decrease in perfusion/incubation temperature from 8 to 1°C resulted in a decrease in glycerol uptake with a Q(10) of 3.2 in heart and 2.4 in RBCs. Acclimation to ∼1.5°C did not result in an adaptive enhancement of glycerol uptake as rates were unchanged in heart and RBCs. Glycerol uptake at 1°C was by passive diffusion in heart as evidenced by a linear relationship between glycerol uptake and extracellular glycerol concentration and a lack of inhibition by phloretin. In contrast, in RBCs, glycerol uptake with respect to glycerol concentration showed two linear relationships with a transition point around 50 mM extracellular glycerol. The slope of the second phase was much steeper and eliminated with the inclusion of phloretin. In RBCs from Atlantic salmon (Salmo salar), a related species that does not accumulate glycerol, glycerol uptake showed only a single linear curve and was not inhibited by phloretin. The data imply a strong facilitated component to glycerol uptake in rainbow smelt RBCs at high glycerol concentrations. We propose this is related to cyclic changes in RBC glycerol content involving a loss of glycerol at the gill and a reaccumulation during passage through the liver.

  12. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    PubMed

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  13. Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes

    PubMed Central

    Wightman, Patrick J.; Jackson, George R.; Dipple, Katrina M.

    2012-01-01

    Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency. PMID:22427807

  14. Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts.

    PubMed

    Melero, Juan A; Vicente, Gemma; Paniagua, Marta; Morales, Gabriel; Muñoz, Patricia

    2012-01-01

    The present study is focused on the etherification of biodiesel-derived glycerol with anhydrous ethanol over arenesulfonic acid-functionalized mesostructured silicas to produce ethyl ethers of glycerol that can be used as gasoline or diesel fuel biocomponents. Within the studied range, the best conditions to maximize glycerol conversion and yield towards ethyl-glycerols are: T=200 °C, ethanol/glycerol molar ratio=15/1, and catalyst loading=19 wt%. Under these reaction conditions, 74% glycerol conversion and 42% yield to ethyl ethers have been achieved after 4 h of reaction but with a significant presence of glycerol by-products. In contrast, lower reaction temperatures (T=160 °C) and moderate catalyst loading (14 wt%) in presence of a high ethanol concentration (ethanol/glycerol molar ratio=15/1) are necessary to avoid the formation of glycerol by-products and maximize ethyl-glycerols selectivity. Interestingly, a close catalytic performance to that achieved using high purity glycerol has been obtained with low-grade water-containing glycerol. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes

    PubMed Central

    2012-01-01

    The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC. In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production. PMID:22455837

  16. Putting problem formulation at the forefront of GMO risk analysis.

    PubMed

    Tepfer, Mark; Racovita, Monica; Craig, Wendy

    2013-01-01

    When applying risk assessment and the broader process of risk analysis to decisions regarding the dissemination of genetically modified organisms (GMOs), the process has a tendency to become remarkably complex. Further, as greater numbers of countries consider authorising the large-scale dissemination of GMOs, and as GMOs with more complex traits reach late stages of development, there has been increasing concern about the burden posed by the complexity of risk analysis. We present here an improved approach for GMO risk analysis that gives a central role to problem formulation. Further, the risk analysis strategy has been clarified and simplified in order to make rigorously scientific risk assessment and risk analysis more broadly accessible to diverse stakeholder groups.

  17. Precision determination of the πN scattering lengths and the charged πNN coupling constant

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Thomas, A. W.

    2000-01-01

    We critically evaluate the isovector GMO sumrule for the charged πNN coupling constant using recent precision data from π-p and π-d atoms and with careful attention to systematic errors. From the π-d scattering length we deduce the pion-proton scattering lengths 1/2(aπ-p + aπ-n) = (-20 +/- 6(statistic)+/-10 (systematic) .10-4m-1πc and 1/2(aπ-p - aπ-n) = (903 +/- 14) . 10-4m-1πc. From this a direct evaluation gives g2c(GMO)/4π = 14.20 +/- 0.07 (statistic)+/-0.13(systematic) or f2c/4π = 0.0786 +/- 0.0008.

  18. Recommendations from a meeting on health implications of genetically modified organism (GMO).

    PubMed

    Amofah, George

    2014-06-01

    The Ghana Public Health Association organized a scientific seminar to examine the introduction of genetically modified organisms into public use and the health consequences. The seminar was driven by current public debate on the subject. The seminar identified some of the advantages of GMOs and also the health concerns. It is clear that there is the need to enhance local capacity to research the introduction and use of GMOs; to put in place appropriate regulatory mechanisms including particularly the labeling of GMO products and post-marketing surveillance for possible negative health consequences in the long term. Furthermore the appropriate state agency should put in place advocacy strategies to keep the public informed about GMOs.

  19. Sowing the seeds of skepticism: Russian state news and anti-GMO sentiment.

    PubMed

    Dorius, Shawn F; Lawrence-Dill, Carolyn J

    2018-03-21

    Biotech news coverage in English-language Russian media fits the profile of the Russian information warfare strategy described in recent military reports. This raises the question of whether Russia views the dissemination of anti-GMO information as just one of many divisive issues it can exploit as part of its information war, or if GMOs serve more expansive disruptive purposes. Distinctive patterns in Russian news provide evidence of a coordinated information campaign that could turn public opinion against genetic engineering. The recent branding of Russian agriculture as the ecologically clean alternative to genetically engineered foods is suggestive of an economic motive behind the information campaign against western biotechnologies.

  20. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification.

    PubMed

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-04-29

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n -octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n -octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%.

  1. Liquid Crystalline Systems Based on Glyceryl Monooleate and Penetration Enhancers for Skin Delivery of Celecoxib: Characterization, In Vitro Drug Release, and In Vivo Studies.

    PubMed

    Dante, Mariane de Cássia Lima; Borgheti-Cardoso, Livia Neves; Fantini, Marcia Carvalho de Abreu; Praça, Fabíola Silva Garcia; Medina, Wanessa Silva Garcia; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2018-03-01

    Celecoxib (CXB) is a widely used anti-inflammatory drug that also acts as a chemopreventive agent against several types of cancer, including skin cancer. As the long-term oral administration of CXB has been associated with severe side effects, the skin delivery of this drug represents a promising alternative for the treatment of skin inflammatory conditions and chemoprevention of skin cancer. We prepared and characterized liquid crystalline systems based on glyceryl monooleate and water containing penetration enhancers which were primarily designed to promote skin delivery of CXB. Analysis of their phase behavior revealed the formation of cubic and hexagonal phases depending on the systems' composition. The systems' structure and composition markedly affected the in vitro CXB release profile. Oleic acid reduced CXB release rate, but association oleic acid/propylene glycol increased the drug release rate. The developed systems significantly reduced inflammation in an aerosil-induced rat paw edema model. The systems' composition and liquid crystalline structure influenced their anti-inflammatory potency. Cubic phase systems containing oleic acid/propylene glycol association reduced edema in a sustained manner, indicating that they modulate CXB release and permeation. Our findings demonstrate that the developed liquid crystalline systems are potential carriers for the skin delivery of CXB. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines.

    PubMed

    Košir, Alexandra Bogožalec; Spilsberg, Bjørn; Holst-Jensen, Arne; Žel, Jana; Dobnik, David

    2017-08-17

    Quantification of genetically modified organisms (GMOs) in food and feed products is often required for their labelling or for tolerance thresholds. Standard-curve-based simplex quantitative polymerase chain reaction (qPCR) is the prevailing technology, which is often combined with screening analysis. With the rapidly growing number of GMOs on the world market, qPCR analysis becomes laborious and expensive. Innovative cost-effective approaches are therefore urgently needed. Here, we report the development and inter-laboratory assessment of multiplex assays to quantify GMO soybean using droplet digital PCR (ddPCR). The assays were developed to facilitate testing of foods and feed for compliance with current GMO regulations in the European Union (EU). Within the EU, the threshold for labelling is 0.9% for authorised GMOs per ingredient. Furthermore, the EU has set a technical zero tolerance limit of 0.1% for certain unauthorised GMOs. The novel multiplex ddPCR assays developed target 11 GMO soybean lines that are currently authorised, and four that are tolerated, pending authorisation in the EU. Potential significant improvements in cost efficiency are demonstrated. Performance was assessed for the critical parameters, including limits of detection and quantification, and trueness, repeatability, and robustness. Inter-laboratory performance was also determined on a number of proficiency programme and real-life samples.

  3. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    PubMed

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  4. Optimization and Verification of Droplet Digital PCR Even-Specific Methods for the Quantification of GM Maize DAS1507 and NK603.

    PubMed

    Grelewska-Nowotko, Katarzyna; Żurawska-Zajfert, Magdalena; Żmijewska, Ewelina; Sowa, Sławomir

    2018-05-01

    In recent years, digital polymerase chain reaction (dPCR), a new molecular biology technique, has been gaining in popularity. Among many other applications, this technique can also be used for the detection and quantification of genetically modified organisms (GMOs) in food and feed. It might replace the currently widely used real-time PCR method (qPCR), by overcoming problems related to the PCR inhibition and the requirement of certified reference materials to be used as a calibrant. In theory, validated qPCR methods can be easily transferred to the dPCR platform. However, optimization of the PCR conditions might be necessary. In this study, we report the transfer of two validated qPCR methods for quantification of maize DAS1507 and NK603 events to the droplet dPCR (ddPCR) platform. After some optimization, both methods have been verified according to the guidance of the European Network of GMO Laboratories (ENGL) on analytical method verification (ENGL working group on "Method Verification." (2011) Verification of Analytical Methods for GMO Testing When Implementing Interlaboratory Validated Methods). Digital PCR methods performed equally or better than the qPCR methods. Optimized ddPCR methods confirm their suitability for GMO determination in food and feed.

  5. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, R.F.; Lear, J.L.

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost frommore » the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.« less

  6. Inter-laboratory analysis of selected genetically modified plant reference materials with digital PCR.

    PubMed

    Dobnik, David; Demšar, Tina; Huber, Ingrid; Gerdes, Lars; Broeders, Sylvia; Roosens, Nancy; Debode, Frederic; Berben, Gilbert; Žel, Jana

    2018-01-01

    Digital PCR (dPCR), as a new technology in the field of genetically modified (GM) organism (GMO) testing, enables determination of absolute target copy numbers. The purpose of our study was to test the transferability of methods designed for quantitative PCR (qPCR) to dPCR and to carry out an inter-laboratory comparison of the performance of two different dPCR platforms when determining the absolute GM copy numbers and GM copy number ratio in reference materials certified for GM content in mass fraction. Overall results in terms of measured GM% were within acceptable variation limits for both tested dPCR systems. However, the determined absolute copy numbers for individual genes or events showed higher variability between laboratories in one third of the cases, most possibly due to variability in the technical work, droplet size variability, and analysis of the raw data. GMO quantification with dPCR and qPCR was comparable. As methods originally designed for qPCR performed well in dPCR systems, already validated qPCR assays can most generally be used for dPCR technology with the purpose of GMO detection. Graphical abstract The output of three different PCR-based platforms was assessed in an inter-laboratory comparison.

  7. GMOMETHODS: the European Union database of reference methods for GMO analysis.

    PubMed

    Bonfini, Laura; Van den Bulcke, Marc H; Mazzara, Marco; Ben, Enrico; Patak, Alexandre

    2012-01-01

    In order to provide reliable and harmonized information on methods for GMO (genetically modified organism) analysis we have published a database called "GMOMETHODS" that supplies information on PCR assays validated according to the principles and requirements of ISO 5725 and/or the International Union of Pure and Applied Chemistry protocol. In addition, the database contains methods that have been verified by the European Union Reference Laboratory for Genetically Modified Food and Feed in the context of compliance with an European Union legislative act. The web application provides search capabilities to retrieve primers and probes sequence information on the available methods. It further supplies core data required by analytical labs to carry out GM tests and comprises information on the applied reference material and plasmid standards. The GMOMETHODS database currently contains 118 different PCR methods allowing identification of 51 single GM events and 18 taxon-specific genes in a sample. It also provides screening assays for detection of eight different genetic elements commonly used for the development of GMOs. The application is referred to by the Biosafety Clearing House, a global mechanism set up by the Cartagena Protocol on Biosafety to facilitate the exchange of information on Living Modified Organisms. The publication of the GMOMETHODS database can be considered an important step toward worldwide standardization and harmonization in GMO analysis.

  8. Traceability of genetically modified organisms.

    PubMed

    Aarts, Henk J M; van Rie, Jean-Paul P F; Kok, Esther J

    2002-01-01

    EU regulations stipulate the labeling of food products containing genetically modified organisms (GMOs) unless the GMO content is due to adventitious and unintended 'contamination' and not exceeding the 1% level at ingredient basis. In addition, member states have to ensure full traceability at all stages of the placing on the market of GMOs. Both requirements ensure consumers 'right to know', facilitate enforcement of regulatory requirements and are of importance for environmental monitoring and postmarket surveillance. Besides administrative procedures, such as used in quality certification systems, the significance of adequate molecular methods becomes more and more apparent. During the last decade a considerable number of molecular methods have been developed and validated that enable the detection, identification and quantification of GMO impurities. Most of them rely on the PCR technology and can only detect one specific stretch of DNA. It can, however, be anticipated that in the near future the situation will become more complex. The number of GMO varieties, including 'stacked-gene' varieties, which will enter the European Market will increase and it is likely that these varieties will harbor more variable constructs. New tools will be necessary to keep up with these developments. One of the most promising techniques is microarray analysis. This technique enables the screening for a large number of different GMOs within a single experiment.

  9. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae.

    PubMed

    Klein, Mathias; Islam, Zia-Ul; Knudsen, Peter Boldsen; Carrillo, Martina; Swinnen, Steve; Workman, Mhairi; Nevoigt, Elke

    2016-12-01

    Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae . This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues) from superior glycerol-utilizing yeast species such as Pachysolen tannophilus , Komagataella pastoris , Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A). The maximum specific growth rate increased from 0.13 up to 0.18 h -1 and a biomass yield coefficient of 0.56 g DW /g glycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast.

  10. Characterization of crude glycerol from biodiesel plants.

    PubMed

    Hu, Shengjun; Luo, Xiaolan; Wan, Caixia; Li, Yebo

    2012-06-13

    Characterization of crude glycerol is very important to its value-added conversion. In this study, the physical and chemical properties of five biodiesel-derived crude glycerol samples were determined. Three methods, including iodometric-periodic acid method, high performance liquid chromatography (HPLC), and gas chromatography (GC), were shown to be suitable for the determination of glycerol content in crude glycerol. The compositional analysis of crude glycerol was successfully achieved by crude glycerol fractionation and characterization of the obtained fractions (aqueous and organic) using titrimetric, HPLC, and GC analyses. The aqueous fraction consisted mainly of glycerol, methanol, and water, while the organic fraction contained fatty acid methyl esters (FAMEs), free fatty acids (FFAs), and glycerides. Despite the wide variations in the proportion of their components, all raw crude glycerol samples were shown to contain glycerol, soap, methanol, FAMEs, water, glycerides, FFAs, and ash.

  11. Role of ytterbium-erbium co-doped gadolinium molybdate (Gd2(MoO4)3:Yb/Er) nanophosphors in solar cells.

    PubMed

    Jin, Xiao; Li, Haiyang; Li, Dongyu; Zhang, Qin; Li, Feng; Sun, Weifu; Chen, Zihan; Li, Qinghua

    2016-09-05

    Insufficient harvest of solar light energy is one of the obstacles for current photovoltaic devices to achieve high performance. Especially, conventional organic/inorganic hybrid solar cells (HSCs) based on PTB7 as p-type semiconductor can only utilize 400-800 nm solar spectrum. One effective strategy to overcome this obstacle is the introduction of up-conversion nanophosphors (NPs), in the virtue of utilizing the near infrared region (NIR) of solar radiation. Up-conversion can convert low-energy photons to high-energy ones through multi-photon processes, by which the solar spectrum is tailored to well match the absorptive domain of the absorber. Herein we incorporate erbium-ytterbium co-doped gadolinium molybdate (Gd2(MoO4)3, GMO), denoted as GMO:Yb/Er, into TiO2 acceptor film in HSCs to enhance the light harvest. Here Er3+ acts as activator while Yb-MoO4 2- is the joint sensitizer. Facts proved that the GMO:Yb/Er single crystal NPs are capable of turning NIR photons to visible photons that can be easily captured by PTB7. Studies on time-resolved photoluminescence demonstrate that electron transfer rate at the interface increases sharply from 0.65 to 1.42 × 109 s-1. As a result, the photoelectric conversion efficiency of the GMO:Yb/Er doped TiO2/PTB7 HSCs reach 3.67%, which is increased by around 25% compared to their neat PTB7/TiO2 counterparts (2.94%). This work may open a hopeful way to take the advantage of those conversional rare-earth ion doped oxides that function in tailoring solar light spectrum for optoelectronic applications.

  12. Detection of the 35S promoter in transgenic maize via various isothermal amplification techniques: a practical approach.

    PubMed

    Zahradnik, Celine; Kolm, Claudia; Martzy, Roland; Mach, Robert L; Krska, Rudolf; Farnleitner, Andreas H; Brunner, Kurt

    2014-11-01

    In 2003 the European Commission introduced a 0.9% threshold for food and feed products containing genetically modified organism (GMO)-derived components. For commodities containing GMO contents higher than this threshold, labelling is mandatory. To provide a DNA-based rapid and simple detection method suitable for high-throughput screening of GMOs, several isothermal amplification approaches for the 35S promoter were tested: strand displacement amplification, nicking-enzyme amplification reaction, rolling circle amplification, loop-mediated isothermal amplification (LAMP) and helicase-dependent amplification (HDA). The assays developed were tested for specificity in order to distinguish between samples containing genetically modified (GM) maize and non-GM maize. For those assays capable of this discrimination, tests were performed to determine the lower limit of detection. A false-negative rate was determined to rule out whether GMO-positive samples were incorrectly classified as GMO-negative. A robustness test was performed to show reliable detection independent from the instrument used for amplification. The analysis of three GM maize lines showed that only LAMP and HDA were able to differentiate between the GMOs MON810, NK603, and Bt11 and non-GM maize. Furthermore, with the HDA assay it was possible to realize a detection limit as low as 0.5%. A false-negative rate of only 5% for 1% GM maize for all three maize lines shows that HDA has the potential to be used as an alternative strategy for the detection of transgenic maize. All results obtained with the LAMP and HDA assays were compared with the results obtained with a previously reported real-time PCR assay for the 35S promoter in transgenic maize. This study presents two new screening assays for detection of the 35S promoter in transgenic maize by applying the isothermal amplification approaches HDA and LAMP.

  13. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms

    PubMed Central

    Gerdes, Lars; Iwobi, Azuka; Busch, Ulrich; Pecoraro, Sven

    2016-01-01

    Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called ‘rain’. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis. We developed an Excel based ‘experience matrix’ that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations. The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event. PMID:27077048

  14. Facile synthesis and enhanced photocatalytic activity of single-crystalline nanohybrids for the removal of organic pollutants

    NASA Astrophysics Data System (ADS)

    Pervaiz, Erum; Liu, Honghong; Yang, Minghui

    2017-03-01

    This study focused on the synthesis of α-MoO3/rGO (rGO, reduced graphene oxide). One-dimensional nanohybrids under mild conditions and a low temperature wet chemical route produced highly pure single-crystalline orthorhombic α-MoO3 on GO sheets. Four nanohybrids, labeled as GMO-0, GMO-1, GMO-2 and GMO-3, were synthesized with different mass chargings of GO (0 mg, 40 mg, 60 mg and 100 mg, respectively). The photocatalytic performance for reduction of organic pollutants was analyzed. The presence of different amounts of GO in the prepared metal oxide hybrids altered the performance of the material as elaborated by the Brunauer-Emmett-Teller surface area, UV-visible diffuse reflectance spectra and the resulting reduction of organic dyes depicted by photocatalytic experiments. GO as a support material and active co-catalyst decreased the band gap of α-MoO3 (2.82 eV) to lower values (2.51 eV), rendering the prepared hybrids usable for visible-light-induced photocatalysis. The large specific surface area (72 m2 g-1) of the mesoporous α-MoO3/rGO nanohybrid made it an efficient photocatalyst for the elimination of azo dyes. Very fast reduction (100%) of Rhodamine B was observed in a few minutes, while Congo Red was degraded by 76% in 10 min, leading to the formation of stable intermediates that were completely neutralized in 12-14 h under light irradiation. The amount of GO loaded in the samples was limited to a point to achieve better results. After that, increasing the amount of GO decreased the extent of degradation due to the presence of a higher electron acceptor. Photocatalytic experiments revealed the synergistic effect, high selectivity of the prepared nanohybrids and degradation of azo dyes. The kinetics of the degradation reaction were studied and found to follow a pseudo first-order reaction.

  15. Optimization of digital droplet polymerase chain reaction for quantification of genetically modified organisms.

    PubMed

    Gerdes, Lars; Iwobi, Azuka; Busch, Ulrich; Pecoraro, Sven

    2016-03-01

    Digital PCR in droplets (ddPCR) is an emerging method for more and more applications in DNA (and RNA) analysis. Special requirements when establishing ddPCR for analysis of genetically modified organisms (GMO) in a laboratory include the choice between validated official qPCR methods and the optimization of these assays for a ddPCR format. Differentiation between droplets with positive reaction and negative droplets, that is setting of an appropriate threshold, can be crucial for a correct measurement. This holds true in particular when independent transgene and plant-specific reference gene copy numbers have to be combined to determine the content of GM material in a sample. Droplets which show fluorescent units ranging between those of explicit positive and negative droplets are called 'rain'. Signals of such droplets can hinder analysis and the correct setting of a threshold. In this manuscript, a computer-based algorithm has been carefully designed to evaluate assay performance and facilitate objective criteria for assay optimization. Optimized assays in return minimize the impact of rain on ddPCR analysis. We developed an Excel based 'experience matrix' that reflects the assay parameters of GMO ddPCR tests performed in our laboratory. Parameters considered include singleplex/duplex ddPCR, assay volume, thermal cycler, probe manufacturer, oligonucleotide concentration, annealing/elongation temperature, and a droplet separation evaluation. We additionally propose an objective droplet separation value which is based on both absolute fluorescence signal distance of positive and negative droplet populations and the variation within these droplet populations. The proposed performance classification in the experience matrix can be used for a rating of different assays for the same GMO target, thus enabling employment of the best suited assay parameters. Main optimization parameters include annealing/extension temperature and oligonucleotide concentrations. The droplet separation value allows for easy and reproducible assay performance evaluation. The combination of separation value with the experience matrix simplifies the choice of adequate assay parameters for a given GMO event.

  16. Molecular toolbox for the identification of unknown genetically modified organisms.

    PubMed

    Ruttink, Tom; Demeyer, Rolinde; Van Gulck, Elke; Van Droogenbroeck, Bart; Querci, Maddalena; Taverniers, Isabel; De Loose, Marc

    2010-03-01

    Competent laboratories monitor genetically modified organisms (GMOs) and products derived thereof in the food and feed chain in the framework of labeling and traceability legislation. In addition, screening is performed to detect the unauthorized presence of GMOs including asynchronously authorized GMOs or GMOs that are not officially registered for commercialization (unknown GMOs). Currently, unauthorized or unknown events are detected by screening blind samples for commonly used transgenic elements, such as p35S or t-nos. If (1) positive detection of such screening elements shows the presence of transgenic material and (2) all known GMOs are tested by event-specific methods but are not detected, then the presence of an unknown GMO is inferred. However, such evidence is indirect because it is based on negative observations and inconclusive because the procedure does not identify the causative event per se. In addition, detection of unknown events is hampered in products that also contain known authorized events. Here, we outline alternative approaches for analytical detection and GMO identification and develop new methods to complement the existing routine screening procedure. We developed a fluorescent anchor-polymerase chain reaction (PCR) method for the identification of the sequences flanking the p35S and t-nos screening elements. Thus, anchor-PCR fingerprinting allows the detection of unique discriminative signals per event. In addition, we established a collection of in silico calculated fingerprints of known events to support interpretation of experimentally generated anchor-PCR GM fingerprints of blind samples. Here, we first describe the molecular characterization of a novel GMO, which expresses recombinant human intrinsic factor in Arabidopsis thaliana. Next, we purposefully treated the novel GMO as a blind sample to simulate how the new methods lead to the molecular identification of a novel unknown event without prior knowledge of its transgene sequence. The results demonstrate that the new methods complement routine screening procedures by providing direct conclusive evidence and may also be useful to resolve masking of unknown events by known events.

  17. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.

    PubMed

    Curiel, José Antonio; Salvadó, Zoel; Tronchoni, Jordi; Morales, Pilar; Rodrigues, Alda Joao; Quirós, Manuel; Gonzalez, Ramón

    2016-09-15

    Aerobic fermentation of grape must, leading to respiro-fermentative metabolism of sugars, has been proposed as way of reducing alcohol content in wines. Two factors limit the usefulness of Saccharomyces cerevisiae for this application, the Crabtree effect, and excess volatile acidity under aerobic conditions. This work aimed to explore the impact on ethanol acetate production of different S. cerevisiae strains deleted for genes previously related with the Crabtree phenotype. Recombinant strains were constructed on a wine industrial genetic background, FX10. All yeast strains, including FX10, showed respiro-fermentative metabolism in natural grape must under aerobic conditions, as well as a concomitant reduction in ethanol yield. This indicates that the Crabtree effect is not a major constrain for reaching relevant respiration levels in grape must. Indeed, only minor differences in ethanol yield were observed between the original and some of the recombinant strains. In contrast, some yeast strains showed a relevant reduction of acetic acid production. This was identified as a positive feature for the feasibility of alcohol level reduction by respiration. Reduced acetic acid production was confirmed by a thorough analysis of these and some additional deletion strains (involving genes HXK2, PYK1, REG1, PDE2 and PDC1). Some recombinant yeasts showed altered production of glycerol and pyruvate derived metabolites. REG1 and PDC1 deletion strains showed a strong reduction of acetic acid yield in aerobic fermentations. Since REG1 defective strains may be obtained by non-GMO approaches, these gene modifications show good promise to help reducing ethanol content in wines.

  18. Use of supernatant refractive index and supernatant hemoglobin concentration to assess residual glycerol concentration in cryopreserved red blood cells.

    PubMed

    Wong, Kenneth A; Nsier, Nada; Acker, Jason P

    2009-10-01

    Red blood cells (RBCs) cryopreserved in glycerol must be deglycerolized prior to transfusion. The adequacy of glycerol removal is commonly assessed by measurement of the refractive index (RI) of the supernatant fluid. However, the presence of free hemoglobin in the supernatant falsely increases the RI and may lead to discard of units that have an acceptable residual glycerol concentration. We performed an analysis of the diagnostic accuracy of 3 methods for residual glycerol measurement - refractometry, osmometry, and a glycerol assay kit. Residual glycerol measurement using these methods was performed on 12 deglycerolized, citrate-phosphate-dextrose (CPD)/saline-adenine-glucose-mannitol (SAGM) leukoreduced RBCs. A calculation that estimates the glycerol concentration based on the refractive index and supernatant hemoglobin concentration was developed and ensures that units with an elevated RI due to the presence of hemoglobin are not discarded if their residual glycerol concentration was <1.0% (w/v). Osmometry was an accurate method for estimating residual glycerol concentration. Refractometry overestimated the residual glycerol concentration due to the interference from hemoglobin. However, when supernatant hemoglobin values were measured and used in the calculation for glycerol concentration, refractometry accurately estimated the residual glycerol concentration. The residual glycerol concentration of cryopreserved, deglycerolized CPD/SAGM RBCs can be accurately estimated using the supernatant refractive index and an equation that accounts for the supernatant hemoglobin concentration.

  19. Microbiological Horticultural Internship Final Abstract

    NASA Technical Reports Server (NTRS)

    Palmer, Shane R.; Spencer, Lashelle (Editor)

    2017-01-01

    GMO dwarf plum (Prunus domestica) is being evaluated as a candidate food crop for long duration space flight missions. A project was undertaken to develop a protocol for transferring selected genetic lines of GMO plum (previously maintained in pots and propagated by cuttings at NASA's Kennedy Space Center in Florida) into in vitro tissue culture. In vitro culture may reduce the space, materials, and labor required to maintain the current lines of GMO plum and better preserve them for future study. Fresh plant material from three selected GMO plum lines (NASA-5, NASA-10, and NASA-11) and a non-modified control line (Control-5) were processed aseptically into in vitro culture on four separate occasions. The impact of multiple treatments on the successful growth of GMO plum tissue in vitro were tested: Parent explant tissue type (leaf petioles, stem nodes containing buds and internodes without buds), tissue sterilization method [soaking in 10 bleach only (5 min for petioles or 10 min for nodesinternodes), or soaking in 70 EtOH (30 sec) followed by 10 bleach (5 min for petioles and 10 min for nodesinternodes)], and media type [three Murashige and Skoog-based medias (SGM, SRM, and SRM+2,4-D) and one recipe containing woody plant media (WPM)]. 22.2 of the plates containing tissue sterilized with bleach alone developed microbial contamination after two weeks, while only 11.8 of plates containing tissue sterilized sequentially with EtOH and bleach developed contamination. Node bud tissue from all four genetic lines of plum produced leafy plantlets on SGM and SRM media after 4-6 weeks. The most numerous and well-developed plantlets were present on SGM. Upon reaching suitable size, plantlets were transferred to larger media containers for further growth. Some node bud growth occurred on SRM+2,4-D and WPM 2.5 weeks after plating, however as of yet no pieces on SRM+2,4-D have adequate development for transferring. Tissue pieces from NASA-5 plated on WPM are developing leaves and will be ready for transferring soon. Petioles and internode tissue lacking bud meristem failed to produce any plantlets on any plates, however petioles developed large masses of undifferentiated callus tissue on SRM+2,4-D media. These callused pieces were then transferred to SRM+TDZ media, which resulted in even larger callus growth but no differentiation. All four selected plum lines were successfully transitioned into in vitro culture. Nodes from NASA-5 and NASA-10 lines produced the most numerous and well-developed leafy plantlets in vitro, while those from NASA-11 and Control-5 were generally smaller, slower growing and less numerous. The best method overall was to use young stem node tissue with buds, surface sterilize the pieces sequentially with 70 EtOH and 10 bleach, and then plate them onto SGM media. Future areas of study will include introducing additional genetic lines of GMO plum into in vitro culture, attempting to induce shoot growth in petiole callus tissue, testing methods (such as cold storage) that extend the time interval between transferring explants into new media, and testing viability of plantlets transferred from in vitro culture back to traditional pot culture.

  20. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes.

    PubMed

    Alvarez, María de Fátima; Medina, Roxana; Pasteris, Sergio E; Strasser de Saad, Ana M; Sesma, Fernando

    2004-01-01

    Lactobacillus rhamnosus ATCC 7469 was able to grow in glycerol as the sole source of energy in aerobic conditions, producing lactate, acetate, and diacetyl. A biphasic growth was observed in the presence of glucose. In this condition, glycerol consumption began after glucose was exhausted from the culture medium. Glycerol kinase activity was detected in L. rhamnosus ATCC 7469, a characteristic of microorganisms which catabolize glycerol in aerobic conditions. Genetic analysis revealed that this strain possesses two glycerol kinase genes: gykA and glpK, that encode for two different glycerol kinases GykA and GlpK, respectively. The glpK geneis associated in an operon with alpha-glycerophosphate oxidase (glpO) and glycerol facilitator (glpF) genes. Transcriptional analysis revealed that only glpK is expressed when L. rhamnosus was grown on glycerol. Copyright 2004 S. Karger AG, Basel

  1. A Member of the Sugar Transporter Family, Stl1p Is the Glycerol/H+ Symporter in Saccharomyces cerevisiae

    PubMed Central

    Ferreira, Célia; van Voorst, Frank; Martins, António; Neves, Luisa; Oliveira, Rui; Kielland-Brandt, Morten C.; Lucas, Cândida; Brandt, Anders

    2005-01-01

    Glycerol and other polyols are used as osmoprotectants by many organisms. Several yeasts and other fungi can take up glycerol by proton symport. To identify genes involved in active glycerol uptake in Saccharomyces cerevisiae we screened a deletion mutant collection comprising 321 genes encoding proteins with 6 or more predicted transmembrane domains for impaired growth on glycerol medium. Deletion of STL1, which encodes a member of the sugar transporter family, eliminates active glycerol transport. Stl1p is present in the plasma membrane in S. cerevisiae during conditions where glycerol symport is functional. Both the Stl1 protein and the active glycerol transport are subject to glucose-induced inactivation, following identical patterns. Furthermore, the Stl1 protein and the glycerol symporter activity are strongly but transiently induced when cells are subjected to osmotic shock. STL1 was heterologously expressed in Schizosaccharomyces pombe, a yeast that does not contain its own active glycerol transport system. In S. pombe, STL1 conferred the ability to take up glycerol against a concentration gradient in a proton motive force-dependent manner. We conclude that the glycerol proton symporter in S. cerevisiae is encoded by STL1. PMID:15703210

  2. Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants.

    PubMed

    Holmiere, Sébastien; Valentin, Romain; Maréchal, Philippe; Mouloungui, Zéphirin

    2017-02-01

    Glycerol carbonate is one of the most potentially multifunction glycerol-derived compounds. Glycerol is an important by-product of the oleochemical industry. The oligomerization of glycerol carbonate, assisted by the glycerol, results in the production of polyhydroxylated oligomers rich in linear carbonate groups. The polar moieties of these oligomers (M w <1000Da) were supplied by glycerol and glycerol carbonate rather than ethylene oxide as in most commercial surfactants. The insertion of linear carbonate groups into the glycerol-based skeleton rendered the oligomers amphiphilic, resulting in a decrease in air/water surface tension to 57mN/m. We improved the physical and chemical properties of the oligomers, by altering the type of acylation reaction and the nature of the acyl donor. The polar head is constituted of homo-oligomers and hetero-oligomers. Homo-oligomers are oligoglycerol and/or oligocarbonate, hetero-oligomers are oligo(glycerol-glycerol carbonate). Coprah oligoesters had the best surfactant properties (CMC<1mg/mL, π cmc <30mN/m), outperforming molecules of fossil origin, such as ethylene glycol monododecyl ether, glycol ethers and fatty acid esters of sorbitan polyethoxylates. The self-assembling properties of oligocarbonate esters were highlighted by their ability to stabilize inverse and multiple emulsions. The oligo-(glycerol carbonate-glycerol ether) with relatively low molecular weights showed properties of relatively high-molecular weight molecules, and constitute a viable "green" alternative to ethoxylated surfactants. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Plants with stacked genetically modified events: to assess or not to assess?

    PubMed

    Kok, Esther J; Pedersen, Jan; Onori, Roberta; Sowa, Slawomir; Schauzu, Marianna; De Schrijver, Adinda; Teeri, Teemu H

    2014-02-01

    The principles for the safety assessment of genetically modified (GM) organisms (GMOs) are harmonised worldwide to a large extent. There are, however, still differences between the European GMO regulations and the GMO regulations as they have been formulated in other parts of the world. One of these differences relates to the so-called 'stacked GM events', that is, GMOs, plants so far, where new traits are combined by conventional crossing of different GM plants. This paper advocates rethinking the current food/feed safety assessment of stacked GM events in Europe based on an analysis of different aspects that currently form the rationale for the safety assessment of stacked GM events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Applicability of three alternative instruments for food authenticity analysis: GMO identification.

    PubMed

    Burrell, A; Foy, C; Burns, M

    2011-03-06

    Ensuring foods are correctly labelled for ingredients derived from genetically modified organisms (GMOs) is an issue facing manufacturers, retailers, and enforcement agencies. DNA approaches for the determination of food authenticitys often use the polymerase chain reaction (PCR), and PCR products can be detected using capillary or gel electrophoresis. This study examines the fitness for purpose of the application of three laboratory electrophoresis instruments (Agilent Bioanalyzer 2100, Lab901 TapeStation, and Shimadzu MCE-202 MultiNA) for the detection of GMOs using PCR based on a previously validated protocol. Whilst minor differences in the performance characteristics of bias and precision were observed, all three instruments demonstrated their applicability in using this protocol for screening of GMO ingredients.

  5. An animal welfare perspective on animal testing of GMO crops.

    PubMed

    Kolar, Roman; Rusche, Brigitte

    2008-01-01

    The public discussion on the introduction of agro-genetic engineering focuses mainly on economical, ecological and human health aspects. The fact is neglected that laboratory animals must suffer before either humans or the environment are affected. However, numerous animal experiments are conducted for toxicity testing and authorisation of genetically modified plants in the European Union. These are ethically questionable, because death and suffering of the animals for purely commercial purposes are accepted. Therefore, recent political initiatives to further increase animal testing for GMO crops must be regarded highly critically. Based on concrete examples this article demonstrates that animal experiments, on principle, cannot provide the expected protection of users and consumers despite all efforts to standardise, optimise or extend them.

  6. GMO foods and crops: Africa's choice.

    PubMed

    Paarlberg, Robert

    2010-11-30

    There is a scientific consensus, even in Europe, that the GMO foods and crops currently on the market have brought no documented new risks either to human health or to the environment. Europe has decided to stifle the use of this new technology, not because of the presence of risks, but because of the absence so far of direct benefits to most Europeans. Farmers in Europe are few in number, and they are highly productive even without GMOs. In Africa, by contrast, 60% of all citizens are still farmers and they are not yet highly productive. For Africa, the choice to stifle new technology with European-style regulations carries a much higher cost. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Consumer knowledge and attitudes about genetically modified food products and labelling policy.

    PubMed

    Vecchione, Melissa; Feldman, Charles; Wunderlich, Shahla

    2015-05-01

    The purpose of this study was to examine the relationship between consumer knowledge, attitudes and behaviours towards foods containing genetically modified organisms (GMOs) and the prevalence of GMO labelling in northern New Jersey supermarkets. This cross-sectional study surveyed 331 adults, New Jersey supermarket customers (mean age 26 years old, 79.8% women). The results show a strong, positive correlation between consumer attitudes towards foods not containing GMOs and purchasing behaviour (Pearson's r = 0.701, p < 0.001) with lesser correlations between knowledge and behaviour (Pearson's r = 0.593, p < 0.001) and knowledge and attitudes (Pearson's r = 0.413, p < 0.001). GMO labelling would assist consumers in making informed purchase decisions.

  8. Applicability of Three Alternative Instruments for Food Authenticity Analysis: GMO Identification

    PubMed Central

    Burrell, A.; Foy, C.; Burns, M.

    2011-01-01

    Ensuring foods are correctly labelled for ingredients derived from genetically modified organisms (GMOs) is an issue facing manufacturers, retailers, and enforcement agencies. DNA approaches for the determination of food authenticitys often use the polymerase chain reaction (PCR), and PCR products can be detected using capillary or gel electrophoresis. This study examines the fitness for purpose of the application of three laboratory electrophoresis instruments (Agilent Bioanalyzer 2100, Lab901 TapeStation, and Shimadzu MCE-202 MultiNA) for the detection of GMOs using PCR based on a previously validated protocol. Whilst minor differences in the performance characteristics of bias and precision were observed, all three instruments demonstrated their applicability in using this protocol for screening of GMO ingredients. PMID:21527985

  9. Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae.

    PubMed

    Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A

    2017-06-01

    Glycerol is used by the cosmetic, paint, automotive, food, and pharmaceutical industries and for production of explosives. Currently, glycerol is available in commercial quantities as a by-product from biodiesel production, but the purity and the cost of its purification are prohibitive. The industrial production of glycerol by glucose aerobic fermentation using osmotolerant strains of the yeasts Candida sp. and Saccharomyces cerevisiae has been described. A major drawback of the aerobic process is the high cost of production. For this reason, the development of yeast strains that effectively convert glucose to glycerol anaerobically is of great importance. Due to its ability to grow under anaerobic conditions, the yeast S. cerevisiae is an ideal system for the development of this new biotechnological platform. To increase glycerol production and accumulation from glucose, we lowered the expression of TPI1 gene coding for triose phosphate isomerase; overexpressed the fused gene consisting the GPD1 and GPP2 parts coding for glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate phosphatase, respectively; overexpressed the engineered FPS1 gene that codes for aquaglyceroporin; and overexpressed the truncated gene ILV2 that codes for acetolactate synthase. The best constructed strain produced more than 20 g of glycerol/L from glucose under micro-aerobic conditions and 16 g of glycerol/L under anaerobic conditions. The increase in glycerol production led to a drop in ethanol and biomass accumulation.

  10. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  11. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a fermentation to estimate hydrogen production using a respirometer, the hydrogen yield and volumetric rate of 1.06 mol/mol-glycerol and 217 ml/l/h, respectively were obtained from 6% P-glycerol in 72 h by E. aerogenes S012. The result was higher from R-glycerol, which produced hydrogen yield and productivity of 1.83 mol/mol-glycerol and 326 ml/l/h, respectively.

  12. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    PubMed

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  13. Effect of Glycerol Water Binary Mixtures on the Structure and Dynamics of Protein Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattyvenkatakrishna, Pavan K; Carri, Gustavo A.

    We have performed 20ns of fully atomistic molecular dynamics simulations of Hen Egg-White Lysozyme in 0, 10, 20, 30 and 100% by weight of glycerol in water to better understand the microscopic physics behind the bioprotection offered by glycerol to naturally occuring biological systems. The sovlent exposure of protein surface residues changes when glycerol is introduced. The dynamic behavior of the protein, as quantified by the Incoherent Intermediate Scattering Function, shows a non-monotonic dependence on glycerol content. The fluctuations of the protein residues with respect to each other were found to be similar in all water containing solvents; but differentmore » from the pure glycerol case. The increase in the number of protein glycerol hydrogen bonds in glycerol water binary mixtures explains the slowing down of protein dynamics as the glycerol content increases. We also explored the dynamic behavior of the hydration layer. We show that the short-length scale dynamics of this layer are insenstive to glycerol concentration. However, the long-length scale behavior shows a significant dependence on glycerol content. We also provide insights into the behavior of bound and mobile water molecules.« less

  14. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol.

    PubMed

    Vagenende, Vincent; Yap, Miranda G S; Trout, Bernhardt L

    2009-11-24

    The stability of proteins in aqueous solution is routinely enhanced by cosolvents such as glycerol. Glycerol is known to shift the native protein ensemble to more compact states. Glycerol also inhibits protein aggregation during the refolding of many proteins. However, mechanistic insight into protein stabilization and prevention of protein aggregation by glycerol is still lacking. In this study, we derive mechanisms of glycerol-induced protein stabilization by combining the thermodynamic framework of preferential interactions with molecular-level insight into solvent-protein interactions gained from molecular simulations. Contrary to the common conception that preferential hydration of proteins in polyol/water mixtures is determined by the molecular size of the polyol and the surface area of the protein, we present evidence that preferential hydration of proteins in glycerol/water mixtures mainly originates from electrostatic interactions that induce orientations of glycerol molecules at the protein surface such that glycerol is further excluded. These interactions shift the native protein toward more compact conformations. Moreover, glycerol preferentially interacts with large patches of contiguous hydrophobicity where glycerol acts as an amphiphilic interface between the hydrophobic surface and the polar solvent. Accordingly, we propose that glycerol prevents protein aggregation by inhibiting protein unfolding and by stabilizing aggregation-prone intermediates through preferential interactions with hydrophobic surface regions that favor amphiphilic interface orientations of glycerol. These mechanisms agree well with experimental data available in the literature, and we discuss the extent to which these mechanisms apply to other cosolvents, including polyols, arginine, and urea.

  15. MS-based analytical methodologies to characterize genetically modified crops.

    PubMed

    García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro

    2011-01-01

    The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart. Copyright © 2010 Wiley Periodicals, Inc.

  16. Bioadhesive floating microsponges of cinnarizine as novel gastroretentive delivery: Capmul GMO bioadhesive coating versus acconon MC 8-2 EP/NF with intrinsic bioadhesive property

    PubMed Central

    Raghuvanshi, Smita; Pathak, Kamla

    2016-01-01

    Introduction: The study was aimed at the development of low-density gastroretentive bioadhesive microsponges of cinnarizine by two-pronged approach (i) coating with bioadhesive material and (ii) exploration of acconon MC 8-2 EP/NF as bioadhesive raw material for fabrication. Materials and Methods: Microsponges were prepared by quasi-emulsion solvent diffusion method using 32 factorial design. Capmul GMO was employed for bioadhesive coating. In parallel, potential of acconon for the fabrication of bioadhesive floating microsponges (A8) was assessed. Results: Formulation with entrapment efficiency = 82.4 ± 3.4%, buoyancy = 82.3 ± 2.5%, and correlation of drug release (CDR8h) = 88.7% ± 2.9% was selected as optimized formulation (F8) and subjected to bioadhesive coating (BF8). The %CDR8h for A8 was similar to BF8 (87.2% ± 3.5%). Dynamic in vitro bioadhesion test revealed comparable bioadhesivity with BF8. The ex vivo permeation across gastric mucin displayed 63.16% for BF8 against 56.74% from A8; affirmed the bioadhesivity of both approaches. Conclusion: The study concluded with the development of novel bioadhesive floating microsponges of cinnarizine employing capmul GMO as bioadhesive coating material and confirmed the viability of acconon MC 8-2EP/NF as bioadhesive raw material for sustained targeted delivery of drug. PMID:28123987

  17. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids.

    PubMed

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-06-04

    Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost.

  18. Lattice dynamics of a rigid-ion model for gadolinium molybdate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, L.L.; Hardy, J.R.

    Calculations are presented which support the view that the ferroelectric phase tnnnsition in gadolinium molybdate (GMO) arises from the softening and ultimate instability of a doubly degenerate zone-edge mode of the high- temperature paraelectric phase. A rigid-ion model was used in which the short- range force constants are obtained from a detailed knowledge of the crystal structure together wiih the conditions imposed by the requirement that the crystal must be in static equilibrium under the combined influence of both Coulomb and short-range forces. Results show that this type of approach is very useful when one is dealing with complex structuresmore » such as GMO, which has thirty- four ions per unit cell in the paraelectric phase. In view of the simplicity of the model, a surprisingly good correlation with experimental results was obtained. In particular, the calculated zone-center frequencies reproduce the basic features of the observed Raman spectruna. Dispersion curves are presented which show a pronounced softening of two phonon branches which become doubly degenerate at the M point, in agreement with inelastic neutron scattering. The displacements associated wiih the soft M-point modes correlate with the difference in the structures of the high- and low-temperature phases determined by x-ray diffraction. This provides further evidence that the ferroelectric domains in GMO are to be interpreted as frozen-in'' soft zoneboundary modes of the paraelectric phase. (auth)« less

  19. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  20. Bioadhesive floating microsponges of cinnarizine as novel gastroretentive delivery: Capmul GMO bioadhesive coating versus acconon MC 8-2 EP/NF with intrinsic bioadhesive property.

    PubMed

    Raghuvanshi, Smita; Pathak, Kamla

    2016-01-01

    The study was aimed at the development of low-density gastroretentive bioadhesive microsponges of cinnarizine by two-pronged approach (i) coating with bioadhesive material and (ii) exploration of acconon MC 8-2 EP/NF as bioadhesive raw material for fabrication. Microsponges were prepared by quasi-emulsion solvent diffusion method using 3 2 factorial design. Capmul GMO was employed for bioadhesive coating. In parallel, potential of acconon for the fabrication of bioadhesive floating microsponges (A8) was assessed. Formulation with entrapment efficiency = 82.4 ± 3.4%, buoyancy = 82.3 ± 2.5%, and correlation of drug release (CDR 8h ) = 88.7% ± 2.9% was selected as optimized formulation (F8) and subjected to bioadhesive coating (BF8). The %CDR 8h for A8 was similar to BF8 (87.2% ± 3.5%). Dynamic in vitro bioadhesion test revealed comparable bioadhesivity with BF8. The ex vivo permeation across gastric mucin displayed 63.16% for BF8 against 56.74% from A8; affirmed the bioadhesivity of both approaches. The study concluded with the development of novel bioadhesive floating microsponges of cinnarizine employing capmul GMO as bioadhesive coating material and confirmed the viability of acconon MC 8-2EP/NF as bioadhesive raw material for sustained targeted delivery of drug.

  1. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  2. Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements

    PubMed Central

    2013-01-01

    Background Glycerol has attracted attention as a carbon source for microbial production processes due to the large amounts of crude glycerol waste resulting from biodiesel production. The current knowledge about the genetics and physiology of glycerol uptake and catabolism in the versatile industrial biotechnology production host Saccharomyces cerevisiae has been mainly based on auxotrophic laboratory strains, and carried out in the presence of growth-supporting supplements such as amino acids and nucleic bases. The latter may have resulted in ambiguous conclusions concerning glycerol growth in this species. The purpose of this study was to re-evaluate growth of S. cerevisiae in synthetic glycerol medium without the addition of supplements. Results Initial experiments showed that prototrophic versions of the laboratory strains CEN.PK, W303, and S288c did not exhibit any growth in synthetic glycerol medium without supporting supplements. However, a screening of 52 S. cerevisiae isolates for growth in the same medium revealed a high intraspecies diversity. Within this group significant variation with respect to the lag phase and maximum specific growth rate was observed. A haploid segregant of one good glycerol grower (CBS 6412-13A) was selected for detailed analysis. Single deletions of the genes encoding for the glycerol/H+ symporter (STL1), the glycerol kinase (GUT1), and the mitochondrial FAD+-dependent glycerol 3-phosphate dehydrogenase (GUT2) abolished glycerol growth in this strain, implying that it uses the same glycerol utilization pathway as previously identified in auxotrophic laboratory strains. Segregant analysis of a cross between CBS 6412-13A and CEN.PK113-1A revealed that the glycerol growth phenotype is a quantitative trait. Genetic linkage and reciprocal hemizygosity analysis demonstrated that GUT1 CBS 6412-13A is one of the multiple genetic loci contributing to the glycerol growth phenotype. Conclusion The S. cerevisiae intraspecies diversity with regard to glycerol growth is a valuable starting point to identify the genetic and molecular basis of this phenotype. This knowledge can be applied for further rational strain improvement with the goal of using glycerol as a carbon source in industrial biotechnology processes based on S. cerevisiae as a production organism. PMID:24209984

  3. Differential regulation of glyceroneogenesis by glucocorticoids in epididymal and retroperitoneal white adipose tissue from rats.

    PubMed

    Ferreira, Graziella Nascimento; Rossi-Valentim, Rafael; Buzelle, Samyra Lopes; Paula-Gomes, Sílvia; Zanon, Neusa Maria; Garófalo, Maria Antonieta Rissato; Frasson, Danúbia; Navegantes, Luiz Carlos Carvalho; Chaves, Valéria Ernestânia; Kettelhut, Isis do Carmo

    2017-08-01

    Investigate the glycerol-3-phosphate generation pathways in epididymal (EPI) and retroperitoneal (RETRO) adipose tissues from dexamethasone-treated rats. Rats were treated with dexamethasone for 7 days. Glycerol-3-phosphate generation pathways via glycolysis, glyceroneogenesis and direct phosphorylation of glycerol were evaluated, respectively, by 2-deoxyglucose uptake, phosphoenolpyruvate carboxykinase (PEPCK-C) activity and pyruvate incorporation into triacylglycerol (TAG)-glycerol, and glycerokinase activity and glycerol incorporation into TAG-glycerol. Dexamethasone treatment markedly decreased the body weight, but increased the weight and lipid content of EPI and RETRO and plasma insulin, glucose, non-esterified fatty acid and TAG levels. EPI and RETRO from dexamethasone-treated rats showed increased rates of de novo fatty acid synthesis (80 and 100%) and basal lipolysis (20%). In EPI, dexamethasone decreased the 2-deoxyglucose uptake (50%), as well as glyceroneogenesis, evidenced by a decrease of PEPCK-C activity (39%) and TAG-glycerol synthesis from pyruvate (66%), but increased the glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (72%) in this tissue. In spite of a similar reduction in 2-deoxyglucose uptake in RETRO, dexamethasone treatment increased glyceroneogenesis, evidenced by PEPCK activity (96%), and TAG-glycerol synthesis from pyruvate (110%), accompanied by a decrease in glycerokinase activity (50%) and TAG-glycerol synthesis from glycerol (50%). Dexamethasone effects on RETRO were accompanied by a decrease in p-Akt content and by lower insulin effects on the rates of glycerol release in the presence of isoproterenol and on the rates of glucose uptake in isolated adipocytes. Our data demonstrated differential regulation of glyceroneogenesis and direct phosphorylation of glycerol by glucocorticoids in EPI and RETRO from rats.

  4. Processes and systems for the production of propylene glycol from glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G; Oberg, Aaron A; Zacher, Alan H

    2015-01-20

    Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.

  5. Antioxidant behavior of 1-feruloyl-sn-glycerol and 1,3-diferuloyl-sn-glycerol in phospholipid liposomes 1

    USDA-ARS?s Scientific Manuscript database

    1-Feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (DFG) are two natural plant compounds that may be useful in cosmeceutical, food, and skin care applications because of excellent antioxidant properties. FG and DFG enzymatically synthesized through esterification of glycerol and soybean oil...

  6. Determination of triazole fungicides in environmental water samples by high performance liquid chromatography with cloud point extraction using polyethylene glycol 600 monooleate.

    PubMed

    Tang, Tao; Qian, Kun; Shi, Tianyu; Wang, Fang; Li, Jianqiang; Cao, Yongsong

    2010-11-08

    A preconcentration technique known as cloud point extraction was developed for the determination of trace levels of triazole fungicides tricyclazole, triadimefon, tebuconazole and diniconazole in environmental waters. The triazole fungicides were extracted and preconcentrated using polyethylene glycol 600 monooleate (PEG600MO) as a low toxic and environmentally benign nonionic surfactant, and determined by high performance liquid chromatography/ultraviolet detection (HPLC-UV). The extraction conditions were optimized for the four triazole fungicides as follows: 2.0 wt% PEG600MO, 2.5 wt% Na(2)SO(4), equilibration at 45°C for 10 min, and centrifugation at 2000 rpm (533 × g) for 5 min. The triazole fungicides were well separated on a reversed-phase kromasil ODS C(18) column (250 mm × 4.6 mm, 5 μm) with gradient elution at ambient temperature and detected at 225 nm. The calibration range was 0.05-20 μg L(-1) for tricyclazole and 0.5-20 μg L(-1) for the other three classes of analytes with the correlation coefficients over 0.9992. Preconcentration factors were higher than 60-fold for the four selected fungicides. The limits of detection were 6.8-34.5 ng L(-1) (S/N=3) and the recoveries were 82.0-96.0% with the relative standard deviations of 2.8-7.8%. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Fabrication and Properties of Micro-Nanoencapsulated Phase Change Materials for Internally-Cooled Liquid Desiccant Dehumidification

    PubMed Central

    Niu, Xiaofeng; Xu, Qing; Zhang, Yi; Zhang, Yue; Yan, Yufeng; Liu, Tao

    2017-01-01

    Micro-nanoencapsulated phase change materials (M-NEPCMs) are proposed to be useful in liquid desiccant dehumidification by restraining the temperature rise in the moisture-removal process and improving the dehumidification efficiency. In this paper, the n-octadecane M-NEPCMs with desirable thermal properties for internally-cooled dehumidification were fabricated by using compound emulsifiers through the in-situ polymerization method. Melamine-formaldehyde resin was used as the shell material. The effects of the mixing ratio, emulsification methods and amount of the compound emulsifiers on the morphology, size and thermal properties of the M-NEPCMs were investigated experimentally. The optimum weight mixing ratio of the compound emulsifiers is SDS (sodium dodecyl sulfate):Tween80 (polyoxyethylene sorbitan monooleate):Span80 (sorbitan monooleate) = 0.1:0.6:0.3, which achieves the best stability of the n-octadecane emulsion. When the compound emulsifiers are 10 wt. % of the core material, the melting enthalpy of M-NEPCMs reaches its maximum of 145.26 J/g of capsules, with an encapsulation efficiency of 62.88% and a mean diameter of 636 nm. The sub-cooling of the prepared M-NEPCMs is lower than 3 °C, with an acceptable thermal reliability after the thermal cycling test. A pre-emulsification prior to the addition of deionized water in the emulsification is beneficial to the morphology of the capsules, as the phase change enthalpy can be increased by 123.7%. PMID:28468282

  8. Estimation of the Intestinal Absorption and Metabolism Behaviors of 2- and 3-Monochloropropanediol Esters.

    PubMed

    Kaze, Naoki; Watanabe, Yomi; Sato, Hirofumi; Murota, Kaeko; Kotaniguchi, Miyako; Yamamoto, Hiroshi; Inui, Hiroshi; Kitamura, Shinichi

    2016-08-01

    The regioisomers of the di- and mono-oleate of monochloropropanediol (MCPD) have been synthesized and subsequently hydrolyzed with pancreatic lipase and pancreatin to estimate the intestinal digestion and absorption of these compounds after their intake. The hydrolysates were analyzed by HPLC using a corona charged aerosol detection system, which allowed for the separation and detection of the different regioisomers of the MCPD esters. The hydrolysates were also analyzed by GC-MS to monitor the free MCPD. The results indicated that the two acyl groups of 2-MCPD-1,3-dioleate were smoothly hydrolyzed by pancreatic lipase and pancreatin to give free 2-MCPD. In contrast, the hydrolysis of 3-MCPD-1,2-dioleate proceeded predominantly at the primary position to produce 3-MCPD-2-oleate. 2-MCPD-1-oleate and 3-MCPD-1-oleate were further hydrolyzed to free 2- and 3-MCPD by pancreatic lipase and pancreatin, although the hydrolysis of 3-MCPD-2-oleate was 80 % slower than that of 3-MCPD-1-oleate. The intestinal absorption characteristics of these compounds were evaluated in vitro using a Caco-2 cell monolayer. The results revealed that the MCPD monooleates, but not the MCPD dioleates, were hydrolyzed to produce the free MCPD in the presence of the Caco-2 cells. The resulting free MCPD permeated the Caco-2 monolayer most likely via a diffusion mechanism because their permeation profiles were independent of the dose. Similar permeation profiles were obtained for 2- and 3-MCPDs.

  9. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals.

    PubMed

    Zhou, Chun-Hui Clayton; Beltramini, Jorge N; Fan, Yong-Xian; Lu, G Q Max

    2008-03-01

    New opportunities for the conversion of glycerol into value-added chemicals have emerged in recent years as a result of glycerol's unique structure, properties, bioavailability, and renewability. Glycerol is currently produced in large amounts during the transesterification of fatty acids into biodiesel and as such represents a useful by-product. This paper provides a comprehensive review and critical analysis on the different reaction pathways for catalytic conversion of glycerol into commodity chemicals, including selective oxidation, selective hydrogenolysis, selective dehydration, pyrolysis and gasification, steam reforming, thermal reduction into syngas, selective transesterification, selective etherification, oligomerization and polymerization, and conversion of glycerol into glycerol carbonate.

  10. Value-added uses for crude glycerol--a byproduct of biodiesel production

    PubMed Central

    2012-01-01

    Biodiesel is a promising alternative, and renewable, fuel. As its production increases, so does production of the principle co-product, crude glycerol. The effective utilization of crude glycerol will contribute to the viability of biodiesel. In this review, composition and quality factors of crude glycerol are discussed. The value-added utilization opportunities of crude glycerol are reviewed. The majority of crude glycerol is used as feedstock for production of other value-added chemicals, followed by animal feeds. PMID:22413907

  11. Co-existence of agricultural production systems.

    PubMed

    Jank, Bernhard; Rath, Johannes; Gaugitsch, Helmut

    2006-05-01

    Strategies and best practices for the co-existence of GM and non-GM crops need to be developed and implemented with the participation of farmers and other stakeholders. According to the principle of 'subsidiarity', decisions should be made by the lowest authority possible. When applying this concept to the case of GM crops, the affected society should determine their use and management in a regional decision-making process. Public participation is better accomplished at a lower level, and democratic deficits in decision-making on GMOs are better resolved, enabling farmers to manage or avoid GM crops. Ultimately, voluntary GMO-free zones might be a tool for sustainable co-existence and GM-free production and GMO-free zones might create a specific image for marketing regional products and services, such as tourism.

  12. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of glycerol and propylene glycol; exemption from the requirement of a tolerance. 180.1250 Section 180..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of... monocaprylate, glycerol monocaprate, and glycerol monolaurate) and propylene glycol (propylene glycol...

  13. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of glycerol and propylene glycol; exemption from the requirement of a tolerance. 180.1250 Section 180..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of... monocaprylate, glycerol monocaprate, and glycerol monolaurate) and propylene glycol (propylene glycol...

  14. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of glycerol and propylene glycol; exemption from the requirement of a tolerance. 180.1250 Section 180..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of... monocaprylate, glycerol monocaprate, and glycerol monolaurate) and propylene glycol (propylene glycol...

  15. Surface tension and wetting properties of rapeseed oil to biofuel conversion by-products

    NASA Astrophysics Data System (ADS)

    Muszyński, Siemowit; Sujak, Agnieszka; Stępniewski, Andrzej; Kornarzyński, Krzysztof; Ejtel, Marta; Kowal, Natalia; Tomczyk-Warunek, Agnieszka; Szcześniak, Emil; Tomczyńska-Mleko, Marta; Mleko, Stanisław

    2018-04-01

    This work presents a study on the surface tension, density and wetting behaviour of distilled glycerol, technical grade glycerol and the matter organic non-glycerin fraction. The research was conducted to expand the knowledge about the physical properties of wastes from the rapeseed oil biofuel production. The results show that the densities of technical grade glycerol (1.300 g cm-3) and distilled glycerol (1.267 g cm-3) did not differ and were significantly lower than the density of the matter organic non-glycerin fraction (1.579 g cm-3). Furthermore, the surface tension of distilled glycerol (49.6 mN m-1) was significantly higher than the matter organic non-glycerin fraction (32.7 mN m-1) and technical grade glycerol (29.5 mN m-1). As a result, both technical grade glycerol and the matter organic non-glycerin fraction had lower contact angles than distilled glycerol. The examined physical properties of distilled glycerol were found to be very close to that of the commercially available pure glycerol. The results suggest that technical grade glycerol may have potential application in the production of glycerol/fuel blends or biosurfactants. The presented results indicate that surface tension measurements are more useful when examining the quality of biofuel wastes than is density determination, as they allow for a more accurate analysis of the effects of impurities on the physical properties of the biofuel by-products.

  16. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolen tannophilus

    PubMed Central

    2013-01-01

    Background Pachysolen tannophilus is a non-conventional yeast, which can metabolize many of the carbon sources found in low cost feedstocks including glycerol and xylose. The xylose utilisation pathways have been extensively studied in this organism. However, the mechanism behind glycerol metabolism is poorly understood. Using the recently published genome sequence of P. tannophilus CBS4044, we searched for genes with functions in glycerol transport and metabolism by performing a BLAST search using the sequences of the relevant genes from Saccharomyces cerevisiae as queries. Results Quantitative real-time PCR was performed to unveil the expression patterns of these genes during growth of P. tannophilus on glycerol and glucose as sole carbon sources. The genes predicted to be involved in glycerol transport in P. tannophilus were expressed in S. cerevisiae to validate their function. The S. cerevisiae strains transformed with heterologous genes showed improved growth and glycerol consumption rates with glycerol as the sole carbon source. Conclusions P. tannophilus has characteristics relevant for a microbial cell factory to be applied in a biorefinery setting, i.e. its ability to utilise the carbon sources such as xylose and glycerol. However, the strain is not currently amenable to genetic modification and transformation. Heterologous expression of the glycerol transporters from P. tannophilus, which has a relatively high growth rate on glycerol, could be used as an approach for improving the efficiency of glycerol assimilation in other well characterized and applied cell factories such as S. cerevisiae. PMID:23514356

  17. Real-time polymerase chain reaction-based approach for quantification of the pat gene in the T25 Zea mays event.

    PubMed

    Weighardt, Florian; Barbati, Cristina; Paoletti, Claudia; Querci, Maddalena; Kay, Simon; De Beuckeleer, Marc; Van den Eede, Guy

    2004-01-01

    In Europe, a growing interest for reliable techniques for the quantification of genetically modified component(s) of food matrixes is arising from the need to comply with the European legislative framework on novel food products. Real-time polymerase chain reaction (PCR) is currently the most powerful technique for the quantification of specific nucleic acid sequences. Several real-time PCR methodologies based on different molecular principles have been developed for this purpose. The most frequently used approach in the field of genetically modified organism (GMO) quantification in food or feed samples is based on the 5'-3'-exonuclease activity of Taq DNA polymerase on specific degradation probes (TaqMan principle). A novel approach was developed for the establishment of a TaqMan quantification system assessing GMO contents around the 1% threshold stipulated under European Union (EU) legislation for the labeling of food products. The Zea mays T25 elite event was chosen as a model for the development of the novel GMO quantification approach. The most innovative aspect of the system is represented by the use of sequences cloned in plasmids as reference standards. In the field of GMO quantification, plasmids are an easy to use, cheap, and reliable alternative to Certified Reference Materials (CRMs), which are only available for a few of the GMOs authorized in Europe, have a relatively high production cost, and require further processing to be suitable for analysis. Strengths and weaknesses of the use of novel plasmid-based standards are addressed in detail. In addition, the quantification system was designed to avoid the use of a reference gene (e.g., a single copy, species-specific gene) as normalizer, i.e., to perform a GMO quantification based on an absolute instead of a relative measurement. In fact, experimental evidences show that the use of reference genes adds variability to the measurement system because a second independent real-time PCR-based measurement must be performed. Moreover, for some reference genes no sufficient information on copy number in and among genomes of different lines is available, making adequate quantification difficult. Once developed, the method was subsequently validated according to IUPAC and ISO 5725 guidelines. Thirteen laboratories from 8 EU countries participated in the trial. Eleven laboratories provided results complying with the predefined study requirements. Repeatability (RSDr) values ranged from 8.7 to 15.9%, with a mean value of 12%. Reproducibility (RSDR) values ranged from 16.3 to 25.5%, with a mean value of 21%. Following Codex Alimentarius Committee guidelines, both the limits of detection and quantitation were determined to be <0.1%.

  18. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities.

    PubMed

    Klein, Mathias; Swinnen, Steve; Thevelein, Johan M; Nevoigt, Elke

    2017-03-01

    There is huge variability among yeasts with regard to their efficiency in utilizing glycerol as the sole source of carbon and energy. Certain species show growth rates with glycerol comparable to those reached with glucose as carbon source; others are virtually unable to utilize glycerol, especially in synthetic medium. Most of our current knowledge regarding glycerol uptake and catabolic pathways has been gained from studying laboratory strains of the model yeast Saccharomyces cerevisiae. The growth of these strains on glycerol is dependent on the presence of medium supplements such as amino acids and nucleobases. In contrast, there is only fragmentary knowledge about S. cerevisiae isolates able to grow in synthetic glycerol medium without such supplements as well as about growth of non-Saccharomyces yeast species on glycerol. Thus, more research is required to understand why certain strains and species show superior growth performance on glycerol compared with common S. cerevisiae laboratory strains. This mini-review summarizes what is known so far about the gene products and pathways involved in glycerol metabolism and transport in yeast and fungi as well as the regulation of these processes. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.

    PubMed

    Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook

    2012-01-01

    In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.

  20. Human axillary skin condition is improved following incorporation of glycerol into the stratum corneum from an antiperspirant formulation.

    PubMed

    Evans, Richard L; Turner, Graham A; Bates, Susan; Robinson, Teresa; Arnold, David; Marriott, Robert E; Pudney, Paul D A; Bonnist, Eleanor Y M; Green, Darren

    2017-11-01

    The study objectives were to demonstrate that glycerol, when topically applied from a roll-on antiperspirant formulation, can be delivered directly to human skin ex vivo and the axillary stratum corneum (SC) in vivo, and to assess whether it improves the quality of the axillary skin barrier. Ex vivo human skin absorption of glycerol was measured following application of a roll-on antiperspirant formulation containing 4% 13 C 3 -glycerol. Skin distribution of 13 C 3 -glycerol over 24 h was assessed using gas chromatography-mass spectrometry. In vivo axillary SC penetration was measured by confocal Raman spectroscopy and multivariate curve-resolution software 1 h after topical application of a roll-on antiperspirant formulation containing 8% deuterated glycerol (d 5 -glycerol). A clinical study was conducted to determine the efficacy of a roll-on antiperspirant formulation containing 4% glycerol in reducing shaving-induced visual irritation and in increasing axillary-skin hydration. Ex vivo skin absorption studies indicated that the formulation delivered 13 C 3 -glycerol into the SC at all timepoints over the 24-h period. In vivo Raman measurements (1 h after application) demonstrated that d 5 -glycerol was detectable to a depth of at least 10 μm in the axillary SC. Application of 4% glycerol from a roll-on antiperspirant formulation to the axilla was associated with significantly less visible irritation and greater skin hydration than observed with the control (glycerol-free) product. These studies demonstrate that glycerol, incorporated in a roll-on antiperspirant formulation, is delivered directly and rapidly to all depths of the axillary SC, and results in improvements in visible irritation and hydration in the axilla.

  1. Quantitative analysis of glycerol in dicarboxylic acid-rich cutins provides insights into Arabidopsis cutin structure.

    PubMed

    Yang, Weili; Pollard, Mike; Li-Beisson, Yonghua; Ohlrogge, John

    2016-10-01

    Cutin is an extracellular lipid polymer that contributes to protective cuticle barrier functions against biotic and abiotic stresses in land plants. Glycerol has been reported as a component of cutin, contributing up to 14% by weight of total released monomers. Previous studies using partial hydrolysis of cuticle-enriched preparations established the presence of oligomers with glycerol-aliphatic ester links. Furthermore, glycerol-3-phosphate 2-O-acyltransferases (sn-2-GPATs) are essential for cutin biosynthesis. However, precise roles of glycerol in cutin assembly and structure remain uncertain. Here, a stable isotope-dilution assay was developed for the quantitative analysis of glycerol by GC/MS of triacetin with simultaneous determination of aliphatic monomers. To provide clues about the role of glycerol in dicarboxylic acid (DCA)-rich cutins, this methodology was applied to compare wild-type (WT) Arabidopsis cutin with a series of mutants that are defective in cutin synthesis. The molar ratio of glycerol to total DCAs in WT cutins was 2:1. Even when allowing for a small additional contribution from hydroxy fatty acids, this is a substantially higher glycerol to aliphatic monomer ratio than previously reported for any cutin. Glycerol content was strongly reduced in both stem and leaf cutin from all Arabidopsis mutants analyzed (gpat4/gpat8, att1-2 and lacs2-3). In addition, the molar reduction of glycerol was proportional to the molar reduction of total DCAs. These results suggest "glycerol-DCA-glycerol" may be the dominant motif in DCA-rich cutins. The ramifications and caveats for this hypothesis are presented. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Enzymatic Synthesis of Glyserol-Coconut Oil Fatty Acid and Glycerol-Decanoic Acis Ester as Emulsifier and Antimicrobial Agents Using Candida rugosa Lipase EC 3.1.1.3

    NASA Astrophysics Data System (ADS)

    Handayani, Sri; Putri, Ayu Tanissa Tamara; Setiasih, Siswati; Hudiyono, Sumi

    2018-01-01

    In this research, enzymatic esterification was carried out between glycerol and fatty acid from coconut oil and decanoic acid using n-hexane as solvent. In this reaction Candida rugosa lipase was used as biocatalyst. Optimization esterification reaction was carried out for parameter of the substrate ratio. The mmol ratio between fatty acid and glycerol were used are 1:1, 1:2, 1:3, and 1: 4. The highest conversion percentage obtained at the mole ratio of 1: 4 with the value of 78.5% for the glycerol-decanoic acid ester and 55.4% for the glycerol coconut oil fatty acid ester. Esterification products were characterized by FT-IR. The FT-IR spectrum showed that the ester bond was formed as indicated by the wave number 1750-1739 cm-1. The esterification products were then examined by simple emulsion test and was proved to be an emulsifier. The glycerol-coconut oil fatty acid ester produced higher stability emulsion compare with glycerol decanoic ester. The antimicrobial activity assay using disc diffusion method showed that both glycerol-coconut oil fatty acid ester and glycerol-decanoic ester had the ability inhibiting the growth of Propionibacterium acnes and Staphylococcus epidermidis. Glycerol-decanoic ester shows higher antimicrobial activity than glycerol-coconut oil fatty acid ester.

  3. Solvent Free Transesterification of Glycerol Into Glycerol Carbonate Over Nanostructured CaAl Hydrotalcite Catalyst.

    PubMed

    Devarajan, Arulselvan; Thiripuranthagan, Sivakumar; Radhakrishnan, Ramakrishnan; Kumaravel, Sakthivel

    2018-07-01

    Drastic increase in green house gases due to fossil fuels usage urges the mankind to look for alternative fuel resources. Biodiesel is one of the alternative fuels which attracted the attention of many researchers. In recent years, bio-diesel drags much attention as an alternative clean fuel. Glycerol is an unavoidable byproduct in the transesterification process of vegetable oils into bio diesel and therefore market is flooded with glycerol. So it is high time to find ways of utilizing the abundant glycerol into value added products. Herein we report the catalytic transesterification of glycerol using dimethyl carbonate over MgAl-hydrotalcite (MgAl-HT), CaAl-hydrotalcite (CaAl-HT) and nano structured CaAl-HT catalysts. All the catalysts were characterized by XRD, FT-IR, TPD-CO2, BET, SEM and HR-TEM techniques. Among them Ca4Al-HT was found to be best in terms of conversion of glycerol (82.4%) and selectivity (95.9%) towards glycerol carbonate. The effect of CTAB template concentration in the nano synthesis of Ca4Al-HT on conversion and selectivity was studied and Ca4Al-HT synthesized with 0.4 moles of CTAB showed the best conversion of glycerol (98.7%) and the highest selectivity towards glycerol carbonate (97.9%). The recyclability test performed with the best catalyst showed that the catalyst was recyclable even after 5 cycles. Valorization of glycerol yields glycerol carbonate (GC) which is a very good polar solvent with high boiling point, building block in several organic syntheses and used in the production of surfactants, poly urethanes etc.

  4. Cadmium sulfide mediated photoelectric effects in bilayer lipid membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baral, S.; Fendler, J.H.

    1989-03-01

    Development of semiconductor- and magnetic-particle-containing bilayer lipid membranes (BLMs) has been prompted by the mimetic relevance of these systems. In particular, the authors have been interested for some times in artificial photosynthesis. Optimization of a given system requires an understanding of the mechanisms of photoelectron transfers in the environments of, and across, mimetic membranes. They have undertaken, therefore, a systematic study of semiconductor-mediated photoelectric effects in BLMs. The present article reports results on steady-state and time-resolved, cadmium sulfide mediated photovoltage and photocurrent measurements in glyceryl monooleate BLMs.

  5. Value-added processing of crude glycerol into chemicals and polymers.

    PubMed

    Luo, Xiaolan; Ge, Xumeng; Cui, Shaoqing; Li, Yebo

    2016-09-01

    Crude glycerol is a low-value byproduct which is primarily obtained from the biodiesel production process. Its composition is significantly different from that of pure glycerol. Crude glycerol usually contains various impurities, such as water, methanol, soap, fatty acids, and fatty acid methyl esters. Considerable efforts have been devoted to finding applications for converting crude glycerol into high-value products, such as biofuels, chemicals, polymers, and animal feed, to improve the economic viability of the biodiesel industry and overcome environmental challenges associated with crude glycerol disposal. This article reviews recent advances of biological and chemical technologies for value-added processing of crude glycerol into chemicals and polymers, and provides strategies for addressing production challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The effect of glycerol-related osmotic changes on post-thaw motility and acrosomal integrity of ram spermatozoa.

    PubMed

    Fiser, P S; Fairfull, R W

    1989-02-01

    Ram semen, collected by artificial vagina, was diluted and processed for long-term storage as described by P. S. Fiser, L. Ainsworth, and R. W. Fairfull (Canad. J. Anim. Sci. 62, 425-428, 1982). The concentration of the cryoprotectant, glycerol, was adjusted to 4% in the diluted semen prior to freezing by a one-step addition at 30 degrees C (Method 1), by cooling the semen to 5 degrees C and addition of the glycerol gradually over 30 min (Method 2), by one-step addition of glycerol prior to equilibration for 2 hr (Method 3), or by cooling to 5 degrees C, followed by a holding period of 2 hr at 5 degrees C, and the one-step addition of glycerol just prior to freezing (Method 4). After thawing, the glycerol concentration of the semen was reduced by stepwise dilution from 4 to 0.4% over 15 or 30 min or by a one-step ten-fold dilution. The average post-thaw percentage of motile spermatozoa was significantly lower after addition of glycerol by Method 1 (39.9%) than when the glycerol was added by the other three methods (range, 44.0-46.4% averaged over the glycerol dilution). The average post-thaw percentage of intact acrosomes (61.2%), highest in semen in which the glycerol was added by Method 2, was not significantly different from those in which glycerol was added to semen by Methods 3 and 4, but it was significantly higher than that found in semen in which the glycerol was added by Method 1 (54.4%). However, when averaged over the method of glycerolation, the post-thaw percentage of motile spermatozoa (range, 43.7-44.2%) and the percentage of intact acrosomes (range, 56.8-59.5%) did not differ significantly in semen subjected to gradual decrease in glycerol concentration and diluent osmolality (over 15 and 30 min) or by a one-step, 10-fold dilution. These data indicate that post-thaw survival of spermatozoa can be influenced by the way in which glycerol is added prior to freezing. However, post-thaw spermatozoa motility and acrosomal integrity can be maintained even after a rapid decrease in glycerol concentration such as that which accompanies insemination or dilution of semen for assessment of motility.

  7. Palatability, digestibility, and metabolizable energy of dietary glycerol in adult cats.

    PubMed

    Machado, G S; Pezzali, J G; Marx, F R; Kessler, A M; Trevizan, L

    2017-02-01

    Glycerol is a humectant, which reduces water activity when added to the diet. This property seems to offer dietary benefits, specifically in high-moisture diets for cats, where some humectants cannot be used. According to the U.S. Food and Drug Administration, glycerol is generally recognized as sustenance safe (GRAS). It is suggested that cats are able to metabolize glycerol and use it as an energy source without compromising health. Three experiments were conducted to evaluate the following characteristics of glycerol in the diet for cats: 1) a preference test, 2) digestibility, ME, and fecal and urinary characteristics, and 3) postprandial plasma glycemia. Twelve healthy adult female cats were randomly distributed among 4 treatments consisting of a basal diet (4,090 kcal ME/kg DM, 32% CP, 11% fat, 2.3% crude fiber, and 7.0% ash) and 3 diets with varying percentages of glycerol, made by replacing the basal diet with 2.5, 5.0, and 10.0% purified glycerol (99.5%). The inclusion of glycerol proportionally reduced ( < 0.05) water activity in the diets. The preference test was conducted by observing the contrast between the basal diet and the 5.0% and 10% glycerol diets. Cats did not show a preference for any diet in particular ( > 0.05). The digestibility assays showed that increasing dietary glycerol levels did not affect food intake or the apparent total tract digestibility of macronutrients and energy ( > 0.05). The inclusion of glycerol in the diets did not alter the stool moisture, fecal score, or urine volume. However, glycerol was detected in urine when it was incorporated into the diet at 10%. Glycemia increased up to 900 min following the first meal after the fasting period with no difference between treatments, even when the means were adjusted for food intake. The blood glucose area under the curve also showed no significant difference between treatments ( > 0.05). Cats accepted glycerol under the conditions of the study, and its nutritional value was determined as it has been done for other species. The ME of glycerol for adult cats was estimated to be 3,185 kcal/kg DM. Supplementing the diets of the cats with 10% glycerol may exceed their capacity to metabolize glycerol, possibly leading to urinary excretions.

  8. Co-digestion of sewage sludge with crude or pretreated glycerol to increase biogas production.

    PubMed

    Dos Santos Ferreira, Janaína; Volschan, Isaac; Cammarota, Magali Christe

    2018-05-23

    Anaerobic co-digestion of sewage sludge and glycerol from the biodiesel industry was evaluated in three experimental stages. In the first step, the addition of higher proportions of crude glycerol (5-20% v/v) to the sludge was evaluated, and the results showed a marked decrease in pH and inhibition of methane production. In the second step, co-digestion of sludge with either a lower proportion (1% v/v) of crude glycerol or glycerol pretreated to remove salinity resulted in volatile acid accumulation and low methane production. The accumulation of volatile acids due to the rapid degradation of glycerol in the mixture was more detrimental to methanogenesis than the salinity of the crude glycerol. In the third step, much lower amounts of crude glycerol were added to the sludge (0.3, 0.5, 0.7% v/v), resulting in buffering of the reaction medium and higher methane production than in the control (pure sludge). The best condition for co-digestion was with the addition of 0.5% (v/v) crude glycerol to the sewage sludge, which equals 0.6 g glycerol/g volatile solids applied. Under this condition, the specific methane production (mL CH 4 /g volatile solids applied) was 1.7 times higher than in the control.

  9. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    PubMed

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  10. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    PubMed

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Validation studies and proficiency testing.

    PubMed

    Ankilam, Elke; Heinze, Petra; Kay, Simon; Van den Eede, Guy; Popping, Bert

    2002-01-01

    Genetically modified organisms (GMOs) entered the European food market in 1996. Current legislation demands the labeling of food products if they contain <1% GMO, as assessed for each ingredient of the product. To create confidence in the testing methods and to complement enforcement requirements, there is an urgent need for internationally validated methods, which could serve as reference methods. To date, several methods have been submitted to validation trials at an international level; approaches now exist that can be used in different circumstances and for different food matrixes. Moreover, the requirement for the formal validation of methods is clearly accepted; several national and international bodies are active in organizing studies. Further validation studies, especially on the quantitative polymerase chain reaction methods, need to be performed to cover the rising demand for new extraction methods and other background matrixes, as well as for novel GMO constructs.

  12. Trust, confidence, procedural fairness, outcome fairness, moral conviction, and the acceptance of GM field experiments.

    PubMed

    Siegrist, Michael; Connor, Melanie; Keller, Carmen

    2012-08-01

    In 2005, Swiss citizens endorsed a moratorium on gene technology, resulting in the prohibition of the commercial cultivation of genetically modified crops and the growth of genetically modified animals until 2013. However, scientific research was not affected by this moratorium, and in 2008, GMO field experiments were conducted that allowed us to examine the factors that influence their acceptance by the public. In this study, trust and confidence items were analyzed using principal component analysis. The analysis revealed the following three factors: "economy/health and environment" (value similarity based trust), "trust and honesty of industry and scientists" (value similarity based trust), and "competence" (confidence). The results of a regression analysis showed that all the three factors significantly influenced the acceptance of GM field experiments. Furthermore, risk communication scholars have suggested that fairness also plays an important role in the acceptance of environmental hazards. We, therefore, included measures for outcome fairness and procedural fairness in our model. However, the impact of fairness may be moderated by moral conviction. That is, fairness may be significant for people for whom GMO is not an important issue, but not for people for whom GMO is an important issue. The regression analysis showed that, in addition to the trust and confidence factors, moral conviction, outcome fairness, and procedural fairness were significant predictors. The results suggest that the influence of procedural fairness is even stronger for persons having high moral convictions compared with persons having low moral convictions. © 2012 Society for Risk Analysis.

  13. Development of real-time PCR method for the detection and the quantification of a new endogenous reference gene in sugar beet "Beta vulgaris L.": GMO application.

    PubMed

    Chaouachi, Maher; Alaya, Akram; Ali, Imen Ben Haj; Hafsa, Ahmed Ben; Nabi, Nesrine; Bérard, Aurélie; Romaniuk, Marcel; Skhiri, Fethia; Saïd, Khaled

    2013-01-01

    KEY MESSAGE : Here, we describe a new developed quantitative real-time PCR method for the detection and quantification of a new specific endogenous reference gene used in GMO analysis. The key requirement of this study was the identification of a new reference gene used for the differentiation of the four genomic sections of the sugar beet (Beta vulgaris L.) (Beta, Corrollinae, Nanae and Procumbentes) suitable for quantification of genetically modified sugar beet. A specific qualitative polymerase chain reaction (PCR) assay was designed to detect the sugar beet amplifying a region of the adenylate transporter (ant) gene only from the species of the genomic section I of the genus Beta (cultivated and wild relatives) and showing negative PCR results for 7 species of the 3 other sections, 8 related species and 20 non-sugar beet plants. The sensitivity of the assay was 15 haploid genome copies (HGC). A quantitative real-time polymerase chain reaction (QRT-PCR) assay was also performed, having high linearity (R (2) > 0.994) over sugar beet standard concentrations ranging from 20,000 to 10 HGC of the sugar beet DNA per PCR. The QRT-PCR assay described in this study was specific and more sensitive for sugar beet quantification compared to the validated test previously reported in the European Reference Laboratory. This assay is suitable for GMO quantification in routine analysis from a wide variety of matrices.

  14. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    PubMed Central

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-01-01

    Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost. PMID:18522756

  15. Detection methods for biotech cotton MON 15985 and MON 88913 by PCR.

    PubMed

    Lee, Seong-Hun; Kim, Jin-Kug; Yi, Bu-Young

    2007-05-02

    Plants derived through agricultural biotechnology, or genetically modified organisms (GMOs), may affect human health and ecological environment. A living GMO is also called a living modified organism (LMO). Biotech cotton is a GMO in food or feed and also an LMO in the environment. Recently, two varieties of biotech cotton, MON 15985 and MON 88913, were developed by Monsanto Co. The detection method is an essential element for the GMO labeling system or LMO management of biotech plants. In this paper, two primer pairs and probes were designed for specific amplification of 116 and 120 bp PCR products from MON 15985 and MON 88913, respectively, with no amplification from any other biotech cotton. Limits of detection of the qualitative method were all 0.05% for MON 15985 and MON 88913. The quantitative method was developed using a TaqMan real-time PCR. A synthetic plasmid, as a reference molecule, was constructed from a taxon-specific DNA sequence of cotton and two construct-specific DNA sequences of MON 15985 and MON 88913. The quantitative method was validated using six samples that contained levels of biotech cotton mixed with conventional cotton ranging from 0.1 to 10.0%. As a result, the biases from the true value and the relative deviations were all within the range of +/-20%. Limits of quantitation of the quantitative method were all 0.1%. Consequently, it is reported that the proposed detection methods were applicable for qualitative and quantitative analyses for biotech cotton MON 15985 and MON 88913.

  16. AMMONIA CONTROL AND NEUROCOGNITIVE OUTCOME AMONG UREA CYCLE DISORDER PATIENTS TREATED WITH GLYCEROL PHENYLBUTYRATE

    PubMed Central

    Diaz, George A.; Krivitzky, Lauren S.; Mokhtarani, Masoud; Rhead, William; Bartley, James; Feigenbaum, Annette; Longo, Nicola; Berquist, William; Berry, Susan A.; Gallagher, Renata; Lichter-Konecki, Uta; Bartholomew, Dennis; Harding, Cary O.; Cederbaum, Stephen; McCandless, Shawn E.; Smith, Wendy; Vockley, Gerald; Bart, Stephen A.; Korson, Mark S.; Kronn, David; Zori, Roberto; Merritt, J. Lawrence; Sreenath-Nagamani, Sandesh; Mauney, Joseph; LeMons, Cynthia; Dickinson, Klara; Moors, Tristen L.; Coakley, Dion F.; Scharschmidt, Bruce F.; Lee, Brendan

    2012-01-01

    Background Glycerol phenylbutyrate is under development for treatment of urea cycle disorders (UCDs), rare inherited metabolic disorders manifested by hyperammonemia and neurological impairment. Methods We report the results of a pivotal phase 3, randomized, double-blind, crossover trial comparing ammonia control, assessed as 24-hour area under the curve (NH3-AUC0-24hr), and pharmacokinetics during treatment with glycerol phenylbutyrate versus sodium phenylbutyrate (NaPBA) in adult UCD patients and the combined results of 4 studies involving short- and long-term glycerol phenylbutyrate treatment of UCD patients ages 6 and above. Results Glycerol phenylbutyrate was non-inferior to NaPBA with respect to ammonia control in the pivotal study, with mean (SD) NH3-AUC0-24hr of 866 (661) versus 977 (865) μmol·h/L for glycerol phenylbutyrate and NaPBA, respectively. Among 65 adult and pediatric patients completing 3 similarly designed short term comparisons of glycerol phenylbutyrate versus NaPBA, NH3-AUC0-24hr was directionally lower on glycerol phenylbutyrate in each study, similar among all subgroups, and significantly lower (p<0.05) in the pooled analysis, as was plasma glutamine. The 24-hour ammonia profiles were consistent with slow release behavior of glycerol phenylbutyrate and better overnight ammonia control. During 12 months of open label glycerol phenylbutyrate treatment, average ammonia was normal in adult and pediatric patients and executive function among pediatric patients, including behavioral regulation, goal setting, planning and self-monitoring, was significantly improved. Conclusions Glycerol phenylbutyrate exhibits favorable pharmacokinetics and ammonia control relative to NaPBA in UCD patients, and long-term glycerol phenylbutyrate treatment in pediatric patients was associated with improved executive function (ClinicalTrials.gov NCT00551200, NCT00947544, NCT00992459, NCT00947297). PMID:22961727

  17. L-Lactic acid production from glycerol coupled with acetic acid metabolism by Enterococcus faecalis without carbon loss.

    PubMed

    Murakami, Nao; Oba, Mana; Iwamoto, Mariko; Tashiro, Yukihiro; Noguchi, Takuya; Bonkohara, Kaori; Abdel-Rahman, Mohamed Ali; Zendo, Takeshi; Shimoda, Mitsuya; Sakai, Kenji; Sonomoto, Kenji

    2016-01-01

    Glycerol is a by-product in the biodiesel production process and considered as one of the prospective carbon sources for microbial fermentation including lactic acid fermentation, which has received considerable interest due to its potential application. Enterococcus faecalis isolated in our laboratory produced optically pure L-lactic acid from glycerol in the presence of acetic acid. Gas chromatography-mass spectrometry analysis using [1, 2-(13)C2] acetic acid proved that the E. faecalis strain QU 11 was capable of converting acetic acid to ethanol during lactic acid fermentation of glycerol. This indicated that strain QU 11 restored the redox balance by oxidizing excess NADH though acetic acid metabolism, during ethanol production, which resulted in lactic acid production from glycerol. The effects of pH control and substrate concentration on lactic acid fermentation were also investigated. Glycerol and acetic acid concentrations of 30 g/L and 10 g/L, respectively, were expected to be appropriate for lactic acid fermentation of glycerol by strain QU 11 at a pH of 6.5. Furthermore, fed-batch fermentation with 30 g/L glycerol and 10 g/L acetic acid wholly exhibited the best performance including lactic acid production (55.3 g/L), lactic acid yield (0.991 mol-lactic acid/mol-glycerol), total yield [1.08 mol-(lactic acid and ethanol)]/mol-(glycerol and acetic acid)], and total carbon yield [1.06 C-mol-(lactic acid and ethanol)/C-mol-(glycerol and acetic acid)] of lactic acid and ethanol. In summary, the strain QU 11 successfully produced lactic acid from glycerol with acetic acid metabolism, and an efficient fermentation system was established without carbon loss. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Saccharomyces cerevisiae glycerol/H+ symporter Stl1p is essential for cold/near-freeze and freeze stress adaptation. A simple recipe with high biotechnological potential is given

    PubMed Central

    2010-01-01

    Background Freezing is an increasingly important means of preservation and storage of microbial strains used for many types of industrial applications including food processing. However, the yeast mechanisms of tolerance and sensitivity to freeze or near-freeze stress are still poorly understood. More knowledge on this regard would improve their biotechnological potential. Glycerol, in particular intracellular glycerol, has been assigned as a cryoprotectant, also important for cold/near-freeze stress adaptation. The S. cerevisiae glycerol active transporter Stl1p plays an important role on the fast accumulation of glycerol. This gene is expressed under gluconeogenic conditions, under osmotic shock and stress, as well as under high temperatures. Results We found that cells grown on STL1 induction medium (YPGE) and subjected to cold/near-freeze stress, displayed an extremely high expression of this gene, also visible at glycerol/H+ symporter activity level. Under the same conditions, the strains harbouring this transporter accumulated more than 400 mM glycerol, whereas the glycerol/H+ symporter mutant presented less than 1 mM. Consistently, the strains able to accumulate glycerol survive 25-50% more than the stl1Δ mutant. Conclusions In this work, we report the contribution of the glycerol/H+ symporter Stl1p for the accumulation and maintenance of glycerol intracellular levels, and consequently cell survival at cold/near-freeze and freeze temperatures. These findings have a high biotechnological impact, as they show that any S. cerevisiae strain already in use can become more resistant to cold/freeze-thaw stress just by simply adding glycerol to the broth. The combination of low temperatures with extracellular glycerol will induce the transporter Stl1p. This solution avoids the use of transgenic strains, in particular in food industry. PMID:21047428

  19. Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress

    PubMed Central

    Nordlander, Bodil; Klein, Dagmara; Hong, Kuk-Ki; Jacobson, Therese; Dahl, Peter; Schaber, Jörg; Nielsen, Jens; Hohmann, Stefan; Klipp, Edda

    2013-01-01

    We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2) and glycerol import (Stl1) and activates a regulatory enzyme in glycolysis (Pfk26/27). In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the regulation of the Fps1 glycerol facilitator. Taken together, we elucidated how different metabolic adaptation mechanisms cooperate and provide hypotheses for further experimental studies. PMID:23762021

  20. Effect of dietary crude glycerol level on ruminal fermentation in continuous culture and growth performance of beef calves.

    PubMed

    Ramos, M H; Kerley, M S

    2012-03-01

    Continuous culture and in vivo experiments were conducted to measure changes in ruminal fermentation and animal performance when crude glycerol was added to diets. For the continuous culture experiment (n = 6), diets consisted of 4 levels of crude glycerol (0, 5, 10, and 20%) that replaced corn grain. Dry matter and OM digestibility decreased linearly (P < 0.05) when crude glycerol increased in the diet, and no effect (P = 0.20 and 0.65, respectively) was observed for CP and NDF digestibility. Total VFA concentration and ammonia did not change (P > 0.05) due to crude glycerol level. Microbial efficiency increased quadratically (P = 0.012) as crude glycerol increased, whereas microbial N flow did not differ (P = 0.36) among treatments. As crude glycerol increased in the diet, crude glycerol digestibility decreased (P < 0.05). Seventy-two crossbred steer calves (250 ± 2.0 kg) were assigned to 4 treatments: 0, 5, 10, and 20% crude glycerol that replaced corn grain. Animals were fed for a total of 150 d. No differences (P = 0.08) between treatments were measured for DMI. Average daily gain and GF responded quadratically (P < 0.05), with 10% crude glycerol resulting in the greatest values. In the second in vivo experiment, 100 crossbred steer calves (300 ± 2.0 kg) were assigned to 5 treatments: 0, 5, 10, 12.5, or 15% crude glycerol replaced corn grain. Calves were fed for a total of 135 d. No significant differences (P > 0.05) were measured in growth performance. For Exp. 3, one hundred heifer calves (270 ± 2.0 kg) were assigned to 4 treatments: 0, 5, 10, or 20% crude glycerol that replaced hay. No differences (P > 0.05) were measured in animal performance. We concluded that crude glycerol addition to a diet did not negatively affect ruminal fermentation, and addition of up to 20% in concentrate and hay-based diets should not affect performance or carcass characteristics.

  1. Investigations in sonication-induced intensification of crude glycerol fermentation to dihydroxyacetone by free and immobilized Gluconobacter oxydans.

    PubMed

    Dikshit, Pritam Kumar; Kharmawlong, Gracel Joe; Moholkar, Vijayanand S

    2018-05-01

    This study reports crude glycerol fermentation by G. oxydans for dihydroxyacetone (DHA) production, and intensification of fermentation with sonication. Fermentation was carried out using both free and immobilized cells (on polyurethane foam support) for initial glycerol concentrations of 20, 30 and 50 g/L. Sonication at 20% duty cycle enhanced glycerol consumption by 60-84% with no significant change in cell morphology. Lesser DHA yield in crude glycerol fermentation was attributed to possible formation of inhibitory products. Slight reduction in DHA yield for initial glycerol concentration of 50 g/L was attributed to substrate inhibition. Higher DHA productivity was obtained for immobilized cells. Circular dichroism analysis of intracellular proteins obtained from ultrasound-treated G. oxydans revealed significant reduction in α-helix and β-sheet content. These conformational changes in protein structure could augment activity of intracellular glycerol dehydrogenase, which is manifested in terms of enhanced metabolism of glycerol by G. oxydans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Combinations of glycerol percent, glycerol equilibration time, and thawing rate upon freezability of bull spermatozoa in plastic straws.

    PubMed

    Wiggin, H B; Almquist, J O

    1975-03-01

    Twelve ejaculates were used in a central composite experiment to test 15 combinations of glycerol (7, 9, 11, 13, or 15%), glycerol equilibration times (1, 2, 4, 8, or 16 h) and thawing rates (water at 35 C for 15 s, 50 C for 13 s, 65 C for 11 s, 80 C for 9 s, or 95 C for 7 s). Semen was diluted in heated skim milk-glycerol, packaged in .3-ml. Continental U.S. straws and frozen in liquid nitrogen vapor. Based on post-thaw progressive sperm motility after storage at -196 C for 9 to 11 days, estimated optima from multiple regression were 10.7% for glycerol, 2.0 h for glycerol equilibration time, and 76 C for thawing bath temperature. Only the linear effect for each variable was significant. Much faster thawing rates and shorter glycerol equilibration times than those for freezing bull spermatozoa in glass ampules should be used for maximum post-thaw sperm motility in straws.

  3. Preliminary Evaluation of Glyceric Acid-producing Ability of Acidomonas methanolica NBRC104435 from Glycerol Containing Methanol.

    PubMed

    Sato, Shun; Kitamoto, Dai; Habe, Hiroshi

    2017-06-01

    Some acetic acid bacteria produce large amounts of glyceric acid (GA) from glycerol in culture broth. However, methanol, which is a major contaminant of raw glycerol derived from the biodiesel fuel industry, sharply decreases cell growth and GA production [AMB Express, 3, 20, 2013]. Thus, we evaluated the methylotrophic acetic acid bacterium Acidomonas methanolica NBRC104435 for its ability to produce GA from glycerol containing methanol. This strain accumulated GA in its culture broth when 1-3 wt% glycerol was available as a carbon source. We observed improved cell growth and GA accumulation when 1 vol% methanol was added to the 3-5 wt% glycerol medium. The maximum concentration of GA was 12.8 g/L in medium containing 3 wt% glycerol plus 1 vol% methanol. In addition, the enantiomeric excess (ee) of the GA produced was revealed to be 44%, indicating that this strain converted glycerol to d-GA with a lower enantioselectivity than other acetic acid bacteria, which had 70-99% ee.

  4. Enhancing Effect of Glycerol on the Tensile Properties of Bombyx mori Cocoon Sericin Films

    PubMed Central

    Zhang, Haiping; Deng, Lianxia; Yang, Mingying; Min, Sijia; Yang, Lei; Zhu, Liangjun

    2011-01-01

    An environmental physical method described herein was developed to improve the tensile properties of Bombyx mori cocoon sericin films, by using the plasticizer of glycerol, which has a nontoxic effect compared with other chemical crosslinkers. The changes in the tensile characteristics and the structure of glycerolated (0–40 wt% of glycerol) sericin films were investigated. Sericin films, both in dry and wet states, showed enhanced tensile properties, which might be regulated by the addition of different concentrations of glycerol. The introduction of glycerol results in the higher amorphous structure in sericin films as evidenced by analysis of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra, thermogravimetry (TGA) and differential scanning calorimetry (DSC) curves. Scanning Electron Microscopy (SEM) observation revealed that glycerol was homogeneously blended with sericin molecules when its content was 10 wt%, while a small amount of redundant glycerol emerged on the surface of sericin films when its content was increased to 20 wt% or higher. Our results suggest that the introduction of glycerol is a novel nontoxic strategy which can improve the mechanical features of sericin-based materials and subsequently promote the feasibility of its application in tissue engineering. PMID:21686177

  5. Enhancing effect of glycerol on the tensile properties of Bombyx mori cocoon sericin films.

    PubMed

    Zhang, Haiping; Deng, Lianxia; Yang, Mingying; Min, Sijia; Yang, Lei; Zhu, Liangjun

    2011-01-01

    An environmental physical method described herein was developed to improve the tensile properties of Bombyx mori cocoon sericin films, by using the plasticizer of glycerol, which has a nontoxic effect compared with other chemical crosslinkers. The changes in the tensile characteristics and the structure of glycerolated (0-40 wt% of glycerol) sericin films were investigated. Sericin films, both in dry and wet states, showed enhanced tensile properties, which might be regulated by the addition of different concentrations of glycerol. The introduction of glycerol results in the higher amorphous structure in sericin films as evidenced by analysis of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectra, thermogravimetry (TGA) and differential scanning calorimetry (DSC) curves. Scanning Electron Microscopy (SEM) observation revealed that glycerol was homogeneously blended with sericin molecules when its content was 10 wt%, while a small amount of redundant glycerol emerged on the surface of sericin films when its content was increased to 20 wt% or higher. Our results suggest that the introduction of glycerol is a novel nontoxic strategy which can improve the mechanical features of sericin-based materials and subsequently promote the feasibility of its application in tissue engineering.

  6. Surface modification of thin film composite reverse osmosis membrane by glycerol assisted oxidation with sodium hypochlorite

    NASA Astrophysics Data System (ADS)

    Raval, Hiren D.; Samnani, Mohit D.; Gauswami, Maulik V.

    2018-01-01

    Need for improvement in water flux of thin film composite (TFC) RO membrane has been appreciated by researchers world over and surface modification approach is found promising to achieve higher water flux and solute rejection. Thin film composite RO membrane was exposed to 2000 mg/l sodium hypochlorite solution with varying concentrations of glycerol ranging from 1 to 10%. It was found that there was a drop in concentration of sodium hypochlorite after the addition of glycerol because of a new compound resulted from the oxidation of glycerol with sodium hypochlorite. The water flux of the membrane treated with 1% glycerol with 2000 mg/l sodium hypochlorite for 1 h was about 22% more and salt rejection was 1.36% greater than that of only sodium hypochlorite treated membrane for the same concentration and time. There was an increase in salt rejection of membrane with increase in concentration of glycerol from 1% to 5%, however, increasing glycerol concentration further up to 10%, the salt rejection declined. The water flux was found declining from 1% glycerol solution to 10% glycerol solution. The membrane samples were characterized to understand the change in chemical structure and morphology of the membrane.

  7. Pregnancy and pentobarbital anaesthesia modify hepatic synthesis of acylglycerol glycerol and glycogen from gluconeogenic precursors during fasting in rats.

    PubMed Central

    Zorzano, A; Herrera, E

    1988-01-01

    1. Incorporation of gluconeogenic precursors into blood glucose and hepatic glycogen and acylglycerol glycerol was examined in 24 h-fasted virgin rats by using a flooding procedure for substrate administration. At 10 min after their intravenous injection, the conversion of alanine or glycerol into liver glycogen or acylglycerol glycerol was proportional to glucose synthesis. 2. In 24 h-fasted 21-day-pregnant rats, the incorporation of alanine and glycerol into hepatic acylglycerol glycerol was markedly enhanced compared with the control group. In addition, during fasting at late pregnancy, the proportion of substrates directed to acylglycerol glycerol as compared with the fraction incorporated into glucose was augmented. 3. In pentobarbital-treated fasted rats, the incorporation of both alanine and pyruvate into circulating glucose and into hepatic glycogen and acylglycerol glycerol was increased. Pentobarbital treatment increased the proportion of substrates incorporated into liver glycogen, compared with the fraction appearing in circulating glucose. These changes were concomitant with a marked accumulation of glycogen. 4. The data indicate that, during fasting, gluconeogenesis provides glucose as well as hepatic glycogen and acylglycerol glycerol, independently of whether the substrates enter gluconeogenesis at the level of pyruvate or dihydroxyacetone phosphate. PMID:3223926

  8. The effect of cryoprotectant on kangaroo sperm ultrastructure and mitochondrial function.

    PubMed

    McClean, Rhett; Holt, William V; Zee, Yeng Peng; Lisle, Allan; Johnston, Stephen D

    2008-12-01

    This study examined the effect of cryoprotectants (20% DMSO, a 10% DMSO/10% glycerol mixture, 20% glycerol and 1M sucrose solution) on kangaroo sperm structure and function, along with the effect of varying concentrations of glycerol on sperm mitochondrial function. Eastern grey kangaroo cauda epididymidal spermatozoa were incubated for 10 min at 35 degrees C in each cryoprotectant and the plasma membrane integrity (PMI) and motility assessed using light microscopy. The same samples were fixed for TEM and the ultrastructural integrity of the spermatozoa examined. To investigate the effect of glycerol on the kangaroo sperm mitochondrial function, epididymidal spermatozoa were incubated with JC-1 in Tris-citrate media at 35 degrees C for 20 min in a range of glycerol concentrations (0%, 5%, 10%, 15% and 20%) and the mitochondrial membrane potential (MMP) and plasma membrane integrity determined. As expected, incubation of spermatozoa in 20% glycerol for 10 min resulted in a significant reduction in motility, PMI and ultrastructural integrity. Interestingly, incubation in 20% DMSO resulted in no significant reduction in motility or PMI but a significant loss of structural integrity when compared to the control spermatozoa (0% cryoprotectant). However, 20% DMSO was overall less damaging to sperm ultrastructure than glycerol, a combination of 10% glycerol and 10% DMSO, and sucrose. While all glycerol concentrations had an adverse effect on mitochondrial function, the statistical models presented for the relationship between MMP and glycerol predicted that spermatozoa, when added to 20% glycerol, would lose half of their initial MMP immediately at 35 degrees C and MMP would halve after 19.4 min at 4 degrees C. Models for the relationship between PMI and glycerol predicted that spermatozoa would lose half of their initial PMI after 1.8 min at 35 degrees C and PMI would halve after 21.1 min at 4 degrees C. These results suggest that if glycerol is to be used as a cryoprotectant for kangaroo spermatozoa then it is best administered at 4 degrees C and that mitochondrial function is more sensitive to glycerol than PMI. Future research should be directed at investigating strategies that reduce exposure of spermatozoa to glycerol during processing and that test the cryoprotective properties of 20% DMSO for kangaroo spermatozoa.

  9. Rheological properties of purified illite clays in glycerol/water suspensions

    NASA Astrophysics Data System (ADS)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  10. Valorization of glycerol through the production of biopolymers: the PHB case using Bacillus megaterium.

    PubMed

    Naranjo, Javier M; Posada, John A; Higuita, Juan C; Cardona, Carlos A

    2013-04-01

    In this work technical and economic analyses were performed to evaluate the glycerol transformation into Polyhydroxybutyrate using Bacillus megaterium. The production of PHB was compared using glycerol or glucose as substrates and similar yields were obtained. The total production costs for PHB generation with both substrates were estimated at an industrial scale. Compared to glucose, glycerol showed a 10% and 20% decrease in the PHB production costs using two different separation schemes respectively. Moreover, a 20% profit margin in the PHB sales price using glycerol as substrate resulted in a 166% valorization of crude glycerol. In this work, the feasibility of glycerol as feedstock for the production of PHB at laboratory (up to 60% PHB accumulation) and industrial (2.6US$/kgPHB) scales is demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Roles of Sugar Alcohols in Osmotic Stress Adaptation. Replacement of Glycerol by Mannitol and Sorbitol in Yeast1

    PubMed Central

    Shen, Bo; Hohmann, Stefan; Jensen, Richard G.; Bohnert, and Hans J.

    1999-01-01

    For many organisms there is a correlation between increases of metabolites and osmotic stress tolerance, but the mechanisms that cause this protection are not clear. To understand the role of polyols, genes for bacterial mannitol-1-P dehydrogenase and apple sorbitol-6-P dehydrogenase were introduced into a Saccharomyces cerevisiae mutant deficient in glycerol synthesis. Sorbitol and mannitol provided some protection, but less than that generated by a similar concentration of glycerol generated by glycerol-3-P dehydrogenase (GPD1). Reduced protection by polyols suggested that glycerol had specific functions for which mannitol and sorbitol could not substitute, and that the absolute amount of the accumulating osmoticum might not be crucial. The retention of glycerol and mannitol/sorbitol, respectively, was a major difference. During salt stress, cells retained more of the six-carbon polyols than glycerol. We suggest that the loss of >98% of the glycerol synthesized could provide a safety valve that dissipates reducing power, while a similar high intracellular concentration of retained polyols would be less protective. To understand the role of glycerol in salt tolerance, salt-tolerant suppressor mutants were isolated from the glycerol-deficient strain. One mutant, sr13, partially suppressed the salt-sensitive phenotype of the glycerol-deficient line, probably due to a doubling of [K+] accumulating during stress. We compare these results to the “osmotic adjustment” concept typically applied to accumulating metabolites in plants. The accumulation of polyols may have dual functions: facilitating osmotic adjustment and supporting redox control. PMID:10482659

  12. Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

    USDA-ARS?s Scientific Manuscript database

    One refined and 2 crude glycerol samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. Fermentation conditions were determined to efficiently utilize glycerol while maintaining PHB yields. A batch culture protocol including 1% glycerol and an aerati...

  13. Synthesis, characterization and nanocomposite formation of poly(glycerol succinate-co-maleate) with cellulose nanowhiskers

    USDA-ARS?s Scientific Manuscript database

    A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with cellulose nanowhiskers. This glycerol-based polymer is thermally stable as...

  14. Synthesis of isotopically labeled R- or S-[.sup.13C, .sup.2H] glycerols

    DOEpatents

    Martinez, Rodolfo A [Santa Fe, NM; Unkefer, Clifford J [Los Alamos, NM; Alvarez, Marc A [Santa Fe, NM

    2008-01-22

    The present invention is directed to asymmetric chiral labeled glycerols including at least one chiral atom, from one to two .sup.13C atoms and from zero to four deuterium atoms bonded directly to a carbon atom, e.g., (2S) [1,2-.sup.13C.sub.2]glycerol and (2R) [1,2-.sup.13C.sub.2]glycerol, and to the use of such chiral glycerols in the preparation of labeled amino acids.

  15. Evaluation of tensile properties and water absortion of cassava starch film

    NASA Astrophysics Data System (ADS)

    Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.

    2017-09-01

    Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.

  16. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylated fatty acid esters of glycerol and... DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.850 Lactylated fatty acid esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and...

  17. Production of arabitol from glycerol: strain screening and study of factors affecting production yield

    USDA-ARS?s Scientific Manuscript database

    Glycerol is a major byproduct from biodiesel production, and developing new uses for glycerol is imperative to overall economics and sustainability of the biodiesel industry. With the aim of producing xylitol and/or arabitol as the value-added products from glycerol, 214 yeast strains, many osmotole...

  18. The Effect of Glycerol Ingestion on Performance during Simulated Multisport Activity

    ERIC Educational Resources Information Center

    Knight, Christopher; Braakhuis, Andrea; Paton, Carl

    2010-01-01

    Glycerol-induced hyperhydration has been applied to endurance sport with limited success as a performance enhancement strategy. Glycerol has been used as a hyperhydrating agent, because it has been shown to be rapidly absorbed and osmotically active; therefore, the fluid intake with glycerol is distributed throughout the body. Hyperhydration with…

  19. Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus pythium irregulare

    USDA-ARS?s Scientific Manuscript database

    Crude glycerol is a major byproduct for the biodiesel industry. Producing value-added products through microbial fermentation on crude glycerol provides opportunities to utilize a large quantity of this byproduct. The objective of this study is to explore the potential of using crude glycerol for ...

  20. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Lactylated fatty acid esters of glycerol and... DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.850 Lactylated fatty acid esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and...

  1. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration.

    PubMed

    Lerbret, Adrien; Affouard, Frédéric

    2017-10-12

    Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast (∼picosecond-nanosecond, ps-ns) and small-amplitude (∼Å) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme/trehalose/glycerol (LTG) and trehalose/glycerol (TG) mixtures at low glycerol and water concentrations. Upon addition of glycerol and/or water, the glass transition temperature, T g , of LTG and TG mixtures decreases, the molecular packing of glasses is improved, and the mean-square displacements (MSDs) of lysozyme and trehalose either decrease or increase, depending on the time scale and on the temperature considered. A detailed analysis of the hydrogen bonds (HBs) formed between species reveals that water and glycerol may antiplasticize the fast dynamics of lysozyme and trehalose by increasing the total number and/or the strength of the HBs they form in glassy matrices.

  2. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    PubMed

    Ho, Ping-Wei; Klein, Mathias; Futschik, Matthias; Nevoigt, Elke

    2018-05-01

    Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.

  3. Glycerol Enhances the Antifungal Activity of Dairy Propionibacteria

    PubMed Central

    Lind, Helena; Broberg, Anders; Jacobsson, Karin; Jonsson, Hans; Schnürer, Johan

    2010-01-01

    Dairy propionibacteria are widely used in starter cultures for Swiss type cheese. These bacteria can ferment glucose, lactic acid, and glycerol into propionic acid, acetic acid, and carbon dioxide. This research examined the antifungal effect of dairy propionibacteria when glycerol was used as carbon source for bacterial growth. Five type strains of propionibacteria were tested against the yeast Rhodotorula mucilaginosa and the molds Penicillium commune and Penicillium roqueforti. The conversion of 13C glycerol by Propionibacterium jensenii was followed with nuclear magnetic resonance. In a dual culture assay, the degree of inhibition of the molds was strongly enhanced by an increase in glycerol concentrations, while the yeast was less affected. In broth cultures, decreased pH in glycerol medium was probably responsible for the complete inhibition of the indicator fungi. NMR spectra of the glycerol conversion confirmed that propionic acid was the dominant metabolite. Based on the results obtained, the increased antifungal effect seen by glycerol addition to cultures of propionibacteria is due to the production of propionic acid and pH reduction of the medium. PMID:21331381

  4. Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor.

    PubMed

    Carvalho, Margarida; Matos, Mariana; Roca, Christophe; Reis, Maria A M

    2014-01-25

    Glycerol, a highly abundant byproduct of the biodiesel industry, constitutes today a cheap feedstock for biobased succinic acid (SA) production. Actinobacillus succinogenes is one of the best SA producers. However, glycerol consumption by this biocatalyst is limited because of a redox imbalance during cell growth. The use of an external electron acceptor may improve the metabolism of SA synthesis by A. succinogenes in glycerol. In this study, the effect of dimethylsulfoxide (DMSO), an electron acceptor, on glycerol consumption and SA production by A. succinogenes under controlled fermentation conditions was investigated. Concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by A. succinogenes. During fed-batch cultivation, SA concentration reached 49.62 g/L, with a product yield of 0.87 gSA/gGLR and a maximum production rate of 2.31 gSA/Lh, the highest values so far reported in the literature for A. succinogenes using glycerol as carbon source. These results show that using DMSO as external electron acceptor significantly promotes glycerol consumption and succinic acid production by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effects of DMSO and glycerol additives on the property of polyamide reverse osmosis membrane.

    PubMed

    Wu, Fengjing; Liu, Xiaojuan; Au, Chaktong

    2016-10-01

    The polyamide reverse osmosis (RO) membranes were prepared through interfacial polymerization of m-phenylenediamine (MPD) and trimesoyl chloride (TMC). The use of dimethyl sulfoxide (DMSO) and glycerol as additives for the formation of thin-film composite (TFC) was investigated. We studied the effect of DMSO and glycerol addition on membrane property and RO performance. Microscopic morphology was examined by atomic force microscopy and scanning electron microscopy. The surface hydrophilicity was characterized on the basis of water contact angle and surface solid-liquid interfacial free energy (-ΔG SL ). Water flux and salt rejection ability of the membranes prepared with or without the additives were evaluated by cross-flow RO tests. The results reveal that the addition of DMSO and glycerol strongly influences the property of the TFC RO membrane. Compared to the MPD/TMC membrane fabricated without DMSO and glycerol, the MPD/TMC/DMSO/glycerol membrane has a rougher surface and is more hydrophilic, showing smaller water contact angle and larger -ΔG SL value. Without decrease in salt rejection ability, the MPD/TMC/DMSO/glycerol membrane shows water flux significantly larger than that of the MPD/TMC membrane. The unique property of the MPD/TMC/DMSO/glycerol membrane is attributed to the cooperative effect of DMSO and glycerol on membrane structure during the interfacial polymerization process.

  6. Dynamic OCT monitoring and quantification of light penetration enhancement for normal, benign and cancerous human lung tissues at different concentrations of glycerol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu-wen Tan; Ying Jin; Hui Yu

    2013-10-31

    We have evaluated the dynamic effects of the analyte diffusion on the 1/e light penetration depths of normal, benign and cancerous human lung tissue in vitro, as well as have monitored and quantified the dynamic change in the light penetration depths of the mentioned human lung tissue after application of 25 % and 50 % glycerol solution, respectively. The light penetration depths of the analyte diffusion in the lung tissue are measured using the Fourierdomain optical coherence tomography (FD-OCT). Experimental results show that the application of glycerol as a chemical agent can significantly enhance light penetration depths into the humanmore » normal lung (NL), lung benign granulomatosis (LBG) and lung squamous cell carcinoma (LSCC) tissue. In-depth transport of the glycerol molecules in the NL, LBG and LSCC tissue at a lower glycerol concentration (25 %) are faster than those at a higher glycerol concentration (50 %), and the 1/e light penetration depths at a lower glycerol concentration (25 %) are smaller than those at a higher glycerol concentration (50 %), respectively. Their differences in the maximal 1/e light penetration depths of the NL, LBG and LSCC tissue at a higher and a lower glycerol concentrations were only 8.8 %, 6.8 % and 4.7 %, respectively. (biophotonics)« less

  7. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.

    PubMed

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-01-01

    This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.

  8. Energy recovery from waste glycerol by utilizing thermal water vapor plasma.

    PubMed

    Tamošiūnas, Andrius; Valatkevičius, Pranas; Gimžauskaitė, Dovilė; Jeguirim, Mejdi; Mėčius, Vladas; Aikas, Mindaugas

    2017-04-01

    Glycerol, considered as a waste feedstock resulting from biodiesel production, has received much attention in recent years due to its properties, which offer to recover energy. The aim of this study was to investigate the use of a thermal water vapor plasma for waste (crude) glycerol conversion to synthesis gas, or syngas (H 2  + CO). In parallel of crude glycerol, a pure glycerol (99.5%) was used as a reference material in order to compare the concentrations of the formed product gas. A direct current (DC) arc plasma torch stabilized by a mixture of argon/water vapor was utilized for the effective glycerol conversion to hydrogen-rich synthesis gas. It was found that after waste glycerol treatment, the main reaction products were gases with corresponding concentrations of H 2 50.7%, CO 23.53%, CO 2 11.45%, and CH 4 3.82%, and traces of C 2 H 2 and C 2 H 6 , which concentrations were below 0.5%. The comparable concentrations of the formed gas products were obtained after pure glycerol conversion-H 2 46.4%, CO 26.25%, CO 2 11.3%, and CH 4 4.7%. The use of thermal water vapor plasma producing synthesis gas is an effective method to recover energy from both crude and pure glycerol. The performance of the glycerol conversion system was defined in terms of the produced gas yield, the carbon conversion efficiency, the cold gas efficiency, and the specific energy requirements.

  9. Construction of an alternative glycerol-utilization pathway for improved β-carotene production in Escherichia coli.

    PubMed

    Guo, Jin-Ying; Hu, Kun-Le; Bi, Chang-Hao; Li, Qing-Yan; Zhang, Xue-Li

    2018-05-11

    Glycerol, which is an inevitable by-product of biodiesel production, is an ideal carbon source for the production of carotenoids due to its low price, good availability and chemically reduced status, which results in a low requirement for additional reducing equivalents. In this study, an alternative carbon-utilization pathway was constructed in Escherichia coli to enable more efficient β-carotene production from glycerol. An aldehyde reductase gene (alrd) and an aldehyde dehydrogenase gene (aldH) from Ralstonia eutropha H16 were integrated into the E. coli chromosome to form a novel glycerol-utilization pathway. The β-carotene specific production value was increased by 50% after the introduction of alrd and aldH. It was found that the glycerol kinase gene (garK), alrd and aldH were the bottleneck of the alternative glycerol metabolic pathway, and modulation of garK gene with an mRS library further increased the β-carotene specific production value by 13%. Finally, co-modulation of genes in the introduced aldH-alrd operon led to 86% more of β-carotene specific production value than that of the strain without the alternative glycerol-utilization pathway and the glycerol-utilization rate was also increased. In this work, β-carotene production of E. coli was significantly improved by constructing and optimizing an alternative glycerol-utilization pathway. This strategy can potentially be used to improve the production of other isoprenoids using glycerol as a cheap and abundant substrate, and therefore has industrial relevance.

  10. Determination of steady state and nonsteady-state glycerol kinetics in humans using deuterium-labeled tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beylot, M.; Martin, C.; Beaufrere, B.

    1987-04-01

    Using deuterium-labeled glycerol as tracer and gas-liquid chromatography-mass spectrometry techniques for the determination of isotopic enrichment, we have developed a simple and ethically acceptable method of determining glycerol appearance rate in humans under steady-state and nonsteady-state conditions. In normal subjects, the appearance rate of glycerol in the post-absorptive state was 2.22 +/- 0.20 mumol X kg-1 X min-1, a value in agreement with those reported in studies with radioactively labeled tracers. The ratio nonesterified fatty acid (NEFA) appearance rate/glycerol appearance rate ranged from 1.95 to 3.40. In insulin-dependent diabetic patients with a mild degree of metabolic control, the appearance ratemore » of glycerol was 2.48 +/- 0.29 mumol X kg-1 X min-1. The volume of distribution of glycerol, determined by the bolus injection technique, was (mean) 0.306 l X kg-1 in normal subjects and 0.308 l X kg-1 in insulin-independent diabetic patients. To evaluate the usefulness of the method for determination of glycerol kinetics in nonsteady-state conditions, we infused six normal subjects with natural glycerol and calculated the isotopically determined glycerol appearance rate using a single compartment model (volume of distribution 0.31 l X kg-1). During these tests, the expected glycerol appearance rates were successively 5.03 +/- 0.33, 7.48 +/- 0.39, 9.94 +/- 0.34, 7.48 +/- 0.39, and 5.03 +/- 0.33 mumol +/- kg-1 X min-1, whereas the corresponding isotopically determined appearance rates were 4.62 +/- 0.45, 6.95 +/- 0.56, 10.85 +/- 0.51, 7.35 +/- 0.34, and 5.28 +/- 0.12 mumol X kg-1 X min-1.« less

  11. Pyruvate Formate-Lyase Is Essential for Fumarate-Independent Anaerobic Glycerol Utilization in the Enterococcus faecalis Strain W11

    PubMed Central

    Ikegami, Yuki

    2014-01-01

    Although anaerobic glycerol metabolism in Enterococcus faecalis requires exogenous fumarate for NADH oxidation, E. faecalis strain W11 can metabolize glycerol in the absence of oxygen without exogenous fumarate. In this study, metabolic end product analyses and reporter assays probing the expression of enzymes involved in pyruvate metabolism were performed to investigate this fumarate-independent anaerobic metabolism of glycerol in W11. Under aerobic conditions, the metabolic end products of W11 cultured with glycerol were similar to those of W11 cultured with glucose. However, when W11 was cultured anaerobically, most of the glucose was converted to l-lactate, but glycerol was converted to ethanol and formate. During anaerobic culture with glycerol, the expression of the l-lactate dehydrogenase and pyruvate dehydrogenase E1αβ genes in W11 was downregulated, whereas the expression of the pyruvate formate-lyase (Pfl) and aldehyde/alcohol dehydrogenase genes was upregulated. These changes in the expression levels caused the change in the composition of end products. A pflB gene disruptant (Δpfl mutant) of W11 could barely utilize glycerol under anaerobic conditions, but the growth of the Δpfl mutant cultured with either glucose or dihydroxyacetone (DHA) under anaerobic conditions was the same as that of W11. Glucose metabolism and DHA generates one NADH molecule per pyruvate molecule, whereas glycerol metabolism in the dehydrogenation pathway generates two NADH molecules per pyruvate molecule. These findings demonstrate that NADH generated from anaerobic glycerol metabolism in the absence of fumarate is oxidized through the Pfl-ethanol fermentation pathway. Thus, Pfl is essential to avoid the accumulation of excess NADH during fumarate-independent anaerobic glycerol metabolism. PMID:24769696

  12. Recovery from glycerol-induced acute kidney injury is accelerated by suramin.

    PubMed

    Korrapati, Midhun C; Shaner, Brooke E; Schnellmann, Rick G

    2012-04-01

    Acute kidney injury (AKI) is a common and potentially life-threatening complication after ischemia/reperfusion and exposure to nephrotoxic agents. In this study, we examined the efficacy and mechanism(s) of suramin in promoting recovery from glycerol-induced AKI, a model of rhabdomyolysis-induced AKI. After intramuscular glycerol injection (10 ml of 50% glycerol per kilogram) into male Sprague-Dawley rats, serum creatinine maximally increased at 24 to 72 h and then decreased at 120 h. Creatinine clearance (CrCl) decreased 75% at 24 to 72 h and increased at 120 h. Suramin (1 mg/kg i.v.) administered 24 h after glycerol accelerated recovery of renal function as demonstrated by increased CrCl, decreased renal kidney injury molecule-1, and improved histopathology 72 h after glycerol injection. Suramin treatment decreased interleukin-1β (IL-1β) mRNA, transforming growth factor-β(1) (TGF-β(1)), phospho-p65 of nuclear factor-κB (NF-κB), and cleaved caspase-3 at 48 h compared with glycerol alone. Suramin treatment also decreased glycerol-induced activation of intracellular adhesion molecule-1 (ICAM-1) and leukocyte infiltration at 72 h. Urinary/renal neutrophil gelatinase-associated lipocalin 2 (NGAL) levels, hemeoxygenase-1 expression, and renal cell proliferation were increased by suramin compared with glycerol alone at 72 h. Mechanistically, suramin decreases early glycerol-induced proinflammatory (IL-1β and NF-κB) and growth inhibitory (TGF-β(1)) mediators, resulting in the prevention of late downstream inflammatory effects (ICAM-1 and leukocyte infiltration) and increasing compensatory nephrogenic repair. These results support the hypothesis that delayed administration of suramin is effective in abrogating apoptosis, attenuating inflammation, and enhancing nephrogenic repair after glycerol-induced AKI.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Cathy; Allum, Allison J.; Aizawa, Yasushi

    Glyceryl glucoside (GG, α-D-glucosyglycerol) is a natural glycerol derivative found in alcoholic drinks. Recently GG has been used as an alternative for glycerol in cosmetic products. However, the safety of using GG is still unclear. Currently, dimethyl sulfoxide (DMSO) and glycerol are wildly used in cryopreservation. Despite GG being a derivative of glycerol, the ability of GG in cryopreservation is still unknown. By using a system of Chinese Hamster Ovary cells (CHO), A549 cells and AG1522 cells, the study examined the cryoprotective effects of DMSO, glycerol and GG. Cytotoxic and genotoxic responses induced by the three chemicals were also investigated with CHOmore » to determine the safety of GG for cosmetic products. Our data suggests that GG has great cryopresearvation ability in the concentration of 30%–40% (v/v). For cytotoxic studies, DMSO showed the highest cytotoxicity above 3% (v/v) in cell doubling time delay among three chemicals. For the acute cytotoxicity with trypan blue dye exclusion assay, GG showed stronger cell killing effect within 24 h above 4% (v/v). For the continuous cytotoxicity with colony formation assay for 7 days, DMSO showed significantly reduced clonogenic ability above 2%. In genotoxicity studies, CHO treated with glycerol at 2% concentration induced three times higher frequencies of sister chromatid exchange (SCE) than background levels. GG did not induce significant amounts of SCE compared to background. Micronuclei formation was equally observed in the 2% and above concentrations of glycerol and GG. Our data showed that GG has significant effects on cryopreservation compared to DMSO. Glycerol and GG have similar cytotoxicity effects to CHO, but glycerol induced genotoxic responses in the same concentration. Therefore, we conclude that GG may be a safer alternative compound to glycerol in cosmetic products and safer alternative to DMSO in cryopreservation. -- Highlights: •Glyceryl Glucoside is low cytotoxicity and genotoxicity. •Glyceryl Glucoside is better cyroprotective agent than glycerol. •Glycerol has higher genotoxicity than Glyceryl Glucoside. •DMSO has higher cytotoxicity than Glyceryl Glucoside.« less

  14. Ammonia control and neurocognitive outcome among urea cycle disorder patients treated with glycerol phenylbutyrate.

    PubMed

    Diaz, George A; Krivitzky, Lauren S; Mokhtarani, Masoud; Rhead, William; Bartley, James; Feigenbaum, Annette; Longo, Nicola; Berquist, William; Berry, Susan A; Gallagher, Renata; Lichter-Konecki, Uta; Bartholomew, Dennis; Harding, Cary O; Cederbaum, Stephen; McCandless, Shawn E; Smith, Wendy; Vockley, Gerald; Bart, Stephen A; Korson, Mark S; Kronn, David; Zori, Roberto; Merritt, J Lawrence; C S Nagamani, Sandesh; Mauney, Joseph; Lemons, Cynthia; Dickinson, Klara; Moors, Tristen L; Coakley, Dion F; Scharschmidt, Bruce F; Lee, Brendan

    2013-06-01

    Glycerol phenylbutyrate is under development for treatment of urea cycle disorders (UCDs), rare inherited metabolic disorders manifested by hyperammonemia and neurological impairment. We report the results of a pivotal Phase 3, randomized, double-blind, crossover trial comparing ammonia control, assessed as 24-hour area under the curve (NH3 -AUC0-24hr ), and pharmacokinetics during treatment with glycerol phenylbutyrate versus sodium phenylbutyrate (NaPBA) in adult UCD patients and the combined results of four studies involving short- and long-term glycerol phenylbutyrate treatment of UCD patients ages 6 and above. Glycerol phenylbutyrate was noninferior to NaPBA with respect to ammonia control in the pivotal study, with mean (standard deviation, SD) NH3 -AUC0-24hr of 866 (661) versus 977 (865) μmol·h/L for glycerol phenylbutyrate and NaPBA, respectively. Among 65 adult and pediatric patients completing three similarly designed short-term comparisons of glycerol phenylbutyrate versus NaPBA, NH3 -AUC0-24hr was directionally lower on glycerol phenylbutyrate in each study, similar among all subgroups, and significantly lower (P < 0.05) in the pooled analysis, as was plasma glutamine. The 24-hour ammonia profiles were consistent with the slow-release behavior of glycerol phenylbutyrate and better overnight ammonia control. During 12 months of open-label glycerol phenylbutyrate treatment, average ammonia was normal in adult and pediatric patients and executive function among pediatric patients, including behavioral regulation, goal setting, planning, and self-monitoring, was significantly improved. Glycerol phenylbutyrate exhibits favorable pharmacokinetics and ammonia control relative to NaPBA in UCD patients, and long-term glycerol phenylbutyrate treatment in pediatric UCD patients was associated with improved executive function (ClinicalTrials.gov NCT00551200, NCT00947544, NCT00992459, NCT00947297). (HEPATOLOGY 2012). Copyright © 2012 American Association for the Study of Liver Diseases.

  15. Role of glycerol 3-phosphate and glycerophosphate acyltransferase in the nutritional control of hepatic triacylglycerol synthesis

    PubMed Central

    Declercq, Peter E.; Debeer, Luc J.; Mannaerts, Guy P.

    1982-01-01

    1. Glycerol 3-phosphate content of isolated hepatocytes from starved rats and of glycogen-depleted hepatocytes from fed rats was low and severely limited triacylglycerol synthesis. 2. Raising the glycerol 3-phosphate content by addition of precursors to the cells resulted in a hyperbolic-like relationship between triacylglycerol synthesis and cellular glycerol 3-phosphate content. Statistical analysis of the curves showed no significant differences between the nutritional states either at saturating or at subsaturating glycerol 3-phosphate content. 3. Vmax. of glycerophosphate acyltransferase measured in homogenized hepatocytes was decreased by 30–40% in starvation. There was no change in apparent Km for glycerol 3-phosphate. Since at saturating glycerol 3-phosphate content esterification rates in hepatocytes of both nutritional states were identical, the enzyme is not limiting esterification under this condition. 4. At subsaturating glycerol 3-phosphate content the flux through glycerophosphate acyltransferase necessarily limits esterification. Therefore one would expect a decrease in esterification in starvation under this condition. This was the case when triacylglycerol synthesis was plotted against intracellular glycerol 3-phosphate concentration, calculated from the cellular glycerol 3-phosphate content and the intracellular water space, which was smaller in hepatocytes from starved rats. 5. The data obtained in hepatocytes were extrapolated to the intact liver by using the number of parenchymal cells per g of liver as determined from marker-enzyme analysis and the liver weight per 100g body weight. The extrapolation suggested that glycerol 3-phosphate is limiting esterification in vivo for contents below 0.3–0.4 and 0.5–0.65μmol/g for livers from fed and starved animals respectively. Also for a given fatty acid load and a glycerol 3-phosphate content below 0.3μmol/g the liver may esterify less in the starved state. However, at the glycerol 3-phosphate contents measured in freeze-clamped livers (0.30 and 0.44μmol/g for the fed and starved state respectively), livers in both nutritional states seemed capable of esterifying similar amounts of fatty acids. PMID:7115324

  16. 77 FR 6103 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... City Power and Light GMO NITSA NOAS to be effective 12/1/2011. Filed Date: 1/30/12. Accession Number... Biomass, LLC, ReEnergy Sterling CT Limited Partnership, Bayonne Plant Holding, L.L.C., Camden Plant...

  17. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25.

    PubMed

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-11-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg(-1) GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25.

  18. Development and interlaboratory validation of quantitative polymerase chain reaction method for screening analysis of genetically modified soybeans.

    PubMed

    Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi

    2013-01-01

    A novel real-time polymerase chain reaction (PCR)-based quantitative screening method was developed for three genetically modified soybeans: RRS, A2704-12, and MON89788. The 35S promoter (P35S) of cauliflower mosaic virus is introduced into RRS and A2704-12 but not MON89788. We then designed a screening method comprised of the combination of the quantification of P35S and the event-specific quantification of MON89788. The conversion factor (Cf) required to convert the amount of a genetically modified organism (GMO) from a copy number ratio to a weight ratio was determined experimentally. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDR), respectively. The determined RSDR values for the method were less than 25% for both targets. We consider that the developed method would be suitable for the simple detection and approximate quantification of GMO.

  19. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed Central

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union. PMID:25880164

  20. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25

    PubMed Central

    Xu, Junyi; Zheng, Qiuyue; Yu, Ling; Liu, Ran; Zhao, Xin; Wang, Gang; Wang, Qinghua; Cao, Jijuan

    2013-01-01

    The loop-mediated isothermal amplification (LAMP) assay indicates a potential and valuable means for genetically modified organism (GMO) detection especially for its rapidity, simplicity, and low cost. We developed and evaluated the specificity and sensitivity of the LAMP method for rapid detection of the genetically modified (GM) maize T25. A set of six specific primers was successfully designed to recognize six distinct sequences on the target gene, including a pair of inner primers, a pair of outer primers, and a pair of loop primers. The optimum reaction temperature and time were verified to be 65°C and 45 min, respectively. The detection limit of this LAMP assay was 5 g kg−1 GMO component. Comparative experiments showed that the LAMP assay was a simple, rapid, accurate, and specific method for detecting the GM maize T25. PMID:24804053

  1. First application of a microsphere-based immunoassay to the detection of genetically modified organisms (GMOs): quantification of Cry1Ab protein in genetically modified maize.

    PubMed

    Fantozzi, Anna; Ermolli, Monica; Marini, Massimiliano; Scotti, Domenico; Balla, Branko; Querci, Maddalena; Langrell, Stephen R H; Van den Eede, Guy

    2007-02-21

    An innovative covalent microsphere immunoassay, based on the usage of fluorescent beads coupled to a specific antibody, was developed for the quantification of the endotoxin Cry1Ab present in MON810 and Bt11 genetically modified (GM) maize lines. In particular, a specific protocol was developed to assess the presence of Cry1Ab in a very broad range of GM maize concentrations, from 0.1 to 100% [weight of genetically modified organism (GMO)/weight]. Test linearity was achieved in the range of values from 0.1 to 3%, whereas fluorescence signal increased following a nonlinear model, reaching a plateau at 25%. The limits of detection and quantification were equal to 0.018 and 0.054%, respectively. The present study describes the first application of quantitative high-throughput immunoassays in GMO analysis.

  2. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations

    PubMed Central

    Leunda, Amaya; Baldo, Aline; Goossens, Martine; Huygen, Kris; Herman, Philippe; Romano, Marta

    2014-01-01

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed. PMID:26344627

  3. Raman and dielectric studies of GdMnO3 bulk ceramics synthesized from nano powders

    NASA Astrophysics Data System (ADS)

    Samantaray, S.; Mishra, D. K.; Roul, B. K.

    2017-05-01

    Nanocrystalline GdMnO3 (GMO) powders has been synthesized by a simple chemical route i. e. pyrophoric reaction technique and then sintered in the form of bulk pellet at 850°C for 24 hours by adopting slow step sintering schedule. It is observed that by reducing the particles size, chemical route enhances the mixing process as well as decreasing the sintering temperature to get single phase material system in compared to the polycrystalline sample prepared directly from the micron sized commercial powder. Raman spectroscopic studies confirm that the sample is in single phase without any detectable impurity. Frequency dependent dielectric properties i.e., dielectric constant (K) and dielectric loss (tanδ) of GMO ceramics sintered at 850°C for 24 hours were studied at room temperature. The sample showed high K value (˜2736) in the frequency of 100 Hz at room temperature.

  4. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations.

    PubMed

    Leunda, Amaya; Baldo, Aline; Goossens, Martine; Huygen, Kris; Herman, Philippe; Romano, Marta

    2014-06-16

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.

  5. Heterologous surface display on lactic acid bacteria: non-GMO alternative?

    PubMed

    Zadravec, Petra; Štrukelj, Borut; Berlec, Aleš

    2015-01-01

    Lactic acid bacteria (LAB) are food-grade hosts for surface display with potential applications in food and therapy. Alternative approaches to surface display on LAB would avoid the use of recombinant DNA technology and genetically-modified organism (GMO)-related regulatory requirements. Non-covalent surface display of proteins can be achieved by fusing them to various cell-wall binding domains, of which the Lysine motif domain (LysM) is particularly well studied. Fusion proteins have been isolated from recombinant bacteria or from their growth medium and displayed on unmodified bacteria, enabling heterologous surface display. This was demonstrated on non-viable cells devoid of protein content, termed bacteria-like particles, and on various species of genus Lactobacillus. Of the latter, Lactobacillus salivarius ATCC 11741 was recently shown to be particularly amenable for LysM-mediated display. Possible regulatory implications of heterologous surface display are discussed, particularly those relevant for the European Union.

  6. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examiningmore » specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.« less

  7. Feruloyl glycerol and 1,3-diferuloyl glycerol antioxidant behavior in phospholipid vesicles

    USDA-ARS?s Scientific Manuscript database

    Enzymatically synthesized feruloyl¬-sn¬-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (F2G) were both found to partition and incorporate well into 1,2-dioleoylphosphocholine vesicles. Incorporation resulted in vesicles that were as or slightly more stable than the unloaded ones. FG and F2G both demon...

  8. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors.

    PubMed

    Bagnato, Giuseppe; Iulianelli, Adolfo; Sanna, Aimaro; Basile, Angelo

    2017-03-23

    Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield.

  9. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors

    PubMed Central

    Bagnato, Giuseppe; Iulianelli, Adolfo; Sanna, Aimaro; Basile, Angelo

    2017-01-01

    Glycerol represents an emerging renewable bio-derived feedstock, which could be used as a source for producing hydrogen through steam reforming reaction. In this review, the state-of-the-art about glycerol production processes is reviewed, with particular focus on glycerol reforming reactions and on the main catalysts under development. Furthermore, the use of membrane catalytic reactors instead of conventional reactors for steam reforming is discussed. Finally, the review describes the utilization of the Pd-based membrane reactor technology, pointing out the ability of these alternative fuel processors to simultaneously extract high purity hydrogen and enhance the whole performances of the reaction system in terms of glycerol conversion and hydrogen yield. PMID:28333121

  10. Validation of a newly developed hexaplex real-time PCR assay for screening for presence of GMOs in food, feed and seed.

    PubMed

    Bahrdt, C; Krech, A B; Wurz, A; Wulff, D

    2010-03-01

    For years, an increasing number and diversity of genetically modified plants has been grown on a commercial scale. The need for detection and identification of these genetically modified organisms (GMOs) calls for broad and at the same time flexible high throughput testing methods. Here we describe the development and validation of a hexaplex real-time polymerase chain reaction (PCR) screening assay covering more than 100 approved GMOs containing at least one of the GMO targets of the assay. The assay comprises detection systems for Cauliflower Mosaic Virus 35S promoter, Agrobacterium tumefaciens NOS terminator, Figwort Mosaic Virus 34S promoter and two construct-specific sequences present in novel genetically modified soybean and maize that lack common screening elements. Additionally a detection system for an internal positive control (IPC) indicating the presence or absence of PCR inhibiting substances was included. The six real-time PCR systems were allocated to five detection channels showing no significant crosstalk between the detection channels. As part of an extensive validation, a limit of detection (LOD(abs)) < or = ten target copies was proven in hexaplex format. A sensitivity < or = ten target copies of each GMO detection system was still shown in highly asymmetric target situations in the presence of 1,000 copies of all other GMO targets of each detection channel. Furthermore, the applicability to a broad sample spectrum and reliable indication of inhibition by the IPC system was demonstrated. The presented hexaplex assay offers sensitive and reliable detection of GMOs in processed and unprocessed food, feed and seed samples with high efficiency.

  11. Development of methods for cryopreservation of rooster sperm from the endangered breed "Gallina Valenciana de Chulilla" using low glycerol concentrations.

    PubMed

    Blanch, E; Tomás, C; Casares, L; Gómez, E A; Sansano, S; Giménez, I; Mocé, E

    2014-06-01

    Glycerol (11%; v:v) is the cryoprotectant most often used for the cryopreservation of rooster sperm. However, chicken breeds differ in the resistance of their sperm to the cryopreservation process and endangered or local breeds usually present low fertilizing ability when conventional sperm cryopreservation protocols are used. The objective of this study was to optimize the protocol for the cryopreservation of the sperm from the endangered breed "Gallina Valenciana de Chulilla". For this purpose, 10 pools of semen from 43 roosters of this breed were cryopreserved using 8%, 7%, 6%, or 4% glycerol, and the sperm quality was determined immediately after thawing and in the insemination doses. Lohmann Brown Classic laying hens (n = 40) were used for the insemination trials. The sperm quality after cryopreservation progressively decreased as the glycerol concentration was reduced (P < 0.01); samples frozen using 4% glycerol exhibited the lowest quality (38% total motile sperm and 49% live sperm), and samples frozen using 8% glycerol exhibited the highest quality (67% total motile sperm and 66% live sperm). These differences were also observed after the glycerol was removed (P < 0.01). However, the sperm fertilizing ability was similar for all the treatments (23%-30% fertilized eggs), and increased as the glycerol concentration decreased. In conclusion, semen from roosters frozen using 4% glycerol exhibited lower sperm quality but similar fertilizing ability compared with samples processed using higher glycerol concentrations. These results may provide useful information for developing cryopreservation protocols for other breeds. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Fermentative utilization of glycerol residue for the production of acetic acid

    NASA Astrophysics Data System (ADS)

    Irvan; Trisakti, B.; Hasibuan, R.; Joli, M.

    2018-02-01

    Glycerol residue, frequently known as pitch, is a waste produced from the downstream product of crude glycerine distillation. With the increasing need of pure glycerine in the world, the glycerol residue produced is also increasing. Glycerol residue is a solid waste at room temperature, highly alkaline (pH > 13), corrosive, and categorized as hazardous and poisonous waste. In this research, acetic acid was produced from glycerol residue through the anaerobic fermentation process by using purple non-sulphur photosynthetic bacteria. The purpose of this study was to find out the influence of concentration change of glycerol residue on time and to find out the possibility of glycerol residue to be utilized as acetic acid. In this research, at first 400 g of glycerol residue was diluted with 200 ml of distilled water to change the glycerine phase, from solid to liquid at room temperature, acidified by using hydrochloric acid until pH 2. The top layer formed was fatty acid and triglycerides that should be removed. Meanwhile, the bottom layer was diluted glycerol residue which was then neutralized with caustic soda. To produce acetic acid, glycerol residue with various concentrations, salt, and purple non-sulphur photosynthetic bacteria were put together into a 100 ml bottle which had been previously sterilized, then incubated for four weeks under the light of 40-watt bulb. The result showed that on the 28th day of fermentation, the produced acetic acid were 0.28, 1.85, and 0.2% (w/w) by using glycerine with the concentration of 0.5, 1.0, and 1.5% (w/w), respectively.

  13. Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7.

    PubMed

    Kim, Hyun Jung; Shin, Bora; Lee, Yun Suk; Park, Woojun

    2017-08-01

    Extracellular polymeric substance (EPS) is proposed to facilitate calcium ion supersaturation through its nucleation effect during the microbially induced calcium carbonate precipitation (MICP) process. However, the supersaturation effect of Ca 2+ via EPS in MICP has not been clearly demonstrated. Enhanced exopolysaccharide production of the alkali- and halotolerant MICP-capable bacteria, Bacillus sp. JH7, was achieved through glycerol addition. This was demonstrated by measuring cellular precipitation and Congo red binding. Interestingly, field emission scanning electron microscopy and energy-dispersive X-ray spectrometry analysis demonstrated that there was no MICP under glycerol-amended conditions. Although glycerol promoted exopolysaccharide capture of Ca 2+ ions, Ca 2+ embedded onto EPS did not participate in MICP formation. The pH was reduced in glycerol-added media, which led us to analyze high acetate production under our test conditions. Purified glycerol-induced exopolysaccharide showed a higher capacity of Ca 2+ capture than the control. Quantitative RT-PCR analysis showed that three genes involved in exopolysaccharide production were highly upregulated by glycerol. The amounts of three detected monosaccharides (arabinose, glucose, and mannose) were altered by glycerol. Cell hydrophobicity measurements indicated that glycerol could confer more hydrophilic characteristics to cells, which might enhance Ca 2+ binding onto EPS. Unexpectedly, our data demonstrated, for the first time, that glycerol could promote exopolysaccharide and acetate production under our test condition, which could inhibit MICP by reducing the availability of free Ca 2+ .

  14. Effects of transforming growth factor-β1 treatment on muscle regeneration and adipogenesis in glycerol-injured muscle.

    PubMed

    Mahdy, Mohamed A A; Warita, Katsuhiko; Hosaka, Yoshinao Z

    2017-11-01

    Transforming growth factor (TGF)-β1 is associated with fibrosis in many organs. Recent studies demonstrated that delivery of TGF-β1 into chemically injured muscle enhances fibrosis. In this study, we investigated the effects of exogenous TGF-β1 on muscle regeneration and adipogenesis in glycerol-injured muscle of normal mice. Tibialis anterior (TA) muscles were injured by glycerol injection. TGF-β1 was either co-injected with glycerol, as an 'early treatment' group, or injected at day 4 after glycerol, as a 'late treatment' group and the TA muscles were collected at day 7 after initial injury. Myotube density was significantly lower in the early treatment group than in the glycerol-injured group (without TGF-β1 treatment). Moreover, the Oil red O-positive area was significantly smaller in the early treatment group than in the late treatment group and glycerol-injured group. Furthermore, TGF-β1 treatment increased endomysial fibrosis and induced immunostaining of α-smooth muscle actin. The greater inhibitory effects of early TGF-β1 treatment than that of late TGF-β1 treatment during regeneration in glycerol-injured muscle suggest a more potent effect of TGF-β1 on the initial stage of muscle regeneration and adipogenesis. Combination of TGF-β1 with glycerol might be an alternative to enhance muscle fibrosis for future studies. © 2017 Japanese Society of Animal Science.

  15. Determining Atmospheric Pressure with a Eudiometer and Glycerol

    ERIC Educational Resources Information Center

    Brody, Jed; Rohald, Kate; Sutton, Atasha

    2010-01-01

    We consider a volume of air trapped over a glycerol column in a eudiometer. We demonstrate that there is an approximately linear relationship between the volume of trapped air and the height of the glycerol column. Simply by moving the eudiometer up and down, we cause the glycerol-column height and trapped-air volume to vary. The plot of volume…

  16. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol.

    PubMed

    Wang, Zei Wen; Saini, Mukesh; Lin, Li-Jen; Chiang, Chung-Jen; Chao, Yun-Peng

    2015-11-04

    Crude glycerol resulting from biodiesel production is an abundant and renewable resource. However, the impurities in crude glycerol usually make microbial fermentation problematic. This issue was addressed by systematic engineering of Escherichia coli for the production of d-lactate from crude glycerol. First, mgsA and the synthetic pathways of undesired products were eliminated in E. coli, rendering the strain capable of homofermentative production of optically pure d-lactate. To direct carbon flux toward d-lactate, the resulting strain was endowed with an enhanced expression of glpD-glpK in the glycerol catabolism and of a heterologous gene encoding d-lactate dehydrogenase. Moreover, the strain was evolved to improve its utilization of cruder glycerol and subsequently equipped with the FocA channel to export intracellular d-lactate. Finally, the fed-batch fermentation with two-phase culturing was carried out with a bioreactor. As a result, the engineered strain enabled production of 105 g/L d-lactate (99.9% optical purity) from 121 g/L crude glycerol at 40 h. The result indicates the feasibility of our approach to engineering E. coli for the crude glycerol-based fermentation.

  17. The Effect of Created Local Hyperosmotic Microenvironment in Microcapsule for the Growth and Metabolism of Osmotolerant Yeast Candida krusei

    PubMed Central

    Chen, Guo; Yao, Shanjing

    2013-01-01

    Candida krusei is osmotolerant yeast used for the production of glycerol. Addition of osmolyte such as NaCl into culture medium can increase the production of glycerol from glucose, but osmolytes may burden the glycerol separation. A coencapsulation method was suggested to create local extracellular hyperosmotic stress for glycerol accumulation. Firstly, the influence of osmotic stress induced by the addition of PEG4000 on growth and metabolism of free cell was studied in detail. Glycerol accumulation could be improved by employing PEG4000 as osmoregulator. Secondly, cells and PEG4000 were coentrapped in NaCS/PDMDAAC capsules to create local hyperosmotic stress. The effects of local hyperosmotic microenvironment on the cell growth and metabolism were studied. The coentrapment method increased the glycerol concentration by 25%, and the glycerol concentration attained 50 gL−1 with productivity of 18.8 gL−1Day−1 in shake flask. More importantly, the glycerol could be directly separated from the encapsulated cells. The entrapped cells containing PEG4000 were also cultivated for 15 days in an airlift reactor. The yield and productivity were ca. 35% and 21 gL−1Day−1, respectively. PMID:24294610

  18. The effect of created local hyperosmotic microenvironment in microcapsule for the growth and metabolism of osmotolerant yeast Candida krusei.

    PubMed

    Chen, Guo; Yao, Shanjing

    2013-01-01

    Candida krusei is osmotolerant yeast used for the production of glycerol. Addition of osmolyte such as NaCl into culture medium can increase the production of glycerol from glucose, but osmolytes may burden the glycerol separation. A coencapsulation method was suggested to create local extracellular hyperosmotic stress for glycerol accumulation. Firstly, the influence of osmotic stress induced by the addition of PEG4000 on growth and metabolism of free cell was studied in detail. Glycerol accumulation could be improved by employing PEG4000 as osmoregulator. Secondly, cells and PEG4000 were coentrapped in NaCS/PDMDAAC capsules to create local hyperosmotic stress. The effects of local hyperosmotic microenvironment on the cell growth and metabolism were studied. The coentrapment method increased the glycerol concentration by 25%, and the glycerol concentration attained 50 gL⁻¹ with productivity of 18.8 gL⁻¹Day⁻¹ in shake flask. More importantly, the glycerol could be directly separated from the encapsulated cells. The entrapped cells containing PEG4000 were also cultivated for 15 days in an airlift reactor. The yield and productivity were ca. 35% and 21 gL⁻¹Day⁻¹, respectively.

  19. Effect of solvent volume ratio and time extraction of glycerol purification

    NASA Astrophysics Data System (ADS)

    Sinaga, M. S.; Rico, G.; Nababan, A. N.; Manullang, T. A.

    2018-02-01

    Glycerol as a byproduct of biodiesel production about 10% of the biodiesel weight. Impurities which contained in the glycerol such as catalyst, soap, methanol, water, salt, and matter organic nonglycerol (MONG) on have a significant effect on the glycerol concentration. So, it is necessary to treat the impurities. The purpose of this study is to know the effect of ethylene glycol to glycerol purification process with acidification method using phosphoric acid aspretreatment process. This research was begun with an acid addition to the glycerol to neutralize the base content and to split the soap content into free fatty acid and salt, which easier separated from glycerol. Then the process was continued with extraction by the solvent ethylene glycol using the variable of test volume ratio (v/v) (1:0,5, 1:1, 1:1,5) and the extraction time (20, 40, and 60 minutes). The results showed that the more volume of solvent used, gave less extraction time to produce high purity of glycerol. The highest purity produced in this study amounted to 90.646% is obtained at the ratio of the volume solvent (v/v) 1:1 with extraction time 60 minutes.

  20. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry.

    PubMed

    Yazdani, Syed Shams; Gonzalez, Ramon

    2007-06-01

    Although biofuels such as biodiesel and bioethanol represent a secure, renewable and environmentally safe alternative to fossil fuels, their economic viability is a major concern. The implementation of biorefineries that co-produce higher value products along with biofuels has been proposed as a solution to this problem. The biorefinery model would be especially advantageous if the conversion of byproducts or waste streams generated during biofuel production were considered. Glycerol-rich streams generated in large amounts by the biofuels industry, especially during the production of biodiesel, present an excellent opportunity to establish biorefineries. Once considered a valuable 'co-product', crude glycerol is rapidly becoming a 'waste product' with a disposal cost attributed to it. Given the highly reduced nature of carbon in glycerol and the cost advantage of anaerobic processes, fermentative metabolism of glycerol is of special interest. This review covers the anaerobic fermentation of glycerol in microbes and the harnessing of this metabolic process to convert abundant and low-priced glycerol streams into higher value products, thus creating a path to viability for the biofuels industry. Special attention is given to products whose synthesis from glycerol would be advantageous when compared with their production from common sugars.

  1. Glycerol in micellar confinement with tunable rigidity

    NASA Astrophysics Data System (ADS)

    Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael

    2016-12-01

    We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

  2. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey

    PubMed Central

    Yalcin, Seda Karasu; Yesim Ozbas, Z.

    2008-01-01

    The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL−1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL−1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30°C. Optimum temperature range for glycerol production was determined as 25-30°C for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30°C. Maximum glycerol concentrations at 30°C were obtained as 8.5 and 7.6 gL−1 for Kalecik 1 and Narince 3, respectively. PMID:24031225

  3. Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents.

    PubMed

    Pazhang, Mohammad; Mehrnejad, Faramarz; Pazhang, Yaghub; Falahati, Hanieh; Chaparzadeh, Nader

    2016-01-01

    The effect of glycerol and sorbitol on the stability of porcine pancreas trypsin was investigated in this work. Molecular dynamics simulation and thermostability results showed that trypsin has two flexible regions, and polyols (sorbitol and glycerol) stabilize the enzyme by decreasing the flexibility of these regions. Radial distribution function results exhibited that sorbitol and glycerol were excluded from the first water layer of the enzyme, therefore decrease the flexibility of the regions by preferential exclusion. Also, results showed that the stabilization effect of sorbitol is more than glycerol. This observation could be because of the larger decrease in the fluctuations of trypsin in the presence of sorbitol. We also examined the role of solvent's hydrophobicity in enzyme stabilization by sorbitol and glycerol. To do so, the thermostability of trypsin was evaluated in the presence of solvents with different hydrophobicity (methanol, ethanol, isopropanol and n-propanol) in addition to the polyols. Our results depicted that glycerol is a better stabilizer than sorbitol in the presence of hydrophobic solvents (n-propanol), whereas sorbitol is a better stabilizer than glycerol in the presence of hydrophilic solvents (methanol). © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  4. Glycerol as an additional carbon source for bacterial cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Agustin, Y. E.; Padmawijaya, K. S.; Rixwari, H. F.; Yuniharto, V. A. S.

    2018-03-01

    Bacterial cellulose, the fermentation result of Acetobacter xylinus can be produced when glycerol was used as an additional carbon source. In this research, bacterial cellulose produced in two different fermentation medium, Hestrin and Scharmm (HS) medium and HS medium with additional MgSO4. Concentration of glycerol that used in this research were 0%; 5%; 10%; and 15% (v/v). The optimum conditions of bacterial cellulose production on each experiment variations determined by characterization of the mechanical properties, including thickness, tensile strength and elongation. Fourier Transform Infra Red Spectroscopy (FTIR) revealed the characterization of bacterial cellulose. Results showed that the growth rate of bacterial cellulose in HS-MgSO4-glycerol medium was faster than in HS-glycerol medium. Increasing concentrations of glycerol will lower the value of tensile strength and elongation. Elongation test showed that the elongation bacterial cellulose (BC) with the addition of 4.95% (v/v) glycerol in the HS-MgSO4 medium is the highest elongation value. The optimum bacterial cellulose production was achieved when 4.95% (v/v) of glycerol added into HS-MgSO4 medium with stress at break of 116.885 MPa and 4.214% elongation.

  5. Glycerol Production by Fermenting Yeast Cells Is Essential for Optimal Bread Dough Fermentation

    PubMed Central

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M.; Verstrepen, Kevin J.

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts. PMID:25764309

  6. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.

    PubMed

    Kanno, Masahiro; Atsumi, Shota

    2017-01-20

    Cyanobacteria have attracted much attention as a means to directly recycle carbon dioxide into valuable chemicals that are currently produced from petroleum. However, the titers and productivities achieved are still far below the level required in industry. To make a more industrially applicable production scheme, glycerol, a byproduct of biodiesel production, can be used as an additional carbon source for photomixotrophic chemical production. Glycerol is an ideal candidate due to its availability and low cost. In this study, we found that a heterologous glycerol respiratory pathway enabled Synechococcus elongatus PCC 7942 to utilize extracellular glycerol. The engineered strain produced 761 mg/L of 2,3-butanediol in 48 h with a 290% increase over the control strain under continuous light conditions. Glycerol supplementation also allowed for continuous cell growth and 2,3-butanediol production in diurnal light conditions. These results highlight the potential of glycerol as an additional carbon source for photomixotrophic chemical production in cyanobacteria.

  7. Dynamics of Lysozyme in a Glycerol-Water system

    NASA Astrophysics Data System (ADS)

    Ghatty, Pavan; Carri, Gustavo

    2007-03-01

    Bio-preservation of proteins is of great commercial and academic interest. A variety of sugars have been found to be effective in preserving the structure of proteins. This has been attributed and in some cases proved to their ability to form strong hydrogen bonds with proteins thus restricting their motion. The work presented here explores the hypothesis that glycerol, a tri-alcohol curbs the motion of protein. We have carried out a 10ns Molecular Dynamics simulation to study the phenomenon. The structure of Lysozyme (PDB code 193L) has been studied in three solutions of 10, 20 and 30 % by weight of glycerol in water. Glycerol molecules in all three solutions have shown a tendency to agglomerate around the protein. Strong hydrogen bonding has also been observed between glycerol molecules and the protein. With increasing time, the g(r) of glycerol molecules around proteins shows two peaks with increasing prominence suggesting the movement of glycerol cluster to positions closer to the protein surface.

  8. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    PubMed

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  9. Dimethylformamide is not better than glycerol for cryopreservation of boar semen.

    PubMed

    Malo, C; Gil, L; Cano, R; Martínez, F; García, A; Jerez, R A

    2012-05-01

    To improve the boar sperm cryopreservation process, the influence of the sugar (lactose, trehalose) source and the cryoprotectant [glycerol, dimethylformamide (DMF)] on the success of freezing was investigated. Sperm samples were frozen in one of six extenders: lactose plus 3% glycerol (LG); lactose plus 1.5% glycerol and 1.5% DMF (LGD); lactose plus 3% DMF (LD); trehalose plus 3% glycerol (TG); trehalose plus 1.5% glycerol and 1.5% DMF (TGD); trehalose plus 3% DMF (TD). Effects on motility, viability, acrosome integrity and hypoosmotic test (HOST) were measured. The results showed that extender containing 3% glycerol retained the highest motility percentages. In regard to viability and acrosome integrity, all extenders yielded similar rates except for the decreasing values of TD. Endosmosis was diminished in TD and LD at 2 h (P = 0.0018), as compared with the others. The results of the study demonstrated that the use of DMF as a cryoprotectant adversely affected boar sperm quality after cryopreservation. © 2011 Blackwell Verlag GmbH.

  10. Lipase-catalyzed simultaneous biosynthesis of biodiesel and glycerol carbonate from corn oil in dimethyl carbonate.

    PubMed

    Min, Ji Young; Lee, Eun Yeol

    2011-09-01

    Biodiesel [fatty acid methyl esters (FAMEs)] and glycerol carbonate were synthesized from corn oil and dimethyl carbonate (DMC) via transesterification using lipase (Novozyme 435) in solvent-free reaction in which excess DMC was used as the substrate and reaction medium. Glycerol carbonate was also simultaneously formed from DMC and glycerol. Conversions of FAMEs and glycerol carbonate were examined in batch reactions. The FAMEs and glycerol carbonate reached 94 and 62.5% from oil and DMC (molar ratio of 1:10) with 0.2% (v/v) water and 10% (w/w) Novozyme 435 (based on oil weight) at 60 °C. When Novozyme 435 was washed with acetone after each reaction, more than 80% activity still remained after seven recycling. © Springer Science+Business Media B.V. 2011

  11. Hybrid regimes of knowledge? Challenges for constructing scientific evidence in the context of the GMO-debate.

    PubMed

    Böschen, Stefan

    2009-07-01

    Over the last two decades, there has been a remarkable shift of attention to the scientific and political fundamentals of the precautionary principle. The application of this principle has become a main strategy of coping with the different forms and problems related to non-knowledge. Thus, societies are increasingly confronted with the challenging and hitherto unresolved problem of political and technological decision-making under conditions of diverging framings of non-knowledge. At present, there seems to be no generally accepted scientific or institutional approach. This is why the fundamental question of how different scientific actors define and construct evidence is not answered yet. Hence, this paper is based on the consideration that the conflicts in risk policy concerning genetically modified organisms (GMO) depend on the unresolved conflicts about the diverging scientific strategies and structures of evidence-making between the epistemic cultures involved. Thus, this study investigates two questions: (1) do the epistemic strategies of evidence-making differ systematically with the scientific actors involved in the GMO-debate? (2) What consequences emerge considering institutionalized procedures of decision-making? This article is based on a secondary analysis of findings and perspectives reported in the literature and on the methods of qualitative social empirical research, i.e., interviews with experts. A total number of 34 interviews were conducted to explore the different strategies of handling non-knowledge and constructing evidence. Actors from science, administration, business and NGOs were interviewed. In this way, typical epistemic cultures can be described. An epistemic culture is the constellation of methodological strategies, theoretical assumptions and practical-experimental settings which define in every speciality the ways how we know what we know. There are two main results. Firstly, it was worked out that the epistemic cultures involved in the GMO-debate use rather distinct strategies to define non-knowledge and to classify evidence. There are three types of constructing evidence, which correspond to different types of epistemic cultures. Secondly, the findings imply that the intensity of the conflicts in risk policy fields like the GMO-debate is due to a lack of knowledge politics. Usually, knowledge politics is restricted to the design of institutional procedures to compile knowledge provided by experts. The institutional setting of risk analysis and risk management is based on the premise of strict separation between knowledge and power. However, inadmissible mixing-up of knowledge and power is observable. It seems that non-knowledge leads to an epistemic no man's land, and, hence, hybrid regimes of knowledge emerge. These regimes are hybrid with respect to the unclear and not explicitly reflected strategies of evidence-making. By lacking of knowledge politics, this situation opens up 'windows of opportunity' for actors with special interests in risk policy fields like the GMO-debate. Therefore, there is a difference between the visible institutionalized structures of risk policies and the rather invisible hybrid regimes of knowledge. Structure and scope of expertise have to be reflected and new instruments of knowledge politics have to be designed. Different epistemic cultures can be qualified by describing their particular strategies of evidence-making. To solve the conflicts between these strategies, a meta-expertise is needed. Besides the institutionalized settings of knowledge politics, the underlying hybrid regimes of knowledge have to be identified. The concept of epistemic cultures and their strategies of evidence-making should be investigated more explicitly with respect to other risk policy fields The analysis of hybrid regimes of knowledge should be deepened by looking at the complex interactions between institutional, discursive and practical rules affecting risk assessment.

  12. An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.

    PubMed

    Mahadevan, Aishwarya; Fernando, Sandun

    2017-06-15

    An improved glycerol biosensor was developed via direct attachment of NAD + -glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH 4 ) 2 SO 4 and MnCl 2 ·4H 2 O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH 4 ) 2 SO 4 and 0.3µm MnCl 2 ·4H 2 O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH 4 ) 2 SO 4 and 30µm MnCl 2 ·4H 2 O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Cryopreservation of spermatozoa from wild-born Namibian cheetahs (Acinonyx jubatus) and influence of glycerol on cryosurvival.

    PubMed

    Crosier, Adrienne E; Pukazhenthi, Budhan S; Henghali, Josephine N; Howard, Jogayle; Dickman, Amy J; Marker, Laurie; Wildt, David E

    2006-04-01

    Sperm cryopreservation is a valuable tool for the genetic management of ex situ populations. This study was conducted to assess: (1) semen characteristics of wild-born cheetahs; and (2) the impact of three types of glycerol influence (duration of exposure, temperature, and method of addition) on sperm cryosensitivity. To evaluate the impact of duration of glycerol exposure, spermatozoa were incubated in Test Yolk Buffer (TYB) with 4% glycerol at ambient temperature (approximately 22 degrees C) for 15 vs. 60 min before cryopreservation. To evaluate the influence of temperature and method of glycerol addition, spermatozoa were resuspended at ambient temperature either in TYB with 0% glycerol followed by addition of 8% glycerol (1:1 v/v; at ambient temperature vs. 5 degrees C) or directly in TYB with 4% glycerol. All samples were cryopreserved in straws over liquid nitrogen vapor and evaluated for sperm motility and acrosomal integrity after thawing. Semen samples (n = 23; n = 13 males) contained a high proportion (78%) of pleiomorphic spermatozoa. Ejaculates also contained a high proportion of acrosome-intact (86%) and motile spermatozoa (78%). Immediately after thawing, a significant proportion of spermatozoa retained intact acrosomes (range, 48-67%) and motility (range, 40-49%). After thawing, incubation in glycerol for 60 min at ambient temperature before freezing decreased (p < 0.05) sperm motility and acrosomal integrity at one time-point each (pre-centrifugation and post-centrifugation, respectively). However, method or temperature of glycerol addition had no (p > 0.05) impact on sperm cryosurvival. In summary, (1) wild-born cheetahs produce high proportions of pleiomorphic spermatozoa but with a high proportion of intact acrosomes; and (2) resuspension in 4% glycerol, followed by exposure for up to 60 min at ambient temperature, had minimal effect on sperm motility and acrosomal integrity after cryopreservation. Results indicate the feasibility of cryopreserving cheetah spermatozoa under field conditions, providing a user-friendly method to capture and store gametes to enhance genetic management.

  14. L-lactate production from biodiesel-derived crude glycerol by metabolically engineered Enterococcus faecalis: cytotoxic evaluation of biodiesel waste and development of a glycerol-inducible gene expression system.

    PubMed

    Doi, Yuki

    2015-03-01

    Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD(+) ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h(-1) (1.6 g liter(-1) h(-1)). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Physiological and genetic differences amongst Rhodococcus species for using glycerol as a source for growth and triacylglycerol production.

    PubMed

    Herrero, O Marisa; Moncalián, Gabriel; Alvarez, Héctor M

    2016-02-01

    We analysed the ability of five different rhodococcal species to grow and produce triacylglycerols (TAGs) from glycerol, the main byproduct of biodiesel production. Rhodococcus fascians and Rhodococcus erythropolis grew fast on glycerol, whereas Rhodococcus opacus and Rhodococcus jostii exhibited a prolonged lag phase of several days before growing. Rhodococcus equi only exhibited poor growth on glycerol. R. erythropolis DSMZ 43060 and R. fascians F7 produced 3.9-4.3 g cell biomass l(-1) and 28.4-44.6% cellular dry weight (CDW) of TAGs after 6 days of incubation; whereas R. opacus PD630 and R. jostii RHA1 produced 2.5-3.8 g cell biomass l(-1) and 28.3-38.4% CDW of TAGs after 17 days of growth on glycerol. Genomic analyses revealed two different sets of genes for glycerol uptake and degradation (here named clusters 1 and 2) amongst rhodococci. Those species that possessed cluster 1 (glpFK1D1) (R. fascians and R. erythropolis) exhibited fast growth and lipid accumulation, whereas those that possessed cluster 2 (glpK2D2) (R. opacus, R. jostii and R. equi) exhibited delayed growth and lipid accumulation during cultivation on glycerol. Three glycerol-negative strains were complemented for their ability to grow and produce TAGs by heterologous expression of glpK2 from R. opacus PD630. In addition, we significantly reduced the extension of the lag phase and improved glycerol assimilation and oil production of R. opacus PD630 when expressing glpK1D1 from R. fascians. The results demonstrated that rhodococci are a flexible and amenable biological system for further biotechnological applications based on the reutilization of glycerol.

  16. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.

    PubMed

    Pyle, Denver J; Garcia, Rafael A; Wen, Zhiyou

    2008-06-11

    Crude glycerol is the primary byproduct of the biodiesel industry. Producing docosahexaenoic acid (DHA, 22:6 n-3) through fermentation of the alga Schizochytrium limacinum on crude glycerol provides a unique opportunity to utilize a large quantity of this byproduct. The objective of this work is to investigate the effects of impurities contained in the crude glycerol on DHA production and algal biomass composition. Crude glycerol streams were obtained from different biodiesel refineries. All of the glycerol samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soap were found to negatively influence algal DHA production; these two impurities can be removed from culture medium by evaporation through autoclaving (for methanol) and by precipitation through pH adjustment (for soap). The glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA were the two major fatty acids in the algal lipid. The algal biomass was rich in lysine and cysteine, relative to many common feedstuffs. Elemental analysis by inductively coupled plasma showed that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the biomass, whereas no heavy metals (such as mercury) were detected in the algal biomass. Overall, the results show that crude glycerol was a suitable carbon source for algal fermentation. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to that of commercial algal biomass, suggesting a great potential for using crude glycerol-derived algae in omega-3-fortified food or feed.

  17. Enhanced Product Recovery from Glycerol Fermentation into 3-Carbon Compounds in a Bioelectrochemical System Combined with In Situ Extraction.

    PubMed

    Roume, Hugo; Arends, Jan B A; Ameril, Camar P; Patil, Sunil A; Rabaey, Korneel

    2016-01-01

    Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol 1,3-PDO mol -1 glycerol ) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams.

  18. Enhanced Product Recovery from Glycerol Fermentation into 3-Carbon Compounds in a Bioelectrochemical System Combined with In Situ Extraction

    PubMed Central

    Roume, Hugo; Arends, Jan B. A.; Ameril, Camar P.; Patil, Sunil A.; Rabaey, Korneel

    2016-01-01

    Given the large amount of crude glycerol formed as a by-product in the biodiesel industries and the concomitant decrease in its overall market price, there is a need to add extra value to this biorefinery side stream. Upgrading can be achieved by new biotechnologies dealing with recovery and conversion of glycerol present in wastewaters into value-added products, aiming at a zero-waste policy and developing an economically viable process. In microbial bioelectrochemical systems (BESs), the mixed microbial community growing on the cathode can convert glycerol reductively to 1,3-propanediol (1,3-PDO). However, the product yield is rather limited in BESs compared with classic fermentation processes, and the synthesis of side-products, resulting from oxidation of glycerol, such as organic acids, represents a major burden for recovery of 1,3-PDO. Here, we show that the use of an enriched mixed-microbial community of glycerol degraders and in situ extraction of organic acids positively impacts 1,3-PDO yield and allows additional recovery of propionate from glycerol. We report the highest production yield achieved (0.72 mol1,3-PDO mol−1glycerol) in electricity-driven 1,3-PDO biosynthesis from raw glycerol, which is very close to the 1,3-PDO yield reported thus far for a mixed-microbial culture-based glycerol fermentation process. We also present a combined approach for 1,3-PDO production and propionate extraction in a single three chamber reactor system, which leads to recovery of additional 3-carbon compounds in BESs. This opens up further opportunities for an economical upgrading of biodiesel refinery side or waste streams. PMID:27725929

  19. Metabolic Engineering of a Glycerol-Oxidative Pathway in Lactobacillus panis PM1 for Utilization of Bioethanol Thin Stillage: Potential To Produce Platform Chemicals from Glycerol

    PubMed Central

    Kang, Tae Sun; Korber, Darren R.

    2014-01-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. PMID:25281374

  20. Metabolic engineering of a glycerol-oxidative pathway in Lactobacillus panis PM1 for utilization of bioethanol thin stillage: potential to produce platform chemicals from glycerol.

    PubMed

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-12-01

    Lactobacillus panis PM1 has the ability to produce 1,3-propanediol (1,3-PDO) from thin stillage (TS), which is the major waste material after bioethanol production, and is therefore of significance. However, the fact that L. panis PM1 cannot use glycerol as a sole carbon source presents a considerable problem in terms of utilization of this strain in a wide range of industrial applications. Accordingly, L. panis PM1 was genetically engineered to directly utilize TS as a fermentable substrate for the production of valuable platform chemicals without the need for exogenous nutrient supplementation (e.g., sugars and nitrogen sources). An artificial glycerol-oxidative pathway, comprised of glycerol facilitator, glycerol kinase, glycerol 3-phosphate dehydrogenase, triosephosphate isomerase, and NADPH-dependent aldehyde reductase genes of Escherichia coli, was introduced into L. panis PM1 in order to directly utilize glycerol for the production of energy for growth and value-added chemicals. A pH 6.5 culture converted glycerol to mainly lactic acid (85.43 mM), whereas a significant amount of 1,3-propanediol (59.96 mM) was formed at pH 7.5. Regardless of the pH, ethanol (82.16 to 83.22 mM) was produced from TS fermentations, confirming that the artificial pathway metabolized glycerol for energy production and converted it into lactic acid or 1,3-PDO and ethanol in a pH-dependent manner. This study demonstrates the cost-effective conversion of TS to value-added chemicals by the engineered PM1 strain cultured under industrial conditions. Thus, application of this strain or these research findings can contribute to reduced costs of bioethanol production. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. A population study of urine glycerol concentrations in elite athletes competing in North America.

    PubMed

    Kelly, Brian N; Madsen, Myke; Sharpe, Ken; Nair, Vinod; Eichner, Daniel

    2013-01-01

    Glycerol is an endogenous substance that is on the World Anti-Doping Agency's list of prohibited threshold substances due to its potential use as a plasma volume expansion agent. The WADA has set the threshold for urine glycerol, including measurement uncertainty, at 1.3 mg/mL. Glycerol in circulation largely comes from metabolism of triglycerides in order to meet energy requirements and when the renal threshold is eclipsed, glycerol is excreted into urine. In part due to ethnic differences in postprandial triglyceride concentrations, we investigated urine glycerol concentrations in a population of elite athletes competing in North America and compared the results to those of athletes competing in Europe. 959 urine samples from elite athletes competing in North America collected for anti-doping purposes were analyzed for urine glycerol concentrations by a gas chromatography mass-spectrometry method. Samples were divided into groups according to: Timing (in- or out-of-competition), Class (strength, game, or endurance sports) and Gender. 333 (34.7%) samples had undetectable amounts of glycerol (<1 μg/mL). 861 (89.8%) of the samples had glycerol concentrations ≤20 μg/mL. The highest glycerol concentration observed was 652 μg/mL. Analysis of the data finds the effects of each category to be statistically significant. The largest estimate of the 99.9(th) percentile, from the in-competition, female, strength athlete samples, was 1813 μg/mL with a 95% confidence range from 774 to 4251 μg/mL. This suggests a conservative threshold of 4.3 mg/mL, which would result in a reasonable detection window for urine samples collected in-competition for all genders and sport classes. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Metabolic changes induced during adaptation of Saccharomyces cerevisiae to a water stress.

    PubMed

    Singh, K K; Norton, R S

    1991-01-01

    When exponentially growing Saccharomyces cerevisiae was transferred from a normal high water activity growth medium (aw 0.997) to a medium containing 8% NaCl low water activity growth medium (aw 0.955), glycerol accumulation during the first eight hours of the adaptation was both retarded and greatly diminished in magnitude. Investigation of the underlying reasons for the slow onset of glycerol accumulation revealed that not only was overall glycerol production reduced by salt transfer, but also the rates of ethanol production and glucose consumption were reduced. Measurement of glycolytic intermediates revealed an accumulation of glucose-6-phosphate, fructose-6-phosphate, fructose 1,6 bisphosphate and phosphoenolpyruvate in S. cerevisiae 3 to 4 h after transfer to salt, suggesting that one or more glycolytic enzymes were inhibited. Potassium ions accumulated in S. cerevisiae after salt transfer and reached a maximum about 6 h after transfer, whereas the sodium ion content increased progressively during the adaptation period. The trehalose content also increased in adapting cells. It is suggested that inhibition of glycerol production during the initial period of adaptation could be due to either the inhibition of glycerol-3-phosphate dehydrogenase by increased cation content or the inhibition of glycolysis, glycerol being produced glycolytically in S. cerevisiae. The increased accumulation of glycerol towards the end of the 8-h period suggests that the osmoregulatory response of S. cerevisiae involves complex sets of adjustments in which inhibition of glycerol-3-phosphate dehydrogenase must be relieved before glycerol functions as a major osmoregulator.

  3. Respiratory glycerol metabolism of Actinobacillus succinogenes 130Z for succinate production.

    PubMed

    Schindler, Bryan D; Joshi, Rajasi V; Vieille, Claire

    2014-09-01

    Actinobacillus succinogenes 130Z naturally produces among the highest levels of succinate from a variety of inexpensive carbon substrates. A few studies have demonstrated that A. succinogenes can anaerobically metabolize glycerol, a waste product of biodiesel manufacture and an inexpensive feedstock, to produce high yields of succinate. However, all these studies were performed in the presence of yeast extract, which largely removes the redox constraints associated with fermenting glycerol, a highly reduced molecule. We demonstrated that A. succinogenes cannot ferment glycerol in minimal medium, but that it can metabolize glycerol by aerobic or anaerobic respiration. These results were expected based on the A. succinogenes genome, which encodes respiratory enzymes, but no pathway for 1,3-propanediol production. We investigated A. succinogenes's glycerol metabolism in minimal medium in a variety of respiratory conditions by comparing growth, metabolite production, and in vitro activity of terminal oxidoreductases. Nitrate inhibited succinate production by inhibiting fumarate reductase expression. In contrast, growth in the presence of dimethylsulfoxide and in microaerobic conditions allowed high succinate yields. The highest succinate yield was 0.75 mol/mol glycerol (75 % of the maximum theoretical yield) in continuous microaerobic cultures. A. succinogenes could also grow and produce succinate on partially refined glycerols obtained directly from biodiesel manufacture. Finally, by expressing a heterologous 1,3-propanediol synthesis pathway in A. succinogenes, we provide the first proof of concept that A. succinogenes can be engineered to grow fermentatively on glycerol.

  4. Application of glycerol as a foliar spray activates the defence response and enhances disease resistance of Theobroma cacao.

    PubMed

    Zhang, Yufan; Smith, Philip; Maximova, Siela N; Guiltinan, Mark J

    2015-01-01

    Previous work has implicated glycerol-3-phosphate (G3P) as a mobile inducer of systemic immunity in plants. We tested the hypothesis that the exogenous application of glycerol as a foliar spray might enhance the disease resistance of Theobroma cacao through the modulation of endogenous G3P levels. We found that exogenous application of glycerol to cacao leaves over a period of 4 days increased the endogenous level of G3P and decreased the level of oleic acid (18:1). Reactive oxygen species (ROS) were produced (a marker of defence activation) and the expression of many pathogenesis-related genes was induced. Notably, the effects of glycerol application on G3P and 18:1 fatty acid content, and gene expression levels, in cacao leaves were dosage dependent. A 100 mm glycerol spray application was sufficient to stimulate the defence response without causing any observable damage, and resulted in a significantly decreased lesion formation by the cacao pathogen Phytophthora capsici; however, a 500 mm glycerol treatment led to chlorosis and cell death. The effects of glycerol treatment on the level of 18:1 and ROS were constrained to the locally treated leaves without affecting distal tissues. The mechanism of the glycerol-mediated defence response in cacao and its potential use as part of a sustainable farming system are discussed. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  5. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase.

    PubMed

    Yu, Kyung Ok; Jung, Ju; Kim, Seung Wook; Park, Chul Hwan; Han, Sung Ok

    2012-01-01

    The high price of petroleum-based diesel fuel has led to the development of alternative fuels, such as ethanol. Saccharomyces cerevisiae was metabolically engineered to utilize glycerol as a substrate for ethanol production. For the synthesis of fatty acid ethyl esters (FAEEs) by engineered S. cerevisiae that utilize glycerol as substrate, heterologous expression of an unspecific acyltransferase from Acinetobacter baylyi with glycerol utilizing genes was established. As a result, the engineered YPH499 (pGcyaDak, pGupWs-DgaTCas) strain produced 0.24 g/L FAEEs using endogenous ethanol produced from glycerol. And this study also demonstrated the possibility of increasing FAEE production by enhancing ethanol production by minimizing the synthesis of glycerol. The overall FAEE production in strain YPH499 fps1Δ gpd2Δ (pGcyaDak, pGupWs-DgaTCas) was 2.1-fold more than in YPH499 (pGcyaDak, pGupWs-DgaTCas), with approximately 0.52 g/L FAEEs produced, while nearly 17 g/L of glycerol was consumed. These results clearly indicated that FAEEs were synthesized in engineered S. cerevisiae by esterifying exogenous fatty acids with endogenously produced ethanol from glycerol. This microbial system acts as a platform in applying metabolic engineering that allows the production of FAEEs from cheap and abundant substrates specifically glycerol through the use of endogenous bioethanol. Copyright © 2011 Wiley Periodicals, Inc.

  6. Analysis of the production process of optically pure D-lactic acid from raw glycerol using engineered Escherichia coli strains.

    PubMed

    Posada, John A; Cardona, Carlos A; Gonzalez, Ramon

    2012-02-01

    Glycerol has become an ideal feedstock for producing fuels and chemicals. Here, five technological schemes for optically pure D: -lactic acid production from raw glycerol were designed, simulated, and economically assessed based on five fermentative scenarios using engineered Escherichia coli strains. Fermentative scenarios considered different qualities of glycerol (pure, 98 wt.%, and crude, 85 wt.%) with concentrations ranging from 20 to 60 g/l in the fermentation media, and two fermentation stages were also analyzed. Raw glycerol (60 wt.%) was considered as the feedstock feeding the production process in all cases; then a purification process of raw glycerol up to the required quality was required. Simulation processes were carried out using Aspen Plus, while economic assessments were performed using Aspen Icarus Process Evaluator. D: -Lactic acid recovery and purification processes were based on reactive extraction with tri-n-octylamine using dichloromethane as active extractant agent. The use of raw glycerol represents only between 2.4% and 7.8% of the total production costs. Also, the total production costs obtained of D: -lactic acid in all cases were lower than its sale price indicating that these processes are potentially profitable. Thus, the best configuration process requires the use of crude glycerol diluted at 40 g/l with total glycerol consumption and with D: -lactic acid recovering by reactive extraction. The lowest obtained total production cost was 1.015 US$/kg with a sale price/production cost ratio of 1.53.

  7. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface.

    PubMed

    Crespo Tapia, Natalia; den Besten, Heidy M W; Abee, Tjakko

    2018-05-20

    Listeria monocytogenes is a food-borne pathogen that can grow as a biofilm on surfaces. Biofilm formation in food-processing environments is a big concern for food safety, as it can cause product contamination through the food-processing line. Although motile aerobic bacteria have been described to form biofilms at the air-liquid interface of cell cultures, to our knowledge, this type of biofilm has not been described in L. monocytogenes before. In this study we report L. monocytogenes biofilm formation at the air-liquid interface of aerobically grown cultures, and that this phenotype is specifically induced when the media is supplemented with glycerol as a carbon and energy source. Planktonic growth, metabolic activity assays and HPLC measurements of glycerol consumption over time showed that glycerol utilization in L. monocytogenes is restricted to growth under aerobic conditions. Gene expression analysis showed that genes encoding the glycerol transporter GlpF, the glycerol kinase GlpK and the glycerol 3-phosphate dehydrogenase GlpD were upregulated in the presence of oxygen, and downregulated in absence of oxygen. Additionally, motility assays revealed the induction of aerotaxis in the presence of glycerol. Our results demonstrate that the formation of biofilms at the air-liquid interface is dependent on glycerol-induced aerotaxis towards the surface of the culture, where L. monocytogenes has access to higher concentrations of oxygen, and is therefore able to utilize this compound as a carbon source. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    PubMed Central

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  9. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications

    PubMed Central

    Tan, A. C. W.; Polo‐Cambronell, B. J.; Provaggi, E.; Ardila‐Suárez, C.; Ramirez‐Caballero, G. E.; Baldovino‐Medrano, V. G.

    2017-01-01

    Abstract In the current study, we present the synthesis of novel low cost bio‐polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR‐FTIR, and X‐ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in‐vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co‐polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non‐toxic to the cells. This study opens an avenue for using low cost bio‐polyurethane based on castor oil and glycerol for biomedical applications. PMID:29159831

  10. Use of agar/glycerol and agar/glycerol/water as a translucent brain simulant for ballistic testing.

    PubMed

    Falland-Cheung, Lisa; Waddell, J Neil; Lazarjan, Milad Soltanipour; Jermy, Mark C; Winter, Taylor; Tong, Darryl; Brunton, Paul A

    2017-01-01

    The suitability of agar/glycerol/water and agar/glycerol mixtures as brain simulants was investigated. Test specimens (n=15) (50x27×37mm) were fabricated for these different mixtures and conditioned to 12°C, 22°C, and 26°C prior to testing. For comparison, fresh deer brain specimens (n=20) were sourced and prepared to the same dimensions as the agar/glycerol(/water) mixtures and conditioned to 12°C and 37°C. High impact tests were carried out with a 0.22-caliber air rifle pellet and a high-speed camera was used to record the projectile as it passed through the specimens, allowing for energy loss and vertical displacement velocity calculation. Although the agar/glycerol/water mixture presented with similar vertical expansion and contraction of the specimens to the warm and cold deer brains, a two-fold decrease of the vertical expansion and contraction was noticed with the agar/glycerol specimens. Also considerably less extrusion of this mixture out of the exit and entry sides after specimen penetration was observed. Of the simulants tested, agar/glycerol/water was the most suitable brain simulant for ballistic testing and impact studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Eco-friendly sonoluminescent determination of free glycerol in biodiesel samples.

    PubMed

    Diniz, Paulo Henrique Gonçalves Dias; Pistonesi, Marcelo Fabián; de Araújo, Mário César Ugulino; Band, Beatriz Susana Fernández

    2013-09-30

    This paper proposes a flow-batch methodology for the determination of free glycerol in biodiesel that is notably eco-friendly, since non-chemical reagents are used. Deionized water (the solvent) was used alone for glycerol (sample) extractions from the biodiesel. The same water was used to generate water-cavitation sonoluminescence signals, which were modulated by the quenching effect associated with the amount of extracted glycerol. The necessarily reproducible signal generation was achieved by using a simple and inexpensive piezoelectric device. A linear response was observed for glycerol within the 0.001-100 mg/L range, equivalent to 0.004-400 mg/kg free glycerol in biodiesel. The lowest measurable concentration of free glycerol was estimated at 1.0 µg/L. The selectivity of the proposed method was confirmed by comparing the shape and retention of both real and calibration samples to standard solution chromatograms, presenting no peaks other than glycerol. All samples (after extraction) are greatly diluted; this minimizes (toward non-detectability) potential interference effects. The methodology was successfully applied to biodiesel analysis at a high sampling rate, with neither reagent nor solvent (other than water), and with minimum waste generation. The results agreed with the reference method (ASTM D6584-07), at a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    PubMed

    Jitrwung, Rujira; Yargeau, Viviane

    2015-05-11

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  13. Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis.

    PubMed

    Yen, Hong-Wei; Yang, Ya-Chun; Yu, Yi-Huan

    2012-10-01

    Single cell oils (SCO) produced from oleaginous microorganisms are a potential alternative oil feedstock for biodiesel production. The worldwide production of glycerol, a 10% (w/w) byproduct produced in the transesterfication process of oils converted to biodiesel, is increasing as more biodiesel is being produced. For the purposes of cost reduction, crude glycerol was regarded as a suitable carbon source for the cultivation of Rhodotorula glutinis. In addition to using renewable crude glycerol, waste solution collected from the brewing company (called thin stillage) was adopted as a substitute to replace a costly nitrogen source used in the medium. The results of using mixture of crude glycerol and thin stillage indicated about a 27% increase in total biomass as compared to that of using crude glycerol with a standard medium. Using glycerol instead of glucose as the carbon source could also alter the lipid profile, resulting in an increase in linolenic acid (C18:2) to comprise over 20% of the total lipid. Successfully using renewable crude glycerol and thin stillage for the cultivation of oleaginous microorganisms could greatly enhance the economic competition of biodiesel produced from SCO. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology.

    PubMed

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.

  15. Optimisation and Characterisation of Lipase-Catalysed Synthesis of a Kojic Monooleate Ester in a Solvent-Free System by Response Surface Methodology

    PubMed Central

    Jumbri, Khairulazhar; Al-Haniff Rozy, Mohd Fahruddin; Ashari, Siti Efliza; Mohamad, Rosfarizan; Basri, Mahiran; Fard Masoumi, Hamid Reza

    2015-01-01

    Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost. PMID:26657030

  16. In Vitro Skin Penetration of Petrolatum and Soybean Oil and Effects of Glyceryl Monooleate.

    PubMed

    Intarakumhaeng, Rattikorn; Shi, Zhanquan; Wanasathop, Apipa; Stella, Q Ching; Wei, Karl S; Styczynski, P B; Li, Chuiying; Smith, Edward D; Li, S Kevin

    2018-06-06

    Petrolatum and soybean oil are common ingredients incorporated in topical skin formulations for skin protection and moisturization. However, the stratum corneum (SC) penetration kinetics of these two cosmetic ingredients has not been systematically studied. Glyceryl monooleate (GlyMOle) has been shown to enhance skin penetration of various compounds. It was hypothesized that GlyMOle could enhance skin penetration of petrolatum and soybean oil. The present study aimed to examine the in vitro skin penetration of petrolatum and soybean oil in the presence or absence of GlyMOle. Skin permeation experiments were conducted using the in vitro Franz diffusion cell model with split-thickness human skin and human epidermal membrane (HEM). The effect of permeant dose and the kinetics of permeant penetration were examined with and without GlyMOle in vitro. Petrolatum and soybean oil were found to permeate across HEM, and no effect of GlyMOle on skin permeation into the receptor chamber was observed. GlyMOle enhanced the penetration of petrolatum into the split-thickness skin at 50 μg dose (petrolatum:GlyMOle, 49:1, w/w). However, no effect of GlyMOle on petrolatum penetration was observed at 200 μg dose (petrolatum:GlyMOle, 49:1, w/w), indicating a dose-dependent effect. GlyMOle at the level used in the study did not enhance the penetration of soybean oil with 50 and 200 μg doses at any time points. GlyMOle was a skin penetration enhancer for petrolatum under the in vitro conditions identified in the present study. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. [Temperature-switched high-efficiency D-lactate production from glycerol].

    PubMed

    Tian, Kangming; Zhou, Li; Chen, Xianzhong; Shen, Wei; Shi, Guiyang; Singh, Suren; Lu, Fuping; Wang, Zhengxiang

    2013-01-01

    Glycerol from oil hydrolysis industry is being considered as one of the abundent raw materials for fermentation industry. In present study, the aerobic and anaerobic metabolism and growth properties on glycerol by Esherichia coli CICIM B0013-070, a D-lactate over-producing strain constructed previously, at different temperatures were investigated, followed by a novel fermentation process, named temperature-switched process, was established for D-lactate production from glycerol. Under the optimal condition, lactate yield was increased from 64.0% to 82.6%. Subsequently, the yield of D-lactate from glycerol was reached up to 88.9% while a thermo-inducible promoter was used to regulate D-lactate dehydrogenase transcription.

  18. Determination of glycerol in oils and fats using liquid chromatography chloride attachment electrospray ionization mass spectrometry.

    PubMed

    Jin, Chunfen; Viidanoja, Jyrki

    2017-01-15

    Existing liquid chromatography - mass spectrometry method for the analysis of short chain carboxylic acids was expanded and validated to cover also the measurement of glycerol from oils and fats. The method employs chloride anion attachment and two ions, [glycerol+ 35 Cl] - and [glycerol+ 37 Cl] - , as alternative quantifiers for improved selectivity of glycerol measurement. The averaged within run precision, between run precision and accuracy ranged between 0.3-7%, 0.4-6% and 94-99%, respectively, depending on the analyte ion and sample matrix. Selected renewable diesel feedstocks were analyzed with the method. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Malic acid production by chemically induced Aspergillus niger MTCC 281 mutant from crude glycerol.

    PubMed

    Iyyappan, J; Bharathiraja, B; Baskar, G; Jayamuthunagai, J; Barathkumar, S; Anna Shiny, R

    2018-03-01

    In the present investigation, crude glycerol derived from transesterification process was utilized to produce the commercially-valuable malic acid. A combined resistant on methanol and malic acid strain of Aspergillus niger MTCC 281 mutant was generated in solid medium containing methanol (1-5%) and malic acid (40-80 g/L) by the adaptation process for 22 weeks. The ability of induced Aspergillus niger MTCC 281 mutant to utilize crude glycerol and pure glycerol to produce malic acid was studied. The yield of malic acid was increased with 4.45 folds compared with that of parent strain from crude glycerol. The highest concentration of malic acid from crude glycerol by using beneficial mutant was found to be 77.38 ± 0.51 g/L after 192 h at 25 °C. This present study specified that crude glycerol by-product from biodiesel production could be used for producing high amount of malic acid without any pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    NASA Astrophysics Data System (ADS)

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  1. Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification.

    PubMed

    Novo, Lísias Pereira; Gurgel, Leandro Vinícius Alves; Marabezi, Karen; Curvelo, Antonio Aprigio da Silva

    2011-11-01

    This paper describes the organosolv delignification of depithed bagasse using glycerol-water mixtures without a catalyst. The experiments were performed using two separate experimental designs. In the first experiment, two temperatures (150 and 190°C), two time periods (60 and 240 min) and two glycerol contents (20% and 80%, v/v) were used. In the second experiment, which was a central composite design, the glycerol content was maintained at 80%, and a range of temperatures (141.7-198.3°C) and time (23-277 min) was used. The best result, obtained with a glycerol content of 80%, a reaction time of 150 min and a temperature of 198.3°C, produced pulps with 54.4% pulp yield, 7.75% residual lignin, 81.4% delignification and 13.7% polyose content. The results showed that high contents of glycerol tend to produce pulps with higher delignification and higher polyoses content in relation to the pulps obtained from low glycerol content reactions. In addition, the proposed method shows potential as a pretreatment for cellulose saccharification. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C8, C10, and C12 fatty acid monoesters..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of a tolerance. The C8, C10, and C12 straight-chain fatty acid monoesters of glycerol (glycerol...

  3. 40 CFR 180.1250 - C8, C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C8, C10, and C12 fatty acid monoesters..., C10, and C12 fatty acid monoesters of glycerol and propylene glycol; exemption from the requirement of a tolerance. The C8, C10, and C12 straight-chain fatty acid monoesters of glycerol (glycerol...

  4. Glycerol, trehalose and glycerol-trehalose mixture effects on thermal stabilization of OCT

    NASA Astrophysics Data System (ADS)

    Barreca, D.; Laganà, G.; Magazù, S.; Migliardo, F.; Bellocco, E.

    2013-10-01

    The stabilization effects of trehalose, glycerol and their mixtures on ornithine carbamoyltransferase catalytic activity has been studied as a function of temperature by complementary techniques. The obtained results show that the kinematic viscosities of trehalose (1.0 M) and protein mixture are higher than the one of glycerol plus protein. Changing the trehalose/glycerol ratio, we notice a decrease of the kinematic viscosity values at almost all the analyzed ratio. In particular, the solution composed of 95% trehalose-5% glycerol shows a peculiar behavior. Moreover the trehalose (1.0 M) solution shows the higher OCT thermal stabilization at 343 K, while all the other solutions show minor effects. The smallest stabilizing effect is revealed for the solution that shows the maximum kinematic viscosity. These results support Inelastic Neutron Scattering (INS) and Quasi Elastic Neutron Scattering (QENS) findings, which pointed out a slowing down of the relaxation and diffusive dynamics in some investigated samples.

  5. Microbial recycling of glycerol to biodiesel.

    PubMed

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Synthesis of glycerol mono-laurate from lauric acid and glycerol for food antibacterial additive

    NASA Astrophysics Data System (ADS)

    Setianto, W. B.; Wibowo, T. Y.; Yohanes, H.; Illaningtyas, F.; Anggoro, D. D.

    2017-05-01

    Synthesis of glycerol mono-laurate (GML) has been performed using esterification reaction of glycerol and lauric acid. The reaction was performed at the condition of temperature of 120-140 °C within 7 hour, variation of molar ratio of glycerol - lauric acid, and was using heterogeneous catalyst of zeolist Y. Without catalyst dealumination the maximum acid conversion was 78%, with GML contained in the sample was 38.6%, and it was obtained at the reaction condition of 140 oC, 15wt% catalyst, and 8:1 molar ratio of glycerol - lauric acid. At the same condition, using dealuminated catalyst, the maximum acid conversion was increased up to 98%, with GML contained in the sample was 50.4%. The GML antibacterial activity was examined. It was observed that the GML has antibacterial activity against gram positive bacterial such as B. cereus and S. aureus.

  7. Glycerol Phosphate Cytidylyltransferase Stereospecificity Is Key to Understanding the Distinct Stereochemical Compositions of Glycerophosphoinositol in Bacteria and Archaea

    PubMed Central

    Rodrigues, Marta V.; Borges, Nuno

    2016-01-01

    ABSTRACT Glycerophosphoinositol (GPI) is a compatible solute present in a few hyperthermophiles. Interestingly, different GPI stereoisomers accumulate in Bacteria and Archaea, and the basis for this domain-dependent specificity was investigated herein. The archaeon Archaeoglobus fulgidus and the bacterium Aquifex aeolicus were used as model organisms. The synthesis of GPI involves glycerol phosphate cytidylyltransferase (GCT), which catalyzes the production of CDP-glycerol from CTP and glycerol phosphate, and di-myo-inositol phosphate-phosphate synthase (DIPPS), catalyzing the formation of phosphorylated GPI from CDP-glycerol and l-myo-inositol 1-phosphate. DIPPS of A. fulgidus recognized the two CDP-glycerol stereoisomers similarly. This feature and the ability of 31P nuclear magnetic resonance (NMR) to distinguish the GPI diastereomers provided a means to study the stereospecificity of GCTs. The AF1418 gene and genes aq_185 and aq_1368 are annotated as putative GCT genes in the genomes of A. fulgidus and Aq. aeolicus, respectively. The functions of these genes were determined by assaying the activity of the respective recombinant proteins: AQ1368 and AQ185 are GCTs, while AF1418 has flavin adenine dinucleotide (FAD) synthetase activity. AQ185 is absolutely specific for sn-glycerol 3-phosphate, while AQ1368 recognizes the two enantiomers but has a 2:1 preference for sn-glycerol 3-phosphate. In contrast, the partially purified A. fulgidus GCT uses sn-glycerol 1-phosphate preferentially (4:1). Significantly, the predominant GPI stereoforms found in the bacterium and the archaeon reflect the distinct stereospecificities of the respective GCTs: i.e., A. fulgidus accumulates predominantly sn-glycero-1-phospho-3-l-myo-inositol, while Aq. aeolicus accumulates sn-glycero-3-phospho-3-l-myo-inositol. IMPORTANCE Compatible solutes of hyperthermophiles show high efficacy in thermal protection of proteins in comparison with solutes typical of mesophiles; therefore, they are potentially useful in several biotechnological applications. Glycerophosphoinositol (GPI) is synthesized from CDP-glycerol and l-myo-inositol 1-phosphate in a few hyperthermophiles. In this study, the molecular configuration of the GPI stereoisomers accumulated by members of the Bacteria and Archaea was established. The stereospecificity of glycerol phosphate cytidylyltransferase (GCT), the enzyme catalyzing the synthesis of CDP-glycerol, is crucial to the stereochemistry of GPI. However, the stereospecific properties of GCTs have not been investigated thus far. We devised a method to characterize GCT stereospecificity which does not require sn-glycerol 1-phosphate, a commercially unavailable substrate. This led us to understand the biochemical basis for the distinct GPI stereoisomer composition observed in archaea and bacteria. PMID:27795311

  8. Glycerol Phosphate Cytidylyltransferase Stereospecificity Is Key to Understanding the Distinct Stereochemical Compositions of Glycerophosphoinositol in Bacteria and Archaea.

    PubMed

    Rodrigues, Marta V; Borges, Nuno; Santos, Helena

    2017-01-01

    Glycerophosphoinositol (GPI) is a compatible solute present in a few hyperthermophiles. Interestingly, different GPI stereoisomers accumulate in Bacteria and Archaea, and the basis for this domain-dependent specificity was investigated herein. The archaeon Archaeoglobus fulgidus and the bacterium Aquifex aeolicus were used as model organisms. The synthesis of GPI involves glycerol phosphate cytidylyltransferase (GCT), which catalyzes the production of CDP-glycerol from CTP and glycerol phosphate, and di-myo-inositol phosphate-phosphate synthase (DIPPS), catalyzing the formation of phosphorylated GPI from CDP-glycerol and l-myo-inositol 1-phosphate. DIPPS of A. fulgidus recognized the two CDP-glycerol stereoisomers similarly. This feature and the ability of 31 P nuclear magnetic resonance (NMR) to distinguish the GPI diastereomers provided a means to study the stereospecificity of GCTs. The AF1418 gene and genes aq_185 and aq_1368 are annotated as putative GCT genes in the genomes of A. fulgidus and Aq. aeolicus, respectively. The functions of these genes were determined by assaying the activity of the respective recombinant proteins: AQ1368 and AQ185 are GCTs, while AF1418 has flavin adenine dinucleotide (FAD) synthetase activity. AQ185 is absolutely specific for sn-glycerol 3-phosphate, while AQ1368 recognizes the two enantiomers but has a 2:1 preference for sn-glycerol 3-phosphate. In contrast, the partially purified A. fulgidus GCT uses sn-glycerol 1-phosphate preferentially (4:1). Significantly, the predominant GPI stereoforms found in the bacterium and the archaeon reflect the distinct stereospecificities of the respective GCTs: i.e., A. fulgidus accumulates predominantly sn-glycero-1-phospho-3-l-myo-inositol, while Aq. aeolicus accumulates sn-glycero-3-phospho-3-l-myo-inositol. Compatible solutes of hyperthermophiles show high efficacy in thermal protection of proteins in comparison with solutes typical of mesophiles; therefore, they are potentially useful in several biotechnological applications. Glycerophosphoinositol (GPI) is synthesized from CDP-glycerol and l-myo-inositol 1-phosphate in a few hyperthermophiles. In this study, the molecular configuration of the GPI stereoisomers accumulated by members of the Bacteria and Archaea was established. The stereospecificity of glycerol phosphate cytidylyltransferase (GCT), the enzyme catalyzing the synthesis of CDP-glycerol, is crucial to the stereochemistry of GPI. However, the stereospecific properties of GCTs have not been investigated thus far. We devised a method to characterize GCT stereospecificity which does not require sn-glycerol 1-phosphate, a commercially unavailable substrate. This led us to understand the biochemical basis for the distinct GPI stereoisomer composition observed in archaea and bacteria. Copyright © 2016 American Society for Microbiology.

  9. Synthesis of bioadditives of fuels from biodiesel-derived glycerol by esterification with acetic acid on solid catalysts.

    PubMed

    Bedogni, Gabriel A; Acevedo, Mauro D; Aguzín, Federico; Okulik, Nora B; Padró, Cristina L

    2017-07-07

    In this paper, glycerol esterification with acetic acid (AA) was studied on several solid acid catalysts: Al 2 O 3 , Al-MCM-41, HPA/SiO 2 , HBEA, Amberlyst 15 and Amberlyst 36 with the aim of determining the reaction conditions and the nature of the surface acid sites required to produce selectively triacetylglycerol (triacetin). The acidity of the catalysts (nature, density and strength of acid sites) was characterized by temperature-programmed desorption of NH 3 and FTIR of adsorbed pyridine. Al 2 O 3 (Lewis acidity) did not show any activity in the reaction. In contrast, highest activity and selectivity to the triacetylated product (triacetin) were obtained on catalysts with Brønsted acidity: Amberlyst 15 and Amberlyst 36. The effect of temperature and molar ratio of AA to glycerol was studied, and the results showed that both parameters have a significant impact on the production of the desired product. Glycerol conversion rate and selectivity to triacetin increased when temperature or AA to glycerol molar ratio were increased, reaching a triacetin yield on Amberlyst 36 of 44% at 393 K and AA to glycerol molar ratio of 6. Deactivation and reusability of Amberlyst 36 were evaluated by performing consecutive catalytic tests. The presence of some irreversible deactivation due to sulfur loss was observed. In addition, the feasibility of using crude glycerol from biodiesel production as reactant was also investigated. Conversion of crude pretreated glycerol yielded values of triacetin and diacetin similar to those obtained with the commercial pure glycerol although at a lower rate.

  10. Stress-induced accumulation of glycerol in the flesh fly, Sarcophaga bullata: evidence indicating anti-desiccant and cryoprotectant functions of this polyol and a role for the brain in coordinating the response.

    PubMed

    Yoder, Jay A; Benoit, Joshua B; Denlinger, David L; Rivers, David B

    2006-02-01

    Nondiapausing larvae of the flesh fly, Sarcophaga bullata, responded to several forms of short-term environmental stress (low temperature, anoxia and desiccation) by accumulating glycerol. Elevation of this polyol, regardless of the type of stress that induced accumulation, conferred cold resistance: larvae with high glycerol levels were 3-4 times more tolerant of a 2h exposure to -10 degrees C than unstressed larvae. Protection against low temperature injury, as well as dehydration, was also attained by injection of exogenous glycerol into third instar larvae. This artificially induced cold hardiness was only temporary: when glycerol-injected larvae were exposed to -10 degrees C immediately after injection, survival was high, but none survived if they were injected and then held at 25 degrees C for 2 days before the -10 degrees C exposure. Larvae ligated behind the brain immediately after low temperature exposure failed to accumulate glycerol, but glycerol did accumulate in larvae ligated 6-24h after cold treatment, thus implying a critical role for the brain in initiating glycerol production. Interestingly, a much shorter exposure (2h) to low temperature was sufficient to reduce the maximum rate of water loss. Collectively, these observations suggest that multiple pathways may be exploited in response to stress: one pathway is most likely associated with rapid cold hardening (RCH) which generates immediate protection, and a second pathway remains activated for a longer period to enhance the initial protection afforded by glycerol.

  11. Protection against Shiga-Toxigenic Escherichia coli by Non-Genetically Modified Organism Receptor Mimic Bacterial Ghosts.

    PubMed

    Paton, Adrienne W; Chen, Austen Y; Wang, Hui; McAllister, Lauren J; Höggerl, Florian; Mayr, Ulrike Beate; Shewell, Lucy K; Jennings, Michael P; Morona, Renato; Lubitz, Werner; Paton, James C

    2015-09-01

    Shiga-toxigenic Escherichia coli (STEC) causes severe gastrointestinal infections in humans that may lead to life-threatening systemic sequelae, such as the hemolytic uremic syndrome (HUS). Rapid diagnosis of STEC infection early in the course of disease opens a window of opportunity for therapeutic intervention, for example, by administration of agents that neutralize Shiga toxin (Stx) in the gut lumen. We previously developed a recombinant bacterium that expresses a mimic of the Stx receptor globotriaosyl ceramide (Gb3) on its surface through modification of the lipopolysaccharide (A. W. Paton, R. Morona, and J. C. Paton, Nat Med 6:265-270, 2000, http://dx.doi.org/10.1038/73111). This construct was highly efficacious in vivo, protecting mice from otherwise fatal STEC disease, but the fact that it is a genetically modified organism (GMO) has been a barrier to clinical development. In the present study, we have overcome this issue by development of Gb3 receptor mimic bacterial ghosts (BGs) that are not classified as GMOs. Gb3-BGs neutralized Stx1 and Stx2 in vitro with high efficiency, whereas alternative Gb3-expressing non-GMO subbacterial particles (minicells and outer membrane blebs) were ineffective. Gb3-BGs were highly efficacious in a murine model of STEC disease. All mice (10/10) treated with Gb3-BGs survived challenge with a highly virulent O113:H21 STEC strain and showed no pathological signs of renal injury. In contrast, 6/10 mice treated with control BGs succumbed to STEC challenge, and survivors exhibited significant weight loss, neutrophilia, and histopathological evidence of renal damage. Thus, Gb3-BGs offer a non-GMO approach to treatment of STEC infection in humans, particularly in an outbreak setting. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Protection against Shiga-Toxigenic Escherichia coli by Non-Genetically Modified Organism Receptor Mimic Bacterial Ghosts

    PubMed Central

    Paton, Adrienne W.; Chen, Austen Y.; Wang, Hui; McAllister, Lauren J.; Höggerl, Florian; Mayr, Ulrike Beate; Shewell, Lucy K.; Jennings, Michael P.; Morona, Renato; Lubitz, Werner

    2015-01-01

    Shiga-toxigenic Escherichia coli (STEC) causes severe gastrointestinal infections in humans that may lead to life-threatening systemic sequelae, such as the hemolytic uremic syndrome (HUS). Rapid diagnosis of STEC infection early in the course of disease opens a window of opportunity for therapeutic intervention, for example, by administration of agents that neutralize Shiga toxin (Stx) in the gut lumen. We previously developed a recombinant bacterium that expresses a mimic of the Stx receptor globotriaosyl ceramide (Gb3) on its surface through modification of the lipopolysaccharide (A. W. Paton, R. Morona, and J. C. Paton, Nat Med 6:265–270, 2000, http://dx.doi.org/10.1038/73111). This construct was highly efficacious in vivo, protecting mice from otherwise fatal STEC disease, but the fact that it is a genetically modified organism (GMO) has been a barrier to clinical development. In the present study, we have overcome this issue by development of Gb3 receptor mimic bacterial ghosts (BGs) that are not classified as GMOs. Gb3-BGs neutralized Stx1 and Stx2 in vitro with high efficiency, whereas alternative Gb3-expressing non-GMO subbacterial particles (minicells and outer membrane blebs) were ineffective. Gb3-BGs were highly efficacious in a murine model of STEC disease. All mice (10/10) treated with Gb3-BGs survived challenge with a highly virulent O113:H21 STEC strain and showed no pathological signs of renal injury. In contrast, 6/10 mice treated with control BGs succumbed to STEC challenge, and survivors exhibited significant weight loss, neutrophilia, and histopathological evidence of renal damage. Thus, Gb3-BGs offer a non-GMO approach to treatment of STEC infection in humans, particularly in an outbreak setting. PMID:26099582

  13. Efficacy of a foodlet-based multiple micronutrient supplement for preventing growth faltering, anemia, and micronutrient deficiency of infants: the four country IRIS trial pooled data analysis.

    PubMed

    Smuts, Cornelius M; Lombard, Carl J; Benadé, A J Spinnler; Dhansay, Muhammad A; Berger, Jacques; Hop, Le Thi; López de Romaña, Guillermo; Untoro, Juliawati; Karyadi, Elvina; Erhardt, Jürgen; Gross, Rainer

    2005-03-01

    Diets of infants across the world are commonly deficient in multiple micronutrients during the period of growth faltering and dietary transition from milk to solid foods. A randomized placebo controlled trial was carried out in Indonesia, Peru, South Africa, and Vietnam, using a common protocol to investigate whether improving status for multiple micronutrients prevented growth faltering and anemia during infancy. The results of the pooled data analysis of the 4 countries for growth, anemia, and micronutrient status are reported. A total of 1134 infants were randomized to 4 treatment groups, with 283 receiving a daily placebo (P), 283 receiving a weekly multiple micronutrient supplement (WMM), 280 received a daily multiple micronutrient (DMM) supplement, and 288 received daily iron (DI) supplements. The DMM group had a significantly greater weight gain, growing at an average rate of 207 g/mo compared with 192 g/mo for the WMM group, and 186 g/mo for the DI and P groups. There were no differences in height gain. DMM was also the most effective treatment for controlling anemia and iron deficiency, besides improving zinc, retinol, tocopherol, and riboflavin status. DI supplementation alone increased zinc deficiency. The prevalence of multiple micronutrient deficiencies at baseline was high, with anemia affecting the majority, and was not fully controlled even after 6 mo of supplementation. These positive results indicate the need for larger effectiveness trials to examine how to deliver supplements at the program scale and to estimate cost benefits. Consideration should also be given to increasing the dosages of micronutrients being delivered in the foodlets.

  14. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU.

    PubMed

    Hartung, Frank; Schiemann, Joachim

    2014-06-01

    Several new plant breeding techniques (NPBTs) have been developed during the last decade, and make it possible to precisely perform genome modifications in plants. The major problem, other than technical aspects, is the vagueness of regulation concerning these new techniques. Since the definition of eight NPBTs by a European expert group in 2007, there has been an ongoing debate on whether the resulting plants and their products are covered by GMO legislation. Obviously, cover by GMO legislation would severely hamper the use of NPBT, because genetically modified plants must pass a costly and time-consuming GMO approval procedure in the EU. In this review, we compare some of the NPBTs defined by the EU expert group with classical breeding techniques and conventional transgenic plants. The list of NPBTs may be shortened (or extended) during the international discussion process initiated by the Organization for Economic Co-operation and Development. From the scientific point of view, it may be argued that plants developed by NPBTs are often indistinguishable from classically bred plants and are not expected to possess higher risks for health and the environment. In light of the debate on the future regulation of NPBTs and the accumulated evidence on the biosafety of genetically modified plants that have been commercialized and risk-assessed worldwide, it may be suggested that plants modified by crop genetic improvement technologies, including genetic modification, NPBTs or other future techniques, should be evaluated according to the new trait and the resulting end product rather than the technique used to create the new plant variety. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  15. Optimised padlock probe ligation and microarray detection of multiple (non-authorised) GMOs in a single reaction

    PubMed Central

    Prins, Theo W; van Dijk, Jeroen P; Beenen, Henriek G; Van Hoef, AM Angeline; Voorhuijzen, Marleen M; Schoen, Cor D; Aarts, Henk JM; Kok, Esther J

    2008-01-01

    Background To maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. As a result methods are nowadays available for EU-authorised genetically modified organisms (GMOs), but only to a limited extent for EU-non-authorised GMOs (NAGs). In the last decade the diversity of genetically modified (GM) ingredients in food and feed has increased significantly. As a result of this increase GMO laboratories currently need to apply many different methods to establish to potential presence of NAGs in raw materials and complex derived products. Results In this paper we present an innovative method for detecting (approved) GMOs as well as the potential presence of NAGs in complex DNA samples containing different crop species. An optimised protocol has been developed for padlock probe ligation in combination with microarray detection (PPLMD) that can easily be scaled up. Linear padlock probes targeted against GMO-events, -elements and -species have been developed that can hybridise to their genomic target DNA and are visualised using microarray hybridisation. In a tenplex PPLMD experiment, different genomic targets in Roundup-Ready soya, MON1445 cotton and Bt176 maize were detected down to at least 1%. In single experiments, the targets were detected down to 0.1%, i.e. comparable to standard qPCR. Conclusion Compared to currently available methods this is a significant step forward towards multiplex detection in complex raw materials and derived products. It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify NAGs that would otherwise remain undetected. PMID:19055784

  16. Optimised padlock probe ligation and microarray detection of multiple (non-authorised) GMOs in a single reaction.

    PubMed

    Prins, Theo W; van Dijk, Jeroen P; Beenen, Henriek G; Van Hoef, Am Angeline; Voorhuijzen, Marleen M; Schoen, Cor D; Aarts, Henk J M; Kok, Esther J

    2008-12-04

    To maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. As a result methods are nowadays available for EU-authorised genetically modified organisms (GMOs), but only to a limited extent for EU-non-authorised GMOs (NAGs). In the last decade the diversity of genetically modified (GM) ingredients in food and feed has increased significantly. As a result of this increase GMO laboratories currently need to apply many different methods to establish to potential presence of NAGs in raw materials and complex derived products. In this paper we present an innovative method for detecting (approved) GMOs as well as the potential presence of NAGs in complex DNA samples containing different crop species. An optimised protocol has been developed for padlock probe ligation in combination with microarray detection (PPLMD) that can easily be scaled up. Linear padlock probes targeted against GMO-events, -elements and -species have been developed that can hybridise to their genomic target DNA and are visualised using microarray hybridisation.In a tenplex PPLMD experiment, different genomic targets in Roundup-Ready soya, MON1445 cotton and Bt176 maize were detected down to at least 1%. In single experiments, the targets were detected down to 0.1%, i.e. comparable to standard qPCR. Compared to currently available methods this is a significant step forward towards multiplex detection in complex raw materials and derived products. It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify NAGs that would otherwise remain undetected.

  17. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    PubMed

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  18. PCR technology for screening and quantification of genetically modified organisms (GMOs).

    PubMed

    Holst-Jensen, Arne; Rønning, Sissel B; Løvseth, Astrid; Berdal, Knut G

    2003-04-01

    Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications. The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.

  19. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol

    PubMed Central

    2012-01-01

    Background Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis. A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with important inactivated genes. Results Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol, revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the overexpression of carbon scavenging genes: lamB, malE, mglB, mglC, galP and glk and some members of the RpoS regulon (pfkA, pfkB, fbaA, fbaB, pgi, poxB, acs, actP and acnA). Inactivation of rpoS had an important effect on stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes, glyoxylate shunt genes (aceA, aceB, glcB and glcC) and actP, suggested a possible carbon flux deviation into the PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (TnaA) was synthesized at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying pJLBaroGfbrtktA, when growing on glycerol, as compared to glucose. Conclusions The overexpression of several carbon scavenging, acetate metabolism genes and the absence of acetate accumulation occurred in JM101 cultures growing on glycerol. To explain these results it is proposed that in addition to the glycolytic metabolism, a gluconeogenic carbon recycling process that involves acetate is occurring simultaneously in this strain when growing on glycerol. Carbon flux from glycerol can be efficiently redirected in JM101 strain into the aromatic pathway using appropriate tools. PMID:22513097

  20. Glass polymorphism in glycerol-water mixtures: I. A computer simulation study.

    PubMed

    Jahn, David A; Wong, Jessina; Bachler, Johannes; Loerting, Thomas; Giovambattista, Nicolas

    2016-04-28

    We perform out-of-equilibrium molecular dynamics (MD) simulations of water-glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA-HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration χ(g) = 0-13% and find that, for the present mixture models and rates, the LDA-HDA transformation is detectable up to χ(g) ≈ 5%. As the concentration increases, the density of the starting glass (i.e., LDA at approximately χ(g) ≤ 5%) rapidly increases while, instead, the density of HDA remains practically constant. Accordingly, the LDA state and hence glass polymorphism become inaccessible for glassy mixtures with approximately χ(g) > 5%. We present an analysis of the molecular-level changes underlying the LDA-HDA transformation. As observed in pure glassy water, during the LDA-to-HDA transformation, water molecules within the mixture approach each other, moving from the second to the first hydration shell and filling the first interstitial shell of water molecules. Interestingly, similar changes also occur around glycerol OH groups. It follows that glycerol OH groups contribute to the density increase during the LDA-HDA transformation. An analysis of the hydrogen bond (HB)-network of the mixtures shows that the LDA-HDA transformation is accompanied by minor changes in the number of HBs of water and glycerol. Instead, large changes in glycerol and water coordination numbers occur. We also perform a detailed analysis of the effects that the glycerol force field (FF) has on our results. By comparing MD simulations using two different glycerol models, we find that glycerol conformations indeed depend on the FF employed. Yet, the thermodynamic and microscopic mechanisms accompanying the LDA-HDA transformation and hence, our main results, do not. This work is accompanied by an experimental report where we study the glass polymorphism in glycerol-water mixtures prepared by isobaric cooling at 1 bar.

  1. Glucocorticoid regulation in rat brain cell cultures. Hydrocortisone increases the rate of synthesis of glycerol phosphate dehydrogenase in C6 glioma cells. [Tritium tracer technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinnis, J.F.; de Vellis, J.

    Cytoplasmic glycerol phosphate dehydrogenase (sn-glycerol-3-phosphate: NAD/sup +/ 2-oxidoreductase, EC 1.1.1.8) was rapidly purified from rat skeletal muscle in high yield using a combination of classical and affinity techniques. A single band of protein having a molecular weight of 30,000 was found using dodecyl sulfate-polyacrylamide gel electrophoresis. Antisera were generated in rabbits against the purified enzyme and demonstrated to be monospecific by Ouchterlony immunodiffusion against crude homogenates from hydrocortisone-induced and uninduced C6 cells. All of the radioactivity in immunoprecipitates from (/sup 3/H)leucine-labeled cells co-migrated with purified glycerol phosphate dehydrogenase. The amount of radioactivity precipitated was directly proportional to the amount ofmore » labeled glycerol phosphate dehydrogenase present, indicating that the assay could be used to quantitate newly synthesized glycerol phosphate dehydrogenase molecules. Using these techniques, the induction of glycerol phosphate dehydrogenase activity by hydrocortisone in the C6 glioma cell line was shown to be due to an increase in the rate of synthesis of the enzyme. Analysis of the kinetics of induction and deinduction supports the above conclusion and suggests that there is essentially no change in the rate of degradation of glycerol phosphate dehydrogenase in the presence and absence of hormone.« less

  2. Design and development of low cost polyurethane biopolymer based on castor oil and glycerol for biomedical applications.

    PubMed

    Tan, A C W; Polo-Cambronell, B J; Provaggi, E; Ardila-Suárez, C; Ramirez-Caballero, G E; Baldovino-Medrano, V G; Kalaskar, D M

    2018-02-01

    In the current study, we present the synthesis of novel low cost bio-polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR-FTIR, and X-ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in-vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co-polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non-toxic to the cells. This study opens an avenue for using low cost bio-polyurethane based on castor oil and glycerol for biomedical applications. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  3. Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles

    PubMed Central

    Li, Kuo-Tseng; Yen, Ruey-Hsiang

    2018-01-01

    Activity improvement of Ru-based catalysts is needed for efficient production of valuable chemicals from glycerol hydrogenolysis. In this work, a series of Re promoted Ru catalysts encapuslated in porous silica nanoparticles (denoted as Re-Ru@SiO2) were prepared by coating silica onto the surface of chemically reduced Ru-polyvinylpyrrolidone colloids, and were used to catalyze the conversion of glycerol to diols and alcohols in water. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) were used to characterize these nanoparticles. Effects of Ru/Si atomic ratio, Re addition, glycerol and catalyst concentrations, reaction time, temperature, and hydrogen pressure were investigated. Re addition retarded the reduction of ruthenium oxide, but increased the catalyst reactivity for glycerol hydrogenolysis. Due to its greater Ru content, Re-Ru@ SiO2 showed much better activity (reacted at much lower temperature) and more yields of 1,2-propanediol and overall liquid-phase products than Re-Ru/SiO2 (prepared by conventional impregnation method) reported before. The rate of glycerol disappearance exhibited first-order dependence on glycerol concentration and hydrogen pressure, with an activation energy of 107.8 kJ/mol. The rate constant increased linearly with increasing Ru/Si atomic ratio and catalyst amount. The yield of overall liquid-phase products correlated well with glycerol conversion. PMID:29522432

  4. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Mutants in the Candida glabrata Glycerol Channels Are Sensitized to Cell Wall Stress

    PubMed Central

    Beese-Sims, Sara E.; Pan, Shih-Jung; Lee, Jongmin; Hwang-Wong, Elizabeth; Cormack, Brendan P.

    2012-01-01

    Many fungal species use glycerol as a compatible solute with which to maintain osmotic homeostasis in response to changes in external osmolarity. In Saccharomyces cerevisiae, intracellular glycerol concentrations are regulated largely by the high osmolarity glycerol (HOG) response pathway, both through induction of glycerol biosynthesis and control of its flux through the plasma membrane Fps1 glycerol channel. The channel activity of Fps1 is also controlled by a pair of positive regulators, Rgc1 and Rgc2. In this study, we demonstrate that Candida glabrata, a fungal pathogen that possesses two Fps1 orthologs and two Rgc1/-2 orthologs, accumulates glycerol in response to hyperosmotic stress. We present an initial characterization of mutants with deletions in the C. glabrata FPS1 (CAGL0C03267 [www.candidagenome.org]) and FPS2 (CAGL0E03894) genes and find that a double mutant accumulates glycerol, experiences constitutive cell wall stress, and is hypersensitive to treatment by caspofungin, an antifungal agent that targets the cell wall. This mutant is cleared more efficiently in mouse infections than is wild-type C. glabrata by caspofungin treatment. Finally, we demonstrate that one of the C. glabrata RGC orthologs complements an S. cerevisiae rgc1 rgc2 null mutant, supporting the conclusion that this regulatory assembly is conserved between these species. PMID:23087370

  6. Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity.

    PubMed

    Gutiérrez-Pérez, Oscar; Juárez-Mosqueda, María de Lourdes; Carvajal, Salvador Uribe; Ortega, María Elena Trujillo

    2009-06-01

    The use of glycerol for boar semen cryopreservation results in low fertility, possibly due to toxicity. This has led to recommend the use of solutions with less than 4% glycerol. Trehalose is a disaccharide known to stabilize proteins and biologic membranes during processes such as cryopreservation. Thus, it was decided to evaluate the cryoprotective effect of glycerol/trehalose mixtures. Effects on motility (M), viability (Vb) and acrosomal integrity (nA) were evaluated. Sperm samples were frozen in three different extenders: G4 contained 4% glycerol; T1 contained 1% glycerol plus 250 mM trehalose and T0.5 was constituted by 0.5% glycerol plus 250 mM trehalose. All extenders yielded similar post-freezing/thawing motility rates. Viability was diminished in T0.5 as compared to the others. In regard to acrosome integrity, it was twice as high (P<0.05) in the trehalose enriched media as in G4, the glycerol-only extender. Thus, T1 twice as many spermatozoa were alive, motile and intact, than in either T0.5 or G4, i.e. during freeze/thawing the use of T1 resulted in twice as many fertile cells as when using the other extenders. During our study, we noted that there were wide individual variations both in sperm viability and in motility.

  7. Effects of supplementing glycerol and soybean oil in drinking water on feed and water intake, energy balance, and production performance of periparturient dairy cows.

    PubMed

    Osborne, V R; Odongo, N E; Cant, J P; Swanson, K C; McBride, B W

    2009-02-01

    The objective of this study was to determine the effects of supplementing glycerol and soybean oil in drinking water on feed and water intake, calculated energy balance, and production performance of periparturient dairy cows. Ninety multiparous Holstein dairy cows were randomly assigned to 1 of 3 treatments: 1) no nutrients supplemented in the drinking water (control); 2) 20 g/L of glycerin supplemented in the drinking water (glycerol); and 3) 10 g/L of soybean oil supplemented in the drinking water (SBO). The trial lasted from 7 d prepartum to 7 d postpartum. Cows were offered a close-up and milking cow TMR for ad libitum intake, pre- and postpartum, respectively. The dry matter intake of cows supplemented with glycerol and SBO was lower than for the control cows throughout the experimental period but not different from each other. Water intake for the control cows was greater than the average for the glycerol and SBO cows prepartum, and greater than for SBO cows but similar to that of glycerol cows postpartum. Glycerol cows consumed more water than SBO cows. There were no differences in energy intake and energy balance of the cows pre- and postpartum. Serum triacylglycerol concentration for glycerol cows was lower than for the control and SBO cows prepartum and was lower than for the SBO cows postpartum. There were no differences in the serum nonesterified fatty acids and glucose concentrations throughout the experiment. There were no differences in the serum beta-hydroxybutyrate (BHBA) concentrations at parturition, but serum BHBA concentration of the glycerol cows was greater than for control and SBO cows during the prepartum period. However, during the postpartum period, serum BHBA concentrations of the control cows were greater than for glycerol and SBO cows. There were no differences in calf birth weights or milk yield and composition. Although the glucogenic property of glycerol supplemented in the drinking water at 20 g/L may not have been sufficient to elicit a milk yield response, it did reduce the concentration of BHBA postpartum.

  8. Genetic construction of recombinant Pseudomonas chlororaphis for improved glycerol utilization

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to improve by genetic engineering the glycerol metabolic capability of Pseudomonas chlororaphis which is capable of producing commercially valuable biodegradable poly(hydroxyalkanoate) (PHA) and biosurfactant rhamnolipids (RLs). In the study, glycerol uptake facilitat...

  9. Variation in Quarters Dispositions A Force Protection and Readiness Issue Explanations and Control Method

    DTIC Science & Technology

    1999-08-01

    information may be crucial for the early identification of any range of potential health Variation in Quarters Rates 28 threats from food contamination to... GMO Physician 309.89 .0000 Over Family Practice 682.06 .0000 Over Aeromed Physician

  10. Type-II domains in ferroelectric gadolinium molybdate (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohm, J.; Kuersten, H.D.

    Etching (001)-faces of gadolinium molybdate (GMO) reveals new kinds of domains. They are created by a translation, that leaves the spontaneous polarization and the transition parameter invariant. The translation vector is a part of a lattice vector, similar to stacking faults. (auth)

  11. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction.

    PubMed

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-10-08

    When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs.

  12. REMARKS ON COMPOUND MODELS, CONSERVED CURRENTS AND WEAK INTERACTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, M.E.

    A discussion is given of some implications of a symmetry principle, conjectured by Gamba, Marshak, and Okubo (GMO), in connection with the compound models for elementary particles, and the interpretation of weak interactions by a heavy vector meson coupled to the conserved V and A currents of the fermions. GMO observed that, for weak interactions, the three baryons LAMBDA deg , n, p are equivalent to the leptons mu /sup -/, e/sup -/, nu in the sense that any reaction permitted or observed for one of the groups is permitted for the other and conversely, no reaction forbidden for onemore » is observed in the other. This permitted the extension of the notions of isospin and strangeness to leptons and led to the expression of the electric charge in terms of the isospin projection, T/sub 3/, and the baryon and lepton numbers B and L:. Q = T/sub 3/ + 1/2(S+ B -- L). (B.O.G.)« less

  13. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. © 2012 Blackwell Publishing Ltd.

  14. Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction

    PubMed Central

    Tengs, Torstein; Zhang, Haibo; Holst-Jensen, Arne; Bohlin, Jon; Butenko, Melinka A; Kristoffersen, Anja Bråthen; Sorteberg, Hilde-Gunn Opsahl; Berdal, Knut G

    2009-01-01

    Background When generating a genetically modified organism (GMO), the primary goal is to give a target organism one or several novel traits by using biotechnology techniques. A GMO will differ from its parental strain in that its pool of transcripts will be altered. Currently, there are no methods that are reliably able to determine if an organism has been genetically altered if the nature of the modification is unknown. Results We show that the concept of computational subtraction can be used to identify transgenic cDNA sequences from genetically modified plants. Our datasets include 454-type sequences from a transgenic line of Arabidopsis thaliana and published EST datasets from commercially relevant species (rice and papaya). Conclusion We believe that computational subtraction represents a powerful new strategy for determining if an organism has been genetically modified as well as to define the nature of the modification. Fewer assumptions have to be made compared to methods currently in use and this is an advantage particularly when working with unknown GMOs. PMID:19814792

  15. The Interferometric Measurement of Phase Mismatch in Potential Second Harmonic Generators.

    NASA Astrophysics Data System (ADS)

    Sinofsky, Edward Lawrence

    This dissertation combines aspects of lasers, nonlinear optics and interferometry to measure the linear optical properties involved in phase matched second harmonic generation, (SHG). A new measuring technique has been developed to rapidly analyze the phase matching performance of potential SHGs. The data taken is in the form of interferograms produced by the self referencing nonlinear Fizeau interferometer (NLF), and correctly predicts when phase matched SHG will occur in the sample wedge. Data extracted from the interferograms produced by the NLF, allows us to predict both phase matching temperatures for noncritically phase matchable crystals and crystal orientation for angle tuned crystals. Phase matching measurements can be made for both Type I and Type II configurations. Phase mismatch measurements were made at the fundamental wavelength of 1.32 (mu)m, for: calcite, lithium niobate, and gadolinium molybdate (GMO). Similar measurements were made at 1.06 (mu)m. for calcite. Phase matched SHG was demonstrated in calcite, lithium niobate and KTP, while phase matching by temperature tuning is ruled out for GMO.

  16. Studies on the phase diagram of Pb-Fe-O system and standard molar Gibbs energy of formation of 'PbFe5O8.5' and Pb2Fe2O5

    NASA Astrophysics Data System (ADS)

    Sahu, Sulata Kumari; Ganesan, Rajesh; Gnanasekaran, T.

    2012-07-01

    Partial phase diagram of Pb-Fe-O system has been established by phase equilibration studies over a wide temperature range coupled with high temperature solid electrolyte based emf cells. Ternary oxides are found to coexist with liquid lead only at temperatures above 900 K. At temperatures below 900 K, iron oxides coexist with liquid lead. Standard molar Gibbs energy of formation of ternary oxides 'PbFe5O8.5' and Pb2Fe2O5 were determined by measuring equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGmo 'PbFeO'±1.0(kJ mol)=-2208.1+0.6677(T/K) (917⩽T/K⩽1117) ΔfGmo PbFeO±0.8(kJ mol)=-1178.4+0.3724(T/K) (1050⩽T/K⩽1131) .

  17. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms.

    PubMed

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-05

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.

  18. Development and Validation of A 48-Target Analytical Method for High-throughput Monitoring of Genetically Modified Organisms

    PubMed Central

    Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang

    2015-01-01

    The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930

  19. A novel multigene expression construct for modification of glycerol metabolism in Yarrowia lipolytica

    PubMed Central

    2013-01-01

    Background High supply of raw, residual glycerol from biodiesel production plants promote the search for novel biotechnological methods of its utilization. In this study we attempted modification of glycerol catabolism in a nonconventional yeast species Yarrowia lipolytica through genetic engineering approach. Results To address this, we developed a novel genetic construct which allows transferring three heterologous genes, encoding glycerol dehydratase, its reactivator and a wide-spectrum alcohol oxidoreductase under the control of glycerol-induced promoter. The three genes, tandemly arrayed in an expression cassette with a marker gene ura3, regulatory and targeting sequences (G3P dh promoter and XPR-like terminator, 28S rDNA as a target locus), were transferred into Yarrowia lipolytica cells. The obtained recombinant strain NCYC3825 was characterized at the molecular level and with respect to its biotechnological potential. Our experiments indicated that the novel recombinant strain stably borne one copy of the expression cassette and efficiently expressed heterologous alcohol oxidoreductase, while glycerol dehydratase and its reactivator were expressed at lower level. Comparative shake flask cultivations in glucose- and glycerol-based media demonstrated higher biomass production by the recombinant strain when glycerol was the main carbon source. During bioreactor (5 L) fed-batch cultivation in glycerol-based medium, the recombinant strain was characterized by relatively high biomass and lipids accumulation (up to 42 gDCW L-1, and a peak value of 38%LIPIDS of DCW, respectively), and production of high titers of citric acid (59 g L-1) and 2-phenylethanol (up to 1 g L-1 in shake flask cultivation), which are industrially attractive bioproducts. Conclusions Due to heterogeneous nature of the observed alterations, we postulate that the main driving force of the modified phenotype was faster growth in glycerol-based media, triggered by modifications in the red-ox balance brought by the wide spectrum oxidoreductase. Our results demonstrate the potential multidirectional use of a novel Yarrowia lipolytica strain as a microbial cell factory. PMID:24188724

  20. Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure.

    PubMed

    Nuchdang, Sasikarn; Phalakornkule, Chantaraporn

    2012-06-30

    The potential of glycerol obtained from transesterification of waste cooking oil as a main carbon source for biogas production was investigated. The glycerol was highly contaminated with oils and fats and was pretreated with sulfuric acid. Using a carbon source of glucose as a control, we compared biogas production from the acid-treated glycerol in a synthetic medium and the acid-treated glycerol mixed with pig manure. The anaerobic digestion of acid-treated glycerol with supplement in a synthetic medium was found to be satisfactory at organic loading rates (OLR) between 1.3, 1.6 and 2.6 g chemical oxygen demand (COD) L(-1) d(-1). The maximum methane yield of 0.32 L at Standard temperature and pressure (STP) g(-1) COD removal was achieved at an OLR of 1.6 g COD L(-1) d(-1) and the methane content was 54% on an average. At a higher organic loading rate of 5.4 g COD L(-1) d(-1), the propionic acid to acetic acid ratio was higher than the critical threshold limit for metabolic imbalance. Anaerobic digestion of acid-treated glycerol with pig manure was also investigated at the COD ratio of 80:20 (glycerol:pig manure). The anaerobic digestion of acid-treated glycerol with pig manure was found to be satisfactory at organic loading rates between 1.3, 1.7, 2.9 and 5.0 g COD L(-1) d(-1) in terms of COD reduction (>80%) and methane content of (62% on an average). However, the biogas production rate was found to significantly decrease at the highest load. The maximum methane yield of 0.24 L STP g(-1) COD removal was achieved at an OLR of 1.3 g COD L(-1) d(-1). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Influences of urea–glycerol mixtures as mixed mesopore-controlling agents on tailoring physicochemical properties and photocatalytic H{sub 2} production activity of sol–gel-derived mesoporous-assembled TiO{sub 2} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreethawong, Thammanoon, E-mail: sreethawongt@imre.a-star.edu.sg; Ngamsinlapasathian, Supachai, E-mail: wonone@hotmail.com; Yoshikawa, Susumu

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous-assembled TiO{sub 2} nanocrystals were synthesized by modified sol–gel process. ► Urea–glycerol mixtures were applied as mixed mesopore-controlling agents. ► Urea and glycerol contents affected physicochemical properties of synthesized TiO{sub 2}. ► Photocatalytic H{sub 2} production activity also depended on urea and glycerol contents. ► 75 mol% urea and 25 mol% glycerol yielded the most photocatalytically active TiO{sub 2}. -- Abstract: In this work, the mesoporous-assembled TiO{sub 2} nanocrystal photocatalysts were successfully synthesized by a sol–gel process with the aid of urea–glycerol mixtures used as mixed mesopore-controlling agents. The photocatalytic activity of the synthesizedmore » mesoporous-assembled TiO{sub 2} nanocrystal photocatalysts was investigated for hydrogen production from the water splitting reaction using methanol as a hole scavenger under UV light irradiation. The synthesized TiO{sub 2} nanocrystal photocatalysts were systematically characterized by TG–DTA, N{sub 2} adsorption–desorption, SEM, high resolution TEM, and XRD analyses. The characterization results showed that the well-controlled contents of urea and glycerol in a urea–glycerol mixture at 75 mol% urea and 25 mol% glycerol resulted in not only the most highly porous network (i.e. the highest specific surface area and total pore volume, and the smallest mean mesopore diameter), but also the smallest crystallite size of the synthesized TiO{sub 2} nanocrystal photocatalyst. The photocatalytic reaction results, hence, revealed a much superior photocatalytic hydrogen production activity of the mesoporous-assembled TiO{sub 2} nanocrystal synthesized with 75 mol% urea and 25 mol% glycerol to the other synthesized TiO{sub 2} nanocrystals, also being much higher than those of the commercially available P-25 TiO{sub 2} and ST-01 TiO{sub 2} powders.« less

  2. Efficient synthetic protocols in glycerol under heterogeneous catalysis.

    PubMed

    Cravotto, Giancarlo; Orio, Laura; Gaudino, Emanuela Calcio; Martina, Katia; Tavor, Dorith; Wolfson, Adi

    2011-08-22

    The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 °C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cell wall teichoic acids of actinomycetes of three genera of the order actinomycetales.

    PubMed

    Streshinskaya, G M; Shashkov, A S; Usov, A I; Evtushenko, L I; Naumova, I B

    2002-07-01

    The structures of cell wall teichoic acids of the members of newly recognized genera of the order Actinomycetales were studied. Planotetraspora mira VKM Ac-2000T contains two types of teichoic acids: 2,3-poly(glycerol phosphate) substituted with alpha-D-Galp at C-1 of glycerol and 1,3-poly(glycerol phosphate) substituted with alpha-L-Rhap at OH-2 of glycerol (60%). Herbidospora cretacea VKM Ac-1997T contains the chains of 1,3-poly(glycerol phosphate) partially substituted with alpha-D-Galp and alpha-D-GalpNAc at C-2 of glycerol. The majority of alpha-D-galactopyranosyl residues are substituted at OH-3 with a sulfate. The aforementioned teichoic acids have not been found in bacteria thus far. Actinocorallia herbida VKM Ac-1994T contains poly(galactosylglycerol phosphate), with the beta-Galp-(1-->2)-Gro-P repeating units being linked via the phosphodiester bonds between the OH-3 of glycerol and OH-6 of galactose. Earlier, this structure was found in the cell wall of Actinomadura madura. The polymer structures were determined by chemical analysis and using 13C-NMR spectroscopy. The results show that teichoic acids are widespread in the order Actinomycetales.

  4. Attenuation of liver cancer development by oral glycerol supplementation in the rat.

    PubMed

    Capiglioni, Alejo M; Lorenzetti, Florencia; Quiroga, Ariel D; Parody, Juan P; Ronco, María T; Pisani, Gerardo B; Carrillo, María C; Ceballos, María P; Alvarez, María de Luján

    2018-04-01

    Glycerol usage is increasing in food industry for human and animal nutrition. This study analyzed the impact of glycerol metabolism when orally supplemented during the early stage of rat liver carcinogenesis. Wistar rats were subjected to a 2-phase model of hepatocarcinogenesis (initiated-promoted, IP group). IP animals also received glycerol by gavage (200 mg/kg body weight, IPGly group). Glycerol treatment reduced the volume of preneoplastic lesions by decreasing the proliferative status of liver foci, increasing the expression of p53 and p21 proteins and reducing the expression of cyclin D1 and cyclin-dependent kinase 1. Besides, apoptosis was enhanced in IPGly animals, given by an increment of Bax/Bcl-2 ratio, Bad and PUMA mitochondrial expression, a concomitant increase in cytochrome c release and caspase-3 activation. Furthermore, hepatic levels of glycerol phosphate and markers of oxidative stress were increased in IPGly rats. Oxidative stress intermediates act as intracellular messengers, inducing p53 activation and changes in JNK and Erk signaling pathways, with JNK activation and Erk inhibition. The present work provides novel data concerning the preventive actions of glycerol during the development of liver cancer and represents an economically feasible intervention to treat high-risk individuals.

  5. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera.

    PubMed

    Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

    2014-05-01

    High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

  6. Extratympanic observation of middle ear structure using a refractive index matching material (glycerol) and an infrared camera

    NASA Astrophysics Data System (ADS)

    Kong, Soo-Keun; Chon, Kyong-Myong; Goh, Eui-Kyung; Lee, Il-Woo; Wang, Soo-Geun

    2014-05-01

    High-resolution computed tomography has been used mainly in the diagnosis of middle ear disease, such as high-jugular bulb, congenital cholesteatoma, and ossicular disruption. However, certain diagnoses are confirmed through exploratory tympanotomy. There are few noninvasive methods available to observe the middle ear. The purpose of this study was to investigate the effect of glycerol as a refractive index matching material and an infrared (IR) camera system for extratympanic observation. 30% glycerol was used as a refractive index matching material in five fresh cadavers. Each material was divided into four subgroups; GN (glycerol no) group, GO (glycerol out) group, GI (glycerol in) group, and GB (glycerol both) group. A printed letter and middle ear structures on the inside tympanic membrane were observed using a visible and IR ray camera system. In the GB group, there were marked a transilluminated letter or an ossicle on the inside tympanic membrane. In particular, a footplate of stapes was even transilluminated using the IR camera system in the GB group. This method can be useful in the diagnosis of diseases of the middle ear if it is clinically applied through further studies.

  7. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol.

    PubMed

    Yang, Jiangang; Zhu, Yueming; Men, Yan; Sun, Shangshang; Zeng, Yan; Zhang, Ying; Sun, Yuanxia; Ma, Yanhe

    2016-12-21

    Rare sugars are valuable natural products widely used in pharmaceutical and food industries. In this study, we expected to synthesize rare ketoses from abundant glycerol using dihydroxyacetone phosphate (DHAP)-dependent aldolases. First, a new glycerol assimilation pathway was constructed to synthesize DHAP. The enzymes which convert glycerol to 3-hydroxypropionaldehyde and l-glyceraldehyde were selected, and their corresponding aldehyde synthesis pathways were constructed in vivo. Four aldol pathways based on different aldolases and phosphorylase were gathered. Next, three pathways were assembled and the resulting strains synthesized 5-deoxypsicose, 5-deoxysorbose, and 5-deoxyfructose from glucose and glycerol and produce l-fructose, l-tagatose, l-sorbose, and l-psicose with glycerol as the only carbon source. To achieve higher product titer and yield, the recombinant strains were further engineered and fermentation conditions were optimized. Fed-batch culture of engineered strains obtained 38.1 g/L 5-deoxypsicose with a yield of 0.91 ± 0.04 mol product per mol of glycerol and synthesized 20.8 g/L l-fructose, 10.3 g/L l-tagatose, 1.2 g/L l-sorbose, and 0.95 g/L l-psicose.

  8. Methods to recover value-added coproducts from dry grind processing of grains into fuel ethanol.

    PubMed

    Liu, Keshun; Barrows, Frederic T

    2013-07-31

    Three methods are described to fractionate condensed distillers solubles (CDS) into several new coproducts, including a protein-mineral fraction and a glycerol fraction by a chemical method; a protein fraction, an oil fraction and a glycerol-mineral fraction by a physical method; or a protein fraction, an oil fraction, a mineral fraction, and a glycerol fraction by a physicochemical method. Processing factors (ethanol concentration and centrifuge force) were also investigated. Results show that the three methods separated CDS into different fractions, with each fraction enriched with one or more of the five components (protein, oil, ash, glycerol and other carbohydrates) and thus having different targeted end uses. Furthermore, because glycerol, a hygroscopic substance, was mostly shifted to the glycerol or glycerol-mineral fraction, the other fractions had much faster moisture reduction rates than CDS upon drying in a forced air oven at 60 °C. Thus, these methods could effectively solve the dewatering problem of CDS, allowing elimination of the current industrial practice of blending distiller wet grains with CDS for drying together and production of distiller dried grains as a standalone coproduct in addition to a few new fractions.

  9. Fabrication of a glycerol from CO2 reaction system, supplement

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.

    1973-01-01

    The fabrication, installation, and testing of a glycerol hydrogenation and a CO2 hydrogenation - CH4 partial oxidation units are reported. The glycerol system proved to be operational while the CO2 system was installed but not bought on operational steam.

  10. Glycerol combustion and emissions

    EPA Science Inventory

    With the growing capacity in biodiesel production and the resulting glut of the glycerol by-product, there is increasing interest in finding alternative uses for crude glycerol. One option may be to burn it locally for combined process heat and power, replacing fossil fuels and i...

  11. Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms.

    PubMed

    Koju, Neel Kamal; Song, Xin; Wang, Qing; Hu, Zhihao; Colombo, Claudio

    2018-05-07

    Cadmium (Cd), one of the most toxic contaminants in groundwater, can cause a severe threat to human health and ecological systems. In this study, alumina nanoparticles were synthesized and tested for high-efficiency Cd removal from simulated groundwater. Furthermore, the synthesized alumina nanoparticles were successfully modified using negatively charged glycerol, to alleviate the challenge of its low mobility in groundwater for the Cd removal. The maximum removal efficiency of both synthesized and glycerol-modified alumina nanoparticles were more than 99%. The sorption isotherm and kinetic data of both synthesized and glycerol-modified alumina nanoparticles were best fitted to the Freundlich model and the pseudo-second-order model, respectively, indicating that the sorption of Cd ions occurs on heterogeneous surfaces of both alumina nanoparticles via the chemisorption mechanism. X-ray photoelectron spectroscopy and energy dispersive X-ray analysis revealed the presence of Cd peak in both sorbents after contact with Cd. In addition, the FTIR analyses demonstrated that hydroxyl group participated in the sorption of Cd on both synthesized and glycerol-modified alumina nanoparticles, while other glycerol associated groups contributed to the removal of Cd ions by the glycerol-modified alumina nanoparticles. It was concluded that Cd removal by synthesized and glycerol-modified alumina nanoparticles were mainly due to ion exchange and electrostatic attraction, respectively. Desorption experiment suggested that both alumina nanoparticles are effective and practically significant sorbents to remediate Cd from contaminated groundwater. However, the stronger bond between Cd and glycerol-modified alumina, plus its potential of higher mobility due to the negative charge on the surface, warrant glycerol-modified alumina nanoparticles a better performance in remediating Cd contaminated groundwater than that of the synthesized alumina nanoparticles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. In situ crystallization and transformation kinetics of polymorphic forms of saturated-unsaturated-unsaturated triacylglycerols: 1-palmitoyl-2,3-dioleoyl glycerol, 1-stearoyl-2,3-dioleoyl glycerol, and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol.

    PubMed

    Bayés-García, L; Calvet, T; Cuevas-Diarte, M A; Ueno, S

    2016-07-01

    We examined the influence of dynamic thermal treatment (variation of cooling/heating rates) on the polymorphic crystallization and transformation pathways of 1-palmitoyl-2,3-dioleoyl glycerol (POO), 1-stearoyl-2,3-dioleoyl glycerol (SOO), and 1-palmitoyl-2-oleoyl-3-linoleoyl glycerol (POL), which are major saturated-unsaturated-unsaturated (SUU) triacylglycerols (TAGs) of vegetable oils and animal fats (e.g., palm oil, olive oil, and Iberian ham fat). Using mainly a combination of differential scanning calorimetry (DSC) and synchrotron radiation X-ray diffraction (SR-XRD), we analyzed the polymorphic behavior of TAGs when high (15°Cmin -1 ), intermediate (2°Cmin -1 ), and low (0.5°Cmin -1 ) cooling and heating rates were applied. Multiple polymorphic forms were detected in POO, SOO, and POL (sub-α, α, β' 2 , and β' 1 ). Transient disordered phases, defined as kinetic liquid crystal (KLC) phases, were determined in POO and SOO for the first time. The results demonstrated that more stable forms were directly obtained from the melt by decreasing the cooling rates, whereas less stable forms predominated at high cooling rates, as confirmed in our previous work. Regarding heating rate variation, we confirmed that the nature of the polymorphic transformations observed (solid-state, transformation through KLC phase, or melt-mediation) depended largely on the heating rate. These results were discussed considering the activation energies involved in each process and compared with previous studies on TAGs with different saturated-unsaturated structures (1,3-dioleoyl-2-palmitoylglycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, trioleoyl glycerol, and 1,2-dioleoyl-3-linoleoyl glycerol). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battey, J.F.

    When host and algal triglycerides synthesized in the symbiotic sea anemone Condylactis gigantea during light and dark incubations in /sup 14/C-bicarbonate and /sup 14/C-acetate were deacylated, more then 80% of the radioactivity was found in the fatty acid moiety. In contrast, triglycerides isolated from zooxanthellae and host incubated in /sup 14/C-glycerol in the dark were found to have more then 95% of their radioactivity in the glycerol moiety. During /sup 14/C-glycerol incubations in the light, radioactivity in the fatty acid moiety of zooxanthellae triglyceride fatty acid moiety stayed below 5% during /sup 14/C-glycerol incubations in the light. These results showmore » neither the zooxanthellae nor host can rapidly convert glycerol to fatty acid. Radioactivity from /sup 14/C-glycerol that does eventually appear in host lipid may have been respired to /sup 14/CO/sub 2/ then photosynthetically fixed by the zooxanthellae and synthesized into lipid fatty acid. The isolated zooxanthellae of C. gigantea contained 3.62 +/- 0.33 mM glycerol, which was 26x the 0.141 +/- 0.02 mM found in the coelenterate tissue. Aposymbiotic coelenterate tissue contained 0.169 +/- 0.05 mM glycerol. The metabolic inhibitors, sodium cyanide, aminooxyacetic acid and cerulenin were used to try and uncouple the production of glycerol by the zooxanthellae from its utilization by the coelenterate host. 10/sup -5/ M NaCN increased the ratio of cross photosynthesis to respiration in both intact tentacles and isolated zooxanthellae, increased translocation from 17.7 +/- 3.5% of total fixed carbon in controls to 43.5 +/- 5.79%, and doubled the amount of photosynthetically fixed carbon accumulating in the coelenterate host over that in controls.« less

  14. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

    PubMed

    Guadalupe Medina, Víctor; Almering, Marinka J H; van Maris, Antonius J A; Pronk, Jack T

    2010-01-01

    In anaerobic cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize NADH produced in biosynthetic processes. Consequently, glycerol is a major by-product during anaerobic production of ethanol by S. cerevisiae, the single largest fermentation process in industrial biotechnology. The present study investigates the possibility of completely eliminating glycerol production by engineering S. cerevisiae such that it can reoxidize NADH by the reduction of acetic acid to ethanol via NADH-dependent reactions. Acetic acid is available at significant amounts in lignocellulosic hydrolysates of agricultural residues. Consistent with earlier studies, deletion of the two genes encoding NAD-dependent glycerol-3-phosphate dehydrogenase (GPD1 and GPD2) led to elimination of glycerol production and an inability to grow anaerobically. However, when the E. coli mhpF gene, encoding the acetylating NAD-dependent acetaldehyde dehydrogenase (EC 1.2.1.10; acetaldehyde+NAD++coenzyme A<-->acetyl coenzyme A+NADH+H+), was expressed in the gpd1Delta gpd2Delta strain, anaerobic growth was restored by supplementation with 2.0 g liter(-1) acetic acid. The stoichiometry of acetate consumption and growth was consistent with the complete replacement of glycerol formation by acetate reduction to ethanol as the mechanism for NADH reoxidation. This study provides a proof of principle for the potential of this metabolic engineering strategy to improve ethanol yields, eliminate glycerol production, and partially convert acetate, which is a well-known inhibitor of yeast performance in lignocellulosic hydrolysates, to ethanol. Further research should address the kinetic aspects of acetate reduction and the effect of the elimination of glycerol production on cellular robustness (e.g., osmotolerance).

  15. Molar concentrations of sorbitol and polyethylene glycol inhibit the Plasmodium aquaglyceroporin but not that of E. coli: involvement of the channel vestibules.

    PubMed

    Song, Jie; Almasalmeh, Abdulnasser; Krenc, Dawid; Beitz, Eric

    2012-05-01

    The aquaglyceroporins of Escherichia coli, EcGlpF, and of Plasmodium falciparum, PfAQP, are probably the best characterized members of the solute-conducting aquaporin (AQP) subfamily. Their crystal structures have been elucidated and numerous experimental and theoretical analyses have been conducted. However, opposing reports on their rates of water permeability require clarification. Hence, we expressed EcGlpF and PfAQP in yeast, prepared protoplasts, and compared water and glycerol permeability of both aquaglyceroporins in the presence of different osmolytes, i.e. sucrose, sorbitol, PEG300, and glycerol. We found that water permeability of PfAQP strongly depends on the external osmolyte, with full inhibition by sorbitol, and increasing water permeability when glycerol, PEG300, and sucrose were used. EcGlpF expression did not enhance water permeability over that of non-expressing control protoplasts regardless of the osmolyte. Glycerol permeability of PfAQP was also inhibited by sorbitol, but to a smaller extent, whereas EcGlpF conducted glycerol independently of the osmolyte. Mixtures of glycerol and urea passed PfAQP equally well under isosmotic conditions, whereas under hypertonic conditions in a countercurrent with water, glycerol was clearly preferred over urea. We conclude that PfAQP has high and EcGlpF low water permeability, and explain the inhibiting effect of sorbitol on PfAQP by its binding to the extracellular vestibule. The preference for glycerol under hypertonic conditions implies that in a physiological setting, PfAQP mainly acts as a water/glycerol channel rather than a urea facilitator. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Suppression of NaNO3 crystal nucleation by glycerol: micro-Raman observation on the efflorescence process of mixed glycerol/NaNO3/water droplets.

    PubMed

    Yu, Jun-Ying; Zhang, Yun; Zeng, Guang; Zheng, Chuan-Ming; Liu, Yong; Zhang, Yun-Hong

    2012-02-09

    Although the hygroscopicity of a NaNO(3)/water microdroplet and a polyalcohol/water microdroplet, two of the most important aerosols in atmosphere, has been widely studied, little is known about the relationship between the hygroscopic behavior of mixed NaNO(3)/polyalcohol/water droplets and their structures on the molecular level. In this study, the hygroscopicity of mixed glycerol/NaNO(3)/water droplets deposited on a hydrophobic substrate was studied by micro-Raman spectroscopy with organic-to-inorganic molar ratios (OIRs) of 0.5, 1, and 2. In the mixed glycerol/NaNO(3)/water droplets, glycerol molecules tended to combine with Na(+) and NO(3)(-) ions by electrostatic interaction and hydrogen bonding, respectively. On the basis of the analyses of the changes of symmetric stretching (v(s)-CH(2)), asymmetric stretching (v(a)-CH(2)), their area ratio (Av(a)-CH(2)/Av(s)-CH(2)) of glycerol, and symmetric stretching band of NO(3)(-) (ν(1)-NO(3)(-)) with relative humidity (RH), it was found that the conformation of glycerol was transformed from αα mainly to γγ and partly to αγ with a decreasing RH in the mixed droplets, contrary to the case in the glycerol/water droplet. In addition, the glycerol with γγ and αγ conformation had strong interaction with Na(+) and NO(3)(-) respectively, which suppressed the formation of contact of ions and delayed the efflorescence relative humidity (ERH) for the mixed droplets compared to the NaNO(3)/water droplet. © 2012 American Chemical Society

  17. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes.

    PubMed

    Gottlieb, Katrin; Albermann, Christoph; Sprenger, Georg A

    2014-07-11

    For the production of L-phenylalanine (L-Phe), two molecules of phosphoenolpyruvate (PEP) and one molecule erythrose-4-phosphate (E4P) are necessary. PEP stems from glycolysis whereas E4P is formed in the pentose phosphate pathway (PPP). Glucose, commonly used for L-Phe production with recombinant E. coli, is taken up via the PEP-dependent phosphotransferase system which delivers glucose-6-phosphate (G6P). G6P enters either glycolysis or the PPP. In contrast, glycerol is phosphorylated by an ATP-dependent glycerol kinase (GlpK) thus saving one PEP. However, two gluconeogenic reactions (fructose-1,6-bisphosphate aldolase, fructose-1,6-bisphosphatase, FBPase) are necessary for growth and provision of E4P. Glycerol has become an important carbon source for biotechnology and reports on production of L-Phe from glycerol are available. However, the influence of FBPase and transketolase reactions on L-Phe production has not been reported. L-Phe productivity of parent strain FUS4/pF81 (plasmid-encoded genes for aroF, aroB, aroL, pheA) was compared on glucose and glycerol as C sources. On glucose, a maximal carbon recovery of 0.19 mM C(Phe)/C(Glucose) and a maximal space-time-yield (STY) of 0.13 g l(-1) h(-1) was found. With glycerol, the maximal carbon recovery was nearly the same (0.18 mM C(Phe)/C(Glycerol)), but the maximal STY was higher (0.21 g l(-1) h(-1)). We raised the chromosomal gene copy number of the genes glpK (encoding glycerol kinase), tktA (encoding transketolase), and glpX (encoding fructose-1,6-bisphosphatase) individually. Overexpression of glpK (or its feedback-resistant variant, glpK(G232D)) had little effect on growth rate; L-Phe production was about 30% lower than in FUS4/pF81. Whereas the overexpression of either glpX or tktA had minor effects on productivity (0.20 mM C(Phe)/C(Glycerol); 0.25 g l(-1) h(-1) and 0.21 mM C(Phe)/C(Glycerol); 0.23 g l(-1) h(-1), respectively), the combination of extra genes of glpX and tktA together led to an increase in maximal STY of about 80% (0.37 g l(-1) h(-1)) and a carbon recovery of 0.26 mM C(Phe)/C(Glycerol). Enhancing the gene copy numbers for glpX and tktA increased L-Phe productivity from glycerol without affecting growth rate. Engineering of glycerol metabolism towards L-Phe production in E. coli has to balance the pathways of gluconeogenesis, glycolysis, and PPP to improve the supply of the precursors, PEP and E4P.

  18. Efficient green methanol synthesis from glycerol

    NASA Astrophysics Data System (ADS)

    Haider, Muhammad H.; Dummer, Nicholas F.; Knight, David W.; Jenkins, Robert L.; Howard, Mark; Moulijn, Jacob; Taylor, Stuart H.; Hutchings, Graham J.

    2015-12-01

    The production of biodiesel from the transesterification of plant-derived triglycerides with methanol has been commercialized extensively. Impure glycerol is obtained as a by-product at roughly one-tenth the mass of the biodiesel. Utilization of this crude glycerol is important in improving the viability of the overall process. Here we show that crude glycerol can be reacted with water over very simple basic or redox oxide catalysts to produce methanol in high yields, together with other useful chemicals, in a one-step low-pressure process. Our discovery opens up the possibility of recycling the crude glycerol produced during biodiesel manufacture. Furthermore, we show that molecules containing at least two hydroxyl groups can be converted into methanol, which demonstrates some aspects of the generality of this new chemistry.

  19. Glycerol citrate polyesters produced through microwave heating

    USDA-ARS?s Scientific Manuscript database

    The influence of various heating methods without catalysis to prepare copolyesters from citric acid:glycerol blends were studied. In the presence of short term microwave treatments, i.e., 60 sec at 1200 W, blends of glycerol and citric acid invariably formed solid amorphous copolyesters. Fourier tra...

  20. Silicate-Promoted Phosphorylation of Glycerol in Non-Aqueous Solvents: A Prebiotically Plausible Route to Organophosphates

    PubMed Central

    Gull, Maheen; Cafferty, Brian J.; Hud, Nicholas V.; Pasek, Matthew A.

    2017-01-01

    Phosphorylation reactions of glycerol were studied using different inorganic phosphates such as sodium phosphate, trimetaphosphate (a condensed phosphate), and struvite. The reactions were carried out in two non-aqueous solvents: formamide and a eutectic solvent consisting of choline-chloride and glycerol in a ratio of 1:2.5. The glycerol reacted in formamide and in the eutectic solvent with phosphate to yield its phosphorylated derivatives in the presence of silicates such as quartz sand and kaolinite clay. The reactions were carried out by heating glycerol with a phosphate source at 85 °C for one week and were analyzed by 31P-nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The yield of the phosphorylated glycerol was improved by the presence of silicates, and reached 90% in some experiments. Our findings further support the proposal that non-aqueous solvents are advantageous for the prebiotic synthesis of biomolecules, and suggest that silicates may have aided in the formation of organophosphates on the prebiotic earth. PMID:28661422

Top