Science.gov

Sample records for glycine receptor channels

  1. Ivermectin, an unconventional agonist of the glycine receptor chloride channel.

    PubMed

    Shan, Q; Haddrill, J L; Lynch, J W

    2001-04-20

    The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha(1) homomeric and alpha(1)beta heteromeric glycine receptors (GlyRs). At low (0.03 microm) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (> or =0.03 microm) concentrations it irreversibly activated both alpha(1) homomeric and alpha(1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin. Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.

  2. Investigation of the alpha(1)-glycine receptor channel-opening kinetics in the submillisecond time domain.

    PubMed Central

    Grewer, C

    1999-01-01

    The activation and desensitization kinetics of the human alpha(1)-homooligomeric glycine receptor, which was transiently expressed in HEK 293 cells, were studied with a 100-microseconds time resolution to determine the rate and equilibrium constants of individual receptor reaction steps. Concentration jumps of the activating ligands glycine and beta-alanine were initiated by photolysis of caged, inactive precursors and were followed by neurotransmitter binding, receptor-channel opening, and receptor desensitization steps that were separated along the time axis. Analysis of the ligand concentration-dependence of these processes allows the determination of 1) the rate constants of glycine binding, k(+1) approximately 10(7) M(-1) s(-1), and dissociation, k(-1) = 1900 s(-1); 2) the rates of receptor-channel opening, k(op) = 2200 s(-1), and closing, k(cl) = 38 s(-1); 3) the receptor desensitization rate, alpha = 0.45 s(-1); 4) the number of occupied ligand binding sites necessary for receptor-channel activation and desensitization, n >/= 3; and 5) the maximum receptor-channel open probability, p(0) > 0.95. The kinetics of receptor-channel activation are insensitive to the transmembrane potential. A general model for glycine receptor activation explaining the experimental data consists of a sequential mechanism based on rapid ligand-binding steps preceding a rate-limiting receptor-channel opening reaction and slow receptor desensitization. PMID:10423421

  3. Modulation of calcium channels by taurine acting via a metabotropic-like glycine receptor.

    PubMed

    Albiñana, E; Sacristán, S; Martín del Río, R; Solís, J M; Hernández-Guijo, J M

    2010-11-01

    Taurine is one of the most abundant free amino acids in the central nervous system, where it displays several functions. However, its molecular targets remain unknown. It is well known that taurine can activate GABA-A and strychnine-sensitive glycine receptors, which increases a chloride conductance. In this study, we describe that acute application of taurine induces a dose-dependent inhibition of voltage-dependent calcium channels in chromaffin cells from bovine adrenal medullae. This taurine effect was not explained by the activation of either GABA-A, GABA-B or strychnine-sensitive glycine receptors. Interestingly, glycine mimicked the modulatory action exerted by taurine on calcium channels, although the acute application of glycine did not elicit any ionic current in these cells. Additionally, the modulation of calcium channels exerted by both taurine and glycine was prevented by the intracellular dialysis of GDP-β-S. Thus, the modulation of voltage-dependent calcium channels by taurine seems to be mediated by a metabotropic-like glycinergic receptor coupled to G-protein activation in a membrane delimited pathway.

  4. Novel expression of a functional glycine receptor chloride channel that attenuates contraction in airway smooth muscle

    PubMed Central

    Yim, Peter D.; Gallos, George; Xu, Dingbang; Zhang, Yi; Emala, Charles W.

    2011-01-01

    Airway smooth muscle (ASM) contraction is an important component of the pathophysiology of asthma. Taurine, an agonist of glycine receptor chloride (GlyR Cl−) channels, was found to relax contracted ASM, which led us to question whether functional GlyR Cl− channels are expressed in ASM. Messenger RNA for β (GLRB), α1 (GLRA1), α2 (GLRA2), and α4 (GLRA4) subunits were found in human (Homo sapiens) and guinea pig (Cavia porcellus) tracheal smooth muscle. Immunoblotting confirmed the protein expression of GLRA1 and GLRB subunits in ASM. Electrical activity of cultured human ASM cells was assessed using a fluorescent potentiometric dye and electrophysiological recordings. Glycine increased current and significantly increased fluorescence in a dose-dependent manner. The GlyR Cl− channel antagonist strychnine significantly blocked the effects of glycine on potentiometric fluorescence in ASM cells. Guinea pig airway ring relaxation of ACh-induced contractions by isoproterenol was significantly left-shifted in the presence of glycine. This effect of glycine was blocked by pretreatment with the GlyR Cl− channel antagonist strychnine. Glycine treatment during tachykinin- and acetylcholine-induced contractions significantly decreased the maintenance of muscle force compared to control. GlyR Cl− channels are expressed on ASM and regulate smooth muscle force and offer a novel target for therapeutic relaxation of ASM.—Yim, P. D., Gallos, G., Xu, D., Zhang, Y., Emala, C. W. Novel expression of a functional glycine receptor chloride channel that attenuates contraction in airway smooth muscle. PMID:21282206

  5. Investigations of the contribution of a putative glycine hinge to ryanodine receptor channel gating.

    PubMed

    Euden, Joanne; Mason, Sammy A; Viero, Cedric; Thomas, N Lowri; Williams, Alan J

    2013-06-07

    Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K(+)-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K(+) channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G(4864)LIIDA(4869) in RyR2) analogous to the glycine hinge motif present in many K(+) channels. Gating in these K(+) channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K(+) channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K(+) channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.

  6. Whole cell and single channel analysis of the kinetics of glycine-sensitive N-methyl-D-aspartate receptor desensitization.

    PubMed Central

    Parsons, C. G.; Zong, X.; Lux, H. D.

    1993-01-01

    1. The kinetics of glycine-sensitive, N-methyl-D-aspartate (NMDA) receptor desensitization were investigated in cultured neurones with the patch clamp technique. 2. The degree of fast NMDA-receptor desensitization was inversely related to glycine concentration. Thus, increasing concentrations of glycine from 30 nM to 2.5 microM potentiated desensitized NMDA responses (873% +/- 101%) to a greater degree than peak responses (260% +/- 27%). 3. The desensitization was due to a decrease in the affinity of glycine for the strychnine-insensitive, glycine modulatory site (glycineB site) following activation of the NMDA-receptor complex. Thus, the A50 for glycine in potentiating peak responses (77 nM, 95% confidence limited 58-104 nM) was five fold lower than that for plateau responses (399 nM, 340-468 nM). 4. The rate of desensitization was related to glycine concentration such that a reciprocal plot of desensitization rate (1/tau S-1) against glycine concentration had a slope of 9.5* 10(6) M-1 S-1. 5. Recovery from desensitization following step increases in glycine or L-alanine concentration in the continuous presence of NMDA (200 microM) reflected the association kinetics of the glycineB agonist used. 6. The rate and degree of NMDA receptor desensitization was independent of holding potential. 7. NMDA receptor desensitization was also evident at the single channel level. 8. The glycineB antagonist 7-chlorokynurenic acid (7-Chl-Kyn 3 and 10 microM) concentration-dependently induced an identical form of desensitization in the presence of 1 microM glycine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8098640

  7. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.

    PubMed

    Mei, Yingwu; Xu, Le; Mowrey, David D; Mendez Giraldez, Raul; Wang, Ying; Pasek, Daniel A; Dokholyan, Nikolay V; Meissner, Gerhard

    2015-07-10

    Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes.

  8. Channel gating of the glycine receptor changes accessibility to residues implicated in receptor potentiation by alcohols and anesthetics.

    PubMed

    Lobo, Ingrid A; Mascia, Maria Paola; Trudell, James R; Harris, R Adron

    2004-08-06

    The glycine receptor is a target for both alcohols and anesthetics, and certain amino acids in the alpha1 subunit transmembrane segments (TM) are critical for drug effects. Introducing larger amino acids at these positions increases the potency of glycine, suggesting that introducing larger residues, or drug molecules, into the drug-binding cavity facilitates channel opening. A possible mechanism for these actions is that the volume of the cavity expands and contracts during channel opening and closing. To investigate this hypothesis, mutations for amino acids in TM1 (I229C) and TM2 (G256C, T259C, V260C, M263C, T264C, S267C, S270C) and TM3 (A288C) were individually expressed in Xenopus laevis oocytes. The ability of sulfhydryl-specific alkyl methanethiosulfonate (MTS) compounds of different lengths to covalently react with introduced cysteines in both the closed and open states of the receptor was determined. S267C was accessible to short chain (C3-C8) MTS in both open and closed states, but was only accessible to longer chain (C10-C16) MTS compounds in the open state. Reaction with S267C was faster in the open state. I229C and A288C showed state-dependent reaction with MTS only in the presence of agonist. M263C and S270C were also accessible to MTS labeling. Mutated residues more intracellular than M263C did not react, indicating a floor of the cavity. These data demonstrate that the conformational changes accompanying channel gating increase accessibility to amino acids critical for drug action in TM1, TM2, and TM3, which may provide a mechanism by which alcohols and anesthetics can act on glycine (and likely other) receptors.

  9. Molecular Determinants of Ivermectin Sensitivity at the Glycine Receptor Chloride Channel*

    PubMed Central

    Lynagh, Timothy; Webb, Timothy I.; Dixon, Christine L.; Cromer, Brett A.; Lynch, Joseph W.

    2011-01-01

    Ivermectin is an anthelmintic drug that works by activating glutamate-gated chloride channel receptors (GluClRs) in nematode parasites. GluClRs belong to the Cys-loop receptor family that also includes glycine receptor (GlyR) chloride channels. GluClRs and A288G mutant GlyRs are both activated by low nanomolar ivermectin concentrations. The crystal structure of the Caenorhabditis elegans α GluClR complexed with ivermectin has recently been published. Here, we probed ivermectin sensitivity determinants on the α1 GlyR using site-directed mutagenesis and electrophysiology. Based on a mutagenesis screen of transmembrane residues, we identified Ala288 and Pro230 as crucial sensitivity determinants. A comparison of the actions of selamectin and ivermectin suggested the benzofuran C05-OH was required for high efficacy. When taken together with docking simulations, these results supported a GlyR ivermectin binding orientation similar to that seen in the GluClR crystal structure. However, whereas the crystal structure shows that ivermectin interacts with the α GluClR via H-bonds with Leu218, Ser260, and Thr285 (α GluClR numbering), our data indicate that H-bonds with residues homologous to Ser260 and Thr285 are not important for high ivermectin sensitivity or direct agonist efficacy in A288G α1 GlyRs or three other GluClRs. Our data also suggest that van der Waals interactions between the ivermectin disaccharide and GlyR M2–M3 loop residues are unimportant for high ivermectin sensitivity. Thus, although our results corroborate the ivermectin binding orientation as revealed by the crystal structure, they demonstrate that some of the binding interactions revealed by this structure do not pertain to other highly ivermectin-sensitive Cys-loop receptors. PMID:22033924

  10. Further analysis of counterion permeation through anion-selective glycine receptor channels.

    PubMed

    Barry, Peter H; Sugiharto, Silas; Lewis, Trevor M; Moorhouse, Andrew J

    2010-01-01

    The functional role of ion channels, which allow counterion permeation, depends critically on their relative anion-cation relative selectivity. From whole-cell patch clamp reversal potential measurements under dilution potential conditions, we have already shown that anion-cation permeabilities of anion-selective wild-type (WT) and mutant (with larger pore diameter) glycine receptor (GlyR) channels in the presence of Li(+), Na(+) and Cs(+) counterions, were inversely correlated with the equivalent hydration diameter of the counterion, with chloride-cation permeability increasing as counterion equivalent hydration diameter increased with respect to the channel minimum pore diameter. Corrected for liquid junction potentials (LJPs; using ion activities), the previous chloride-cation permeabilities for the alkali cations were 23.4 (Li(+)), 10.9 (Na(+)) and 5.0 (Cs(+)) for the smaller WT channel. Further analysis to incorporate an initial offset potential correction, to fully allow for slight differences between internal cell composition and external control salt solution, changed the above permeability ratios to 30.6 (Li(+)), 11.8 (Na(+)) and 5.0 (Cs(+)), adding enhanced support for the inverse correlation between anion-to-counterion permeability ratio and equivalent hydrated counterion diameter relative to channel pore diameter (erroneously ignoring LJPs reduces each permeability ratio to about 4). Also, new direct measurements of LJPs (for NaCl and LiCl salt dilutions) using a 3M KCl-agar reference salt bridge (with freshly-cut end for each solution composition change) have shown excellent agreement with calculated LJPs (using ion activities), validating calculated LJP values. We continue to suggest that counterion cations permeate with chloride ions as neutral pairs.

  11. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-03

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  12. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    DOE PAGES

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; ...

    2015-10-12

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysismore » reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. In this paper, we hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and finally suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.« less

  13. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    SciTech Connect

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-10-12

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. In this paper, we hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and finally suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  14. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    PubMed Central

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-01-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  15. New insights in endogenous modulation of ligand-gated ion channels: histamine is an inverse agonist at strychnine sensitive glycine receptors.

    PubMed

    Kletke, Olaf; Sergeeva, Olga A; Lorenz, Philipp; Oberland, Sonja; Meier, Jochen C; Hatt, Hanns; Gisselmann, Günter

    2013-06-15

    Histamine is involved in many physiological functions in the periphery and is an important neurotransmitter in the brain. It acts on metabotropic H1-H4 receptors mediating vasodilatation, bronchoconstriction and stimulation of gastric acid secretion. In the brain histamine is produced by neurons in the tuberomamillary nucleus (TMN), which controls arousal. Histamine is also a positive modulator of the inhibitory Cys-loop ligand-gated ion channel GABAA. We investigated now its effect on the second member of inhibitory Cys-loop ligand-gated ion channels, the strychnine sensitive glycine receptor. We expressed different human and rat glycine receptor subunits in Xenopus laevis oocytes and characterized the effect of histamine using the two electrode voltage clamp technique. Furthermore we investigated native glycine receptors in hypothalamic neurons using the patch-clamp technique. Histamine inhibited α1β glycine receptors with an IC50 of 5.2±0.3 mM. In presence of 10 mM histamine the glycine dose-response curve was shifted, increasing the EC50 for glycine from 25.5±1.4 μM to 42.4±2.3 μM. In addition, histamine blocked the spontaneous activity of RNA-edited α3β glycine receptors. Histamine inhibited glycine receptors expressed in hypothalamic TMN neurons with an IC50 of 4.6±0.3 mM. Our results give strong evidence that histamine is acting on the same binding site as glycine, being an inverse agonist that competitively antagonizes glycine receptors. Thus, we revealed histamine as an endogenous modulator of glycine receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The surface accessibility of the glycine receptor M2-M3 loop is increased in the channel open state.

    PubMed

    Lynch, J W; Han, N L; Haddrill, J; Pierce, K D; Schofield, P R

    2001-04-15

    Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.

  17. Zinc Modulation of Glycine Receptors

    PubMed Central

    Trombley, Paul Q.; Blakemore, Laura J.; Hill, Brook J.

    2011-01-01

    Glycine receptors are widely expressed in the mammalian central nervous system, and previous studies have demonstrated that glycine receptors are modulated by endogenous zinc. Zinc is concentrated in synaptic vesicles in several brain regions but is particularly abundant in the hippocampus and olfactory bulb. In the present study, we used patch-clamp electrophysiology of rat hippocampal and olfactory bulb neurons in primary culture to examine the effects of zinc on glycine receptors. Although glycine has been reported to reach millimolar concentrations during synaptic transmission, most previous studies on the effects of zinc on glycine receptors have used relatively low concentrations of glycine. High concentrations of glycine cause receptor desensitization. Our current results extend our previous demonstration that the modulatory actions of zinc are largely prevented when co-applied with desensitizing concentrations of glycine (300 μM), suggesting that the effects of zinc are dependent on the state of the receptor. In contrast, pre-application of 300 μM zinc, prior to glycine (300 μM) application, causes a slowly developing inhibition with a slow rate of recovery, suggesting that the timing of zinc and glycine release also influences the effects of zinc. Furthermore, previous evidence suggests that synaptically released zinc can gain intracellular access, and we provide the first demonstration that low concentrations of intracellular zinc can potentiate glycine receptors. These results support the notion that zinc has complex effects on glycine receptors and multiple factors may interact to influence the efficacy of glycinergic transmission. PMID:21530619

  18. The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels.

    PubMed Central

    Pribilla, I; Takagi, T; Langosch, D; Bormann, J; Betz, H

    1992-01-01

    Purified preparations of the inhibitory glycine receptor (GlyR) contain alpha and beta subunits, which share homologous primary structures and a common transmembrane topology with other members of the ligand-gated ion channel superfamily. Here, a beta subunit-specific antiserum was shown to precipitate the [3H]strychnine binding sites localized on alpha subunits from membrane extracts of both rat spinal cord and mammalian cells co-transfected with alpha and beta cDNAs. Further, inhibition of alpha homo-oligomeric GlyRs by picrotoxinin, a non-competitive blocker of ion flow, was reduced 50- to 200-fold for alpha/beta hetero-oligomeric receptors generated by cotransfection. Site-directed mutagenesis identified residues within the second predicted transmembrane segment (M2) of the beta subunit as major determinants of picrotoxinin resistance. These data implicate the M2 segment in blocker binding to and lining of the GlyR chloride channel. PMID:1385113

  19. Single Expressed Glycine Receptor Domains Reconstitute Functional Ion Channels without Subunit-specific Desensitization Behavior*

    PubMed Central

    Meiselbach, Heike; Vogel, Nico; Langlhofer, Georg; Stangl, Sabine; Schleyer, Barbara; Bahnassawy, Lamia'a; Sticht, Heinrich; Breitinger, Hans-Georg; Becker, Cord-Michael; Villmann, Carmen

    2014-01-01

    Cys loop receptors are pentameric arrangements of independent subunits that assemble into functional ion channels. Each subunit shows a domain architecture. Functional ion channels can be reconstituted even from independent, nonfunctional subunit domains, as shown previously for GlyRα1 receptors. Here, we demonstrate that this reconstitution is not restricted to α1 but can be transferred to other members of the Cys loop receptor family. A nonfunctional GlyR subunit, truncated at the intracellular TM3–4 loop by a premature stop codon, can be complemented by co-expression of the missing tail portion of the receptor. Compared with α1 subunits, rescue by domain complementation was less efficient when GlyRα3 or the GABAA/C subunit ρ1 was used. If truncation disrupted an alternative splicing cassette within the intracellular TM3–4 loop of α3 subunits, which also regulates receptor desensitization, functional rescue was not possible. When α3 receptors were restored by complementation using domains with and without the spliced insert, no difference in desensitization was found. In contrast, desensitization properties could even be transferred between α1/α3 receptor chimeras harboring or lacking the α3 splice cassette proving that functional rescue depends on the integrity of the alternative splicing cassette in α3. Thus, an intact α3 splicing cassette in the TM3–4 loop environment is indispensable for functional rescue, and the quality of receptor restoration can be assessed from desensitization properties. PMID:25143388

  20. Glycine receptors and brain development

    PubMed Central

    Avila, Ariel; Nguyen, Laurent; Rigo, Jean-Michel

    2013-01-01

    Glycine receptors (GlyRs) are ligand-gated chloride ion channels that mediate fast inhibitory neurotransmission in the spinal cord and the brainstem. There, they are mainly involved in motor control and pain perception in the adult. However, these receptors are also expressed in upper regions of the central nervous system, where they participate in different processes including synaptic neurotransmission. Moreover, GlyRs are present since early stages of brain development and might influence this process. Here, we discuss the current state of the art regarding GlyRs during embryonic and postnatal brain development in light of recent findings about the cellular and molecular mechanisms that control brain development. PMID:24155690

  1. Molecular determinants of agonist selectivity in glutamate-gated chloride channels which likely explain the agonist selectivity of the vertebrate glycine and GABAA-ρ receptors.

    PubMed

    Blarre, Thomas; Bertrand, Hugues-Olivier; Acher, Francine C; Kehoe, JacSue

    2014-01-01

    Orthologous Cys-loop glutamate-gated chloride channels (GluClR's) have been cloned and described electrophysiologically and pharmacologically in arthropods and nematodes (both members of the invertebrate ecdysozoan superphylum). Recently, GluClR's from Aplysia californica (a mollusc from the lophotrochozoan superphylum) have been cloned and similarly studied. In spite of sharing a common function, the ecdysozoan and lophotrochozoan receptors have been shown by phylogenetic analyses to have evolved independently. The recent crystallization of the GluClR from C. elegans revealed the binding pocket of the nematode receptor. An alignment of the protein sequences of the nematode and molluscan GluClRs showed that the Aplysia receptor does not contain all of the residues defining the binding mode of the ecdysozoan receptor. That the two receptors have slightly different binding modes is not surprising since earlier electrophysiological and pharmacological experiments had suggested that they were differentially responsive to certain agonists. Knowledge of the structure of the C. elegans GluClR has permitted us to generate a homology model of the binding pocket of the Aplysia receptor. We have analyzed the differences between the two binding modes and evaluated the relative significance of their non-common residues. We have compared the GluClRs electrophysiologically and pharmacologically and we have used site-directed mutagenesis on both receptor types to test predictions made from the model. Finally, we propose an explanation derived from the model for why the nematode receptors are gated only by glutamate, whereas the molluscan receptors can also be activated by β-alanine, GABA and taurine. Like the Aplysia receptor, the vertebrate glycine and GABAA-ρ receptors also respond to these other agonists. An alignment of the sequences of the molluscan and vertebrate receptors shows that the reasons we have given for the ability of the other agonists to activate the Aplysia

  2. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships.

    PubMed Central

    Zhorov, B S; Bregestovski, P D

    2000-01-01

    GABA and glycine receptors (GlyRs) are pentameric ligand-gated ion channels that respond to the inhibitory neurotransmitters by opening a chloride-selective central pore lined with five M2 segments homologous to those of alpha(1) GlyR/ ARVG(2')LGIT(6')TVLTMTTQSSGSR. The activity of cyanotriphenylborate (CTB) and picrotoxinin (PTX), the best-studied blockers of the Cl(-) pores, depends essentially on the subunit composition of the receptors, in particular, on residues in positions 2' and 6' that form the pore-facing rings R(2') and R(6'). Thus, CTB blocks alpha(1) and alpha(1)/beta, but not alpha(2) GlyRs (Rundström, N., V. Schmieden, H. Betz, J. Bormann, and D. Langosch. 1994. Proc. Natl. Acad. Sci. U.S.A. 91:8950-8954). PTX blocks homomeric receptors (alpha(1) GlyR and rat rho(1) GABAR), but weakly antagonizes heteromeric receptors (alpha(1)/beta GlyR and rho(1)/rho(2) GABAR) (Pribilla, I., T. Takagi, D. Langosch, J. Bormann, and H. Betz. 1992. EMBO J. 11:4305-4311; Zhang D., Z. H. Pan, X. Zhang, A. D. Brideau, and S. A. Lipton. 1995. Proc. Natl. Acad. Sci. U.S.A. 92:11756-11760). Using as a template the kinked-helices model of the nicotinic acetylcholine receptor in the open state (Tikhonov, D. B., and B. S. Zhorov. 1998. Biophys. J. 74:242-255), we have built homology models of GlyRs and GABARs and calculated Monte Carlo-minimized energy profiles for the blockers pulled through the pore. The profiles have shallow minima at the wide extracellular half of the pore, a barrier at ring R(6'), and a deep minimum between rings R(6') and R(2') where the blockers interact with five M2s simultaneously. The star-like CTB swings necessarily on its way through ring R(6') and its activity inversely correlates with the barrier at R(6'): Thr(6')s and Ala(2')s in alpha(2) GlyR confine the swinging by increasing the barrier, while Gly(2')s in alpha(1) GlyR and Phe(6')s in beta GlyR shrink the barrier. PTX has an egg-like shape with an isopropenyl group at the elongated end and

  3. Glycine and Glycine Receptor Signalling in Non-Neuronal Cells

    PubMed Central

    den Eynden, Jimmy Van; Ali, Sheen Saheb; Horwood, Nikki; Carmans, Sofie; Brône, Bert; Hellings, Niels; Steels, Paul; Harvey, Robert J.; Rigo, Jean-Michel

    2009-01-01

    Glycine is an inhibitory neurotransmitter acting mainly in the caudal part of the central nervous system. Besides this neurotransmitter function, glycine has cytoprotective and modulatory effects in different non-neuronal cell types. Modulatory effects were mainly described in immune cells, endothelial cells and macroglial cells, where glycine modulates proliferation, differentiation, migration and cytokine production. Activation of glycine receptors (GlyRs) causes membrane potential changes that in turn modulate calcium flux and downstream effects in these cells. Cytoprotective effects were mainly described in renal cells, hepatocytes and endothelial cells, where glycine protects cells from ischemic cell death. In these cell types, glycine has been suggested to stabilize porous defects that develop in the plasma membranes of ischemic cells, leading to leakage of macromolecules and subsequent cell death. Although there is some evidence linking these effects to the activation of GlyRs, they seem to operate in an entirely different mode from classical neuronal subtypes. PMID:19738917

  4. β Subunit M2–M3 Loop Conformational Changes Are Uncoupled from α1 β Glycine Receptor Channel Gating: Implications for Human Hereditary Hyperekplexia

    PubMed Central

    Shan, Qiang; Han, Lu; Lynch, Joseph W.

    2011-01-01

    Hereditary hyperekplexia, or startle disease, is a neuromotor disorder caused mainly by mutations that either prevent the surface expression of, or modify the function of, the human heteromeric α1 β glycine receptor (GlyR) chloride channel. There is as yet no explanation as to why hyperekplexia mutations that modify channel function are almost exclusively located in the α1 to the exclusion of β subunit. The majority of these mutations are identified in the M2–M3 loop of the α1 subunit. Here we demonstrate that α1 β GlyR channel function is less sensitive to hyperekplexia-mimicking mutations introduced into the M2–M3 loop of the β than into the α1 subunit. This suggests that the M2–M3 loop of the α subunit dominates the β subunit in gating the α1 β GlyR channel. A further attempt to determine the possible mechanism underlying this phenomenon by using the voltage-clamp fluorometry technique revealed that agonist-induced conformational changes in the β subunit M2–M3 loop were uncoupled from α1 β GlyR channel gating. This is in contrast to the α subunit, where the M2–M3 loop conformational changes were shown to be directly coupled to α1 β GlyR channel gating. Finally, based on analysis of α1 β chimeric receptors, we demonstrate that the structural components responsible for this are distributed throughout the β subunit, implying that the β subunit has evolved without the functional constraint of a normal gating pathway within it. Our study provides a possible explanation of why hereditary hyperekplexia-causing mutations that modify α1 β GlyR channel function are almost exclusively located in the α1 to the exclusion of the β subunit. PMID:22132222

  5. Glutamate and glycine modulation of 3H-MK801 binding to the NMDA receptor-ion channel complex in the vitamin B-6 deficient neonatal rat brain

    SciTech Connect

    Guilarte, T.R. )

    1990-02-26

    The authors have previously shown that the concentrations of the neuroactive amino acids glutamate (GLU) and glycine (GLY) are significantly altered in the seizure-prone vitamin B-6 deficient neonatal rat brain. Recently, it has been shown that GLU and GLY modulate the binding of {sup 3}H-MK801 to the ion channel associated with the N-methyl-D-aspartate (NMDA)-glutamate receptor subtype. The present investigation was undertaken to determine if GLU or GLY modulation of {sup 3}H-MK801 binding was altered in B-6 deficient neonatal rat brain. Preparation of cortical membranes from control and deficient 14 day old rats and {sup 3}H-MK801 binding assay were done as described by Ransom and Stec. The results show a significant reduction in the potency and efficacy of GLU modulation of {sup 3}H-MK801 binding, as well as a reduction in the efficacy of GLY, in membrane preparations from deficient rats compared to controls. These results indicate a reduced ability of GLU and GLY to potentiate the binding of {sup 3}H-MK801 to the NMDA receptor-ion channel in the B-6 deficient neonatal rat brain.

  6. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  7. Activity and structural comparisons of solution associating and monomeric channel-forming peptides derived from the glycine receptor m2 segment.

    PubMed

    Cook, Gabriel A; Prakash, Om; Zhang, Ke; Shank, Lalida P; Takeguchi, Wade A; Robbins, Ashley; Gong, Yu-Xi; Iwamoto, Takeo; Schultz, Bruce D; Tomich, John M

    2004-03-01

    A number of channel-forming peptides derived from the second transmembrane (TM) segment (M2) of the glycine receptor alpha(1) subunit (M2GlyR), including the 22-residue sequence NK(4)-M2GlyR p22 wild type (WT) (KKKKPARVGLGITTVLTMTTQS), induce anion permeation across epithelial cell monolayers. In vitro assays suggest that this peptide or related sequences might function as a candidate for ion channel replacement therapy in treating channelopathies such as cystic fibrosis (CF). The wild-type sequence forms soluble associations in water that diminish its efficacy. Introduction of a single substitution S22W at the C-terminus, NK(4)-M2GlyR p22 S22W, eliminates the formation of higher molecular weight associations in solution. The S22W peptide also reduces the concentration of peptide required for half-maximal anion transport induced across Madin-Darby canine kidney cells (MDCK) monolayers. A combination of 2D double quantum filtered correlation spectroscopy (DQF-COSY), total correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy (NOESY), and rotating frame nuclear Overhauser effect spectroscopy (ROESY) data were recorded for both the associating WT and nonassociating S22W peptides and used to compare the primary structures and to assign the secondary structures. High-resolution structural studies were recorded in the solvent system (40% 2,2,2-Trifluoroethanol (TFE)/water), which gave the largest structural difference between the two peptides. Nuclear Overhauser effect crosspeak intensity provided interproton distances and the torsion angles were measured by spin-spin coupling constants. These constraints were put into the DYANA modeling program to generate a group of structures. These studies yielded energy-minimized structures for this mixed solvent environment. Structure for both peptides is confined to the 15-residue transmembrane segments. The energy-minimized structure for the WT peptide shows a partially helical extended structure. The S22W

  8. Cl− concentration changes and desensitization of GABAA and glycine receptors

    PubMed Central

    Karlsson, Urban; Druzin, Michael

    2011-01-01

    Desensitization of ligand-gated ion channels plays a critical role for the information transfer between neurons. The current view on γ-aminobutyric acid (GABA)A and glycine receptors includes significant rapid components of desensitization as well as cross-desensitization between the two receptor types. Here, we analyze the mechanism of apparent cross-desensitization between native GABAA and glycine receptors in rat central neurons and quantify to what extent the current decay in the presence of ligand is a result of desensitization versus changes in intracellular Cl− concentration ([Cl−]i). We show that apparent cross-desensitization of currents evoked by GABA and by glycine is caused by changes in [Cl−]i. We also show that changes in [Cl−]i are critical for the decay of current in the presence of either GABA or glycine, whereas changes in conductance often play a minor role only. Thus, the currents decayed significantly quicker than the conductances, which decayed with time constants of several seconds and in some cells did not decay below the value at peak current during 20-s agonist application. By taking the cytosolic volume into account and numerically computing the membrane currents and expected changes in [Cl−]i, we provide a theoretical framework for the observed effects. Modeling diffusional exchange of Cl− between cytosol and patch pipettes, we also show that considerable changes in [Cl−]i may be expected and cause rapidly decaying current components in conventional whole cell or outside-out patch recordings. The findings imply that a reevaluation of the desensitization properties of GABAA and glycine receptors is needed. PMID:22084415

  9. Correlating Structural and Energetic Changes in Glycine Receptor Activation*

    PubMed Central

    Scott, Suzanne; Lynch, Joseph W.; Keramidas, Angelo

    2015-01-01

    Pentameric ligand-gated ion channels (pLGICs) mediate fast chemoelectrical transduction in the nervous system. The mechanism by which the energy of ligand binding leads to current-conducting receptors is poorly understood and may vary among family members. We addressed these questions by correlating the structural and energetic mechanisms by which a naturally occurring M1 domain mutation (α1Q−26′E) enhances receptor activation in homo- and heteromeric glycine receptors. We systematically altered the charge of spatially clustered residues at positions 19′ and 24′, in the M2 and M2-M3 linker domains, respectively, which are known to be critical to efficient receptor activation, on a background of α1Q−26′E. Changes in the durations of single receptor activations (clusters) and conductance were used to determine interaction coupling energies, which we correlated with conformational displacements as measured in pLGIC crystal structures. Presence of the α1Q−26′E enhanced cluster durations and reduced channel conductance in homo- and heteromeric receptors. Strong coupling between α1−26′ and α119′ across the subunit interface suggests an important role in receptor activation. A lack of coupling between α1−26′ and α124′ implies that 24′ mutations disrupt activation via other interactions. A similar lack of energetic coupling between α1−26′ and reciprocal mutations in the β subunit suggests that this subunit remains relatively static during receptor activation. However, the channel effects of α1Q−26′E on α1β receptors suggests at least one α1-α1 interface per pentamer. The coupling-energy change between α1−26′ and α119′ correlates with a local structural rearrangement essential for pLGIC activation, implying it comprises a key energetic pathway in activating glycine receptors and other pLGICs. PMID:25572390

  10. Positive Modulation of the Glycine Receptor by Means of Glycine Receptor–Binding Aptamers

    PubMed Central

    Aneiros, Eduardo; Blank, Michael; Mueller, Johan; Nyman, Eva; Blind, Michael; Dabrowski, Michael A.; Andersson, Christin V.; Sandberg, Kristian

    2015-01-01

    According to the gate control theory of pain, the glycine receptors (GlyRs) are putative targets for development of therapeutic analgesics. A possible approach for novel analgesics is to develop a positive modulator of the glycine-activated Cl− channels. Unfortunately, there has been limited success in developing drug-like small molecules to study the impact of agonists or positive modulators on GlyRs. Eight RNA aptamers with low nanomolar affinity to GlyRα1 were generated, and their pharmacological properties analyzed. Cytochemistry using fluorescein-labeled aptamers demonstrated GlyRα1-dependent binding to the plasma membrane but also intracellular binding. Using a fluorescent membrane potential assay, we could identify five aptamers to be positive modulators. The positive modulation of one of the aptamers was confirmed by patch-clamp electrophysiology on L(tk) cells expressing GlyRα1 and/or GlyRα1β. This aptamer potentiated whole-cell Cl− currents in the presence of low concentrations of glycine. To our knowledge, this is the first demonstration ever of RNA aptamers acting as positive modulators for an ion channel. We believe that these aptamers are unique and valuable tools for further studies of GlyR biology and possibly also as tools for assay development in identifying small-molecule agonists and positive modulators. PMID:26071243

  11. Stoichiometry of the Human Glycine Receptor Revealed by Direct Subunit counting

    PubMed Central

    Durisic, Nela; Godin, Antoine G.; Wever, Claudia M.; Heyes, Colin D.; Lakadamyali, Melike; Dent, Joseph A.

    2012-01-01

    The subunit stoichiometry of heteromeric glycine-gated channels (GlyRs) determines fundamental properties of these key inhibitory neurotransmitter receptors; however the ratio of α1 to β-subunits per receptor remains controversial. We used single molecule imaging and stepwise photobleaching in Xenopus oocytes to directly determine the subunit stoichiometry of a glycine receptor to be 3α1:2β. This approach allowed us to determine the receptor stoichiometry in mixed populations consisting of both heteromeric and homomeric channels, additionally revealing the quantitative proportions for the two populations. PMID:22973015

  12. Mutation of glycine receptor subunit creates beta-alanine receptor responsive to GABA.

    PubMed

    Schmieden, V; Kuhse, J; Betz, H

    1993-10-08

    The amino acid at position 160 of the ligand-binding subunit, alpha 1, is an important determinant of agonist and antagonist binding to the glycine receptor. Exchange of the neighboring residues, phenylalanine at position 159 and tyrosine at position 161, increased the efficacy of amino acid agonists. Whereas wild-type alpha 1 channels expressed in Xenopus oocytes required 0.7 millimolar beta-alanine for a half-maximal response, the doubly mutated (F159Y,Y161F) alpha 1 subunit had an affinity for beta-alanine (which was more potent than glycine) that was 110-fold that of the wild type. Also, gamma-aminobutyric acid and D-serine, amino acids that do not activate wild-type alpha 1 receptors, efficiently gated the mutant channel. Thus, aromatic hydroxyl groups are crucial for ligand discrimination at inhibitory amino acid receptors.

  13. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists.

    PubMed

    Pless, Stephan A; Dibas, Mohammed I; Lester, Henry A; Lynch, Joseph W

    2007-12-07

    Models describing the structural changes mediating Cys loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric alpha1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19' or 22' positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19'C increased by approximately 20%, and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and beta-alanine were weak partial agonists at the alpha1R19'C glycine receptor, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue shift in the spectral emission peak. The inhibitors strychnine and picrotoxin elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or beta-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22'C residue. Thus, results from two separate labeled residues support the conclusion that the glycine receptor M2 domain responds with distinct conformational changes to activation by different agonists.

  14. Frequency-Dependent Cannabinoid Receptor-Independent Modulation of Glycine Receptors by Endocannabinoid 2-AG.

    PubMed

    Lozovaya, Natalia; Mukhtarov, Marat; Tsintsadze, Timur; Ledent, Catherine; Burnashev, Nail; Bregestovski, Piotr

    2011-01-01

    Endocannabinoids are known as retrograde messengers, being released from the postsynaptic neuron and acting on specific presynaptic G-protein-coupled cannabinoid (CB) receptors to decrease neurotransmitter release. Also, at physiologically relevant concentrations cannabinoids can directly modulate the function of voltage-gated and receptor-operated ion channels. Using patch-clamp recording we analyzed the consequences of the direct action of an endocannabinoid, 2-arachidonoylglycerol (2-AG), on the functional properties of glycine receptor channels (GlyRs) and ionic currents in glycinergic synapses. At physiologically relevant concentrations (0.1-1 μM), 2-AG directly affected the functions of recombinant homomeric α1H GlyR: it inhibited peak amplitude and dramatically enhanced desensitization. The action of 2-AG on GlyR-mediated currents developed rapidly, within ∼300 ms. Addition of 1 μM 2-AG strongly facilitated the depression of glycine-induced currents during repetitive (4-10 Hz) application of short (2 ms duration) pulses of glycine to outside-out patches. In brainstem slices from CB1 receptor knockout mice, 2-AG significantly decreased the extent of facilitation of synaptic currents in hypoglossal motoneurons during repetitive (10-20 Hz) stimulation. These observations suggest that endocannabinoids can modulate postsynaptic metaplasticity of glycinergic synaptic currents in a CB1 receptor-independent manner.

  15. Identification of a single amino acid in GluN1 that is critical for glycine-primed internalization of NMDA receptors

    PubMed Central

    2013-01-01

    Background NMDA receptors are ligand-gated ion channels with essential roles in glutamatergic synaptic transmission and plasticity in the CNS. As co-receptors for glutamate and glycine, gating of the NMDA receptor/channel pore requires agonist binding to the glycine sites, as well as to the glutamate sites, on the ligand-binding domains of the receptor. In addition to channel gating, glycine has been found to prime NMDA receptors for internalization upon subsequent stimulation of glutamate and glycine sites. Results Here we address the key issue of identifying molecular determinants in the glycine-binding subunit, GluN1, that are essential for priming of NMDA receptors. We found that glycine treatment of wild-type NMDA receptors led to recruitment of the adaptor protein 2 (AP-2), and subsequent internalization after activating the receptors by NMDA plus glycine. However, with a glycine-binding mutant of GluN1 – N710R/Y711R/E712A/A714L – we found that treating with glycine did not promote recruitment of AP-2 nor were glycine-treated receptors internalized when subsequently activated with NMDA plus glycine. Likewise, GluN1 carrying a single point mutation – A714L – did not prime upon glycine treatment. Importantly, both of the mutant receptors were functional, as stimulating with NMDA plus glycine evoked inward currents. Conclusions Thus, we have identified a single amino acid in GluN1 that is critical for priming of NMDA receptors by glycine. Moreover, we have demonstrated the principle that while NMDA receptor gating and priming share a common requirement for glycine binding, the molecular constraints in GluN1 for gating are distinct from those for priming. PMID:23941530

  16. Decreased agonist affinity and chloride conductance of mutant glycine receptors associated with human hereditary hyperekplexia.

    PubMed Central

    Langosch, D; Laube, B; Rundström, N; Schmieden, V; Bormann, J; Betz, H

    1994-01-01

    Hereditary hyperekplexia is a dominant neurological disorder associated with point mutations at the channel-forming segment M2 of the glycine receptor alpha 1 subunit. Voltage-clamp recordings from the heterologously expressed mutants (alpha 1R271L or alpha 1R271Q) revealed 146- to 183-fold decreased potencies of glycine to activate the chloride channel, and significantly reduced maximal whole-cell currents as compared with wild-type receptors. In contrast, the ability of the competitive antagonist strychnine to block glycine-induced currents was similar in all cases. Radioligand binding assays showed a 90- to 1365-fold reduction in the ability of glycine to displace [3H]strychnine from its binding site on the mutant receptors. Paralleling the reductions in whole-cell current, the elementary main-state conductances of the mutants (alpha 1R271L, 64 pS; alpha 1R271Q, 14 pS) were lower than that of the wild-type receptor (86 pS). The decreased agonist affinities and chloride conductances of the mutants are likely to cause neural hyperexcitability of affected patients by impairing glycinergic inhibition. In addition, our data reveal that structural modifications of the ion-channel region can affect agonist binding to the glycine receptor. PMID:7925268

  17. Glycine receptor heterogeneity in rat spinal cord during postnatal development.

    PubMed Central

    Becker, C M; Hoch, W; Betz, H

    1988-01-01

    Two different isoforms of the inhibitory glycine receptor were identified during postnatal development of rat spinal cord. A neonatal form characterized by low strychnine binding affinity, altered antigenicity, and a ligand binding subunit differing in mol. wt (49 kd) from that of the adult receptor (48 kd) predominates at birth (70% of the total receptor protein). Separation from the adult form could be achieved by either use of a selective antibody or glycine gradient elution of 2-aminostrychnine affinity columns. Both isoforms co-purify with the mol. wt 93 kd peripheral membrane protein of the postsynaptic glycine receptor complex. Images PMID:2850172

  18. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine

    PubMed Central

    Zhang, Hai Xia; Hyrc, Krzysztof; Thio, Liu Lin

    2009-01-01

    Sarcosine is an amino acid involved in one-carbon metabolism and a promising therapy for schizophrenia because it enhances NMDA receptor (NMDAR) function by inhibiting glycine uptake. The structural similarity between sarcosine and glycine led us to hypothesize that sarcosine is also an agonist like glycine. We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons. We found that sarcosine is an NMDAR co-agonist at the glycine binding site. However, sarcosine differed from glycine because less NMDAR desensitization occurred with sarcosine than with glycine as the co-agonist. This finding led us to examine whether the physiological effects of NMDAR activation with these two co-agonists are the same. The difference in desensitization probably accounts for rises in intracellular Ca2+, as assessed by the fluorescent indicator fura-FF, being larger when NMDAR activation occurred with sarcosine than with glycine. In addition, Ca2+-activated K+ currents following NMDAR activation were larger with sarcosine than with glycine. Compared to glycine, NMDAR-mediated autaptic currents decayed faster with sarcosine suggesting that NMDAR deactivation also differs with these two co-agonists. Despite these differences, NMDAR-dependent neuronal death as assessed by propidium iodide was similar with both co-agonists. The same was true for neuronal bursting. Thus, sarcosine may enhance NMDAR function by more than one mechanism and may have different effects from other NMDAR co-agonists. PMID:19433577

  19. Intracellular glycine receptor function facilitates glioma formation in vivo.

    PubMed

    Förstera, Benjamin; a Dzaye, Omar Dildar; Winkelmann, Aline; Semtner, Marcus; Benedetti, Bruno; Markovic, Darko S; Synowitz, Michael; Wend, Peter; Fähling, Michael; Junier, Marie-Pierre; Glass, Rainer; Kettenmann, Helmut; Meier, Jochen C

    2014-09-01

    The neuronal function of Cys-loop neurotransmitter receptors is established; however, their role in non-neuronal cells is poorly defined. As brain tumors are enriched in the neurotransmitter glycine, we studied the expression and function of glycine receptors (GlyRs) in glioma cells. Human brain tumor biopsies selectively expressed the GlyR α1 and α3 subunits, which have nuclear localization signals (NLSs). The mouse glioma cell line GL261 expressed GlyR α1, and knockdown of GlyR α1 protein expression impaired the self-renewal capacity and tumorigenicity of GL261 glioma cells, as shown by a neurosphere assay and GL261 cell inoculation in vivo, respectively. We furthermore showed that the pronounced tumorigenic effect of GlyR α1 relies on a new intracellular signaling function that depends on the NLS region in the large cytosolic loop and impacts on GL261 glioma cell gene regulation. Stable expression of GlyR α1 and α3 loops rescued the self-renewal capacity of GlyR α1 knockdown cells, which demonstrates their functional equivalence. The new intracellular signaling function identified here goes beyond the well-established role of GlyRs as neuronal ligand-gated ion channels and defines NLS-containing GlyRs as new potential targets for brain tumor therapies. © 2014. Published by The Company of Biologists Ltd.

  20. Structure-activity relationships of strychnine analogs at glycine receptors.

    PubMed

    Mohsen, Amal M Y; Heller, Eberhard; Holzgrabe, Ulrike; Jensen, Anders A; Zlotos, Darius P

    2014-08-01

    Nine strychnine derivatives including neostrychnine, strychnidine, isostrychnine, 21,22-dihydro-21-hydroxy-22-oxo-strychnine, and several hydrogenated analogs were synthesized, and their antagonistic activities at human α1 and α1β glycine receptors were evaluated. Isostrychnine has shown the best pharmacological profile exhibiting an IC50 value of 1.6 μM at α1 glycine receptors and 3.7-fold preference towards the α1 subtype. SAR Analysis indicates that the lactam moiety and the C(21) = C(22) bond in strychnine are essential structural features for its high antagonistic potency at glycine receptors. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  1. Thinking outside the synapse: glycine at extrasynaptic NMDA receptors.

    PubMed

    Gray, John A; Nicoll, Roger A

    2012-08-03

    In this issue, Papouin et al. show that glycine is the endogenous coagonist for extrasynaptic NMDA receptors (NMDARs), unlike at synapses where the coagonist is d-serine. By enzymatically degrading endogenous glycine, they begin to address the enigmatic physiological and pathological roles for extrasynaptic NMDARs.

  2. Salicylate, an aspirin metabolite, specifically inhibits the current mediated by glycine receptors containing α1-subunits

    PubMed Central

    Lu, Y-G; Tang, Z-Q; Ye, Z-Y; Wang, H-T; Huang, Y-N; Zhou, K-Q; Zhang, M; Xu, T-L; Chen, L

    2009-01-01

    Background and purpose: Aspirin or its metabolite sodium salicylate is widely prescribed and has many side effects. Previous studies suggest that targeting neuronal receptors/ion channels is one of the pathways by which salicylate causes side effects in the nervous system. The present study aimed to investigate the functional action of salicylate on glycine receptors at a molecular level. Experimental approach: Whole-cell patch-clamp and site-directed mutagenesis were deployed to examine the effects of salicylate on the currents mediated by native glycine receptors in cultured neurones of rat inferior colliculus and by glycine receptors expressed in HEK293T cells. Key results: Salicylate effectively inhibited the maximal current mediated by native glycine receptors without altering the EC50 and the Hill coefficient, demonstrating a non-competitive action of salicylate. Only when applied simultaneously with glycine and extracellularly, could salicylate produce this antagonism. In HEK293T cells transfected with either α1-, α2-, α3-, α1β-, α2β- or α3β-glycine receptors, salicylate only inhibited the current mediated by those receptors that contained the α1-subunit. A single site mutation of I240V in the α1-subunit abolished inhibition by salicylate. Conclusions and implications: Salicylate is a non-competitive antagonist specifically on glycine receptors containing α1-subunits. This action critically involves the isoleucine-240 in the first transmembrane segment of the α1-subunit. Our findings may increase our understanding of the receptors involved in the side effects of salicylate on the central nervous system, such as seizures and tinnitus. PMID:19594751

  3. Enhancement of glycine receptor function by ethanol: role of phosphorylation

    PubMed Central

    Paola Mascia, Maria; Wick, Marilee J; Martinez, Larry D; Harris, R Adron

    1998-01-01

    The effects of several kinase inhibitors (staurosporine, GF 109203X, H89, KN62, genistein) and of the phosphatase inhibitor calyculin A were studied on the ethanol potentiation and on the function of homomeric α1 glycine receptor expressed in Xenopus oocytes using a two electrode voltage clamp recording technique.The function of the homomeric α1 glycine receptor was not modified in Xenopus oocytes pretreated with kinase inhibitors or with the phosphatase inhibitor calyculin A.The potentiation of the glycine receptor function induced by ethanol (10–200 mM) was significantly reduced in Xenopus oocytes pretreated with the PKC inhibitors staurosporine or GF 109203X.No differences in propofol (2.5 μM) or halothane (250 μM) actions were found after exposure of Xenopus oocytes to staurosporine.No differences in ethanol sensitivity were found after exposure of Xenopus oocytes expressing glycine α1 receptors to H89, KN62, genistein or to the phosphatase inhibitor calyculin A.The mutant α1 (S391A), in which the PKC phosphorylation site at serine 391 was mutated to alanine, was less sensitive to the effects of ethanol than was the α1 wild type receptor. Moreover, the ethanol potentiation of the glycine receptor function was not affected by treatment with staurosporine in oocytes expressing α1 (S391A).The splice variant of the α1 glycine receptor subunit, α1ins, containing eight additional amino acids and a potential phosphorylation site for PKA, did not differ from wild type for sensitivity to ethanol.These results indicate that phosphorylation by PKC of the homomeric α1 glycine receptor subunit modulates ethanol potentiation, but not the function of the glycine receptor. PMID:9786497

  4. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes

    PubMed Central

    Carvajal-González, Alexander; Leite, M. Isabel; Waters, Patrick; Woodhall, Mark; Coutinho, Ester; Balint, Bettina; Lang, Bethan; Pettingill, Philippa; Carr, Aisling; Sheerin, Una-Marie; Press, Raomand; Lunn, Michael P.; Lim, Ming; Maddison, Paul; Meinck, H.-M.; Vandenberghe, Wim

    2014-01-01

    The clinical associations of glycine receptor antibodies have not yet been described fully. We identified prospectively 52 antibody-positive patients and collated their clinical features, investigations and immunotherapy responses. Serum glycine receptor antibody endpoint titres ranged from 1:20 to 1:60 000. In 11 paired samples, serum levels were higher than (n = 10) or equal to (n = 1) cerebrospinal fluid levels; there was intrathecal synthesis of glycine receptor antibodies in each of the six pairs available for detailed study. Four patients also had high glutamic acid decarboxylase antibodies (>1000 U/ml), and one had high voltage-gated potassium channel-complex antibody (2442 pM). Seven patients with very low titres (<1:50) and unknown or alternative diagnoses were excluded from further study. Three of the remaining 45 patients had newly-identified thymomas and one had a lymphoma. Thirty-three patients were classified as progressive encephalomyelitis with rigidity and myoclonus, and two as stiff person syndrome; five had a limbic encephalitis or epileptic encephalopathy, two had brainstem features mainly, two had demyelinating optic neuropathies and one had an unclear diagnosis. Four patients (9%) died during the acute disease, but most showed marked improvement with immunotherapies. At most recent follow-up, (2–7 years, median 3 years, since first antibody detection), the median modified Rankin scale scores (excluding the four deaths) decreased from 5 at maximal severity to 1 (P < 0.0001), but relapses have occurred in five patients and a proportion are on reducing steroids or other maintenance immunotherapies as well as symptomatic treatments. The glycine receptor antibodies activated complement on glycine receptor-transfected human embryonic kidney cells at room temperature, and caused internalization and lysosomal degradation of the glycine receptors at 37°C. Immunoglobulin G antibodies bound to rodent spinal cord and brainstem co-localizing with

  5. Characterization of strychnine-sensitive glycine receptors in acutely isolated adult rat basolateral amygdala neurons.

    PubMed

    McCool, B A; Botting, S K

    2000-03-24

    Large concentrations of the beta-amino acid, taurine, can be found in many forebrain areas such as the basolateral amygdala, a portion of the limbic forebrain intimately associated with the regulation of fear/anxiety-like behaviors. In addition to its cytoprotective and osmoregulatory roles, taurine may also serve as an agonist at GABA(A)- and strychnine-sensitive glycine receptors. In this latter context, the present study demonstrates that application of taurine to acutely isolated neurons from the basolateral amygdala of adult rats causes significant alterations in resting membrane current, as measured by whole-cell patch clamp electrophysiology. Using standard pharmacological approaches, we find that currents gated by concentrations of taurine receptors. Furthermore, these strychnine-sensitive receptors are shown to be pharmacologically and biophysically similar to 'classic' strychnine-sensitive, chloride-conducting glycine receptors expressed in brainstem and spinal cord. While amygdala glycine receptors can be distinguished from GABA(A) receptors expressed by the same neurons, these two chloride channels are functionally expressed at comparable levels. Given that a number of clinically relevant compounds are associated with the regulation of GABA(A) receptors in this brain region, the presence of both strychnine-sensitive glycine receptors and their agonist, taurine, in the basolateral amygdala may suggest an important role for these receptors in the limbic forebrain of adult rats.

  6. Putative glycine receptors in Hydra: a biochemical and behavioural study.

    PubMed

    Pierobon, P; Minei, R; Porcu, P; Sogliano, C; Tino, A; Marino, G; Biggio, G; Concas, A

    2001-11-01

    Glycine acts as an inhibitory transmitter in the lower brain stem and spinal cord of vertebrate species, while very few data are yet available to support a similar role in invertebrate nervous systems. Here we report the identification and characterization of glycine receptors in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa) by biochemical and behavioural studies. Saturation experiments revealed the occurrence of one population of binding sites of nanomolar affinity (KD = 33 nm) and low capacity (Bmax = 79 fmol/mg protein) for [(3)H]strychnine. The addition of glycine or taurine (0.1 microm-1 mm) produced a dose-dependent inhibition of [(3)H]strychnine binding. Beta-alanine (0.1-1 mm) did not significantly affect [(3)H]strychnine binding. The pharmacological properties of these receptors compare with those of vertebrate glycine receptors. Stimulation of Hydra polyps by reduced glutathione resulted in a significant increase in the duration of mouth opening in the presence of glycine, taurine or beta-alanine. The enhancement of the response was related both to amino acid (10-100 microm) and to glutathione concentration (1-10 microm). The effects of glycine or its agonists were suppressed by strychnine (1-10 microm). D-serine, a glycine agonist at the vertebrate NMDA receptor, produced opposite effects to those of glycine. The effects of d-serine were suppressed by 5,7-dichlorokynurenic acid but not by strychnine. In vitro, [(3)H]strychnine binding was not displaced by d-serine. These results indicate a dual action of glycine in Hydra tissues. The hypothesis that NMDA receptors may also be present in this elementary nervous system is proposed.

  7. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation.

    PubMed

    Hussy, N; Deleuze, C; Pantaloni, A; Desarménien, M G; Moos, F

    1997-08-01

    1. To evaluate the implication of taurine in the physiology of supraoptic neurones, we (i) investigated the agonist properties of taurine on glycine and GABAA receptors of supraoptic magnocellular neurones acutely dissociated from adult rats, using whole-cell voltage clamp, (ii) studied the effects of taurine and strychnine in vivo by extracellular recordings of supraoptic vasopressin neurones in anaesthetized rats, and (iii) measured the osmolarity-dependent release of endogenous taurine from isolated supraoptic nuclei by HPLC. 2. GABA, glycine and taurine evoked rapidly activating currents that all reversed close to the equilibrium potential for Cl-, indicating activation of Cl(-)-selective channels. Glycine-activated currents were reversibly blocked by strychnine (IC50 of 35 nM with 100 microM glycine), but were unaffected by the GABAA antagonist gabazine (1-3 microM). GABA-activated currents were reversibly antagonized by 3 microM gabazine, but not by strychnine (up to 1 microM). 3. Responses to 1 mM taurine were blocked by strychnine but not by gabazine and showed no additivity with glycine-induced currents, indicating selective activation of glycine receptors. Responses to 10 mM taurine were partially antagonized by gabazine, the residual current being blocked by strychnine. Thus, taurine is also a weak agonist of GABAA receptors. 4. In the presence of gabazine, taurine activated glycine receptors with an EC50 of 406 microM. Taurine activated at most 70% of maximal glycine currents, suggesting that it is a partial agonist of glycine receptors. 5. In vivo, locally applied strychnine (300 nM) increased and taurine (1 mM) decreased the basal electrical activity of vasopressin neurones in normally hydrated rats. The effect of strychnine was markedly more pronounced in water-loaded rats. 6. Taurine, which is concentrated in supraoptic glial cells, could be released from isolated supraoptic nuclei upon hyposmotic stimulation. Decreases in osmolarity of 15 and 30

  8. Mapping a molecular link between allosteric inhibition and activation of the glycine receptor.

    PubMed

    Miller, Paul S; Topf, Maya; Smart, Trevor G

    2008-10-01

    Cys-loop ligand-gated ion channels mediate rapid neurotransmission throughout the central nervous system. They possess agonist recognition sites and allosteric sites where modulators regulate ion channel function. Using strychnine-sensitive glycine receptors, we identified a scaffold of hydrophobic residues enabling allosteric communication between glycine-agonist binding loops A and D, and the Zn(2+)-inhibition site. Mutating these hydrophobic residues disrupted Zn(2+) inhibition, generating novel Zn(2+)-activated receptors and spontaneous channel activity. Homology modeling and electrophysiology revealed that these phenomena are caused by disruption to three residues on the '-' loop face of the Zn(2+)-inhibition site, and to D84 and D86, on a neighboring beta3 strand, forming a Zn(2+)-activation site. We provide a new view for the activation of a Cys-loop receptor where, following agonist binding, the hydrophobic core and interfacial loops reorganize in a concerted fashion to induce downstream gating.

  9. Ethanol enhances taurine-activated glycine receptor function

    PubMed Central

    Welsh, Brian T.; Kirson, Dean; Allen, Hunter M.; Mihic, S. John

    2010-01-01

    Background Emerging evidence suggests that taurine acts as a partial agonist at glycine receptors (GlyR) in vitro and in vivo. Ethanol acts as an allosteric modulator at the GlyR producing a leftward shift of the glycine concentration-response curve, with no enhancing effects observed at saturating glycine concentrations. However, to date no electrophysiological studies have been performed on ethanol modulation of taurine-activated GlyR. Methods Wildtype α1 GlyR, or those bearing a serine-267 to isoleucine replacement (S267I), were homomerically expressed in Xenopus oocytes and voltage-clamped at 70 mV. Ethanol was co-applied with varying concentrations of glycine or taurine and the enhancing effects of ethanol compared. Results Ethanol potentiated glycine- and taurine-activated GlyR responses in a concentration-dependent manner. It shifted taurine and glycine concentration-response curves to the left, having no effects at saturating agonist concentrations. Chelation of zinc by tricine decreased ethanol enhancement of taurine-gated GlyR function. The S267I mutation prevented ethanol enhancement of taurine-mediated responses as previously also reported for glycine. Conclusion Ethanol modulates taurine activation of GlyR function by a mechanism similar to that of the full agonist glycine. The lack of effect of ethanol at saturating taurine concentrations provides mechanistic information on alcohol actions at the GlyR. PMID:20586750

  10. Zinc Enhances Ethanol Modulation of the α1 Glycine Receptor

    PubMed Central

    McCracken, Lindsay M.; Trudell, James R.; Goldstein, Beth E.; Harris, R. Adron; Mihic, S. John

    2009-01-01

    Summary Glycine receptor function mediates most inhibitory neurotransmission in the brainstem and spinal cord and is enhanced by alcohols, volatile anesthetics, inhaled drugs of abuse, and endogenous compounds including zinc. Because zinc exists ubiquitously throughout the brain, investigations of its effects on the enhancement of GlyR function by alcohols and anesthetics are important to understanding the effects of these agents in vivo. In the present study, the effects of zinc plus ethanol, pentanol, or isoflurane were tested on homomeric α1 glycine receptors to determine if concurrent applications of physiological concentrations of zinc with each of these modulators changed the magnitude of their effects. Homomeric α1 glycine receptors were expressed in Xenopus laevis oocytes, and the two-electrode voltage clamp technique was used to measure glycine-mediated currents in the presence of combinations of zinc with ethanol, pentanol or isoflurane. The combined effects of zinc plus ethanol were greater than the sum of the effects produced by either compound alone. However, this was not seen when zinc was combined with either pentanol or isoflurane. Chelation of zinc by tricine decreased the effects of submaximal, but not maximal, concentrations of glycine, and diminished the magnitude of ethanol enhancement observed. These findings suggest a zinc/ethanol interaction at the α1 GlyR that results in the enhancement of the effects of ethanol action on GlyR function. PMID:19913039

  11. The Glycine Transport Inhibitor Sarcosine Is an Inhibitory Glycine Receptor Agonist

    PubMed Central

    Zhang, Hai Xia; Lyons-Warren, Ariel; Thio, Liu Lin

    2009-01-01

    Summary Sarcosine is an endogenous amino acid that is a competitive inhibitor of the type I glycine transporter (GlyT1), an N-methyl-D-aspartate receptor (NMDAR) co-agonist, and an important intermediate in one-carbon metabolism. Its therapeutic potential for schizophrenia further underscores its clinical importance. The structural similarity between sarcosine and glycine and sarcosine's ability to serve as an NMDAR co-agonist led us to examine whether sarcosine is also an agonist at the inhibitory glycine receptor (GlyR). We examined this possibility using whole-cell recordings from cultured embryonic mouse hippocampal neurons and found that sarcosine evoked a dose-dependent, strychnine sensitive, Cl- current that cross-inhibited glycine currents. Sarcosine evoked this current with Li+ in the extracellular solution to block GlyT1, in neurons treated with the essentially irreversible GlyT1 inhibitor N[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine (NFPS), and in neurons plated in the absence of glia. These results indicate that the sarcosine currents did not result from GlyT1 inhibition or heteroexchange. We conclude that sarcosine is a GlyR agonist. PMID:19619564

  12. Taurine acts as a glycine receptor agonist in slices of rat inferior colliculus.

    PubMed

    Xu, Han; Wang, Wei; Tang, Zheng-Quan; Xu, Tian-Le; Chen, Lin

    2006-10-01

    Taurine is an important endogenous amino acid for neural development and for many physiological functions, but little is known about its functional role in the central auditory system. We investigated in young rats (P10-P14) the effects of taurine on the neuronal responses and synaptic transmissions in the central nucleus of the inferior colliculus (ICC) with a brain slice preparation and with whole-cell patch-clamp recordings. Perfusion of taurine at 1mM reliably evoked a current across the membrane and decreased the input resistance in neurons of the ICC. Taurine also depressed the spontaneous and current-evoked firing of ICC neurons. All these effects were reversible after washout and could be blocked by 3 microM strychnine, an antagonist of glycine receptors, but not by 10 microM bicuculline, an antagonist of GABA(A) receptors. When the inhibitory receptors were not pharmacologically blocked, taurine reversibly reduced the postsynaptic currents/potentials evoked by electrically stimulating the commissure of the inferior colliculus or the ipsilateral lateral lemniscus. The results demonstrate that taurine reduces the neuronal excitability and depresses the synaptic transmission in the ICC by activating glycine-gated chloride channels. Our findings suggest that taurine acts as a ligand of glycine receptors in the ICC and can be involved in the information processing of the central auditory system similarly like the neurotransmitter glycine.

  13. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.

    PubMed

    Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L

    2015-10-08

    Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.

  14. Presynaptic glycine receptors on GABAergic terminals facilitate discharge of dopaminergic neurons in ventral tegmental area.

    PubMed

    Ye, Jiang-Hong; Wang, Fushun; Krnjevic, Kresimir; Wang, Weizhen; Xiong, Zhi-Gang; Zhang, Jingli

    2004-10-13

    GABA-mediated postsynaptic currents (IPSCs) were recorded from dopaminergic (DA) neurons of the ventral tegmental area (VTA) of rats, in acute brain slices, and from enzymatically or mechanically dissociated neurons. In young rats (3-10 d of age), where GABA is excitatory, glycine (1-3 microm) and taurine (10-30 microm) increased the amplitude of evoked IPSCs (eIPSCs) and the frequency of spontaneous IPSCs (sIPSCs) but had minimal postsynaptic effects. Strychnine (1 microm) blocked the action of glycine; when applied alone, it reduced the amplitude of eIPSCs and the frequency of sIPSCs, indicating a tonic facilitation of GABAergic excitation by some endogenous glycine agonist(s). In medium containing no Ca2+, or with Cd2+ or tetrodotoxin added, the amplitude and especially the frequency of sIPSCs greatly diminished. In many cells, glycine had no effect on remaining miniature IPSCs, suggesting a preterminal site of glycine receptors (GlyRs). Fura-2 fluorescent imaging showed a glycine-induced increase of [Ca2+] in nerve terminals (on DA neurons), which was suppressed by strychnine or 3 microm omega-conotoxin MVIIA. Therefore, the presynaptic GlyR-mediated facilitation of GABAergic transmission seems to be mediated by N- and/or P/Q-type Ca2+ channels. In older rats (22-30 d of age), where GABA causes inhibition, the effect of strychnine on GABAergic IPSCs was reversed to facilitation, indicating a tonic glycinergic inhibition of GABA release. Furthermore, glycine (1-3 microm) reduced the amplitude of eIPSCs and the frequency of sIPSCs. Hence, the overall effect of the presynaptic action of glycine is to enhance the firing of DA cells, both in very young and older rats.

  15. Multiplexed labeling of viable cells for high-throughput analysis of glycine receptor function using flow cytometry.

    PubMed

    Gilbert, Daniel F; Wilson, John C; Nink, Virginia; Lynch, Joseph W; Osborne, Geoffrey W

    2009-05-01

    Flow cytometry is an important drug discovery tool because it permits high-content multiparameter analysis of individual cells. A new method dramatically enhanced screening throughput by multiplexing many discrete fixed cell populations; however, this method is not suited to assays requiring functional cellular responses. HEK293 cells were transfected with unique mutant glycine receptors. Mutant receptor expression was confirmed by coexpression of yellow fluorescent protein (YFP). Commercially available cell-permeant dyes were used to label each glycine receptor expressing mutant with a unique optical code. All encoded cell lines were combined in a single tube and analyzed on a flow cytometer simultaneously before and after the addition of glycine receptor agonist. We decoded multiplexed cells that expressed functionally distinct glycine receptor chloride channels and analyzed responses to glycine in terms of chloride-sensitive YFP expression. Here, data provided by flow cytometry can be used to discriminate between functional and nonfunctional mutations in the glycine receptor, a process accelerated by the use of multiplexing. Further, this data correlates to data generated using a microscopy-based technique. The present study demonstrates multiplexed labeling of live cells, to enable cell populations to be subject to further cell culture and experimentation, and compares the results with those obtained using live cell microscopy. (c) 2009 International Society for Advancement of Cytometry.

  16. Guanidinoethyl sulphonate is a glycine receptor antagonist in striatum.

    PubMed

    Sergeeva, Olga A; Chepkova, Aisa N; Haas, Helmut L

    2002-11-01

    1. Guanidinoethyl sulphonate (GES) is an analogue of taurine and an inhibitor of taurine transport. Interactions of GES with GABA(A) and glycine receptors are studied by whole cell recording and fast drug application in isolated striatal neurons of the mouse. 2. We confirm that GES is a weak agonist at GABA(A) receptors, and is able to antagonize GABA-evoked responses. GES did not gate GlyR. 3. GES antagonized glycine responses in a concentration-dependent and surmountable manner. Glycine dose-response curves were shifted to the right by GES (0.5 mM), yielding EC(50)s and Hill coefficients of 62 micro M and 2.5 in control, 154 micro M and 1.3 in the presence of GES. 4. GlyR-mediated taurine responses were competitively antagonized by GES. Taurine dose-response curves, in contrast to the glycine dose-response curves were shifted by GES to the right in a parallel manner. 5. The GlyR-block by GES was not voltage-dependent. 6. In contrast to our findings in the mouse, in rat striatal neurons which lack expression of the alpha3 GlyR subunit, GES shifted the glycine dose-response curve to the right in a parallel way without affecting the maximal response. Subtype-specificity of the GES action at GlyR must await further investigation in artificial expression systems. 7. We conclude that GES is a competitive antagonist at GlyR. The antagonistic action of GES at inhibitory ionotropic receptors can explain its epileptogenic action. Care must be taken with the interpretation of data on GES evoked taurine release.

  17. Glycine receptor mouse mutants: model systems for human hyperekplexia

    PubMed Central

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-01-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. PMID:23941355

  18. Fast and reversible trapping of surface glycine receptors by gephyrin.

    PubMed

    Meier, J; Vannier, C; Sergé, A; Triller, A; Choquet, D

    2001-03-01

    Variations in receptor number at a given synapse are known to contribute to synaptic plasticity, but methods used to establish this idea usually do not allow for the determination of the dynamics of these phenomena. We used single-particle tracking to follow in real time, on the cell surface, movements of the glycine receptor (GlyR) with or without the GlyR stabilizing protein gephyrin. GlyR alternated within seconds between diffusive and confined states. In the absence of gephyrin, GlyR were mostly freely diffusing. Gephyrin induced long confinement periods spatially associated with submembranous clusters of gephyrin. However, even when most receptors were stabilized, they still frequently made transitions through the diffusive state. These data show that receptor number in a cluster results from a dynamic equilibrium between the pools of stabilized and freely mobile receptors. Modification of this equilibrium could be involved in regulation of the number of receptors at synapses.

  19. Glycine Receptor Autoimmune Spectrum With Stiff-Man Syndrome Phenotype

    PubMed Central

    McKeon, Andrew; Martinez-Hernandez, Eugenia; Lancaster, Eric; Matsumoto, Joseph Y.; Harvey, Robert J.; McEvoy, Kathleen M.; Pittock, Sean J.; Lennon, Vanda A.; Dalmau, Josep

    2013-01-01

    Objectives To determine whether glycine receptor α1 subunit-specific autoantibodies (GlyRα1-IgG) occur in a broader spectrum of brainstem and spinal hyperexcitability disorders than the progressive encephalomyelitis with rigidity and myoclonus phenotype recognized to date, and to ascertain disease specificity. Design Retrospective, case-control study. Settings Mayo Clinic, Rochester, Minnesota, and University of Barcelona, Spain. Patients Eighty-one patients with stiff-man syndrome phenotype, 80 neurologic control subjects, and 20 healthy control subjects. Intervention Glycine receptor α1–transfected cells to test serum or cerebrospinal fluid from cases and control subjects. Main Outcome Measures Frequency of GlyRα1-IgG positivity among stiff-man syndrome phenotype cases and control subjects. Comparison of GlyRα1-IgG seropositive and seronegative cases. Results Seropositive cases (12% of cases) included 9 with stiff-man syndrome (4 classic; 5 variant; 66% were glutamic acid decarboxylase 65–IgG positive) and 1 with progressive encephalomyelitis with rigidity and myoclonus. Immunotherapy responses were noted more frequently in GlyRα1-IgG–positive cases (6 of 7 improved) than in seronegative cases (7 of 25 improved; P=.02). The single seropositive control patient had steroid-responsive vision loss and optic atrophy with inflammatory cerebrospinal fluid. Conclusions Glycine receptor α1–IgG aids identification of autoimmune brainstem/spinal cord hyperexcitability disorders and may extend to the glycinergic visual system. PMID:23090334

  20. Universality of receptor channel responses.

    PubMed

    Kardos, J; Nyikos, L

    2001-12-01

    Rate parameters estimated for neurotransmitter-gated receptor channel opening and receptor desensitization are classified according to their dependence on the temporal resolution of the techniques applied in the measurements. Because allosteric proteins constituting receptor channels impose restrictions on the types of model suitable to describe the dynamic response of channels to neurotransmitters, Markovian, non-linear or fractal dynamic models and their possible extension to receptor channel response in excitable membranes are discussed.

  1. A novel glycine receptor alpha Z1 subunit variant in the zebrafish brain.

    PubMed

    Devignot, V; Prado de Carvalho, L; Bregestovski, P; Goblet, C

    2003-01-01

    Alpha subunits of the inhibitory glycine receptor (GlyR) display genetic heterogeneity in mammals and zebrafish. This diversity is increased in mammals by the alternative splicing mechanism. We report here in zebrafish, the characterization of a new alphaZ1 subunit likely arising from alphaZ1 gene by an alternative splice process (alphaZ1L). This novel cDNA possesses 45 supplementary nucleotides at the putative exon2/exon3 boundary. The corresponding protein contains 15 additional amino acids in the NH2-terminal domain. Heterologous expression of homomeric GlyRalphaZ1L in human embryonic kidney-293 cells generates glycine-gated strychnine-sensitive chloride channels with no obvious discrepancy with pharmacological properties of GlyRalphaZ1. Moreover, zinc modulation of glycine-induced currents is identical in alphaZ1 and alphaZ1L glycine receptors. During ontogenesis, simultaneous alphaZ1 and alphaZ1L mRNA synthesis have been observed. Embryonic and adult alphaZ1 and alphaZ1L mRNA expressions are restricted to the CNS. Embryonic alphaZ1L mRNA anatomical pattern of expression is, however, highly restrained and strictly limited to the rostral part of the brain revealing a highly regionalized function of alphaZ1L in the CNS. This report contributes to the characterization of the diversity of glycine receptor isoforms in zebrafish and emphasizes the common mechanism used among vertebrates for creating GlyR variety and specificity.

  2. Length of the TM3-4 loop of the glycine receptor modulates receptor desensitization.

    PubMed

    Langlhofer, G; Janzen, D; Meiselbach, Heike; Villmann, C

    2015-07-23

    Recent studies on the molecular determinants important for glycine receptor biogenesis and function mechanisms indicate an important role of basic residues within the intracellular loop between transmembrane domains (TM) 3 and 4. We investigate the role of loop length and loop exchange in combination with the presence or absence of basic stretches (318)RRKRR and (385)KKIDK of the human glycine receptor α1 using expression in transfected cell lines. Exchanges of the large intracellular loop between members of the Cys-loop receptor family have been shown to keep functionality of the host receptor. Here, constructs were generated with deletion of the intracellular loop of the glycine receptor α1, insertion of the loop from the prokaryotic Cys-loop receptor of Gloeobacter violaceus both with and without leaving the basic stretches at the N-terminal and C-terminal part of the intracellular domain. All receptor constructs were expressed at the cell surface with the significantly lowest expression of the construct with a deletion of the glycine receptor α1 TM3-4 loop, except the two basic stretches adjoined. Functionality of the inhibitory glycine receptor chimeras was demonstrated with whole cell recordings from transfected cells. Chimeras lacking the basic stretches result in non-functionality. An analysis of receptor desensitization demonstrated that close proximity of both basic stretches resulted in large fractions of desensitizing currents. We conclude that the TM3-4 loop length is critical for glycine receptor α1 desensitization and a direct neighborhood of both basic stretches changes receptor properties from non-desensitizing to desensitizing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    PubMed Central

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  4. A Role for Accumbal Glycine Receptors in Modulation of Dopamine Release by the Glycine Transporter-1 Inhibitor Org25935

    PubMed Central

    Lidö, Helga Höifödt; Ericson, Mia; Marston, Hugh; Söderpalm, Bo

    2010-01-01

    Accumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc) as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935–ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol's effects within this system. PMID:21556278

  5. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    PubMed Central

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  6. New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms*

    PubMed Central

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G. L.; Keramidas, Angelo; Cushion, Thomas D.; Thomas, Rhys H.; Pickrell, William O.; Drew, Cheney J. G.; Masri, Amira; Jones, Elizabeth A.; Vassallo, Grace; Born, Alfred P.; Alehan, Fusun; Aharoni, Sharon; Bannasch, Gerald; Bartsch, Marius; Kara, Bulent; Krause, Amanda; Karam, Elie G.; Matta, Stephanie; Jain, Vivek; Mandel, Hanna; Freilinger, Michael; Graham, Gail E.; Hobson, Emma; Chatfield, Sue; Vincent-Delorme, Catherine; Rahme, Jubran E.; Afawi, Zaid; Berkovic, Samuel F.; Howell, Owain W.; Vanbellinghen, Jean-François; Rees, Mark I.; Chung, Seo-Kyung; Lynch, Joseph W.

    2013-01-01

    Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicating that this is a recurring mechanism in hGlyR pathophysiology. p.Q226E, at the top of TM1, most likely induced tonic activation via an enhanced electrostatic attraction to p.R271 at the top of TM2, suggesting a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated into functional hGlyRs together with unmutated α1 or α1 plus β subunits. These aberrant receptors exhibit significantly reduced glycine sensitivity. To our knowledge, this is the first suggestion that subunits lacking TM4 domains might be incorporated into functional pentameric ligand-gated ion channel receptors. PMID:24108130

  7. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation

    PubMed Central

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X.; Zamponi, Gerald W.; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  8. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation

    PubMed Central

    Wilkins, Megan E.; Caley, Alex; Gielen, Marc C.; Harvey, Robert J.

    2016-01-01

    Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission.Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem.A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs.These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact.Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application

  9. Activation of synaptic and extrasynaptic glycine receptors by taurine in preoptic hypothalamic neurons.

    PubMed

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Chun, Sang Woo; Cho, Dong Hyu; Han, Seong Kyu

    2015-11-03

    Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αβ-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors.

  10. Cellular Transport and Membrane Dynamics of the Glycine Receptor

    PubMed Central

    Dumoulin, Andrea; Triller, Antoine; Kneussel, Matthias

    2009-01-01

    Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR) trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review (i) proteins and mechanisms involved in GlyR cytoskeletal transport, (ii) the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and (iii) adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism. PMID:20161805

  11. The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element.

    PubMed Central

    Rajendra, S; Vandenberg, R J; Pierce, K D; Cunningham, A M; French, P W; Barry, P H; Schofield, P R

    1995-01-01

    A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily. Images PMID:7621814

  12. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    PubMed

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-03

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  13. Purification and characterization of the glycine receptor of pig spinal cord

    SciTech Connect

    Graham, D.; Pfeiffer, F.; Simler, R.; Betz, H.

    1985-02-12

    A large-scale purification procedure was developed to isolate the glycine receptor of pig spinal cord by affinity chromatography on aminostrychnine agarose. After an overall purification of about 10,000-fold, the glycine receptor preparations contained three major polypeptides of Mr 48,000, 58,000, and 93,000. Photoaffinity labeling with (/sup 3/H)strychnine showed that the (/sup 3/H)strychnine binding site is associated with the Mr 48,000 and, to a much lesser extent, the Mr 58,000 polypeptides. (/sup 3/H)Strychnine binding to the purified receptor exhibited a dissociation constant K /sub D/ of 13.8 nM and was inhibited by the agonists glycine, taurine, and beta-alanine. Gel filtration and sucrose gradient centrifugation gave a Stokes radius of 7.1 nm and an apparent sedimentation coefficient of 9.6 S. Peptide mapping of the (/sup 3/H)strychnine-labeled Mr 48,000 polypeptides of purified pig and rat glycine receptor preparations showed that the strychnine binding region of this receptor subunit is highly conserved between these species. Also, three out of six monoclonal antibodies against the glycine receptor of rat spinal cord significantly cross-reacted with their corresponding polypeptides of the pig glycine receptor. These results show that the glycine receptor of pig spinal cord is very similar to the well-characterized rat receptor protein and can be purified in quantities sufficient for protein chemical analysis.

  14. In Vivo Protection against Strychnine Toxicity in Mice by the Glycine Receptor Agonist Ivermectin

    PubMed Central

    Radwan, Rasha

    2014-01-01

    The inhibitory glycine receptor, a ligand-gated ion channel that mediates fast synaptic inhibition in mammalian spinal cord and brainstem, is potently and selectively inhibited by the alkaloid strychnine. The anthelminthic and anticonvulsant ivermectin is a strychnine-independent agonist of spinal glycine receptors. Here we show that ivermectin is an effective antidote of strychnine toxicity in vivo and determine time course and extent of ivermectin protection. Mice received doses of 1 mg/kg and 5 mg/kg ivermectin orally or intraperitoneally, followed by an intraperitoneal strychnine challenge (2 mg/kg). Ivermectin, through both routes of application, protected mice against strychnine toxicity. Maximum protection was observed 14 hours after ivermectin administration. Combining intraperitoneal and oral dosage of ivermectin further improved protection, resulting in survival rates of up to 80% of animals and a significant delay of strychnine effects in up to 100% of tested animals. Strychnine action developed within minutes, much faster than ivermectin, which acted on a time scale of hours. The data agree with a two-compartment distribution of ivermectin, with fat deposits acting as storage compartment. The data demonstrate that toxic effects of strychnine in mice can be prevented if a basal level of glycinergic signalling is maintained through receptor activation by ivermectin. PMID:25317421

  15. In vivo protection against strychnine toxicity in mice by the glycine receptor agonist ivermectin.

    PubMed

    Maher, Ahmed; Radwan, Rasha; Breitinger, Hans-Georg

    2014-01-01

    The inhibitory glycine receptor, a ligand-gated ion channel that mediates fast synaptic inhibition in mammalian spinal cord and brainstem, is potently and selectively inhibited by the alkaloid strychnine. The anthelminthic and anticonvulsant ivermectin is a strychnine-independent agonist of spinal glycine receptors. Here we show that ivermectin is an effective antidote of strychnine toxicity in vivo and determine time course and extent of ivermectin protection. Mice received doses of 1 mg/kg and 5 mg/kg ivermectin orally or intraperitoneally, followed by an intraperitoneal strychnine challenge (2 mg/kg). Ivermectin, through both routes of application, protected mice against strychnine toxicity. Maximum protection was observed 14 hours after ivermectin administration. Combining intraperitoneal and oral dosage of ivermectin further improved protection, resulting in survival rates of up to 80% of animals and a significant delay of strychnine effects in up to 100% of tested animals. Strychnine action developed within minutes, much faster than ivermectin, which acted on a time scale of hours. The data agree with a two-compartment distribution of ivermectin, with fat deposits acting as storage compartment. The data demonstrate that toxic effects of strychnine in mice can be prevented if a basal level of glycinergic signalling is maintained through receptor activation by ivermectin.

  16. Glycine decreases desensitization of N-methyl-D-aspartate (NMDA) receptors expressed in Xenopus oocytes and is required for NMDA responses.

    PubMed

    Lerma, J; Zukin, R S; Bennett, M V

    1990-03-01

    In Xenopus oocytes injected with rat brain mRNA, as in neurons, glycine greatly potentiated responses of the N-methyl-D-aspartate (NMDA) type of excitatory amino acid receptor. Injected oocytes generated a partially desensitizing inward current in response to NMDA with 30 nM added glycine. As the added glycine concentration was increased from 30 nM to 1 microM, the NMDA response was increased and exhibited less desensitization. The relationship between the NMDA peak response and added glycine concentration indicated a single component response with apparent affinity of 0.29 microM and a Hill coefficient of 0.77. The desensitized response was also fit by the Hill relation with a lower affinity but similar coefficient. The time course of desensitization at 500 microM NMDA was exponential with a time constant (350 msec) that was independent of glycine concentration between 0.03 and 0.3 microM. At higher glycine concentration a slower component of decay (tau = 1.4 sec) was observed. This component was enhanced by increasing the extracellular Ca2+. NMDA without added glycine evoked a small transient response. However this response was suppressed completely by prewashing with the glycine antagonist 7-chlorokynurenic acid, suggesting that it may have been due to glycine contamination. The dose-response relation for low concentrations of glycine indicated that the measured level of glycine contamination accounted for these responses. These results indicate that glycine has at least two actions at the NMDA receptor: it enables channel opening by the agonist and decreases desensitization.

  17. Beta-alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro.

    PubMed

    Mori, Masahiro; Gähwiler, Beat H; Gerber, Urs

    2002-02-15

    Electrophysiological and pharmacological properties of glycine receptors were characterized in hippocampal organotypic slice cultures. In the presence of ionotropic glutamate and GABA(B) receptor antagonists, pressure-application of glycine onto CA3 pyramidal cells induced a current associated with increased chloride conductance, which was inhibited by strychnine. Similar chloride currents could also be induced with beta-alanine or taurine. Whole-cell glycine responses were significantly greater in CA3 pyramidal cells than in CA1 pyramidal cells and dentate granule cells, while responses to GABA were similar among these three cell types. Although these results demonstrate the presence of functional glycine receptors in the hippocampus, no evidence for their activation during synaptic stimulation was found. Gabazine, a selective GABA(A) receptor antagonist, totally blocked evoked IPSCs in CA3 pyramidal cells. Glycine receptor activation is not dependent on transporter-controlled levels of extracellular glycine, as no chloride current was observed in response to sarcosine, an inhibitor of glycine transporters. In contrast, application of guanidinoethanesulfonic acid, an uptake inhibitor of beta-alanine and taurine, induced strychnine-sensitive chloride current in the presence of gabazine. These data indicate that modulation of transporters for the endogenous amino acids, beta-alanine and taurine, can regulate tonic activation of glycine receptors, which may function in maintenance of inhibitory tone in the hippocampus.

  18. Hydrophobic interactions mediate binding of the glycine receptor beta-subunit to gephyrin.

    PubMed

    Kneussel, M; Hermann, A; Kirsch, J; Betz, H

    1999-03-01

    Glycine receptors (GlyRs) are ligand-gated chloride channel proteins composed of alpha- and beta-subunits. GlyRs are located to and anchored at postsynaptic sites by the receptor-associated protein gephyrin. Previous work from our laboratory has identified a core motif for gephyrin binding in the cytoplasmic loop of the GlyR beta-subunit. Here, we localized amino acid residues implicated in gephyrin binding by site-directed mutagenesis. In a novel transfection assay, a green fluorescent protein-gephyrin binding motif fusion protein was used to monitor the consequences of amino acid substitutions for beta-subunit interaction with gephyrin. Only multiple, but not single, replacements of hydrophobic side chains abolished the interaction between the two proteins. Our data are consistent with gephyrin binding being mediated by the hydrophobic side of an imperfect amphipathic helix.

  19. Electrophysiological properties of newborn and adult rat spinal cord glycine receptors expressed in Xenopus oocytes.

    PubMed Central

    Morales, A; Nguyen, Q T; Miledi, R

    1994-01-01

    The properties of glycine receptors (GlyRs) from newborn and adult rat spinal cord were studied in Xenopus oocytes injected with whole mRNA or the heavy (H) or light (L) mRNA fractions encoding their respective GlyRs. Mean open times and conductances of channels gated by H- or L-GlyRs were determined by noise analysis or voltage jumps. We found that adult H- and L-GlyRs opened channels that differed in their mean open time but had the same channel conductance. Both H- and L-GlyRs gated Cl- currents that displayed a similarly strong outward rectification. Nevertheless, single channels of adult H- and L-GlyRs did not rectify and their mean open times were only slightly altered by voltage. It follows that the outward rectification of adult GlyRs is due mainly to a reduction in the number of open channels. In contrast to H-GlyRs, whose characteristics seem to remain essentially unchanged with age, L-GlyRs from newborn and adult rats have different properties. Channels of newborn L-GlyRs have a higher conductance, longer open time, and greater voltage dependency than those from the adult. Interestingly, properties of newborn GlyRs expressed by whole mRNA were markedly different from those encoded by newborn or adult L or H mRNA. These results demonstrate that the functional heterogeneity of GlyRs is developmentally regulated. PMID:8159710

  20. Lack of positive allosteric modulation of mutated alpha(1)S267I glycine receptors by cannabinoids.

    PubMed

    Foadi, Nilufar; Leuwer, Martin; Demir, Reyhan; Dengler, Reinhard; Buchholz, Vanessa; de la Roche, Jeanne; Karst, Matthias; Haeseler, Gertrud; Ahrens, Jörg

    2010-05-01

    Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Ajulemic acid and HU210 are non-psychotropic, synthetic cannabinoids. Cannabidiol is a non-psychotropic plant constituent of cannabis sativa. There are hints that non-cannabinoid receptor mechanisms of these cannabinoids might be mediated via glycine receptors. In this study, we investigated the impact of the amino acid residue serine at position 267 on the glycine-modulatory effects of ajulemic acid, cannabidiol and HU210. Mutated alpha(1)S267I glycine receptors transiently expressed in HEK293 cells were studied by utilising the whole-cell clamp technique. The mutation of the alpha(1) subunit TM2 serine residue to isoleucine abolished the co-activation and the direct activation of the glycine receptor by the investigated cannabinoids. The nature of the TM2 (267) residue of the glycine alpha(1) subunit is crucial for the glycine-modulatory effect of ajulemic acid, cannabidiol and HU210. An investigation of the impact of such mutations on the in vivo interaction of cannabinoids with glycine receptors should permit a better understanding of the molecular determinants of action of cannabinoids.

  1. Disruption of a putative intersubunit electrostatic bond enhances agonist efficacy at the human α1 glycine receptor.

    PubMed

    Welsh, Brian T; Todorovic, Jelena; Kirson, Dean; Allen, Hunter M; Bayly, Michelle D; Mihic, S John

    2017-02-15

    Partial agonists have lower efficacies than compounds considered 'full agonists', eliciting submaximal responses even at saturating concentrations. Taurine is a partial agonist at the glycine receptor (GlyR), a member of the cys-loop ligand-gated ion channel superfamily. The molecular mechanisms responsible for agonism are not fully understood but evidence suggests that efficacy at these receptors is determined by conformational changes that occur early in the process of receptor activation. We previously identified a residue located near the human α1 glycine binding site (aspartate-97; D97) that, when mutated to arginine (D97R), results in GlyR channels opening spontaneously with a high open probability, mimicking the effects of saturating glycine concentrations on wildtype GlyR. This D97 residue is hypothesized to form an electrostatic interaction with arginine-119 on an adjacent subunit, stabilizing the channel in a shut state. Here we demonstrate that the disruption of this putative bond increases the efficacy of partial agonists including taurine, as well as two other β-amino acid partial agonists, β-aminobutyric acid (β-ABA) and β-aminoisobutyric acid (β-AIBA). Even the subtle charge-conserving mutation of D97 to glutamate (D97E) markedly affects partial agonist efficacy. Mutation to the neutral alanine residue in the D97A mutant mimics the effects seen with D97R, indicating that charge repulsion does not significantly affect these findings. Our findings suggest that the determination of efficacy following ligand binding to the glycine receptor may involve the disruption of an intersubunit electrostatic interaction occurring near the agonist binding site.

  2. Taurine activates glycine and gamma-aminobutyric acid A receptors in rat substantia gelatinosa neurons.

    PubMed

    Wu, Jun; Kohno, Tatsuro; Georgiev, Stefan K; Ikoma, Miho; Ishii, Hideaki; Petrenko, Andrey B; Baba, Hiroshi

    2008-02-12

    Taurine has been suggested to modulate nociceptive information at the spinal cord level. In this study, the pharmacological properties of taurine were investigated in adult rat substantia gelatinosa (SG) neurons using whole-cell patch-clamp method. We found that taurine seemed to have higher efficacy than glycine on glycine receptors in SG neurons. An increase in chloride conductance was responsible for taurine-induced currents. Taurine at 0.3 mM activated glycine receptors, whereas at 3 mM activated both glycine and gamma-aminobutyric acid A receptors. The currents activated by coapplication of taurine and glycine are cross inhibitive. Altogether these results show that taurine might represent another important neurotransmitter or modulator in SG neurons, which may be involved in antinociception.

  3. Glycine receptors mediate excitation of subplate neurons in neonatal rat cerebral cortex.

    PubMed

    Kilb, W; Hanganu, I L; Okabe, A; Sava, B A; Shimizu-Okabe, C; Fukuda, A; Luhmann, H J

    2008-08-01

    The development of the cerebral cortex depends on genetic factors and early electrical activity patterns that form immature neuronal networks. Subplate neurons (SPn) are involved in the construction of thalamocortical innervation, generation of oscillatory network activity, and in the proper formation of the cortical columnar architecture. Because glycine receptors play an important role during early corticogenesis, we analyzed the functional consequences of glycine receptor activation in visually identified SPn in neocortical slices from postnatal day 0 (P0) to P4 rats using whole cell and perforated patch-clamp recordings. In all SPn the glycinergic agonists glycine, beta-alanine, and taurine induced dose-dependent inward currents with the affinity for glycine being higher than that for beta-alanine and taurine. Glycine-induced responses were blocked by the glycinergic antagonist strychnine, but were unaffected by either the GABAergic antagonist gabazine, the N-methyl-d-aspartate-receptor antagonist d-2-amino-5-phosphonopentanoic acid, or picrotoxin and cyanotriphenylborate, antagonists of alpha-homomeric and alpha1-subunit-containing glycine receptors, respectively. Under perforated-patch conditions, glycine induced membrane depolarizations that were sufficient to trigger action potentials (APs) in most cells. Furthermore, glycine and taurine decreased the injection currents as well as the synaptic stimulation strength required to elicit APs, indicating that glycine receptors have a consistent excitatory effect on SPn. Inhibition of taurine transport and application of hypoosmolar solutions induced strychnine-sensitive inward currents, suggesting that taurine can act as a possible endogenous agonist on SPn. In summary, these results demonstrate that SPn express glycine receptors that mediate robust excitatory membrane responses during early postnatal development.

  4. Glycine receptor subunits expression in the developing rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Velázquez-Flores, Miguel Ángel; Ruiz Esparza-Garrido, Ruth; Salceda, Rocío

    2017-09-01

    Glycine receptor (GlyR) consists of two α (1-4) and three β subunits. Considerable evidence indicates that the adult retina expresses the four types of α subunits; however, the proportion of these subunits in adult and immature retina is almost unknown. In this report we have studied mRNA and the protein expression of GlyR subunits in the retina during postnatal rat development by Real-Time qRT-PCR and western blot. mRNA and protein expression indicated a gradual increase of the α1, α3, α4 and β GlyR subunits during postnatal ages tested. The mRNA β subunit showed higher expression levels (∼3 fold) than those observed for the α1 and α3 subunits. Very interestingly, the α2 GlyR subunit had the highest expression in the retina, even in the adult. These results revealed the expression of GlyR at early postnatal ages, supporting its role in retina development. In addition, our results indicated that the adult retina expressed a high proportion of the α2 subunit, suggesting the expression of monomeric and/or heteromeric receptors. A variety of studies are needed to further characterize the role of the specific subunits in both adult and immature retina. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus

    PubMed Central

    Chen, Rongqing; Okabe, Akihito; Sun, Haiyan; Sharopov, Salim; Hanganu-Opatz, Ileana L; Kolbaev, Sergei N; Fukuda, Atsuo; Luhmann, Heiko J; Kilb, Werner

    2014-01-01

    While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4–7) rat using field potential recordings. Bath application of 100 μm taurine or 10 μm glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μm 4-aminopyridine in low Mg2+ solution. This proconvulsive effect was prevented by 3 μm strychnine or after incubation with the loop diuretic bumetanide (10 μm), suggesting that it required glycine receptors and an active NKCC1-dependent Cl− accumulation. Application of higher doses of taurine (≥1 mm) or glycine (100 μm) attenuated recurrent epileptiform discharges. The anticonvulsive effect of taurine was also observed in the presence of the GABAA receptor antagonist gabazine and was attenuated by strychnine, suggesting that it was partially mediated by glycine receptors. Bath application of the glycinergic antagonist strychnine (0.3 μm) induced epileptiform discharges. We conclude from these results that in the immature hippocampus, activation of glycine receptors can mediate both pro- and anticonvulsive effects, but that a persistent activation of glycine receptors is required to suppress epileptiform activity. In summary, our study elucidated the important role of glycine receptors in the control of neuronal excitability in the immature hippocampus. PMID:24665103

  6. Cross-linking of sites involved with alcohol action between transmembrane segments 1 and 3 of the glycine receptor following activation

    PubMed Central

    Lobo, Ingrid A.; Harris, R. Adron; Trudell, James R.

    2008-01-01

    The glycine receptor is a member of the Cys-loop, ligand-gated ion channel family and is responsible for inhibition in the CNS. We examined the orientation of amino acids I229 in transmembrane 1 (TM1) and A288 in TM3, which are both critical for alcohol and volatile anesthetic action. We mutated these two amino acids to cysteines either singly or in double mutants and expressed the receptors in Xenopus laevis oocytes. We tested whether disulfide bonds could form between A288C in TM3 paired with M227C, Y228C, I229C, or S231C in TM1. Application of cross-linking (mercuric chloride) or oxidizing (iodine) agents had no significant effect on the glycine response of wild-type receptors or the single mutants. In contrast, the glycine response of the I229C/A288C double mutant was diminished after application of either mercuric chloride or iodine only in the presence of glycine, indicating that channel gating causes I229C and A288C to fluctuate to be within 6 Å apart and form a disulfide bond. Molecular modeling was used to thread the glycine receptor sequence onto a nicotinic acetylcholine receptor template, further demonstrating that I229 and A288 are near-neighbors that can cross-link and providing evidence that these residues contribute to a single binding cavity. PMID:18036150

  7. Synaptic inhibition by glycine acting at a metabotropic receptor in tiger salamander retina.

    PubMed

    Hou, Mingli; Duan, Lei; Slaughter, Malcolm M

    2008-06-15

    Glycine is the lone fast neurotransmitter for which a metabotropic pathway has not been identified. In retina, we found a strychnine-insensitive glycine response in bipolar and ganglion cells. This glycine response reduced high voltage-activated calcium current. It was G-protein mediated and protein kinase A dependent. The EC(50) of the metabotropic glycine response is 3 mum, an order of magnitude lower than the ionotropic glycine receptor in the same retina. The bipolar cell glutamatergic input to ganglion cells was suppressed by metabotropic glycine action. The synaptic output of about two-thirds of bipolar cells and calcium current in two-thirds of ganglion cells are sensitive to the action of glycine at metabotropic receptors, suggesting this signal regulates specific synaptic pathways in proximal retina. This study resolves the curious absence of a metabotropic glycine pathway in the nervous system and reveals that the major fast inhibitory neurotransmitters, GABA and glycine, both activate G-protein-coupled pathways as well.

  8. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    PubMed

    Wegner, Florian; Kraft, Robert; Busse, Kathy; Härtig, Wolfgang; Ahrens, Jörg; Leffler, Andreas; Dengler, Reinhard; Schwarz, Johannes

    2012-01-01

    Human fetal midbrain-derived neural progenitor cells (NPCs) may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A) receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+)-K(+)-Cl(-) co-transporter 1 (NKCC1)-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  9. Charge and geometry of residues in the loop 2 β hairpin differentially affect agonist and ethanol sensitivity in glycine receptors.

    PubMed

    Perkins, Daya I; Trudell, James R; Asatryan, Liana; Davies, Daryl L; Alkana, Ronald L

    2012-05-01

    Recent studies highlighted the importance of loop 2 of α1 glycine receptors (GlyRs) in the propagation of ligand-binding energy to the channel gate. Mutations that changed polarity at position 52 in the β hairpin of loop 2 significantly affected sensitivity to ethanol. The present study extends the investigation to charged residues. We found that substituting alanine with the negative glutamate at position 52 (A52E) significantly left-shifted the glycine concentration response curve and increased sensitivity to ethanol, whereas the negative aspartate substitution (A52D) significantly right-shifted the glycine EC₅₀ but did not affect ethanol sensitivity. It is noteworthy that the uncharged glutamine at position 52 (A52Q) caused only a small right shift of the glycine EC₅₀ while increasing ethanol sensitivity as much as A52E. In contrast, the shorter uncharged asparagine (A52N) caused the greatest right shift of glycine EC₅₀ and reduced ethanol sensitivity to half of wild type. Collectively, these findings suggest that charge interactions determined by the specific geometry of the amino acid at position 52 (e.g., the 1-Å chain length difference between aspartate and glutamate) play differential roles in receptor sensitivity to agonist and ethanol. We interpret these results in terms of a new homology model of GlyR based on a prokaryotic ion channel and propose that these mutations form salt bridges to residues across the β hairpin (A52E-R59 and A52N-D57). We hypothesize that these electrostatic interactions distort loop 2, thereby changing agonist activation and ethanol modulation. This knowledge will help to define the key physical-chemical parameters that cause the actions of ethanol in GlyRs.

  10. The N-terminal domain of the GluN3A subunit determines the efficacy of glycine-activated NMDA receptors.

    PubMed

    Mesic, Ivana; Madry, Christian; Geider, Kirsten; Bernhard, Max; Betz, Heinrich; Laube, Bodo

    2016-06-01

    N-methyl-d-aspartate (NMDA) receptors composed of glycine-binding GluN1 and GluN3 subunits function as excitatory glycine receptors that respond to agonist application only with a very low efficacy. Binding of glycine to the high-affinity GluN3 subunits triggers channel opening, whereas glycine binding to the low-affinity GluN1 subunits causes an auto-inhibition of the maximal glycine-inducible receptor current (Imax). Hence, competitive antagonists of the GluN1 subunit strongly potentiate glycine responses of wild type (wt) GluN1/GluN3 receptors. Here, we show that co-expression of N-terminal domain (NTD) deleted GluN1 (GluN1(ΔNTD)) and GluN3 (GluN3(ΔNTD)) subunits in Xenopus oocytes generates GluN1/GluN3 receptors with a large increase in the glycine-inducible Imax accompanied by a strongly impaired GluN1 antagonist-mediated potentiation. Affinity purification after metabolic or surface labeling revealed no differences in subunit stoichiometry and surface expression between wt GluN1/GluN3A and mutant GluN1(ΔNTD)/GluN3A(ΔNTD) receptors, indicating a specific effect of NTD deletions on the efficacy of receptor opening. Notably, GluN1/GluN3A(ΔNTD) receptors showed a similar increase in Imax and a greatly reduced GluN1 antagonist-mediated current potentiation as GluN1(ΔNTD)/GluN3A(ΔNTD) receptors, whereas the glycine-induced currents of GluN1(ΔNTD)/GluN3A receptors resembled those of wt GluN1/GluN3A receptors. Furthermore, oxidative crosslinking of the homophilic GluN3A NTD intersubunit interface in mutant GluN1/GluN3A(R319C) receptors caused both a decrease in the glycine-induced Imax concomitantly with a marked increase in GluN1 antagonist-mediated current potentiation, whilst mutations within the intrasubunit region linking the GluN3A NTD to the ligand binding domain had opposite effects. Together these results show that the GluN3A NTD constitutes a crucial regulatory determinant of GluN1/GluN3A receptor function. Copyright © 2016 Elsevier Ltd. All rights

  11. Characterization of two mutations, M287L and Q266I, in the α1 glycine receptor subunit that modify sensitivity to alcohols.

    PubMed

    Borghese, Cecilia M; Blednov, Yuri A; Quan, Yu; Iyer, Sangeetha V; Xiong, Wei; Mihic, S John; Zhang, Li; Lovinger, David M; Trudell, James R; Homanics, Gregg E; Harris, R Adron

    2012-02-01

    Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317-329, 2012).

  12. Characterization of Two Mutations, M287L and Q266I, in the α1 Glycine Receptor Subunit That Modify Sensitivity to Alcohols

    PubMed Central

    Borghese, Cecilia M.; Blednov, Yuri A.; Quan, Yu; Iyer, Sangeetha V.; Xiong, Wei; Mihic, S. John; Zhang, Li; Lovinger, David M.; Trudell, James R.; Homanics, Gregg E.

    2012-01-01

    Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels. Ethanol potentiates glycine activation of the GlyR, and putative binding sites for alcohol are located in the transmembrane (TM) domains between and within subunits. To alter alcohol sensitivity of GlyR, we introduced two mutations in the GlyR α1 subunit, M287L (TM3) and Q266I (TM2). After expression in Xenopus laevis oocytes, both mutants showed a reduction in glycine sensitivity and glycine-induced maximal currents. Activation by taurine, another endogenous agonist, was almost abolished in the M287L GlyR. The ethanol potentiation of glycine currents was reduced in the M287L GlyR and eliminated in Q266I. Physiological levels of zinc (100 nM) potentiate glycine responses in wild-type GlyR and also enhance the ethanol potentiation of glycine responses. Although zinc potentiation of glycine responses was unchanged in both mutants, zinc enhancement of ethanol potentiation of glycine responses was absent in M287L GlyRs. The Q266I mutation decreased conductance but increased mean open time (effects not seen in M287L). Two lines of knockin mice bearing these mutations were developed. Survival of homozygous knockin mice was impaired, probably as a consequence of impaired glycinergic transmission. Glycine showed a decreased capacity for displacing strychnine binding in heterozygous knockin mice. Electrophysiology in isolated neurons of brain stem showed decreased glycine-mediated currents and decreased ethanol potentiation in homozygous knockin mice. Molecular models of the wild-type and mutant GlyRs show a smaller water-filled cavity within the TM domains of the Q266I α1 subunit. The behavioral characterization of these knockin mice is presented in a companion article (J Pharmacol Exp Ther 340:317–329, 2012). PMID:22037201

  13. A picrotoxin-specific conformational change in the glycine receptor M2-M3 loop.

    PubMed

    Hawthorne, Rebecca; Lynch, Joseph W

    2005-10-28

    The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg271-Lys276) toward the N-terminal end of the homomeric alpha1 GlyR M2-M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound (MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr6' residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2-M3 loop are mediated allosterically. This suggests that the M2-M3 loop responds differently to the occupation of different binding sites.

  14. Postnatal changes in N-methyl-D-aspartate receptor binding and stimulation by glutamate and glycine of [3H]-MK-801 binding in human temporal cortex.

    PubMed Central

    Slater, P.; McConnell, S. E.; D'Souza, S. W.; Barson, A. J.

    1993-01-01

    1. Homogenates of human infant and adult temporal cortex were used to measure [3H]-TCP and [3H]-MK-801 binding to the N-methyl-D-aspartate (NMDA)-coupled ion channel phencyclidine site. 2. Both [3H]-TCP and [3H]-MK-801 binding increased in infant cortex by > 100% between term and 26 weeks suggesting that the numbers of NMDA receptors increase during postnatal brain development. 3. [3H]-MK-801 binding was measured under non-equilibrium conditions in temporal cortex homogenates with the addition of 100 microM of L-glutamate plus a range of concentrations (0.05 microM-100 microM) of glycine. Glutamate and glycine increased [3H]-MK-801 binding by stimulating NMDA receptors and improving [3H]-MK-801 access to ion channel binding sites; maximum stimulation in adult and infant temporal cortex was achieved with 100 microM glutamate plus 5 microM glycine; a higher concentration of glycine (50 microM) reduced [3H]-MK-801 binding to below maximum. 4. The stimulation by 100 microM glutamate plus 5 microM glycine of [3H]-MK-801 binding in infant temporal cortex was affected by postnatal age. For example, although the stimulation of [3H]-MK-801 binding in 5-6 week infant cortex (236% of basal) was similar to adult cortex (230% of basal), in samples taken from infants aged 5-6 months glycine (plus glutamate) stimulation of [3H]-MK-801 binding (392% of basal) was substantially greater than that measured in adult temporal cortex. 5. The binding of [3H]-glycine to the glycine modulatory site associated with the NMDA receptor in infant cortex also increased with postnatal age by > 100% between term and 26 weeks.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8097954

  15. Expression and characterization of a glycine-binding fragment of the N-methyl-D-aspartate receptor subunit NR1.

    PubMed Central

    Miyazaki, J; Nakanishi, S; Jingami, H

    1999-01-01

    N-Methyl-D-aspartate receptor channels are composed of an NR1 subunit and at least one of the NR2 subunits (NR2A-D). Activation of the N-methyl-d-aspartate receptor requires the co-agonists glycine and glutamate. It has been proposed that the NR1 subunit possesses a glycine-binding site. We have expressed a soluble form of the NR1 subunit, which was produced by connecting the N-terminal extracellular region with the extracellular loop between the third and fourth membrane segments, by a baculovirus system along with full-length and truncated membrane-bound forms. The soluble NR1 receptor was efficiently secreted into the culture medium and showed a high affinity for ligands. The Kd of a glycine-site antagonist, [3H]MDL 105,519 [(E)-3-(2-phenyl-2-carboxyethenyl)-4, 6-dichloro-1H-indole-2-carboxylic acid], for the soluble receptor was 3.89+/-0.97 nM, which was comparable to the Kd of 4.47+/-1.39 nM for the membrane-bound full-length form. These values were close to the values reported previously with the use of rat brain membranes and Chinese hamster ovary cells expressing the full-length form of the NR1 subunit. The Ki values of other glycine-site antagonists, L-689,560 (trans-2-carboxy-5,7-dichloro - 4 - phenylaminocarbonylamino - 1,2,3,4 - tetrahydroquinoline), 5, 7-dichlorokynurenate and 5,7-dinitroquinoxaline-2,3-dione, for the soluble receptor were also similar to those for the full-length form of NR1. [3H]MDL 105,519 binding was also inhibited by the agonists glycine and d-serine. Thus the affinity and selectivity of ligand-binding characteristics of the NR1 subunit is conferred on the soluble form of the NR1 subunit. This soluble receptor provides a good experimental tool for initiating a biophysical analysis of the N-methyl-d-aspartate receptor channel protein. PMID:10359652

  16. Glycine Transporter-1 Inhibition Promotes Striatal Axon Sprouting via NMDA Receptors in Dopamine Neurons

    PubMed Central

    Castagna, Candace; Mrejeru, Ana; Lizardi-Ortiz, José E.; Klein, Zoe; Lindsley, Craig W.

    2013-01-01

    NMDA receptor activity is involved in shaping synaptic connections throughout development and adulthood. We recently reported that brief activation of NMDA receptors on cultured ventral midbrain dopamine neurons enhanced their axon growth rate and induced axonal branching. To test whether this mechanism was relevant to axon regrowth in adult animals, we examined the reinnervation of dorsal striatum following nigral dopamine neuron loss induced by unilateral intrastriatal injections of the toxin 6-hydroxydopamine. We used a pharmacological approach to enhance NMDA receptor-dependent signaling by treatment with an inhibitor of glycine transporter-1 that elevates levels of extracellular glycine, a coagonist required for NMDA receptor activation. All mice displayed sprouting of dopaminergic axons from spared fibers in the ventral striatum to the denervated dorsal striatum at 7 weeks post-lesion, but the reinnervation in mice treated for 4 weeks with glycine uptake inhibitor was approximately twice as dense as in untreated mice. The treated mice also displayed higher levels of striatal dopamine and a complete recovery from lateralization in a test of sensorimotor behavior. We confirmed that the actions of glycine uptake inhibition on reinnervation and behavioral recovery required NMDA receptors in dopamine neurons using targeted deletion of the NR1 NMDA receptor subunit in dopamine neurons. Glycine transport inhibitors promote functionally relevant sprouting of surviving dopamine axons and could provide clinical treatment for disorders such as Parkinson's disease. PMID:24133278

  17. Extrasynaptic Glycine Receptors of Rodent Dorsal Raphe Serotonergic Neurons: A Sensitive Target for Ethanol

    PubMed Central

    Maguire, Edward P; Mitchell, Elizabeth A; Greig, Scott J; Corteen, Nicole; Balfour, David J K; Swinny, Jerome D; Lambert, Jeremy J; Belelli, Delia

    2014-01-01

    Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioral actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterize DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inhibitory ‘phasic' post-synaptic currents mediated primarily by synaptic GABAA receptors (GABAAR) and, to a lesser extent, by synaptic glycine receptors (GlyR). In addition to such phasic transmission mediated by the vesicular release of neurotransmitter, the activity of certain neurons may be governed by a ‘tonic' conductance resulting from ambient GABA activating extrasynaptic GABAARs. However, for DR neurons extrasynaptic GABAARs exert only a limited influence. By contrast, we report that unusually the GlyR antagonist strychnine reveals a large tonic conductance mediated by extrasynaptic GlyRs, which dominates DR inhibition. In agreement, for DR neurons strychnine increases their input resistance, induces membrane depolarization, and consequently augments their excitability. Importantly, this glycinergic conductance is greatly enhanced in a strychnine-sensitive fashion, by behaviorally relevant ethanol concentrations, by drugs used for the treatment of alcohol withdrawal, and by taurine, an ingredient of certain ‘energy drinks' often imbibed with ethanol. These findings identify extrasynaptic GlyRs as critical regulators of DR excitability and a novel molecular target for ethanol. PMID:24264816

  18. Early History of Glycine Receptor Biology in Mammalian Spinal Cord Circuits

    PubMed Central

    Callister, Robert John; Graham, Brett Anthony

    2010-01-01

    In this review we provide an overview of key in vivo experiments undertaken in the cat spinal cord in the 1950s and 1960s, and point out their contributions to our present understanding of glycine receptor (GlyR) function. Importantly, some of these discoveries were made well before an inhibitory receptor, or its agonist, was identified. These contributions include the universal acceptance of a chemical mode of synaptic transmission; that GlyRs are chloride channels; are involved in reciprocal and recurrent spinal inhibition; are selectively blocked by strychnine; and can be distinguished from the GABAA receptor by their insensitivity to bicuculline. The early in vivo work on inhibitory mechanisms in spinal neurons also contributed to several enduring principles on synaptic function, such as the time associated with synaptic delay, the extension of Dale's hypothesis (regarding the chemical unity of nerve cells and their terminals) to neurons within the central nervous system, and the importance of inhibition for synaptic integration in motor and sensory circuits. We hope the work presented here will encourage those interested in GlyR biology and inhibitory mechanisms to seek out and read some of the “classic” articles that document the above discoveries. PMID:20577630

  19. A new function for glycine GlyT2 transporters: Stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca(2+)-dependent anion channels.

    PubMed

    Milanese, Marco; Romei, Cristina; Usai, Cesare; Oliveri, Martina; Raiteri, Luca

    2014-03-01

    Glycine GlyT2 transporters are localized on glycine-storing nerve endings. Their main function is to accumulate glycine to replenish synaptic vesicles. Glycine was reported to be costored with γ-aminobutyric acid (GABA) in cerebellar interneurons that may coexpress glycine and GABA transporters, and this is confirmed here by confocal microscopy analysis showing coexpression of GAT1 and GlyT2 transporters on microtubule-associated protein-2-positive synaptosomes. It was found that GABA uptake elicited glycine release from cerebellar nerve endings by various mechanisms. We investigated whether and by what mechanisms activation of glycine transporters could mediate release of GABA. Nerve endings purified from cerebellum were prelabeled with [3H]GABA and exposed to glycine. Glycine stimulated [3H]GABA release in a concentration-dependent manner. The glycine effect was insensitive to strychnine or to 5,7-dichlorokynurenate but it was abolished when GlyT2 transporters were blocked. About 20% of the evoked release was dependent on external Ca2+ entered by reversal of plasmalemmal Na+/Ca2+ exchangers. A significant portion of the GlyT2-mediated release of [3H]GABA (about 50% of the external Ca(2+)-independent release) occurred by reversal of GABA GAT1 transporters. Na+ ions, reaching the cytosol during glycine uptake through GlyT2, activated mitochondrial Na+/Ca2+ exchangers, causing an increase in cytosolic Ca2+, which in turn triggered a Ca(2+)-induced Ca2+ release process at inositoltrisphosphate receptors. Finally, the increased availability of Ca2+ in the cytosol allowed the opening of anion channels permeable to GABA. In conclusion, GlyT2 transporters not only take up glycine to replenish synaptic vesicles but can also mediate release of GABA by reversal of GAT1 and permeation through anion channels. Copyright © 2013 Wiley Periodicals, Inc.

  20. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones.

    PubMed Central

    Bormann, J; Hamill, O P; Sakmann, B

    1987-01-01

    1. The ion-selective and ion transport properties of glycine receptor (GlyR) and gamma-aminobutyric acid receptor (GABAR) channels in the soma membrane of mouse spinal cord neurones were investigated using the whole-cell, cell-attached and outside-out patch versions of the patch-clamp technique. 2. Current-voltage (I-V) relations of transmitter-activated currents obtained from whole-cell measurements with 145 mM-Cl- intracellularly and extracellularly, showed outward rectification. In voltage-jump experiments, the instantaneous I-V relations were linear, and the steady-state I-V relations were rectifying outwardly indicating that the gating of GlyR and GABAR channels is voltage sensitive. 3. The reversal potential of whole-cell currents shifted 56 mV per tenfold change in internal Cl- activity indicating activation of Cl(-)-selective channels. The permeability ratio of K+ to Cl- (PK/PCl) was smaller than 0.05 for both channels. 4. The permeability sequence for large polyatomic anions was formate greater than bicarbonate greater than acetate greater than phosphate greater than propionate for GABAR channels; phosphate and propionate were not measurably permeant in GlyR channels. This indicates that open GlyR and GABAR channels have effective pore diameters of 5.2 and 5.6 A, respectively. The sequence of relative permeabilities for small anions was SCN- greater than I- greater than Br- greater than Cl- greater than F- for both channels. 5. GlyR and GABAR channels are multi-conductance-state channels. In cell-attached patches the single-channel slope conductances close to 0 mV membrane potential were 29, 18 and 10 pS for glycine, and 28, 17 and 10 pS for GABA-activated channels. The most frequently observed (main) conductance states were 29 and 17 pS for the GlyR and GABAR channel, respectively. 6. In outside-out patches with equal extracellular and intracellular concentrations of 145 mM-Cl-, the conductance states were 46, 30, 20 and 12 pS for GlyR channels and 44, 30

  1. Differential agonist sensitivity of glycine receptor α2 subunit splice variants

    PubMed Central

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-01-01

    The glycine receptor (GlyR) α2A and α2B splice variants differ by a dual, adjacent amino acid substitution from α2AV58,T59 to α2BI58,A59 in the N-terminal extracellular domain. Comparing the effects of the GlyR agonists, glycine, β-alanine and taurine, on the GlyR α2 isoforms, revealed a significant increase in potency for all three agonists at the α2B variant. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn2+, were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR α2A compared to GlyR α2B receptors. Coexpression of α2A or α2B subunits with the GlyR β subunit revealed that the higher agonist potencies observed with the α2B homomer were retained for the α2Bβ heteromer. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR α2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. The existence of a spasmodic mouse phenotype linked to a GlyR α1A52S mutation, the equivalent position to the source of the α2 splice variation, raises the possibility that the GlyR α2 splice variants may be responsible for distinct roles in neuronal function. PMID:15302677

  2. Differential agonist sensitivity of glycine receptor alpha2 subunit splice variants.

    PubMed

    Miller, Paul S; Harvey, Robert J; Smart, Trevor G

    2004-09-01

    1. The glycine receptor (GlyR) alpha2A and alpha2B splice variants differ by a dual, adjacent amino acid substitution from alpha2A(V58,T59) to alpha2B(I58,A59) in the N-terminal extracellular domain. 2. Comparing the effects of the GlyR agonists, glycine, beta-alanine and taurine, on the GlyR alpha2 isoforms, revealed a significant increase in potency for all three agonists at the alpha2B variant. 3. The sensitivities of the splice variants to the competitive antagonist, strychnine, and to the biphasic modulator Zn(2+), were comparable. In contrast, the allosteric inhibitor picrotoxin was more potent on GlyR alpha2A compared to GlyR alpha2B receptors. 4. Coexpression of alpha2A or alpha2B subunits with the GlyR beta subunit revealed that the higher agonist potencies observed with the alpha2B homomer were retained for the alpha2Bbeta heteromer. 5. The identical sensitivity to strychnine combined with a reduction in the maximum current induced by the partial agonist taurine at the GlyR alpha2A homomer, suggested that the changed sensitivity to agonists is in accordance with a modulation of agonist efficacy rather than agonist affinity. 6. An effect on agonist efficacy was also supported by using a structural model of the GlyR, localising the region of splice variation to the proposed docking region between GlyR loop 2 and the TM2-3 loop, an area associated with channel activation. 7. The existence of a spasmodic mouse phenotype linked to a GlyR alpha1(A52S) mutation, the equivalent position to the source of the alpha2 splice variation, raises the possibility that the GlyR alpha2 splice variants may be responsible for distinct roles in neuronal function.

  3. Contributions of Conserved Residues at the Gating Interface of Glycine Receptors*

    PubMed Central

    Pless, Stephan A.; Leung, Ada W. Y.; Galpin, Jason D.; Ahern, Christopher A.

    2011-01-01

    Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for channel gating and is lined by a number of charged and aromatic side chains that are highly conserved among different pLGICs. However, little is known about specific interactions between these residues that are likely to be important for gating in α1 GlyRs. Here we use the introduction of cysteine pairs and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218 in the pre-M1 domain that is crucial for channel gating. We further propose that Phe-145 and Phe-187 play important roles in stabilizing this interaction by providing a hydrophobic environment. In contrast to the equivalent residues in loop 2 of other pLGICs, the negative charge at Glu-53 α1 GlyRs is not crucial for normal channel function. These findings help decipher the GlyR gating pathway and show that distinct residue interaction patterns exist in different pLGICs. Furthermore, a salt bridge between Asp-148 and Arg-218 would provide a possible mechanistic explanation for the pathophysiologically relevant hyperekplexia, or startle disease, mutant Arg-218 → Gln. PMID:21835920

  4. Taurine and beta-alanine act on both GABA and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA.

    PubMed

    Horikoshi, T; Asanuma, A; Yanagisawa, K; Anzai, K; Goto, S

    1988-09-01

    The responding pathway (process from agonist binding to channel opening) of taurine and beta-alanine was investigated in Xenopus oocytes injected with mouse brain poly(A)+ RNA. Responses to gamma-aminobutyric acid (GABA), glycine, taurine and beta-alanine were induced in oocytes injected with poly(A)+ RNA extracted from 3 regions, cerebrum, cerebellum and brainstem of the mouse brain. From comparison, responses to these 4 inhibitory amino acids in each regional poly(A)+ RNA-injected oocytes were categorized into at least 3 groups: (1) GABA, (2) glycine, and (3) taurine and beta-alanine. No cross-desensitization was observed between GABA response and glycine response, but taurine and beta-alanine responses cross-desensitized both the GABA and glycine responses. Taurine and beta-alanine responses were partially inhibited by the GABA antagonist, bicuculline, and also by the glycine antagonist, strychnine. The results suggest that the taurine or the beta-alanine response in the brain is caused through both the GABA receptor and the glycine receptor.

  5. Activation-induced structural change in the GluN1/GluN3A excitatory glycine receptor

    SciTech Connect

    Balasuriya, Dilshan; Takahashi, Hirohide; Srivats, Shyam; Edwardson, J. Michael

    2014-08-08

    Highlights: • We studied the response of the GluN1/GluN3A excitatory glycine receptor to activation. • GluN1 and GluN3A subunits interacted within transfected cells. • The GluN1/GluN3A receptor was functionally active. • Glycine or D-serine caused a ∼1 nm height reduction in bilayer-integrated receptors. • This height reduction was abolished by the glycine antagonist DCKA. - Abstract: Unlike GluN2-containing N-methyl-D-aspartate (NMDA) receptors, which require both glycine and glutamate for activation, receptors composed of GluN1 and GluN3 subunits are activated by glycine alone. Here, we used atomic force microscopy (AFM) imaging to examine the response to activation of the GluN1/GluN3A excitatory glycine receptor. GluN1 and GluN3A subunits were shown to interact intimately within transfected tsA 201 cells. Isolated GluN1/GluN3A receptors integrated into lipid bilayers responded to addition of either glycine or D-serine, but not glutamate, with a ∼1 nm reduction in height of the extracellular domain. The height reduction in response to glycine was abolished by the glycine antagonist 5,7-dichlorokynurenic acid. Our results represent the first demonstration of the effect of activation on the conformation of this receptor.

  6. Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens.

    PubMed

    Adermark, Louise; Clarke, Rhona B C; Olsson, Torsten; Hansson, Elisabeth; Söderpalm, Bo; Ericson, Mia

    2011-01-01

    Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na(+) /K(+) /2Cl⁻ cotransporter blocker furosemide (1 mM), Na(+) /K(+) -ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl₂ (50 µM) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and β-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 µM) or furosemide (100 µM or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH.

  7. Neuroprotection via strychnine-sensitive glycine receptors during post-ischemic recovery of excitatory synaptic transmission in the hippocampus.

    PubMed

    Tanabe, Mitsuo; Nitta, Azusa; Ono, Hideki

    2010-01-01

    Recent evidence indicates that strychnine-sensitive glycine receptors are located in upper brain regions including the hippocampus. Because of excitatory effects of glycine via facilitation of NMDA-receptor function, however, the net effects of increased extracellular glycine on neuronal excitability in either physiological or pathophysiological conditions are mostly unclear. Here, we addressed the potential neuroprotective effect of either exogenous application of glycine and taurine, which are both strychnine-sensitive glycine-receptor agonists, or an endogenous increase of glycine via blockade of glycine transporter 1 (GlyT1) by assessing their ability to facilitate the functional recovery of field excitatory postsynaptic potentials (fEPSPs) after termination of brief oxygen/glucose deprivation (OGD) in the CA1 region in mouse hippocampal slices. Glycine and taurine promoted restoration of the fEPSPs after reperfusion, but this was never observed in the presence of strychnine. Interestingly, glycine and taurine appeared to generate neuroprotective effects only at their optimum concentration range. By contrast, blockade of GlyT1 by N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine or sarcosine did not elicit significant neuroprotection. These results suggest that activation of strychnine-sensitive glycine receptors potentially produces neuroprotection against metabolic stress such as OGD. However, GlyT1 inhibition is unlikely to elicit a sufficient increase in the extracellular level of glycine to generate neuroprotection.

  8. Ryanodine receptors as leak channels.

    PubMed

    Guerrero-Hernández, Agustín; Ávila, Guillermo; Rueda, Angélica

    2014-09-15

    Ryanodine receptors are Ca(2+) release channels of internal stores. This review focuses on those situations and conditions that transform RyRs from a finely regulated ion channel to an unregulated Ca(2+) leak channel and the pathological consequences of this alteration. In skeletal muscle, mutations in either CaV1.1 channel or RyR1 results in a leaky behavior of the latter. In heart cells, RyR2 functions normally as a Ca(2+) leak channel during diastole within certain limits, the enhancement of this activity leads to arrhythmogenic situations that are tackled with different pharmacological strategies. In smooth muscle, RyRs are involved more in reducing excitability than in stimulating contraction so the leak activity of RyRs in the form of Ca(2+) sparks, locally activates Ca(2+)-dependent potassium channels to reduce excitability. In neurons the enhanced activity of RyRs is associated with the development of different neurodegenerative disorders such as Alzheimer and Huntington diseases. It appears then that the activity of RyRs as leak channels can have both physiological and pathological consequences depending on the cell type and the metabolic condition.

  9. Disturbances of Ligand Potency and Enhanced Degradation of the Human Glycine Receptor at Affected Positions G160 and T162 Originally Identified in Patients Suffering from Hyperekplexia.

    PubMed

    Atak, Sinem; Langlhofer, Georg; Schaefer, Natascha; Kessler, Denise; Meiselbach, Heike; Delto, Carolyn; Schindelin, Hermann; Villmann, Carmen

    2015-01-01

    Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.

  10. Disturbances of Ligand Potency and Enhanced Degradation of the Human Glycine Receptor at Affected Positions G160 and T162 Originally Identified in Patients Suffering from Hyperekplexia

    PubMed Central

    Atak, Sinem; Langlhofer, Georg; Schaefer, Natascha; Kessler, Denise; Meiselbach, Heike; Delto, Carolyn; Schindelin, Hermann; Villmann, Carmen

    2015-01-01

    Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR) undergoes direct interaction with the incoming ligand via a cation-π interaction. Recently, we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER toward the ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is delivered to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 affects primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof. PMID:26733802

  11. Binary combinations of propofol and barbiturates on human alpha(1) glycine receptors expressed in Xenopus oocytes.

    PubMed

    Hadipour-Jahromy, Mahsa; Daniels, Stephen

    2003-09-12

    To test whether there is a common site of action for intravenous anaesthetics at the glycine receptor, the effects of binary combinations of thiopentone, pentobarbitone, methohexitone, and propofol have been tested on human alpha(1) glycine receptors expressed in Xenopus laevis oocytes using two-electrode voltage-clamp techniques. Thiopentone (5-40 microM), pentobarbitone (25-400 microM) and propofol (2-100 microM) (but not methohexitone), potentiated the glycine-induced (50 microM) current in a dose-dependent manner, with the maximum potentiation observed to be 218%, 400%, and 576%, respectively. In binary combination with thiopentone, pentobarbitone or propofol, methohexitone reduced potentiation compared to that by the individual anesthetics to 190%, 260% and 460%, respectively. Combination of thiopentone and pentobarbitone (50 microM) increased potentiation, compared to that by thiopentone alone. Binary combinations of propofol with either thiopentone or pentobarbitone showed more potentiation, compared to that observed with the individual anesthetics. Our results indicate that thiopentone, pentobarbitone and propofol all act as positive allosteric modulators at the alpha(1) glycine receptor. In contrast, methohexitone has no action alone but acts as a competitive antagonist to thiopentone, pentobarbitone and propofol. We suggest that, on the basis of these results, these four intravenous anaesthetics share a common site of action at the glycine receptor.

  12. Inhibition of glycine receptor function of native neurons by aliphatic n-alcohols

    PubMed Central

    Tao, Liang; Ye, Jiang Hong

    2002-01-01

    The inhibitory effects of n-alcohols (methanol to dodecanol) on glycine-activated currents were studied in neurons freshly dissociated from the ventral tegmental area of neonatal rats using whole-cell patch-clamp recording technique.Ethanol enhanced and depressed glycine-activated currents in 35% and 45%, respectively, of neurons of ventral tegmental area of neonatal rats. In this report, we extended our focus of ethanol-induced inhibition of glycine currents to other straight-chain alcohols.Aliphatic n-alcohols, which have carbon numbers less than nine, suppressed glycine currents in 45% (71/158) of the neurons. All results from this study are obtained from the 45% of cells displaying inhibition; the other 55% of the neurons were not studied.Alcohol potency increased as the number of carbon atoms increased from one to five, and was at a maximal plateau from five to nine; alcohols with 10 or more carbons did not inhibit glycine-activated currents. Thus, a ‘cutoff' point in their potency for inhibition of glycine receptor function occurred at about decanol.A coapplication of dodecanol with ethanol eliminated the inhibition resulting from ethanol. Thus, dodecanol may bind to the receptor silently and compete with ethanol.These observations indicate that straight-chain n-alcohols exhibit a ‘cutoff' point in their potency for inhibition of the glycine receptor function between nine and 10 carbon atoms. The inability of longer alcohols to change the activation properties of the receptors may contribute to the cutoff effect. PMID:12055142

  13. Allosteric modulation of glycine receptors is more efficacious for partial rather than full agonists.

    PubMed

    Bíró, Tímea; Maksay, Gábor

    2004-06-01

    Allosteric modulation of [3H]strychnine binding to glycine receptors (GlyRs) was examined in synaptosomal membranes of rat spinal cord. An allosteric model enabled us to determine the cooperativity factors of the allosteric agents with [3H]strychnine and glycine bindings (alpha and beta, respectively). We modified the allosteric model with a slope factor because the slope values of the displacement curves of partial agonists (beta-alanine, taurine and gamma-aminobutyric acid) were beyond unity. The slope factor was reduced only by 100 microM propofol. Further, propofol showed positive cooperativity (beta < 1) stronger with taurine than with glycine. The extent of the positive cooperativity of propofol was nearly independent from the potencies and structures of partial agonists. The steroidal alphaxalone and minaxolone also potentiated taurine better than glycine. Alphaxalone exerted weak negative cooperativity with [3H]strychnine binding. Displacement by taurine is attenuated by granisetron and m-chlorophenylbiguanide representing negative cooperativity (beta > 1) greater than with glycine. The results suggest a developmental role of elevated perinatal levels of taurine and neurosteroids as well as a better allosteric modulation of decreased agonist efficacies for impaired glycine receptor-ionophores.

  14. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels

    PubMed Central

    Martina, Marzia; Gorfinkel, Yelena; Halman, Samantha; Lowe, John A; Periyalwar, Pranav; Schmidt, Christopher J; Bergeron, Richard

    2004-01-01

    Long-term potentiation (LTP) in the hippocampal CA1 region requires the activation of NMDA receptors (NMDARs). NMDAR activation in turn requires membrane depolarization as well as the binding of glutamate and its coagonist glycine. Previous pharmacological studies suggest that the glycine transporter type 1 (GlyT1) maintains subsaturating concentrations of glycine at synaptic NMDARs. Antagonists of GlyT1 increase levels of glycine in the synaptic cleft and, like direct glycine site agonists, can augment NMDAR currents and NMDAR-mediated functions such as LTP. In addition, stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. We have used a new potent GlyT1 antagonist, CP-802,079, with whole-cell patch-clamp recordings in acute rat hippocampal slices to determine the effect of GlyT1 blockade on LTP. Reverse microdialysis experiments in the hippocampus of awake, freely moving rats, showed that this drug elevated only the extracellular concentration of glycine. We found that CP-802,079, sarcosine and glycine significantly increased the amplitude of the NMDAR currents and LTP. In contrast, application of higher concentrations of CP-802,079 and glycine slightly reduced NMDAR currents and did not increase LTP. Overall, these data suggest that the level of glycine present in the synaptic cleft tightly regulates the NMDAR activity. This level is kept below the ‘set point’ of the NMDAR internalization priming mechanism by the presence of GlyT1-dependent uptake. PMID:15064326

  15. The Sleep-Promoting and Hypothermic Effects of Glycine are Mediated by NMDA Receptors in the Suprachiasmatic Nucleus

    PubMed Central

    Kawai, Nobuhiro; Sakai, Noriaki; Okuro, Masashi; Karakawa, Sachie; Tsuneyoshi, Yosuke; Kawasaki, Noriko; Takeda, Tomoko; Bannai, Makoto; Nishino, Seiji

    2015-01-01

    The use of glycine as a therapeutic option for improving sleep quality is a novel and safe approach. However, despite clinical evidence of its efficacy, the details of its mechanism remain poorly understood. In this study, we investigated the site of action and sleep-promoting mechanisms of glycine in rats. In acute sleep disturbance, oral administration of glycine-induced non-rapid eye movement (REM) sleep and shortened NREM sleep latency with a simultaneous decrease in core temperature. Oral and intracerebroventricular injection of glycine elevated cutaneous blood flow (CBF) at the plantar surface in a dose-dependent manner, resulting in heat loss. Pretreatment with N-methyl-D-aspartate (NMDA) receptor antagonists AP5 and CGP78608 but not the glycine receptor antagonist strychnine inhibited the CBF increase caused by glycine injection into the brain. Induction of c-Fos expression was observed in the hypothalamic nuclei, including the medial preoptic area (MPO) and the suprachiasmatic nucleus (SCN) shell after glycine administration. Bilateral microinjection of glycine into the SCN elevated CBF in a dose-dependent manner, whereas no effect was observed when glycine was injected into the MPO and dorsal subparaventricular zone. In addition, microinjection of D-serine into the SCN also increased CBF, whereas these effects were blocked in the presence of L-701324. SCN ablation completely abolished the sleep-promoting and hypothermic effects of glycine. These data suggest that exogenous glycine promotes sleep via peripheral vasodilatation through the activation of NMDA receptors in the SCN shell. PMID:25533534

  16. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Flores-Fernández, José Miguel; Gutiérrez-Ortega, Abel; Padilla-Camberos, Eduardo; Rosario-Cruz, Rodrigo; Hernández-Gutiérrez, Rodolfo; Martínez-Velázquez, Moisés

    2014-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR) gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus.

  17. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae)

    PubMed Central

    Flores-Fernández, José Miguel; Gutiérrez-Ortega, Abel; Padilla-Camberos, Eduardo; Rosario-Cruz, Rodrigo; Hernández-Gutiérrez, Rodolfo; Martínez-Velázquez, Moisés

    2014-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR) gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus. PMID:25174962

  18. Allosteric and hyperekplexic mutant phenotypes investigated on an α1 glycine receptor transmembrane structure.

    PubMed

    Moraga-Cid, Gustavo; Sauguet, Ludovic; Huon, Christèle; Malherbe, Laurie; Girard-Blanc, Christine; Petres, Stéphane; Murail, Samuel; Taly, Antoine; Baaden, Marc; Delarue, Marc; Corringer, Pierre-Jean

    2015-03-03

    The glycine receptor (GlyR) is a pentameric ligand-gated ion channel (pLGIC) mediating inhibitory transmission in the nervous system. Its transmembrane domain (TMD) is the target of allosteric modulators such as general anesthetics and ethanol and is a major locus for hyperekplexic congenital mutations altering the allosteric transitions of activation or desensitization. We previously showed that the TMD of the human α1GlyR could be fused to the extracellular domain of GLIC, a bacterial pLGIC, to form a functional chimera called Lily. Here, we overexpress Lily in Schneider 2 insect cells and solve its structure by X-ray crystallography at 3.5 Å resolution. The TMD of the α1GlyR adopts a closed-channel conformation involving a single ring of hydrophobic residues at the center of the pore. Electrophysiological recordings show that the phenotypes of key allosteric mutations of the α1GlyR, scattered all along the pore, are qualitatively preserved in this chimera, including those that confer decreased sensitivity to agonists, constitutive activity, decreased activation kinetics, or increased desensitization kinetics. Combined structural and functional data indicate a pore-opening mechanism for the α1GlyR, suggesting a structural explanation for the effect of some key hyperekplexic allosteric mutations. The first X-ray structure of the TMD of the α1GlyR solved here using GLIC as a scaffold paves the way for mechanistic investigation and design of allosteric modulators of a human receptor.

  19. Allosteric and hyperekplexic mutant phenotypes investigated on an α1 glycine receptor transmembrane structure

    PubMed Central

    Moraga-Cid, Gustavo; Sauguet, Ludovic; Huon, Christèle; Malherbe, Laurie; Girard-Blanc, Christine; Petres, Stéphane; Murail, Samuel; Taly, Antoine; Baaden, Marc; Delarue, Marc; Corringer, Pierre-Jean

    2015-01-01

    The glycine receptor (GlyR) is a pentameric ligand-gated ion channel (pLGIC) mediating inhibitory transmission in the nervous system. Its transmembrane domain (TMD) is the target of allosteric modulators such as general anesthetics and ethanol and is a major locus for hyperekplexic congenital mutations altering the allosteric transitions of activation or desensitization. We previously showed that the TMD of the human α1GlyR could be fused to the extracellular domain of GLIC, a bacterial pLGIC, to form a functional chimera called Lily. Here, we overexpress Lily in Schneider 2 insect cells and solve its structure by X-ray crystallography at 3.5 Å resolution. The TMD of the α1GlyR adopts a closed-channel conformation involving a single ring of hydrophobic residues at the center of the pore. Electrophysiological recordings show that the phenotypes of key allosteric mutations of the α1GlyR, scattered all along the pore, are qualitatively preserved in this chimera, including those that confer decreased sensitivity to agonists, constitutive activity, decreased activation kinetics, or increased desensitization kinetics. Combined structural and functional data indicate a pore-opening mechanism for the α1GlyR, suggesting a structural explanation for the effect of some key hyperekplexic allosteric mutations. The first X-ray structure of the TMD of the α1GlyR solved here using GLIC as a scaffold paves the way for mechanistic investigation and design of allosteric modulators of a human receptor. PMID:25730860

  20. Probing glycine receptor stoichiometry in superficial dorsal horn neurones using the spasmodic mouse.

    PubMed

    Graham, B A; Tadros, M A; Schofield, P R; Callister, R J

    2011-05-15

    Inhibitory glycine receptors (GlyRs) are pentameric ligand gated ion channels composed of α and β subunits assembled in a 2:3 stoichiometry. The α1/βheteromer is considered the dominant GlyR isoform at 'native' adult synapses in the spinal cord and brainstem. However, the α3 GlyR subunit is concentrated in the superficial dorsal horn (SDH: laminae I-II), a spinal cord region important for processing nociceptive signals from skin, muscle and viscera. Here we use the spasmodic mouse, which has a naturally occurring mutation (A52S) in the α1 subunit of the GlyR, to examine the effect of the mutation on inhibitory synaptic transmission and homeostatic plasticity, and to probe for the presence of various GlyR subunits in the SDH.We usedwhole cell recording (at 22-24◦C) in lumbar spinal cord slices obtained from ketamine-anaesthetized (100 mg kg⁻¹, I.P.) spasmodic and wild-type mice (mean age P27 and P29, respectively, both sexes). The amplitude and decay time constants of GlyR mediated mIPSCs in spasmodic micewere reduced by 25% and 50%, respectively (42.0 ± 3.6 pA vs. 31.0 ± 1.8 pA, P <0.05 and 7.4 ± 0.5 ms vs. 5.0 ± 0.4 ms, P <0.05; means ± SEM, n =34 and 31, respectively). Examination of mIPSC amplitude versus rise time and decay time relationships showed these differences were not due to electrotonic effects. Analysis of GABAAergic mIPSCs and A-type potassium currents revealed altered GlyR mediated neurotransmission was not accompanied by the synaptic or intrinsic homeostatic plasticity previously demonstrated in another GlyR mutant, spastic. Application of glycine to excised outside-out patches from SDH neurones showed glycine sensitivity was reduced more than twofold in spasmodic GlyRs (EC50 =130 ± 20 μM vs. 64 ± 11 μM, respectively; n =8 and 15, respectively). Differential agonist sensitivity and mIPSC decay times were subsequently used to probe for the presence of α1-containing GlyRs in SDHneurones.Glycine sensitivity, based on the response

  1. Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones

    PubMed Central

    Bengtson, C Peter; Tozzi, Alessandro; Bernardi, Giorgio; Mercuri, Nicola B

    2004-01-01

    Transient receptor potential (TRP) channels form cationic channels activated by diverse factors including mechanical stimuli, changes in osmolarity, pH and temperature, as well as the exogenous irritant, capsaicin. Metabotropic glutamate receptors have also recently been linked to TRP channel activation in neurones of the substantia nigra, hippocampus and cerebellum, suggesting a novel role for such channels in synaptic communication via endogenous neurotransmitters. We tested this for dopamine neurones in rat brain slices by characterizing the current–voltage relationship and pharmacology of EPSCs mediated by group I metabotropic glutamate receptor subtype 1 (mGluR1). Slow inward currents (273 ± 35 pA peak amplitude, 381 ± 25 ms latency, holding potential (Vh) =−73 mV) representing evoked mGluR1 EPSCs were isolated in the presence of antagonists of AMPA, NMDA, GABAA, GABAB, muscarinic and glycine receptors. CPCCOEt (100 μm), an mGluR1 antagonist, blocked the residual EPSC in all recordings. mGluR1-activated EPSCs reversed polarity near −10 mV, consistent with the involvement of a cationic channel. Extracellular application of the non-selective TRP channel blockers SKF 96365, flufenamic acid and ruthenium red caused reversible inhibition of mGluR1-activated EPSCs. These characteristics parallel those of mGluR1 activation with an agonist and indicate the involvement of a TRP-like channel in mGluR1-mediated EPSCs. PMID:14724196

  2. The NMDA receptorglycine modulatory site’ in schizophrenia: d-serine, glycine, and beyond

    PubMed Central

    Balu, Darrick T; Coyle, Joseph T

    2016-01-01

    Schizophrenia is a severe psychiatric illness that is characterized by reduced cortical connectivity, for which the underlying biological and genetic causes are not well understood. Although the currently approved antipsychotic drug treatments, which primarily modulate dopaminergic function, are effective at reducing positive symptoms (i.e. delusions and hallucinations), they do little to improve the disabling cognitive and negative (i.e. anhedonia) symptoms of patients with schizophrenia. This review details the recent genetic and neurobiological findings that link N-methyl-d-aspartate receptor (NMDAR) hypofunction to the etiology of schizophrenia. It also highlights potential treatment strategies that augment NMDA receptor function to treat the synaptic deficits and cognitive impairments. PMID:25540902

  3. NMDA receptor coagonist glycine site: evidence for a role in lateral hypothalamic stimulation of feeding.

    PubMed

    Stanley, B G; Butterfield, B S; Grewal, R S

    1997-08-01

    To investigate the role of the glycine coagonist binding site on the N-methyl-D-aspartate (NMDA) receptor in feeding control, we injected the glycine site antagonist 7-chlorokynurenic acid (7-CK) into the lateral hypothalamus (LH) of satiated rats before LH injection of NMDA, 7-CK (10-44 nmol) blocked the 6- to 10-g eating response elicited by NMDA. This block was reversed by LH pretreatment with glycine, arguing for a specific action at the glycine site. In contrast to the suppression produced by high doses, 7-CK at 0.1 nmol enhanced NMDA-elicited eating. For examination of behavioral specificity, 7-CK was injected into the LH before kainic acid (KA) or DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA). 7-CK at a dose of 0.1 nmol suppressed feeding elicited by KA or AMPA, but at 10 nmol it suppressed eating elicited by AMPA while enhancing eating elicited by KA. Finally, bilateral LH injection of 7-CK effectively suppressed eating produced by fasting. These findings support a role for the NMDA receptor coagonist glycine site in LH regulation of eating behavior.

  4. A GLRA1 null mutation in recessive hyperekplexia challenges the functional role of glycine receptors

    SciTech Connect

    Brune, W.; Saul, M.; Becker, C.M.

    1996-05-01

    Dominant missense mutations in the human glycine receptor (GlyR) {alpha}1 subunit gene (GLRA1) give rise to hereditary hyperekplexia. These mutations impair agonist affinities and change conductance states of expressed mutant channels, resulting in a partial loss of function. In a recessive case of hyperekplexia, we found a deletion of exons 1-6 of the GLRA1 gene. Born to consanguineous parents, the affected child is homozygous for this GLRA1{sup null} allele consistent with a complete loss of gene function. The child displayed exaggerated startle responses and pronounced head-retraction jerks reflecting a disinhibition of vestigial brain-stem reflexes. In contrast, proprio- and exteroceptive inhibition of muscle activity previously correlated to glycinergic mechanisms were not affected. This case demonstrates that, in contrast to the lethal effect of a null allele in the recessive mouse mutant oscillator (Glra1{sup spd-ot}), the loss of the GlyR {alpha}1 subunit is effectively compensated in man. 38 refs.

  5. Analysis of glycine-activated inhibitory post-synaptic channels in brain-stem neurones of the lamprey.

    PubMed Central

    Gold, M R; Martin, A R

    1983-01-01

    Voltage-clamp techniques were used to measure fluctuations in membrane current produced by the application of glycine to Müller cells in the brain stem of the lamprey. The power density spectrum of the glycine-induced current 'noise' was consistent with the hypothesis that glycine activated a single population of conductance channels with open times determined by first-order kinetics. In normal bathing solution the channel conductance was 73 +/- 12 pS (mean +/- S.D.) and the channel open time 34 +/- 6 msec at 5 degrees C. The reversal potential for the response was 66 +/- 5 mV. Neither channel conductance nor mean open time was voltage-dependent. Replacement of Cl- in the bathing solution by isethionate and sulphate reversibly abolished the response to glycine. Increasing intracellular Cl-, either by using Cl- -filled micropipettes or by raising extracellular K+, decreased channel conductance. This unexpected decrease was a direct effect of intracellular Cl- and was not related to coincident changes in reversal potential. Channel open time was unaffected by intracellular Cl- concentration. Reducing extracellular Cl- concentration from 126.5 to 31 mM reduced channel conductance at all levels of intracellular Cl- without affecting open time. Increasing the temperature of the preparation resulted in increase in channel conductance and a decrease in mean open time. Q10S for the effects were of the order of 1.3 and -2.3 respectively in the range 4-14 degrees C. PMID:6313912

  6. Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors.

    PubMed

    Hejazi, Nadia; Zhou, Chunyi; Oz, Murat; Sun, Hui; Ye, Jiang Hong; Zhang, Li

    2006-03-01

    Anandamide (AEA) and delta9-tetrahydrocannabinol (THC) are endogenous and exogenous ligands, respectively, for cannabinoid receptors. Whereas most of the pharmacological actions of cannabinoids are mediated by CB1 receptors, there is also evidence that these compounds can produce effects that are not mediated by the activation of identified cannabinoid receptors. Here, we report that THC and AEA, in a CB1 receptor-independent manner, cause a significant potentiation of the amplitudes of glycine-activated currents (I(Gly)) in acutely isolated neurons from rat ventral tegmental area (VTA) and in Xenopus laevis oocytes expressing human homomeric (alpha1) and heteromeric (alpha1beta1) subunits of glycine receptors (GlyRs). The potentiation of I(Gly) by THC and AEA is concentration-dependent, with respective EC50 values of 86 +/- 9 and 319 +/- 31 nM for alpha1 homomeric receptors, 73 +/- 8 and 318 +/- 24 nM for alpha1beta1 heteromeric receptors, and 115 +/- 13 and 230 +/- 29 nM for native GlyRs in VTA neurons. The effects of THC and AEA are selective for I(Gly), because GABA-activated current in VTA neurons or in X. laevis oocytes expressing alpha2beta3gamma2 GABA(A) receptor subunits were unaffected by these compounds. The maximal potentiation by THC and AEA was observed at the lowest concentration of glycine; with increasing concentrations of glycine, the potentiation significantly decreased. The site for THC and AEA seems to be distinct from that of the alcohol and volatile anesthetics. The results indicate that THC and AEA, in pharmacologically relevant concentrations, directly potentiate the function of GlyRs through an allosteric mechanism.

  7. GABAA and strychnine-sensitive glycine receptors modulate N-methyl-D-aspartate-evoked acetylcholine release from rat spinal motoneurons: a possible role in neuroprotection.

    PubMed

    Cervetto, C; Taccola, G

    2008-07-17

    Increasing experimental and clinical evidence suggests that abnormal glutamate transmission might play a major role in a vast number of neurological disorders. As a measure of glutamatergic excitation, we have studied the acetylcholine (ACh) release induced by N-methyl-D-aspartate (NMDA) receptor stimulation in primary cultured rat ventral horn spinal neurons and we have evaluated the possibility to limit the consequences of the hyperactivation of glutamatergic receptors, by recruiting the inhibitory transmission mediated by GABA and glycine. For this purpose, we have exposed cell cultures, previously loaded with [(3)H]choline, to NMDA, which increased the spontaneous tritium efflux in a concentration-dependent manner. Tritium release is dependent upon external Ca(2+), tetrodotoxin, Cd(2+) ions and omega-conotoxin GVIA, but not on omega-conotoxin MVIIC nor nifedipine, suggesting the involvement of N-type voltage-sensitive calcium channels. NMDA-mediated [(3)H]ACh release was completely prevented by MK-801, 5,7-diclorokynurenic acid and ifenprodil, while it was strongly inhibited by a lower external pH, suggesting that the involved NMDA receptors contain NR1 and NR2B subunits. Muscimol inhibited NMDA-evoked [(3)H]ACh release and its effect was antagonized by SR95531 and potentiated by diazepam, indicating the involvement of benzodiazepine-sensitive GABA(A) receptors. Also glycine, via strychnine-sensitive receptors, inhibited the effect of NMDA. It is concluded that glutamate acts on the NMDA receptors situated on spinal motoneurons to evoke ACh release, which can be inhibited through the activation of GABA(A) and glycine receptors present on the same neurons. These data suggest that glutamatergic overload of receptors located onto spinal cord motoneurons might be decreased by activating GABA(A) and glycine receptors.

  8. Positive Allosteric Modulators Differentially Affect Full versus Partial Agonist Activation of the Glycine Receptor

    PubMed Central

    Kirson, Dean; Todorovic, Jelena

    2012-01-01

    Taurine acts as a partial agonist at the glycine receptor (GlyR) in some brain regions such as the hippocampus, striatum, and nucleus accumbens. Ethanol, volatile anesthetics, and inhaled drugs of abuse are all known positive allosteric modulators of GlyRs, but their effects on taurine-activated GlyRs remain poorly understood, especially their effects on the high concentrations of taurine likely to be found after synaptic release. Two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes was used to compare the enhancing effects of ethanol, anesthetics, and inhalants on human homomeric α1-GlyR activated by saturating concentrations of glycine versus taurine. Allosteric modulators had negligible effects on glycine-activated GlyR while potentiating taurine-activated currents. In addition, inhaled anesthetics markedly enhanced desensitization rates of taurine- but not glycine-activated receptors. Our findings suggest that ethanol, volatile anesthetics, and inhalants differentially affect the time courses of synaptic events at GlyR, depending on whether the receptor is activated by a full or partial agonist. PMID:22473615

  9. Activation of Strychnine-Sensitive Glycine Receptors by Shilajit on Preoptic Hypothalamic Neurons of Juvenile Mice.

    PubMed

    Bhattarai, Janardhan Prasad; Cho, Dong Hyu; Han, Seong Kyu

    2016-02-29

    Shilajit, a mineral pitch, has been used in Ayurveda and Siddha system of medicine to treat many human ailments, and is reported to contain at least 85 minerals in ionic form. This study examined the possible mechanism of Shilajit action on preoptic hypothalamic neurons using juvenile mice. The hypothalamic neurons are the key regulator of many hormonal systems. In voltage clamp mode at a holding potential of -60 mV, and under a high chloride pipette solution, Shilajit induced dose-dependent inward current. Shilajit-induced inward currents were reproducible and persisted in the presence of 0.5 μM tetrodotoxin (TTX) suggesting a postsynaptic action of Shilajit on hypothalamic neurons. The currents induced by Shilajit were almost completely blocked by 2 μM strychnine (Stry), a glycine receptor antagonist. In addition, Shilajit-induced inward currents were partially blocked by bicuculline. Under a gramicidin-perforated patch clamp mode, Shilajit induced membrane depolarization on juvenile neurons. These results show that Shilajit affects hypothalamic neuronal activities by activating the Stry-sensitive glycine receptor with α₂/α₂β subunit. Taken together, these results suggest that Shilajit contains some ingredients with possible glycine mimetic activities and might influence hypothalamic neurophysiology through activation of Stry-sensitive glycine receptor-mediated responses on hypothalamic neurons postsynaptically.

  10. Supralinear potentiation of NR1/NR3A excitatory glycine receptors by Zn2+ and NR1 antagonist

    PubMed Central

    Madry, Christian; Betz, Heinrich; Geiger, Jörg R. P.; Laube, Bodo

    2008-01-01

    Coassembly of the glycine-binding NMDA receptor subunits NR1 and NR3A results in excitatory glycine receptors of low efficacy. Here, we report that micromolar concentrations of the divalent cation Zn2+ produce a 10-fold potentiation of NR1/NR3A receptor responses, which resembles that seen upon antagonizing glycine binding to the NR1 subunit. Coapplication of both Zn2+ and NR1 antagonist caused a supralinear potentiation, resulting in a >120-fold increase of glycine-activated currents. At concentrations >50 μM, Zn2+ alone generated receptor currents with similar efficacy as glycine, implying that NR1/NR3A receptors can be activated by different agonists. Point mutations in the NR1 and NR3A glycine-binding sites revealed that both the potentiating and agonistic effects of Zn2+ are mediated by the ligand-binding domain of the NR1 subunit. In conclusion, Zn2+ acts as a potent positive modulator and agonist at the NR1 subunit of NR1/NR3A receptors. Our results suggest that this unconventional member of the NMDA receptor family may in vivo be gated by the combined action of glycine and Zn2+ or a yet unknown second ligand. PMID:18711142

  11. Identification of an inhibitory Zn2+ binding site on the human glycine receptor α1 subunit

    PubMed Central

    Harvey, Robert J; Thomas, Philip; James, Colin H; Wilderspin, Andrew; Smart, Trevor G

    1999-01-01

    Whole-cell glycine-activated currents were recorded from human embryonic kidney (HEK) cells expressing wild-type and mutant recombinant homomeric glycine receptors (GlyRs) to locate the inhibitory binding site for Zn2+ ions on the human α1 subunit. Glycine-activated currents were potentiated by low concentrations of Zn2+ (<10 μm) and inhibited by higher concentrations (>100 μm) on wild-type α1 subunit GlyRs. Lowering the external pH from 7.4 to 5.4 inhibited the glycine responses in a competitive manner. The inhibition caused by Zn2+ was abolished leaving an overt potentiating effect at 10 μm Zn2+ that was exacerbated at 100 μm Zn2+. The identification of residues involved in the formation of the inhibitory binding site was also assessed using diethylpyrocarbonate (DEPC), which modifies histidines. DEPC (1 mm) abolished Zn2+-induced inhibition and also the potentiation of glycine-activated currents by Zn2+. The reduction in glycine-induced whole-cell currents in the presence of high (100 μm) concentrations of Zn2+ did not increase the rate of glycine receptor desensitisation. Systematic mutation of extracellular histidine residues in the GlyR α1 subunit revealed that mutations H107A or H109A completely abolished inhibition of glycine-gated currents by Zn2+. However, mutation of other external histidines, H210, H215 and H419, failed to prevent inhibition by Zn2+ of glycine-gated currents. Thus, H107 and H109 in the extracellular domain of the human GlyR α1 subunit are major determinants of the inhibitory Zn2+ binding site. An examination of Zn2+ co-ordination in metalloenzymes revealed that the histidine- hydrophobic residue-histidine motif found to be responsible for binding Zn2+ in the human GlyR α1 subunit is also shared by some of these enzymes. Further comparison of the structure and location of this motif with a generic model of the GlyR α1 subunit suggests that H107 and H109 participate in the formation of the inhibitory Zn2+ binding site at the

  12. Activation of human alpha1 and alpha2 homomeric glycine receptors by taurine and GABA.

    PubMed

    De Saint Jan, D; David-Watine, B; Korn, H; Bregestovski, P

    2001-09-15

    1. Two ligand binding alpha subunits, alpha1 and alpha2, of the human (H) glycine receptor (GlyR) are involved at inhibitory synapses in the adult and neonatal spinal cord, respectively. The ability of homomeric alphaH1 and alphaH2 GlyRs to be activated by glycine, taurine and GABA was studied in Xenopus oocytes or in the human embryonic kidney HEK-293 cell line. 2. In outside-out patches from HEK cells, glycine, taurine and GABA activated both GlyRs with the same main unitary conductance, i.e. 85 +/- 3 pS (n = 6) for alphaH1, and 95 +/- 5 pS (n = 4) for alphaH2. 3. The sensitivity of both alphaH1 and alphaH2 GlyRs to glycine was highly variable. In Xenopus oocytes the EC50 for glycine (EC50gly) was between 25 and 280 microM for alphaH1 (n = 44) and between 46 and 541 microM for alphaH2 (n = 52). For both receptors, the highest EC50gly values were found on cells with low maximal glycine responses. 4. The actions of taurine and GABA were dependent on the EC50gly: (i) their EC50 values were linearly correlated to EC50gly, with EC50tau approximately 10 EC50gly and EC50GABA approximately 500-800 EC50gly; (ii) they could act either as full or weak agonists depending on the EC50gly. 5. The Hill coefficient (n(H)) of glycine remained stable regardless of the EC50gly whereas n(H) for taurine decreased with increasing EC50tau. 6. The degree of desensitization, evaluated by fast application of saturating concentrations of agonist on outside-out patches from Xenopus oocytes, was similar for glycine and taurine on both GlyRs and did not exceed 50 %. 7. Our data concerning the variations of EC50gly and the subsequent behaviour of taurine and GABA could be qualitatively described by the simple del Castillo-Katz scheme, assuming that the agonist gating constant varies whereas the binding constants are stable. However, the stability of the Hill coefficient for glycine was not explained by this model, suggesting that other mechanisms are involved in the modulation of EC50.

  13. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    PubMed

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  14. Interaction of Benzodiazepines with Central Nervous Glycine Receptors: Possible Mechanism of Action

    PubMed Central

    Young, Anne B.; Zukin, Stephen R.; Snyder, Solomon H.

    1974-01-01

    Interaction of 21 benzodiazepines with the glycine receptor in the brainstem and spinal cord of rat have been evaluated in terms of their displacement of [3H]strychinine binding. The rank order of potency of the 21 drugs in displacing specific [3H]strychinine binding correlates (p < 0.005) with their rank order of potency in a vareity of pharmacological and behavioral tests in humans and animals that predict clinical efficacy. There is a 50-fold variation in potency of the series of benzodiazepines with mean effective dose (ED50) values ranging from 19μM to > 1000 μM. Diazepam (Valium®) and chlordiazepoxide (Librium®) have ED50's of 26 μM and 200 μM, respectively, whereas the ED50 for glycine is 25 μM. The inhibitory effects of 10 of the agents in two other central nervous system membrane receptor assays, for the opiate receptor and the muscarinic cholinergic receptor, do not correlate with any of the in vivo pharmacologic and behavioral tests. The benzodiazepines may exert their antianxiety, anticonvulsant and muscle-relaxant effects by mimicking the effects of the neurotransmitter glycine at its central nervous system receptor sites. PMID:4152296

  15. Structure and activity studies of glycine receptor ligands, Part 3: structure and conformation of ethyl-N-[(5,5-diphenyl)-4-oxo-2-imidazolidyl]glycinate

    NASA Astrophysics Data System (ADS)

    Karolak-Wojciechowska, J.; Mrozek, A.; Kwiatkowski, W.; Ksiażek, W.; Kieć-Kononowicz, K.; Handzlik, J.

    1998-06-01

    As part of our investigation of compounds with potential affinity to the glycine binding site of MNDA receptors the structure of ethyl-N-[(5,5-diphenyl)-4-oxo-2-imidazolidyl]glycinate is reported: C 19H 19N 3O 3; orthorombic; P2 12 12 1; a = 10.273(2), b = 10.309(2), c = 16.721(3) Å; V = 1770.8(6) Å3; Z = 4; λ( CuKα) = 1.54178 Å; μ = 0.71 mm -1; final R = 0.053 for 1002 observed reflections [ I > 4 σ( I)]. Possible tautomers of this structure as well as possible conformations of the amino ester chain and their impact on the binding to the glycine binding site of MNDA receptors are discussed.

  16. Interaction between taurine and GABA(A)/glycine receptors in neurons of the rat anteroventral cochlear nucleus.

    PubMed

    Song, Ning-Ying; Shi, Hai-Bo; Li, Chun-Yan; Yin, Shan-Kai

    2012-09-07

    Taurine, one of the most abundant endogenous amino acids in the mammalian central nervous system (CNS), is involved in neural development and many physiological functions. In this study, the interaction between taurine and GABA(A)/glycine receptors was investigated in young rat (P13-P15) anteroventral cochlear nucleus (AVCN) neurons using the whole-cell patch-clamp method. We found that taurine at low (0.1mM) and high (1mM) concentrations activated both GABA(A) and glycine receptors, but not AMPA and NMDA receptors. The reversal potentials of taurine-, GABA- or glycine-evoked currents were close to the expected chloride equilibrium potential, indicating that receptors activated by these agonists were mediating chloride conductance. Moreover, our results showed that the currents activated by co-application of GABA and glycine were cross-inhibitive. Sequential application of GABA and glycine or vice versa also reduced the glycine or GABA evoked currents. There was no cross-inhibition when taurine and GABA or taurine and glycine were applied simultaneously, but the response was larger than that evoked by GABA or glycine alone. These results suggest that taurine can serve as a neuromodulator to strengthen GABAergic and glycinergic neurotransmission in the rat AVCN.

  17. Study of the interaction of antiplasmodial strychnine derivatives with the glycine receptor.

    PubMed

    Philippe, Geneviève; Nguyen, Laurent; Angenot, Luc; Frédérich, Michel; Moonen, Gustave; Tits, Monique; Rigo, Jean-Michel

    2006-01-13

    Strychnos icaja Baill. (Loganiaceae) is a liana found in Central Africa known to be an arrow and ordeal poison but also used by traditional medicine to treat malaria. Recently, many dimeric or trimeric indolomonoterpenic alkaloids with antiplasmodial properties have been isolated from its rootbark. Since these alkaloids are derivatives of strychnine, it was important, in view of their potential use as antimalarial drugs, to assess their possible convulsant strychnine-like properties. In that regard, their interaction with the strychnine-sensitive glycine receptor was investigated by whole-cell patch-clamp recordings on glycine-gated currents in mouse spinal cord neurons in culture and by [(3)H]strychnine competition assays on membranes from adult rat spinal cord. These experiments were carried out on sungucine (leading compound of the chemical class) and on the antiplasmodial strychnogucine B (dimeric) and strychnohexamine (trimeric). In comparison with strychnine, all compounds interact with a very poor efficacy and only at concentrations >1 microM with both [(3)H]strychnine binding and glycine-gated currents. Furthermore, the effects of strychnine and protostrychnine, a monomeric alkaloid (without antiplasmodial activity) also isolated from S. icaja and differing from strychnine only by a cycle opening, were compared in the same way. The weak interaction of protostrychnine confirms the importance of the G cycle ring structure in strychnine for its binding to the glycine receptor and its antagonist properties.

  18. Molecular lock regulates binding of glycine to a primitive NMDA receptor

    PubMed Central

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L.; Lau, Albert Y.

    2016-01-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi. The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants. PMID:27791085

  19. Molecular lock regulates binding of glycine to a primitive NMDA receptor.

    PubMed

    Yu, Alvin; Alberstein, Robert; Thomas, Alecia; Zimmet, Austin; Grey, Richard; Mayer, Mark L; Lau, Albert Y

    2016-11-01

    The earliest metazoan ancestors of humans include the ctenophore Mnemiopsis leidyi The genome of this comb jelly encodes homologs of vertebrate ionotropic glutamate receptors (iGluRs) that are distantly related to glycine-activated NMDA receptors and that bind glycine with unusually high affinity. Using ligand-binding domain (LBD) mutants for electrophysiological analysis, we demonstrate that perturbing a ctenophore-specific interdomain Arg-Glu salt bridge that is notably absent from vertebrate AMPA, kainate, and NMDA iGluRs greatly increases the rate of recovery from desensitization, while biochemical analysis reveals a large decrease in affinity for glycine. X-ray crystallographic analysis details rearrangements in the binding pocket stemming from the mutations, and molecular dynamics simulations suggest that the interdomain salt bridge acts as a steric barrier regulating ligand binding and that the free energy required to access open conformations in the glycine-bound LBD is largely responsible for differences in ligand affinity among the LBD variants.

  20. Zinc enhances the inhibitory effects of strychnine-sensitive glycine receptors in mouse hippocampal neurons.

    PubMed

    Zhang, Hai Xia; Thio, Liu Lin

    2007-12-01

    Although extracellular Zn(2+) is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn(2+) modulation of GlyR may be especially important in the hippocampus where presynaptic Zn(2+) is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 microM Zn(2+), a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 microM glycine (EC(25)) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 microM Zn(2+). At least part of this effect resulted from Zn(2+) enhancing the GlyR-induced decrease in input resistance. Sustained 20 microM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg(2+). However, sustained 20 microM glycine applications depressed neuronal bursting in 1 microM Zn(2+). Zn(2+) did not enhance the inhibitory effects of sustained 60 microM glycine (EC(70)) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn(2+) chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn(2+) may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.

  1. Beneficial Effects of the Amino Acid Glycine.

    PubMed

    Pérez-Torres, Israel; Zuniga-Munoz, Alejandra María; Guarner-Lans, Veronica

    2017-01-01

    Glycine is the smallest non-essential, neutral and metabolically inert amino acid, with a carbon atom bound to two hydrogen atoms, and to an amino and a carboxyl group. This amino acid is an essential substrate for the synthesis of several biologically important biomolecules and compounds. It participates in the synthesis of proteins, of the tripeptide glutathione and in detoxification reactions. It has a broad spectrum of anti-inflammatory, cytoprotective and immunomodulatory properties. To exert its actions, glycine binds to different receptors. The GlyR anion channel is the most studied receptor for glycine. However, there are GlyR-independent mechanisms for glycine cytoprotection and other possible binding molecules of glycine are the NMDA receptor and receptors GlyT1 and GlyT2. Although, in humans, the normal serum level of glycine is approximately 300 μM, increasing glycine intake can lead to blood levels of more than 900 μM that increase its benefic actions without having harmful side effects. The herbal pesticide glyphosate might disrupt glycine homeostasis. Many in vitro studies involving different cell types have demonstrated beneficial effects of the addition of glycine. Glycine also improved conditions of isolated perfused or stored organs. In vivo studies in experimental animals have also tested glycine as a protector molecule and some studies on the beneficial effects of glycine after its clinical application have been done. Although at high-doses, glycine may cause toxic effects, further studies are needed to investigate the safe range of usage of this aminoacid and to test the diverse routes of administration.

  2. Clozapine inhibits strychnine-sensitive glycine receptors in rat hippocampal neurons.

    PubMed

    Liu, Yong; Hu, Changping; Tang, Yamei; Chen, Jindong; Dong, Min; Song, Tao; Zhang, Xianghui; Zhao, Jingping

    2009-06-30

    Seizure is one kind of severe side effects during clozapine (Clo) treatment. However, the mechanism of seizure associated with Clo therapy is not completely clear. Strychnine-sensitive glycine receptors (GlyRs) play an important role in regulating the excitability in the hippocampus. In the present study, we investigated the effect of Clo on GlyRs in cultured hippocampal neurons of rats. Clo reversibly inhibited the glycine-induced chloride currents (I(Gly)) in a concentration-dependent manner. The half-maximal effect concentration (EC(50)) for glycine alone was 25.6+/-0.7 microM with the Hill coefficient 1.5+/-0.1; in the presence of Clo, the EC(50) and the Hill coefficient were 28.9+/-6.3 microM and 1.2+/-0.3 respectively, which were not significantly affected by Clo. In addition, Clo inhibition of I(Gly) was not influenced by blocking D(1) and D(2) dopamine receptors with haloperidol (Hal). Taken together, these results suggest that Clo is a non-competitive antagonist of GlyR independent of its activation of dopamine receptors, which may contribute to seizure associated with Clo therapy.

  3. Modulation by zinc ions of native rat and recombinant human inhibitory glycine receptors.

    PubMed Central

    Laube, B; Kuhse, J; Rundström, N; Kirsch, J; Schmieden, V; Betz, H

    1995-01-01

    1. The effect of the divalent cation Zn2+ on inhibitory glycine receptor (GlyR) currents was investigated in rat embryonic spinal cord neurons and Xenopus oocytes expressing recombinant GlyRs. 2. In cultured spinal neurons, Zn2+ potentiated glycine-induced whole-cell currents about 3-fold when applied extracellularly at concentrations of 0.5-10 microM. In contrast, higher concentrations (> 100 microM) of Zn2+ decreased the glycine response. 3. A similar biphasic modulation of glycine-induced currents by Zn2+ was also found with recombinant homo- and hetero-oligomeric GlyRs generated in Xenopus oocytes. Dose-response analysis showed that both the potentiating and inhibitory effects of Zn2+ result from changes in apparent agonist affinity. 4. Analysis of chimeric constructs of the GlyR alpha 1- and beta-subunits revealed that the positive and negative modulatory effects of Zn2+ are mediated by different regions of the alpha 1-subunit. 5. Our data indicate the existence of distinct high- and low-affinity Zn2+ binding sites on the ligand-binding alpha-subunits of the GlyR. These sites may be implicated in the regulation of synaptic efficacy within glycinergic pathways. Images Figure 4 PMID:7776247

  4. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons

    PubMed Central

    Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Hirata, Hiromi; Moorhouse, Andrew J.; Ishibashi, Hitoshi

    2017-01-01

    Abstract Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca2+ nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system. PMID:28197549

  5. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons.

    PubMed

    Nakahata, Yoshihisa; Eto, Kei; Murakoshi, Hideji; Watanabe, Miho; Kuriu, Toshihiko; Hirata, Hiromi; Moorhouse, Andrew J; Ishibashi, Hitoshi; Nabekura, Junichi

    2017-01-01

    Inhibitory synapses are established during development but continue to be generated and modulated in strength in the mature nervous system. In the spinal cord and brainstem, presynaptically released inhibitory neurotransmitter dominantly switches from GABA to glycine during normal development in vivo. While presynaptic mechanisms of the shift of inhibitory neurotransmission are well investigated, the contribution of postsynaptic neurotransmitter receptors to this shift is not fully elucidated. Synaptic clustering of glycine receptors (GlyRs) is regulated by activation-dependent depolarization in early development. However, GlyR activation induces hyperpolarization after the first postnatal week, and little is known whether and how presynaptically released glycine regulates postsynaptic receptors in a depolarization-independent manner in mature developmental stage. Here we developed spinal cord neuronal culture of rodents using chronic strychnine application to investigate whether initial activation of GlyRs in mature stage could change postsynaptic localization of GlyRs. Immunocytochemical analyses demonstrate that chronic blockade of GlyR activation until mature developmental stage resulted in smaller clusters of postsynaptic GlyRs that could be enlarged upon receptor activation for 1 h in the mature stage. Furthermore, live cell-imaging techniques show that GlyR activation decreases its lateral diffusion at synapses, and this phenomenon is dependent on PKC, but neither Ca(2+) nor CaMKII activity. These results suggest that the GlyR activation can regulate receptor diffusion and cluster size at inhibitory synapses in mature stage, providing not only new insights into the postsynaptic mechanism of shifting inhibitory neurotransmission but also the inhibitory synaptic plasticity in mature nervous system.

  6. Subunit-dependent effects of nickel on NMDA receptor channels.

    PubMed

    Marchetti, Carla; Gavazzo, Paola

    2003-10-07

    Nickel (Ni2+) is a transition metal that affects different neuronal ionic channels. We investigated its effects on glutamate channels of the NMDA-type in the presence of saturating concentration of glutamate or NMDA (50 microM), in 0 external Mg and in the continuous presence of saturating glycine (30 microM). In neonatal rat cerebellar granule cells, Ni2+ inhibited the current evoked by NMDA at -60 mV with an IC50 close to 40 microM. The inhibition was weakly voltage-dependent and the current at +40 mV was inhibited with IC50=86 microM. Wash out of the metal unmasked a stimulatory effect which persisted for a few seconds. In HEK293 cells transiently transfected with recombinant NR1a-NR2A receptors, Ni2+ inhibited the current elicited by glutamate with an IC50=52 microM at -60 mV and 90 microM at +40 mV. In HEK293 expressing NR1a-NR2B receptors, 0.1-100 microM Ni2+ caused a potentiation of the current, with EC50=4 microM, while with 300 microM, a voltage-dependent block became apparent (IC50=170 microM). As previously reported, the current through both classes of recombinant receptors was steeply dependent on external pH, and in both cases the protonic block had an IC50 close to pH 7.2. Application of Ni2+ showed that stimulation of NR1a-NR2B receptor channels was dependent on external pH, while voltage-independent inhibition of NR1a-NR2A was less sensitive to pH change. These results indicate that Ni2+ has multiple and complex effects on NMDA channels, which are largely dependent on the NR2 subunit.

  7. Molecular determinants of glycine receptor αβ subunit sensitivities to Zn2+-mediated inhibition

    PubMed Central

    Miller, Paul S; Beato, Marco; Harvey, Robert J; Smart, Trevor G

    2005-01-01

    Glycine receptors exhibit a biphasic sensitivity profile in response to Zn2+-mediated modulation, with low Zn2+ concentrations potentiating (< 10 μm), and higher Zn2+ concentrations inhibiting submaximal responses to glycine. Here, a substantial 30-fold increase in sensitivity to Zn2+-mediated inhibition was apparent for the homomeric glycine receptor (GlyR) α1 subunit compared to either GlyR α2 or α3 subtypes. Swapping the divergent histidine (H107) residue in GlyR α1, which together with the conserved H109 forms part of an intersubunit Zn2+-binding site, for the equivalent asparagine residue present in GlyR α2 and α3, reversed this phenotype. Co-expression of heteromeric GlyR α1 or α2 with the ancillary β subunit yielded receptors that maintained their distinctive sensitivities to Zn2+ inhibition. However, GlyR α2β heteromers were consistently 2-fold more sensitive to inhibition compared to the GlyR α2 homomer. Comparative studies to elucidate the specific residue in the β subunit responsible for this differential sensitivity revealed instead threonine 133 in the α1 subunit as a new vital component for Zn2+-mediated inhibition. Further studies on heteromeric receptors demonstrated that a mutated β subunit could indeed affect Zn2+-mediated inhibition but only from one side of the intersubunit Zn2+-binding site, equivalent to the GlyR α1 H107 face. This strongly suggests that the α subunit is responsible for Zn2+-mediated inhibition and that this is effectively transduced, asymmetrically, from the side of the Zn2+-binding site where H109 and T133 are located. PMID:15905212

  8. Agonist pharmacology of neonatal and adult glycine receptor alpha subunits: identification of amino acid residues involved in taurine activation.

    PubMed Central

    Schmieden, V; Kuhse, J; Betz, H

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a pentameric chloride channel protein which mediates postsynaptic inhibition in the mammalian central nervous system. In spinal cord, different GlyR isoforms originate from the sequential expression of developmentally regulated variants of the ligand binding alpha subunit. Here, neonatal alpha 2 and adult alpha 1 subunits are shown to generate GlyRs with distinct agonist activation profiles upon heterologous expression in Xenopus oocytes. Whereas alpha 1 receptors are efficiently gated by beta-alanine and taurine, alpha 2 GlyRs show only a low relative response to these agonists, which also display a reduced sensitivity to inhibition by the glycinergic antagonist strychnine. Construction of an alpha 2/alpha 1 subunit chimera and site-directed mutagenesis of the extracellular region of the alpha 1 sequence identified amino acid positions 111 and 212 as important determinants of taurine activation. Our results indicate the existence of distinct subsites for agonists on alpha 1 and alpha 2 GlyRs and suggest that the ligand binding pocket of these receptor proteins is formed from discontinuous domains of their extracellular region. Images PMID:1376243

  9. Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers.

    PubMed Central

    Bormann, J; Rundström, N; Betz, H; Langosch, D

    1993-01-01

    We have expressed glycine receptor (GlyR) alpha and beta subunit cDNAs in HEK-293 cells to study the functional properties of homo- versus hetero-oligomeric GlyR channels. Dose-response curves of whole-cell currents in cells expressing alpha 1 subunits revealed an average Hill coefficient of h = 4.2. Co-expression with the beta subunit markedly increased glycine-gated whole-cell currents, which now exhibited a mean Hill coefficient of only h = 2.5. For alpha 1, alpha 2 and alpha 3 homo-oligomers, the main-state single-channel conductances were 86, 111 and 105 pS, respectively, recorded at symmetrical Cl- concentrations of 145 mM. The mutant alpha 1 G221A gave rise to a main-state of 107 pS. This indicates that the main-state of alpha homo-oligomers depends on residue 221 which is located within transmembrane segment M2. Importantly, the main-state conductances of alpha 1/beta, alpha 2/beta and alpha 3/beta hetero-oligomers were only 44, 54 and 48 pS, respectively. The latter values are similar to those found in spinal neurons, suggesting that native GlyRs are predominantly alpha/beta hetero-oligomers. Co-expression of alpha 1 with mutant beta subunits revealed that residues within and close to segment M2 of the beta subunit determine the conductance differences between homo- and hetero-oligomers. PMID:8404844

  10. Lead inhibition of NMDA channels in native and recombinant receptors.

    PubMed

    Gavazzo, P; Gazzoli, A; Mazzolini, M; Marchetti, C

    2001-10-08

    NMDA channels are key targets for lead (Pb2+) neurotoxicity and Pb2+-induced inhibition of NMDA current is age- and subunit-dependent. In rat cerebellar granule cells maintained in high KCl, glycine affinity as well as sensitivity to ifenprodil change significantly with the days in vitro, indicating a reduction of NR2B subunit expression. Pb2+ blocked NMDA current with IC50 approximately 4 microM and this effect decreased significantly during the second week in vitro. In Xenopus laevis oocytes expressing recombinant NR1-NR2A, NR1-NR2B or NR1-NR2C receptors, Pb2+ inhibited glutamate-activated currents with IC50 of 3.3, 2.5 and 4.7 microM respectively. These data indicate that Pb2+ action is dependent on subunit composition and suggest that down-regulation of the NR2B subunit is correlated to a diminished sensitivity to Pb2+ inhibition.

  11. A transmembrane residue influences the interaction of propofol with the strychnine-sensitive glycine alpha1 and alpha1beta receptor.

    PubMed

    Ahrens, Jörg; Leuwer, Martin; Stachura, Sina; Krampfl, Klaus; Belelli, Delia; Lambert, Jeremy J; Haeseler, Gertrud

    2008-12-01

    Propofol, well known for its anesthetic effects, acts as a positive allosteric modulator of the alpha-aminobutyric acid type A (GABA(A)) receptor but also enhances the function of the glycine receptor. The GABA modulatory effects of propofol are influenced by an amino acid residue located within the second transmembrane domain (TM2) of the GABA(A) receptor beta subunit. In glycine alpha(1) subunits, the homologous residue (serine 267) affects the glycine modulatory actions of alcohols and alkane anesthetics. In the present study we investigated the role of this residue on the interaction of propofol with the glycine alpha(1) and alpha(1)beta receptor. The influence of propofol on wild type and mutant (alpha(1)S267M, alpha(1)S267I, alpha(1)S267Mbeta, alpha(1)S267Ibeta) glycine receptors expressed in human embryonic kidney 293 cells was investigated by using the whole-cell clamp technique. Mutation of the alpha(1) subunit TM2 serine residue to either isoleucine or methionine decreased the sensitivity of the receptor to glycine, and abolished the direct activation of the glycine receptor by propofol. Additionally, the methionine and particularly the isoleucine mutation decreased the glycine-enhancing actions of propofol. The nature of the TM2 residue (267) of the glycine alpha(1) subunit influences the glycine modulatory effect of propofol and direct activation of the receptor by this anesthetic. A comparison of the impact of such complementary mutations on the interaction of propofol with glycine and GABA(A) receptors should permit a better understanding of the molecular determinants of action of propofol on these structurally related receptors and may aid in the development of selective glycine receptor modulators.

  12. Deficit in acoustic signal-in-noise detection in glycine receptor α3 subunit knockout mice.

    PubMed

    Tziridis, Konstantin; Buerbank, Stefanie; Eulenburg, Volker; Dlugaiczyk, Julia; Schulze, Holger

    2017-02-01

    Hearing is an essential sense for communication in animals and humans. Normal function of the cochlea of higher vertebrates relies on a fine-tuned interplay of afferent and efferent innervation of both inner and outer hair cells. Efferent inhibition is controlled via olivocochlear feedback loops, mediated mainly by acetylcholine, γ-aminobutyric acid (GABA) and glycine, and is one of the first sites affected by synapto- and neuropathy in the development of hearing loss. While the functions of acetylcholine, GABA and other inhibitory transmitters within these feedback loops are at least partially understood, especially the function of glycine still remains elusive. To address this question, we investigated hearing in glycine receptor (GlyR) α3 knockout (KO) and wildtype (WT) mice. We found no differences in pure tone hearing thresholds at 11.3 and 16 kHz between the two groups as assessed by auditory brainstem response (ABR) measurements. Detailed analysis of the ABR waves at 11.3 kHz, however, revealed a latency decrease of wave III and an amplitude increase of wave IV in KO compared to WT animals. GlyRα3 KO animals showed significantly impaired prepulse inhibition of the auditory startle response in a noisy environment, indicating that GlyRα3-mediated glycinergic inhibition is important for signal-in-noise detection.

  13. Glycine Receptors Containing α2 or α3 Subunits Regulate Specific Ethanol-Mediated Behaviors

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth

    2015-01-01

    Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse. We used an extensive panel of behavioral tests to examine ethanol actions in mice lacking Glra2 (the gene encoding the glycine receptor alpha 2 subunit) or Glra3 (the gene encoding the glycine receptor alpha 3 subunit). Deletion of Glra2 or Glra3 alters specific ethanol-induced behaviors. Glra2 knockout mice demonstrate reduced ethanol intake and preference in the 24-hour two-bottle choice test and increased initial aversive responses to ethanol and lithium chloride. In contrast, Glra3 knockout mice show increased ethanol intake and preference in the 24-hour intermittent access test and increased development of conditioned taste aversion to ethanol. Mutants and wild-type mice consumed similar amounts of ethanol in the limited access drinking in the dark test. Other ethanol effects, such as anxiolysis, motor incoordination, loss of righting reflex, and acoustic startle response, were not altered in the mutants. The behavioral changes in mice lacking GlyRα2 or α3 subunits were distinct from effects previously observed in mice with knock-in mutations in the α1 subunit. We provide evidence that GlyRα2 and α3 subunits may regulate ethanol consumption and the aversive response to ethanol. PMID:25678534

  14. Metabotropic glutamate receptor expression in olfactory receptor neurons from the channel catfish, Ictalurus punctatus.

    PubMed

    Medler, K F; Tran, H N; Parker, J M; Caprio, J; Bruch, R C

    1998-04-01

    Metabotropic glutamate receptors (mGluRs) were identified in olfactory receptor neurons of the channel catfish, Ictalurus punctatus, by polymerase chain reaction. DNA sequence analysis confirmed the presence of two subtypes, mGluR1 and mGluR3, that were coexpressed with each other and with the putative odorant receptors within single olfactory receptor neurons. Immunocytochemical data showed that both mGluR subtypes were expressed in the apical dendrites and some cilia of olfactory neurons. Pharmacological analysis showed that antagonists to each mGluR subtype significantly decreased the electrophysiological response to odorant amino acids. alpha-Methyl-L-CCG1/(2S,3S,4S)-2-methyl-2-(carboxycyclopropyl++ +)glycine (MCCG), a known antagonist to mGluR3, and (S)-4-carboxyphenylglycine (S-4CPG), a specific antagonist to mGluR1, each significantly reduced olfactory receptor responses to L-glutamate. S-4CPG and MCCG reduced the glutamate response to 54% and 56% of control, respectively, which was significantly greater than their effect on a neutral amino acid odorant, methionine. These significant reductions of odorant response by the antagonists, taken with the expression of these receptors throughout the dendritic and ciliated portions of some olfactory receptor neurons, suggest that these mGluRs may be involved in olfactory reception and signal transduction.

  15. Discrimination of heterogenous mRNAs encoding strychnine-sensitive glycine receptors in Xenopus oocytes by antisense oligonucleotides.

    PubMed Central

    Akagi, H; Patton, D E; Miledi, R

    1989-01-01

    Three synthetic oligodeoxynucleotides complementary to different parts of an RNA encoding a glycine receptor subunit were used to discriminate heterogenous mRNAs coding for glycine receptors in adult and neonatal rat spinal cord. Injection of the three antisense oligonucleotides into Xenopus oocytes specifically inhibited the expression of glycine receptors by adult spinal cord mRNA. In contrast, the antisense oligonucleotides were much less potent in inhibiting the expression of glycine receptors encoded by neonatal spinal cord mRNA. Northern blot analysis revealed that the oligonucleotides hybridized mostly to an adult cord transcript of approximately 10 kilobases in size. This band was also present in neonatal spinal cord mRNA but its density was about one-fourth of the adult cord message. There was no intense band in the low molecular weight position (approximately 2 kilobases), the existence of which was expected from electrophysiological studies with size-fractionated mRNA of neonatal spinal cord. Our results suggest that in the rat spinal cord there are at least three different types of mRNAs encoding functional strychnine-sensitive glycine receptors. Images PMID:2479016

  16. Transient Receptor Potential Channels in the Vasculature

    PubMed Central

    Earley, Scott; Brayden, Joseph E.

    2015-01-01

    The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234

  17. The mGluR5 antagonist MPEP elevates accumbal dopamine and glycine levels; interaction with strychnine-sensitive glycine receptors.

    PubMed

    Chau, PeiPei; Söderpalm, Bo; Ericson, Mia

    2011-10-01

    Studies have indicated that the metabotropic glutamate receptor 5 (mGluR5) antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) decreases ethanol self-administration, and the same receptor type was also suggested to be involved in the mechanism of action of the anti-craving substance acamprosate. Our previous research suggested that glycine receptors (GlyRs) in the nucleus accumbens (nAc) play a major part in mediating the dopamine-elevating properties of ethanol and are highly involved in the ethanol intake-reducing effect of acamprosate. The aim of this study was to examine if modulation of nAc dopamine via mGluR5 antagonism or GlyR agonism is a linked or separated phenomena. The extracellular levels of dopamine as well as of the GlyR ligands, glycine, taurine and β-alanine were measured in the nAc by means of microdialysis after local perfusion of MPEP (100 or 500 µM) with or without pre-treatment with strychnine. MPEP increased dopamine levels, an effect that was blocked by pre-treatment with strychnine. In addition, the higher MPEP concentration increased glycine output, whereas no alterations of taurine or β-alanine were observed. These results indicate a relationship between the glutamatergic and glycinergic transmitter systems in regulating dopamine output, possibly via alteration of extracellular glycine levels. Taken together with our previous data demonstrating the importance of accumbal GlyRs both in ethanol-induced elevation of nAc dopamine and in ethanol consumption, it is plausible that the effects of MPEP treatment, on dopamine output and on ethanol intake, may be mediated via interaction with the same neuronal circuitry that previously has been demonstrated for ethanol, taurine and acamprosate.

  18. Functional glycine receptor maturation in the absence of glycinergic input in dopaminergic neurones of the rat substantia nigra.

    PubMed

    Mangin, J M; Guyon, A; Eugène, D; Paupardin-Tritsch, D; Legendre, P

    2002-08-01

    The postnatal maturation pattern of glycine receptor channels (GlyRs) expressed by dopaminergic (DA) neurones of the rat substantia nigra pars compacta (SNc) was investigated using single-channel and whole-cell patch-clamp recordings in brain slices from rats aged 7-21 postnatal days (P). In neonatal rats (P7-P10), GlyRs exhibited a main conductance state of 100-110 pS with a mean open time of 16 ms. In juvenile rats (P19-P22), both the GlyR main conductance state (46-55 pS) and the mean open time (6.8 ms) were decreased. In neonatal rats, application of 30 microM picrotoxin, which is known to block homomeric GlyRs, strongly reduced glycine-evoked responses, while it was much less effective in juvenile rats. These results suggest that these GlyRs correspond functionally to alpha(2) homomeric GlyRs in neonatal rats and alpha(1)/beta heteromeric GlyRs in juvenile rats. A drastic but transient decrease in the glycine responsiveness of DA neurones occurred around P17 concomitant to the functional switch from the homomeric state to the heteromeric state. This age corresponds to a maturation phase for DA neurones. The application of 1 microM gabazine blocked spontaneous or evoked inhibitory synaptic current, while the addition of 1 microM strychnine had no effect, suggesting a lack of functional glycinergic synapses on DA neurones. Although it has been proposed that taurine is co-released with GABA at GABAergic synapses on DA neurones, in the present study the stimulation of GABAergic fibres failed to activate GlyRs. Blockade of taurine transporters and applications of high K(+) and hyposmotic solutions were also unable to induce any strychnine-sensitive current. We conclude that functional maturation of GlyRs can occur in the absence of any detectable GlyR activation in DA neurones of the SNc.

  19. Crystal Structure and Pharmacological Characterization of a Novel N-Methyl-d-aspartate (NMDA) Receptor Antagonist at the GluN1 Glycine Binding Site*

    PubMed Central

    Kvist, Trine; Steffensen, Thomas Bielefeldt; Greenwood, Jeremy R.; Mehrzad Tabrizi, Fatemeh; Hansen, Kasper B.; Gajhede, Michael; Pickering, Darryl S.; Traynelis, Stephen F.; Kastrup, Jette Sandholm; Bräuner-Osborne, Hans

    2013-01-01

    NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission in the brain. They are tetrameric complexes composed of glycine-binding GluN1 and GluN3 subunits together with glutamate-binding GluN2 subunits. Subunit-selective antagonists that discriminate between the glycine sites of GluN1 and GluN3 subunits would be valuable pharmacological tools for studies on the function and physiological roles of NMDA receptor subtypes. In a virtual screening for antagonists that exploit differences in the orthosteric binding site of GluN1 and GluN3 subunits, we identified a novel glycine site antagonist, 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40). Here, we show by Schild analysis that TK40 is a potent competitive antagonist with Kb values of 21–63 nm at the GluN1 glycine-binding site of the four recombinant GluN1/N2A-D receptors. In addition, TK40 displayed >100-fold selectivity for GluN1/N2 NMDA receptors over GluN3A- and GluN3B-containing NMDA receptors and no appreciable effects at AMPA receptors. Binding experiments on rat brain membranes and the purified GluN1 ligand-binding domain using glycine site GluN1 radioligands further confirmed the competitive interaction and high potency. To delineate the binding mechanism, we have solved the crystal structure of the GluN1 ligand-binding domain in complex with TK40 and show that TK40 binds to the orthosteric binding site of the GluN1 subunit with a binding mode that was also predicted by virtual screening. Furthermore, the structure reveals that the imino acetamido group of TK40 acts as an α-amino acid bioisostere, which could be of importance in bioisosteric replacement strategies for future ligand design. PMID:24072709

  20. Glycine and GABAA Ultra-Sensitive Ethanol Receptors as Novel Tools for Alcohol and Brain Research

    PubMed Central

    Naito, Anna; Muchhala, Karan H.; Asatryan, Liana; Trudell, James R.; Homanics, Gregg E.; Perkins, Daya I.; Alkana, Ronald L.

    2014-01-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABAARs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABAARs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol. PMID:25245406

  1. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site*

    PubMed Central

    Safar, Fatemah; Hurdiss, Elliot; Erotocritou, Marios; Greiner, Timo; Irvine, Mark W.; Fang, Guangyu; Jane, David; Yu, Rilei; Dämgen, Marc A.

    2017-01-01

    Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules. PMID:28174298

  2. Crosslinking Constraints and Computational Models as Complementary Tools in Modeling the Extracellular Domain of the Glycine Receptor

    PubMed Central

    Liu, Zhenyu; Szarecka, Agnieszka; Yonkunas, Michael; Speranskiy, Kirill; Kurnikova, Maria; Cascio, Michael

    2014-01-01

    The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel superfamily, is the major inhibitory neurotransmitter-gated receptor in the spinal cord and brainstem. In these receptors, the extracellular domain binds agonists, antagonists and various other modulatory ligands that act allosterically to modulate receptor function. The structures of homologous receptors and binding proteins provide templates for modeling of the ligand-binding domain of GlyR, but limitations in sequence homology and structure resolution impact on modeling studies. The determination of distance constraints via chemical crosslinking studies coupled with mass spectrometry can provide additional structural information to aid in model refinement, however it is critical to be able to distinguish between intra- and inter-subunit constraints. In this report we model the structure of GlyBP, a structural and functional homolog of the extracellular domain of human homomeric α1 GlyR. We then show that intra- and intersubunit Lys-Lys crosslinks in trypsinized samples of purified monomeric and oligomeric protein bands from SDS-polyacrylamide gels may be identified and differentiated by MALDI-TOF MS studies of limited resolution. Thus, broadly available MS platforms are capable of providing distance constraints that may be utilized in characterizing large complexes that may be less amenable to NMR and crystallographic studies. Systematic studies of state-dependent chemical crosslinking and mass spectrometric identification of crosslinked sites has the potential to complement computational modeling efforts by providing constraints that can validate and refine allosteric models. PMID:25025226

  3. Distribution of glycine receptors on the surface of the mature calyx of Held nerve terminal

    PubMed Central

    Trojanova, Johana; Kulik, Akos; Janacek, Jiri; Kralikova, Michaela; Syka, Josef; Turecek, Rostislav

    2014-01-01

    The physiological functions of glycine receptors (GlyRs) depend on their subcellular locations. In axonal terminals of the central neurons, GlyRs trigger a slow facilitation of presynaptic transmitter release; however, their spatial relationship to the release sites is not known. In this study, we examined the distribution of GlyRs in the rat glutamatergic calyx of Held nerve terminal using high-resolution pre-embedding immunoelectron microscopy. We performed a quantitative analysis of GlyR-associated immunogold (IG) labeling in 3D reconstructed calyceal segments. A variable density of IG particles and their putative accumulations, inferred from the frequency distribution of inter-IG distances, indicated a non-uniform distribution of the receptors in the calyx. Subsequently, increased densities of IG particles were found in calyceal swellings, structures characterized by extensive exocytosis of glutamate. In swellings as well as in larger calyceal stalks, IG particles did not tend to accumulate near the glutamate releasing zones. On the other hand, GlyRs in swellings (but not in stalks) preferentially occupied membrane regions, unconnected to postsynaptic cells and presumably accessible by ambient glycine. Furthermore, the sites with increased GlyR concentrations were found in swellings tightly juxtaposed with GABA/glycinergic nerve endings. Thus, the results support the concept of an indirect mechanism underlying the modulatory effects of calyceal GlyRs, activated by glycine spillover. We also suggest the existence of an activity-dependent mechanism regulating the surface distribution of α homomeric GlyRs in axonal terminals of central neurons. PMID:25339867

  4. Activation of glycine receptor phase-shifts the circadian rhythm in neuronal activity in the mouse suprachiasmatic nucleus

    PubMed Central

    Mordel, Jérôme; Karnas, Diana; Inyushkin, Alexey; Challet, Etienne; Pévet, Paul; Meissl, Hilmar

    2011-01-01

    Abstract In mammals, the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is composed of numerous synchronized oscillating cells that drive daily behavioural and physiological processes. Several entrainment pathways, afferent inputs to the SCN with their neurotransmitter and neuromodulator systems, can reset the circadian system regularly and also modulate neuronal activity within the SCN. In the present study, we investigated the function of the inhibitory neurotransmitter glycine on neuronal activity in the mouse SCN and on resetting of the circadian clock. The effects of glycine on the electrical activity of SCN cells from C57Bl/6 mice were studied either by patch-clamp recordings from acute brain slices or by long-term recordings from organotypic brain slices using multi-microelectrode arrays (MEA). Voltage-clamp recordings confirmed the existence of glycine-induced, chloride-selective currents in SCN neurons. These currents were reversibly suppressed by strychnine, phenylbenzene ω-phosphono-α-amino acid (PMBA) or ginkgolide B, selective blockers of glycine receptors (GlyRs). Long-term recordings of the spontaneous activity of SCN neurons revealed that glycine application induces a phase advance during the subjective day and a phase delay during the early subjective night. Both effects were suppressed by strychnine or by PMBA. These results suggest that glycine is able to modulate circadian activity by acting directly on its specific receptors in SCN neurons. PMID:21486797

  5. Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors.

    PubMed

    Xiong, Wei; Cui, Tanxing; Cheng, Kejun; Yang, Fei; Chen, Shao-Rui; Willenbring, Dan; Guan, Yun; Pan, Hui-Lin; Ren, Ke; Xu, Yan; Zhang, Li

    2012-06-04

    Certain types of nonpsychoactive cannabinoids can potentiate glycine receptors (GlyRs), an important target for nociceptive regulation at the spinal level. However, little is known about the potential and mechanism of glycinergic cannabinoids for chronic pain treatment. We report that systemic and intrathecal administration of cannabidiol (CBD), a major nonpsychoactive component of marijuana, and its modified derivatives significantly suppress chronic inflammatory and neuropathic pain without causing apparent analgesic tolerance in rodents. The cannabinoids significantly potentiate glycine currents in dorsal horn neurons in rat spinal cord slices. The analgesic potency of 11 structurally similar cannabinoids is positively correlated with cannabinoid potentiation of the α3 GlyRs. In contrast, the cannabinoid analgesia is neither correlated with their binding affinity for CB1 and CB2 receptors nor with their psychoactive side effects. NMR analysis reveals a direct interaction between CBD and S296 in the third transmembrane domain of purified α3 GlyR. The cannabinoid-induced analgesic effect is absent in mice lacking the α3 GlyRs. Our findings suggest that the α3 GlyRs mediate glycinergic cannabinoid-induced suppression of chronic pain. These cannabinoids may represent a novel class of therapeutic agents for the treatment of chronic pain and other diseases involving GlyR dysfunction.

  6. Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors

    PubMed Central

    Xiong, Wei; Cui, Tanxing; Cheng, Kejun; Yang, Fei; Chen, Shao-Rui; Willenbring, Dan; Guan, Yun; Pan, Hui-Lin; Ren, Ke; Xu, Yan

    2012-01-01

    Certain types of nonpsychoactive cannabinoids can potentiate glycine receptors (GlyRs), an important target for nociceptive regulation at the spinal level. However, little is known about the potential and mechanism of glycinergic cannabinoids for chronic pain treatment. We report that systemic and intrathecal administration of cannabidiol (CBD), a major nonpsychoactive component of marijuana, and its modified derivatives significantly suppress chronic inflammatory and neuropathic pain without causing apparent analgesic tolerance in rodents. The cannabinoids significantly potentiate glycine currents in dorsal horn neurons in rat spinal cord slices. The analgesic potency of 11 structurally similar cannabinoids is positively correlated with cannabinoid potentiation of the α3 GlyRs. In contrast, the cannabinoid analgesia is neither correlated with their binding affinity for CB1 and CB2 receptors nor with their psychoactive side effects. NMR analysis reveals a direct interaction between CBD and S296 in the third transmembrane domain of purified α3 GlyR. The cannabinoid-induced analgesic effect is absent in mice lacking the α3 GlyRs. Our findings suggest that the α3 GlyRs mediate glycinergic cannabinoid-induced suppression of chronic pain. These cannabinoids may represent a novel class of therapeutic agents for the treatment of chronic pain and other diseases involving GlyR dysfunction. PMID:22585736

  7. An Improved Ivermectin-activated Chloride Channel Receptor for Inhibiting Electrical Activity in Defined Neuronal Populations*

    PubMed Central

    Lynagh, Timothy; Lynch, Joseph W.

    2010-01-01

    The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity. Several neuronal silencing methods have been developed, with the bacterial light-activated halorhodopsin and the invertebrate allatostatin-activated G protein-coupled receptor proving the most successful to date. However, both techniques may be difficult to implement clinically due to their requirement for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain following systemic administration. However, the limitations of this method include poor functional expression, possibly due to the requirement to coexpress two different subunits in individual neurons, and the nonhuman origin of GluClR. Here, we describe the development of a modified human α1 glycine receptor as an improved ivermectin-gated silencing receptor. The crucial development was the identification of a mutation, A288G, which increased ivermectin sensitivity almost 100-fold, rendering it similar to that of GluClR. Glycine sensitivity was eliminated via the F207A mutation. Its large unitary conductance, homomeric expression, and human origin may render the F207A/A288G α1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue appears essential for exquisite ivermectin sensitivity. PMID:20308070

  8. Isovaleric, methylmalonic, and propionic acid decrease anesthetic EC50 in tadpoles, modulate glycine receptor function, and interact with the lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

    PubMed Central

    Weng, Yun; Hsu, Tienyi Theresa; Zhao, Jing; Nishimura, Stefanie; Fuller, Gerald G.; Sonner, James M.

    2010-01-01

    Introduction Elevated concentrations of isovaleric, methylmalonic, and propionic acid are associated with impaired consciousness in genetic diseases (organic acidemias). We conjectured that part of the central nervous system depression observed in these disorders was due to anesthetic effects of these metabolites. We tested three hypotheses. First, that these metabolites would have anesthetic-sparing effects, possibly being anesthetics by themselves. Second, that these compounds would modulate glycine and GABAA receptor function, increasing chloride currents through these channels as potent clinical inhaled anesthetics do. Third, that these compounds would affect physical properties of lipids. Methods Anesthetic EC50’s were measured in Xenopus laevis tadpoles. Glycine and GABAA receptors were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. Pressure-area isotherms of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers were measured with and without added organic acids. Results Isovaleric acid was an anesthetic in tadpoles, while methylmalonic and propionic acid decreased isoflurane’s EC50 by half. All three organic acids concentration-dependently increased current through α1 glycine receptors. There were minimal effects on α1β2γ2s GABAA receptors. The organic acids increased total lateral pressure (surface pressure) of DPPC monolayers, including at mean molecular areas typical of bilayers. Conclusion Isovaleric, methylmalonic, and propionic acid have anesthetic affects in tadpoles, positively modulate glycine receptor fuction, and affect physical properties of DPPC monolayers. PMID:19372333

  9. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective.

    PubMed Central

    Schell, Michael J

    2004-01-01

    The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics. PMID:15306409

  10. Taurine prevents ammonia-induced accumulation of cyclic GMP in rat striatum by interaction with GABAA and glycine receptors.

    PubMed

    Hilgier, Wojciech; Oja, Simo S; Saransaari, Pirjo; Albrecht, Jan

    2005-05-10

    Previously, we had shown that ammonium chloride (ammonia)-induced accumulation of cyclic GMP in the microdialysates of rat striatum is blocked by taurine. In this study, coinfusion with taurine of a GABAA receptor antagonist bicuculline or a glycine receptor antagonist strychnine (100 microM each), separately, restored ammonia-induced release of cGMP to the extracellular fluid to approximately 29% and 18% of the level measured in the absence of taurine, respectively. Simultaneous coinfusion of both antagonists or of 100 muM picrotoxin, which is an antagonist of both GABAA and Gly receptors, offsets most of the taurine block. Ammonia-induced accumulation of cyclic GMP was attenuated by approximately 12% upon coinfusion of a GABAA receptor agonist muscimol (100 microM). The results suggest that stimulation of both GABAA and glycine receptors is involved in the mechanism by which taurine limits the activation of the NMDA/NO/cGMP pathway by ammonia in the striatum.

  11. Hyperekplexia mutation R271L of alpha1 glycine receptors potentiates allosteric interactions of nortropeines, propofol and glycine with [3H]strychnine binding.

    PubMed

    Maksay, Gábor; Bíró, Tímea; Laube, Bodo; Nemes, Péter

    2008-01-01

    Human alpha1 and hyperekplexia mutant alpha1(R271L) glycine receptors (GlyRs) were transiently expressed in human embryonic kidney 293 cells for [3H]strychnine binding. Binding parameters were determined using a ternary allosteric model. The hyperekplexia mutation increased the positive cooperativity of 0.3 mM propofol and glycine binding by about six times: the cooperativity factor beta was 0.26 for alpha1 GlyRs and 0.04 for alpha1(R271L) GlyRs. Thus, propofol restored the potency of glycine impaired by the mutation. Five nortropeines, i.e. substituted benzoates of nortropine and a new compound, nortropisetron were prepared and also examined on [3H]strychnine binding. They showed nanomolar displacing potencies amplified by the hyperekplexia mutation. The affinity of nor-O-zatosetron (2.6 nM) is one of the highest reported for GlyRs. This binding test offers an in vitro method to evaluate agents against neurological disorders associated with inherited mutations of GlyRs.

  12. Glycine transport accounts for the differential role of glycine vs. D-serine at NMDA receptor coagonist sites in the salamander retina

    PubMed Central

    Stevens, Eric R.; Gustafson, Eric C.; Miller, Robert F.

    2010-01-01

    In this study, we demonstrate that D-serine interacts with N-methyl-D-aspartate receptor (NMDAR) coagonist sites of retinal ganglion cells of the tiger salamander retina by showing that exogenous D-serine overcomes the competitive antagonism of 7-chlorokynurenic acid for this site. Additionally, we show that exogenous D-serine was more than 30 times as effective at potentiating NMDAR currents compared with glycine. We thus examined the importance of glycine transport through the application of selective antagonists of the GlyT1 (NFPS) and GlyT2 (ALX-5670) transport systems, while simultaneously evaluating the degree of occupancy of the NMDAR coagonist binding sites. Analysis was carried out with electrophysiological recordings from the inner retina, including whole-cell recordings from retinal ganglion cells and extracellular recordings of the proximal negative field potential. Blocking the GlyT2 transport system had no effect on the light-evoked NMDAR currents or on the sensitivity of these currents to exogenous D-serine. In contrast, when the GlyT1 system was blocked, the coagonist sites of NMDARs showed full occupancy. These findings clearly establish the importance of the GlyT1 transporter as an essential component for maintaining the coagonist sites of NMDARs in a non-saturated state. The normal, unsaturated state of the NMDAR coagonist binding sites allows modulation of the NMDAR currents, by release of either D-serine or glycine. These results are discussed in light of contemporary findings which favor D-serine over glycine as the major coagonist of the NMDARs found in ganglion cells of the tiger salamander retina. PMID:20374282

  13. Dopamine receptor antagonist blocks the release of glycine, GABA, and taurine produced by amphetamine.

    PubMed

    Porras, A; Mora, F

    1993-01-01

    The effects of systemic injections of amphetamine sulfate on the extracellular levels of glycine, GABA, and taurine in the neostriatum of awake rats were studied using a push-pull perfusion system. Amphetamine produced a dose-related increase in glycine levels. Amphetamine also produced an enhancement on GABA and taurine levels, although these increases did not follow a dose-related curve. The percentage increase of amino acids produced by the highest dose of amphetamine (5 mg/kg) at the peak effect was: GLY 235.9%; GABA 218%, and TAU 177%. All these effects were blocked by the D1-D2 dopamine receptor antagonist, haloperidol. It is suggested that dopamine, released by amphetamine, induces the release of inhibitory amino acid neurotransmitters in the neostriatum. These results are consistent with the hypothesis of dopamine playing a role of an amplifier of the activity of different neurochemical circuits. The results are also in accord with the idea that dopamine could mediate the neurotoxic effects produced by amphetamines through an interplay between excitatory and inhibitory amino acids.

  14. A NMDA receptor glycine site partial agonist, GLYX-13, that simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus

    PubMed Central

    Zhang, Xiao-lei; Sullivan, John A.; Moskal, Joseph R.; Stanton, Patric K.

    2008-01-01

    N-methyl-D-aspartate glutamate receptors (NMDAR) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low-frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high-frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist D-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD. PMID:18796308

  15. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus.

    PubMed

    Zhang, Xiao-lei; Sullivan, John A; Moskal, Joseph R; Stanton, Patric K

    2008-12-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.

  16. The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-Beta glycine receptor function.

    PubMed

    Ahrens, Jörg; Demir, Reyhan; Leuwer, Martin; de la Roche, Jeanne; Krampfl, Klaus; Foadi, Nilufar; Karst, Matthias; Haeseler, Gertrud

    2009-01-01

    Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. Cannabidiol is a nonpsychotropic plant constituent of Cannabis sativa. As we hypothesized that non-CB receptor mechanisms of cannabidiol might contribute to its anti-inflammatory and neuroprotective effects, we investigated the interaction of cannabidiol with strychnine-sensitive alpha(1 )and alpha(1)beta glycine receptors by using the whole-cell patch clamp technique. Cannabidiol showed a positive allosteric modulating effect in a low micromolar concentration range (EC(50) values: alpha(1) = 12.3 +/- 3.8 micromol/l and alpha(1)beta = 18.1 +/- 6.2 micromol/l). Direct activation of glycine receptors was observed at higher concentrations above 100 micromol/l (EC(50) values: alpha(1) = 132.4 +/- 12.3 micromol/l and alpha(1)beta = 144.3 +/- 22.7 micromol/l). These in vitro results suggest that strychnine-sensitive glycine receptors may be a target for cannabidiol mediating some of its anti-inflammatory and neuroprotective properties.

  17. C3'-cis-Substituted carboxycyclopropyl glycines as metabotropic glutamate 2/3 receptor agonists: synthesis and SAR studies.

    PubMed

    González, Rosario; Collado, Iván; de Uralde, Beatriz López; Marcos, Alicia; Martín-Cabrejas, Luisa M; Pedregal, Concepción; Blanco-Urgoiti, Jaime; Pérez-Castells, Javier; Fernández, M Alejandro; Andis, Sherri L; Johnson, Bryan G; Wright, Rebecca A; Schoepp, Darryle D; Monn, James A

    2005-12-01

    The synthesis of a series of C3'-cis-substituted carboxycyclopropyl glycines bearing a wide variety of functional groups is described, and the structure-activity relationship for this series as agonists of group II metabotropic glutamate receptors is reported.

  18. Flux regulation of cardiac ryanodine receptor channels

    PubMed Central

    Liu, Yiwei; Porta, Maura; Qin, Jia; Ramos, Jorge; Nani, Alma; Shannon, Thomas R.

    2010-01-01

    The cardiac type 2 ryanodine receptor (RYR2) is activated by Ca2+-induced Ca2+ release (CICR). The inherent positive feedback of CICR is well controlled in cells, but the nature of this control is debated. Here, we explore how the Ca2+ flux (lumen-to-cytosol) carried by an open RYR2 channel influences its own cytosolic Ca2+ regulatory sites as well as those on a neighboring channel. Both flux-dependent activation and inhibition of single channels were detected when there were super-physiological Ca2+ fluxes (>3 pA). Single-channel results indicate a pore inhibition site distance of 1.2 ± 0.16 nm and that the activation site on an open channel is shielded/protected from its own flux. Our results indicate that the Ca2+ flux mediated by an open RYR2 channel in cells (∼0.5 pA) is too small to substantially regulate (activate or inhibit) the channel carrying it, even though it is sufficient to activate a neighboring RYR2 channel. PMID:20008518

  19. Ultrathin nucleoporin phenylalanine–glycine repeat films and their interaction with nuclear transport receptors

    PubMed Central

    Eisele, Nico B; Frey, Steffen; Piehler, Jacob; Görlich, Dirk; Richter, Ralf P

    2010-01-01

    Nuclear pore complexes (NPCs) are highly selective gates that mediate the exchange of all proteins and nucleic acids between the cytoplasm and the nucleus. Their selectivity relies on a supramolecular assembly of natively unfolded nucleoporin domains containing phenylalanine–glycine (FG)-rich repeats (FG repeat domains), in a way that is at present poorly understood. We have developed ultrathin FG domain films that reproduce the mode of attachment and the density of FG repeats in NPCs, and that exhibit a thickness that corresponds to the nanoscopic dimensions of the native permeability barrier. By using a combination of biophysical characterization techniques, we quantified the binding of nuclear transport receptors (NTRs) to such FG domain films and analysed how this binding affects the swelling behaviour and mechanical properties of the films. The results extend our understanding of the interaction of FG domain assemblies with NTRs and contribute important information to refine the model of transport across the permeability barrier. PMID:20379223

  20. Glycine receptor antibodies in a boy with focal epilepsy and episodic behavioral disorder.

    PubMed

    Wuerfel, Eva; Bien, Christian G; Vincent, Angela; Woodhall, Mark; Brockmann, Knut

    2014-08-15

    A wide range of clinical presentations including neuromuscular disorders and autoimmune encephalopathies is being recognized to be associated with various autoantibodies. Glycine receptor (GlyR) antibodies have so far been found mainly in adult patients with phenotypes comprising progressive encephalomyelitis with rigidity and myoclonus or stiff-person syndrome. We report a four-year-old boy who presented with a two-year-history of drug-resistant focal epilepsy with unusual seizure semiology, temper tantrums, headache, clumsiness, and intermittently impaired speech. While MRI and CSF were normal, screening for autoimmune antibodies revealed GlyR antibodies in serum. Immunomodulatory treatment with steroids resulted in rapid and complete resolution of symptoms. Our observation widens the spectrum of clinical presentations associated with GlyR antibodies and emphasizes the potential relevance of neuronal autoantibodies in epilepsies of unknown cause in children as well as in adults. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Pulsed Electron Spin Resonance Resolves the Coordination Site of Cu2+ Ions in α1-Glycine Receptor

    PubMed Central

    Ruthstein, Sharon; Stone, Katherine M.; Cunningham, Timothy F.; Ji, Ming; Cascio, Michael; Saxena, Sunil

    2010-01-01

    Herein, we identify the coordination environment of Cu2+ in the human α1-glycine receptor (GlyR). GlyRs are members of the pentameric ligand-gated ion channel superfamily (pLGIC) that mediate fast signaling at synapses. Metal ions like Zn2+ and Cu2+ significantly modulate the activity of pLGICs, and metal ion coordination is essential for proper physiological postsynaptic inhibition by GlyR in vivo. Zn2+ can either potentiate or inhibit GlyR activity depending on its concentration, while Cu2+ is inhibitory. To better understand the molecular basis of the inhibitory effect we have used electron spin resonance to directly examine Cu2+ coordination and stoichiometry. We show that Cu2+ has one binding site per α1 subunit, and that five Cu2+ can be coordinated per GlyR. Cu2+ binds to E192 and H215 in each subunit of GlyR with a 40 μM apparent dissociation constant, consistent with earlier functional measurements. However, the coordination site does not include several residues of the agonist/antagonist binding site that were previously suggested to have roles in Cu2+ coordination by functional measurements. Intriguingly, the E192/H215 site has been proposed as the potentiating Zn2+ site. The opposing modulatory actions of these cations at a shared binding site highlight the sensitive allosteric nature of GlyR. PMID:20959090

  2. Mutations M287L and Q266I in the Glycine Receptor α1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice

    PubMed Central

    Borghese, Cecilia M.; Xiong, Wei; Oh, S. Irene; Ho, Angel; Mihic, S. John; Zhang, Li; Lovinger, David M.; Homanics, Gregg E.; Eger, Edmond I; Harris, R. Adron

    2012-01-01

    Background Volatile anesthetics (VAs) alter the function of key central nervous system proteins but it is not clear which, if any, of these targets mediates the immobility produced by VAs in the face of noxious stimulation. A leading candidate is the glycine receptor, a ligand-gated ion channel important for spinal physiology. VAs variously enhance such function, and blockade of spinal GlyRs with strychnine affects the minimal alveolar concentration (an anesthetic EC50) in proportion to the degree of enhancement. Methods We produced single amino acid mutations into the glycine receptorα1 subunit that increased (M287L, third transmembrane region) or decreased (Q266I, second transmembrane region) sensitivity to isoflurane in recombinant receptors, and introduced such receptors into mice. The resulting knockin mice presented impaired glycinergic transmission, but heterozygous animals survived to adulthood, and we determined the effect of isoflurane on glycine-evoked responses of brain stem neurons from the knockin mice, and the minimal alveolar concentration for isoflurane and other VAs in the immature and mature knockin mice. Results Studies of glycine-evoked currents in brain stem neurons from knock-in mice confirmed the changes seen with recombinant receptors. No increases in the minimal alveolar concentration were found in knockin mice, but the minimal alveolar concentration for isoflurane and enflurane (but not halothane) decreased in 2-week-old Q266I mice. This change is opposite to the one expected for a mutation that decreases the sensitivity to volatile anesthetics. Conclusion Taken together, these results indicate that glycine receptors containing the α1 subunit are not likely to be crucial for the action of isoflurane and other VAs. PMID:22885675

  3. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  4. Regulation of glycine receptor diffusion properties and gephyrin interactions by protein kinase C

    PubMed Central

    Specht, Christian G; Grünewald, Nora; Pascual, Olivier; Rostgaard, Nina; Schwarz, Günter; Triller, Antoine

    2011-01-01

    Glycine receptors (GlyRs) can dynamically exchange between synaptic and extrasynaptic locations through lateral diffusion within the plasma membrane. Their accumulation at inhibitory synapses depends on the interaction of the β-subunit of the GlyR with the synaptic scaffold protein gephyrin. An alteration of receptor–gephyrin binding could thus shift the equilibrium between synaptic and extrasynaptic GlyRs and modulate the strength of inhibitory neurotransmission. Using a combination of dynamic imaging and biochemical approaches, we have characterised the molecular mechanism that links the GlyR–gephyrin interaction with GlyR diffusion and synaptic localisation. We have identified a protein kinase C (PKC) phosphorylation site within the cytoplasmic domain of the β-subunit of the GlyR (residue S403) that causes a reduction of the binding affinity between the receptor and gephyrin. In consequence, the receptor's diffusion in the plasma membrane is accelerated and GlyRs accumulate less strongly at synapses. We propose that the regulation of GlyR dynamics by PKC thus contributes to the plasticity of inhibitory synapses and may be involved in maladaptive forms of synaptic plasticity. PMID:21829170

  5. Membrane distribution of the glycine receptor α3 studied by optical super-resolution microscopy.

    PubMed

    Notelaers, Kristof; Rocha, Susana; Paesen, Rik; Swinnen, Nina; Vangindertael, Jeroen; Meier, Jochen C; Rigo, Jean-Michel; Ameloot, Marcel; Hofkens, Johan

    2014-07-01

    In this study, the effect of glycine receptor (GlyR) α3 alternative RNA splicing on the distribution of receptors in the membrane of human embryonic kidney 293 cells is investigated using optical super-resolution microscopy. Direct stochastic optical reconstruction microscopy is used to image both α3K and α3L splice variants individually and together using single- and dual-color imaging. Pair correlation analysis is used to extract quantitative measures from the resulting images. Autocorrelation analysis of the individually expressed variants reveals clustering of both variants, yet with differing properties. The cluster size is increased for α3L compared to α3K (mean radius 92 ± 4 and 56 ± 3 nm, respectively), yet an even bigger difference is found in the cluster density (9,870 ± 1,433 and 1,747 ± 200 μm(-2), respectively). Furthermore, cross-correlation analysis revealed that upon co-expression, clusters colocalize on the same spatial scales as for individually expressed receptors (mean co-cluster radius 94 ± 6 nm). These results demonstrate that RNA splicing determines GlyR α3 membrane distribution, which has consequences for neuronal GlyR physiology and function.

  6. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1) from Glycine max

    PubMed Central

    Wang, Miao; Sun, Shi; Wu, Cunxiang; Han, Tianfu; Wang, Qingyu

    2014-01-01

    Brassinosteroids (BRs) constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs) that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean. PMID:24599079

  7. Positive allosteric modulatory effects of ajulemic acid at strychnine-sensitive glycine alpha1- and alpha1beta-receptors.

    PubMed

    Ahrens, Jörg; Leuwer, Martin; Demir, Reyhan; Krampfl, Klaus; de la Roche, Jeanne; Foadi, Nilufar; Karst, Matthias; Haeseler, Gertrud

    2009-04-01

    The synthetic cannabinoid ajulemic acid (CT-3) is a potent cannabinoid receptor agonist which was found to reduce pain scores in neuropathic pain patients in the absence of cannabis-like psychotropic adverse effects. The reduced psychotropic activity of ajulemic acid has been attributed to a greater contribution of peripheral CB receptors to its mechanism of action as well as to non-CB receptor mechanisms. Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of chronic pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. As we hypothesised that additional non-CB receptor mechanisms of ajulemic acid might contribute to its effect in neuropathic pain, we investigated the interaction of ajulemic acid with strychnine-sensitive alpha(1)- and alpha(1)beta-glycine receptors by using the whole-cell patch clamp technique. Ajulemic acid showed a positive allosteric modulating effect in a concentration range which can be considered close to clinically relevant concentrations (EC(50) values: alpha(1) = 9.7 +/- 2.6 microM and alpha(1)beta = 12.4 +/- 3.4 microM). Direct activation of glycine receptors was observed at higher concentrations above 100 microM (EC(50) values: alpha(1) = 140.9 +/- 21.5 microM and alpha(1)beta = 154.3 +/- 32.1 microM). These in vitro results demonstrate that ajulemic acid modulates strychnine-sensitive glycine receptors in clinically relevant concentrations.

  8. Transient Receptor Potential Channels in neuropathic pain.

    PubMed

    Basso, Lilian; Altier, Christophe

    2016-10-27

    Neuropathic pain caused by disease or dysfunction of the nervous system is one of the most difficult pain conditions to treat. Symptoms include a hypersensitivity to mechanical and thermal stimuli, processed by specialized nociceptors that constitute the first line of defence of the somatosensory system. The detection of these stimuli depends on the TRP ion channel family, which activates upon damaging pressure, extreme temperature, or toxic endogenous and exogenous chemicals. This review will summarize the current knowledge of the contribution of TRP channels, particularly the thermosensitive TRP, including TRPV1, TRPA1 and TRPM8 channels that play a central role in the sensitization of nociceptive transduction. We will discuss the pharmacology of these receptors and their relative success in preclinical and clinical studies.

  9. Arresting a Transient Receptor Potential (TRP) Channel

    PubMed Central

    Shukla, Arun K.; Kim, Jihee; Ahn, Seungkirl; Xiao, Kunhong; Shenoy, Sudha K.; Liedtke, Wolfgang; Lefkowitz, Robert J.

    2010-01-01

    β-Arrestins, originally discovered to desensitize activated G protein-coupled receptors, (aka seven-transmembrane receptors, 7TMRs) also mediate 7TMR internalization and G protein-independent signaling via these receptors. More recently, several regulatory roles of β-arrestins for atypical 7TMRs and non-7TM receptors have emerged. Here, we uncover an entirely novel regulatory role of β-arrestins in cross-talk between the angiotensin receptor (AT1aR) and a member of the transient receptor potential (TRP) ion channel family, TRPV4. AT1aR and TRPV4 form a constitutive complex in the plasma membrane, and angiotensin stimulation leads to recruitment of β-arrestin 1 to this complex. Surprisingly, angiotensin stimulation results in ubiquitination of TRPV4, a process that requires β-arrestin 1, and subsequently to internalization and functional down-regulation of TRPV4. β-Arrestin 1 interacts with, and acts as an adaptor for AIP4, an E3 ubiquitin ligase responsible for TRPV4 ubiquitination. Thus, our data provide the first evidence of a functional link between β-arrestins and TRPV4 and uncovers an entirely novel mechanism to maintain appropriate intracellular Ca2+ concentration to avoid excessive Ca2+ signaling. PMID:20650893

  10. Inositol Trisphosphate Receptor Ca2+ Release Channels

    PubMed Central

    FOSKETT, J. KEVIN; WHITE, CARL; CHEUNG, KING-HO; MAK, DON-ON DANIEL

    2010-01-01

    The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R. PMID:17429043

  11. Mass spectrometric analysis of glycine receptor-associated gephyrin splice variants.

    PubMed

    Paarmann, Ingo; Schmitt, Bertram; Meyer, Björn; Karas, Michael; Betz, Heinrich

    2006-11-17

    Gephyrin is an ubiquitously expressed protein that, in the nervous system, is essential for synaptic anchoring of glycine receptors (GlyRs) and major GABAA receptor subtypes. The binding of gephyrin to the GlyR depends on an amphipathic motif within the large intracellular loop of the GlyRbeta subunit. The mouse gephyrin gene consists of 30 exons. Ten of these exons, encoding cassettes of 5-40 amino acids, are subject to alternative splicing (C1-C7, C4'-C6'). Since one of the cassettes, C5', has recently been reported to exclude GlyRs from GABAergic synapses, we investigated which cassettes are found in gephyrin associated with the GlyR. Gephyrin variants were purified from rat spinal cord, brain, and liver by binding to the glutathione S-transferase-tagged GlyRbeta loop or copurified with native GlyR from spinal cord by affinity chromatography and analyzed by mass spectrometry. In addition to C2 and C6', already known to be prominent, C4 was found to be abundant in gephyrin from all tissues examined. The nonneuronal cassette C3 was easily detected in liver but not in GlyR-associated gephyrin from spinal cord. C5 was present in brain and spinal cord polypeptides, whereas C5' was coisolated mainly from liver. Notably C5'-containing gephyrin bound to the GlyRbeta loop, inconsistent with its proposed selectivity for GABAA receptors. Our data show that GlyR-associated gephyrin, lacking C3, but enriched in C4 without C5, differs from other neuronal and nonneuronal gephyrin isoforms.

  12. Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects.

    PubMed

    Guilarte, Tomás R; Chen, Ming-Kai

    2007-11-01

    Humans exposed to excess levels of manganese (Mn(2+)) express psychiatric problems and deficits in attention and learning and memory. However, there is a paucity of knowledge on molecular mechanisms by which Mn(2+) produces such effects. We now report that Mn(2+) is a potent inhibitor of [(3)H]-MK-801 binding to the NMDA receptor channel in rat neuronal membrane preparations. The inhibition of [(3)H]-MK-801 to the NMDA receptor channel by Mn(2+) was activity-dependent since Mn(2+) was a more potent inhibitor in the presence of the NMDA receptor co-agonists glutamate and glycine (K(i)=35.9+/-3.1 microM) than in their absence (K(i)=157.1+/-6.5 microM). We also show that Mn(2+) is a NMDA receptor channel blocker since its inhibition of [(3)H]-MK-801 binding to the NMDA receptor channel is competitive in nature. That is, Mn(2+) significantly increased the affinity constant (K(d)) with no significant effect on the maximal number of [(3)H]-MK-801 binding sites (B(max)). Under stimulating conditions, Mn(2+) was equipotent in inhibiting [(3)H]-MK-801 binding to NMDA receptors expressed in neuronal membrane preparations from different brain regions. However, under basal, non-stimulated conditions, Mn(2+) was more potent in inhibiting NMDA receptors in the cerebellum than other brain regions. We have previously shown that chronic Mn(2+) exposure in non-human primates increases Cu(2+), but not zinc or iron concentrations in the basal ganglia [Guilarte TR, Chen M-K, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 2006a;202:381-90]. Therefore, we also tested the inhibitory effects of Cu(2+) on [(3)H]-MK-801 binding to the NMDA receptor channel. The data shows that Cu(2+) in the presence of glutamate and glycine is a more potent inhibitor of the NMDA receptor than Mn(2

  13. A complex interaction between glycine/NMDA receptors and serotonergic/noradrenergic antidepressants in the forced swim test in mice.

    PubMed

    Poleszak, Ewa; Wlaź, Piotr; Szewczyk, Bernadeta; Wlaź, Aleksandra; Kasperek, Regina; Wróbel, Andrzej; Nowak, Gabriel

    2011-11-01

    Both clinical and preclinical studies demonstrate the antidepressant activity of the functional NMDA receptor antagonists. In this study, we assessed the effects of two glycine/NMDA receptor ligands, namely L-701,324 (antagonist) and D: -cycloserine (a partial agonist) on the action of antidepressant drugs with different pharmacological profiles in the forced swim test in mice. Swim sessions were conducted by placing mice individually in glass cylinders filled with warmed water for 6 min. The duration of behavioral immobility during the last 4 min of the test was evaluated. The locomotor activity of mice was measured with photoresistor actimeters. L-701,324 and D: -cycloserine given with reboxetine (administered in subeffective doses) did not change the behavior of animals in the forced swim test. A potentiating effect was seen when both tested glycine site ligands were given concomitantly with imipramine or fluoxetine in this test. The lesion of noradrenaline nerve terminals produced by DSP-4 neither altered the baseline activity nor influenced the antidepressant-like action of L-701,324 or D: -cycloserine. The depletion of serotonin by p-CPA did not alter baseline activity in the forced swim test. However, it completely antagonized the antidepressant-like action produced by L-701,324 and D: -cycloserine. Moreover, the antidepressant-like effects of imipramine, fluoxetine and reboxetine were abolished by D: -serine, a full agonist of glycine/NMDA receptors. The present study demonstrates that glycine/NMDA receptor functional antagonists enhance the antidepressant-like action of serotonin, but not noradrenaline-based antidepressants and such their activity seems to depend on serotonin rather than noradrenaline pathway.

  14. Taurine activates strychnine-sensitive glycine receptors in neurons freshly isolated from nucleus accumbens of young rats.

    PubMed

    Jiang, Zhenglin; Krnjević, Kresimir; Wang, Fushun; Ye, Jiang Hong

    2004-01-01

    Although functional glycine receptors (GlyRs) are present in the mature nucleus accumbens (NAcc), an important area of the mesolimbic dopamine system involved in drug addiction, their role has been unclear because the NAcc contains little glycine. However, taurine, an agonist of GlyRs, is abundant throughout the brain, especially during early development. In the present study on freshly dissociated NAcc neurons from young Sprague-Dawley rats (12- to 21-day old), we found that both glycine and taurine can strongly depolarize NAcc neurons and modulate their excitability. In voltage-clamped NAcc neurons, glycine and taurine elicited chloride currents (IGly and ITau) with an EC50 of 0.12 and 1.25 mM, respectively. The reversal potential of IGly or ITau was 0 mV in conventional whole cell mode and -30 mV in gramicidin-perforated mode. At concentrations <1 mM, both glycine and taurine were very effectively antagonized by strychnine and by picrotoxin (with an IC50 of 60 nM and 36.5 microM for IGly, and 40 nM and 42.2 microM for ITau) but were insensitive to 10 microM bicuculline. The currents elicited by taurine (< or =1 mM) showed complete cross-desensitization with IGly, but none with gamma-aminobutyric acid (GABA)-induced currents (IGABA). However, ITau elicited by very concentrated taurine (10 mM) showed partial cross-desensitization with IGABA, and it was substantially antagonized by 10 microM bicuculline. These results indicate that taurine binds mainly to GlyRs in NAcc, but it could be a partial agonist of GABAA receptors. By activating GlyRs, taurine may play an important physiological role in the control of NAcc function, especially during development.

  15. Glycine receptor α3 and α2 subunits mediate tonic and exogenous agonist-induced currents in forebrain.

    PubMed

    McCracken, Lindsay M; Lowes, Daniel C; Salling, Michael C; Carreau-Vollmer, Cyndel; Odean, Naomi N; Blednov, Yuri A; Betz, Heinrich; Harris, R Adron; Harrison, Neil L

    2017-08-22

    Neuronal inhibition can occur via synaptic mechanisms or through tonic activation of extrasynaptic receptors. In spinal cord, glycine mediates synaptic inhibition through the activation of heteromeric glycine receptors (GlyRs) composed primarily of α1 and β subunits. Inhibitory GlyRs are also found throughout the brain, where GlyR α2 and α3 subunit expression exceeds that of α1, particularly in forebrain structures, and coassembly of these α subunits with the β subunit appears to occur to a lesser extent than in spinal cord. Here, we analyzed GlyR currents in several regions of the adolescent mouse forebrain (striatum, prefrontal cortex, hippocampus, amygdala, and bed nucleus of the stria terminalis). Our results show ubiquitous expression of GlyRs that mediate large-amplitude currents in response to exogenously applied glycine in these forebrain structures. Additionally, tonic inward currents were also detected, but only in the striatum, hippocampus, and prefrontal cortex (PFC). These tonic currents were sensitive to both strychnine and picrotoxin, indicating that they are mediated by extrasynaptic homomeric GlyRs. Recordings from mice deficient in the GlyR α3 subunit (Glra3(-/-)) revealed a lack of tonic GlyR currents in the striatum and the PFC. In Glra2(-/Y) animals, GlyR tonic currents were preserved; however, the amplitudes of current responses to exogenous glycine were significantly reduced. We conclude that functional α2 and α3 GlyRs are present in various regions of the forebrain and that α3 GlyRs specifically participate in tonic inhibition in the striatum and PFC. Our findings suggest roles for glycine in regulating neuronal excitability in the forebrain.

  16. A Single Glycine-Alanine Exchange Directs Ligand Specificity of the Elephant Progestin Receptor

    PubMed Central

    Wierer, Michael; Schrey, Anna K.; Kühne, Ronald; Ulbrich, Susanne E.

    2012-01-01

    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems. PMID:23209719

  17. A single glycine-alanine exchange directs ligand specificity of the elephant progestin receptor.

    PubMed

    Wierer, Michael; Schrey, Anna K; Kühne, Ronald; Ulbrich, Susanne E; Meyer, Heinrich H D

    2012-01-01

    The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.

  18. Expression of glycine receptor alpha 3 in the rat trigeminal neurons and central boutons in the brainstem.

    PubMed

    Bae, Jin Young; Mah, Won; Rah, Jong-Cheol; Park, Sook Kyung; Bae, Yong Chul

    2016-12-01

    Increasing evidence shows that the homomeric glycine receptor is expressed in axon terminals and is involved in the presynaptic modulation of transmitter release. However, little is known about the expression of the glycine receptor, implicated in the presynaptic modulation of sensory transmission in the primary somatosensory neurons and their central boutons. To address this, we investigated the expression of glycine receptor subunit alpha 3 (GlyRα3) in the neurons in the trigeminal ganglion and axon terminals in the 1st relay nucleus of the brainstem by light- and electron-microscopic immunohistochemistry. Trigeminal primary sensory neurons were GlyRα3-immunopositive/gephyrin-immunonegative (indicating homomeric GlyR), whereas GlyRα3/gephyrin immunoreactivity (indicating heteromeric GlyR) was observed in dendrites. GlyRα3 immunoreactivity was also found in the central boutons of primary afferents but far from the presynaptic site and in dendrites at subsynaptic sites. Boutons expressing GlyRα3 contained small round vesicles, formed asymmetric synapses with dendrites and were immunoreactive for glutamate. These findings suggest that trigeminal primary afferent boutons receive presynaptic modulation via homomeric, extrasynaptic GlyRα3, and that different subtypes of GlyR may be involved in pre- and postsynaptic inhibition.

  19. Phosphorylation state–dependent modulation of spinal glycine receptors alleviates inflammatory pain

    PubMed Central

    Yévenes, Gonzalo E.; Ralvenius, William T.; Benke, Dietmar; Di Lio, Alessandra; Lara, Cesar O.; Muñoz, Braulio; Burgos, Carlos F.; Moraga-Cid, Gustavo; Corringer, Pierre-Jean

    2016-01-01

    Diminished inhibitory neurotransmission in the superficial dorsal horn of the spinal cord is thought to contribute to chronic pain. In inflammatory pain, reductions in synaptic inhibition occur partially through prostaglandin E2- (PGE2-) and PKA-dependent phosphorylation of a specific subtype of glycine receptors (GlyRs) that contain α3 subunits. Here, we demonstrated that 2,6-di-tert-butylphenol (2,6-DTBP), a nonanesthetic propofol derivative, reverses inflammation-mediated disinhibition through a specific interaction with heteromeric αβGlyRs containing phosphorylated α3 subunits. We expressed mutant GlyRs in HEK293T cells, and electrophysiological analyses of these receptors showed that 2,6-DTBP interacted with a conserved phenylalanine residue in the membrane-associated stretch between transmembrane regions 3 and 4 of the GlyR α3 subunit. In native murine spinal cord tissue, 2,6-DTBP modulated synaptic, presumably αβ heteromeric, GlyRs only after priming with PGE2. This observation is consistent with results obtained from molecular modeling of the α-β subunit interface and suggests that in α3βGlyRs, the binding site is accessible to 2,6-DTBP only after PKA-dependent phosphorylation. In murine models of inflammatory pain, 2,6-DTBP reduced inflammatory hyperalgesia in an α3GlyR-dependent manner. Together, our data thus establish that selective potentiation of GlyR function is a promising strategy against chronic inflammatory pain and that, to our knowledge, 2,6-DTBP has a unique pharmacological profile that favors an interaction with GlyRs that have been primed by peripheral inflammation. PMID:27270175

  20. Regulation of cognition and symptoms of psychosis: focus on GABA(A) receptors and glycine transporter 1.

    PubMed

    Möhler, Hanns; Rudolph, Uwe; Boison, Detlev; Singer, Philipp; Feldon, Joram; Yee, Benjamin K

    2008-07-01

    Adaptive purposeful behaviour depends on appropriate modifications of synaptic connectivity that incorporate an organism's past experience. At least some forms of such synaptic plasticity are believed to be mediated by NMDA receptors (NMDARs). Complementary interaction with inhibitory neurotransmission mediated by GABA(A) receptors, and upstream control of the excitability of NMDARs by glycine availability can greatly influence the efficacy of NMDAR mediated neuroplasticity, and thereby exert significant effects on cognition. Memory, selective attention or sensorimotor gating functions can be modified in mice with a reduction of alpha(5)GABA(A) receptors in the hippocampus or a selective deletion of glycine transporter 1 (GlyT1) in the forebrain. Both genetic manipulations altered the formation or persistence of associative links leading to distinct phenotypes on trace conditioning, extinction learning, latent inhibition, working memory, and object recognition. Behavioural assays of latent inhibition, prepulse inhibition, working memory, and sensitivity to psychostimulants in particular suggest that alpha(3) and alpha(5) subunit-containing GABA(A) receptors as well as GlyT1 are potential sites for ameliorating psychotic-like behaviour. Taken together, these results qualify distinct GABA-A receptor subtypes and GlyT1 as molecular targets for the development of a new pharmacology in the treatment of cognitive decline and psychotic symptoms.

  1. On central muscle relaxants, strychnine-insensitive glycine receptors and two old drugs: zoxazolamine and HA-966.

    PubMed

    McMillen, B A; Williams, H L; Lehmann, H; Shepard, P D

    1992-01-01

    Zoxazolamine is in the centrally-acting muscle relaxant class of drugs, which reportedly act by decreasing CNS interneuronal activity. These drugs, but not anxiolytics, decrease dopaminergic turnover and induce a pacemaker-like discharge pattern in dopaminergic neurons. A mechanism for these effects was not found in previous reports. We observed that (+)-HA-966, an inhibitor of the glycine modulatory site on the NMDA receptor, has a similar effect on dopaminergic impulse flow, which suggested that this may be the possible site of action of classical muscle relaxants. However, a competitive antagonist of NMDA receptors, NPC-12626, had little effect on impulse flow. Binding of 20 nM [3H]-glycine to cortical synaptosomal membranes was inhibited by (+)-HA-966, IC50 = 3.16 microM, but only poorly by zoxazolamine, IC50 V 474 microM, and chlorzoxazone, a related drug, caused no displacement. The drugs were then tested for protection from amphetamine neurotoxicity. Neither 50 mg/kg zoxazolamine nor 30 mg/kg (+)-HA-966 prevented (+)-amphetamine (0.1 mmol/kg plus 10 mg/kg iprindole) depletion of striatal dopamine (DA), but 3.0 mg/kg of MK-801, a non-competitive NMDA receptor antagonist, did protect DA content. Since baclofen induces a regular firing rate in DA neurons, zoxazolamine and (+)-HA-966 were tested for displacement of 10 nM [3H]-1-baclofen from cortical synaptosomal GABAb receptors, but were ineffective. Thus, the effects of these muscle relaxants on DA neurons are mediated by a mechanism other than strychnine-insensitive glycine or GABAb receptors.

  2. Inter- and Intra-Subunit Butanol/Isoflurane Sites of Action in the Human Glycine Receptor.

    PubMed

    McCracken, Mandy L; Gorini, Giorgio; McCracken, Lindsay M; Mayfield, R Dayne; Harris, R Adron; Trudell, James R

    2016-01-01

    Glycine receptors (GlyRs) mediate inhibitory neurotransmission and are targets for alcohols and anesthetics in brain. GlyR transmembrane (TM) domains contain critical residues for alcohol/anesthetic action: amino acid A288 in TM3 forms crosslinks with TM1 (I229) in the adjacent subunit as well as TM2 (S267) and TM4 (Y406, W407, I409, Y410) in the same subunit. We hypothesized that these residues may participate in intra-subunit and inter-subunit sites of alcohol/anesthetic action. The following double and triple mutants of GLRA1 cDNA (encoding human glycine receptor alpha 1 subunit) were injected into Xenopus laevis oocytes: I229C/A288C, I229C/A288C/C290S, A288C/Y406C, A288C/W407C, A288C/I409C, and A288C/Y410C along with the corresponding single mutants and wild-type GLRA1. Butanol (22 mM) or isoflurane (0.6 mM) potentiation of GlyR-mediated currents before and after application of the cysteine crosslinking agent HgCl2 (10 μM) was measured using two-electrode voltage clamp electrophysiology. Crosslinking nearly abolished butanol and isoflurane potentiation in the I229C/A288C and I229C/A288C/C290S mutants but had no effect in single mutants or wild-type. Crosslinking also inhibited butanol and isoflurane potentiation in the TM3-4 mutants (A288C/Y406C, A288C/W407C, A288C/I409C, A288C/Y410C) with no effect in single mutants or wild-type. We extracted proteins from oocytes expressing I229C/288C, A288C/Y410C, or wild-type GlyRs, used mass spectrometry to verify their expression and possible inter-subunit dimerization, plus immunoblotting to investigate the biochemical features of proposed crosslinks. Wild-type GlyR subunits measured about 50 kDa; after crosslinking, the dimeric/monomeric 100:50 kDa band ratio was significantly increased in I229C/288C but not A288C/Y410C mutants or wild-type, providing support for TM1-3 inter-subunit and TM3-4 intra-subunit crosslinking. A GlyR homology model based on the GluCl template provides further evidence for a multi-site model

  3. Intrinsic and synaptic homeostatic plasticity in motoneurons from mice with glycine receptor mutations

    PubMed Central

    Tadros, M. A.; Farrell, K. E.; Schofield, P. R.; Brichta, A. M.; Graham, B. A.; Fuglevand, A. J.

    2014-01-01

    Inhibitory synaptic inputs to hypoglossal motoneurons (HMs) are important for modulating excitability in brainstem circuits. Here we ask whether reduced inhibition, as occurs in three murine mutants with distinct naturally occurring mutations in the glycine receptor (GlyR), leads to intrinsic and/or synaptic homeostatic plasticity. Whole cell recordings were obtained from HMs in transverse brainstem slices from wild-type (wt), spasmodic (spd), spastic (spa), and oscillator (ot) mice (C57Bl/6, approximately postnatal day 21). Passive and action potential (AP) properties in spd and ot HMs were similar to wt. In contrast, spa HMs had lower input resistances, more depolarized resting membrane potentials, higher rheobase currents, smaller AP amplitudes, and slower afterhyperpolarization current decay times. The excitability of HMs, assessed by “gain” in injected current/firing-frequency plots, was similar in all strains whereas the incidence of rebound spiking was increased in spd. The difference between recruitment and derecruitment current (i.e., ΔI) for AP discharge during ramp current injection was more negative in spa and ot. GABAA miniature inhibitory postsynaptic current (mIPSC) amplitude was increased in spa and ot but not spd, suggesting diminished glycinergic drive leads to compensatory adjustments in the other major fast inhibitory synaptic transmitter system in these mutants. Overall, our data suggest long-term reduction in glycinergic drive to HMs results in changes in intrinsic and synaptic properties that are consistent with homeostatic plasticity in spa and ot but not in spd. We propose such plasticity is an attempt to stabilize HM output, which succeeds in spa but fails in ot. PMID:24401707

  4. Expression of glycine receptors and gephyrin in rat medial vestibular nuclei and flocculi following unilateral labyrinthectomy

    PubMed Central

    Zhou, Wen; Zhou, Liu-Qing; Shi, Hong; Leng, Yang-Ming; Liu, Bo; Zhang, Su-Lin; Kong, Wei-Jia

    2016-01-01

    The medial vestibular nucleus (MVN) and the cerebellar flocculus have been known to be the key areas involved in vestibular compensation (VC) following unilateral labyrinthectomy (UL). In this study, we examined the role of gephyrin and glycine receptor (GlyR) in VC using Sprague-Dawley rats, in an aim to gain deeper insight into the mechanisms responsible for VC. The expression of the α1 and β subunits of GlyR and gephyrin was immunohistochemically localized in rat MVN and flocculi. The mRNA and protein expression of GlyR (α1 and β subunits) and gephyrin was quantitatively determined by RT-qPCR and western blot analysis at 8 h, and at 1, 3 and 7 days following UL. It was found that in the ipsilateral MVN, the mRNA and protein expression of the β subunit of GlyR was significantly increased in comparison to the sham-operated (P<0.01) rats, and in comparison to the contralateral side (P<0.01) at 8 h following UL. In the ipsilateral flocculi, GlyR β protein expression was significantly elevated (P<0.01 for all), as compared to the sham-operated rats at 8 h, and at 1 and 3 days and to the contralateral side 8 h, 1 and 3 days following UL. No significant differences were observed in the mRNA and protein expression of GlyR α1 and gephyrin in the MVN or flocculi between the two sides (ipsilateral and contralateral) in the UL group, and between the sham-operated group and the UL group at any time point. The findings of our study thus suggest that GlyR plays a major role in the recovery of the resting discharge of the deafferented MVN neurons in the central vestibular system. PMID:28026001

  5. Characteristics of glycine receptors expressed by embryonic rat brain mRNAs

    PubMed Central

    García-Alcocer, Guadalupe; García-Colunga, Jesús; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2001-01-01

    A study was made of glycine (Gly) and γ-aminobutyric acid (GABA) receptors expressed in Xenopus oocytes injected with rat mRNAs isolated from the encephalon, midbrain, and brainstem of 18-day-old rat embryos. In oocytes injected with encephalon, midbrain, or brainstem mRNAs, the Gly-current amplitudes (membrane current elicited by Gly; 1 mM Gly) were respectively 115 ± 35, 346 ± 28, and 389 ± 22 nA, whereas the GABA-currents (1 mM GABA) were all ≤40 nA. Moreover, the Gly-currents desensitized faster in oocytes injected with encephalon or brainstem mRNAs. The EC50 for Gly was 611 ± 77 μM for encephalon, 661 ± 28 μM for midbrain, and 506 ± 18 μM for brainstem mRNA-injected oocytes, and the corresponding Hill coefficients were all ≈2. Strychnine inhibited all of the Gly-currents, with an IC50 of 56 ± 3 nM for encephalon, 97 ± 4 nM for midbrain, and 72 ± 4 nM for brainstem mRNAs. During repetitive Gly applications, the Gly-currents were potentiated by 1.6-fold for encephalon, 2.1-fold for midbrain, and 1.3-fold for brainstem RNA-injected oocytes. Raising the extracellular Ca2+ concentration significantly increased the Gly-currents in oocytes injected with midbrain and brainstem mRNAs. Reverse transcription–PCR studies showed differences in the Gly receptor (GlyR) α-subunits expressed, whereas the β-subunit was present in all three types of mRNA. These results indicate differential expression of GlyR mRNAs in the brain areas examined, and these mRNAs lead to the expression of GlyRs that have different properties. The modulation of GlyRs by Ca2+ could play important functions during brain development. PMID:11226317

  6. Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds.

    PubMed

    Schmieden, V; Betz, H

    1995-11-01

    To define structure-activity relations for ligands binding to the inhibitory glycine receptor (GlyR), the agonistic and antagonistic properties of alpha- and beta-amino acids were analyzed at the recombinant human alpha 1 GlyR expressed in Xenopus oocytes. The agonistic activity of alpha-amino acids exhibited a marked stereoselectivity and was highly susceptible to substitutions at the C alpha-atom. In contrast, alpha-amino acid antagonism was not enantiomer dependent and was influenced little by C alpha-atom substitutions. The beta-amino acids taurine, beta-aminobutyric acid (beta-ABA), and beta-aminoisobutyric acid (beta-AIBA) are partial agonists at the GlyR. Low concentrations of these compounds competitively inhibited glycine responses, whereas higher concentrations elicited a significant membrane current. Nipecotic acid, which contains a trans-beta-amino acid configuration, behaved as purely competitive GlyR antagonist. Our data are consistent with the existence of a common binding site for all amino acid agonists and antagonists, at which the functional consequences of binding depend on the particular conformation a given ligand adopts within the binding pocket. In the case of beta-amino acids, the trans conformation appears to mediate antagonistic receptor binding, and the cis conformation appears to mediate agonistic receptor binding. This led us to propose that the partial agonist activity of a given beta-amino acid is determined by the relative mole fractions of the respective cis/trans conformers.

  7. Glycine and GABA(A) ultra-sensitive ethanol receptors as novel tools for alcohol and brain research.

    PubMed

    Naito, Anna; Muchhala, Karan H; Asatryan, Liana; Trudell, James R; Homanics, Gregg E; Perkins, Daya I; Davies, Daryl L; Alkana, Ronald L

    2014-12-01

    A critical obstacle to developing effective medications to prevent and/or treat alcohol use disorders is the lack of specific knowledge regarding the plethora of molecular targets and mechanisms underlying alcohol (ethanol) action in the brain. To identify the role of individual receptor subunits in ethanol-induced behaviors, we developed a novel class of ultra-sensitive ethanol receptors (USERs) that allow activation of a single receptor subunit population sensitized to extremely low ethanol concentrations. USERs were created by mutating as few as four residues in the extracellular loop 2 region of glycine receptors (GlyRs) or γ-aminobutyric acid type A receptors (GABA(A)Rs), which are implicated in causing many behavioral effects linked to ethanol abuse. USERs, expressed in Xenopus oocytes and tested using two-electrode voltage clamp, demonstrated an increase in ethanol sensitivity of 100-fold over wild-type receptors by significantly decreasing the threshold and increasing the magnitude of ethanol response, without altering general receptor properties including sensitivity to the neurosteroid, allopregnanolone. These profound changes in ethanol sensitivity were observed across multiple subunits of GlyRs and GABA(A)Rs. Collectively, our studies set the stage for using USER technology in genetically engineered animals as a unique tool to increase understanding of the neurobiological basis of the behavioral effects of ethanol.

  8. Low expression of the ClC-2 chloride channel during postnatal development: a mechanism for the paradoxical depolarizing action of GABA and glycine in the hippocampus.

    PubMed Central

    Mladinić, M; Becchetti, A; Didelon, F; Bradbury, A; Cherubini, E

    1999-01-01

    In early postnatal development, during the period of synapse formation, gamma-aminobutyric acid (GABA) and glycine, the main inhibitory transmitters in the adult brain, paradoxically excite and depolarize neuronal membranes by an outward flux of chloride. The mechanisms of chloride homeostasis are not fully understood. It is known that in adult neurons intracellular chloride accumulation is prevented by a particular type of chloride channel, the ClC-2. This channel strongly rectifies in the inward direction at potentials negative to ECl thus ensuring chloride efflux. We have tested the hypothesis that in the developing hippocampus, a differential expression or regulation of ClC-2 channels may contribute to the depolarizing action of GABA and glycine. We have cloned a truncated form of ClC-2 (ClC-2nh) from the neonatal hippocampus which lacks the 157 bp corresponding to exon 2. In situ hybridization experiments show that ClC-2nh is the predominant form of ClC-2 mRNA in the neonatal brain. ClC-2nh mRNA is unable to encode a full-length protein due to a frameshift, consequently it does not induce any currents upon injection into Xenopus oocytes. Low expression of the full-length ClC-2 channel, could alter chloride homeostasis, lead to accumulation of [Cl-]i and thereby contribute to the depolarizing action of GABA and glycine during early development. PMID:10418163

  9. Functional modulation of strychnine-sensitive glycine receptors in rat hippocampal pyramidal neurons by amyloid-β protein (1-42).

    PubMed

    Bukanova, J V; Sharonova, I N; Skrebitsky, V G

    2016-11-15

    Amyloid-β peptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer's disease because of its neurotoxicity, resulting in impaired synaptic function and memory. On the other hand, it was demonstrated that low (picomolar) concentrations of Aβ enhance synaptic plasticity and memory, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal cognitive functions. In the present study, we found that Aβ (1-42) in concentrations of 10 pМ - 100nМ enhanced desensitization of the glycine-activated current in isolated CA3 pyramidal neurons and also reversibly suppressed its peak amplitude during short (600ms) co-application with agonist. The effect was most prominent at low glycine concentrations. When glycine receptors were activated by other receptor agonists - taurine and β-alanine, the changes of current kinetics and amplitudes induced by Aβ had a similar character. When Aβ (100 pM) was added to the bath solution, it caused, besides acceleration of desensitization, more pronounced reduction of peak current amplitude. This effect developed slowly, during a few minutes, and was more prominent at saturating concentrations of agonists. The results suggest that Aβ interacts with glycine receptors through three different mechanisms - by enhancing receptor desensitization, by rapid inhibition of the receptor, and also by means of a slowly developing inhibition of the amplitude of the current, possibly through intracellular mechanisms. The observed changes in the activity of glycine receptors induced by Aβ can lead to suppression of the tonic inhibition of hippocampal neurons mediated by extrasynaptic glycine receptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. P2X receptors up-regulate the cell-surface expression of the neuronal glycine transporter GlyT2.

    PubMed

    Villarejo-López, Lucía; Jiménez, Esperanza; Bartolomé-Martín, David; Zafra, Francisco; Lapunzina, Pablo; Aragón, Carmen; López-Corcuera, Beatriz

    2017-10-01

    Glycinergic inhibitory neurons of the spinal dorsal horn exert critical control over the conduction of nociceptive signals to higher brain areas. The neuronal glycine transporter 2 (GlyT2) is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft and its activity modulates intra and extracellular glycine concentrations. In this report we show that the stimulation of P2X purinergic receptors with βγ-methylene adenosine 5'-triphosphate induces the up-regulation of GlyT2 transport activity by increasing total and plasma membrane expression and reducing transporter ubiquitination. We identified the receptor subtypes involved by combining pharmacological approaches, siRNA-mediated protein knockdown, and dorsal root ganglion cell enrichment in brainstem and spinal cord primary cultures. Up-regulation of GlyT2 required the combined stimulation of homomeric P2X3 and P2X2 receptors or heteromeric P2X2/3 receptors. We measured the spontaneous glycinergic currents, glycine release and GlyT2 uptake concurrently in response to P2X receptor agonists, and showed that the impact of P2X3 receptor activation on glycinergic neurotransmission involves the modulation of GlyT2 expression or activity. The recognized pro-nociceptive action of P2X3 receptors suggests that the fine-tuning of GlyT2 activity may have consequences in nociceptive signal conduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of Ca2+ on the plasma membrane potential and electrogenic uptake of glycine by myeloma cells. Involvement of a Ca2+-activated K+ channel.

    PubMed

    Pershadsingh, H A; Stubbs, E B; Noteboom, W D; Vorbeck, M L; Martin, A P

    1985-12-19

    The involvement of Ca2+-activated K+ channels in the regulation of the plasma membrane potential and electrogenic uptake of glycine in SP 2/0-AG14 lymphocytes was investigated using the potentiometric indicator 3,3'-diethylthiodicarbocyanine iodide. The resting membrane potential was estimated to be -57 +/- 6 mV (n = 4), a value similar to that of normal lymphocytes. The magnitude of the membrane potential and the electrogenic uptake of glycine were dependent on the extracellular K+ concentration, [K+]o, and were significantly enhanced by exogenous calcium. The apparent Vmax of Na+-dependent glycine uptake was doubled in the presence of calcium, whereas the K0.5 was not affected. Ouabain had no influence on the membrane potential under the conditions employed. Additional criteria used to demonstrate the presence of Ca2+-activated K+ channels included the following: (1) addition of EGTA to calcium supplemented cells elicited a rapid depolarization of the membrane potential that was dependent on [K+]o; (2) the calmodulin antagonist, trifluoperazine, depolarized the membrane potential in a dose-dependent and saturable manner with an IC50 of 9.4 microM; and (3) cells treated with the Ca2+-activated K+ channel antagonist, quinine, demonstrated an elevated membrane potential and depressed electrogenic glycine uptake. Results from the present study provide evidence for Ca2+-activated K+ channels in SP 2/0-AG14 lymphocytes, and that their involvement regulates the plasma membrane potential and thereby the electrogenic uptake of Na+-dependent amino acids.

  12. A novel NMDA receptor glycine-site partial agonist, GLYX-13, has therapeutic potential for the treatment of autism.

    PubMed

    Moskal, Joseph R; Burgdorf, Jeffrey; Kroes, Roger A; Brudzynski, Stefan M; Panksepp, Jaak

    2011-10-01

    Deficits in social approach behavior, rough-and-tumble play, and speech abnormalities are core features of autism that can be modeled in laboratory rats. Human twin studies show that autism has a strong genetic component, and a recent review has identified 99 genes that are dysregulated in human autism. Bioinformatic analysis of these 99 genes identified the NMDA receptor complex as a significant interaction hub based on protein-protein interactions. The NMDA receptor glycine site partial agonist d-cycloserine has been shown to treat the core symptom of social withdrawal in autistic children. Here, we show that rats selectively bred for low rates of play-induced pro-social ultrasonic vocalizations (USVs) can be used to model certain core symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations, compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR glycine site partial agonist GLYX-13 rescued the deficits in play-induced pro-social 50-kHz and reduced monotonous USVs. Thus, the NMDA receptor has been shown to play a functional role in autism, and GLYX-13 shows promise for the treatment of autism. We dedicate this paper to Ole Ivar Lovaas (May 8, 1927-August 2, 2010), a pioneer in the field of autism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  14. Taurine activates excitatory non-synaptic glycine receptors on dopamine neurones in ventral tegmental area of young rats.

    PubMed

    Wang, Fushun; Xiao, Cheng; Ye, Jiang Hong

    2005-06-01

    The physiological and pharmacological properties of taurine-induced responses were investigated in dopaminergic (DA) neurones from the ventral tegmental area (VTA) of young rats aged 1-13 postnatal days, either in acute brain slices or acutely dissociated neurones. When whole-cell responses were recorded from current-clamped neurones using the gramicidin-perforated technique, the application of taurine (0.01-30 mm) accelerated firings and induced membrane depolarization. In voltage-clamped neurones, taurine induced a current which was antagonized by strychnine and by picrotoxin, but not by bicuculline. In addition, taurine-induced current showed complete cross-desensitization with glycine-activated currents but not with gamma-aminobutyric acid (GABA)-activated currents. Thus, taurine is a full agonist of the glycine receptors (GlyRs) in the VTA. Further studies found that taurine acted mainly on non-synaptic GlyRs. The application of 20 microm bicuculline abolished the spontaneous inhibitory post-synaptic currents (IPSCs) in 40/45 neurones, and 93% of the evoked IPSCs. The addition of 1 microm strychnine completely eliminated the remaining IPSCs. These results suggest that GABAergic IPSCs predominate, and that functional glycinergic synapses are present in a subset of the VTA neurones. The application of 1 mum strychnine alone induced an outward current, suggesting that these neurones were exposed to tonically released taurine/glycine. In conclusion, by activating non-synaptic GlyRs, taurine may act as an excitatory extra-synaptic neurotransmitter in the VTA during early development.

  15. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-05

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action.

  16. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    PubMed

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  17. Redox regulation of the ryanodine receptor/calcium release channel.

    PubMed

    Zissimopoulos, S; Lai, F A

    2006-11-01

    The RyR (ryanodine receptor)/calcium release channel contains a number of highly reactive thiol groups that endow it with redox sensitivity. In general, oxidizing conditions favour channel opening, while reducing conditions have the opposite effect. Thiol modification affects the channel sensitivity to its principal effectors, Ca2+, Mg2+ and ATP, and alters RyR protein interactions. Here, we give a brief account of the major findings and prevailing views in the field.

  18. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Beckstein, Oliver; Sansom, Mark S. P.

    2006-06-01

    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, γ-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 Å. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 Å radius hydrophobic pore can form a functional barrier to the permeation of a 1 Å radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.

  19. Extracellular cGMP Modulates Learning Biphasically by Modulating Glycine Receptors, CaMKII and Glutamate-Nitric Oxide-cGMP Pathway

    PubMed Central

    Cabrera-Pastor, Andrea; Malaguarnera, Michele; Taoro-Gonzalez, Lucas; Llansola, Marta; Felipo, Vicente

    2016-01-01

    It has been proposed that extracellular cGMP modulates the ability to learn a Y maze task, but the underlying mechanisms remained unknown. Here we show that extracellular cGMP, at physiological concentrations, modulates learning in the Y maze in a biphasic way by modulating the glutamate-nitric oxide-cGMP pathway in cerebellum. Extracellular cGMP reduces glycine receptors activation inducing a voltage-dependent calcium-channels-mediated increase of calcium in Purkinje neurons. This calcium increase modulates CaMKII phosphorylation in a biphasic way. When basal calcium concentration is low extracellular cGMP reduces CaMKII phosphorylation, increasing nitric oxide synthase activity, the glutamate-NO-cGMP pathway function and learning ability. When basal calcium is normal extracellular cGMP increases CaMKII phosphorylation, reducing nitric oxide synthase activity, the pathway function and learning. These data unveil new mechanisms modulating learning in the Y maze and likely other learning types which may be therapeutic targets to improve learning in pathological situations associated with altered cGMP levels. PMID:27634333

  20. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-07-02

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  1. The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma-aminobutyric acid, glycine, and type 3 serotonin receptors.

    PubMed

    Rothlin, C V; Katz, E; Verbitsky, M; Elgoyhen, A B

    1999-02-01

    In the present study, we provide evidence that the alpha9 nicotinic acetylcholine receptor (nAChR) shares pharmacological properties with members of the Cys-loop family of receptors. Thus, the type A gamma-aminobutyric acid receptor antagonist bicuculline, the glycinergic antagonist strychnine, and the type 3 serotonin receptor antagonist ICS-205,930 block ACh-evoked currents in alpha9-injected Xenopus laevis oocytes with the following rank order of potency: strychnine > ICS-205,930 > bicuculline. Block by antagonists was reflected in an increase in the acetylcholine (ACh) EC50 value, with no changes in agonist maximal response or Hill coefficient, which suggests a competitive type of block. Moreover, whereas neither gamma-aminobutyric acid nor glycine modified ACh-evoked currents, serotonin blocked responses to ACh in a concentration-dependent manner. The present results suggest that the alpha9 nAChR must conserve in its primary structure some residues responsible for ligand binding common to other Cys-loop receptors. In addition, it adds further evidence that the alpha9 nAChR and the cholinergic receptor present at the base of cochlear outer hair cells have similar pharmacological properties.

  2. Involvement of the strychnine-sensitive glycine receptor in the anxiolytic effects of GlyT1 inhibitors on maternal separation-induced ultrasonic vocalization in rat pups.

    PubMed

    Komatsu, Hiroko; Furuya, Yoshiaki; Sawada, Kohei; Asada, Takashi

    2015-01-05

    Several studies have shown that glycine transporter 1 (GlyT1) inhibitors have anxiolytic actions. There are two types of glycine receptor: the strychnine-sensitive glycine receptor (GlyA) and the strychnine-insensitive glycine receptor (GlyB); however, which receptor is the main contributor to the anxiolytic actions of GlyT1 inhibitors is yet to be determined. Here, we clarified which glycine receptor is the main contributor to the anxiolytic effects of GlyT1 inhibitors by using maternal separation-induced ultrasonic vocalization (USV) by rat pups as an index of anxiety. We confirmed that administration of the benzodiazepine diazepam or the selective serotonin reuptake inhibitor escitaloplam, which are both clinically proven anxiolytics, or the GlyT1 inhibitor SSR504734 (2-chloro-N-[(S)-phenyl[(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide), decreases USV in rat pups. In addition, we showed that another GlyT1 inhibitor, ALX5407 ((R)-N-[3-(4'-fluorophenyl)-3(4'-phenylphenoxy)propyl]sarcosine) also decreases USV in rat pups. SSR504734- or ALX5407-induced decreases in USV were dose-dependently reversed by administration of the GlyA antagonist strychnine, whereas the diazepam- or escitalopram-induced decreases in USV were not. Furthermore, GlyT1-induced decreases in USV were not reversed by administration of the GlyB antagonist L-687,414. Together, these results suggest that GlyA activation is the main contributor to the anxiolytic actions of GlyT1 inhibitors and that the anxiolytic actions of diazepam and escitalopram cannot be attributed to GlyA activation. Our findings provide new insights into the importance of the activation of GlyA in the anxiolytic effects of GlyT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    PubMed Central

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Han, Seong Kyu

    2013-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM) and almost completely blocked by strychnine (2 μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABAA receptor (GABAAR)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons. PMID:24379976

  4. Strychnine-sensitive glycine responses of neonatal rat hippocampal neurones.

    PubMed Central

    Ito, S; Cherubini, E

    1991-01-01

    1. Intracellular recordings employing current and voltage clamp techniques were used to study the effects of glycine on rat CA3 hippocampal neurones during the first 3 weeks of postnatal (P) life. 2. Glycine (0.3-1 mM) depolarized neurones from rats less than 4 days old (P4). Neurones from older neonates (P5-P7) were hyperpolarized by glycine, whereas adult neurones were unaffected. 3. Both depolarizing and hyperpolarizing responses were associated with large conductance increases; they reversed polarity at a potential which changed with the extracellular chloride concentration. The responses persisted in tetrodotoxin (1 microM) or in a solution with a much reduced calcium concentration. 4. Strychnine (1 microM) but not bicuculline (10-50 microM) antagonized the effects of glycine. The action of strychnine was apparently competitive with a dissociation constant of 350 nM. 5. In voltage clamp experiments, glycine elicited a non-desensitizing outward current at -60 mV. When a maximal concentration of glycine was applied at the same time as gamma-aminobutyric acid (GABA), the conductance increase induced by the two agonists was additive, suggesting the activation of different populations of channels. 6. Concentrations of glycine lower than 100 microM did not affect membrane potential. However, at 30-50 microM glycine increased the frequency of spontaneous GABA-mediated synaptic responses; this action was not blocked by strychnine. 7. It is concluded that during the first 2 weeks of life glycine acts at strychnine-sensitive receptors to open chloride channels. PMID:1804982

  5. Glycine input induces the synaptic facilitation in salamander rod photoreceptors.

    PubMed

    Shen, Wen; Jiang, Zheng; Li, Baoqin

    2008-11-01

    Glycinergic synapses in photoreceptors are made by centrifugal feedback neurons in the network, but the function of the synapses is largely unknown. Here we report that glycinergic input enhances photoreceptor synapses in amphibian retinas. Using specific antibodies against a glycine transporter (GlyT2) and glycine receptor beta subunit, we identified the morphology of glycinergic input in photoreceptor terminals. Electrophysiological recordings indicated that 10 muM glycine depolarized rods and activated voltage-gated Ca(2+) channels in the neurons. The effects facilitated glutamate vesicle release in photoreceptors, meanwhile increased the spontaneous excitatory postsynaptic currents in Off-bipolar cells. Endogenous glycine feedback also enhanced glutamate transmission in photoreceptors. Additionally, inhibition of a Cl(-) uptake transporter NKCC1 with bumetanid effectively eliminated glycine-evoked a weak depolarization in rods, suggesting that NKCC1 maintains a high Cl(-) level in rods, which causes to depolarize in responding to glycine input. This study reveals a new function of glycine in retinal synaptic transmission.

  6. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    PubMed Central

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  7. Allosteric modulation of [3H]-CGP39653 binding through the glycine site of the NMDA receptor: further studies in rat and human brain

    PubMed Central

    Mugnaini, Manolo; Meoni, Paolo; Bunnemann, Bernd; Corsi, Mauro; Bowery, Norman G

    2001-01-01

    Binding of D,L-(E)-2-amino-4-[3H]-propyl-5-phosphono-3-pentenoic acid ([3H]-CGP39653), a selective antagonist at the glutamate site of the NMDA receptor, is modulated by glycine in rat brain tissue. We have further investigated this phenomenon in rodent and human brain by means of receptor binding and quantitative autoradiography techniques.In rat cerebral cortical membranes the glycine antagonist 3-[2-(Phenylaminocarbonyl)ethenyl]-4,6-dichloro-indole-2-carboxylic acid sodium salt (GV150526A) did not change basal [3H]-CGP39653 binding, but competitively reversed the high affinity component of [3H]-CGP39653 binding inhibition by glycine, with a pKB value of 8.38, in line with its affinity for the glycine site (pKi=8.49 vs [3H]-glycine). Glycine (10 μM) significantly decreased [3H]-CGP39653 affinity for the NMDA receptor (with no change in the Bmax), whereas enhanced L-glutamate affinity (P<0.05, paired-samples Student's t-test).In rat brain sections the addition of GV150526A (30 μM) to the incubation medium increased [3H]-CGP39653 binding to 208% of control (average between areas), indicating the presence of endogenous glycine. The enhancement presented significant regional differences (P<0.05, two-way ANOVA), with striatum higher than cerebral cortex (282 and 187% of control, respectively; P<0.05, Fisher's LSD). On the contrary, there was not any significant variation in affinity values of [3H]-CGP39653, L-glutamate, glycine and GV150526A in striatal and cortical membranes. These results confirmed the existence of regionally distinct NMDA receptors subtypes with different glycine/glutamate allosteric modulation.Whole brain autoradiography revealed an uneven distribution of [3H]-CGP39653 binding sites in human brain. High levels of binding were determined in hippocampus and in cingulate, frontoparietal and insular cortex. Intermediate to low levels of binding were found in diencephalic nuclei and basal ganglia. [3H]-CGP39653 binding was increased to 216% of

  8. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network

    PubMed Central

    Curtin, Paul C. P.; Preuss, Thomas

    2015-01-01

    Prepulse inhibition (PPI) is understood as a sensorimotor gating process that attenuates sensory flow to the startle pathway during early stages (20–1000 ms) of information processing. Here, we applied in vivo electrophysiology and pharmacology to determine if PPI is mediated by glycine receptors (GlyRs) and/or GABAA receptors (GABAARs) in the goldfish auditory startle circuit. Specifically, we used selective antagonists to dissect the contributions of target receptors on sound-evoked postsynaptic potentials (PSPs) recorded in the neurons that initiate startle, the Mauthner-cells (M-cell). We found that strychnine, a GlyR antagonist, disrupted a fast-activated (5 ms) and rapidly (<50 ms) decaying (feed-forward) inhibitory process that contributes to PPI at 20 ms prepulse/pulse inter-stimulus intervals (ISI). Additionally we observed increases of the evoked postsynaptic potential (PSP) peak amplitude (+87.43 ± 21.53%, N = 9) and duration (+204 ± 48.91%, N = 9). In contrast, treatment with bicuculline, a GABAAR antagonist, caused a general reduction in PPI across all tested interstimulus intervals (ISIs) (20–500 ms). Bicuculline also increased PSP peak amplitude (+133.8 ± 10.3%, N = 5) and PSP duration (+284.95 ± 65.64%, N = 5). Treatment with either antagonist also tonically increased post-synaptic excitability in the M-cells, reflected by an increase in the magnitude of antidromically-evoked action potentials (APs) by 15.07 ± 3.21%, N = 7 and 16.23 ± 7.08%, N = 5 for strychnine and bicuculline, respectively. These results suggest that GABAARs and GlyRs are functionally segregated to short- and longer-lasting sound-evoked (phasic) inhibitory processes that contribute to PPI, with the mediation of tonic inhibition by both receptor systems being critical for gain control within the M-cell startle circuit. PMID:25852486

  9. TRPV channels as thermosensory receptors in epithelial cells.

    PubMed

    Lee, Hyosang; Caterina, Michael J

    2005-10-01

    Temperature-sensitive transient receptor potential vanilloid (TRPV) ion channels are critical contributors to normal pain and temperature sensation and therefore represent attractive targets for pain therapy. When these channels were first discovered, most attention was focused on their potential contributions to direct thermal activation of peripheral sensory neurons. However, recent anatomical, physiological, and behavioral studies have provided evidence that TRPV channels expressed in skin epithelial cells may also contribute to thermosensation in vitro and in vivo. Here, we review these studies and speculate on possible communication mechanisms from cutaneous epithelial cells to sensory neurons.

  10. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  11. Transient receptor potential (TRP) channel function in the reproductive axis.

    PubMed

    Götz, Viktoria; Qiao, Sen; Beck, Andreas; Boehm, Ulrich

    2017-05-03

    Transient receptor potential (TRP) channels play important functional roles in the signal transduction machinery of hormone-secreting cells and have recently been implicated in reproductive physiology. While expression studies have demonstrated TRP channel expression at all levels of the hypothalamic-pituitary-gonadal (hpg) axis, functional details about TRP channel action at the level of the individual cells controlling reproduction are just beginning to emerge. Canonical TRP (TRPC) channels are prominently expressed in the reproductive center of the neuroendocrine brain, i.e. in kisspeptin and gonadotropin-releasing hormone (GnRH) neurons. Kisspeptin neurons are depolarized by leptin via activation of TRPC channels and kisspeptin depolarizes GnRH neurons through TRPC4 activation. Recent studies have functionally identified TRPC channels also in gonadotrope cells in the anterior pituitary gland, which secrete gonadotropins in response to GnRH and thus regulate gonadal function. TRP channel expression in these cells exhibits remarkable plasticity and depends on the hormonal status of the animal. Subsequent functional analyses have demonstrated that TRPC5 in gonadotropes contributes to depolarization of the plasma membrane upon GnRH stimulation and increases the intracellular Ca(2+) concentration via its own Ca(2+) permeability and via the activation of voltage-gated Ca(2+) channels. However, conditional gene targeting experiments will be needed to unambiguously dissect the physiological role of TRPC channels in the different cell types of the reproductive axis in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  13. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors

    USDA-ARS?s Scientific Manuscript database

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signaling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem), and vascular cambium are tightly controlled by CLE signaling pathway...

  14. mRNAs coding for neurotransmitter receptors and voltage-gated sodium channels in the adult rabbit visual cortex after monocular deafferentiation

    PubMed Central

    Nguyen, Quoc-Thang; Matute, Carlos; Miledi, Ricardo

    1998-01-01

    It has been postulated that, in the adult visual cortex, visual inputs modulate levels of mRNAs coding for neurotransmitter receptors in an activity-dependent manner. To investigate this possibility, we performed a monocular enucleation in adult rabbits and, 15 days later, collected their left and right visual cortices. Levels of mRNAs coding for voltage-activated sodium channels, and for receptors for kainate/α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl-d-aspartate (NMDA), γ-aminobutyric acid (GABA), and glycine were semiquantitatively estimated in the visual cortices ipsilateral and contralateral to the lesion by the Xenopus oocyte/voltage-clamp expression system. This technique also allowed us to study some of the pharmacological and physiological properties of the channels and receptors expressed in the oocytes. In cells injected with mRNA from left or right cortices of monocularly enucleated and control animals, the amplitudes of currents elicited by kainate or AMPA, which reflect the abundance of mRNAs coding for kainate and AMPA receptors, were similar. There was no difference in the sensitivity to kainate and in the voltage dependence of the kainate response. Responses mediated by NMDA, GABA, and glycine were unaffected by monocular enucleation. Sodium channel peak currents, activation, steady-state inactivation, and sensitivity to tetrodotoxin also remained unchanged after the enucleation. Our data show that mRNAs for major neurotransmitter receptors and ion channels in the adult rabbit visual cortex are not obviously modified by monocular deafferentiation. Thus, our results do not support the idea of a widespread dynamic modulation of mRNAs coding for receptors and ion channels by visual activity in the rabbit visual system. PMID:9501250

  15. Capsaicin receptor: TRPV1 a promiscuous TRP channel.

    PubMed

    Pingle, S C; Matta, J A; Ahern, G P

    2007-01-01

    TRPV1, the archetypal member of the vanilloid TRP family, was initially identified as the receptor for capsaicin, the pungent ingredient in hot chili peppers. The receptor has a diverse tissue distribution, with high expression in sensory neurons. TRPV1 is a nonselective cation channel with significant permeability to calcium, protons, and large polyvalent cations. It is the most polymodal TRP channel, being activated by numerous stimuli, including heat, voltage, vanilloids, lipids, and protons/cations. TRPV1 acts as a molecular integrator of physical and chemical stimuli in peripheral nociceptor terminals and plays a critical role in thermal inflammatory hyperalgesia. In addition, TRPV1 may regulate a variety of physiological functions in different organ systems. Various second messenger systems regulate TRPV1 activity, predominantly by serine-threonine phosphorylation. In this review, we provide a concise summary of the information currently available about this channel.

  16. Nicotinic acetylcholine receptors at the single-channel level.

    PubMed

    Bouzat, Cecilia; Sine, Steven M

    2017-03-05

    Over the past four decades, the patch clamp technique and nicotinic ACh (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding ACh released from nerves and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique towards understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets. © 2017 The British Pharmacological Society.

  17. Single acetylcholine receptor channel currents recorded at high hydrostatic pressures.

    PubMed Central

    Heinemann, S H; Stühmer, W; Conti, F

    1987-01-01

    A technique for performing patch-clamp experiments under high hydrostatic (oil) pressure is described. The method allows the transfer of whole cell or membrane patches in a recording configuration into a pressure vessel, where pressure can be increased up to 60 MPa (approximately equal to 600 bar). We have studied in this way the pressure dependence of single acetylcholine receptor channels in excised "outside-out" membrane patches from cultured rat muscle cells. In the range of 0.1 to 60 MPa the open channel conductance in 140 mM NaCl solutions did not vary by more than 2%, which implies that the translocation of sodium ions through the channel pore does not involve steps with significant activation volumes. At high acetylcholine concentrations (20 microM) bursts of single-channel activity allowed measurements of the mean open and mean closed times of the channel. Pressurization to 40 MPa increased both mean open and mean closed times giving apparent activation volumes of about 59 and 139 A3, respectively. This implies a net volume increase of 80 A3, associated with the transition from the agonist-free state to the open state of the channel, which may be partially associated with the agonist-binding step. All the observed pressure effects were reversible. The activation volumes for the gating of acetylcholine receptor channels are comparable to those of sodium and potassium channels in the squid giant axon, suggesting that there is some basic common mechanism in the operation of ion-channel proteins. Images PMID:2437577

  18. Lipid modulation of thermal transient receptor potential channels.

    PubMed

    Hernández-García, Enrique; Rosenbaum, Tamara

    2014-01-01

    There is a subgroup of transient receptor potential (TRP) ion channels that are responsive to temperature (thermo-TRP channels). These are important to a variety of sensory and physiological phenomena such as pain and taste perception. All thermo-TRP channels known to date are subject to modulation by lipidic molecules of many kinds, from the ubiquitous cholesterol to more specialized molecules such as prostaglandins. Although the mechanisms and sites of binding of lipids on thermo-TRPs are largely unknown, the explosion on research of lipids and ion channels has revealed previously unsuspected roles for them. Diacyl glycerol is a lipid produced by phospholipase C (PLC) and it was discovered to modulate TRP channels in the eye of the fly, and many mammal TRP channels have been found to interact with lipids. While most of the lipids acting on thermo-TRP channels have been found to activate them, there are a few capable of inhibition. Phosphatidylinositol 4,5-bisphosphate is even capable of both inhibition and activation on a couple of thermo-TRPs, depending on the cellular context. More data is required to assess the mechanism through which lipids affect thermo-TRP channel activity and the physiological importance of this interaction.

  19. Integration of transient receptor potential canonical channels with lipids

    PubMed Central

    Beech, D J

    2012-01-01

    Transient receptor potential canonical (TRPC) channels are the canonical (C) subset of the TRP proteins, which are widely expressed in mammalian cells. They are thought to be primarily involved in determining calcium and sodium entry and have wide-ranging functions that include regulation of cell proliferation, motility and contraction. The channels are modulated by a multiplicity of factors, putatively existing as integrators in the plasma membrane. This review considers the sensitivities of TRPC channels to lipids that include diacylglycerols, phosphatidylinositol bisphosphate, lysophospholipids, oxidized phospholipids, arachidonic acid and its metabolites, sphingosine-1-phosphate, cholesterol and some steroidal derivatives and other lipid factors such as gangliosides. Promiscuous and selective lipid sensing have been detected. There appear to be close working relationships with lipids of the phospholipase C and A2 enzyme systems, which may enable integration with receptor signalling and membrane stretch. There are differences in the properties of each TRPC channel that are further complicated by TRPC heteromultimerization. The lipids modulate activity of the channels or insertion in the plasma membrane. Lipid microenvironments and intermediate sensing proteins have been described that include caveolae, G protein signalling, SEC14-like and spectrin-type domains 1 (SESTD1) and podocin. The data suggest that lipid sensing is an important aspect of TRPC channel biology enabling integration with other signalling systems. PMID:21624095

  20. GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus.

    PubMed

    Chitravanshi, Vineet C; Kawabe, Kazumi; Sapru, Hreday N

    2015-07-01

    We have previously reported that stimulation of the hypothalamic arcuate nucleus (ARCN) by microinjections of N-methyl-d-aspartic acid (NMDA) elicits tachycardia, which is partially mediated via inhibition of vagal inputs to the heart. The neuronal pools and neurotransmitters in them mediating tachycardia elicited from the ARCN have not been identified. We tested the hypothesis that the tachycardia elicited from the ARCN may be mediated by inhibitory neurotransmitters in the nucleus ambiguus (nAmb). Experiments were done in urethane-anesthetized, artificially ventilated, male Wistar rats. In separate groups of rats, unilateral and bilateral microinjections of muscimol (1 mM), gabazine (0.01 mM), and strychnine (0.5 mM) into the nAmb significantly attenuated tachycardia elicited by unilateral microinjections of NMDA (10 mM) into the ARCN. Histological examination of the brains showed that the microinjections sites were within the targeted nuclei. Retrograde anatomic tracing from the nAmb revealed direct bilateral projections from the ARCN and hypothalamic paraventricular nucleus to the nAmb. The results of the present study suggest that tachycardia elicited by stimulation of the ARCN by microinjections of NMDA is mediated via GABAA and glycine receptors located in the nAmb.

  1. Evidence that ethanol acts on a target in Loop 2 of the extracellular domain of alpha1 glycine receptors.

    PubMed

    Crawford, Daniel K; Trudell, James R; Bertaccini, Edward J; Li, Kaixun; Davies, Daryl L; Alkana, Ronald L

    2007-09-01

    Considerable evidence indicates that ethanol acts on specific residues in the transmembrane domains of glycine receptors (GlyRs). In this study, we tested the hypothesis that the extracellular domain is also a target for ethanol action by investigating the effect of cysteine substitutions at positions 52 (extracellular domain) and 267 (transmembrane domain) on responses to n-alcohols and propyl methanethiosulfonate (PMTS) in alpha1GlyRs expressed in Xenopus oocytes. In support of the hypothesis: (i) The A52C mutation changed ethanol sensitivity compared to WT GlyRs; (ii) PMTS produced irreversible alcohol-like potentiation in A52C GlyRs; and (iii) PMTS binding reduced the n-chain alcohol cutoff in A52C GlyRs. Further studies used PMTS binding to cysteines at positions 52 or 267 to block ethanol action at one site in order to determine its effect at other site(s). In these situations, ethanol caused negative modulation when acting at position 52 and positive modulation when acting at position 267. Collectively, these findings parallel the evidence that established the TM domain as a target for ethanol, suggest that positions 52 and 267 are part of the same alcohol pocket and indicate that the net effect of ethanol on GlyR function reflects the summation of its positive and negative modulatory effects on different targets.

  2. Glycine receptor antibodies are detected in progressive encephalomyelitis with rigidity and myoclonus (PERM) but not in saccadic oscillations.

    PubMed

    Iizuka, Takahiro; Leite, Maria I; Lang, Bethan; Waters, Patrick; Urano, Yoshiaki; Miyakawa, Saori; Hamada, Junichi; Sakai, Fumihiko; Mochizuki, Hideki; Vincent, Angela

    2012-08-01

    Glycine receptor (GlyR) antibodies were recently identified in a few patients with progressive encephalomyelitis with rigidity and myoclonus (PERM); none of these patients had antibodies against glutamic acid decarboxylase (GAD). An inhibitory glycinergic transmission defect has also been implicated in the mechanism underlying saccadic oscillations, including ocular flutter or opsoclonus; GlyR antibodies have not been reported in these patients. The purpose was to determine whether GlyR antibodies are found in patients with PERM, ocular flutter syndrome (OFS), and opsoclonus-myoclonus syndrome (OMS). GlyR antibodies were first measured in archived sera and CSF from five patients, including one patient with GAD antibody-positive PERM, two patients with OFS, and two patients with OMS. GlyR antibodies were also measured in archived sera from nine other adult patients with OMS. GlyR antibodies and GAD antibodies were both found at high titers in the serum and CSF of the patient with PERM, and their levels paralleled disease activity over time. GlyR antibodies were not found at significant levels in 13 patients with saccadic oscillations. GlyR and GAD antibodies can co-exist in PERM and follow the clinical course. Although saccadic oscillations are a feature of this condition, GlyR antibodies are not commonly found in patients with isolated saccadic oscillations.

  3. A pentasymmetric open channel blocker for Cys-loop receptor channels.

    PubMed

    Carta, Valentina; Pangerl, Michael; Baur, Roland; Puthenkalam, Roshan; Ernst, Margot; Trauner, Dirk; Sigel, Erwin

    2014-01-01

    γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl- ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP-) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP- action. Introduction of positive charges into M2 increased the affinity for PCCP- while PCCP- prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP-, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP- could serve as an insecticide.

  4. Glycine site N-methyl-d-aspartate receptor antagonist 7-CTKA produces rapid antidepressant-like effects in male rats

    PubMed Central

    Zhu, Wei-Li; Wang, Shen-Jun; Liu, Meng-Meng; Shi, Hai-Shui; Zhang, Ruo-Xi; Liu, Jian-Feng; Ding, Zeng-Bo; Lu, Lin

    2013-01-01

    Background Glutamate N-methyl-d-aspartate (NMDA) receptor antagonists exert fast-acting antidepressant effects, providing a promising way to develop a new classification of antidepressant that targets the glutamatergic system. In the present study, we examined the potential antidepressant action of 7-chlorokynurenic acid (7-CTKA), a glycine recognition site NMDA receptor antagonist, in a series of behavioural models of depression and determined the molecular mechanisms that underlie the behavioural actions of 7-CTKA. Methods We administered the forced swim test, novelty-suppressed feeding test, learned helplessness paradigm and chronic mild stress (CMS) paradigm in male rats to evaluate the possible rapid antidepressant-like actions of 7-CTKA. In addition, we assessed phospho-glycogen synthase kinase-3β (p-GSK3β) level, mammalian target of rapamycin (mTOR) function, and postsynaptic protein expression in the medial prefrontal cortex (mPFC) and hippocampus. Results Acute 7-CTKA administration produced rapid antidepressant-like actions in several behavioural tests. It increased p-GSK3β, enhanced mTOR function and increased postsynaptic protein levels in the mPFC. Activation of GSK3β by LY294002 completely blocked the antidepressant-like effects of 7-CTKA. Moreover, 7-CTKA did not produce rewarding properties or abuse potential. Limitations It is possible that 7-CTKA modulates glutamatergic transmission, thereby causing enduring alterations of GSK3β and mTOR signalling, although we did not provide direct evidence to support this possibility. Thus, the therapeutic involvement of synaptic adaptions engaged by 7-CTKA requires further study. Conclusion Our findings demonstrate that acute 7-CTKA administration produced rapid antidepressant-like effects, indicating that the behavioural response to 7-CTKA is mediated by GSK3β and mTOR signalling function in the mPFC. PMID:23611177

  5. Competitive antagonists and partial agonists at the glycine modulatory site of the mouse N-methyl-D-aspartate receptor.

    PubMed Central

    Henderson, G; Johnson, J W; Ascher, P

    1990-01-01

    1. Kynurenate (Kyn), 7-chlorokynurenate (7-Cl-Kyn), 3-amino-1-hydroxypyrrolid-2-one (HA-966) and D-cycloserine are known to bind to the glycine site that modulates the N-methyl-D-aspartate (NMDA) response of vertebrate central neurones. The effects of these compounds were investigated with patch-clamp and fast-perfusion techniques on mouse cortical neurones in primary culture in an effort to establish whether they act as antagonists, partial agonists and/or inverse agonists of glycine. A fast drug application method allowed the study of both steady-state and transient responses. 2. The analysis of steady-state responses indicates that the main effects of Kyn and 7-Cl-Kyn are those expected from competitive antagonists of glycine, with a dissociation constant of 15 microM for Kyn, and of 0.3 microM for 7-Cl-Kyn. Concentration jumps indicate that at all concentrations of glycine, and in particular in the absence of added glycine, the blockade by Kyn and 7-Cl-Kyn develops at a rate which is close to the rate of dissociation of glycine from its binding site and is independent of antagonist concentration. 3. The main effects of D-cycloserine and of HA-966 are those of partial agonists of high and low efficacy, respectively. In the absence of added glycine, D-cycloserine always produced a potentiation, while HA-966 produced either a potentiation or an inhibition. This can be explained by assuming the presence of a variable level of contaminating glycine. With both D-cycloserine and HA-966, concentration jumps produced biphasic relaxations in which the onset rate of the slow component was, here again, close to the rate of dissociation of glycine from its binding site. 4. These results can be interpreted by assuming that (1) Kyn and 7-Cl-Kyn are competitive antagonists of glycine, (2) HA-966 and D-cycloserine are partial agonists, (3) in the absence of added glycine some glycine is present in the extracellular solution and (4) the response in the total absence of glycine

  6. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium.

    PubMed

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A; Pearson, Joanna F; Appleby, Peter A; Walker, Dawn; Eardley, Ian; Southgate, Jennifer

    2013-08-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca²⁺. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca²⁺ and in a scratch repair assay. The results confirmed the functional expression of P2Y₄ receptors and excluded nonexpressed receptors/channels (P2X₁, P2X₃, P2X₆, P2Y₆, P2Y₁₁, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X₂, P2X₄, P2Y₁, P2Y₂, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca²⁺ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting.

  7. Signaling by purinergic receptors and channels in the pituitary gland

    PubMed Central

    Stojilkovic, Stanko S.; He, Mu-Lan; Koshimizu, Taka-aki; Balik, Ales; Zemkova, Hana

    2009-01-01

    Adenosine 5′-triphosphate is frequently released by cells and acts as an agonist for G protein-coupled P2Y receptors and ligand-gated P2X cationic channels in numerous tissues. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors. In the pituitary gland, adenosine 5′-triphosphate is released from the endings of magnocellular hypothalamic neurons and by anterior pituitary cells through pathway(s) that are still not well characterized. This gland also expresses several members of each family of purinergic receptors. P2X and adenosine receptors are co-expressed in the somata and nerve terminals of vasopressin-releasing neurons as well as in some secretory pituitary cells. P2X receptors stimulate electrical activity and modulate InsP3-dependent calcium release from intracellular stores, whereas adenosine receptors terminate electrical activity. Calcium-mobilizing P2Y receptors are predominantly expressed in non-secretory cells of the anterior and posterior pituitary. PMID:19467293

  8. Transient receptor potential (TRP) channels: a clinical perspective

    PubMed Central

    Kaneko, Yosuke; Szallasi, Arpad

    2014-01-01

    Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called ‘TRP channelopathies’) that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24102319

  9. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. Copyright © 2015. Published by Elsevier Ltd.

  10. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  11. TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation.

    PubMed

    Caterina, Michael J

    2014-11-19

    In the skin, cannabinoid lipids, whether of endogenous or exogenous origin, are capable of regulating numerous sensory, homeostatic, and inflammatory events. Although many of these effects are mediated by metabotropic cannabinoid receptors, a growing body of evidence has revealed that multiple members of the transient receptor potential (TRP) ion channel family can act as "ionotropic cannabinoid receptors". Furthermore, many of these same TRP channels are intimately involved in cutaneous processes that include the initiation of pain, temperature, and itch perception, the maintenance of epidermal homeostasis, the regulation of hair follicles and sebaceous glands, and the modulation of dermatitis. Ionotropic cannabinoid receptors therefore represent potentially attractive targets for the therapeutic use of cannabinoids to treat sensory and dermatological diseases. Furthermore, the interactions between neurons and other cell types that are mediated by cutaneous ionotropic cannabinoid receptors are likely to be recapitulated during physiological and pathophysiological processes in the central nervous system and elsewhere, making the skin an ideal setting in which to dissect general complexities of cannabinoid signaling.

  12. Glycine-extended progastrin processing intermediates induce H+,K(+)-ATPase alpha-subunit gene expression through a novel receptor.

    PubMed

    Kaise, M; Muraoka, A; Seva, C; Takeda, H; Dickinson, C J; Yamada, T

    1995-05-12

    Biologically active amidated gastrin is synthesized by carboxyl-terminal alpha-amidation of a glycine-extended progastrin post-translational processing intermediate (G-Gly). Although plasma levels of G-Gly are equivalent to those of gastrin, G-Gly has essentially no acute effect on gastric acid secretion. However, we have observed that inhibition of gastrin amidation leads to increased plasma concentrations of G-Gly and enhanced gastric acid secretion. We hypothesized, therefore, that G-Gly might have a chronic effect to increase H+,K(+)-ATPase expression in gastric parietal cells. In the present studies, we observed that a 2-day preincubation with G-Gly significantly enhanced histamine-stimulated [14C]aminopyrine uptake by isolated canine gastric parietal cells but acutely administered G-Gly had no effect. On Northern blot analysis, both G-Gly and gastrin dose-dependently increased H+,K(+)-ATPase alpha-subunit gene expression with maximal induction (225 +/- 35 and 170 +/- 29% of basal, mean +/- S.E.) achieved at concentrations of 10(-9) M G-Gly and 10(-8) M gastrin, respectively. Using an H+,K(+)-ATPase alpha-subunit gene-luciferase chimeric reporter construct transfected into primary cultured parietal cells, we observed that both G-Gly and gastrin increased luciferase activity in a manner similar to that obtained by Northern blot analysis. L365,260, a specific gastrin/CCKB receptor antagonist, completely reversed the stimulation of luciferase activity induced by gastrin but had no effect on G-Gly-stimulated activity. Gastrin increased [Ca2+]i, although G-Gly did not, however, genistein (a tyrosine kinase inhibitor) significantly reduced induction of luciferase activity by both G-Gly and gastrin. Specific binding of 125I-Leu15-G2-17-Gly to gastric parietal cells was dose-dependently displaced by G2-17-Gly but not by gastrin nor L365,260. Gastrin peptides truncated at the carboxyl- (G1-13) and amino terminus (G5-17-Gly) both induced H+,K(+)-ATPase alpha

  13. Differential effects of quercetin glycosides on GABAC receptor channel activity.

    PubMed

    Kim, Hyeon-Joong; Lee, Byung-Hwan; Choi, Sun-Hye; Jung, Seok-Won; Kim, Hyun-Sook; Lee, Joon-Hee; Hwang, Sung-Hee; Pyo, Mi-Kyung; Kim, Hyoung-Chun; Nah, Seung-Yeol

    2015-01-01

    Quercetin, a representative flavonoid, is a compound of low molecular weight found in various colored plants and vegetables. Quercetin shows a wide range of neuropharmacological activities. In fact, quercetin naturally exists as monomer-(quercetin-3-O-rhamnoside) (Rham1), dimer-(Rutin), or trimer-glycosides [quercetin-3-(2(G)-rhamnosylrutinoside)] (Rham2) at carbon-3 in fruits and vegetables. The carbohydrate components are removed after ingestion into gastrointestinal systems. The role of the glycosides attached to quercetin in the regulation of γ-aminobutyric acid class C (GABAC) receptor channel activity has not been determined. In the present study, we examined the effects of quercetin glycosides on GABAC receptor channel activity by expressing human GABAC alone in Xenopus oocytes using a two-electrode voltage clamp technique and also compared the effects of quercetin glycosides with quercetin. We found that GABA-induced inward current (I GABA ) was inhibited by quercetin or quercetin glycosides. The inhibitory effects of quercetin and its glycosides on I GABA were concentration-dependent and reversible in the order of Rutin ≈ quercetin ≈ Rham 1 > Rham 2. The inhibitory effects of quercetin and its glycosides on I GABA were noncompetitive and membrane voltage-insensitive. These results indicate that quercetin and its glycosides regulate GABAC receptor channel activity through interaction with a different site from that of GABA, and that the number of carbohydrate attached to quercetin might play an important role in the regulation of GABAC receptor channel activity.

  14. Exonic Sp1 sites are required for neural-specific expression of the glycine receptor beta subunit gene.

    PubMed Central

    Tintrup, H; Fischer, M; Betz, H; Kuhse, J

    2001-01-01

    The gene encoding the beta subunit of the inhibitory glycine receptor (GlyR) is widely expressed throughout the mammalian central nervous system. To unravel the elements regulating its transcription, we isolated its 5' non-coding and upstream flanking regions from mouse. Sequence analysis revealed significant differences between the 5' region of the beta subunit gene and the corresponding regions of the homologous GlyR alpha subunit genes; it also identified a novel exon (exon 0) that encodes most of the 5'-untranslated portion of the GlyR beta mRNA. Primer extension experiments disclosed multiple transcriptional start sites. Transfection experiments with luciferase reporter gene constructs showed that sequences encompassing 1.58 kb of upstream flanking region and 180 bp of exon 0 displayed high promoter activity in two neuroblastoma cell lines but not in non-neural cells. Analysis of various deletion constructs showed that the 5' flanking region preceding the transcriptional start sites silences expression in non-neural cells but is not essential for general promoter activity. In contrast, the deletion of sequences within exon 0 drastically decreased or abolished transcription; the removal of sequences harbouring Sp1 consensus sequences within exon 0 decreased expression specifically in a neuroblastoma cell line. Band-shift assays confirmed the binding of Sp1 to sites within the deleted sequence. Our results indicate that neural-specific expression of the GlyR beta subunit gene might depend on a direct interaction of Sp1 transcription factors with cis elements located downstream from transcription initiation sites. PMID:11256962

  15. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells.

    PubMed

    Wagner, Thomas F J; Loch, Sabine; Lambert, Sachar; Straub, Isabelle; Mannebach, Stefanie; Mathar, Ilka; Düfer, Martina; Lis, Annette; Flockerzi, Veit; Philipp, Stephan E; Oberwinkler, Johannes

    2008-12-01

    Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized to have rapid effects on membrane surface receptors that often have not been identified at the molecular level. We show here that TRPM3, a divalent-permeable cation channel, is rapidly and reversibly activated by extracellular pregnenolone sulphate, a neuroactive steroid. We show that pregnenolone sulphate activates endogenous TRPM3 channels in insulin-producing beta cells. Application of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin secretion from pancreatic islets. Our results establish that TRPM3 is an essential component of an ionotropic steroid receptor enabling unanticipated crosstalk between steroidal and insulin-signalling endocrine systems.

  16. Strychnine-sensitive glycine receptors on pyramidal neurons in layers II/III of the mouse prefrontal cortex are tonically activated.

    PubMed

    Salling, Michael C; Harrison, Neil L

    2014-09-01

    Processing of signals within the cerebral cortex requires integration of synaptic inputs and a coordination between excitatory and inhibitory neurotransmission. In addition to the classic form of synaptic inhibition, another important mechanism that can regulate neuronal excitability is tonic inhibition via sustained activation of receptors by ambient levels of inhibitory neurotransmitter, usually GABA. The purpose of this study was to determine whether this occurs in layer II/III pyramidal neurons (PNs) in the prelimbic region of the mouse medial prefrontal cortex (mPFC). We found that these neurons respond to exogenous GABA and to the α4δ-containing GABAA receptor (GABA(A)R)-selective agonist gaboxadol, consistent with the presence of extrasynaptic GABA(A)R populations. Spontaneous and miniature synaptic currents were blocked by the GABA(A)R antagonist gabazine and had fast decay kinetics, consistent with typical synaptic GABA(A)Rs. Very few layer II/III neurons showed a baseline current shift in response to gabazine, but almost all showed a current shift (15-25 pA) in response to picrotoxin. In addition to being a noncompetitive antagonist at GABA(A)Rs, picrotoxin also blocks homomeric glycine receptors (GlyRs). Application of the GlyR antagonist strychnine caused a modest but consistent shift (∼15 pA) in membrane current, without affecting spontaneous synaptic events, consistent with the tonic activation of GlyRs. Further investigation showed that these neurons respond in a concentration-dependent manner to glycine and taurine. Inhibition of glycine transporter 1 (GlyT1) with sarcosine resulted in an inward current and an increase of the strychnine-sensitive current. Our data demonstrate the existence of functional GlyRs in layer II/III of the mPFC and a role for these receptors in tonic inhibition that can have an important influence on mPFC excitability and signal processing. Copyright © 2014 the American Physiological Society.

  17. TRP Channel Cannabinoid Receptors in Skin Sensation, Homeostasis, and Inflammation

    PubMed Central

    2015-01-01

    In the skin, cannabinoid lipids, whether of endogenous or exogenous origin, are capable of regulating numerous sensory, homeostatic, and inflammatory events. Although many of these effects are mediated by metabotropic cannabinoid receptors, a growing body of evidence has revealed that multiple members of the transient receptor potential (TRP) ion channel family can act as “ionotropic cannabinoid receptors”. Furthermore, many of these same TRP channels are intimately involved in cutaneous processes that include the initiation of pain, temperature, and itch perception, the maintenance of epidermal homeostasis, the regulation of hair follicles and sebaceous glands, and the modulation of dermatitis. Ionotropic cannabinoid receptors therefore represent potentially attractive targets for the therapeutic use of cannabinoids to treat sensory and dermatological diseases. Furthermore, the interactions between neurons and other cell types that are mediated by cutaneous ionotropic cannabinoid receptors are likely to be recapitulated during physiological and pathophysiological processes in the central nervous system and elsewhere, making the skin an ideal setting in which to dissect general complexities of cannabinoid signaling. PMID:24915599

  18. Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists

    PubMed Central

    Pertwee, R.G.

    2010-01-01

    It is widely accepted that non-endogenous compounds that target CB1 and/or CB2 receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Δ9-tetrahydrocannabinol or nabilone, both CB1/CB2 receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB2-selective agonists, peripherally restricted CB1/CB2 receptor agonists and CB1/CB2 antagonists and inverse agonists as medicines. Already, numerous cannabinoid receptor ligands have been developed and their interactions with CB1 and CB2 receptors well characterized. This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB1, non-CB2 G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner. It begins with a brief description of how each of these ligands interacts with CB1 and/or CB2 receptors. PMID:20166927

  19. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds.

  20. Gelsemine, a principal alkaloid from Gelsemium sempervirens Ait., exhibits potent and specific antinociception in chronic pain by acting at spinal α3 glycine receptors.

    PubMed

    Zhang, Jing-Yang; Gong, Nian; Huang, Jin-Lu; Guo, Ling-Chen; Wang, Yong-Xiang

    2013-11-01

    The present study examined the antinociceptive effects of gelsemine, the principal alkaloid in Gelsemium sempervirens Ait. A single intrathecal injection of gelsemine produced potent and specific antinociception in formalin-induced tonic pain, bone cancer-induced mechanical allodynia, and spinal nerve ligation-induced painful neuropathy. The antinociception was dose-dependent, with maximal inhibition of 50% to 60% and ED50 values of 0.5 to 0.6 μg. Multiple daily intrathecal injections of gelsemine for 7 days induced no tolerance to antinociception in the rat model of bone cancer pain. Spinal gelsemine was not effective in altering contralateral paw withdrawal thresholds, and had only a slight inhibitory effect on formalin-induced acute nociception. The specific antinociception of gelsemine in chronic pain was blocked dose-dependently by the glycine receptor (GlyR) antagonist strychnine with an apparent ID50 value of 3.8 μg. Gelsemine concentration-dependently displaced H(3)-strychnine binding to the membrane fraction of rat spinal cord homogenates, with a 100% displacement and a Ki of 21.9μM. Gene ablation of the GlyR α3 subunit (α3 GlyR) but not α1 GlyR, by a 7-day intrathecal injection of small interfering RNA (siRNA) targeting α3 GlyR or α1 GlyR, nearly completely prevented gelsemine-induced antinociception in neuropathic pain. Our results demonstrate that gelsemine produces potent and specific antinociception in chronic pain states without induction of apparent tolerance. The results also suggest that gelsemine produces antinociception by activation of spinal α3 glycine receptors, and support the notion that spinal α3 glycine receptors are a potential therapeutic target molecule for the management of chronic pain.

  1. Transient receptor potential (TRP) channels and taste sensation.

    PubMed

    Ishimaru, Y; Matsunami, H

    2009-03-01

    Humans have 5 basic taste sensations: sweet, bitter, sour, salty, and umami (taste of 1-amino acids). Among 33 genes related to transient receptor potential (TRP) channels, 3--including TRP-melastatin 5 (TRPM5), polycystic kidney disease-1-like 3 (PKD1L3), and polycystic kidney disease-2-like 1 (PKD2L1)--are specifically and abundantly expressed in taste receptor cells. TRP-melastatin 5 is co-expressed with taste receptors T1Rs and T2Rs, and functions as a common downstream component in sweet, bitter, and umami taste signal transduction. In contrast, polycystic kidney disease-1-like 3 and polycystic kidney disease-2-like 1 are co-expressed in distinct subsets of taste receptor cells not expressing TRP-melastatin 5. In the heterologous expression system, cells expressing both polycystic kidney disease-1-like 3 and polycystic kidney disease-2-like 1 responded to sour stimuli, showing a unique "off-response" property. Genetic ablation of poly-cystic kidney disease-2-like 1-expressing cells resulted in elimination of gustatory nerve response to sour stimuli, indicating that cells expressing polycystic kidney disease-2-like 1 function as sour taste detectors. These results suggest that polycystic kidney disease-1-like 3/polycystic kidney disease-2-like 1 may play a significant role, possibly as taste receptors, in sour taste sensation.

  2. Tunable Calcium Current through TRPV1 Receptor Channels*S⃞

    PubMed Central

    Samways, Damien S. K.; Khakh, Baljit S.; Egan, Terrance M.

    2008-01-01

    TRPV1 receptors are polymodal cation channels that open in response to diverse stimuli including noxious heat, capsaicin, and protons. Because Ca2+ is vital for TRPV1 signaling, we sought to precisely measure its contribution to TRPV1 responses and discovered that the Ca2+ current was tuned by the mode of activation. Using patch clamp photometry, we found that the fraction of the total current carried by Ca2+ (called the Pf%) was significantly smaller for TRPV1 currents evoked by protons than for those evoked by capsaicin. Using site-directed mutagenesis, we discovered that the smaller Pf% was due to protonation of three acidic amino acids (Asp646, Glu648, and Glu651) that are located in the mouth of the pore. Thus, in keeping with recent reports of time-dependent changes in the ionic permeability of some ligand-gated ion channels, we now show for the first time that the physiologically important Ca2+ current of the TRPV1 receptor is also dynamic and depends on the mode of activation. This current is significantly smaller when the receptor is activated by a change in pH, owing to atomic scale interactions of H+ and Ca2+ with the fixed negative charge of side chains in the pore. PMID:18775990

  3. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium.

    PubMed

    Assimakopoulou, Martha; Pagoulatos, Dionysios; Nterma, Pinelopi; Pharmakakis, Nikolaos

    2017-10-01

    Cannabinoids, as multi‑target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed. Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva. Semi‑serial paraffin‑embedded sections from primary and recurrent pterygium samples were immunohistochemically examined with the use of specific antibodies. All of the epithelial layers in 94, 78, 96, 73 and 80% of pterygia cases, exhibited CB1, CB2, TRPV1, TRPV2 and TRPV3 cytoplasmic immunoreactivity, respectively. The epithelium of all pterygia cases (100%) showed strong, mainly nuclear, TRPV4 immunolocalization. In the pterygium stroma, scattered cells demonstrated intense CB2 immunoreactivity, whereas vascular endothelial cells were immunopositive for the cannabinoid receptors and all TRPV channels. Quantitative analyses of the immunohistochemical findings in epithelial cells demonstrated a significantly higher expression level in conjunctiva compared with primary pterygia (P=0.04) for CB1, but not for CB2 (P>0.05). Additionally, CB1 and CB2 were significantly highly expressed in primary pterygia (P=0.01), compared with recurrent pterygia. Furthermore, CB1 expression levels were significantly correlated with CB2 expression levels in primary pterygia (P=0.005), but not in recurrent pterygia (P>0.05). No significant difference was detected for all TRPV channel expression levels between pterygium (primary or recurrent) and conjunctival tissues (P>0.05). A significant correlation between the TRPV1 and TRPV3 expression levels (P<0.001) was detected independently of pterygium recurrence. Finally, TRPV

  4. Slow permeation of organic cations in acetylcholine receptor channels

    PubMed Central

    1986-01-01

    Block, permeation, and agonist action of small organic amine compounds were studied in acetylcholine receptor (AChR) channels. Single channel conductances were calculated from fluctuation analysis at the frog neuromuscular junction and measured by patch clamp of cultured rat myotubes. The conductance was depressed by a few millimolar external dimethylammonium, arginine, dimethyldiethanolammonium, and Tris. Except with dimethylammonium, the block was intensified with hyperpolarization. A two-barrier Eyring model describes the slowed permeation and voltage dependence well for the three less permeant test cations. The cations were assumed to pause at a site halfway across the electric field of the channel while passing through it. For the voltage- independent action of highly permeant dimethylammonium, a more appropriate model might be a superficial binding site that did not prevent the flow of other ions, but depressed it. Solutions of several amine compounds were found to have agonist activity at millimolar concentrations, inducing brief openings of AChR channels on rat myotubes in the absence of ACh. PMID:2425045

  5. Roles of transient receptor potential channels in pain

    PubMed Central

    Stucky, Cheryl L.; Dubin, Adrienne E.; Jeske, Nathaniel A.; Malin, Sacha A.; McKemy, David D.; Story, Gina M.

    2009-01-01

    Pain perception begins with the activation of primary sensory nociceptors. Over the past decade, flourishing research has revealed that members of the Transient Receptor Potential (TRP) ion channel family are fundamental molecules that detect noxious stimuli and transduce a diverse range of physical and chemical energy into action potentials in somatosensory nociceptors. Here we highlight the roles of TRP vanilloid 1 (TRPV1), TRP melastatin 8 (TRPM8) and TRP ankyrin 1 (TRPA1) in the activation of nociceptors by heat and cold environmental stimuli, mechanical force, and by chemicals including exogenous plant and environmental compounds as well as endogenous inflammatory molecules. The contribution of these channels to pain and somatosensation is discussed at levels ranging from whole animal behavior to molecular modulation by intracellular signaling proteins. An emerging theme is that TRP channels are not simple ion channel transducers of one or two stimuli, but instead serve multidimensional roles in signaling sensory stimuli that are exceptionally diverse in modality and in their environmental milieu. PMID:19203589

  6. Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator?

    PubMed Central

    Dietrich, Alexander; Fahlbusch, Meike; Gudermann, Thomas

    2014-01-01

    In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model. PMID:25268281

  7. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  8. Classification of Na channel receptors specific for various scorpion toxins.

    PubMed

    Wheeler, K P; Watt, D D; Lazdunski, M

    1983-04-01

    1. The specific binding to rat brain synaptosomes of a radiolabelled derivative of toxin II from the scorpion Centruroides suffusus suffusus could be prevented by toxins III and IV, but not by toxin V or variants 1-3, from the venom of Centruroides sculpturatus. 2. The specific binding of a similar derivative of toxin II from Androctonus australis Hector was not affected by any of the toxins from Centruroides sculpturatus. 3. There is biochemical evidence for only two distinct classes of Na channel receptors specific for known scorpion toxins.

  9. TRP Channels in Insect Stretch Receptors as Insecticide Targets.

    PubMed

    Nesterov, Alexandre; Spalthoff, Christian; Kandasamy, Ramani; Katana, Radoslav; Rankl, Nancy B; Andrés, Marta; Jähde, Philipp; Dorsch, John A; Stam, Lynn F; Braun, Franz-Josef; Warren, Ben; Salgado, Vincent L; Göpfert, Martin C

    2015-05-06

    Defining the molecular targets of insecticides is crucial for assessing their selectivity and potential impact on environment and health. Two commercial insecticides are now shown to target a transient receptor potential (TRP) ion channel complex that is unique to insect stretch receptor cells. Pymetrozine and pyrifluquinazon disturbed Drosophila coordination and hearing by acting on chordotonal stretch receptor neurons. This action required the two TRPs Nanchung (Nan) and Inactive (Iav), which co-occur exclusively within these cells. Nan and Iav together sufficed to confer cellular insecticide responses in vivo and in vitro, and the two insecticides were identified as specific agonists of Nan-Iav complexes that, by promoting cellular calcium influx, silence the stretch receptor cells. This establishes TRPs as insecticide targets and defines specific agonists of insect TRPs. It also shows that TRPs can render insecticides cell-type selective and puts forward TRP targets to reduce side effects on non-target species. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Downregulation of Somatic A-Type K(+) Channels Requires the Activation of Synaptic NMDA Receptors in Young Hippocampal Neurons of Rats.

    PubMed

    Kang, Moon-Seok; Yang, Yoon-Sil; Kim, Seon-Hee; Park, Joo-Min; Eun, Su-Yong; Jung, Sung-Cherl

    2014-04-01

    The downregulation of A-type K(+) channels (IA channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As IA channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic IA channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of IA recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the IA peak, indicating the necessity of synaptic activation for the reduction of somatic IA. This was again confirmed by glycine treatment, showing a significant reduction of the somatic IA peak. Additionally, the gating property of IA channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating IA channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.

  11. Emerging models of glutamate receptor ion channel structure and function.

    PubMed

    Mayer, Mark L

    2011-10-12

    Excitatory synaptic transmission in the brain is mediated by ligand-gated ion channels (iGluRs) activated by glutamate. Distinct from other neurotransmitter receptors, the extracellular domains of iGluRs are loosely packed assemblies with two clearly distinct layers, each of which has both local and global 2-fold axes of symmetry. By contrast, the iGluR transmembrane segments have 4-fold symmetry and share a conserved pore loop architecture found in tetrameric voltage-gated ion channels. The striking layered architecture of iGluRs revealed by the 3.6 Å resolution structure of an AMPA receptor homotetramer likely arose from gene fusion events that occurred early in evolution. Although this modular design has greatly facilitated biophysical and structural studies on individual iGluR domains, and suggested conserved mechanisms for iGluR gating, recent work is beginning to reveal unanticipated diversity in the structure, allosteric regulation, and assembly of iGluR subtypes.

  12. Transient receptor potential cation channels in visceral sensory pathways

    PubMed Central

    Blackshaw, L Ashley

    2014-01-01

    The extensive literature on this subject is in direct contrast to the limited range of clinical uses for ligands of the transient receptor potential cation channels (TRPs) in diseases of the viscera. TRPV1 is the most spectacular example of this imbalance, as it is in other systems, but it is nonetheless the only TRP target that is currently targeted clinically in bladder sensory dysfunction. It is not clear why this discrepancy exists, but a likely answer is in the promiscuity of TRPs as sensors and transducers for environmental mechanical and chemical stimuli. This review first describes the different sensory pathways from the viscera, and on which nociceptive and non-nociceptive neurones within these pathways TRPs are expressed. They not only fulfil roles as both mechano-and chemo-sensors on visceral afferents, but also form an effector mechanism for cell activation after activation of GPCR and cytokine receptors. Their role may be markedly changed in diseased states, including chronic pain and inflammation. Pain presents the most obvious potential for further development of therapeutic interventions targeted at TRPs, but forms of inflammation are emerging as likely to benefit also. However, despite much basic research, we are still at the beginning of exploring such potential in visceral sensory pathways. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24641218

  13. The antiallodynic action target of intrathecal gabapentin: Ca2+ channels, KATP channels or N-methyl-d-aspartic acid receptors?

    PubMed

    Cheng, Jen-Kun; Chen, Chien-Chuan; Yang, Jia-Rung; Chiou, Lih-Chu

    2006-01-01

    Gabapentin is a novel analgesic whose mechanism of action is not known. We investigated in a postoperative pain model whether adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channels, N-methyl-d-aspartic acid (NMDA) receptors, and Ca2+ channels are involved in the antiallodynic effect of intrathecal gabapentin. Mechanical allodynia was induced by a paw incision in isoflurane-anesthetized rats. Withdrawal thresholds to von Frey filament stimulation near the incision site were measured before and after incision and after intrathecal drug administration. The antiallodynic effect of gabapentin (100 mug) was not affected by intrathecal pretreatment with antagonists of K(ATP) channels, NMDA receptors or gamma-aminobutyric acid (GABA)(A) receptors. K(ATP) channel openers and GABA(A) receptor agonist, per se, had little effect on the postincision allodynic response. The Ca2+ channel blocker of N-type (omega-conotoxin GVIA, 0.1-3 microg), but not of P/Q-type (omega-agatoxin IVA), L-type (verapamil, diltiazem or nimodipine), or T-type (mibefradil), attenuated the incision-induced allodynia, as did gabapentin. Both the antiallodynic effects of gabapentin and omega-conotoxin GVIA were attenuated by Bay K 8644, an L-type Ca2+ channel activator. These results provide correlative evidence to support the contention that N-type Ca2+ channels, but not K(ATP) channels or NMDA or GABA(A) receptors, might be involved in the antiallodynic effect of intrathecal gabapentin.

  14. Channel opening of. gamma. -aminobutyric acid receptor from rat brain: molecular mechanisms of the receptor responses

    SciTech Connect

    Cash, D.J.; Subbarao, K.

    1987-12-01

    The function of ..gamma..-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of /sup 36/Cl/sup -/ isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific /sup 36/Cl/sup -/ influx was completed in three phases of ca. 3% (t/sub 1/2/ = 0.6 s), 56% (t/sub 1/2 = 82 s), and 41% (t/sub 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent /sup 36/Cl/sup -/ influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles. The half-response concentrations were similar for both receptors. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of low affinity to high-affinity GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria. For both receptors, the measurements over a 2000-fold GABA concentration range required a minimal mechanism involving the occupation of both of the two GABA binding sites for significant channel opening; then the receptors were ca. 80% open. Similarly for both receptors, desensitization was mediated by a different pair of binding sites, although desensitization with only one ligand molecule bound could occur at a 20-fold slower rate.

  15. Predicted structure of the extracellular region of ligand-gated ion-channel receptors shows SH2-like and SH3-like domains forming the ligand-binding site.

    PubMed Central

    Gready, J. E.; Ranganathan, S.; Schofield, P. R.; Matsuo, Y.; Nishikawa, K.

    1997-01-01

    Fast synaptic neurotransmission is mediated by ligand-gated ion-channel (LGIC) receptors, which include receptors for acetylcholine, serotonin, GABA, glycine, and glutamate. LGICs are pentamers with extracellular ligand-binding domains and form integral membrane ion channels that are selective for cations (acetylcholine and serotonin 5HT3 receptors) or anions (GABAA and glycine receptors and the invertebrate glutamate-binding chloride channel). They form a protein superfamily with no sequence similarity to any protein of known structure. Using a 1D-3D structure mapping approach, we have modeled the extracellular ligand-binding domain based on a significant match with the SH2 and SH3 domains of the biotin repressor structure. Refinement of the model based on knowledge of the large family of SH2 and SH3 structures, sequence alignments, and use of structure templates for loop building, allows the prediction of both monomer and pentamer models. These are consistent with medium-resolution electron microscopy structures and with experimental structure/function data from ligand-binding, antibody-binding, mutagenesis, protein-labeling and subunit-linking studies, and glycosylation sites. Also, the predicted polarity of the channel pore calculated from electrostatic potential maps of pentamer models of superfamily members is consistent with known ion selectivities. Using the glycine receptor alpha 1 subunit, which forms homopentamers, the monomeric and pentameric models define the agonist and antagonist (strychnine) binding sites to a deep crevice formed by an extended loop, which includes the invariant disulfide bridge, between the SH2 and SH3 domains. A detailed binding site for strychnine is reported that is in strong agreement with known structure/function data. A site for interaction of the extracellular ligand-binding domain with the activation of the M2 transmembrane helix is also suggested. PMID:9144769

  16. Differential localization of gamma-aminobutyric acid type A and glycine receptor subunits and gephyrin in the human pons, medulla oblongata and uppermost cervical segment of the spinal cord: an immunohistochemical study.

    PubMed

    Waldvogel, H J; Baer, K; Eady, E; Allen, K L; Gilbert, R T; Mohler, H; Rees, M I; Nicholson, L F B; Faull, R L M

    2010-02-01

    Gephyrin is a multifunctional protein responsible for the clustering of glycine receptors (GlyR) and gamma-aminobutyric acid type A receptors (GABA(A)R). GlyR and GABA(A)R are heteropentameric chloride ion channels that facilitate fast-response, inhibitory neurotransmission in the mammalian brain and spinal cord. We investigated the immunohistochemical distribution of gephyrin and the major GABA(A)R and GlyR subunits in the human light microscopically in the rostral and caudal one-thirds of the pons, in the middle and caudal one-thirds of the medulla oblongata, and in the first cervical segment of the spinal cord. The results demonstrate a widespread pattern of immunoreactivity for GlyR and GABA(A)R subunits throughout these regions, including the spinal trigeminal nucleus, abducens nucleus, facial nucleus, pontine reticular formation, dorsal motor nucleus of the vagus nerve, hypoglossal nucleus, lateral cuneate nucleus, and nucleus of the solitary tract. The GABA(A)R alpha(1) and GlyR alpha(1) and beta subunits show high levels of immunoreactivity in these nuclei. The GABA(A)R subunits alpha(2), alpha(3), beta(2,3), and gamma(2) present weaker levels of immunoreactivity. Exceptions are intense levels of GABA(A)R alpha(2) subunit immunoreactivity in the inferior olivary complex and high levels of GABA(A)R alpha(3) subunit immunoreactivity in the locus coeruleus and raphe nuclei. Gephyrin immunoreactivity is highest in the first segment of the cervical spinal cord and hypoglossal nucleus. Our results suggest that a variety of different inhibitory receptor subtypes is responsible for inhibitory functions in the human brainstem and cervical spinal cord and that gephyrin functions as a clustering molecule for major subtypes of these inhibitory neurotransmitter receptors.

  17. Kinetics of open channel block by penicillin of single GABAA receptor channels from mouse spinal cord neurones in culture.

    PubMed Central

    Twyman, R E; Green, R M; MacDonald, R L

    1992-01-01

    1. Reduction by penicillin of single gamma-aminobutyric acidA (GABAA) receptor currents from somata of mouse spinal cord neurones in culture was investigated using the excised outside-out patch-clamp recording technique. 2. GABA (2 microM) alone or with penicillin (100-5000 microM) applied by pressure ejection from micropipettes evoked inward currents when patches were voltage-clamped at -75 mV in symmetrical chloride solutions. Averaged GABA receptor currents were decreased in the presence of penicillin. 3. GABA receptor currents were recorded with at least two conductance states, a more frequent or main-conductance state of about 27 pS and a less frequent sub-conductance state of about 19-20 pS. The conductances of the two states were unchanged in the presence of penicillin. The kinetic properties of the main-conductance state were analysed and are summarized below. 4. Penicillin produced a concentration-dependent reduction of GABA receptor open properties by reduction of average GABA receptor channel open duration and an increase in channel opening frequency. 5. Penicillin shifted frequency histograms of GABA receptor channel open durations to shorter durations in a concentration-dependent manner. Three exponential functions were required to fit best the frequency histograms of open durations, suggesting that the channel had at least three open states. Penicillin produced a concentration-dependent reduction in the time constants obtained from the open duration frequency histograms. 6. Frequency histograms of GABA receptor channel closed durations could be fitted with five to seven exponential functions, suggesting that the channel had multiple closed states. In the presence of increased concentration of penicillin, there was a reduction in the relative frequency of brief gaps and the appearance of new closed time constants. 7. With increased penicillin concentration, GABA receptor channel burst frequency was unchanged, burst durations were increased, the number

  18. Voltage-gated sodium channel modulation by sigma-receptors in cardiac myocytes and heterologous systems.

    PubMed

    Johannessen, Molly; Ramachandran, Subramaniam; Riemer, Logan; Ramos-Serrano, Andrea; Ruoho, Arnold E; Jackson, Meyer B

    2009-05-01

    The sigma-receptor, a broadly distributed integral membrane protein with a novel structure, is known to modulate various voltage-gated K(+) and Ca(2+) channels through a mechanism that involves neither G proteins nor phosphorylation. The present study investigated the modulation of the heart voltage-gated Na(+) channel (Na(v)1.5) by sigma-receptors. The sigma(1)-receptor ligands [SKF-10047 and (+)-pentazocine] and sigma(1)/sigma(2)-receptor ligands (haloperidol and ditolylguanidine) all reversibly inhibited Na(v)1.5 channels to varying degrees in human embryonic kidney 293 (HEK-293) cells and COS-7 cells, but the sigma(1)-receptor ligands were less effective in COS-7 cells. The same four ligands also inhibited Na(+) current in neonatal mouse cardiac myocytes. In sigma(1)-receptor knockout myocytes, the sigma(1)-receptor-specific ligands were far less effective in modulating Na(+) current, but the sigma(1)/sigma(2)-receptor ligands modulated Na(+) channels as well as in wild type. Photolabeling with the sigma(1)-receptor photoprobe [(125)I]-iodoazidococaine demonstrated that sigma(1)-receptors were abundant in heart and HEK-293 cells, but scarce in COS-7 cells. This difference was consistent with the greater efficacy of sigma(1)-receptor-specific ligands in HEK-293 cells than in COS-7 cells. sigma-Receptors modulated Na(+) channels despite the omission of GTP and ATP from the patch pipette solution. sigma-Receptor-mediated inhibition of Na(+) current had little if any voltage dependence and produced no change in channel kinetics. Na(+) channels represent a new addition to the large number of voltage-gated ion channels modulated by sigma-receptors. The modulation of Na(v)1.5 channels by sigma-receptors in the heart suggests an important pathway by which drugs can alter cardiac excitability and rhythmicity.

  19. Open-channel blockers of the NMDA receptor complex.

    PubMed

    Albensi, Benedict C; Ilkanich, Erin

    2004-11-01

    A variety of compounds have been shown to limit or prevent excitotoxicity by blocking N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission. However, many first-generation NMDA antagonists did not live up to clinical expectations in trials of acute brain injury because of the manifestation of multiple side effects. In spite of this, development of NMDA antagonists continues, where some of the newer agents block excitotoxicity through alternative mechanisms. For example, blockers selective to the NR2B subunit or agents that block metabotropic glutamate receptors or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are currently under investigation. Several years ago, the arylalkylamine spider toxins were demonstrated to function as open-channel blockers similar to memantine, which was very recently approved by the U.S. FDA for use in patients with Alzheimer's dementia. With this said, programs focusing on NMDA antagonism via alternative mechanisms may still hold promise for treating acute injury and even chronic forms of dementia.

  20. Mechanics of Channel Gating of the Nicotinic Acetylcholine Receptor

    PubMed Central

    Liu, Xinli; Xu, Yechun; Li, Honglin; Wang, Xicheng; Jiang, Hualiang; Barrantes, Francisco J

    2008-01-01

    The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process

  1. Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations

    PubMed Central

    Diaz-Sylvester, Paula L.; Porta, Maura; Copello, Julio A.

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca2+ and Mg2+. To better characterize Ca2+ and Mg2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M2+: Mg2+, Ca2+, Sr2+, Ba2+) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca2+ or Sr2+. This activation was interfered by Mg2+ and Ba2+ acting at low affinity M2+-unspecific binding sites. When testing the effects of luminal M2+ as current carriers, all M2+ increased maximal RyR2 open probability (compared to Cs+), suggesting the existence of low affinity activating M2+-unspecific sites at the luminal surface. Responses to M2+ vary from channel to channel (heterogeneity). However, with luminal Ba2+or Mg2+, RyR2 were less sensitive to cytosolic Ca2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca2+or Sr2+). Kinetics of RyR2 with mixtures of luminal Ba2+/Ca2+ and additive action of luminal plus cytosolic Ba2+ or Mg2+ suggest luminal M2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca2+/Sr2+-specific sites, which stabilize high Po mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M2+ binding sites (specific for Ca2+ and unspecific for Ca2+/Mg2+) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  2. Glycine311, a determinant of paxilline block in BK channels: a novel bend in the BK S6 helix

    PubMed Central

    Zhou, Yu; Tang, Qiong-Yao; Xia, Xiao-Ming

    2010-01-01

    The tremorogenic fungal metabolite, paxilline, is widely used as a potent and relatively specific blocker of Ca2+- and voltage-activated Slo1 (or BK) K+ channels. The pH-regulated Slo3 K+ channel, a Slo1 homologue, is resistant to blockade by paxilline. Taking advantage of the marked differences in paxilline sensitivity and the homology between subunits, we have examined the paxilline sensitivity of a set of chimeric Slo1/Slo3 subunits. Paxilline sensitivity is associated with elements of the S5–P loop–S6 module of the Slo1 channel. Replacement of the Slo1 S5 segment or the second half of the P loop results in modest changes in paxilline sensitivity. Replacing the Slo1 S6 segment with the Slo3 sequence abolishes paxilline sensitivity. An increase in paxilline affinity and changes in block kinetics also result from replacing the first part of the Slo1 P loop, the so-called turret, with Slo3 sequence. The Slo1 and Slo3 S6 segments differ at 10 residues. Slo1-G311S was found to markedly reduce paxilline block. In constructs with a Slo3 S6 segment, S300G restored paxilline block, but most effectively when paired with a Slo1 P loop. Other S6 residues differing between Slo1 and Slo3 had little influence on paxilline block. The involvement of Slo1 G311 in paxilline sensitivity suggests that paxilline may occupy a position within the central cavity or access its blocking position through the central cavity. To explain the differences in paxilline sensitivity between Slo1 and Slo3, we propose that the G311/S300 position in Slo1 and Slo3 underlies a structural difference between subunits in the bend of S6, which influences the occupancy by paxilline. PMID:20421373

  3. Modulation of ryanodine receptor Ca2+ channels (Review).

    PubMed

    Ozawa, Terutaka

    2010-01-01

    Ryanodine-sensitive Ca2+ release channels (ryanodine receptors, RyRs) play a crucial role in the mobilization of Ca2+ from the sarcoplasmic reticulum (SR) during the excitation-contraction coupling of muscle cells. In skeletal muscle, depolarization of transverse tubules activates the RyR, whereas in cardiac muscle, a Ca2+ influx through an L-type Ca2+ channel activates the RyR. The RyR is also activated by caffeine, a low concentration (<10 µM) of ryanodine or cyclic ADP-ribose. RyR activity is inhibited by Mg2+, ruthenium red, or higher concentrations (≥100 µM) of ryanodine. The activity of RyR channels is modulated by phosphorylation and by associated proteins, including calmodulin (CaM), calsequestrin (CSQ) and FK506-binding proteins (FKBPs). In muscle cells, apoCaM (Ca2+-free CaM) activates the RyR channel, and Ca2+ CaM (Ca2+-bound CaM) inhibits the channel. CSQ can bind approximately 40 moles of Ca2+/mole of CSQ in the SR lumen of muscle cells, and interacts functionally with RyR protein. When the RyR is stimulated, Ca2+ released from the lumen is dissociated from the CSQ- Ca2+ complex. A 12-kDa or 12.6-kDa FK506-binding protein (FKBP12 or FKBP12.6, respectively) is associated with RyR protein. When FKBP12 or FKBP12.6 is dissociated from the FKBP-RyR complex, the RyR is modulated (activated). Phosphorylation of the RyR by cAMP-dependent protein kinase (PKA) and Ca2+/calmodulin-dependent protein kinase II modulates the channel. PKA phosphorylation of the RyR on the skeletal and cardiac muscle SR dissociates FKBP12 or FKBP12.6 from the RyR complex. This review deals with the modulation mechanisms of RyR proteins by associated proteins and phosphorylation.

  4. Adrenergic Regulation of HCN4 Channel Requires Protein Association with β2-Adrenergic Receptor*

    PubMed Central

    Greene, Derek; Kang, Seungwoo; Kosenko, Anastasia; Hoshi, Naoto

    2012-01-01

    β1- and β2-adrenergic receptors utilize different signaling mechanisms to control cardiac function. Recent studies demonstrated that β2-adrenergic receptors (β2ARs) colocalize with some ion channels that are critical for proper cardiac function. Here, we demonstrate that β2ARs form protein complexes with the pacemaker HCN4 channel, as well as with other subtypes of HCN channels. The adrenergic receptor-binding site was identified at a proximal region of the N-terminal tail of the HCN4 channel. A synthetic peptide derived from the β2AR-binding domain of the HCN4 channel disrupted interaction between HCN4 and β2AR. In addition, treatment with this peptide prevented adrenergic augmentation of pacemaker currents and spontaneous contraction rates but did not affect adrenergic regulation of voltage-gated calcium currents. These results suggest that the ion channel-receptor complex is a critical mechanism in ion channel regulation. PMID:22613709

  5. Adrenergic regulation of HCN4 channel requires protein association with β2-adrenergic receptor.

    PubMed

    Greene, Derek; Kang, Seungwoo; Kosenko, Anastasia; Hoshi, Naoto

    2012-07-06

    β(1)- and β(2)-adrenergic receptors utilize different signaling mechanisms to control cardiac function. Recent studies demonstrated that β(2)-adrenergic receptors (β(2)ARs) colocalize with some ion channels that are critical for proper cardiac function. Here, we demonstrate that β(2)ARs form protein complexes with the pacemaker HCN4 channel, as well as with other subtypes of HCN channels. The adrenergic receptor-binding site was identified at a proximal region of the N-terminal tail of the HCN4 channel. A synthetic peptide derived from the β(2)AR-binding domain of the HCN4 channel disrupted interaction between HCN4 and β(2)AR. In addition, treatment with this peptide prevented adrenergic augmentation of pacemaker currents and spontaneous contraction rates but did not affect adrenergic regulation of voltage-gated calcium currents. These results suggest that the ion channel-receptor complex is a critical mechanism in ion channel regulation.

  6. Drug discrimination analysis of NMDA receptor channel blockers as nicotinic receptor antagonists in rats.

    PubMed

    Zakharova, E S; Danysz, W; Bespalov, A Y

    2005-04-01

    Antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors inhibit various phenomena associated with exposures to nicotine (e.g., tolerance, sensitization, dependence, and intravenous self-administration). These effects are often discussed in terms of nicotine-induced glutamate release with subsequent glutamate-dependent stimulation of dopamine metabolism and neuronal plasticity in brain areas critically involved in drug-addiction mechanisms. However, it is also well established that certain types of NMDA receptor antagonists (channel blockers) potently bind to nicotinic receptors and may act as nicotinic receptor antagonists. The present study aimed to evaluate the discriminative-stimulus effects of the NMDA receptor channel blockers (+)MK-801, dextromethorphan, and memantine in rats trained to discriminate nicotine from its vehicle. Adult male Wistar rats were trained to discriminate 0.6 mg/kg nicotine from saline under a two-lever, fixed-ratio 10 schedule of food reinforcement. During test sessions, injections of (+)MK-801 (0.03--0.3 mg/kg, i.p.), dextromethorphan (30 mg/kg, s.c.), or memantine (1--10 mg/kg, i.p.) were co-administered with s.c. nicotine (0.075--0.6 mg/kg; interaction tests) or saline (generalization tests). Additional interaction and generalization tests were conducted with the selective nicotinic receptor antagonists mecamylamine (0.1--3 mg/kg, s.c.) and MRZ 2/621 (0.3--10 mg/kg, i.p.), and the mGlu5 receptor antagonist MPEP (3--10 mg/kg, i.p.). In generalization tests, none of the compounds produced any appreciable levels of substitution for nicotine. The nicotine discriminative-stimulus control was dose dependently attenuated by mecamylamine (ED(50)=0.67 mg/kg) and MRZ 2/621 (ED(50)=9.7 mg/kg). Both agents produced a marked downward shift in the nicotine dose-response curve. Memantine and MPEP slightly attenuated nicotine discriminative-stimulus effects, while (+)MK-801 and dextromethorphan did not affect the

  7. Introduction to Thematic Minireview Series on Celebrating the Discovery of the Cysteine Loop Ligand-gated Ion Channel Superfamily

    PubMed Central

    Stephenson, F. Anne

    2012-01-01

    The year 2012 marks the 25th anniversary of the discovery of the Cys loop ligand-gated ion channel superfamily of neurotransmitter receptors. This minireview series celebrates this with a series of articles reviewing current information for each of the family members, nicotinic acetylcholine receptors, glycine receptors, GABAA receptors, serotonin-3 (5-HT3) receptors, and glutamate-gated chloride ion channels of proteasome invertebrate phyla. PMID:23038255

  8. Chicken T-cell receptor beta-chain diversity: an evolutionarily conserved D beta-encoded glycine turn within the hypervariable CDR3 domain.

    PubMed Central

    McCormack, W T; Tjoelker, L W; Stella, G; Postema, C E; Thompson, C B

    1991-01-01

    Unlike mammals, chickens generate an immunoglobulin (Ig) repertoire by a developmentally regulated process of intrachromosomal gene conversion, which results in nucleotide substitutions throughout the variable regions of the Ig heavy- and light-chain genes. In contrast to chicken Ig genes, we show in this report that diversity of the rearranged chicken T-cell receptor (TCR) beta-chain gene is generated by junctional heterogeneity, as observed in rearranged mammalian TCR genes. This junctional diversity increases during chicken development as a result of an increasing base-pair addition at the V beta-D beta and D beta-J beta joints (where V, D, and J are the variable, diversity, and joining gene segments). Despite the junctional hypervariability, however, almost all functional V beta-D beta-J beta junctions appear to encode a glycine-containing beta-turn. Such a turn may serve to position the amino acid side chains of a hypervariable TCR beta-chain loop with respect to the antigen-binding groove of the major histocompatibility complex molecule. Consistent with this hypothesis, the germ-line D beta nucleotide sequences of chickens, mice, rabbits, and humans have been highly conserved and encode a glycine in all three reading frames. Images PMID:1652759

  9. Voltage dependence of acetylcholine receptor channel gating in rat myoballs

    PubMed Central

    1992-01-01

    Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and - 100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential. PMID:1460456

  10. Receptor binding activities of Chlorella on cysteinyl leukotriene CysLT, glutamate AMPA, ion channels, purinergic P 2Y, tachykinin NK2 receptors and adenosine transporter.

    PubMed

    Cheng, Fong-Chi; Feng, Jin-Jye; Chen, Kuo-Hsin; Imanishi, Hideyo; Fujishima, Masaki; Takekoshi, Hideo; Naoki, Yo; Shimoda, Minoru

    2010-01-01

    A Chlorella powder was tested in a total of 129 in vitro receptor binding assay systems. The results showed a potent inhibition of this powder on cysteinyl leukotriene CysLT2, and glutamate AMPA in a dose-concentration manner with IC(50) mean +/- SEM values of 20 +/- 4.5 microg/mL and 44 +/- 14 microg/mL, respectively. Other moderate and weak activities reflected in competitive binding experiments were seen versus adenosine transporter; calcium channel L-type, benzothiazepine; gabapentin; kainate, NMDA-glycine; inositol trisphosphate IP(3); cysteinyl CysLT(1), LTB(4); purinergic P(2Y); tachykinin NK(2); serotonin 5-HT(2B) and prostanoid, thromboxane A(2). Together, the results suggest that the various inhibitory effects of Chlorella powder in these receptor binding assays could reflect its actions in modulating Ca(2+)-dependent signal related targets and might be relevant to the mechanisms of its biological effects. These results reveal important potential biochemical activities that might be exploited for the prevention or treatment of several pathologies. From these results, the possible therapeutic usage of the product is discussed. (c) 2009 John Wiley & Sons, Ltd.

  11. Mechanisms of GABA- and glycine-induced increases of cytosolic Ca2+ concentrations in chick embryo ciliary ganglion cells.

    PubMed

    Sorimachi, M; Rhee, J S; Shimura, M; Akaike, N

    1997-08-01

    We used fura-2 microfluorometry and the gramicidin-perforated patch clamp technique in an attempt to clarify the mechanisms underlying the GABA- and glycine-induced increases in the cytosolic Ca2+ concentration ([Ca]in) in acutely isolated chick embryo ciliary ganglion neurons. GABA, glycine, and isoguvacine, but not baclofen, increased [Ca]in in a dose- and a Ca2+-dependent manner. The GABA-induced [Ca]in increase was inhibited by bicuculline and picrotoxin, and potentiated by pentobarbital, flunitrazepam, and alphaxalone, whereas the glycine-induced [Ca]in increase was inhibited by strychnine but not by bicuculline or picrotoxin. L- and N-type Ca2+ channel blockers inhibited the GABA- and glycine-induced [Ca]in increases, whereas Bay K-8644 potentiated these responses. These responses were also substantially potentiated by blockers of various K+ channels and by lowering the external Cl- concentrations. The high KCI- and nicotine-induced [Ca]in increases were substantially reduced during continuous stimulation with either 2 microM GABA or 1 mM glycine. Electrophysiological studies indicated that the reversal potential of the GABA-induced current exhibited a more depolarized value than the resting membrane potential in 17 of the 25 cells examined. Taken together, these results suggest that both GABA and glycine depolarize the membrane potentials by increasing Cl- conductance via respective receptors and thus increase the Ca2+ influxes through L- and N-type voltage-dependent Ca2+ channels.

  12. Spinal prostaglandin E receptors of the EP2 subtype and the glycine receptor alpha3 subunit, which mediate central inflammatory hyperalgesia, do not contribute to pain after peripheral nerve injury or formalin injection.

    PubMed

    Hösl, Katharina; Reinold, Heiko; Harvey, Robert J; Müller, Ulrike; Narumiya, Shuh; Zeilhofer, Hanns Ulrich

    2006-12-15

    Inflammation, peripheral nerve injury and chemical irritants can cause central sensitization in pain pathways. Prostaglandins produced in the CNS induce central sensitization during inflammation mainly by relieving nociceptive neurons from glycinergic inhibition. We have recently identified spinal prostaglandin E receptors of the EP2 subtype (EP2 receptors) and the glycine receptor alpha3 subunit (GlyR alpha3) as signal transduction elements involved in the generation of central inflammatory hyperalgesia. It is however still unknown to what extent inhibition of glycine receptors by PGE2 contributes to neuropathic or chemically induced pain. To address this question, we have analyzed mice deficient in the EP2 receptor (EP2-/- mice) or in the GlyR alpha3 subunit (GlyR alpha3-/- mice) using the chronic constriction injury (CCI) model of neuropathic pain and the formalin test. We found that EP2-/- mice and GlyR alpha3-/- mice develop thermal and mechanical hyperalgesia in the CCI model indistinguishable from that seen in wild-type mice. In the formalin test, EP2-/- mice, but not GlyR alpha3-/- mice, exhibited reduced nocifensive behavior. The lack of a phenotype in GlyR alpha3-/- mice together with the absence of a facilitating effect of intrathecal PGE2 on formalin-induced nociception in wild-type mice suggests that peripheral rather than spinal EP2 receptors are involved. These results indicate that inhibition of glycinergic neurotransmission by EP2 receptor activation does not contribute to pain following peripheral nerve injury or chemical irritation with formalin. Our results thus provide further evidence that inflammatory hyperalgesia and neuropathic pain involve different mechanisms of central sensitization.

  13. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region.

    PubMed Central

    Hirai, H; Kirsch, J; Laube, B; Betz, H; Kuhse, J

    1996-01-01

    The N-methyl-D-aspartate (NMDA) subtype of ionotropic glutamate receptors is a heterooligomeric membrane protein composed of homologous subunits. Here, the contribution of the M3-M4 loop of the NR1 subunit to the binding of glutamate and the co-agonist glycine was investigated by site-directed mutagenesis. Substitution of the phenylalanine residues at positions 735 or 736 of the M3-M4 loop produced a 15- to 30-fold reduction in apparent glycine affinity without affecting the binding of glutamate and the competitive glycine antagonist 7-chlorokynurenic acid; mutation of both residues caused a >100-fold decrease in glycine affinity. These residues are found in a C-terminal region of the M3-M4 loop that shows significant sequence similarity to bacterial amino acid-binding proteins. Epitope tagging revealed both the N-terminus and the M3-M4 loop to be exposed extracellularly, whereas a C-terminal epitope was localized intracellularly. These results indicate that the M3-M4 loop is part of the ligand-binding pocket of the NR1 subunit and provide the basis for a refined model of the glycine-binding site of the NMDA receptor. Images Fig. 3 Fig. 4 PMID:8650214

  14. Loss of Glycine Transporter 1 Causes a Subtype of Glycine Encephalopathy with Arthrogryposis and Mildly Elevated Cerebrospinal Fluid Glycine.

    PubMed

    Kurolap, Alina; Armbruster, Anja; Hershkovitz, Tova; Hauf, Katharina; Mory, Adi; Paperna, Tamar; Hannappel, Ewald; Tal, Galit; Nijem, Yusif; Sella, Ella; Mahajnah, Muhammad; Ilivitzki, Anat; Hershkovitz, Dov; Ekhilevitch, Nina; Mandel, Hanna; Eulenburg, Volker; Baris, Hagit N

    2016-11-03

    Glycine is a major neurotransmitter that activates inhibitory glycine receptors and is a co-agonist for excitatory glutamatergic N-methyl-D-aspartate (NMDA) receptors. Two transporters, GLYT1 and GLYT2, regulate extracellular glycine concentrations within the CNS. Dysregulation of the extracellular glycine has been associated with hyperekplexia and nonketotic hyperglycinemia. Here, we report four individuals from two families who presented at birth with facial dysmorphism, encephalopathy, arthrogryposis, hypotonia progressing to hypertonicity with startle-like clonus, and respiratory failure. Only one individual survived the respiratory failure and was weaned off ventilation but has significant global developmental delay. Mildly elevated cerebrospinal fluid (CSF) glycine and normal serum glycine were observed in two individuals. In both families, we identified truncating mutations in SLC6A9, encoding GLYT1. We demonstrate that pharmacologic or genetic abolishment of GlyT1 activity in mice leads to mildly elevated glycine in the CSF but not in blood. Additionally, previously reported slc6a9-null mice and zebrafish mutants also display phenotypes consistent with the affected individuals we examined. Our data suggest that truncating SLC6A9 mutations lead to a distinct human neurological syndrome hallmarked by mildly elevated CSF glycine and normal serum glycine. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Postnatal development of glycine receptor subunits α1, α2, α3, and β immunoreactivity in multiple brain stem respiratory-related nuclear groups of the rat

    PubMed Central

    LIU, QIULI; WONG-RILEY, MARGARET T.T.

    2013-01-01

    The respiratory system is immature at birth and significant development occurs postnatally. A critical period of respiratory development occurs in rats around postnatal days 12-13, when enhanced inhibition dominates over suppressed excitation. The mechanisms underlying the heightened inhibition are not fully understood. The present study tested our hypothesis that the inhibition is marked by a switch in glycine receptor subunits from neonatal to adult form around the critical period. An in-depth immunohistochemical and single neuron optical densitometric study was undertaken on four respiratory-related nuclear groups (the pre-Bötzinger complex, nucleus ambiguus, hypoglossal nucleus, and ventrolateral subnucleus of solitary tract nucleus), and a non-respiratory cuneate nucleus in P2-21 rats. Our data revealed that in the respiratory-related nuclear groups: (1) the expressions of GlyRα2 and GlyRα3 were relatively high at P2, but declined after 1-1½ weeks to their lowest levels at P21; (2) the expression of GlyRα1 increased with age and reached significance at P12; and (3) the expression of GlyRβ rose from P2 to P12 followed by a slight decline until P21. No distinct increase in GlyRα1 at P12 was noted in the cuneate nucleus. Thus, there is a switch in dominance of expression from neonatal GlyRα2/α3 to the adult GlyRα1 and a heightened expression of GlyRα1 around the critical period in all respiratory-related nuclear groups, thereby supporting enhanced inhibition at that time. The rise in the expression of GlyRβ around P12 indicates that it plays an important role in forming the mature heteropentameric glycine receptors in these brain stem nuclear groups. PMID:24080401

  16. Phenylalanine derivatives with modulating effects on human α1-glycine receptors and anticonvulsant activity in strychnine-induced seizure model in male adult rats.

    PubMed

    Sadek, Bassem; Oz, Murat; Nurulain, Syed M; Jayaprakash, Petrilla; Latacz, Gniewomir; Kieć-Kononowicz, Katarzyna; Szymańska, Ewa

    2017-05-26

    The critical role of α1-glycine receptor (α1-GLYRs) in pathological conditions such as epilepsy is well known. In the present study, structure-activity relations for a series of phenylalanine derivatives carrying selected hydrogen bond acceptors were investigated on the functional properties of human α1-GLYR expressed in Xenopus oocytes. The results indicate that one particular substitution position appeared to be of special importance for control of ligand activity. Among tested ligands (1-8), the biphenyl derivative (2) provided the most promising antagonistic effect on α1-GLYRs, while its phenylbenzyl analogue (5) exhibited the highest potentiation effect. Moreover, ligand 5 with most promising potentiating effect showed in-vivo moderate protection when tested in strychnine (STR)-induced seizure model in male adult rats, whereas ligand 2 with highest antagonistic effect failed to provide appreciable anti(pro)convulsant effect. Furthermore, ligands 2 and 5 with the most promising effects on human α1-GLYRs were examined for their toxicity and potential neuroprotective effect against neurotoxin 6-hydroxydopamine (6-OHDA). The results show that ligands 2 and 5 possessed neither significant antiproliferative effects, nor necrotic and mitochondrial toxicity (up to concentration of 50μM). Moreover, ligand 2 showed weak neuroprotective effect at the 50μM against 100μM toxic dose of 6-OHDA. Our results indicate that modulatory effects of ligands 2 and 5 on human α1-GLYRs as well as on STR-induced convulsion can provide further insights for the design of therapeutic agents in treatment of epilepsy and other pathological conditions requiring enhanced activity of inhibitory glycine receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex.

    PubMed

    Ladera, Carolina; del Carmen Godino, María; José Cabañero, María; Torres, Magdalena; Watanabe, Masahiko; Luján, Rafael; Sánchez-Prieto, José

    2008-12-01

    Neuronal G protein-gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post-synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABA(B) receptors. In this study, we show for the first time that GABA(B) receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABA(B) receptors reduces glutamate release and the Ca(2+) influx mediated by N-type Ca(2+) channels in a mode insensitive to the GIRK channel blocker tertiapin-Q and consistent with direct inhibition of this voltage-gated Ca(2+) channel. However, by means of weak stimulation protocols, we reveal that GABA(B) receptors also reduce glutamate release mediated by P/Q-type Ca(2+) channels, and that these responses are reversed by the GIRK channel blocker tertiapin-Q. Consistent with the functional interaction between GABA(B) receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre-synaptic boutons of asymmetric synapses co-express GABA(B) receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post-synaptic level, also occurs at glutamatergic nerve terminals.

  18. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication.

    PubMed

    Deleuze, C; Alonso, G; Lefevre, I A; Duvoid-Guillou, A; Hussy, N

    2005-01-01

    Neurons of the rat supraoptic nucleus (SON) express glycine receptors (GlyRs), which are implicated in the osmoregulation of neuronal activity. The endogenous agonist of the receptors has been postulated to be taurine, shown to be released from astrocytes. We here provide additional pieces of evidence supporting the absence of functional glycinergic synapses in the SON. First, we show that blockade of GlyRs with strychnine has no effect on either the amplitude or frequency of miniature inhibitory postsynaptic currents recorded in SON neurons, whereas they were all suppressed by the GABA(A) antagonist gabazine. Then, double immunostaining of sections with presynaptic markers and either GlyR or GABA(A) receptor (GABA(A)R) antibodies indicates that, in contrast with GABA(A)Rs, most GlyR membrane clusters are not localized facing presynaptic terminals, indicative of their extrasynaptic localization. Moreover, we found a striking anatomical association between SON GlyR clusters and glial fibrillary acidic protein (GFAP)-positive astroglial processes, which contain high levels of taurine. This type of correlation is specific to GlyRs, since GABA(A)R clusters show no association with GFAP-positive structures. These results substantiate and strengthen the concept of extrasynaptic GlyRs mediating a paracrine communication between astrocytes and neurons in the SON.

  19. A Glycine Insertion in the Estrogen-Related Receptor (ERR) Is Associated with Enhanced Expression of Three Cytochrome P450 Genes in Transgenic Drosophila melanogaster

    PubMed Central

    Sun, Weilin; Valero, M. Carmen; Seong, Keon Mook; Steele, Laura D.; Huang, I-Ting; Lee, Chien-Hui; Clark, John M.; Qiu, Xinghui; Pittendrigh, Barry R.

    2015-01-01

    Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4’-dichlorodiphenyltrichloroethane (DDT) resistant strains the glucocorticoid receptor-like (GR-like) potential transcription factor binding motifs (TFBMs) have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR) in D. melanogaster is an estrogen-related receptor (ERR) gene, which has two predicted alternative splice isoforms (ERRa and ERRb). Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G) codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G). Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera. PMID:25761142

  20. Activation of glycine and extrasynaptic GABA(A) receptors by taurine on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis.

    PubMed

    Nguyen, Thi Thanh Hoang; Bhattarai, Janardhan Prasad; Park, Soo Joung; Han, Seong Kyu

    2013-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10  μM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3  μM and 723  μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50  μM) and almost completely blocked by strychnine (2  μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABA(A) receptor (GABA(A)R)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABA(A)Rs on the SG neurons.

  1. Reversible block of the calcium release channel/ryanodine receptor by protamine, a heparin antidote.

    PubMed

    Koulen, P; Ehrlich, B E

    2000-07-01

    Channel activity of the calcium release channel from skeletal muscle, ryanodine receptor type 1, was measured in the presence and absence of protamine sulfate on the cytoplasmic side of the channel. Single-channel activity was measured after incorporating channels into planar lipid bilayers. Optimally and suboptimally calcium-activated calcium release channels were inactivated by the application of protamine to the cytoplasmic side of the channel. Recovery of channel activity was not observed while protamine was present. The addition of protamine bound to agarose beads did not change channel activity, implying that the mechanism of action involves an interaction with the ryanodine receptor rather than changes in the bulk calcium concentration of the medium. The block of channel activity by protamine could be reversed either by removal by perfusion with buffer or by the addition of heparin to the cytoplasmic side of the channel. Microinjection of protamine into differentiated C(2)C(12) mouse muscle cells prevented caffeine-induced intracellular calcium release. The results suggest that protamine acts on the ryanodine receptor in a similar but opposite manner from heparin and that protamine can be used as a potent, reversible inhibitor of ryanodine receptor activity.

  2. Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons.

    PubMed Central

    Reichling, D B; Kyrozis, A; Wang, J; MacDermott, A B

    1994-01-01

    1. The mechanisms and effects of GABA- and glycine-evoked depolarization were studied in cultured rat dorsal horn neurons using indo-1 recordings of [Ca2+]i and patch clamp recordings in conventional whole-cell or perforated-patch mode. 2. Application of GABA to unclamped neurons caused [Ca2+]i increases that were dose dependent and exhibited GABAA receptor pharmacology. Calcium entered the neurons via high-threshold voltage-gated calcium channels (conotoxin and nimodipine sensitive). 3. In perforated-patch recordings employing cation-selective ionophores, GABAA receptor activation depolarized 123 of 132 cells to membrane potentials as depolarized as -33 mV (mean -50 mV in all 132 cells, +12 mV above resting potential). The ionic basis of the depolarization was determined by extracellular ion substitution; increased anionic conductance could account fully for the results. 4. Glycine, acting at a strychnine-sensitive receptor, also caused Ca2+ entry into these neurons through voltage-gated Ca2+ channels. Glycine and GABA both evoked [Ca2+]i responses in the same cells and the responses were highly correlated in amplitude. Glycine also depolarized all five cells tested with perforated recording. Each of the five cells was also depolarized by muscimol to a value similar to that obtained for glycine. 5. Both the depolarization and the increases in [Ca2+]i caused by GABA and glycine could potentially play a role in processes of development and differentiation and sensory transmission in the spinal cord dorsal horn. PMID:8057250

  3. Mutation of proline-1003 to glycine in the epidermal growth factor (EGF) receptor enhances responsiveness to EGF.

    PubMed Central

    Schuh, S M; Newberry, E P; Dalton, M A; Pike, L J

    1994-01-01

    We have shown previously that the epidermal growth factor (EGF) receptor is phosphorylated at Ser-1002 and that this phosphorylation is associated with desensitization of the EGF receptor. Ser-1002 is followed immediately by Pro-1003, a residue that may promote the adoption of a specific conformation at this site or severe as a recognition element for the interaction of the EGF receptor with other proteins. To examine these possibilities, we have mutated Pro-1003 of the EGF receptor to a Gly residue and have analyzed the effect of this mutation on EGF-stimulated signaling. Cells expressing the P1003G EGF receptors exhibited higher EGF-stimulated autophosphorylation and synthetic peptide phosphorylation compared to cells expressing wild-type EGF receptors. In addition, the ability of EGF to stimulate PI 3-kinase activity and mitogen-activated protein kinase activity was enhanced in cells expressing the P1003G EGF receptor. Cells expressing P1003G receptors also demonstrated an increased ability to form colonies in soft agar in response to EGF. These results indicate that mutation of Pro-1003 leads to a potentiation of the biological effects of EGF. The findings are consistent with the hypothesis that Pro-1003 plays a role in a form of regulation that normally suppresses EGF receptor function. Images PMID:7812043

  4. Incorporation of acetylcholine receptors and Cl- channels in Xenopus oocytes injected with Torpedo electroplaque membranes.

    PubMed Central

    Marsal, J; Tigyi, G; Miledi, R

    1995-01-01

    A method was developed to transplant assembled nicotinic acetylcholine receptors (AcChoRs) and Cl- channels from the electric organ of Torpedo to the membrane of Xenopus oocytes. Membrane vesicles from Torpedo electroplaques were injected into the oocytes and, within a few hours, the oocyte membrane acquired AcChoRs and Cl- channels. The mechanism of expression of these receptors and channels is very different from that which follows the injection of mRNA, since the appearance of receptors after membrane injection does not require de novo protein synthesis or N-glycosylation. This, and other controls, indicate that the foreign receptor-bearing membranes fuse with the oocyte membrane and cause the appearance of functional receptors and channels. All this makes the Xenopus oocyte an even more powerful tool for studies of the structure and function of membrane proteins. PMID:7761478

  5. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    PubMed

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  6. Transient Receptor Potential Canonical 1 (TRPC1) Channels as Regulators of Sphingolipid and VEGF Receptor Expression

    PubMed Central

    Asghar, Muhammad Yasir; Magnusson, Melissa; Kemppainen, Kati; Sukumaran, Pramod; Löf, Christoffer; Pulli, Ilari; Kalhori, Veronica; Törnquist, Kid

    2015-01-01

    The identity of calcium channels in the thyroid is unclear. In human follicular thyroid ML-1 cancer cells, sphingolipid sphingosine 1-phosphate (S1P), through S1P receptors 1 and 3 (S1P1/S1P3), and VEGF receptor 2 (VEGFR2) stimulates migration. We show that human thyroid cells express several forms of transient receptor potential canonical (TRPC) channels, including TRPC1. In TRPC1 knockdown (TRPC1-KD) ML-1 cells, the basal and S1P-evoked invasion and migration was attenuated. Furthermore, the expression of S1P3 and VEGFR2 was significantly down-regulated. Transfecting wild-type ML-1 cells with a nonconducting TRPC1 mutant decreased S1P3 and VEGFR2 expression. In TRPC1-KD cells, receptor-operated calcium entry was decreased. To investigate whether the decreased receptor expression was due to attenuated calcium entry, cells were incubated with the calcium chelator BAPTA-AM (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). In these cells, and in cells where calmodulin and calmodulin-dependent kinase were blocked pharmacologically, S1P3 and VEGFR2 expression was decreased. In TRPC1-KD cells, both hypoxia-inducible factor 1α expression and the secretion and activity of MMP2 and MMP9 were attenuated, and proliferation was decreased in TRPC1-KD cells. This was due to a prolonged G1 phase of the cell cycle, a significant increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27, and a decrease in the expression of cyclin D2, cyclin D3, and CDK6. Transfecting TRPC1 to TRPC1-KD cells rescued receptor expression, migration, and proliferation. Thus, the expression of S1P3 and VEGFR2 is mediated by a calcium-dependent mechanism. TRPC1 has a crucial role in this process. This regulation is important for the invasion, migration, and proliferation of thyroid cancer cells. PMID:25971967

  7. sigma Receptor activation blocks potassium channels and depresses neuroexcitability in rat intracardiac neurons.

    PubMed

    Zhang, Hongling; Cuevas, Javier

    2005-06-01

    The sigma receptors have been implicated in the regulation of the cardiovascular system, and sigma-1 receptor transcripts have been found in parasympathetic intracardiac neurons. However, the cellular function of sigma-1 receptors in these cells remains to be determined. Effects of sigma receptor activation on voltage-activated K(+) channels and action potential firing were studied in isolated intracardiac neurons using whole-cell patch-clamp recording techniques. Activation of sigma receptors reversibly blocked delayed outwardly rectifying potassium channels, large conductance Ca(2+)-sensitive K(+) channels, and the M-current with maximal inhibition >80%. The inhibition of K(+) channels by sigma ligands was dose-dependent, and the rank order potency of (+)-pentazocine > ibogaine > 1,3-di-O-tolyguanidin (DTG) suggests that the effect is mediated by sigma-1 receptor activation. Preincubation of neurons with the irreversible sigma receptor antagonist metaphit blocked DTG-induced inhibition of K(+) channels, confirming that the effect is mediated by sigma receptor activation. Although bath application of sigma ligands depolarized intracardiac neurons, the number of action potentials fired by the cells in response to depolarizing current pulses was decreased in the presence of these drugs. Neither dialysis of the neurons nor application of intracellular 5'-O-(2-thiodiphosphate) trilithium salt inhibited the effect of sigma receptors on K(+) channels, which suggests that the signal transduction pathway does not involve a diffusible cytosolic second messenger or a G protein. Together, these data suggest that sigma-1 receptors are directly coupled to K(+) channels in intracardiac neurons. Furthermore, activation of sigma-1 receptors depresses the excitability of intracardiac neurons and is thus likely to block parasympathetic input to the heart.

  8. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    PubMed

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation.

  9. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses.

    PubMed

    Sun, XiaoLi; Sun, Mingzhe; Luo, Xiao; Ding, XiaoDong; Ji, Wei; Cai, Hua; Bai, Xi; Liu, XiaoFei; Zhu, YanMing

    2013-06-01

    Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses.

  10. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  11. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    PubMed

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  12. A Transient Receptor Potential Ion Channel in Chlamydomonas Shares Key Features with Sensory Transduction-Associated TRP Channels in Mammals

    PubMed Central

    Arias-Darraz, Luis; Cabezas, Deny; Colenso, Charlotte K.; Alegría-Arcos, Melissa; Bravo-Moraga, Felipe; Varas-Concha, Ignacio; Almonacid, Daniel E.; Madrid, Rodolfo; Brauchi, Sebastian

    2015-01-01

    Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes. PMID:25595824

  13. Functional Coupling of Ca2+ Channels and Ryanodine Receptors in Cardiac Myocytes

    NASA Astrophysics Data System (ADS)

    Sham, James S. K.; Cleemann, Lars; Morad, Martin

    1995-01-01

    In skeletal muscle, dihydropyridine receptors are functionally coupled to ryanodine receptors of the sarcoplasmic reticulum in triadic or diadic junctional complexes. In cardiac muscle direct physical or functional couplings have not been demonstrated. We have tested the hypothesis of functional coupling of L-type Ca2+ channels and ryanodine receptors in rat cardiac myocytes by comparing the efficacies of Ca2+ in triggering Ca2+ release when the ion enters the cell via the Ca2+ channels or the Na^+/Ca2+ exchanger. Ca2+ transported through the Ca2+ channels was 20-160 times more effective than Ca2+ influx via the Na^+/Ca2+ exchanger in gating Ca2+ release from the sarcoplasmic reticulum, suggesting privileged communication between Ca2+ channels and ryanodine receptors. In support of this hypothesis we found that Ca2+ channels were inactivated by Ca2+ release from the sarcoplasmic reticulum, even though the myoplasmic Ca2+ concentrations were buffered with 10 mM EGTA. The data thus suggest privileged cross signaling between the dihydropyridine and ryanodine receptors such that Ca2+ flux through either the Ca2+ channel or the ryanodine receptor alters the gating kinetics of the other channel.

  14. Domain-based identification and analysis of glutamate receptor ion channels and their relatives in prokaryotes.

    PubMed

    Ger, Mao-Feng; Rendon, Gloria; Tilson, Jeffrey L; Jakobsson, Eric

    2010-10-06

    Voltage-gated and ligand-gated ion channels are used in eukaryotic organisms for the purpose of electrochemical signaling. There are prokaryotic homologues to major eukaryotic channels of these sorts, including voltage-gated sodium, potassium, and calcium channels, Ach-receptor and glutamate-receptor channels. The prokaryotic homologues have been less well characterized functionally than their eukaryotic counterparts. In this study we identify likely prokaryotic functional counterparts of eukaryotic glutamate receptor channels by comprehensive analysis of the prokaryotic sequences in the context of known functional domains present in the eukaryotic members of this family. In particular, we searched the nonredundant protein database for all proteins containing the following motif: the two sections of the extracellular glutamate binding domain flanking two transmembrane helices. We discovered 100 prokaryotic sequences containing this motif, with a wide variety of functional annotations. Two groups within this family have the same topology as eukaryotic glutamate receptor channels. Group 1 has a potassium-like selectivity filter. Group 2 is most closely related to eukaryotic glutamate receptor channels. We present analysis of the functional domain architecture for the group of 100, a putative phylogenetic tree, comparison of the protein phylogeny with the corresponding species phylogeny, consideration of the distribution of these proteins among classes of prokaryotes, and orthologous relationships between prokaryotic and human glutamate receptor channels. We introduce a construct called the Evolutionary Domain Network, which represents a putative pathway of domain rearrangements underlying the domain composition of present channels. We believe that scientists interested in ion channels in general, and ligand-gated ion channels in particular, will be interested in this work. The work should also be of interest to bioinformatics researchers who are interested in the use

  15. Demonstration of a Direct Interaction between σ-1 Receptors and Acid-Sensing Ion Channels

    PubMed Central

    Carnally, Stewart M.; Johannessen, Molly; Henderson, Robert M.; Jackson, Meyer B.; Edwardson, J. Michael

    2010-01-01

    The σ-1 receptor is a widely expressed protein that interacts with a variety of ion channels, including the acid-sensing ion channel (ASIC) 1a. Here we used atomic force microscopy to determine the architecture of the ASIC1a/σ-1 receptor complex. When isolated His8-tagged ASIC1a was imaged in complex with anti-His6 antibodies, the angle between pairs of bound antibodies was 135°, consistent with the known trimeric structure of the channel. When ASIC1a was coexpressed with FLAG/His6-tagged σ-1 receptor, ASIC1a became decorated with small particles, and pairs of these particles bound at an angle of 131°. When these complexes were incubated with anti-FLAG antibodies, pairs of antibodies bound at an angle of 134°, confirming that the small particles were σ-1 receptors. Of interest, we found that the σ-1 receptor ligand haloperidol caused an ∼50% reduction in ASIC1a/σ-receptor binding, suggesting a way in which σ-1 ligands might modulate channel properties. For the first time, to our knowledge, we have resolved the structure of a complex between the σ-1 receptor and a target ion channel, and demonstrated that the stoichiometry of the interaction is 1 σ-1 receptor/1 ASIC1a subunit. PMID:20371317

  16. Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    PubMed Central

    Seebacher, Frank; Murray, Shauna A.

    2007-01-01

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

  17. From The Cover: Microtransplantation of functional receptors and channels from the Alzheimer's brain to frog oocytes

    NASA Astrophysics Data System (ADS)

    Miledi, R.; Dueñas, Z.; Martinez-Torres, A.; Kawas, C. H.; Eusebi, F.

    2004-02-01

    About a decade ago, cell membranes from the electric organ of Torpedo and from the rat brain were transplanted to frog oocytes, which thus acquired functional Torpedo and rat neurotransmitter receptors. Nevertheless, the great potential that this method has for studying human diseases has remained virtually untapped. Here, we show that cell membranes from the postmortem brains of humans that suffered Alzheimer's disease can be microtransplanted to the plasma membrane of Xenopus oocytes. We show also that these postmortem membranes carry neurotransmitter receptors and voltage-operated channels that are still functional, even after they have been kept frozen for many years. This method provides a new and powerful approach to study directly the functional characteristics and structure of receptors, channels, and other membrane proteins of the Alzheimer's brain. This knowledge may help in understanding the basis of Alzheimer's disease and also help in developing new treatments. -aminobutyric acid receptors | sodium channels | calcium channels | postmortem brain

  18. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    PubMed Central

    Rivera-Acevedo, Ricardo E.; Pless, Stephan A.; Schwarz, Stephan K.W.; Ahern, Christopher A.

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing a pathway for large and otherwise relatively impermeant molecules. Further, we have shown recently that these nonselective cation channels, when activated by capsaicin, are potently and reversibly blocked by external application of quaternary ammonium compounds and local anesthetics. Here we describe a novel phenomenon in transient receptor potential channel pharmacology whereby their expression levels in Xenopus laevis oocytes, as assessed by the magnitude of macroscopic currents, are negatively correlated with extracellular blocker affinity: small current densities give rise to nanomolar blockade by quaternary ammoniums and this affinity decreases linearly as current density increases. Possible mechanisms to explain these data are discussed in light of similar observations in other channels and receptors. PMID:23428812

  19. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    PubMed

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.

  20. Optical control of trimeric P2X receptors and acid-sensing ion channels.

    PubMed

    Browne, Liam E; Nunes, João P M; Sim, Joan A; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; North, R Alan

    2014-01-07

    P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.

  1. Characterization of purinergic receptors and receptor-channels expressed in anterior pituitary cells.

    PubMed

    Koshimizu, T A; Tomić, M; Wong, A O; Zivadinovic, D; Stojilkovic, S S

    2000-11-01

    Purinergic G protein-coupled receptors (P2YR) and ion-conducting receptor-channels (P2XR) are present in the pituitary. However, their identification, expression within pituitary cell subpopulations, and the ability to elevate intracellular Ca2+ concentration ([Ca2+]i) in response to ATP stimulation were incompletely characterized. Here we show that mixed populations of rat anterior pituitary cells express messenger RNA transcripts for P2Y2R, P2X2aR, P2X2bR, P2X3R, P2X4R, and P2X7R. The transcripts and functional P2Y2R were identified in lactotrophs and GH3 cells, but not in somatotrophs and gonadotrophs, and their activation by ATP led to an extracellular Ca2+-independent rise in [Ca2+]i in about 40% of cells tested. Lactotrophs and GH3 cells, but not somatotrophs, also express transcripts for P2X7R, P2X3R, and P2X4R. Functional P2X7R were identified in 74% of lactotrophs, whereas 50% of these cells expressed P2X3R and 33% expressed P2X4R. Coexpression of these receptor subtypes in single lactotrophs was frequently observed. Purified somatotrophs expressed transcripts for P2X2aR and P2X2bR, and functional receptors were identified in somatotrophs and gonadotrophs, but not in lactotrophs. Consistent with the cell-specific expression of transcripts for P2X2R and P2X3R, the expression of their functional heteromers was not evident in pituitary cells. Receptors differed in their capacities to elevate and sustain Ca2+ influx-dependent rise in [Ca2+]i during the prolonged ATP stimulation. These results indicate that the purinergic system of anterior pituitary is extremely complex and provides an effective mechanism for generating a cell- and receptor-specific Ca2+ signaling pattern in response to a common agonist.

  2. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.

    PubMed

    McCracken, Lindsay M; Blednov, Yuri A; Trudell, James R; Benavidez, Jillian M; Betz, Heinrich; Harris, R Adron

    2013-02-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.

  3. Acetylcholine receptor: channel-opening kinetics evaluated by rapid chemical kinetic and single-channel current measurements.

    PubMed Central

    Udgaonkar, J. B.; Hess, G. P.

    1987-01-01

    A combination of rapid chemical kinetic (quench-flow) and single-channel current measurements was used to evaluate kinetic parameters governing the opening of acetylcholine-receptor channels in the electric organ (electroplax) of Electrophorus electricus. Chemical kinetic measurements made on membrane vesicles, prepared from the E. electricus electroplax, using carbamoylcholine (200 microM-20 mM) at 12 degrees C, pH 7.0, and in the absence of a transmembrane voltage, yielded values for K1 (dissociation constant for receptor activation), phi (channel closing equilibrium constant), J (specific reaction rate for ion flux), and alpha max (maximum inactivation rate constant) of 1 mM, 3.4, 4 x 10(7) M-1 s-1, and 12 s-1, respectively. The single-channel current recordings were made with cells also from the E. electricus electroplax, at the same temperature and pH as the chemical kinetic measurements, using carbamoylcholine (50 microM-2 mM), acetylcholine (500 nM), or suberyldicholine (20 nM). Single-channel current measurements indicated the presence of a single, unique open-channel state of the E. electricus receptor, in concurrence with previous, less extensive measurements. The rate constant for channel closing (kc) obtained from the mean open time of the receptor channel is 1,100 s-1 for carbamoylcholine, 1,200 s-1 for acetylcholine, and 360 s-1 for suberyldicholine at zero membrane potential; and it decreases e-fold for an 80 mV decrease in transmembrane voltage in each case. The decrease in mean open times of the receptor channel that is associated with increasing the carbamoylcholine concentration is interpreted to be due to carbamoylcholine binding to the regulatory (inhibitory) site on the receptor. An analysis of data obtained with carbamoylcholine showed that the closed times within a burst of channel activity fit a two-exponential distribution, with a concentration-independent time constant considered to be the time constant for carbamoylcholine to dissociate

  4. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  5. A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore.

    PubMed

    Kim, Sanguk; Chamberlain, Aaron K; Bowie, James U

    2004-08-01

    The nicotinic acetylcholine receptor is a neurotransmitter-gated ion channel in the postsynaptic membrane. It is composed of five homologous subunits, each of which contributes one transmembrane helix--the M2 helix--to create the channel pore. The M2 helix from the delta subunit is capable of forming a channel by itself. Although a model of the receptor was recently proposed based on a low-resolution, cryo-electron microscopy density map, we found that the model does not explain much of the other available experimental data. Here we propose a new model of the M2 channel derived solely from helix packing and symmetry constraints. This model agrees well with experimental results from solid-state NMR, chemical reactivity, and mutagenesis experiments. The model depicts the channel pore, the channel gate, and the residues responsible for cation specificity.

  6. Physical basis of apparent pore-dilation of ATP-activated P2X receptor channels

    PubMed Central

    Li, Mufeng; Toombes, Gilman E S; Silberberg, Shai D; Swartz, Kenton J

    2016-01-01

    The selectivity of ion channels is fundamental for their roles in electrical and chemical signaling, and ion homeostasis. Although most ion channels exhibit stable ion selectivity, the prevailing view for purinergic P2X receptor channels, transient receptor potential V1 (TRPV1) channels and acid sensing ion channels (ASICs) is that their ion conduction pores dilate upon prolonged activation. We investigated this mechanism in P2X receptors and found that the hallmark shift in equilibrium potential observed with prolonged channel activation does not result from pore dilation, but from time-dependent alterations in the concentration of intracellular ions. We derived a physical model to calculate ion concentration changes during patch-clamp recordings, which validates our experimental findings and provides a quantitative guideline for effectively controlling ion concentration. Our results have fundamental implications for understanding ion permeation and gating in P2X receptor channels, and more broadly for using patch-clamp techniques to study ion channels and neuronal excitability. PMID:26389841

  7. Principal pathway coupling agonist binding to channel gating in nicotinic receptors

    NASA Astrophysics Data System (ADS)

    Lee, Won Yong; Sine, Steven M.

    2005-11-01

    Synaptic receptors respond to neurotransmitters by opening an intrinsic ion channel in the final step in synaptic transmission. How binding of the neurotransmitter is conveyed over the long distance to the channel remains a central question in neurobiology. Here we delineate a principal pathway that links neurotransmitter binding to channel gating by using a structural model of the Torpedo acetylcholine receptor at 4-Å resolution, recordings of currents through single receptor channels and determinations of energetic coupling between pairs of residues. We show that a pair of invariant arginine and glutamate residues in each receptor α-subunit electrostatically links peripheral and inner β-sheets from the binding domain and positions them to engage with the channel. The key glutamate and flanking valine residues energetically couple to conserved proline and serine residues emerging from the top of the channel-forming α-helix, suggesting that this is the point at which the binding domain triggers opening of the channel. The series of interresidue couplings identified here constitutes a primary allosteric pathway that links neurotransmitter binding to channel gating.

  8. Allosteric modulation of ATP-gated P2X receptor channels

    PubMed Central

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  9. Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels.

    PubMed Central

    Wollmuth, L P; Kuner, T; Seeburg, P H; Sakmann, B

    1996-01-01

    1. The molecular determinants for the narrow constriction of recombinant N-methyl-D-aspartate (NMDA) receptor channels composed of wild-type and mutant NR1- and NR2A-subunits were studied in Xenopus oocytes. 2. The relative permeability of differently sized organic cations was used as an indicator of the size of the narrow constriction. From measured reversal potentials under bi-ionic conditions with K+ as the reference solution, permeability ratios were calculated with the Lewis equation. 3. For wild-type NMDA receptor channels, five organic cations showed clear reversal potentials, with permeability ratios (PX/PK): ammonium, 1.28; methylammonium, 0.48; dimethylammonium (DMA), 0.20; diethylammonium, 0.07; and dimethylethanol-ammonium, 0.02. 4. Mutation of the N-site asparagine (N) to glutamine (Q) at homologous positions in either NR1 (position 598) or NR2A (position 595) increased the permeability of DMA relative to wild-type channels about equally. However, for larger sized organic cations, the NR1(N598Q) mutation had stronger effects on increasing their permeability whereas the NR2A(N595Q) mutation was without effect. These changes in organic cation permeability suggest that the NR1(N598Q) mutation increases the pore size while the NR2A(N595Q) mutation does not. 5. Channels in which the NR1 N-site asparagine was replaced by the smaller glycine (G), NR1(N598G)-NR2A, showed the largest increase in pore size of all sites examined in either subunit. In contrast, in the NR2A-subunit the same N-site substitution to glycine produced only small effects on pore size. 6. For the NR2A-subunit, an asparagine residue (position 596) on the C-terminal side of the N-site, when mutated to larger or smaller sized amino acids, produced large, volume-specific effects on pore size. The mutant channel NR1-NR2A(N596G) had the largest increase in pore size of all sites examined in the NR2A-subunit. In contrast, mutation of the homologous position in the NR1-subunit had no effect on

  10. Channel catfish, Ictalurus punctatus, chemokine receptor CXCR4 cDNA

    USDA-ARS?s Scientific Manuscript database

    Chemokine receptor CXCR4, a member of the G protein-coupled receptor superfamily, binds selectively CXCL12. This protein plays many important roles in immunological as well as pathophysiological functions. In this communication, we identified and characterized the channel catfish CXCR4 transcript....

  11. Transient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons

    PubMed Central

    Estep, Chad M.; Galtieri, Daniel J.; Zampese, Enrico; Goldberg, Joshua A.; Brichta, Lars; Greengard, Paul; Surmeier, D. James

    2016-01-01

    Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) are richly innervated by GABAergic neurons. The postsynaptic effects of GABA on SNc DA neurons are mediated by a mixture of GABAA and GABAB receptors. Although activation of GABAA receptors inhibits spike generation, the consequences of GABAB receptor activation are less well characterized. To help fill this gap, perforated patch recordings were made from young adult mouse SNc DA neurons. Sustained stimulation of GABAB receptors hyperpolarized SNc DA neurons, as previously described. However, transient stimulation of GABAB receptors by optical uncaging of GABA did not; rather, it reduced the opening of small-conductance, calcium-activated K+ (SK) channels and increased the irregularity of spiking. This modulation was attributable to inhibition of adenylyl cyclase and protein kinase A. Thus, because suppression of SK channel activity increases the probability of burst spiking, transient co-activation of GABAA and GABAB receptors could promote a pause-burst pattern of spiking. PMID:28036359

  12. Molecular size of different neurotoxin receptors on the voltage-sensitive Na+ channel.

    PubMed

    Barhanin, J; Schmid, A; Lombet, A; Wheeler, K P; Lazdunski, M; Ellory, J C

    1983-01-25

    Measurements were made of the molecular sizes of two distinct receptors on the Na+ channel in rat brain synaptosomes that are specific for different neurotoxins. Radiation inactivation of the binding of radiolabeled derivatives of the toxins was consistent with Mr = 260,000 for the tetrodotoxin receptor and Mr = 266,000 for the receptor specific for two scorpion toxins, toxin II from Centruroides suffusus suffusus and toxin gamma from Tityus serrulatus serrulatus. Covalent cross-linking of the latter to its receptor similarly indicated Mr = 270,000. It seems most likely that these two distinct receptors reside on the same molecule.

  13. BK Channels Are Linked to Inositol 1,4,5-Triphosphate Receptors via Lipid Rafts

    PubMed Central

    Weaver, Amy K.; Olsen, Michelle L.; McFerrin, Michael B.; Sontheimer, Harald

    2007-01-01

    Glioma cells prominently express a unique splice variant of a large conductance, calcium-activated potassium channel (BK channel). These channels transduce changes in intracellular calcium to changes of K+ conductance in the cells and have been implicated in growth control of normal and malignant cells. The Ca2+ increase that facilitates channel activation is thought to occur via activation of intracellular calcium release pathways or influx of calcium through Ca2+-permeable ion channels. We show here that BK channel activation involves the activation of inositol 1,4,5-triphosphate receptors (IP3R), which localize near BK channels in specialized membrane domains called lipid rafts. Disruption of lipid rafts with methyl-β-cyclodextrin disrupts the functional association of BK channel and calcium source resulting in a >50% reduction in K+ conductance mediated by BK channels. The reduction of BK current by lipid raft disruption was overcome by the global elevation of intracellular calcium through inclusion of 750 nm Ca2+ in the pipette solution, indicating that neither the calcium sensitivity of the channel nor their overall number was altered. Additionally, pretreatment of glioma cells with 2-aminoethoxydiphenyl borate to inhibit IP3Rs negated the effect of methyl-β-cyclodextrin, providing further support that IP3Rs are the calcium source for BK channels. Taken together, these data suggest a privileged association of BK channels in lipid raft domains and provide evidence for a novel coupling of these Ca2+-sensitive channels to their second messenger source. PMID:17711864

  14. Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour.

    PubMed

    Sivilotti, L G; McNeil, D K; Lewis, T M; Nassar, M A; Schoepfer, R; Colquhoun, D

    1997-04-01

    1. In order to establish the subunit composition of neuronal nicotinic receptors in rat superior cervical ganglia (SCG), their single-channel properties were compared with those of recombinant receptors expressed in Xenopus oocytes, using outside-out excised patch recording. 2. The mean main conductance of SCG channels from adult and 1-day-old rats was 34.8 and 36.6 pS, respectively. Less frequent openings to lower conductances occurred both as isolated bursts and as events connected to the main level by direct transitions. There was considerable interpatch variability in the values of the lower conductances. 3. Nicotinic receptors from oocytes expressing alpha3beta4 and alpha4beta4 subunits had chord conductances lower than that of SCG neurones (22 pS for alpha3beta4 and 29 pS for alpha4beta4). 4. Prolonged recording from both native and recombinant channels was precluded by 'run-down', i.e. channel activity could be elicited for only a few minutes after excision. Nevertheless, SCG channel openings were clearly seen to occur as short bursts (slowest component, 38 ms), whereas recombinant channels opened in very prolonged bursts of activity, the major component being the slowest (480 ms). 5. Addition of the alpha5 subunit to the alpha3beta4 pair produced channels with a higher conductance than those observed after injection of the pair alone (24.9 vs. 22 pS), suggesting incorporation of alpha5 into the channel. Addition of the beta2 subunit did not change alpha3beta4 single-channel properties. In one out of fourteen alpha3alpha5beta4 patches, both ganglion-like, high conductance, short burst openings and recombinant-type, low conductance, slow burst openings were observed. 6. Channels produced by expression in Xenopus oocytes of neuronal nicotinic subunits present in rat SCG as a rule differ from native ganglion receptors in single-channel conductance and gross kinetics. While it is possible that an essential nicotinic subunit remains to be cloned, it is perhaps

  15. Activation of rat transient receptor potential cation channel subfamily V member 1 channels by 2-aminoethoxydiphenyl borate.

    PubMed

    Mamatova, Knara Nazaralievna; Kang, Tong Mook

    2013-09-01

    The transient receptor potential cation channel subfamily V member 1 (TRPV1) channel has been proved to be a molecular integrator of inflammatory pain sensation. 2-Aminoethoxydiphenyl borate (2-APB) and its analogs have been noticed as attractive candidates for the development of a selective TRPV1 agonist and/or antagonist. However, selectivity and effectiveness, species dependence, and the binding site(s) of 2-APB on TRPV1 channel protein remain controversial. The present study aimed to characterize acting sites of 2-APB on heterologously expressed rat TRPV1 (rTRPV1) channels in HEK 293 cells. Rat TRPV1 currents were recorded by cell-free, excised patch clamp techniques. In inside-out and outside-out patch modes, 2-APB applied either side of the membrane dose-dependently activated rTRPV1 channels. 2-APB dose-dependently potentiated rTRPV1 currents, that activated by capsaicin, protons, or noxious heat. 2-APB potentiated the capsaicin-activated rTRPV1 current from both side of the patch membrane. A structural analogue of 2-APB, diphenylboronic anhydride, showed the same potentiation effect on the capsaicin-activated rTRPV1 current. It is suggested that 2-APB directly opens rTRPV1 channels from both sides of the membrane and potentiates the opening of channels by inflammatory stimuli.

  16. Ion channels and receptor as targets for the control of parasitic nematodes

    PubMed Central

    Wolstenholme, Adrian J.

    2011-01-01

    Many of the anthelmintic drugs in use today act on the nematode nervous system. Ion channel targets have some obvious advantages. They tend to act quickly, which means that they will clear many infections rapidly. They produce very obvious effects on the worms, typically paralyzing them, and these effects are suitable for use in rapid and high-throughput assays. Many of the ion channels and enzymes targeted can also be incorporated into such assays. The macrocyclic lactones bind to an allosteric site on glutamate-gated chloride channels, either directly activating the channel or enhancing the effect of the normal agonist, glutamate. Many old and new anthelmintics, including tribendimidine and the amino-acetonitrile derivatives, act as agonists at nicotinic acetylcholine receptors; derquantel is an antagonist at these receptors. Nematodes express many different types of nicotinic receptor and this diversity means that they are likely to remain important targets for the foreseeable future. Emodepside may have multiple effects, affecting both a potassium channel and a pre-synaptic G protein-coupled receptor; although few other current drugs act at such targets, this example indicates that they may be more important in the future. The nematode nervous system contains many other ion channels and receptors that have not so far been exploited in worm control but which should be explored in the development of effective new compounds. PMID:24533259

  17. The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.

    PubMed Central

    Chen, L; Gu, Y; Huang, L Y

    1995-01-01

    1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors. PMID:7537820

  18. GLYX-13, a NMDA Receptor Glycine-Site Functional Partial Agonist, Induces Antidepressant-Like Effects Without Ketamine-Like Side Effects

    PubMed Central

    Burgdorf, Jeffrey; Zhang, Xiao-lei; Nicholson, Katherine L; Balster, Robert L; David Leander, J; Stanton, Patric K; Gross, Amanda L; Kroes, Roger A; Moskal, Joseph R

    2013-01-01

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of ‘metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression. PMID:23303054

  19. Surface charge potentiates conduction through the cardiac ryanodine receptor channel

    PubMed Central

    1994-01-01

    Single channel currents through cardiac sarcoplasmic reticulum (SR) Ca2+ release channels were measured in very low levels of current carrier (e.g., 1 mM Ba2+). The hypothesis that surface charge contributes to these anomalously large single channel currents was tested by changing ionic strength and surface charge density. Channel identity and sidedness was pharmacologically determined. At low ionic strength (20 mM Cs+), Cs+ conduction in the lumen-->myoplasm (L-->M) direction was significantly greater than in the reverse direction (301.7 +/- 92.5 vs 59.8 +/- 38 pS, P < 0.001; mean +/- SD, t test). The Cs+ concentration at which conduction reached half saturation was asymmetric (32 vs 222 mM) and voltage independent. At high ionic strength (400 mM Cs+), conduction in both direction saturated at 550 +/- 32 pS. Further, neutralization of carboxyl groups on the lumenal side of the channel significantly reduced conduction (333.0 +/- 22.5 vs 216.2 +/- 24.4 pS, P < 0.002). These results indicate that negative surface charge exists near the lumenal mouth of the channel but outside the electric field of the membrane. In vivo, this surface charge may potentiate conduction by increasing the local Ca2+ concentration and thus act as a preselection filter for this poorly selective channel. PMID:8035165

  20. Single-channel analysis of a point mutation of a conserved serine residue in the S2 ligand-binding domain of the NR2A NMDA receptor subunit.

    PubMed

    Wyllie, David J A; Johnston, Alexander R; Lipscombe, Diane; Chen, Philip E

    2006-07-15

    We have examined the function of a conserved serine residue (Ser670) in the S2 ligand-binding region of the NR2A N-methyl-d-aspartate (NMDA) receptor subunit, using recombinant NR1/NR2A receptors expressed in Xenopus laevis oocytes. Mutation of Ser670 to glycine (S670G) in NR2A reduced the potency of glutamate by 124-fold. Single-channel conductance and the duration of apparent open periods of NR2A(S670G) receptor mutants were, however, indistinguishable from wild-type NMDA receptors. NR1/NR2A(S670G) shut-time distributions were best described by a mixture of six exponential components, and the four shortest shut intervals of each distribution were considered to occur within a channel activation (burst). Bursts of single-channel openings were fitted with a mixture of four exponential components. The longest two components carried the majority of the charge transfer and had mean durations of 9.6 +/- 0.5 and 29.6 +/- 1.5 ms. The overall channel open probability during a burst was high (mean, 0.83 +/- 0.06). Consistent with a shortening of NMDA receptor-channel burst lengths was the observation of an increased deactivation rate of macroscopic currents evoked by brief applications of glutamate to outside-out membrane patches. Correlations between shut times and adjacent open times were observed in all data records. Noticeably, shorter than average openings tended to occur next to long closed periods, whereas longer than average openings tended to occur next to short closings. Our single-channel data, together with modelling using a kinetic scheme to describe channel activations, support our hypothesis that the S670G point mutation reduces the dwell time of glutamate in its binding site.

  1. The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling

    PubMed Central

    Gees, Maarten; Colsoul, Barbara; Nilius, Bernd

    2010-01-01

    The 28 mammalian members of the super-family of transient receptor potential (TRP) channels are cation channels, mostly permeable to both monovalent and divalent cations, and can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are widely expressed in a large number of different tissues and cell types, and their biological roles appear to be equally diverse. In general, considered as polymodal cell sensors, they play a much more diverse role than anticipated. Functionally, TRP channels, when activated, cause cell depolarization, which may trigger a plethora of voltage-dependent ion channels. Upon stimulation, Ca2+ permeable TRP channels generate changes in the intracellular Ca2+ concentration, [Ca2+]i, by Ca2+ entry via the plasma membrane. However, more and more evidence is arising that TRP channels are also located in intracellular organelles and serve as intracellular Ca2+ release channels. This review focuses on three major tasks of TRP channels: (1) the function of TRP channels as Ca2+ entry channels; (2) the electrogenic actions of TRPs; and (3) TRPs as Ca2+ release channels in intracellular organelles. PMID:20861159

  2. Cytoprotection of kidney epithelial cells by compounds that target amino acid gated chloride channels.

    PubMed

    Venkatachalam, M A; Weinberg, J M; Patel, Y; Saikumar, P; Dong, Z

    1996-02-01

    Glycine, strychnine and certain chloride channel blockers were reported to protect cells against lethal cell injury. These effects have been attributed to interactions with membrane proteins related to CNS glycine gated chloride channel receptors. We have investigated the pharmacology of these actions. Madin-Darby canine kidney (MDCK) epithelial cells were depleted of adenosine triphosphate (ATP) by incubation in glucose free medium containing a mitochondrial uncoupler. Medium Ca2+ was adjusted to 100 nM in the presence of an ionophore such that intracellular Ca2+ did not increase, and Ca(2+)-related injury mechanisms were inhibited. This permitted more sensitive quantitation of protection against cell injury attributable to glycine or other agents whose actions might be related to those of the amino acid. Two classes of compounds showed cytoprotective activity in this system: (1) ligands at chloride channel receptors, such as glycine, strychnine and avermectin B1a; (2) chloride channel blockers, including cyanotriphenylboron and niflumic acid, both of which are known to bind to channel domains of CNS glycine receptors. Morphological and functional studies showed that the compounds preserved plasma membrane integrity, but permitted cell swelling. Substitution of medium chloride by gluconate, or chloride salts by sucrose, did not substantially modify lethal damage or its prevention by glycine or other drugs. The compounds did not modify ATP declines. At least for some compounds, cytoprotection appeared to be specific to structural features on the molecules. These observations are consistent with the hypothesis that a plasma membrane protein related to glycine-gated chloride channel receptors plays a significant role in cell injury, but indicate that the mechanisms of injury and protection by compounds active in this system are not related to chloride fluxes.

  3. Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release.

    PubMed Central

    Dulhunty, Angela F; Curtis, Suzanne M; Cengia, Louise; Sakowska, Magdalena; Casarotto, Marco G

    2004-01-01

    We show that peptide fragments of the dihydropyridine receptor II-III loop alter cardiac RyR (ryanodine receptor) channel activity in a cytoplasmic Ca2+-dependent manner. The peptides were AC (Thr-793-Ala-812 of the cardiac dihydropyridine receptor), AS (Thr-671-Leu-690 of the skeletal dihydropyridine receptor), and a modified AS peptide [AS(D-R18)], with an extended helical structure. The peptides added to the cytoplasmic side of channels in lipid bilayers at > or = 10 nM activated channels when the cytoplasmic [Ca2+] was 100 nM, but either inhibited or did not affect channel activity when the cytoplasmic [Ca2+] was 10 or 100 microM. Both activation and inhibition were independent of bilayer potential. Activation by AS, but not by AC or AS(D-R18), was reduced at peptide concentrations >1 mM in a voltage-dependent manner (at +40 mV). In control experiments, channels were not activated by the scrambled AS sequence (ASS) or skeletal II-III loop peptide (NB). Resting Ca2+ release from cardiac sarcoplasmic reticulum was not altered by peptide AC, but Ca2+-induced Ca2+ release was depressed. Resting and Ca2+-induced Ca2+ release were enhanced by both the native and modified AS peptides. NMR revealed (i) that the structure of peptide AS(D-R18) is not influenced by [Ca2+] and (ii) that peptide AC adopts a helical structure, particularly in the region containing positively charged residues. This is the first report of specific functional interactions between dihydropyridine receptor A region peptides and cardiac RyR ion channels in lipid bilayers. PMID:14678014

  4. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block.

    PubMed

    Dravid, Shashank M; Erreger, Kevin; Yuan, Hongjie; Nicholson, Katherine; Le, Phuong; Lyuboslavsky, Polina; Almonte, Antoine; Murray, Ernest; Mosely, Cara; Barber, Jeremy; French, Adam; Balster, Robert; Murray, Thomas F; Traynelis, Stephen F

    2007-05-15

    We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit-selective channel blockers. For dizocilpine (MK-801), the differential potency of MK-801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pK(a) values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH-dependent potency. Kinetic modelling and single channel studies suggest that the pH-dependent block of NR1/NR2A by (-)MK-801 but not (+)MK-801 reflects an increase in the MK-801 association rate even though protons reduce channel open probability and thus MK-801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK-801, supporting the interpretation that the pH sensitivity of MK-801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit-specific mechanisms of channel block.

  5. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block

    PubMed Central

    Dravid, Shashank M; Erreger, Kevin; Yuan, Hongjie; Nicholson, Katherine; Le, Phuong; Lyuboslavsky, Polina; Almonte, Antoine; Murray, Ernest; Mosely, Cara; Barber, Jeremy; French, Adam; Balster, Robert; Murray, Thomas F; Traynelis, Stephen F

    2007-01-01

    We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit-selective channel blockers. For dizocilpine (MK-801), the differential potency of MK-801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pKa values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH-dependent potency. Kinetic modelling and single channel studies suggest that the pH-dependent block of NR1/NR2A by (−)MK-801 but not (+)MK-801 reflects an increase in the MK-801 association rate even though protons reduce channel open probability and thus MK-801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK-801, supporting the interpretation that the pH sensitivity of MK-801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit-specific mechanisms of channel block. PMID:17303642

  6. Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain.

    PubMed

    White, John P M; Cibelli, Mario; Rei Fidalgo, Antonio; Paule, Cleoper C; Noormohamed, Faruq; Urban, Laszlo; Maze, Mervyn; Nagy, Istvan

    2010-03-01

    Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation.

  7. State-dependent block of Na+ channels by articaine via the local anesthetic receptor.

    PubMed

    Wang, Ging Kuo; Calderon, Joanna; Jaw, Shiow-Jiin; Wang, Sho-Ya

    2009-05-01

    Articaine is widely used as a local anesthetic (LA) in dentistry, but little is known regarding its blocking actions on Na+ channels. We therefore examined the state-dependent block of articaine first in rat skeletal muscle rNav1.4 Na+ channels expressed in Hek293t cells. Articaine exhibited a weak block of resting rNav1.4 Na+ channels at -140 mV with a 50% inhibitory concentration (IC(50)) of 378 +/- 26 microM (n = 5). The affinity was higher for inactivated Na+ channels measured at -70 mV with an IC50 value of 40.6 +/- 2.7 microM (n = 5). The open-channel block by articaine was measured using inactivation-deficient rNav1.4 Na+ channels with an IC50 value of 15.8 +/- 1.5 microM (n = 5). Receptor mapping demonstrated that articaine interacted strongly with a D4S6 phenylalanine residue, which is known to form a part of the LA receptor. Thus the block of rNav1.4 Na+ channels by articaine is via the conserved LA receptor in a highly state-dependent manner, with a ranking order of open (23.9x) > inactivated (9.3x) > resting (1x) state. Finally, the open-channel block by articaine was likewise measured in inactivation-deficient hNav1.7 and rNav1.8 Na+ channels, with IC(50) values of 8.8 +/- 0.1 and 22.0 +/- 0.5 microM, respectively (n = 5), indicating that the high-affinity open-channel block by articaine is indeed preserved in neuronal Na+ channel isoforms.

  8. Sigma receptor activation inhibits voltage-gated sodium channels in rat intracardiac ganglion neurons

    PubMed Central

    Zhang, Hongling; Katnik, Christopher; Cuevas, Javier

    2010-01-01

    Sigma (σ) receptors have been shown to regulate multiple ion channel types in intracardiac ganglion neurons, including voltage-gated calcium and potassium channels. However, the inhibition of these channels alone cannot fully account for σ receptor-induced changes in neuronal excitability previously reported. Whole-cell patch clamp experiments were conducted under current-clamp mode in isolated intracardiac neurons from neonatal rats to assess the effects of σ receptor activation on the active membrane properties of these cells. Bath application of the pan-selective σ receptor agonist, 1,3-Di-o-tolylguanidine (DTG), and the σ-1-selective agonist, (+)-pentazocine, significantly increased the action potential latency and decreased action potential overshoot in response to depolarizing current ramps, which suggests inhibition of voltage-gated sodium channels. Whole-cell voltage clamp experiments showed that these σ agonists reversibly decrease depolarization-activated Na+ currents in these cells at all potentials tested. The peak currents generated by membrane depolarizations were decreased in a dose dependent manner with IC50 values for DTG and (+)-pentazocine of 32 μM and 49 μM, respectively. The σ-1 receptor-selective antagonist, BD 1063 (100 nM), inhibited DTG (30 μM) block of Na+ currents by ∼ 50%, suggesting that the effects are mediated by activation of σ-1 receptors. DTG also shifted the steady-state inactivation curve of Na+ channels to more negative potentials, with the membrane potential of half-activation shifting from -49 mV to -63 mV in the absence and presence of 30 μM DTG, respectively. Taken together, these results suggest that σ-1 receptor activation decreases intracardiac ganglion neuron excitability by modulating voltage-gated Na+ channels. PMID:21383893

  9. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes.

  10. Beta Amyloid Differently Modulate Nicotinic and Muscarinic Receptor Subtypes which Stimulate in vitro and in vivo the Release of Glycine in the Rat Hippocampus

    PubMed Central

    Zappettini, Stefania; Grilli, Massimo; Olivero, Guendalina; Mura, Elisa; Preda, Stefania; Govoni, Stefano; Salamone, Alessia; Marchi, Mario

    2012-01-01

    Using both in vitro (hippocampal synaptosomes in superfusion) and in vivo (microdialysis) approaches we investigated whether and to what extent β amyloid peptide 1–40 (Aβ 1–40) interferes with the cholinergic modulation of the release of glycine (GLY) in the rat hippocampus. The nicotine-evoked overflow of endogenous GLY in hippocampal synaptosomes in superfusion was significantly inhibited by Aβ 1–40 (10 nM) while increasing the concentration to 100 nM the inhibitory effect did not further increase. Both the Choline (Ch; α7 agonist; 1 mM) and the 5-Iodo-A-85380 dihydrochloride (5IA85380, α4β2 agonist; 10 nM)-evoked GLY overflow were inhibited by Aβ 1–40 at 100 nM but not at 10 nM concentrations. The KCl evoked [3H]GLY and [3H]Acetylcholine (ACh) overflow were strongly inhibited in presence of oxotremorine; however this inhibitory muscarinic effect was not affected by Aβ 1–40. The effects of Aβ 1–40 on the administration of nicotine, veratridine, 5IA85380, and PHA543613 hydrochloride (PHA543613; a selective agonist of α7 subtypes) on hippocampal endogenous GLY release in vivo were also studied. Aβ 1–40 significantly reduced (at 10 μM but not at 1 μM) the nicotine-evoked in vivo release of GLY. Aβ 1–40 (at 10 μM but not at 1 μM) significantly inhibited the PHA543613 (1 mM)-elicited GLY overflow while was ineffective on the GLY overflow evoked by 5IA85380 (1 mM). Aβ 40–1 (10 μM) did not produce any inhibitory effect on nicotine-evoked GLY overflow both in the in vitro and in vivo experiments. Our results indicate that (a) the cholinergic modulation of the release of GLY occurs by the activation of both α7 and α4β2 nicotinic ACh receptors (nAChRs) as well as by the activation of inhibitory muscarinic ACh receptors (mAChRs) and (b) Aβ 1–40 can modulate cholinergic evoked GLY release exclusively through the interaction with α7 and the α4β2 nAChR nicotinic receptors but not through mAChR subtypes

  11. Temperature-sensitive transient receptor potential channels in corneal tissue layers and cells.

    PubMed

    Mergler, Stefan; Valtink, Monika; Takayoshi, Sumioka; Okada, Yuka; Miyajima, Masayasu; Saika, Shizuya; Reinach, Peter S

    2014-01-01

    We here provide a brief summary of the characteristics of transient receptor potential channels (TRPs) identified in corneal tissue layers and cells. In general, TRPs are nonselective cation channels which are Ca(2+) permeable. Most TRPs serve as thermosensitive molecular sensors (thermo-TRPs). Based on their functional importance, the possibilities are described for drug-targeting TRP activity in a clinical setting. TRPs are expressed in various tissues of the eye including both human corneal epithelial and endothelial layers as well as stromal fibroblasts and stromal nerve fibers. TRP vanilloid type 1 (TRPV1) heat receptor, also known as capsaicin receptor, along with TRP melastatin type 8 (TRPM8) cold receptor, which is also known as menthol receptor, are prototypes of the thermo-TRP family. The TRPV1 functional channel is the most investigated TRP channel in these tissues, owing to its contribution to maintaining tissue homeostasis as well as eliciting wound healing responses to injury. Other thermo-TRP family members identified in these tissues are TRPV2, 3 and 4. Finally, there is the TRP ankyrin type 1 (TRPA1) cold receptor. All of these thermo-TRPs can be activated within specific temperature ranges and transduce such inputs into chemical and electrical signals. Although several recent studies have begun to unravel complex roles for thermo-TRPs such as TRPV1 in corneal layers and resident cells, additional studies are needed to further elucidate their roles in health and disease.

  12. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle

    PubMed Central

    McFadzean, Ian; Gibson, Alan

    2002-01-01

    Contraction of smooth muscle is initiated, and to a lesser extent maintained, by a rise in the concentration of free calcium in the cell cytoplasm ([Ca2+]i). This activator calcium can originate from two intimately linked sources – the extracellular space and intracellular stores, most notably the sarcoplasmic reticulum. Smooth muscle contraction activated by excitatory neurotransmitters or hormones usually involves a combination of calcium release and calcium entry. The latter occurs through a variety of calcium permeable ion channels in the sarcolemma membrane. The best-characterized calcium entry pathway utilizes voltage-operated calcium channels (VOCCs). However, also present are several types of calcium-permeable channels which are non-voltage-gated, including the so-called receptor-operated calcium channels (ROCCs), activated by agonists acting on a range of G-protein-coupled receptors, and store-operated calcium channels (SOCCs), activated by depletion of the calcium stores within the sarcoplasmic reticulum. In this article we will review the electrophysiological, functional and pharmacological properties of ROCCs and SOCCs in smooth muscle and highlight emerging evidence that suggests that the two channel types may be closely related, being formed from proteins of the Transient Receptor Potential Channel (TRPC) family. PMID:11786473

  13. The developing relationship between receptor-operated and store-operated calcium channels in smooth muscle.

    PubMed

    McFadzean, Ian; Gibson, Alan

    2002-01-01

    Contraction of smooth muscle is initiated, and to a lesser extent maintained, by a rise in the concentration of free calcium in the cell cytoplasm ([Ca(2+)](i)). This activator calcium can originate from two intimately linked sources--the extracellular space and intracellular stores, most notably the sarcoplasmic reticulum. Smooth muscle contraction activated by excitatory neurotransmitters or hormones usually involves a combination of calcium release and calcium entry. The latter occurs through a variety of calcium permeable ion channels in the sarcolemma membrane. The best-characterized calcium entry pathway utilizes voltage-operated calcium channels (VOCCs). However, also present are several types of calcium-permeable channels which are non-voltage-gated, including the so-called receptor-operated calcium channels (ROCCs), activated by agonists acting on a range of G-protein-coupled receptors, and store-operated calcium channels (SOCCs), activated by depletion of the calcium stores within the sarcoplasmic reticulum. In this article we will review the electrophysiological, functional and pharmacological properties of ROCCs and SOCCs in smooth muscle and highlight emerging evidence that suggests that the two channel types may be closely related, being formed from proteins of the Transient Receptor Potential Channel (TRPC) family.

  14. Transient Receptor Potential Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades Underlying Visceral Hypersensitivity.

    PubMed

    Balemans, Dafne; Boeckxstaens, Guy E; Talavera, Karel; Wouters, Mira M

    2017-04-06

    Visceral hypersensitivity is an important mechanism underlying increased abdominal pain perception in functional gastrointestinal disorders (FGID) including functional dyspepsia, irritable bowel syndrome (IBS) and inflammatory bowel disease in remission. Although the exact pathophysiological mechanisms are poorly understood, recent studies described upregulation and altered functions of nociceptors and their signaling pathways in aberrant visceral nociception, in particular the transient receptor potential (TRP) channel family. A variety of TRP channels are present in the gastrointestinal tract (TRPV1, TRPV3, TRPV4, TRPA1, TRPM2, TRPM5 and TRPM8) and modulation of their function by increased activation or sensitization (decreased activation threshold) or altered expression in visceral afferents, have been reported in visceral hypersensitivity. TRP channels directly detect or transduce osmotic, mechanical, thermal and chemosensory stimuli. In addition, pro-inflammatory mediators released in tissue damage or inflammation can activate receptors of the G-protein coupled receptor (GPCR) superfamily leading to TRP channel sensitization and activation, which amplify pain and neurogenic inflammation. In this review, we highlight the current knowledge on the functional roles of neuronal TRP channels in visceral hypersensitivity and discuss the signaling pathways that underlie TRP channel modulation. We propose that a better understanding of TRP channels and their modulators may facilitate the development of more selective and effective therapies to treat visceral hypersensitivity.

  15. Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter.

    PubMed

    Kuner, T; Beck, C; Sakmann, B; Seeburg, P H

    2001-06-15

    In AMPA receptor channels, a single amino acid residue (Q/R site) of the M2 segment controls permeation of calcium ions, single-channel conductance, blockade by intracellular polyamines, and permeation of anions. The structural environment of the Q/R site and its positioning with regard to a narrow constriction were probed with the accessibility of substituted cysteines to positively and negatively charged methanethiosulfonate reagents, applied from the extracellular and cytoplasmic sides of the channel. The accessibility patterns confirm that the M2 segment forms a pore loop with the Q/R site positioned at the tip of the loop (position 0) facing the extracellular vestibule. Cytoplasmically accessible residues on the N- and C-terminal sides of position 0 form the ascending alpha-helical (-8 to -1) and descending random coil (+1 to +6) components of the loop, respectively. Substitution of a glycine residue at position +2 with alanine strongly decreased the permeability of organic cations, indicating that position +2 contributes to the narrow constriction. The anionic 2-sulfonatoethyl-methanethiosufonate reacted with a cysteine at position 0 only from the external side and with cysteines at positions +1 to +4 only from the cytoplasmic side. These results suggest that charge selectivity occurs external to the constriction (+2) and possibly involves interactions of ions with the negative electrostatic potential created by the dipole of the alpha-helix formed by the ascending limb of the loop.

  16. Receptor for advanced glycation end products Glycine 82 Serine polymorphism and risk of cardiovascular events in rheumatoid arthritis.

    PubMed

    Carroll, Lisa; Frazer, Ian H; Turner, Malcolm; Marwick, Thomas H; Thomas, Ranjeny

    2007-01-01

    Patients with rheumatoid arthritis (RA) are at risk of excess mortality, predominantly owing to cardiovascular (CV) events. The receptor for advanced glycation end products (RAGE) has been implicated in the perpetuation of the chronic inflammatory response in vascular disease. A Gly82-->Ser polymorphism in the RAGE gene, which is associated with enhanced RAGE signaling, is present more frequently in patients with RA than the general population. To investigate whether RAGE Gly82-->Ser polymorphism is associated with CV events in RA, we examined CV events, CV risk factors, features of RA and RAGE Gly82-->Ser polymorphism in 232 patients with RA attending a tertiary referral hospital. CV events, the duration and severity of RA, and risk factors for CV disease were determined using patient questionnaires, chart review, laboratory analysis and radiographs. DNA was typed for HLA-DRB1 genes and RAGE Gly82-->Ser polymorphism. The RAGE Ser82 allele, which is in linkage disequilibrium with the RA susceptibility allele HLA-DRB1*0401, was carried by 20% of patients. More than 20% of the cohort had suffered a vascular event; a shorter duration of RA, but not the RAGE genotype, was significantly associated with CV events. However, a history of statin use was protective. Thus, the RAGE Ser82 allele, associated with enhanced RAGE signaling, does not predispose to CV events in RA. However, treatment of hyperlipidemia with statins reduces the probability of a CV event.

  17. Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes

    PubMed Central

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2006-01-01

    Injection of Caenorhabditis elegans polyA RNA into Xenopus laevis oocytes led to the expression of neurotransmitter receptors that generated some unique responses, including ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as well as receptors that coupled to G proteins, such as those to octopamine, norepinephrine, and angiotensin, which activated the oocyte’s own phosphatidylinositol system and calcium-gated chloride channels. The oocytes also expressed chloride-conducting glutamate receptors, muscarinic acetylcholine receptors, and voltage-operated calcium channels. Unexpectedly, serotonin (5-hydroxytryptamine), dopamine, GABA, and kainate did not generate ionic currents, suggesting that the corresponding receptors were not expressed or were not functional in the oocytes. The use of X. laevis oocytes for expressing worm RNA demonstrates that there are many molecular components whose role remains to be clarified in the nematode. Among them are the nature of the endogenous agonists for the octopamine and angiotensin receptors and the subunits that compose the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and the norepinephrine receptors that couple to the phosphoinositide cascade. PMID:16549772

  18. Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics.

    PubMed

    Barygin, Oleg I; Nagaeva, Elina I; Tikhonov, Denis B; Belinskaya, Darya A; Vanchakova, Nina P; Shestakova, Natalia N

    2017-04-01

    It is known that some antidepressants and antipsychotics directly inhibit NMDA-type ionotropic glutamate receptors. In this study we systematically studied action of seven drugs (Fluoxetine, Citalopram, Desipramine, Amitriptyline, Atomoxetine, Chlorpromazine, and Clozapine) on NMDA receptors and Ca(2+)-permeable and -impermeable AMPA receptors in rat brain neurons by whole-cell patch-clamp technique. Except for weak effect of fluoxetine, all drugs were virtually inactive against Ca(2+)-impermeable AMPA receptors. Fluoxetine and desipramine significantly inhibited Ca(2+)-permeable AMPA receptors (IC50=43±7 and 105±12µM, respectively). Desipramine, atomoxetine and chlorpromazine inhibited NMDA receptors in clinically relevant low micromolar concentrations, while citalopram had only weak effect. All tested medicines have been clustered into two groups by their action on NMDA receptors: desipramine, amitriptyline, chlorpromazine, and atomoxetine display voltage- and magnesium-dependent open channel blocking mechanism. Action of fluoxetine and clozapine was found to be voltage- and magnesium-independent. All voltage-dependent compounds could be trapped in closed NMDA receptor channels. Possible contribution of NMDA receptor inhibition by certain antidepressants and antipsychotics to their analgesic effects in neuropathic pain is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. An N-methyl-d-aspartate receptor channel blocker with neuroprotective activity

    PubMed Central

    Tai, Kwok-Keung; Blondelle, Sylvie E.; Ostresh, John M.; Houghten, Richard A.; Montal, Mauricio

    2001-01-01

    Excitotoxicity, resulting from sustained activation of glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype, is considered to play a causative role in the etiology of ischemic stroke and several neurodegenerative diseases. The NMDA receptor is therefore a target for the development of neuroprotective agents. Here, we identify an N-benzylated triamine (denoted as NBTA) as a highly selective and potent NMDA-receptor channel blocker selected by screening a reduced dipeptidomimetic synthetic combinatorial library. NBTA blocks recombinant NMDA receptors expressed in Xenopus laevis oocytes with a mean IC50 of 80 nM; in contrast, it does not block GluR1, a glutamate receptor of the non-NMDA subtype. The blocking activity of NBTA on NMDA receptors exhibits the characteristics of an open-channel blocker: (i) no competition with agonists, (ii) voltage dependence, and (iii) use dependence. Significantly, NBTA protects rodent hippocampal neurons from NMDA receptor, but not kainate receptor-mediated excitotoxic cell death, in agreement with its selective action on the corresponding recombinant receptors. Mutagenesis data indicate that the N site, a key asparagine on the M2 transmembrane segment of the NR1 subunit, is the main determinant of the blocker action. The results highlight the potential of this compound as a neuroprotectant. PMID:11248110

  20. NompC TRP channel is essential for Drosophila sound receptor function.

    PubMed

    Effertz, Thomas; Wiek, Robert; Göpfert, Martin C

    2011-04-12

    The idea that the NompC TRPN1 channel is the Drosophila transducer for hearing has been challenged by remnant sound-evoked nerve potentials in nompC nulls. We now report that NompC is essential for the function of Drosophila sound receptors and that the remnant nerve potentials of nompC mutants are contributed by gravity/wind receptor cells. Ablating the sound receptors reduces the amplitude and sensitivity of sound-evoked nerve responses, and the same effects ensued from mutations in nompC. Ablating the sound receptors also suffices to abolish mechanical amplification, which arises from active receptor motility, is linked to transduction, and also requires NompC. Calcium imaging shows that the remnant nerve potentials in nompC mutants are associated with the activity of gravity/wind receptors and that the sound receptors of the mutants fail to respond to sound. Hence, Drosophila sound receptors require NompC for mechanical signal detection and amplification, demonstrating the importance of this transient receptor potential channel for hearing and reviving the idea that the fly's auditory transducer might be NompC.

  1. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  2. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  3. The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs.

    PubMed

    Mukherjee, Sarmistha; Cruz-Rodríguez, Osvaldo; Bolton, Eric; Iñiguez-Lluhí, Jorge A

    2012-09-07

    The androgen receptor (AR) mediates the effects of male sexual hormones on development and physiology. Alterations in AR function are central to reproductive disorders, prostate cancer, and Kennedy disease. AR activity is influenced by post-translational modifications, but their role in AR-based diseases is poorly understood. Conjugation by small ubiquitin-like modifier (SUMO) proteins at two synergy control (SC) motifs in AR exerts a promoter context-dependent inhibitory role. SC motifs are composed of a four-amino acid core that is often preceded and/or followed by nearby proline or glycine residues. The function of these flanking residues, however, has not been examined directly. Remarkably, several AR mutations associated with oligospermia and androgen insensitivity syndrome map to Pro-390, the conserved proline downstream of the first SC motif in AR. Similarly, mutations at Gly-524, downstream of the second SC motif, were recovered in recurrent prostate cancer samples. We now provide evidence that these clinically isolated substitutions lead to a partial loss of SC motif function and AR SUMOylation that affects multiple endogenous genes. Consistent with a structural role as terminators of secondary structure elements, substitution of Pro-390 by Gly fully supports both SC motif function and SUMOylation. As predicted from the functional properties of SC motifs, the clinically isolated mutations preferentially enhance transcription driven by genomic regions harboring multiple AR binding sites. The data support the view that alterations in AR SUMOylation play significant roles in AR-based diseases and offer novel SUMO-based therapeutic opportunities.

  4. Suppression of spreading depolarization and stabilization of dendritic spines by GLYX-13, an NMDA receptor glycine-site functional partial agonist.

    PubMed

    Zhang, Xiao-Lei; Shuttleworth, C William; Moskal, Joseph R; Stanton, Patric K

    2015-11-01

    Cortical spreading depolarization (SD) is a slow self-propagating wave of mass cellular depolarization in brain tissue, thought to be the underlying cause of migraine scintillating scotoma and aura, and associated with stroke, traumatic brain injury, and termination of status epilepticus. The N-methyl-d-aspartate subtype of glutamate receptor (NMDAR), which gates influx of calcium and is an important trigger of long-term synaptic plasticity, is also a contributor to the initiation and propagation of SD. The current study tested the potential of pharmacological modulation of NMDAR activity through the obligatory co-agonist binding site, to suppress the initiation of SD, and modulate the effects of SD on dendritic spine morphology, in in vitro hippocampal slices. A novel NMDAR functional glycine site partial agonist, GLYX-13, sometimes completely prevented the induction of SD and consistently slowed its rate of propagation. The passage of SD through the hippocampal CA1 region produced a rapid retraction of dendritic spines which reversed after neuronal depolarization had recovered. GLYX-13 improved the rate and extent of return of dendritic spines to their original sizes and locations following SD, suggesting that NMDAR modulators can protect synaptic connections in the brain from structural alterations elicited by SD. These data indicate that NMDAR modulation to renormalize activity may be an effective new treatment strategy for suppression or amelioration of the contribution of SD to short and long-term symptoms of migraine attacks, as well as the effects of SD on tissue damaged by stroke or traumatic brain injury.

  5. Receptor-mediated glutamate release from volume sensitive channels in astrocytes

    NASA Astrophysics Data System (ADS)

    Takano, Takahiro; Kang, Jian; Jaiswal, Jyoti K.; Simon, Sanford M.; Lin, Jane H.-C.; Yu, Yufei; Li, Yuxing; Yang, Jay; Dienel, Gerald; Zielke, H. Ronald; Nedergaard, Maiken

    2005-11-01

    Several lines of work have shown that astrocytes release glutamate in response to receptor activation, which results in a modulation of local synaptic activity. Astrocytic glutamate release is Ca2+-dependent and occurs in conjunction with exocytosis of glutamate containing vesicles. However, astrocytes contain a millimolar concentration of cytosolic glutamate and express channels permeable to small anions, such as glutamate. Here, we tested the idea that astrocytes respond to receptor stimulation by dynamic changes in cell volume, resulting in volume-sensitive channel activation, and efflux of cytosolic glutamate. Confocal imaging and whole-cell recordings demonstrated that astrocytes exhibited a transient Ca2+-dependent cell volume increase, which activated glutamate permeable channels. HPLC analysis revealed that glutamate was released in conjunction with other amino acid osmolytes. Our observations indicate that volume-sensitive channel may constitute a previously uncharacterized target for modulation of astrocyte-neuronal interactions. electrophysiology | exocytosis | neurotransmitters | osmolarity | synapses

  6. Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment

    PubMed Central

    Baker, Mariah R.; Fan, Guizhen

    2015-01-01

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants. PMID:26913144

  7. Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment

    PubMed Central

    Baker, Mariah R.; Fan, Guizhen; Serysheva, Irina I.

    2015-01-01

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants. PMID:25844145

  8. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells

    PubMed Central

    Shen, Yin; Heimel, J. Alexander; Kamermans, Maarten; Peachey, Neal S.; Gregg, Ronald G.; Nawy, Scott

    2009-01-01

    On bipolar cells are connected to photoreceptors via a sign-inverting synapse. At this synapse, glutamate binds to a metabotropic receptor which couples to the closure of a cation-selective transduction channel. The molecular identity of both the receptor and the G protein are known, but the identity of the transduction channel has remained elusive. Here we show that the transduction channel in mouse rod bipolar cells, a subtype of On bipolar cell, is likely to be a member of the TRP family of channels. To evoke a transduction current, the metabotropic receptor antagonist LY341495 was applied to the dendrites of cells that were bathed in a solution containing the mGluR6 agonists L-AP4 or glutamate. The transduction current was suppressed by ruthenium red and the TRPV1 antagonists capsazepine and SB-366791. Furthermore, focal application of the TRPV1 agonists capsaicin and anandamide evoked a transduction-like current. The capsaicin-evoked and endogenous transduction current displayed prominent outward rectification, a property of the TRPV1 channel. To test the possibility that the transduction channel is TRPV1, we measured rod bipolar cell function in the TRPV1-/-mouse. The ERG b-wave, a measure of On bipolar cell function, as well as the transduction current and the response to TRPV1 agonists were normal, arguing against a role for TRPV1. However, ERG measurements from mice lacking TRPM1 receptors, another TRP channel implicated in retinal function, revealed the absence of a b-wave. Our results suggest that a TRP-like channel, possibly TRPM1, is essential for synaptic function in On bipolar cells. PMID:19439586

  9. Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor.

    PubMed

    Ng, Kay-Siong; Leung, How-Wing; Wong, Peter T-H; Low, Chian-Ming

    2012-07-20

    Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors. Here, we demonstrate that recombinant human tPA cleaves the NR2B subunit of NMDA receptor. Analysis of NR2B in rat brain lysates and cortical neurons treated with tPA revealed concentration- and time-dependent degradation of NR2B proteins. Peptide sequencing studies performed on the cleaved-off products obtained from the tPA treatment on a recombinant fusion protein of the amino-terminal domain of NR2B revealed that tPA-mediated cleavage occurred at arginine 67 (Arg(67)). This cleavage is tPA-specific, plasmin-independent, and removes a predicted ~4-kDa fragment (Arg(27)-Arg(67)) from the amino-terminal domain of the NR2B protein. Site-directed mutagenesis of putative cleavage site Arg(67) to Ala(67) impeded tPA-mediated degradation of recombinant protein. This analysis revealed that NR2B is a novel substrate of tPA and suggested that an Arg(27)-Arg(67)-truncated NR2B-containing NMDA receptor could be formed. Heterologous expression of NR2B with Gln(29)-Arg(67) deleted is functional but exhibits reduced ifenprodil inhibition and increased glycine EC(50) with no change in glutamate EC(50). Our results confirmed NR2B as a novel proteolytic substrate of tPA, where tPA may directly interact with NR2B subunits leading to a change in pharmacological properties of NR2B-containing NMDA receptors.

  10. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients.

    PubMed

    Binder, Andreas; May, Denisa; Baron, Ralf; Maier, Christoph; Tölle, Thomas R; Treede, Rolf-Detlef; Berthele, Achim; Faltraco, Frank; Flor, Herta; Gierthmühlen, Janne; Haenisch, Sierk; Huge, Volker; Magerl, Walter; Maihöfner, Christian; Richter, Helmut; Rolke, Roman; Scherens, Andrea; Uçeyler, Nurcan; Ufer, Mike; Wasner, Gunnar; Zhu, Jihong; Cascorbi, Ingolf

    2011-03-29

    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In

  11. Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    PubMed Central

    Baron, Ralf; Maier, Christoph; Tölle, Thomas R.; Treede, Rolf-Detlef; Berthele, Achim; Faltraco, Frank; Flor, Herta; Gierthmühlen, Janne; Haenisch, Sierk; Huge, Volker; Magerl, Walter; Maihöfner, Christian; Richter, Helmut; Rolke, Roman; Scherens, Andrea; Üçeyler, Nurcan; Ufer, Mike; Wasner, Gunnar; Zhu, Jihong; Cascorbi, Ingolf

    2011-01-01

    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In

  12. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel.

    PubMed

    Badheka, Doreen; Borbiro, Istvan; Rohacs, Tibor

    2015-07-01

    Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5'-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.

  13. TRPC Channels Mediate a Muscarinic Receptor-Induced Afterdepolarization in Cerebral Cortex

    PubMed Central

    Yan, Hai-Dun; Villalobos, Claudio; Andrade, Rodrigo

    2009-01-01

    Activation of muscarinic cholinergic receptors on pyramidal cells of the cerebral cortex induces the appearance of a slow afterdepolarization that can sustain autonomous spiking after a brief excitatory stimulus. Accordingly, this phenomenon has been hypothesized to allow for the transient storage of memory traces in neuronal networks. Here we investigated the molecular basis underlying the muscarinic receptor-induced afterdepolarization using molecular biological and electrophysiological strategies. We find that the ability of muscarinic receptors to induce the inward aftercurrent underlying the slow afterdepolarization is inhibited by expression of a Gαq-11 dominant negative and is also markedly reduced in a phospholipase C β1 (PLCβ1) knock-out mouse. Furthermore, we show, using a genetically encoded biosensor, that activation of muscarinic receptor induces the breakdown of phosphatidylinositol 4,5-bisphosphate in pyramidal cells. These results indicate that the Gαq-11/PLCβ1 cascade plays a key role in the ability of muscarinic receptors to signal the inward aftercurrent. We have shown previously that the muscarinic afterdepolarization is mediated by a calcium-activated nonselective cation current, suggesting the possible involvement of TRPC channels. We find that expression of a TRPC dominant negative inhibits, and overexpression of wild-type TRPC5 or TRPC6 enhances, the amplitude of the muscarinic receptor-induced inward aftercurrent. Furthermore, we find that coexpression of TRPC5 and T-type calcium channels is sufficient to reconstitute a muscarinic receptor-activated inward aftercurrent in human embryonic kidney HEK-293 cells. These results indicate that TRPC channels mediate the muscarinic receptor-induced slow afterdepolarization seen in pyramidal cells of the cerebral cortex and suggest a possible role for TRPC channels in mnemonic processes. PMID:19675237

  14. Do cysteine residues regulate transient receptor potential canonical type 6 channel protein expression?

    PubMed

    Thilo, Florian; Liu, Ying; Krueger, Katharina; Förste, Nora; Wittstock, Antje; Scholze, Alexandra; Tepel, Martin

    2012-03-01

    The regulation of calcium influx through transient receptor potential canonical type 6 (TRPC6) channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine (HC) or acetylcysteine (ACC) affect TRPC6 expression in human monocytes. We observed that patients with chronic renal failure had significantly elevated HC levels and TRPC6 mRNA expression levels in monocytes compared with control subjects. We further observed that administration of HC or ACC significantly increased TRPC6 channel protein expression compared with control conditions. We, therefore, hypothesize that cysteine residues increase TRPC6 channel protein expression in humans.

  15. Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8

    PubMed Central

    Carrasquel-Ursulaez, Willy; Moldenhauer, Hans; Castillo, Juan Pablo; Latorre, Ramón; Alvarez, Osvaldo

    2015-01-01

    Mammals maintain homeostatic control of their body temperature. Therefore, these organisms are expected to have adaptations that confer the ability to detect and react to both self and ambient temperature. Temperature-activated ion channels have been discovered to be the primary molecular determinants of thermosensation. The most representative group of these determinants constitutes members of the transient receptor potential superfamily, TRP, which are activated by either low or high temperatures covering the whole range of physiologically relevant temperatures. This review makes a critical assessment of existing analytical methods of temperature-activated TRP channel mechanisms using the cold-activated TRPM8 channel as a paradigm. PMID:27227023

  16. Regulation of synaptic signalling by postsynaptic, non-glutamate receptor ion channels

    PubMed Central

    Bloodgood, Brenda L; Sabatini, Bernardo L

    2008-01-01

    Activation of glutamatergic synapses onto pyramidal neurons produces a synaptic depolarization as well as a buildup of intracellular calcium (Ca2+). The synaptic depolarization propagates through the dendritic arbor and can be detected at the soma with a recording electrode. Current influx through AMPA-type glutamate receptors (AMPARs) provides the depolarizing drive, and the amplitudes of synaptic potentials are generally thought to reflect the number and properties of these receptors at each synapse. In contrast, synaptically evoked Ca2+ transients are limited to the spine containing the active synapse and result primarily from Ca2+ influx through NMDA-type glutamate receptors (NMDARs). Here we review recent studies that reveal that both synaptic depolarizations and spine head Ca2+ transients are strongly regulated by the activity of postsynaptic, non-glutamate receptor ion channels. In hippocampal pyramidal neurons, voltage- and Ca2+-gated ion channels located in dendritic spines open as downstream consequences of glutamate receptor activation and act within a complex signalling loop that feeds back to regulate synaptic signals. Dynamic regulation of these ion channels offers a powerful mechanism of synaptic plasticity that is independent of direct modulation of glutamate receptors. PMID:18096597

  17. Insights into the channel gating of P2X receptors from structures, dynamics and small molecules

    PubMed Central

    Wang, Jin; Yu, Ye

    2016-01-01

    P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na+, K+ and Ca2+. Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors. PMID:26725734

  18. [Molecular dynamics simulations of migration of ions and molecules through the acetylcholine receptor channel].

    PubMed

    Shaĭtan, K V; Li, A; Tershkina, K B; Kirpichnikov, M P

    2007-01-01

    A dynamic model of the channel of an acetylcholine receptor in a closed state has been proposed. The channel is formed by five a-helices of subunit M2 and stabilized by the cyclic hydrocarbon (CH2)105. The migration of charged and unchanged van der Waals particles with a diameter of 7.72 A equivalent to the diameter of a hydrated sodium ion has been studied. The migration occurred by the action of external force applied to the complex along the channel axis. In the closed state, the inhibition of ions is due to two components: electrostatic interaction and steric constraints. The van der Waals channel gate is formed by residues 13'-A-Val255, B-Val261, C-Val269, D-Val255, and E-Ile264, and the negatively changed residues occurring in the upper part of the channel have a great effect on ion selectivity.

  19. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor

    PubMed Central

    Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A.; Bell, Andrea M.; Denis, Charlotte S.; Šali, Andrej; Hudspeth, A. J.; Friedman, Jeffrey M.; Heller, Stefan

    2008-01-01

    SUMMARY The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nevous system, the channel is expressed neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells. PMID:11081638

  20. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor.

    PubMed

    Liedtke, W; Choe, Y; Martí-Renom, M A; Bell, A M; Denis, C S; Sali, A; Hudspeth, A J; Friedman, J M; Heller, S

    2000-10-27

    The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nervous system, the channel is expressed in neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells.

  1. Energetic Contributions to Channel Gating of Residues in the Muscle Nicotinic Receptor β1 Subunit

    PubMed Central

    Akk, Gustav; Eaton, Megan; Li, Ping; Zheng, Steven; Lo, Joshua; Steinbach, Joe Henry

    2013-01-01

    In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational changes occur in this subunit. We used records of single channel activity and rate-equilibrium free energy relationships to examine the β1 (non-ACh-binding) subunit of the muscle nicotinic receptor. Mutations to residues in the extracellular domain have minimal effects on the gating equilibrium constant. Positions in the channel lining (M2 transmembrane) domain contribute strongly and relatively late during gating. Positions thought to be important in other subunits in coupling the transmitter-binding to the channel domains have minimal effects on gating. We conclude that the conformational changes involved in channel gating propagate from the binding-site to the channel in the ACh-binding subunits and subsequently spread to the non-binding subunit. PMID:24194945

  2. The Receptor Site and Mechanism of Action of Sodium Channel Blocker Insecticides.

    PubMed

    Zhang, Yongqiang; Du, Yuzhe; Jiang, Dingxin; Behnke, Caitlyn; Nomura, Yoshiko; Zhorov, Boris S; Dong, Ke

    2016-09-16

    Sodium channels are excellent targets of both natural and synthetic insecticides with high insect selectivity. Indoxacarb, its active metabolite DCJW, and metaflumizone (MFZ) belong to a relatively new class of sodium channel blocker insecticides (SCBIs) with a mode of action distinct from all other sodium channel-targeting insecticides, including pyrethroids. Electroneutral SCBIs preferably bind to and trap sodium channels in the inactivated state, a mechanism similar to that of cationic local anesthetics. Previous studies identified several SCBI-sensing residues that face the inner pore of sodium channels. However, the receptor site of SCBIs, their atomic mechanisms, and the cause of selective toxicity of MFZ remain elusive. Here, we have built a homology model of the open-state cockroach sodium channel BgNav1-1a. Our computations predicted that SCBIs bind in the inner pore, interact with a sodium ion at the focus of P1 helices, and extend their aromatic moiety into the III/IV domain interface (fenestration). Using model-driven mutagenesis and electrophysiology, we identified five new SCBI-sensing residues, including insect-specific residues. Our study proposes the first three-dimensional models of channel-bound SCBIs, sheds light on the molecular basis of MFZ selective toxicity, and suggests that a sodium ion located in the inner pore contributes to the receptor site for electroneutral SCBIs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Cannabinoid receptor agonists modulate calcium channels in rat retinal Müller cells.

    PubMed

    Yang, W; Li, Q; Wang, S-Y; Gao, F; Qian, W-J; Li, F; Ji, M; Sun, X-H; Miao, Y; Wang, Z

    2016-01-28

    While activation of cannabinoid CB1 receptor (CB1R) regulates a variety of retinal neuronal functions by modulating ion channels in these cells, effect of activated cannabinoid receptors on Ca(2+) channels in retinal Müller cells is still largely unknown. In the present work we show that three subunits of T-type Ca(2+) channels, CaV3.1, CaV3.2 and CaV3.3, as well as one subunit of L-type Ca(2+) channels, CaV1.2, were expressed in rat Müller cells by immunofluorescent staining. Consistently, nimodipine- and mibefradil-sensitive Na(+) currents through L- and T-type Ca(2+) channels could be recorded electrophysiologically. The cannabinoid receptor agonist WIN55212-2 significantly suppressed Ca(2+) channel currents, mainly the T-type one, in acutely isolated rat Müller cells in a dose-dependent manner, with an IC50 of 3.98μM. The WIN55212-2 effect was not blocked by AM251/SR141716, specific CB1R antagonists. Similar suppression of the currents was observed when anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), endogenous ligands of cannabinoid receptors, were applied. Moreover, even though CB2 receptors (CB2Rs) were expressed in rat Müller cells, the effects of WIN55212-2 and 2-AG on Ca(2+) channel currents were not blocked by AM630, a selective CB2R antagonist. However, the effect of AEA could be partially rescued by AM630. These results suggest that WIN55212-2 and 2-AG receptor-independently suppressed the Ca(2+) channel currents in Müller cells, while AEA suppressed the currents partially through CB2Rs. The existence of receptor-dependent and -independent mechanisms suggests that cannabinoids may modulate Müller cell functions through multiple pathways. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Phencyclidine interactions with the ionic channel of the acetylcholine receptor and electrogenic membrane

    PubMed Central

    Albuquerque, Edson X.; Tsai, Ming-Cheng; Aronstam, Robert S.; Witkop, Bernhard; Eldefrawi, Amira T.; Eldefrawi, Mohyee E.

    1980-01-01

    The effects of phencyclidine (PCP) were studied on the electrogenic and chemosensitive properties of the neuromuscular junction of skeletal muscle as well as on the binding sites on the acetylcholine (AcCho) receptor and its ionic channel in the electric organ membranes of the electric ray. The directly elicited muscle twitch was markedly potentiated by prolonging the falling phase of the muscle action potential and blocking delayed rectification. The indirectly elicited muscle twitch was transiently potentiated and then blocked by PCP at concentrations below 60 μM. PCP blocked miniature endplate potentials and AcCho sensitivities at the junctional region of innervated muscle, blocked the extrajunctional sensitivity of the chronically denervated muscle, and significantly depressed the peak amplitude of the endplate current (EPC) in a voltage- and time-dependent manner. PCP also caused acceleration of the time course of EPC decay and shortening of the mean life-time of the open ionic channel. The effects of PCP were not due to inhibition of AcCho receptor sites because PCP did not protect against the quasi-irreversible inhibition of receptor sites by α-bungarotoxin, nor did it inhibit binding of [3H]AcCho or [125I-labeled α-bungarotoxin to the receptor sites. On the other hand, PCP blocked the binding of [3H]perhydrohistrionicotoxin to the sites of the ionic channel of the AcCho receptor. The data suggest that PCP reacts with the electrogenic K+ channel and the ionic channel associated with the AcCho receptor in the open as well as the closed conformation. PMID:6928673

  5. Ca2+ influx through L-type Ca2+ channels and transient receptor potential channels activate pathological hypertrophy signaling

    PubMed Central

    Gao, Hui; Wang, Fang; Wang, Wei; Makarewich, Catherine A.; Zhang, Hongyu; Kubo, Hajime; Berretta, Remus M.; Barr, Larry A.; Molkentin, Jeffrey D.; Houser, Steven R.

    2012-01-01

    Common cardiovascular diseases such as hypertension and myocardial infarction require that myocytes develop greater than normal force to maintain cardiac pump function. This requires increases in [Ca2+]. These diseases induce cardiac hypertrophy and increases in [Ca2+] are known to be an essential proximal signal for activation of hypertrophic genes. However, the source of “hypertrophic” [Ca2+] is not known and is the topic of this study. The role of Ca2+ influx through L-type Ca2+ channels (LTCC), T-type Ca2+ channels (TTCC) and transient receptor potential (TRP) channels on the activation of Calcineurin (Cn) – Nuclear Factor of Activated T cells (NFAT) signaling and myocyte hypertrophy was studied. Neonatal rat (NRVMs) and adult feline (AFVM) ventricular myocytes were infected with an adenovirus containing NFAT-GFP, to determine factors that could induce NFAT nuclear translocation. Four millimolar Ca2+ or pacing induced NFAT nuclear translocation. This effect was blocked by Cn inhibitors. In NRVMs Nifedipine (Nif, LTCC antagonist) blocked high Ca2+-induced NFAT nuclear translocation while SKF-96365 (TRP channel antagonist) and Nickel (Ni, TTCC antagonist) were less effective. The relative potency of these antagonists against Ca2+ induced NFAT nuclear translocation (Nif>SKF-96365>Ni) was similar to their effects on Ca2+ transients and the LTCC current. Infection of NRVM with viruses containing TRP channels also activated NFAT-GFP nuclear translocation and caused myocyte hypertrophy. TRP effects were reduced by SKF-96365, but were more effectively antagonized by Nif. These experiments suggest that Ca2+ influx through LTCCs is the primary source of Ca2+ to activate Cn-NFAT signaling in NRVMs and AFVMs. While TRP channels cause hypertrophy, they appear to do so through a mechanism involving Ca2+ entry via LTCCs. PMID:22921230

  6. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes.

    PubMed

    Hevers, W; Lüddens, H

    1998-08-01

    The amino acid gamma-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotransmitter that mediates most of its effects through fast GABA-gated Cl(-)-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes alpha, beta, gamma, delta, sigma and epsilon, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of alpha, beta, and gamma subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular alpha and gamma subunit variants. Little is known about the functional properties of the beta, delta, and epsilon subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.

  7. Reconstitution of Purified Acetylcholine Receptors with Functional Ion Channels in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Anholt, R.; Lindstrom, J.; Montal, M.

    1980-05-01

    Acetylcholine receptor, solubilized and purified from Torpedo californica electric organ under conditions that preserve the activity of its ion channel, was reconstituted into vesicles of soybean lipid by the cholate-dialysis technique. The reconstituted vesicles were then spread into monolayers at an air-water interface and planar bilayers were subsequently formed by apposition of two monolayers. Addition of carbamoylcholine caused an increase in membrane conductance that was transient and relaxed spontaneously to the base level (i.e., became desensitized). The response to carbamoylcholine was dose dependent and competitively inhibited by curare. Fluctuations of membrane conductance corresponding to the opening and closing of receptor channels were observed. Fluctuation analysis indicated a single-channel conductance of 16± 3 pS (in 0.1 M NaCl) with a mean channel open time estimated to be 35± 5 ms. Thus, purified acetylcholine receptor reconstituted into lipid bilayers exhibited the pharmacological specificity, activation, and desensitization properties expected of this receptor in native membranes.

  8. Main ion channels and receptors associated with visceral hypersensitivity in irritable bowel syndrome

    PubMed Central

    de Carvalho Rocha, Heraldo Arcela; Dantas, Bruna Priscilla Vasconcelos; Rolim, Thaísa Leite; Costa, Bagnólia Araújo; de Medeiros, Arnaldo Correia

    2014-01-01

    Irritable bowel syndrome (IBS) is a very frequent functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort and alteration of bowel habits. The IBS physiopathology is extremely complex. Visceral hypersensitivity plays an important role in the pathogenesis of abdominal pain in both in vitro and in vivo models of this functional disorder. In order to obtain a general view of the participation of the main ion channels and receptors regarding the visceral hypersensitivity in the IBS and to describe their chemical structure, a literature review was carried out. A bibliographical research in the following electronic databases: Pubmed and Virtual Library in Health (BVS) was fulfilled by using the search terms “ion channels” “or” “receptors” “and” “visceral hypersensitivity” “or” “visceral nociception” “and” “irritable bowel syndrome”. Original and review articles were considered for data acquisition. The activation of the ATP ion-gated channels, voltage-gated sodium (Nav) and calcium (Cav) channels, as well as the activation of protease-activated receptors (PAR2), transient receptor potential vanilloide-1, serotonin, cannabinoids and cholecystokinin are involved in the genesis of visceral hypersensitivity in IBS. The involvement of ion channels and receptors concerning visceral hypersensitivity is noteworthy in IBS models. PMID:24976114

  9. Characterization of additional novel immune type receptors in channel catfish, Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    Mining of channel catfish (Ictalurus punctatus) expressed sequence tag databases identified seven new novel immune type receptors (IpNITRs). These differed in sequence, but not structure, from previously described IpNITR1-11. IpNITR12a, 12b, 13 and 14, encode proteins containing a single variable (V...

  10. Inhibition of calcium channels by neurokinin receptor and signal transduction in hamster submandibular ganglion cells.

    PubMed

    Yamada, T; Endoh, T; Suzuki, T

    1999-04-16

    Both substance P (SP) and neurokinin A (NKA) are known as neurotransmitters of the submandibular ganglion (SMG) neurons. SP released from collaterals of the sensory nerves also regulates the excitability of SMG neurons. It has recently been shown that neurokinins (NK) inhibit calcium channels in various neurons. In this study, the effects of NK on voltage-dependent calcium channel current (I(Ca)) in SMG cells were investigated using the whole-cell patch-clamp recording method. NK-1 receptor agonist and SP caused inhibition of I(Ca) in SMG cells in a dose-dependent manner. NK-1 receptor agonist inhibited L-, N- and P/Q-type I(Ca) components. GDP-beta-S included in the pipette solution reduced the NK-1 receptor agonist-induced inhibition of I(Ca). In addition, NK-1 receptor agonist-induced inhibition of I(Ca) was reduced by stimulation of protein kinase C (PKC) but not cyclic AMP-dependent protein kinase (PKA). The results provided evidence for a signal transduction pathway in which calcium channel inhibition by NK receptors required activation of G-protein and PKC-affected step phosphorylation in SMG neurons.

  11. 2,4-Toluene diisocyanate suppressed the calcium signaling of ligand gated ion channel receptors.

    PubMed

    Liu, Pei-Shan; Chiung, Yin-Mei; Kao, Yi-Yun; Chen, Han-Ting

    2006-02-15

    Toluene diisocyanate (TDI) is widely used as a chemical intermediate in the production of polyurethane. TDI-induced asthma is related to its disturbance of acetylcholine activity in most affected workers, but the relevant mechanisms are unclear. Toluene diamine (TDA) is the main metabolite of TDI. TDI and TDA have in common the basic toluene structure. Toluene is an abused solvent affecting neuronal signal transduction by influencing the function of ligand gated ion channel receptors, including nicotinic acetylcholine receptors (nAChR), P2X purinoceptors, [gamma]-aminobutyric acid type A (GABAA) receptors, etc. To understand the actions of TDI and TDA on ligand gated ion channels, we investigated their effects on the changes of cytosolic calcium concentration ([Ca2+]c) while stimulating nAChR in human neuroblastoma SH-SY5Y cells, P2 purinoceptors in PC12 cells, and GABAA receptors in bovine adrenal chromaffin cells. Our results showed that both TDI and TDA suppressed the [Ca2+]c rise induced by the potent nicotinic ligand, epibatidine, in human SH-SY5Y cells. Similar but stronger suppression of ATP-induced [Ca2+]c rise occurred in PC12 cells. TDI and TDA also partially suppressed the [Ca2+] c rise induced by GABA in bovine adrenal chromaffin cells. We conclude that TDI and TDA can act on ligand gated ion channel receptors. Our findings suggest that TDI and TDA might have some neurotoxicity that will need to be investigated.

  12. Identification of Functionally Critical Residues in the Channel Domain of Inositol Trisphosphate Receptors*

    PubMed Central

    Bhanumathy, Cunnigaiper; da Fonseca, Paula C. A.; Morris, Edward P.; Joseph, Suresh K.

    2012-01-01

    We have combined alanine mutagenesis and functional assays to identify amino acid residues in the channel domain that are critical for inositol 1,4,5-trisphosphate receptor (IP3R) channel function. The residues selected were highly conserved in all three IP3R isoforms and were located in the cytosolic end of the S6 pore-lining helix and proximal portion of the C-tail. Two adjacent hydrophobic amino acids (Ile-2588 and Ile-2589) at the putative cytosolic interface of the S6 helix inactivated channel function and could be candidates for the channel gate. Of five negatively charged residues mutated, none completely eliminated channel function. Of five positively charged residues mutated, only one inactivated the channel (Arg-2596). In addition to the previously identified role of a pair of cysteines in the C-tail (Cys-2610 and Cys-2613), a pair of highly conserved histidines (His-2630 and His-2635) were also essential for channel function. Expression of the H2630A and H2635A mutants (but not R2596A) produced receptors with destabilized interactions between the N-terminal fragment and the channel domain. A previously unrecognized association between the cytosolic C-tail and the TM 4,5-loop was demonstrated using GST pulldown assays. However, none of the mutations in the C-tail interfered with this interaction or altered the ability of the C-tail to assemble into dimers. Our present findings and recent information on IP3R structure from electron microscopy and crystallography are incorporated into a revised model of channel gating. PMID:23086950

  13. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.

    PubMed

    Gonzales, Eric B; Kawate, Toshimitsu; Gouaux, Eric

    2009-07-30

    Acid-sensing ion channels are proton-activated, sodium-selective channels composed of three subunits, and are members of the superfamily of epithelial sodium channels, mechanosensitive and FMRF-amide peptide-gated ion channels. These ubiquitous eukaryotic ion channels have essential roles in biological activities as diverse as sodium homeostasis, taste and pain. Despite their crucial roles in biology and their unusual trimeric subunit stoichiometry, there is little knowledge of the structural and chemical principles underlying their ion channel architecture and ion-binding sites. Here we present the structure of a functional acid-sensing ion channel in a desensitized state at 3 A resolution, the location and composition of the approximately 8 A 'thick' desensitization gate, and the trigonal antiprism coordination of caesium ions bound in the extracellular vestibule. Comparison of the acid-sensing ion channel structure with the ATP-gated P2X(4) receptor reveals similarity in pore architecture and aqueous vestibules, suggesting that there are unanticipated yet common structural and mechanistic principles.

  14. Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex

    PubMed Central

    Yu, Yong; Ulbrich, Maximilian H.; Li, Ming-hui; Dobbins, Scott; Zhang, Wei K.; Tong, Liang; Isacoff, Ehud Y.; Yang, Jian

    2013-01-01

    Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal and plays a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes. PMID:23212381

  15. Single-Channel Current Through Nicotinic Receptor Produced by Closure of Binding Site C-Loop

    SciTech Connect

    Wang, Hailong; Cheng, Xiaolin; McCammon, Jonathan

    2009-01-01

    We investigated the initial coupling of agonist binding to channel gating of the nicotinic acetylcholine receptor using targeted molecular-dynamics (TMD) simulation. After TMD simulation to accelerate closure of the C-loops at the agonist binding sites, the region of the pore that passes through the cell membrane expands. To determine whether the structural changes in the pore result in ion conduction, we used a coarse-grained ion conduction simulator, Biology Boltzmann transport Monte Carlo, and applied it to two structural frames taken before and after TMD simulation. The structural model before TMD simulation represents the channel in the proposed resting state, whereas the model after TMD simulation represents the channel in the proposed active state. Under external voltage biases, the channel in the active state was permeable to cations. Our simulated ion conductance approaches that obtained experimentally and recapitulates several functional properties characteristic of the nicotinic acetylcholine receptor. Thus, closure of the C-loop triggers a structural change in the channel sufficient to account for the open channel current. This approach of applying Biology Boltzmann transport Monte Carlo simulation can be used to further investigate the binding to gating transduction mechanism and the structural bases for ion selection and translocation.

  16. Terpenes and lipids of the endocannabinoid and transient-receptor-potential-channel biosignaling systems.

    PubMed

    Janero, David R; Makriyannis, Alexandros

    2014-11-19

    Endocananbnoid-system G-protein coupled receptors (GPCRs) and transient receptor potential (TRP) cation channels are critical components of cellular biosignaling networks. These plasma-membrane proteins are pleiotropic in their ability to interact with and engage structurally diverse ligands. The endocannabinoid and TRP signaling systems overlap in their recognition properties with respect to select naturally occurring plant-derived ligands that belong to the terpene and lipid chemical classes, the overlap establishing a physiological connectivity between these two ubiquitous cell-signaling systems. Identification and pharmacological profiling of phytochemicals engaged by cannabinoid GPCRs and/or TRP channels has inspired the synthesis of novel designer ligands that interact with cannabinoid receptors and/or TRP channels as xenobiotics. Functional interplay between the endocannabinoid and TRP-channel signaling systems is responsible for the antinocifensive action of some synthetic cananbinoids (WIN55,212-2 and AM1241), vasorelaxation by the endocannabinoid N-arachidonylethanolamide (anandamide), and the pain-relief afforded by the synthetic anandamide analogue N-arachidonoylaminophenol (AM404), the active metabolite of the widely used nonprescription analgesic and antipyretic acetaminophen (paracetamol). The biological actions of some plant-derived cannabinoid-receptor (e.g., Δ(9)-tetrahydrocannabinol) or TRP-channel (e.g,, menthol) ligands either carry abuse potential themselves or promote the use of other addictive substances, suggesting the therapeutic potential for modulating these signaling systems for abuse-related disorders. The pleiotropic nature of and therapeutically relevant interactions between cananbinergic and TRP-channel signaling suggest the possibility of dual-acting ligands as drugs.

  17. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel

    PubMed Central

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  18. Open channel block and alteration of N-methyl-D-aspartic acid receptor gating by an analog of phencyclidine.

    PubMed Central

    Dilmore, J G; Johnson, J W

    1998-01-01

    We investigated inhibition of the N-methyl-D-aspartic acid (NMDA) receptor-channel complex by N-ethyl-1,4,9, 9alpha-tetrahydro-4alphaR-cis-4alphaH-fluoren-++ +4alpha-amine (NEFA), a structural analog of phencyclidine (PCP). Using the whole-cell recording technique, we demonstrated that NEFA inhibits NMDA responses with an IC50 of 0.51 microM at -66 mV. We determined that NEFA binds to the open channel, and subsequently the channel can close and trap the blocker. Once the channel has closed, NEFA is unable to dissociate until the channel reopens. Single-channel recordings revealed that NEFA reduces the mean open time of single NMDA-activated channels in a concentration-dependent manner with a forward blocking rate (k+) of 39.9 microM-1 s-1. A computational model of antagonism by NEFA was developed and constrained using kinetic measurements of single-channel data. By multiple criteria, only models in which blocker binding in the channel causes a change in receptor operation adequately fit or predicted whole-cell data. By comparing model predictions and experimental measurements of NEFA action at a high NMDA concentration, we determined that NEFA affects receptor operation through an influence on channel gating. We conclude that inhibition of NMDA receptors by PCP-like blockers involves a modification of channel gating as well as block of current flow through the open channel. PMID:9746522

  19. Unanticipated parallels in architecture and mechanism between ATP-gated P2X receptors and acid sensing ion channels

    PubMed Central

    Baconguis, Isabelle; Hattori, Motoyuki; Gouaux, Eric

    2013-01-01

    Summary ATP-gated P2X receptors and acid-sensing ion channels are cation-selective, trimeric ligand-gated ion channels unrelated in amino acid sequence. Nevertheless, initial crystal structures of the P2X4 receptor and acid-sensing ion channel 1a in resting/closed and in non conductive/desensitized conformations, respectively, revealed common elements of architecture. Recent structures of both channels have revealed the ion channels in open conformations. Here we focus on common elements of architecture, conformational change and ion permeation, emphasizing general principles of structure and mechanism in P2X receptors and in acid-sensing ion channels and showing how these two sequence-disparate families of ligand-gated ion channel harbor unexpected similarities when viewed through a structural lens. PMID:23628284

  20. Kainate receptor pore‐forming and auxiliary subunits regulate channel block by a novel mechanism

    PubMed Central

    Brown, Patricia M. G. E.; Aurousseau, Mark R. P.; Musgaard, Maria; Biggin, Philip C.

    2016-01-01

    Key points Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion‐channel block by facilitating blocker permeation.Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α‐helical region.Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism.Our findings have broad implications for work on polyamine block of other cation‐selective ion channels. Abstract Channel block and permeation by cytoplasmic polyamines is a common feature of many cation‐selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α‐helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation‐selective ion channels. PMID:26682513

  1. Coregulation of calcium channels and beta-adrenergic receptors in cultured chick embryo ventricular cells

    SciTech Connect

    Marsh, J.D. )

    1989-09-01

    To examine mechanisms whereby the abundance of functional Ca channels may be regulated in excitable tissue, Ca channel number was estimated by binding of the dihydropyridine (DHP) antagonist {sup 3}H (+)PN200-110 to monolayers of intact myocytes from chick embryo ventricle. Beta adrenergic receptor properties were studied in cultured myocytes using ({sup 3}H)CGP12177, an antagonist ligand. Physiological correlates for alterations in DHP binding site number included {sup 45}Ca uptake and contractile response to (+)BAYk 8644, a specific L-type Ca channel activator. All binding and physiological determinations were performed in similar intact cell preparations under identical conditions. 4-h exposure to 1 microM isoproterenol reduced cell surface beta-adrenergic receptor number from 44 +/- 3 to 17 +/- 2 fmol/mg (P less than 0.05); DHP binding sites declined in number from 113 +/- 25 to 73 +/- 30 fmol/mg (P less than 0.03). When protein kinase A was activated by a non-receptor-dependent mechanism, DHP binding declined similarly to 68% of control. Exposure to diltiazem, a Ca channel antagonist, for 18-24 h had no effect on number of DHP binding sites. After 4-h isoproterenol exposure, {sup 45}Ca uptake stimulated by BAYk 8644 declined from 3.3 +/- 0.2 nmol/mg to 2.9 +/- 0.3 nmol/mg (P less than 0.01) and BAYk 8644-stimulated increase in amplitude of contraction declined from 168 +/- 7 to 134 +/- 11% (P = 0.02). Thus, elevation of (cAMP) in myocytes is associated with a time-dependent decline in Ca channel abundance as estimated by DHP binding and a decline in physiological responses that are in part dependent on abundance of Ca channels. Binding of a directly acting Ca channel antagonist for 18-24 h does not modulate the number of DHP binding sites.

  2. Interaction with Dopamine D2 Receptor Enhances Expression of Transient Receptor Potential Channel 1 at the Cell Surface

    PubMed Central

    Hannan, Meredith A.; Kabbani, Nadine; Paspalas, Constantinos D.; Levenson, Robert

    2008-01-01

    Receptor signaling is mediated by direct protein interaction with various types of cytoskeletal, adapter, effector, and additional receptor molecules. In brain tissue and in cultured neurons, activation of dopamine D2 receptors (D2Rs) has been found to impact cellular calcium signaling. Using a yeast two-hybrid approach, we have uncovered a direct physical interaction between the D2R and the transient receptor potential channel (TRPC) subtypes 1, 4 and 5. The TRPC/D2R interaction was further validated by GST-pulldown assays and coimmunoprecipitation from mammalian brain. Ultrastructural analysis of TRPC1 and D2R expression indicates colocalization of the two proteins within the cell body and dendrites of cortical neurons. In cultured cells, expression of D2Rs was found to increase expression of TRPC1 at the cell surface by 50%. These findings shed new light on the constituents of the D2R signalplex, and support the involvement of D2Rs in cellular calcium signaling pathways via a novel link to TRPC channels. PMID:18261457

  3. Ca2+ channel inhibition by endomorphins via the cloned mu-opioid receptor expressed in NG108-15 cells.

    PubMed

    Mima, H; Morikawa, H; Fukuda, K; Kato, S; Shoda, T; Mori, K

    1997-12-11

    Endomorphin-1 and -2, recently isolated endogenous peptides specific for the mu-opioid receptor, inhibited Ca2+ channel currents with EC50 of 6 and 9 nM, respectively, in NG108-15 cells transformed to express the cloned rat mu-opioid receptor. On the other hand, they elicited no response in nontransfected NG108-15 cells. It is concluded that endomorphin-1 and -2 induce Ca2+ channel inhibition by selectively activating the mu-opioid receptor.

  4. Voltage-gated calcium channels function as Ca2+-activated signaling receptors.

    PubMed

    Atlas, Daphne

    2014-02-01

    Voltage-gated calcium channels (VGCCs) are transmembrane cell surface proteins responsible for multifunctional signals. In response to voltage, VGCCs trigger synaptic transmission, drive muscle contraction, and regulate gene expression. Voltage perturbations open VGCCs enabling Ca(2+) binding to the low affinity Ca(2+) binding site of the channel pore. Subsequent to permeation, Ca(2+) targets selective proteins to activate diverse signaling pathways. It is becoming apparent that the Ca(2+)-bound channel triggers secretion in excitable cells and drives contraction in cardiomyocytes prior to Ca(2+) permeation. Here, I highlight recent data implicating receptor-like function of the Ca(2+)-bound channel in converting external Ca(2+) into an intracellular signal. The two sequential mechanistic perspectives of VGCC function are discussed in the context of the prevailing and long-standing current models of depolarization-evoked secretion and cardiac contraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Taste receptors and gustatory associated G proteins in channel catfish, Ictalurus punctatus.

    PubMed

    Gao, Sen; Liu, Shikai; Yao, Jun; Zhou, Tao; Li, Ning; Li, Qi; Dunham, Rex; Liu, Zhanjiang

    2017-03-01

    Taste sensation plays a pivotal role in nutrient identification and acquisition. This is particularly true for channel catfish (Ictalurus punctatus) that live in turbid waters with limited visibility. This biological process is mainly mediated by taste receptors expressed in taste buds that are distributed in several organs and tissues, including the barbels and skin. In the present study, we identified a complete repertoire of taste receptor and gustatory associated G protein genes in the channel catfish genome. A total of eight taste receptor genes were identified, including five type I and three type II taste receptor genes. Their genomic locations, phylogenetic relations, orthologies and expression were determined. Phylogenetic and collinear analyses provided understanding of the evolution dynamics of this gene family. Furthermore, the motif and dN/dS analyses indicated that selection pressures of different degrees were imposed on these receptors. Additionally, four genes of gustatory associated G proteins were also identified. It was indicated that expression patterns of catfish taste receptors and gustatory associated G proteins across organs mirror the distribution of taste buds across organs. Finally, the expression comparison between catfish and zebrafish organs provided evidence of potential roles of catfish skin and gill involved in taste sensation.

  6. The L-, N-, and T-type triple calcium channel blocker benidipine acts as an antagonist of mineralocorticoid receptor, a member of nuclear receptor family.

    PubMed

    Kosaka, Hiromichi; Hirayama, Kazunori; Yoda, Nobuyuki; Sasaki, Katsutoshi; Kitayama, Tetsuya; Kusaka, Hideaki; Matsubara, Masahiro

    2010-06-10

    Aldosterone-induced activation of mineralocorticoid receptor, a member of the nuclear receptor family, results in increased tissue damage such as vascular inflammation and cardiac and perivascular fibrosis. Benidipine, a long-lasting dihydropyridine calcium channel blocker, is used for hypertension and angina. Benidipine exhibits pleiotropic pharmacological features such as renoprotective and cardioprotective effects through triple blockade of L-, N-, and T-type calcium channels. However, the mechanism of additional beneficial effects on end-organ damage is poorly understood. Here, we examined the effects of benidipine and other calcium channel blockers on aldosterone-induced mineralocorticoid receptor activation using luciferase reporter assay system. Benidipine showed more potent activity than efonidipine, amlodipine, or azelnidipine. Benidipine depressed the response to higher concentrations of aldosterone, whereas pretreatment of eplerenone, a steroidal mineralocorticoid receptor antagonist, did not. Binding studies using [(3)H] aldosterone indicated that benidipine and other calcium channel blockers competed for binding to mineralocorticoid receptor. Benidipine and other calcium channel blockers showed antagonistic activity on Ser810 to Leu mutant mineralocorticoid receptor, which is identified in patients with early-onset hypertension. On the other hand, eplerenone partially activated the mutant. Results of analysis using optical isomers of benidipine indicated that inhibitory effect of aldosterone-induced mineralocorticoid receptor activation was independent of its primary blockade of calcium channels. These results suggested that benidipine directly inhibits aldosterone-induced mineralocorticoid receptor activation, and the antagonistic activity might contribute to the drug's pleiotropic pharmacological features.

  7. Phosphoinositide 3-kinase isoforms selectively couple receptors to vascular L-type Ca(2+) channels.

    PubMed

    Macrez, N; Mironneau, C; Carricaburu, V; Quignard, J F; Babich, A; Czupalla, C; Nürnberg, B; Mironneau, J

    2001-10-12

    Heterodimeric class I phosphoinositide 3-kinase (PI3K) has been shown to be involved in the stimulation of voltage-gated Ca(2+) channels by various mediators. In this study, we bring evidences that vascular L-type Ca(2+) channels can be modulated by both tyrosine kinase-regulated class Ia and G protein-regulated class Ib PI3Ks. Purified recombinant PI3Ks increased the peak Ca(2+) channel current density when applied intracellularly. Furthermore, PI3Kalpha-, beta-, and delta-mediated stimulations of Ca(2+) channel currents were increased by preactivation by a phosphotyrosyl peptide, whereas PI3Kgamma- and beta-mediated effects were increased by Gbetagamma. In freshly isolated and cultured vascular myocytes, angiotensin II and Gbetagamma stimulated L-type Ca(2+) channel current. In contrast, platelet-derived growth factor (PDGF)-BB and the phosphotyrosyl peptide did not stimulate Ca(2+) channel current in freshly isolated cells despite the presence of endogenous PDGF receptors and PI3Kalpha and PI3Kgamma. Interestingly, when endogenous PI3Kbeta expression arose in cultured myocytes, both PDGF and phosphotyrosyl peptide stimulated Ca(2+) channels through PI3Kbeta, as revealed by the inhibitory effect of an anti-PI3Kbeta antibody. These results suggest that endogenous PI3Kbeta but not PI3Kalpha is specifically involved in PDGF receptor-induced stimulation of Ca(2+) channels and that different isoforms of PI3K regulate physiological increases of Ca(2+) influx in vascular myocytes stimulated by vasoconstrictor or growth factor.

  8. [Intracellular calcium channels, hormone receptors and intercellular calcium waves].

    PubMed

    Tordjmann, T; Tran, D; Berthon, B; Jacquemin, E; Guillon, G; Combettes, L; Claret, M

    1998-01-01

    The hormone-mediated intercellular Ca2+ waves were analyzed in multiplets of rat hepatocytes by video imaging of fura2 fluorescence. These multicellular systems are composed of groups of several cells (doublets to quintuplets) issued from the liver cell plate, a one cell-thick cord of about 20 hepatocytes long between portal and centrolobular veins. When the multiplets were homogeneously bathed with the glycogenolytic agonists vasopressin, noradrenaline, angiotensin II and ATP, they showed highly organized Ca2+ signals. Surprisingly, for a given agonist, the primary rises in intracellular Ca2+ concentration ([Ca2+]i) originated invariably in the same hepatocyte, then was propagated in a sequential manner to the nearest connected cells (cell 2, then 3, cell 4 in a quadruplet, for example). The sequential activation of the cells appeared to be an intrinsic property of multiplets of rat hepatocytes. The same sequence was observed at each train of oscillations occurring between cells. The order of [Ca2+]i responses was modified neither by repeated additions of hormones nor by the hormonal dose. The mechanical disruption of an intermediate cell did not prevent the activation of the next cell. These results suggest that each hepatocyte in the multiplet displays its own sensitivity to the hormone and that a gradient of sensitivity between each cell could be responsible for directing the intercellular Ca2+ wave. To test this hypothesis, we selectively isolated rat hepatocytes from periportal (PP) and perivenous (PV) areas of the liver cell plate. Periportal (PP) and perivenous (PV) rat hepatocyte suspensions were loaded with quin2/AM and hormonal responses were studied in a spectrofluorimeter. Noradrenaline, angiotensin II, and vasopressin-induced [Ca2+]i rises were greater in PV than in PP hepatocytes. In contrast, PP cells were more responsive than PV cells to ATP. The function of the InsP3 receptor (InsP3R) was also studied by measuring the InsP3-mediated 45Ca2+ release

  9. Increased Migration of Monocytes in Essential Hypertension Is Associated with Increased Transient Receptor Potential Channel Canonical Type 3 Channels

    PubMed Central

    Chen, Jing; Zhong, Jian; Yu, Hao; Xu, Xingsen; He, Hongbo; Yan, Zhencheng; Scholze, Alexandra; Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2012-01-01

    Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performed in a microchemotaxis chamber using chemoattractants formylated peptide Met-Leu-Phe (fMLP) and tumor necrosis factor-α (TNF-α). Proteins were identified by immunoblotting and quantitative in-cell Western assay. The effects of TRP channel-inhibitor 2–aminoethoxydiphenylborane (2-APB) and small interfering RNA knockdown of TRPC3 were investigated. We observed an increased fMLP-induced migration of monocytes from hypertensive patients compared with normotensive control subjects (246±14% vs 151±10%). The TNF-α-induced migration of monocytes in patients with essential hypertension was also significantly increased compared to normotensive control subjects (221±20% vs 138±18%). In the presence of 2-APB or after siRNA knockdown of TRPC3 the fMLP-induced monocyte migration was significantly blocked. The fMLP-induced changes of cytosolic calcium were significantly increased in monocytes from hypertensive patients compared to normotensive control subjects. The fMLP-induced monocyte migration was significantly reduced in the presence of inhibitors of tyrosine kinase and phosphoinositide 3-kinase. We conclude that increased monocyte migration in patients with essential hypertension is associated with increased TRPC3 channels. PMID:22438881

  10. Channel opening by anesthetics and GABA induces similar changes in the GABAA receptor M2 segment.

    PubMed

    Rosen, Ayelet; Bali, Moez; Horenstein, Jeffrey; Akabas, Myles H

    2007-05-01

    For many general anesthetics, their molecular basis of action involves interactions with GABA(A) receptors. Anesthetics produce concentration-dependent effects on GABA(A) receptors. Low concentrations potentiate submaximal GABA-induced currents. Higher concentrations directly activate the receptors. Functional effects of anesthetics have been characterized, but little is known about the conformational changes they induce. We probed anesthetic-induced conformational changes in the M2 membrane-spanning, channel-lining segment using disulfide trapping between engineered cysteines. Previously, we showed that oxidation by copper phenanthroline in the presence of GABA of the M2 6' cysteine mutants, alpha(1)T261Cbeta(1)T256C and alpha(1)beta(1)T256C resulted in formation of an intersubunit disulfide bond between the adjacent beta-subunits that significantly increased the channels' spontaneous open probability. Oxidation in GABA's absence had no effect. We examined the effect on alpha(1)T261Cbeta(1)T256C and on alpha(1)beta(1)T256C of oxidation by copper phenanthroline in the presence of potentiating and directly activating concentrations of the general anesthetics propofol, pentobarbital, and isoflurane. Oxidation in the presence of potentiating concentration of anesthetics had little effect. Oxidation in the presence of directly activating anesthetic concentrations significantly increased the channels' spontaneous open probability. We infer that activation by anesthetics and GABA induces a similar conformational change at the M2 segment 6' position that is related to channel opening.

  11. Receptors, channels, and signalling in the urothelial sensory system in the bladder

    PubMed Central

    Merrill, Liana; Gonzalez, Eric J.; Girard, Beatrice M.; Vizzard, Margaret A.

    2017-01-01

    The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246

  12. Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8).

    PubMed

    Raddatz, Natalia; Castillo, Juan P; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-12-19

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca(2+)-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol(-1). The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening.

  13. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp.

    PubMed

    Wagner, Larry E; Groom, Linda A; Dirksen, Robert T; Yule, David I

    2014-08-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation.

  14. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    PubMed Central

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single