Science.gov

Sample records for glycol copolymers evaluation

  1. Blood compatibility evaluations of poly(ethylene glycol)-poly(lactic acid) copolymers.

    PubMed

    Li, Chenghua; Ma, Chengyan; Zhang, Yi; Liu, Zonghua; Xue, Wei

    2016-05-01

    Poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) copolymers have been widely used for various biomedical applications. However, their hemocompatibility has not been clarified, which would lag their developments and clinical applications. In this work, we studied the effect of PEG-PLA copolymers on key human blood components in terms of their structure and bio-functions, including morphology and lysis of red blood cells, fibrinogen structure and conformation, and plasma and blood coagulation. To elucidate a structure-activity relationship, we used diblock PEG-PLA copolymers with different molecular weight, PEG(5 kDa)-PLA(25 kDa) and PEG(2 kDa)-PLA(2 kDa), abbreviated as PEG5k-PLA25k and PEG2k-PLA2k, respectively. The results show that the PEG-PLA copolymers at the concentration range studied in this work neither caused morphological alteration and lysis of red blood cells nor affected the oxygen delivery function and fibrinogen conformation. PEG5k-PLA25k from 10 to 100 mg/mL and PEG2k-PLA2k from 1.5 to 5 mg/mL disturbed the local microenvironments of fibrinogen molecules. PEG5k-PLA25k at up to 0.1 mg/mL did not interfere in the coagulation process of plasma or whole blood, while PEG2k-PLA2k from 0.1 mg/mL significantly interfered in the intrinsic plasma coagulation pathway and impaired whole blood coagulation. The results provide important information for the molecular design and clinical applications of PEG-PLA copolymers.

  2. Improved oral absorption of doxorubicin by amphiphilic copolymer of lysine-linked ditocopherol polyethylene glycol 2000 succinate: in vitro characterization and in vivo evaluation.

    PubMed

    Wang, Jinling; Li, Lin; Du, Yuqian; Sun, Jin; Han, Xiaopeng; Luo, Cong; Ai, Xiaoyu; Zhang, Qi; Wang, Yongjun; Fu, Qiang; Yang, Zhifu; He, Zhonggui

    2015-02-02

    In the previous study, we have synthesized an amphiphilic copolymer of nanostructure-forming material and P-glycoprotein (P-gp) inhibitor, lysine-linked ditocopherol polyethylene glycol 2000 succinate (PLV2K). The cytotoxicty in vitro and anticancer efficacy in vivo after intravenous administration of DOX-loaded PLV2K micelles (PLV2K-DOX) was found more effective than DOX solution (DOX-Sol). However, its performance and mechanism on oral absorption of doxorubicin are not well understood yet. PLV2K-DOX are spherical micelles with a narrow size distribution of 20.53 ± 2.44 nm. With an in situ intestinal perfusion model, the intestinal absorption potential of PLV2K-DOX was evaluated in comparison with DOX-Sol. PLV2K-DOX was specifically absorbed in duodenum and ileum sites of rats after oral administration. The intestinal absorption rate (Ka) of PLV2K-DOX is 3.19-, 1.61-, and 1.80-fold higher than that of DOX-Sol in duodenum, jejunum, and ileum, respectively. In Caco-2 uptake studies, PLV2K-DOX micelles significantly improve the internalized amount of DOX by P-gp inhibition of free PLV2K copolymer and endocytosis of DOX-loaded nanoparticles. Moreover, PLV2K-DOX micelles improve the membrane permeability of DOX by multiple transcytosis mechanisms, including caveolin-, clathrin-dependent, and caveolin-/clathrin-independent transcytosis in Caco-2 transport studies. However, the transepithelia electrical resistance (TEER) of Caco-2 cellular monolayer is not changed, suggesting no involvement of paracellular transport of PLV2K-DOX. In vivo pharmacokinetics in rats following oral administration demonstrated that PLV2K-DOX demonstrates higher AUC (5.6-fold) and longer t1/2 (1.2-fold) than DOX-Sol. The findings suggest the new PLV2K micelles might provide an effective nanoplatform for oral delivery of anticancer drugs with poor membrane permeability and low oral bioavailability.

  3. Multidimensional chromatographic techniques for hydrophilic copolymers II. Analysis of poly(ethylene glycol)-poly(vinyl acetate) graft copolymers.

    PubMed

    Knecht, Daniela; Rittig, Frank; Lange, Ronald F M; Pasch, Harald

    2006-10-13

    A large variety of hydrophilic copolymers is applied in different fields of chemical industry including bio, pharma and pharmaceutical applications. For example, poly(ethylene glycol)-poly(vinyl alcohol) graft copolymers that are used as tablet coatings are responsible for the controlled release of the active compounds. These copolymers are produced by grafting of vinyl acetate onto polyethylene glycol (PEG) and subsequent hydrolysis of the poly(ethylene glycol)-poly(vinyl acetate) graft copolymers. The poly(ethylene glycol)-poly(vinyl acetate) copolymers are distributed with regard to molar mass and chemical composition. In addition, they frequently contain the homopolymers polyethylene glycol and polyvinyl acetate. The comprehensive analysis of such complex systems requires hyphenated analytical techniques, including two-dimensional liquid chromatography and combined LC and nuclear magnetic resonance spectroscopy. The development and application of these techniques are discussed in the present paper.

  4. Ultrasound responsive block copolymer micelle of poly(ethylene glycol)-poly(propylene glycol) obtained through click reaction.

    PubMed

    Li, Fayong; Xie, Chuan; Cheng, Zhengang; Xia, Hesheng

    2016-05-01

    The well-defined amphiphilic poly(ethylene glycol)-block-poly(propylene glycol) copolymer containing 1, 2, 3-triazole moiety and multiple ester bonds (PEG-click-PPG) was prepared by click reaction strategy. The PEG-click-PPG copolymer can self-assemble into spherical micelles in aqueous solution. It is found that high intensity focused ultrasound (HIFU) can open the copolymer PEG-click-PPG micelles and trigger the release of the payload in the micelle. The multiple ester bonds introduced in the junction point of the copolymer chain through click reactions were cleaved under HIFU, and leads to the disruption of the copolymer micelle and fast release of loaded cargo. The click reaction provides a convenient way to construct ultrasound responsive copolymer micelles with weak bonds.

  5. Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer micelles loading curcumin: preparation, characterization, and in vitro evaluation.

    PubMed

    Lv, Li; Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Mingna; Guo, Shengrong; Huang, Shengtang

    2013-01-01

    A novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer (4-arm PEG-b-PAE) was synthesized by esterization of 4-arm poly(ethylene glycol) and poly(anhydride-esters) which was obtained by melt polycondensation of α -, ω -acetic anhydride terminated poly(L-lactic acid). The obtained 4-arm PEG-b-PAE was characterized by (1)H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL). The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells.

  6. Interfacial Properties of Polyethylene Glycol/Vinyltriethoxysilane (PEG/VTES) Copolymers and their Application to Stain Resistance.

    PubMed

    Chao, Yin-Chun; Su, Shuenn-Kung; Lin, Ya-Wun; Hsu, Wan-Ting; Huang, Kuo-Shien

    2012-05-01

    In this study, polyethylene glycol (PEG) and vinyltriethoxysilane (VTES) were used in different proportions to produce a series of PEG-VTES copolymers. The copolymer molecular structures were confirmed by FTIR spectroscopy. In addition, their surface activities were evaluated by evaluating the surface tension, contact angle, and foaming properties. The results showed that these surfactants exhibited excellent surface activities and wetting power, as well as low foaming. Consequently, the application of a series of PEG/VTES copolymers can make cotton fabrics stain resistant.

  7. Crystallization studies of polyethylene -poly(ethylene glycol) graft copolymers

    NASA Astrophysics Data System (ADS)

    Mark, P. R.; Hovey, G. E.; Murthy, N. S.; Breitenkamp, K.; Kade, M.; Emerick, T.

    2006-03-01

    Structure and crystallization behavior of three copolymers obtained by grafting poly (ethylene glycol) (PEG) chains to polyethylene (PE) main chain was investigated by variable temperature x-ray diffraction and thermal analysis. The results show that PEG side chains and PE main chains crystallize into separate domains. This is especially true when grafted chains are long (50 and 100 repeat units), in which the PEG domains are same as in PEG homopolymer both in structure and in melting behavior. In the copolymer with shorter chains (25 repeat units), the PEG crystals are not distinct and melting is broad. The PEG domains can be dissolved in water or ethanol without altering the mechanical integrity of the film. PE crystallites in both samples are similar to that in PE homopolymer. For instance, the thermal expansion of the basal cell plane (a- and b-axes) of the PE domains agrees well with that of PE homopolymer over the entire temperature range from ambient to melt. However, the chain-axis dimension PE-lattice in the copolymer is shorter by ˜ 0.05 å and the basal dimensions are larger by ˜ 0.05 å. The changes in these dimensions due to the changes in the length of the grafted PEG chains were investigated.

  8. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Chin, Jaemin; Mustafi, Devkumar; Poellmann, Michael J.; Lee, Raphael C.

    2017-02-01

    Certain amphiphilic block copolymers are known to prevent aggregation of unfolded proteins. To better understand the mechanism of this effect, the optical properties of heat-denatured and dithiothreitol reduced lysozyme were evaluated with respect to controls using UV–Vis spectroscopy, transmission electron microscopy (TEM) and circular dichroism (CD) measurements. Then, the effects of adding Polyethylene Glycol (8000 Da), the triblock surfactant Poloxamer 188 (P188), and the tetrablock copolymer Tetronic 1107 (T1107) to the lysozyme solution were compared. Overall, T1107 was found to be more effective than P188 in inhibiting aggregation, while PEG exhibited no efficacy. TEM imaging of heat-denatured and reduced lysozymes revealed spherical aggregates with on average 250–450 nm diameter. Using CD, more soluble lysozyme was recovered with T1107 than P188 with β-sheet secondary structure. The greater effectiveness of the larger T1107 in preventing aggregation of unfolded lysozyme than the smaller P188 and PEG points to steric hindrance at play; signifying the importance of size match between the hydrophobic region of denatured protein and that of amphiphilic copolymers. Thus, our results corroborate that certain multi-block copolymers are effective in preventing heat-induced aggregation of reduced lysozymes and future studies warrant more detailed focus on specific applications of these copolymers.

  9. Developmental toxicity of polyethylene glycol-g-polyvinyl alcohol grafted copolymer in rats and rabbits.

    PubMed

    Heuschmid, Franziska F; Schneider, Steffen; Schuster, Paul; Lauer, Birthe; van Ravenzwaay, Bennard

    2013-07-01

    Polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was evaluated in developmental toxicity studies with Wistar rats and Himalayan rabbits. Pregnant Wistar rats were gavaged with 0 (vehicle control), 100, 300, or 1000 mg PEG-PVA grafted copolymer/kg bw/day from gestation day (GD) 6-15. Pregnant Himalayan rabbits received the same treatment from GD 6 to 19. On GD 20 and 29 for rats and rabbits, respectively, the animals were euthanized and were examined grossly. For each dam, corpora lutea were counted and number and distribution of implantation sites were determined. The fetuses were removed, sexed, weighed, and evaluated for any external, soft tissue, and skeletal findings. No significant findings were found that could be attributed to administration of PEG-PVA grafted copolymer. Under the conditions of these studies, the no-observed-adverse-effect level (NOAEL) for maternal and developmental toxicity in both species was the highest dose tested of 1000 mg/kg bw/day.

  10. In vitro evaluation of poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether copolymer coating effects on cells adhesion and proliferation

    NASA Astrophysics Data System (ADS)

    Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria

    2016-06-01

    Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.

  11. Polyethylene glycol-g-polyvinyl alcohol grafted copolymer: reproductive toxicity study in Wistar rats.

    PubMed

    Heuschmid, Franziska F; Schneider, Steffen; Schuster, Paul; Lauer, Birthe; van Ravenzwaay, Bennard

    2013-07-01

    Polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was administered by gavage to groups of 25 male and 25 female young Wistar rats at doses of 0 (vehicle control), 100, 300, or 1000 mg/kg bw/day for one generation (F0). The study followed the treated F0 generation through mating, gestation, lactation, and weaning of the F1 generation. F1 animals were mated and followed to gestation day (GD) 15-17 at which time F2 implants were evaluated. There were no indications from the various clinical and gross pathological examinations that the oral administration of PEG-PVA grafted copolymer to the F0-parental rats produced any signs of general, reproductive, or developmental toxicity in the F0 or F1 animals or F2 implants. Based on the lack of any dose-related or biologically relevant effects on fertility, reproduction, development, and overall health of rats gavaged with PEG-PVA grafted copolymer and their progeny, the no-observed-adverse effect level (NOAEL) was determined to be the highest dose tested of 1000 mg/kg bw/day.

  12. Subchronic toxicity of polyethylene glycol-g-polyvinyl alcohol grafted copolymer.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Buesen, Roland; Mellert, Werner; Groeters, Sibylle; van Ravenzwaay, Bennard

    2013-07-01

    The safety of polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was evaluated in a 13-week oral toxicity study in rats and in a 9-month oral toxicity study in dogs. Wistar rats were administered 600, 3000, or 15,000 ppm PEG-PVA grafted copolymer in their drinking water whereas beagle dogs were fed 3000, 10,000, or 30,000 ppm PEG-PVA grafted copolymer in the diet. There were no mortalities, no adverse clinical signs, no toxicologically adverse effects on body weight or body weight gain, feed consumption, hematological, clinical chemistry or urinary parameters, or histopathology in either species. In rats, no treatment-related effects were observed in the functional observational battery (FOB) or related measurements of motor activity. Increased water consumption observed in rats at the highest dose was the only test substance-induced effect noted. The no-observed-adverse-effect level (NOAEL) was the highest concentration tested in both species: 15,000 ppm in rats (corresponding to a daily intake of 1611 mg/kg bw for males and 2191 mg/kg bw for females) and 30,000 ppm in dogs (corresponding to a mean daily intake of 783 mg/kg bw for males and 811 mg/kg bw for females).

  13. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery

    PubMed Central

    Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao

    2014-01-01

    Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo. PMID:24424156

  14. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery.

    PubMed

    Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao

    2014-01-01

    Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.

  15. Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid

    NASA Astrophysics Data System (ADS)

    Burkeev, M. Zh.; Sarsenbekova, A. Zh.; Tazhbaev, E. M.; Figurinene, I. V.

    2015-12-01

    The results from thermogravimetric and kinetic studies of copolymers of polypropylene glycol maleate with acrylic acid at different molar ratios are presented. The results from conventional thermogravimetric studies are used to determine kinetic characteristics of the process of thermal decomposition, i.e., activation energy and pre-exponential factors. These parameters are determined in three ways: the Achar, Freeman-Carroll, and Sharp-Wentworth methods. Activation energies calculated using all the three methods confirm the dependence of the destruction process on the ratio of components in a synthesized copolymer. It is shown that the obtained values of the activation energies and thermodynamic characteristics allow us to predict a copolymer's composition.

  16. Diblock copolymers of polyethylene glycol and a polymethacrylamide with side-chains containing twin ortho ester rings: synthesis, characterization, and evaluation as potential pH-responsive micelles.

    PubMed

    Zhou, Xiaojing; Luo, Shi; Tang, Rupei; Wang, Rui; Wang, Jun

    2015-03-01

    The diblock copolymer, PEG-b-PMEA, was synthesized by reversible-addition fragmentation chain transfer polymerization (RAFT). The PMEA block contained a polymethacrylamide backbone and twin ortho ester rings in the side-chains. At neutral pH, PEG-b-PMEA self-assembled to form stable micelles. At pH 5, the twin ortho ester rings were quickly hydrolyzed to completion in 12 h, and releasing nearly 70% of the encapsulated Nile Red dye. The PEG-b-PMEA micelles were completely nontoxic to cultured cells as determined by the MTT assay. Paclitaxel (PTX)-loaded micelles showed toxicity toward lung cancer cells comparable to that of the free PTX at equivalent doses. These results suggest that the PEG-b-PMEA micelles could be useful nano-carriers for pH-responsive delivery of poorly soluble anticancer drugs.

  17. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol) polycaprolactone poly(ethylene glycol) block copolymers

    NASA Astrophysics Data System (ADS)

    Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan

    2007-06-01

    A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).

  18. Permselective properties for aqueous ethanol solutions through copolymer membranes from benzyl methacrylate and polyethylene glycol dimethacrylate

    SciTech Connect

    Okuno, Hiroshi; Okado, Takashi; Matsumoto, Akira; Oiwa, Masayoshi; Uragami, Tadashi )

    1992-10-01

    Copolymer membranes prepared by bulk copolymerization of polyethylene glycol dimethacrylates of three different degrees of polymerization as macromonomer and benzyl methacrylate as comonomer were used for the separation of aqueous ethanol solutions in both pervaporation and evapomeation. The copolymer membranes preferentially permeated water from an aqueous ethanol solutions in both pervaporation and evapomeation. The copolymer membranes preferentially permeated water from an aqueous ethanol solution in evapomeation. In pervaporation, ethanol was predominantly permeated from an aqueous ethanol solution through the copolymer membranes containing a long polyethylene glycol (PEG) chain above about 20 wt% PEG content in a copolymer. This result was attributed to a remarkable swelling of the copolymer membrane containing a long PEG chain by the aqueous ethanol solution in pervaporation. In evapomeation, both the separation factors and the permeation rates through these membranes are not much affected by the ethanol concentration in the feed vapor. In pervaporation, they were significantly dependent on the ethanol concentration in the feed solution. The above results are discussed from the viewpoint of the physical structure of the membrane in evapomeation and pervaporation.

  19. 1H-NMR characterization of poly(ethylene glycol) and polydimethylsiloxane copolymer

    NASA Astrophysics Data System (ADS)

    Zainuddin, Ain Athirah; Othaman, Rizafizah; Noor, Wan Syaidatul Aqma Wan Mohd; Anuar, Farah Hannan

    2016-11-01

    This paper describes the synthesis and characterization of poly(ethylene glycol) (PEG) and polydimethylsiloxane (PDMS) copolymers. The copolymers were synthesized by reacting hydroxyl group (-OH) of poly(ethylene glycol) (PEG) and polydimetylsiloxane (PDMS) with isocyanate group (R-N=C=O) of 1,6-hexamethylene diisocyanate (HMDI). The reaction was carried out at room temperature. The copolymers were synthesized in three different compositions which differ in molar ratios of PEG to PDMS. The ratios (PEG:PDMS) used were 2:6. 3:5 and 4:4. The formation of the copolymers was characterized by 1H Nuclear Magnetic Resonance (1H-NMR) for structural determination. The presence of proton signal at 4.80 ppm which belongs to the proton of urethane group indicates the formation of urethane links. The formation of urethane links showed that two homopolymers were linked together by HMDI to form longer copolymer chains. It is worth to note that the sequence of PEG and PDMS along the copolymer chain is random.

  20. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.

    PubMed

    Li, Zibiao; Zhang, Zhongxing; Liu, Kerh Li; Ni, Xiping; Li, Jun

    2012-12-10

    This paper reports the synthesis and characterization of new hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), and polycaprolactone (PCL) segments as in situ thermogels. The hyperbranched poly(PPG/PEG/PCL urethane)s, termed as HBPEC copolymers, were synthesized from PPG-diol, PEG-diol, and PCL-triol by using 1,6-hexamethylene diisocyanate (HMDI) as a coupling agent. The compositions and structures of HBPEC copolymers were determined by GPC and 1H NMR spectroscopy. We carried out comparative studies of the new hyperbranched copolymers with their linear counterparts, the linear poly(PPG/PEG/PCL urethane) (LPEC) copolymer and Pluronic F127 PEG-PPG-PEG block copolymer, in terms of their self-assembly and aggregation behaviors and thermoresponsive properties. HBPEC copolymers were found to show thermoresponsive micelle formation and aggregation behaviors. Particularly, the lower critical solution temperature (LCST) of the copolymers was significantly affected by the copolymer architecture. HBPEC copolymers showed much lower LCST than LPEC, the linear counterpart. Our studies revealed that the effect of hyperbranch architecture was more prominent in the gelation of the copolymers. The aqueous solutions of HBPEC copolymers exhibited thermogelling behaviors at critical gelation concentrations (CGCs) ranging from 4.3 to 7.4 wt %. These values are much lower than those reported on other PCL-contained linear thermogelling copolymers and Pluronic F127 copolymer. In addition, the CGC of HBPEC copolymers is much lower than the control LPEC copolymer. More interestingly, at high temperatures, while LPEC and other linear thermogelling copolymers formed turbid sol, HBPEC formed a dehydrated gel. Our data suggest that these phenomena are caused by the hyperbranched structure of HBPEC copolymers, which could increase the interaction of copolymer branches and enhance the chain association through

  1. Polystyrene nanoparticles based on poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers.

    PubMed

    Horgan, Adrian; Vincent, Brian

    2003-06-15

    The solubilization of styrene by poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers has been examined. From turbidity measurements the solubility limit of the monomer in the micelles was obtained and the distribution coefficients were evaluated. Dynamic light scattering revealed that below the solubility limit, solubilization leads to a slight increase in micelle size, while above the solubility limit, there is a dramatic increase in particle size and turbidity as oil-in-water emulsions are formed through coalescence of monomer-swollen micelles. Polymerizations carried out below the solubility limit using the graft copolymer micelles as templates resembled microemulsion polymerizations in nature and led to very fine sterically stabilized polystyrene latex particles. Through careful control of the monomer concentration and the polymerization temperature it was possible to obtain spherical nanosize latex particles with similar size to those of the micelle precursors (10 nm) up to 11% monomer by weight. Polymerizations above the solubility limit, on the other hand, showed similarities with emulsion polymerizations and resulted in larger particles with higher polydispersity.

  2. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    NASA Astrophysics Data System (ADS)

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  3. Synthesis and characterization of injectable, water-soluble copolymers of tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates.

    PubMed

    Anderson, Brian C; Mallapragada, Surya K

    2002-11-01

    Several homopolymers and copolymers of 2-(diethylamino)ethyl methacrylate (DEAEM) and poly(ethylene glycol) methyl ether methacrylate (PEGMEM) were synthesized using anionic polymerization initiated by potassium t-butoxide. The polymers were characterized by average molecular weight, polydispersity and monomeric unit composition. A very narrow molecular weight distribution was achieved with a well-controlled composition. The glass transition temperatures and compositions of the copolymers followed a Gordon-Taylor relationship. The water solubility and biocompatibility of the copolymers was compared to their parent homopolymers to determine if the addition of a poly(ethylene glycol) group was sufficient to solubilize the polymers in aqueous buffer solutions and to increase the biocompatibility of the polymers. These water-soluble, injectable cationic copolymers have potential applications in gene delivery as well as other biomaterial applications.

  4. Preparation, characterization and anticancer activity of norcantharidin-loaded poly(ethylene glycol)-poly(caprolactone) amphiphilic block copolymer micelles.

    PubMed

    Chen, Shui-Fang; Lu, Wen-Fen; Wen, Zhi-Yong; Li, Qiang; Chen, Jian-Hai

    2012-09-01

    In this study, a novel amphiphilic block copolymer biomaterial - poly (ethylene glycol)-poly (caprolactone) (PEG-PCL), was used to entrap norcantharidin (NCTD), taking advantage of self-assembly theory. Dialysis and volatilization dialysis were used to prepare copolymer micelles. Drug-loaded micelles were compared with blank micelles in terms of their particle diameter, morphology and IR spectral characteristics. The results revealed that there was no significant difference in respect of morphology and IR spectrum, but particle size differed. Drug-loaded micelles had a smaller particle size than blank micelles. Three important factors influencing particle size, the drug loading content (LC) and the drug entrapment efficiency (EE) of the NCTD-loaded micelles, were studied. The results indicated that the method of preparation and the type of organic solvent had a significant influence on the size of the micelles. LC and EE were greatly affected by the ratio of NCTD to copolymer. In vitro release of NCTD from the conjugate micelles showed that its release rate depended on the pH of the phosphate buffer solution (PBS). The amount released was higher at lower pH than under neutral conditions. In vitro antitumor activity of the NCTD conjugate against human hepatoma (HepG2) cell line and human lung cancer (A549) cell line was evaluated by the MTT method. Micelles loaded with NCTD demonstrated greater and more satisfactory cell viability inhibition than the free drug. In vivo antitumor activity of drug-loaded micelles was investigated in mice bearing S180 mouse sarcoma. NCTD-loaded micelles displayed tumor inhibition effects, better than the free drug. As a new drug delivery system, copolymer micelles present many advantages including easy formulation, good water solubility, low toxicity and high treatment efficacy, and show great potential as carriers of hydrophobic drugs.

  5. In vitro evaluation of the genotoxicity of a family of novel MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer and PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    He, Lili; Yang, Likai; Zhang, Zhi-rong; Gong, Tao; Deng, Li; Gu, Zhongwei; Sun, Xun

    2009-11-01

    Despite the booming development of nanoparticle materials for pharmaceutical applications, studies on their genotoxicity are few. In our previous efforts to develop an intravenous nanoparticle material, a family of novel monomethoxy(polyethylene glycol)-poly(D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) polymers was synthesized. The cytotoxicity and genotoxicity of nine kinds of selected blank PELGE and PLGA (poly(D,L-lactic and glycolic acid)) nanoparticles were evaluated using methyl thiazolyl tetrazolium (MTT), micronucleus (MN) and sister chromatid exchange (SCE) assays with or without the addition of a metabolic activation system (S9 mix), using Chinese hamster ovary (CHO) cells. The cytotoxicity of nanoparticles exhibited a dose-dependent response, with a concentration of 5 mg ml-1 being the turning point. The frequencies of MN observed in samples treated with various nanoparticles were not statistically different from those seen in the negative controls in the presence or absence of the S9 mix. Also, no cell cycle delay was observed. The numbers of SCE per cell observed in samples treated with five kinds of PELGE nanoparticles were significantly greater than those found in the negative controls with or without the S9 mix. The discrepancies found in the two assays suggest that the five kinds of nanoparticles may produce only a weakly clastogenic response.

  6. Aggregation behavior of poly(ethylene glycol-bl-propylene sulfide) di- and triblock copolymers in aqueous solution.

    PubMed

    Cerritelli, Simona; O'Neil, Conlin P; Velluto, Diana; Fontana, Antonella; Adrian, Marc; Dubochet, Jacques; Hubbell, Jeffrey A

    2009-10-06

    Block copolymers of poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-PPS) have recently emerged as a new macromolecular amphiphile capable of forming a wide range of morphologies when dispersed in water. To understand better the relationship between stability and morphology in terms of the relative and absolute block compositions, we have synthesized a collection of PEG-PPS block copolymers and quantified their critical aggregation concentration and observed their morphology using cryogenic transmission electron microscopy after thin film hydration with extrusion and after solvent dispersion from tetrahydrofuran, a solvent for both blocks. By understanding the relationship between aggregate character and block copolymer architecture, we have observed that whereas the relative block lengths control morphology, the stability of the aggregates upon dilution is determined by the absolute block length of the hydrophobic PPS block. We have compared results obtained with PEG-PPS to those obtained with poly(ethylene glycol)-bl-poly(propylene oxide)-bl-poly(ethylene glycol) block copolymers (Pluronics). The results reveal that the PEG-PPS aggregates are substantially more stable than Pluronic aggregates, by more than an order of magnitude. PEG-PPS can form a wide variety of stable or metastable morphologies in dilute solution within normal time and temperature ranges, whereas Pluronics can generally form only spherical micelles under the same conditions. On the basis of these results, block copolymers of PEG with poly(propylene sulfide) may present distinct advantages over those with poly(propylene glycol) for a number of applications.

  7. Synthesis and characterization of triblock copolymers of methoxy poly(ethylene glycol) and poly(propylene fumarate).

    PubMed

    Behravesh, Esfandiar; Shung, Albert K; Jo, Seongbong; Mikos, Antonios G

    2002-01-01

    Amphiphilic block copolymers were synthesized by transesterification of hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic poly(propylene fumarate) (PPF) and characterized. Four block copolymers were synthesized with a 2:1 mPEG:PPF molar ratio and mPEGs of molecular weights 570, 800, 1960, and 5190 and PPF of molecular weight 1570 as determined by NMR. The copolymers synthesized with mPEG of molecular weights 570 and 800 had 1.9 and 1.8 mPEG blocks per copolymer, respectively, as measured by NMR, representing an ABA-type block copolymer. The number of mPEG blocks of the copolymer decreased with increasing mPEG block length to as low as 1.5 mPEG blocks for copolymer synthesized with mPEG of molecular weight 5190. At a concentration range of 5-25 wt % in phosphate-buffered saline, copolymers synthesized with mPEG molecular weights of 570 and 800 possessed lower critical solution temperatures (LCST) between 40 and 45 degrees C and between 55 and 60 degrees C, respectively. Aqueous solutions of copolymer synthesized with mPEG 570 and 800 also experienced thermoreversible gelation. The sol-gel transition temperature was dependent on the sodium chloride concentration as well as the mPEG block length. The copolymer synthesized from mPEG 570 had a transition temperature between 40 and 20 degrees C with salt concentrations between 1 and 10 wt %, while the sol-gel transition temperatures of the copolymer synthesized from mPEG molecular weight 800 were higher in the range 75-30 degrees C with salt concentrations between 1 and 15 wt %. These novel thermoreversible copolymers are the first biodegradable copolymers with unsaturated double bonds along their macromolecular chain that can undergo both physical and chemical gelation and hold great promise for drug delivery and tissue engineering applications.

  8. Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer

    PubMed Central

    Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.

    2014-01-01

    Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653

  9. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B

    PubMed Central

    2013-01-01

    Background The improvement of biomedical properties, e.g. biocompatibility, of poly(3-hydroxyalkanoates) (PHAs) by copolymerization is a promising trend in bioengineering. We used strain Azotobacter chroococcum 7B, an effective producer of PHAs, for biosynthesis of not only poly(3-hydroxybutyrate) (PHB) and its main copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV), but also alternative copolymer, poly(3-hydroxybutyrate)-poly(ethylene glycol) (PHB-PEG). Results In biosynthesis we used sucrose as the primary carbon source and valeric acid or poly(ethylene glycol) 300 (PEG 300) as additional carbon sources. The chemical structure of PHB-PEG and PHB-HV was confirmed by 1H nuclear-magnetic resonance (1H NMR) analysis. The physico-chemical properties (molecular weight, crystallinity, hydrophilicity, surface energy) and surface morphology of films from PHB copolymers were studied. To study copolymers biocompatibility in vitro the protein adsorption and COS-1 fibroblasts growth on biopolymer films by XTT assay were analyzed. Both copolymers had changed physico-chemical properties compared to PHB homopolymer: PHB-HV and PHB-PEG had less crystallinity than PHB; PHB-HV was more hydrophobic than PHB in contrast to PHB-PEG appeared to have greater hydrophilicity than PHB; whereas the morphology of polymer films did not differ significantly. The protein adsorption to PHB-PEG was greater and more uniform than to PHB and PHB-PEG copolymer promoted better growth of COS-1 fibroblasts compared with PHB homopolymer. Conclusions Thus, despite low EG-monomers content in bacterial origin PHB-PEG copolymer, this polymer demonstrated significant improvement in biocompatibility in contrast to PHB and PHB-HV copolymers, which may be coupled with increased protein adsorption and hydrophilicity of PEG-containing copolymer. PMID:23692611

  10. Surface characterization of poly(L-lactic acid)-methoxy poly(ethylene glycol) diblock copolymers by static and dynamic contact angle measurements, FTIR, and ATR-FTIR.

    PubMed

    Mert, O; Doganci, E; Erbil, H Y; Demir, A S

    2008-02-05

    The surface composition and surface free energy properties of two types of amphiphilic and semicrystalline diblock copolymers consisting of poly(L-lactic acid) coupled to (methoxy poly(ethylene glycol) (PLLA-MePEG) having differing block lengths of PEG were investigated by using static and dynamic contact angle measurements, transmission Fourier infrared spectroscopy (FTIR), and attenuated total reflection spectroscopy (ATR-FTIR) and compared with results obtained from PLLA and MePEG homopolymers. The contact angle results were evaluated by using the van Oss-Good method (acid-base method), and it was determined that the Lewis base surface tension coefficient (gamma-) of the copolymers increased with an increase of the PEG molar content at the copolymer surface. This result is in good agreement with the transmission FTIR and ATR-FTIR results but not proportional to them, indicating that the surfaces of the copolymers are highly mobile and that the molecular rearrangement takes place upon contact with a polar liquid drop. The dynamic contact angle measurements showed that the strong acid-base interaction between the oxygen atoms in the copolymer backbone of the relatively more hydrophilic PEG segments with the Lewis acidic groups of the polar and hydrogen-bonding water molecules enabled the surface molecules to restructure (conformational change) at the contact area, so that the PEG segments moved upward, whereas the apolar methyl pendant groups of PLLA segments buried downward.

  11. Poly(ethylene glycol) grafted polylactide based copolymers for the preparation of PLA-based nanocarriers and hybrid hydrogels.

    PubMed

    Riva, Raphaël; Schmeits, Stéphanie; Croisier, Florence; Lecomte, Philippe; Jérôme, Christine

    2015-01-01

    In previous works, poly(D,L-lactide-co-ɛCL-poly(ethylene glycol) (poly(D,L-La-co-αPEGɛCL) amphiphilic graft-copolymers were successfully synthesized according to a copper azide-alkyne cycloaddition (CuAAC) strategy. This paper aims at reporting on the behavior of this amphiphilic copolymer in water, which was not studied in the previous paper. Moreover, the ability of the copolymer to stabilize a PLA nanoparticles aqueous suspension is presented. For this purpose, dynamic light scattering (DLS) and transmission electron microscopy (TEM) are proposed to characterize the nanoparticles in solution. Otherwise, the strategy developed for the synthesis of the amphiphilic copolymers was adapted and extended to the synthesis of PLA-based degradable hydrogel, potentially applicable as drug-loaded degradable polymer implant.

  12. Polyethylene glycol-polyvinyl alcohol grafted copolymer: study of the bioavailability after oral administration to rats.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Fabian, Eric; Leibold, Edgar; van Ravenzwaay, Bennard

    2013-07-01

    The absorption, urinary excretion, and the biliary excretion of a single oral dose of 10 or 1000 mg/kg bw of (14)C-polyethylene glycol-polyvinyl alcohol (PEG-PVA) grafted copolymer were studied in adult male and female rats. In a balance/excretion experiment, the total excretion of ingested radioactivity was determined over a period of 168 h and residual radioactivity was detected in selected tissues and the carcass. In a biliary excretion experiment, excretion of radioactivity via the bile duct was determined over a period of 48 h after administration of the substance to cannulated rats. Most, if not all, of the radioactivity (>100%) was excreted within 48 h via the feces regardless of sex or dose. Urinary excretion was very limited: 0.45-0.50% of dose at the low dose and 0.22-0.27% of dose at the high dose. At both dose levels, residual radioactivity in the carcass and all organs and tissues after 168 h was ≤ 0.02% of dose. Biliary excretion was 0.01-0.02% of dose. Based on these findings, the bioavailability of PEG-PVA grafted copolymer was determined to be <1% demonstrating that absorption was virtually negligible following a single oral administration to male and female rats.

  13. Unexpected Temperature Behavior of Polyethylene Glycol Spacers in Copolymer Dendrimers in Chloroform

    PubMed Central

    Markelov, Denis A.; Matveev, Vladimir V.; Ingman, Petri; Nikolaeva, Marianna N.; Penkova, Anastasia V.; Lahderanta, Erkki; Boiko, Natalia I.; Chizhik, Vladimir I.

    2016-01-01

    We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by 1H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is “frozen” at high temperatures (above 260 K), but it unexpectedly becomes “unfrozen” at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors. PMID:27052599

  14. Injectable and Photopolymerizable Tissue-Engineered Auricular Cartilage Using Poly(Ethylene Glycol) Dimethacrylate Copolymer Hydrogels

    PubMed Central

    Papadopoulos, Anestis; Bichara, David A.; Zhao, Xing; Ibusuki, Shinichi; Anseth, Kristi S.; Yaremchuk, Michael J.

    2011-01-01

    In this study we investigated the histological, biochemical, and integrative features of the neocartilage using swine auricular chondrocytes photoencapsulated into two poly(ethylene glycol) dimethacrylate (PEGDM) copolymer hydrogels of a different degradation profile: degradable (PEG-4,5LA-DM) and nondegradable (PEGDM) macromers in molar ratios of 60:40 and 70:30. Integration of the engineered tissue with existing native cartilage was examined using an articular cartilaginous ring model. Experimental group samples (total n = 96) were implanted subcutaneously into nude mice and harvested at 6, 12, and 18 weeks. Nonimplanted constructs (total n = 16) were used as controls for quantification of DNA, glycosaminoglycan, and hydroxyproline. Histologically, neocartilage resembled both the cellular population and composition of the extracellular matrix of the native swine auricular cartilage. DNA content demonstrated that the photoencapsulated chondrocytes were capable of survival and proliferation over time. Both glycosaminoglycan and hydroxyproline contents appeared higher in the neotissue, which was supported by less degradable PEGDM hydrogel. Integration of neocartilage with surrounding native cartilage improved with time, resulting in the development of tight integration interface. PEGDM copolymer hydrogels can support in vivo chondrogenesis by photoencapsulating auricular chondrocytes. PMID:20695772

  15. Amphiphilic poly[(propylene glycol)-block-(2-methyl-2-oxazoline)] copolymers for gene transfer in skeletal muscle.

    PubMed

    Brissault, Blandine; Kichler, Antoine; Leborgne, Christian; Jarroux, Nathalie; Cheradame, Hervé; Guis, Christine

    2007-08-01

    Amphiphilic triblock copolymers such as poly(ethylene glycol-b-propylene glycol-b-ethylene glycol) PE6400 (PEG(13)-PPG(30)-PEG(13)) have been recently shown to promote gene transfer in muscle. Herein we investigated the effect of a chemical change of the PEG moiety on the transfection activity of these compounds. We synthesized new amphiphilic copolymers in which the PEG end blocks are replaced by more hydrophilic poly(2-methyl-2-oxazoline) (PMeOxz) chains of various lengths. The resulting triblock PMeOxz-PPG-PMeOxz compounds were characterized by NMR, SEC, TGA, and DSC techniques and assayed for in vivo muscle gene transfer. The results confirm both the block structure and the monomer unit composition (DP(PG)/DP(MeOxz)) of the new PPG(34)-PMeOxz(41) and PPG(34)-PMeOxz(21) triblock copolymers. Furthermore, in vivo experiments show that these copolymers are able to significantly increase DNA transfection efficiency, despite the fact that their chemical nature and hydrophilic character are different from the poloxamers. Overall, these results show that the capacity to enhance DNA transfection in skeletal muscle is not restricted to PEG-PPG-PEG arrangements.

  16. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine.

    PubMed

    Naeini, Ashkan Tavakoli; Adeli, Mohsen; Vossoughi, Manouchehr

    2010-08-01

    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential application in nanomedicine and to understand the limitations and capabilities of these materials as nanoexcipients in biological systems, different types of short-term in vitro cytotoxicity experiments on the HT1080 cell line (human fibrosarcoma) and hemocompatibility tests were performed. From the clinical editor: This manuscript investigates the potentials of linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks for future applications in nanomedicine.

  17. Protein-resistant polymer coatings based on surface-adsorbed poly(aminoethyl methacrylate)/poly(ethylene glycol) copolymers.

    PubMed

    Ionov, Leonid; Synytska, Alla; Kaul, Elisabeth; Diez, Stefan

    2010-01-11

    We report on the protein-resistant properties of glass substrates coated with novel copolymers of 2-aminoethyl methacrylate hydrochloride and poly(ethylene glycol) methyl ether methacrylate (AEM-PEG). In comparison to currently available protein-blocking polymer systems, such as poly-l-lysine-poly(ethylene glycol), silane-based poly(ethylene glycol), and poly(ethylene glycol) brushes prepared by surface-initiated polymerization, the proposed AEM-PEG offers the combined advantages of low cost, simplicity of use, and applicability in aqueous solutions. We demonstrate the capability of AEM-PEG to block the surface binding of globular proteins (tubulin), their assemblies (microtubules), and functional motor proteins (kinesin-1). Moreover, we demonstrate the applicability of AEM-PEG for surface patterning of proteins in microfluidic devices.

  18. Low molecular weight linear polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine triblock copolymers: synthesis, characterization, and in vitro gene transfer properties.

    PubMed

    Zhong, Zhiyuan; Feijen, Jan; Lok, Martin C; Hennink, Wim E; Christensen, Lane V; Yockman, James W; Kim, Yong-Hee; Kim, Sung Wan

    2005-01-01

    Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.

  19. Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers.

    PubMed

    Patel, Alpesh; Gaharwar, Akhilesh K; Iviglia, Giorgio; Zhang, Hongbin; Mukundan, Shilpaa; Mihaila, Silvia M; Demarchi, Danilo; Khademhosseini, Ali

    2013-05-01

    Poly(glycerol sebacate) (PGS), a tough elastomer, has been proposed for tissue engineering applications due to its desired mechanical properties, biocompatibility and controlled degradation. Despite interesting physical and chemical properties, PGS shows limited water uptake capacity (∼2%), thus constraining its utility for soft tissue engineering. Therefore, a modification of PGS that would mimic the water uptake and water retention characteristics of natural extracellular matrix is beneficial for enhancing its utility for biomedical applications. Here, we report the synthesis and characterization of highly elastomeric poly(glycerol sebacate)-co-polyethylene glycol (PGS-co-PEG) block copolymers with controlled water uptake characteristics. By tailoring the water uptake property, it is possible to engineer scaffolds with customized degradation and mechanical properties. The addition of PEG results in almost 15-fold increase in water uptake capacity of PGS, and improves its mechanical stability under dynamic loading conditions. PGS-co-PEG polymers show elastomeric properties and can be subjected to serve deformation such as bending and stretching. The Young's modulus of PGS-co-PEG can be tuned from 13 kPa to 2.2 MPa by altering the amount of PEG within the copolymer network. Compared to PGS, more than six-fold increase in elongation was observed upon PEG incorporation. In addition, the rate of degradation increases with an increase in PEG concentration, indicating that degradation rate of PGS can be regulated. PGS-co-PEG polymers also support cell proliferation, and thus can be used for a range of tissue engineering applications.

  20. Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Ma, Yuandong; Zheng, Yi; Liu, Kexin; Tian, Ge; Tian, Yan; Xu, Lei; Yan, Fei; Huang, Laiqiang; Mei, Lin

    2010-07-01

    Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization using stannous octoate as catalyst. The obtained random copolymers were characterized by 1H NMR, FTIR, GPC and TGA. The docetaxel-loaded nanoparticles made of PLGA-TPGS copolymer were prepared by a modified solvent extraction/evaporation method. The nanoparticles were then characterized by various state-of-the-art techniques. The results revealed that the size of PLGA-TPGS nanoparticles was around 250 nm. The docetaxel-loaded PLGA-TPGS nanoparticles could achieve much faster drug release in comparison with PLGA nanoparticles. In vitro cellular uptakes of such nanoparticles were investigated by CLSM, demonstrating the fluorescence PLGA-TPGS nanoparticles could be internalized by human cervix carcinoma cells (HeLa). The results also indicated that PLGA-TPGS-based nanoparticles were biocompatible, and the docetaxel-loaded PLGA-TPGS nanoparticles had significant cytotoxicity against Hela cells. The cytotoxicity against HeLa cells for PLGA-TPGS nanoparticles was in time- and concentration-dependent manner. In conclusion, PLGA-TPGS random copolymer could be acted as a novel and promising biocompatible polymeric matrix material applicable to nanoparticle-based drug delivery system for cancer chemotherapy.

  1. Application of poly(ethylene glycol)-b-poly(epsilon-caprolactone) copolymers with different Poly(ethylene glycol) contents for the preparation of PEG-coated nanoparticles.

    PubMed

    Hou, Jingwen; Qian, Changyun; Zhang, Yanting; Guo, Shengrong

    2013-02-01

    This work used one poly(ethylene glycol)-b-poly(epsilon-caprolactone) (PEG-b-PCL) copolymer with low PEG content as matrix material and the copolymers with high PEG content as emulsifier to prepare PEG-coated nanoparticles for controlled release of paclitaxel by solvent evaporation technique. The copolymers were synthesized by ring-opening polymerization and characterized by 1H NMR and gel permeation chromatography (GPC). The effects of the composition and concentration of the copolymers used as emulsifier on the diameters and encapsulation efficiency of nanoparticles were investigated. The mean hydrodynamic diameters of the nanoparticles measured by dynamic light scattering ranged from 70 to 160 nm. The higher PEG content of emulsifier led to bigger diameter of nanoparticles and the emulsifier concentration (0.1%-1.0%) had no obvious influence on the diameters. The paclitaxel-loaded nanoparticles could achieve a sustained drug release for 7 days. When 2%-30% (w/v) of inulin was used as cryoprotectant during freeze drying process, the lyophilized nanoparticles could be well reconstituted into aqueous solution and the hydrodynamic diameter was not obviously changed.

  2. Poly(butyl methacrylate-g-methoxypoly(ethylene glycol)) and poly(methyl methacrylate-g-methoxypoly(ethylene glycol)) graft copolymers: preparation and aqueous solution properties.

    PubMed

    Horgan, Adrian; Saunders, Brian; Vincent, Brian; Heenan, Richard K

    2003-06-15

    A series of water-soluble, amphiphilic graft copolymers has been prepared by free-radical copolymerization of methoxypoly(ethylene glycol) macromonomers, with either methyl methacrylate or butyl methacrylate as the comonomers, in water/ethanol solvent mixtures. Lower molecular weight copolymers were obtained by increasing the concentration of the initiator, azobisisobutyronitrile (AIBN), used in the polymerization reaction. However, the route used also led to the formation of significant quantities of tetramethylsuccinodinitrile, a toxic byproduct resulting from the cage reaction of AIBN. Static fluorescence measurements using pyrene as a probe, along with 1H NMR experiments, showed that the graft copolymers form aggregates in water at very low concentrations (approximately 0.01 g l(-1)) with the pendant hydrophilic graft chains forming a stabilizing shell around the hydrophobic backbone. An increase in the hydrophile-lipophile balance of the graft copolymers was found to lead to smaller aggregates with lower aggregation numbers and highly swollen hydrophilic shells, as revealed by small angle neutron scattering (SANS).

  3. Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wohl, Adam Richard

    Fine control of the physical and chemical properties of customized materials is a field that is rapidly advancing. This is especially critical in pursuits to develop and optimize novel nanoparticle drug delivery. Specifically, I aim to apply chemistry concepts to test the hypothesis "Silicate ester prodrugs of paclitaxel, customized to have the proper hydrophobicity and hydrolytic lability, can be formulated with well-defined, biocompatible, amphiphilic block copolymers into nanoparticles that are effective drugs." Chapter 1 briefly describes the context and motivation of the scientific pursuits described in this thesis. In Chapter 2, a family of model silicate esters is synthesized, the hydrolysis rate of each compound is benchmarked, and trends are established based upon the steric bulk and leaving group ability of the silicate substituents. These trends are then applied to the synthesis of labile silicate ester prodrugs in Chapter 3. The bulk of this chapter focuses on the synthesis, hydrolysis, and cytotoxicity of prodrugs based on paclitaxel, a widely used chemotherapeutic agent. In Chapter 4, a new methodology for the synthesis of narrowly dispersed, "random" poly(lactic-co-glycolic acid) polymers by a constant infusion of the glycolide monomer is detailed. Using poly(ethylene glycol) as a macroinitiator, amphiphilic block copolymers were synthesized. Co-formulating a paclitaxel silicate and an amphiphilic block copolymer via flash nanoprecipitation led to highly prodrug-loaded, kinetically trapped nanoparticles. Studies to determine the structure, morphology, behavior, and efficacy of these nanoparticles are described in Chapter 5. Efforts to develop a general strategy for the selective end-functionalization of the polyether block of these amphiphilic block copolymers are discussed in Chapter 6. Examples of this strategy include functionalization of the polyether with an azide or a maleimide. Finally, Chapter 7 provides an outlook for future development of

  4. Supramolecular assemblies of alkane functionalized poly ethylene glycol copolymer for drug delivery

    NASA Astrophysics Data System (ADS)

    Zhu, Lida

    The therapeutic effects of many modern drugs were limited owing to their physical properties and half-life in the blood stream. The purpose of this research is to study the relationship between drug delivery performances and chemical properties of the polymer micelle drug carriers. Polyethylene glycol (PEG) based alternating copolymer poly[(polyoxyethylene)-oxy-5-hydroxyisophthalic] (Ppeg) with PEG molecular weights of 600 and 1000 were synthesized and modified with different alkanes to study the effects of altering the hydrophobic and hydrophilic chain lengths. The nuclear magnetic resonance (NMR) spectrum, critical micelle concentration (CMC), micelle size, and micelle zeta potential of the synthesized polymers were measured. The resulting polymer particles were able to form micelles in aqueous solution with CMCs lower than 0.04 wt%. Drug delivery studies were performed with a model hydrophobic drug, pyrene. Drug loading data showed the polymer particles were able to encapsulate pyrene and has a loading capacity up to 8 wt%. The sustain release ability was measured and the pyrene release was extended over 5 days. Both loading capacity and sustain release ability were found to be highly dependent on CMC. Cell culture study was implemented with RAW 264.7 cells in order to determine the polymer micelle's cytocompatibility, Most Ppeg polymer micelles showed more than 85% cell viability with and without pyrene loading. Cell internalization of the micelles encapsulated drug was measured both quantitatively and qualitatively and was enhanced comparing to unencapsulated drug. The results indicated that the internalization enhancement effect of polymer micelle was mainly affected by hydrophilic chain length; neither hydrophobic chain length nor loading capacity has significant influence on internalization.

  5. 2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) copolymers for bioimaging

    PubMed Central

    Tian, Yanqing; Wu, Wen-Chung; Chen, Ching-Yi; Strovas, Tim; Li, Yongzhong; Jin, Yuguang; Su, Fengyu; Meldrum, Deirdre R.; Jen, Alex K.-Y.

    2010-01-01

    Summary 2,1,3-Benzothiadiazole (BTD)-containing red emitter was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) copolymers to form two new fluorophore-conjugated block copolymers (P5 and P7). P5 is a cationic amino group-containing polymer, whereas, P7 is a neutral polymer. The polymers formed micelles in aqueous solution with average diameters of 45 nm (P7) and 78 nm (P5), which were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM). Cell internalization of the micelles using mouse macrophage RAW 264.7 was investigated. The micelles formed from P5 were endocytosed into the cell's cytoplasm through a non-specific endocytosis process, which was affected by temperature and calcium ions. Micelles formed from P7 could not be endocytosed. The dramatic difference of cell uptake between P5 and P7 indicated the cationic amino groups had a strong influence on the cell internalization to enhance the endocytosis pathway. 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the P5 micelle and no significant toxicity was observed. This study is the first report regarding the synthesis of BTD-conjugated block copolymers and the application of the biomacromolecules for bioimaging. PMID:20454543

  6. New Insights into Poly(Lactic-co-glycolic acid) Microstructure: Using Repeating Sequence Copolymers to Decipher Complex NMR and Thermal Behavior

    PubMed Central

    Stayshich, Ryan M.; Meyer, Tara Y.

    2012-01-01

    Sequence, which Nature uses to spectacular advantage, has not been fully exploited in synthetic copolymers. To investigate the effect of sequence and stereosequence on the physical properties of copolymers a family of complex isotactic, syndiotactic and atactic repeating sequence poly(lactic-co-glycolic acid) copolymers (RSC PLGAs) were prepared and their NMR and thermal behavior was studied. The unique suitability of polymers prepared from the bioassimilable lactic and glycolic acid monomers for biomedical applications makes them ideal candidates for this type of sequence engineering. Polymers with repeating units of LG, GLG and LLG (L = lactic, G = glycolic) with controlled and varied tacticities were synthesized by assembly of sequence specific, stereopure dimeric, trimeric and hexameric segmer units. Specifically labeled deuterated lactic and glycolic acid segmers were likewise prepared and polymerized. Molecular weights for the copolymers ranged from Mn = 12-40 kDa by size exclusion chromatography in THF. Although the effects of sequence-influenced solution conformation were visible in all resonances of the 1H and 13C NMR spectra, the diastereotopic methylene resonances in the 1H NMR (CDCl3) for the glycolic units of the copolymers proved most sensitive. An octad level of resolution, which corresponds to an astounding 31-atom distance between the most separated stereocenters, was observed in some mixed sequence polymers. Importantly, the level of sensitivity of a particular NMR resonance to small differences in sequence was found to depend on the sequence itself. Thermal properties were also correlated with sequence. PMID:20681726

  7. Synthesis of polycarbonate-r-polyethylene glycol copolymer for templated synthesis of mesoporous TiO2 films.

    PubMed

    Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak

    2014-12-01

    We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent.

  8. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment.

  9. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells.

    PubMed

    Wei, Yu; Zhang, Jingxun; Li, Haolie; Zhang, Li; Bi, Hong

    2015-01-01

    Multifunctional polymer coatings have potential applications in biomaterials. These coatings possess reactive functional groups for the immobilization of specific biological factors that can influence cellular behavior. These coatings also display low nonspecific protein adsorption. In this study, we prepared a multifunctional polymer coating through the deposition of random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and glycidyl methacrylate (GMA) to prevent nonspecific attachment and enable the covalence of Arg-Glu-Asp-Val (REDV) peptide with endothelial cells (ECs) selectivity. Coatings were characterized by X-ray photoelectron spectroscopy (XPS). The adhesion and proliferation of ECs and smooth muscle cells (SMCs) onto the REDV-modified surface were investigated to understand the synergistic action of antifouling PEG and EC selective REDV peptide conjugated GMA. The copolymers containing GMA and PEG groups are very useful as a multifunctional coating material with anti-fouling and ECs specific adhesion for implant materials surface modification.

  10. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  11. Actuator based on sulfonated comb copolymer of poly (ethylene-co-vinyl alcohol) grafted by poly (ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Gong, Guifen; Li, Lei; Zhang, Yujun

    2007-07-01

    Comb copolymer consisting of poly (ethylene-co-vinyl alcohol) (EVAL) as backbone and poly (ethylene glycol) (PEG) as side chains (EVAL-g-PEG) has been synthesized, then it was sulfonated by 1,3-propane sultone to get the final ionomer (EVAL-g-SPEG), and ionic polymer-metal composite (IPMC) based on EVAL-g-SPEG was prepared through electroless deposition of platinum onto the surfaces of EVAL-g-SPEG membrane. The graft copolymers were characterized with respect to molecular weight using gel permeation chromatography (GPC) and composition using 1H-NMR. The results showed that the No. of PEG graft of the side chains is n=1, 2 and others. Thermal properties were examined by DSC and TG. The melt temperature (T m) and glass transition temperature (T g) of the comb copolymer increase with the increasing length and the number of the side chains. Moreover, the deformation performance of IPMC material was tested and its results show that the starting response voltage of IPMC actuator decreases with the increasing IEC value. On the other hand, the starting response voltage increases with the decreased side chain length. The IPMC with n=2 side chain length of PEG has the maximum tip displacement, and the maximum tip displacement of IPMC membrane generally decreases with the side chain length of EVAL-g-SPEG. This feature may be the reflection of two opposite effects, namely the decreasing ion densities and increasing water sorption of the membrane.

  12. Synthesis of three-arm block copolymer poly(lactic-co-glycolic acid)–poly(ethylene glycol) with oxalyl chloride and its application in hydrophobic drug delivery

    PubMed Central

    Zhu, Xiaowei; Liu, Chao; Duan, Jianwei; Liang, Xiaoyu; Li, Xuanling; Sun, Hongfan; Kong, Deling; Yang, Jing

    2016-01-01

    Purpose Synthesis of star-shaped block copolymer with oxalyl chloride and preparation of micelles to assess the prospect for drug-carrier applications. Materials and methods Three-arm star block copolymers of poly(lactic-co-glycolic acid) (3S-PLGA)–polyethylene glycol (PEG) were synthesized by ring-opening polymerization, then PEG as the hydrophilic block was linked to the terminal hydroxyl of 3S-PLGA with oxalyl chloride. Fourier-transform infrared (FT-IR) spectroscopy, gel-permeation chromatography (GPC), hydrogen nuclear magnetic resonance (1H-NMR) spectra, and differential scanning calorimetry were employed to identify the structure and properties of 3S-PLGA-PEG. Rapamycin (RPM)-loaded micelles were prepared by solvent evaporation, and pyrene was used as the fluorescence probe to detect the critical micelle concentration of the copolymer. The particle size, distribution, and ζ-potential of the micelles were determined by dynamic light scattering, and the morphology of the RPM-loaded micelles was analyzed by transmission electron microscopy. High-performance liquid chromatography was conducted to analyze encapsulation efficiency and drug-loading capacity, as well as the release behavior of RPM-loaded micelles. The biocompatibility of material and the cytostatic effect of RPM-loaded micelles were investigated by Cell Counting Kit 8 assay. Results FT-IR, GPC, and 1H-NMR suggested that 3S-PLGA-PEG was successfully synthesized. The RPM-loaded micelles prepared with the 3S-PLGA-PEG possessed good properties. The micelles had good average diameter and encapsulation efficiency. For in vitro release, RPM was released slowly from 3S-PLGA-PEG micelles, showing that 3S-PLGA-PEG-RPM exhibited a better and longer antiproliferative effect than free RPM. Conclusion In this study, we first used oxalyl chloride as the linker to synthesize 3S-PLGA-PEG successfully, and compared with reported literature, this method shortened the reaction procedure and improved the reaction

  13. Polyethyleneimine-poly(ethylene glycol)-star-copolymers as efficient and biodegradable vectors for mammalian cell transfection.

    PubMed

    Ladewig, Katharina; Xu, Zhi Ping; Gray, Peter; Max Lu, G Q

    2014-07-01

    High molecular weight (MW) polyethyleneimine (PEI) has been successfully used for the transfection of a broad variety of cell lines. In contrast to low MW PEI, which exhibits low transfection efficiencies but also low cytotoxicity, high MW PEI-mediated transfection achieves much higher efficiencies but at the cost of cell viability; therefore its use in commercial scale transfection and clinical application is limited. In this work we address this problem by constructing biodegradable high MW PEI mimics built from low MW PEI building blocks. The end-groups of small 5-arm star polyethylene glycol (PEG) prepolymers were decorated with linear oligo-ethyleneimine (OEI)/PEI arms of various MW via azomethine linkages. The resultant PEI-PEG-star-copolymers were investigated for their ability to complex plasmid DNA. Polymer/DNA complexes were characterized using techniques such as dynamic light scattering and transmission electron microscopy. Having established their cytotoxicity limits, they were tested as gene delivery vehicles for the transfection of suspension adapted Chinese hamster ovary (CHO-S) cells under serum-free conditions and adherent human embryonic kidney cells (HEK293T) in serum containing medium. Our PEI-PEG-star-copolymers showed a reduced cytotoxicity compared to high MW PEI while maintaining the ability to complex plasmid DNA and transfect mammalian cells, with significant transfection efficiencies. The effects of the optimum parameters on the transfection of mammalian cells using such novel polymers are discussed.

  14. Preparation and Properties of Polysulfone-poly(ethylene glycol) graft copolymer membrane.

    PubMed

    Woo, Seung-Moon; Kim, Deuk-Ju; Nam, Sang-Yong

    2014-10-01

    In this study, Graft copolymers composed of PSf backbones and PEG side chains were synthesized to prepare gas separation membranes with enhancing permeability and selectivity on carbon dioxide separation. PSf-g-PEG copolymers were synthesized by two steps, chloromethylation and graft reactions. Grafted PEG segment of PSf was controlled by molecular weight of PEG. Thermal properties of prepared mebrane were studied by TGA and DSC. T(g) of the copolymers was decreased with increasing of molecular weight of PEG. Hydrophilicity of PSf-g-PEG copolymer membrane was measured using contact angle method, and PEG grafted polymers showed lower contact angles due to higher hydrophilicity. Gas permeation properties of CO2 and N2 gases through the membranes were measured using time-lag method. The permeability of CO2 was enhanced with PEG moiety contents and increasing of number of PEG segment. The selectivity of CO2/N2 was increased with introducing of PEG due to higher solubility with CO2 gas.

  15. Biodegradable amphiphilic block-graft copolymers based on methoxy poly(ethylene glycol)-b-(polycarbonates-g-polycarbonates) for controlled release of doxorubicin.

    PubMed

    Jiang, Tao; Li, Youmei; Lv, Yin; Cheng, Yinjia; He, Feng; Zhuo, Renxi

    2014-01-01

    In this paper, novel biodegradable amphiphilic block-graft copolymers based on methoxy poly(ethylene glycol)-b-(polycarbonates-g-polycarbonates) (mPEG-b-(PATMC-g-PATMC)) were synthesized successfully for controlled release of doxorubicin (DOX). Backbone block copolymer, methoxy poly(ethylene glycol)-b-poly(5-allyloxy-1,3-dioxan-2-one) (mPEG-b-PATMC) was synthesized in bulk catalyzed by immobilized porcine pancreas lipase (IPPL). Then, mPEG-b-PATMC-O, the allyl epoxidation product of mPEG-b-PATMC, was further grafted by PATMC itself also using IPPL as the catalyst. The copolymers were characterized by (1)N HMR and gel permeation chromatography results showed narrow molecular weight distributions. Stable micelle solutions could be prepared by dialysis method, while a monomodal and narrow size distribution could be obtained. Transmission electron microscopy (TEM) observation showed the micelles dispersed in spherical shape with nano-size before and after DOX loading. Compared with the block copolymers, the grafted structure could enhance the interaction of polymer chains with drug molecules and improve the drug-loading capacity and entrapment efficiency. Furthermore, the amphiphilic block-graft copolymers mPEG-b-(PATMC-g-PATMC) had low cytotoxicity and more sustained drug release behavior.

  16. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use

    PubMed Central

    Shin, Chan Young; Kim, Kyu-Bong

    2015-01-01

    Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379

  17. Application of Linear and Branched Poly(Ethylene Glycol)-Poly(Lactide) Block Copolymers for the Preparation of Films and Solution Electrospun Meshes.

    PubMed

    Kessler, Martina; Groll, Juergen; Tessmar, Joerg

    2016-03-01

    Poly(ethylene glycol)-poly(lactide) (PEG-PLA) block copolymers are processed to solvent cast films and solution electrospun meshes. The effect of polymer composition, architecture, and number of anchoring points for the plasticizer on swelling, degradation, and mechanical properties of these films and meshes is investigated as potential barrier device for the prevention of peritoneal adhesions. As a result, adequate properties are achieved for the massive films with a longer retention of the plasticizer PEG for star-shaped block copolymers than for the linear triblock copolymers and consequently more endurable mechanical properties during degradation. For electrospun meshes fabricated using the same polymers, similar trends are observed, but with an earlier start of fragmentation and lower tensile strengths. To overcome the poor mechanical strengths and an occurring shrinkage during incubation, which may impair the coverage of the wound, further adaptions of the meshes and the fabrication process are necessary.

  18. Synthesis of poly(poly(ethylene glycol) methacrylate)-polyisobutylene ABA block copolymers by the combination of quasiliving carbocationic and atom transfer radical polymerizations.

    PubMed

    Szabó, Ákos; Szarka, Györgyi; Iván, Béla

    2015-01-01

    Systematic investigations are carried out on the synthesis of a series of new, unique ABA-type triblock copolymers consisting of the hydrophobic and chemically inert polyisobutylene (PIB) inner and the hydrophilic comb-shaped poly(poly(ethylene glycol) methacrylate) (PPEGMA) polymacromonomer as an outer block. Telechelic PIB macroinitiators with narrow molecular weight distributions (MWD) are synthesized by quasiliving carbocationic polymerization of isobutylene with a bifunctional initiator followed by quantitative chain end derivatizations. Atom transfer radical polymerization (ATRP) of PEGMAs with various molecular weights is investigated by using these macroinitiators. It is found that CuBr is an inefficient ATRP catalyst, while CuCl leads to high, nearly complete conversions of the PEGMA macromonomers. Gel permeation chromatography (GPC) analyses reveal slow initiation of PEGMA at relatively high PIB/PEGMA ratios or with PEGMAs of higher molecular weights due to steric hindrance between the macroinitiator and macromonomer. The occurrence of slow initiation, and not permanent termination, is proven by highly efficient ATRP of a low-molecular-weight monomer, methyl methacrylate, with the block copolymers as macroinitiators. Successful synthesis of PPEGMA-PIB-PPEGMA ABA block copolymers is obtained by using either low-molecular-weight PEGMA or relatively low macroinitiator/macromonomer ratios. Differential scanning calorimetry (DSC) indicates phase separation and significant suppression of the crystallinity of the pendant poly(ethylene glycol) (PEG) chains in these new block copolymers.

  19. Nanoparticles made of multi-block copolymer of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups for oral delivery of cyclosporine A

    PubMed Central

    Ankola, D. D.; Battisti, A.; Solaro, R.; Kumar, M. N. V. Ravi

    2010-01-01

    The purpose of this study was to evaluate the potential of new carboxylated multi-block copolymer of lactic acid and ethylene glycol (EL14) for nanoparticle (NP) formation and their ability to deliver high molecular weight hydrophobic drug—cyclosporine A (CsA). CsA-loaded EL14 NPs were compared with traditional poly(lactide-co-glycolide) (PLGA) NPs, both prepared by emulsion–diffusion–evaporation process. On the one hand, the increase in drug payload from 10 to 30 per cent for EL14 NPs showed no difference in particle size, however the entrapment efficiency tends to decrease from 50 to 43 per cent; on the other hand, the more hydrophobic PLGA showed an increasing trend in entrapment efficiency from 20 to 62 per cent with increasing particle size. Over 90 per cent of CsA was released in vitro from both the nanoparticulates; however, the release was much slower in the case of more hydrophobic PLGA. On in vivo evaluation in rats, the NPs made of EL14 showed a higher Cmax, a faster Tmax and enhanced tissue levels to that of PLGA that are crucial for CsA's activity and toxicity; however, the overall bioavailability of the nanoparticulates was similar and higher than Neoral. Together these data demonstrate the feasibility of NPs made of low molecular weight, hydrophilic polymer EL14 for efficient delivery of CsA. PMID:20504806

  20. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives.

    PubMed

    Boffito, Monica; Sirianni, Paolo; Di Rienzo, Anna Maria; Chiono, Valeria

    2015-03-01

    This review focuses on the challenges associated with the design and development of injectable hydrogels of synthetic origin based on FDA approved blocks, such as polyethylene glycol (PEG) and poly(ɛ-caprolactone) (PCL). An overview of recent studies on inverse thermosensitive PEG/PCL hydrogels is provided. These systems have been proposed to overcome the limitations of previously introduced degradable thermosensitive hydrogels [e.g., PEG/poly(lactide-co-glycolic acid) hydrogels]. PEG/PCL hydrogels are advantageous due to their higher gel strength, slower degradation rate and availability in powder form. Particularly, triblock PEG/PCL copolymers have been widely investigated, with PCL-PEG-PCL (PCEC) hydrogels showing superior gel strength and slower degradation kinetics than PEG-PCL-PEG (PECE) hydrogels. Compared to triblock PEG/PCL copolymers, concentrated solutions of multiblock PEG/PCL copolymers were stable due to their slower crystallization rate. However, the resulting hydrogel gel strength was low. Inverse thermosensitive triblock PEG/PCL hydrogels have been mainly applied in tissue engineering, to decrease tissue adherence or, in combination with bioactive molecules, to promote tissue regeneration. They have also found application as in situ drug delivery carriers. On the other hand, the wide potentialities of multiblock PEG/PCL hydrogels, associated with the stability of their water-based solutions under storage, their higher degradation time compared to triblock copolymer hydrogels and the possibility to insert bioactive building blocks along the copolymer chains, have not been fully exploited yet. A critical discussion is provided to highlight advantages and limitations of currently developed themosensitive PEG/PCL hydrogels, suggesting future strategies for the realization of PEG/PCL-based copolymers with improved performance in the different application fields.

  1. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface

    SciTech Connect

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2016-02-01

    Air–water interfacial monolayers of poly((d,l-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA–PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure–area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air–water monolayers formed by a PLGA–PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((d,l-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL–PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA–PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA–PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the “n-cluster” effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the “n-cluster” effects.

  2. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  3. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures.

    PubMed

    Lee, Jason S; Ray, Richard I; Lowe, Kristine L; Jones-Meehan, Joanne; Little, Brenda J

    2003-04-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  4. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    SciTech Connect

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  5. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    NASA Technical Reports Server (NTRS)

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  6. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative.

    PubMed

    Ogawara, Ken-ichi; Shiraishi, Taro; Araki, Tomoya; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2016-01-20

    To develop potent and safer formulation of photosensitizer for cancer photodynamic therapy (PDT), we tried to formulate hydrophobic porphyrin derivative, photoprotoporphyrin IX dimethyl ester (PppIX-DME), into polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer (PN-Por). The mean particle size of PN-Por prepared was around 80nm and the zeta potential was determined to be weakly negative. In vitro phototoxicity study for PN-Por clearly indicated the significant phototoxicity of PN-Por for three types of tumor cells tested (Colon-26 carcinoma (C26), B16BL6 melanoma and Lewis lung cancer cells) in the PppIX-DME concentration-dependent fashion. Furthermore, it was suggested that the release of PppIX-DME from PN-Por would gradually occur to provide the sustained release of PppIX-DME. In vivo pharmacokinetics of PN-Por after intravenous administration was evaluated in C26 tumor-bearing mice, and PN-Por exhibited low affinity to the liver and spleen and was therefore retained in the blood circulation for a long time, leading to the efficient tumor disposition of PN-Por. Furthermore, significant and highly effective anti-tumor effect was confirmed in C26 tumor-bearing mice with the local light irradiation onto C26 tumor tissues after PN-Por injection. These findings indicate the potency of PN-Por for the development of more efficient PDT-based cancer treatments.

  7. Formulation and in vitro characterization of novel sildenafil citrate-loaded polyvinyl alcohol-polyethylene glycol graft copolymer-based orally dissolving films.

    PubMed

    Xu, Li-Li; Shi, Li-Li; Cao, Qing-Ri; Xu, Wei-Juan; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2014-10-01

    This work was aimed to develop novel sildenafil citrate (SC)-loaded polyvinyl alcohol (PVA)-polyethylene glycol (PEG) graft copolymer (Kollicoat(®) IR)-based orally dissolving films (ODFs) using a solvent casting method. Formulation factors such as plasticizers and disintegrants were optimized on the basis of characteristics of blank ODFs. The SC-loaded ODF with a loading capacity up to 6.25mg in an area of 6 cm(2) was prepared and evaluated in terms of mechanical properties, disintegration time and dissolution rate. The physicochemical properties of drug-loaded ODF were also investigated using the scanning electron microscope (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The blank ODF composed of Kollicoat(®) IR, sodium alginate (ALG-Na) and glycerol (10:2:1.5, w/w) had a remarkably short disintegration time of about 20s. The SC-loaded ODF showed a delayed disintegration time (about 25s), but exhibited improved mechanical properties when compared to the blank ODF. SC was homogeneously dispersed throughout the ODF and the crystalline form of drug had been partly changed, existing strong hydrogen bonding between the drug and carriers. The Kollicoat(®) IR/ALG-Na based ODFs containing SC might be an alternative to conventional tablet for the treatment of male erectile dysfunction.

  8. Rheological Characterization of Polysaccharide–Poly(ethylene glycol) Star Copolymer Hydrogels

    PubMed Central

    Yamaguchi, Nori; Chae, Byeong-Seok; Zhang, Le; Kiick, Kristi L.; Furst, Eric M.

    2008-01-01

    Binding interactions between low molecular weight heparin (LMWH) and heparin-binding peptides (HBP) have been applied as a strategy for the assembly of hydrogels that are capable of sequestering growth factors and delivering them in a controlled manner. In this work, the assembly of four-arm star poly(ethylene glycol) (PEG)–LMWH conjugate with PEG–HBP conjugates has been investigated. The interactions between LMWH and the heparin-binding regions of antithrombin III (ATIII) or the heparin interacting protein (HIP) have been characterized via heparin affinity chromatography and surface plasmon resonance (SPR); results indicate that the two peptides have slightly different affinities for heparin and LMWH, and bind LMWH with micromolar affinity. Solutions of the PEG–LMWH and of mixtures of the PEG–LMWH and PEG–HBP were characterized via both bulk rheology and laser tweezer microrheology. Interestingly, solutions of PEG–LMWH (2.5 wt % in PBS) form hydrogels in the absence of PEG–ATIII or PEG–HIP, with storage moduli, determined via bulk rheological measurements, in excess of the loss moduli over frequencies of 0.1–100 Hz. The addition of PEG–ATIII or PEG–HIP increases the moduli in direct proportion to the number of cross-links introduced. Characterization of the hydrogels via microrheology shows the gel microstructure is composed of polymer-rich fibrillar structures surrounded by polymer-depleted buffer. Potential applications of these hydrogels are discussed. PMID:16004430

  9. Synthesis of a new potential biodegradable disulfide containing poly(ethylene imine)-poly(ethylene glycol) copolymer cross-linked with click cluster for gene delivery.

    PubMed

    Zhao, Nan; Roesler, Susanne; Kissel, Thomas

    2011-06-15

    Poly(ethylene glycol)-grafted-polyethylenimine (PEG-PEI) are promising non-viral gene delivery systems. Herein, we aimed to synthesize a biodegradable disulfide containing PEGylated PEI to attempt to reduce its cytotoxicity and enhance the gene transfer activity. Using click chemistry, low Mw PEI (br. 2 kDa) and short chain length PEG (tetraethylene glycol, TEG) were cross-linked to a high Mw PEG-PEI copolymer (∼ 22 kDa). The chemical structure of the copolymer was characterized using (1)H NMR and GPC. The degradation behavior was investigated under in vitro conditions in the presence of 1,4-dithiothreitol (DTT). The gel retardation assay, dynamic light scattering and atomic force microscopy showed good DNA condensation ability by forming polyplexes with small particle size and positive zeta potential. In particular, MTT assay indicated that this PEG-PEI polymer is about 22-fold less toxic than PEI 25k and only 2-fold more toxic than PEI 2k in L929 cell line. After coupling of small PEG chains and cross-linking by disulfide bridges, the transfection efficiency is increased approximately 6-fold in comparison to PEI 2k and still reaches approximately 17% of PEI 25k. Hence, this click cluster cross-linked disulfide containing PEG-PEI copolymer could be an attractive cationic polymer for non-viral gene delivery.

  10. Morphological Control of Anisotropic Self-Assemblies from Alternating Poly(p-dioxanone)-poly(ethylene glycol) Multiblock Copolymer Depending on the Combination Effect of Crystallization and Micellization.

    PubMed

    Wang, Mei-Jia; Wang, Hao; Chen, Si-Chong; Chen, Cheng; Liu, Ya

    2015-06-30

    A novel and facile method was developed for morphological controlling of self-assemblies prepared by crystallization induced self-assembly of crystalline-coil copolymer depending on the combination effect of crystallization and micellization. The morphological evolution of the self-assemblies of alternating poly(p-dioxanone)-block-poly(ethylene glycol) (PPDO-PEG) multiblock copolymer prepared by different solvent mixing methods in aqueous solution were investigated. "Chrysanthemum"-like and "star anise"-like self-assemblies were obtained at different rates of solvent mixing. The results suggested gradually change in solvent quality (slowly dropping water into DMF solution) leaded to a hierarchical micellization-crystallization process of core-forming PPDO blocks, and flake-like particles were formed at the initial stage of crystallization. Meanwhile, crystallization induced micellization process occurred when solvent quality changed drastically. Shuttle-like particles, which have much smaller size than those of flake-like particles, were formed at the initial stage of crystallization when quickly injecting water into DMF solution of the copolymer. Therefore, owing to the different changing rate of solvent quality, which may result in different combination effect of crystallization and micellization during self-assembly of the copolymer, PPDO-PEG self-assemblies with different hierarchical morphology in nano scale could be obtained.

  11. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion.

    PubMed

    VandeVondele, Stephanie; Vörös, Janos; Hubbell, Jeffrey A

    2003-06-30

    A novel class of surface-active copolymers is described, designed to protect surfaces from nonspecific protein adsorption while still inducing specific cell attachment and spreading. A graft copolymer was synthesized, containing poly-(L-lysine) (PLL) as the backbone and substrate binding and poly(ethylene glycol) (PEG) as protein adsorption-resistant pendant side chains. A fraction of the grafted PEG was pendantly functionalized by covalent conjugation to the peptide motif RGD to induce cell binding. The graft copolymer spontaneously adsorbs from dilute aqueous solution onto negatively charged surfaces. The performance of RGD-modified PLL-g-PEG copolymers was analyzed in protein adsorption and cell culture assays. These coatings efficiently blocked the adsorption of serum proteins to Nb(2)O(5) and tissue culture polystyrene while specifically supporting attachment and spreading of human dermal fibroblasts. This surface functionalization technology is expected to be valuable in both the biomaterial and biosensor fields, because different signals can easily be combined, and sterilization and application are straightforward and cost-effective.

  12. Room temperature aqueous self-assembly of poly(ethylene glycol)-poly(4-vinyl pyridine) block copolymers: From spherical to worm-like micelles.

    PubMed

    Rodrigues, Daniela P; Costa, João R C; Rocha, Nuno; Góis, Joana R; Serra, Arménio C; Coelho, Jorge F J

    2016-09-01

    The solution self-assembly and the formation, at room temperature, of a wide range of nanostructures based on monomethyl ether poly(ethylene glycol)-b-poly(4-vinyl pyridine) (mPEG-b-P4VP) block copolymer is reported. Copolymers with different compositions and molecular weights were synthesized through Atom Transfer Radical Polymerization (ATRP) method. The solution self-assembly of the block copolymers was studied by transmission electron microscopy (TEM) for different solution pHs. It was found that the formation of non-spherical nanostructures, such as rod- and worm-like micelles can be easily achieved, at room temperature, by simply varying the molecular weight of the different segments as well as the mPEG to P4VP ratio in the block copolymer structure. Because P4VP segments are known to form strong complexes with metals, the nanostructures prepared in this manuscript can find innovative applications in the biomedical field and be used as nano-templates for inorganic materials.

  13. Preparation of magnetic microspheres based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymers by modified solvent diffusion method.

    PubMed

    Men, Ke; Zeng, Shi; Gou, MaLing; Guo, Gang; Gu, Ying Chun; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2010-06-01

    Magnetic microspheres have promising application in biomedical field. In this paper, biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCEC) triblock copolymers were synthesized by ring-opening polymerization method. Through adjusting the epsilon-CL/PEG weight ratio in feed, PCEC copolymers with different block ratio were obtained. A novel modified solvent diffusion method was described to prepare magnetic PCEC composite microspheres containing magnetite nanoparticles. The particle size of microsphere decreased with increase in the PEG/PCL block ratio. The obtained microspheres could response to external magnetic field. This study described a novel method to prepare magnetic microspheres. The obtained magnetic polymeric microspheres might have potential application in drug delivery system or disease diagnosis field.

  14. Preclinical safety evaluation of inhaled cyclosporine in propylene glycol.

    PubMed

    Wang, Tao; Noonberg, Sarah; Steigerwalt, Ronald; Lynch, Maryellen; Kovelesky, Rosemary A; Rodríguez, Carlos A; Sprugel, Katherine; Turner, Nancy

    2007-01-01

    Cyclosporine inhalation solution has the potential to improve outcomes following lung transplantation by delivering high concentrations of an immunosuppressant directly to the allograft while minimizing systemic drug exposure and associated toxicity. The objective of these studies was to evaluate the potential toxicity of aerosolized cyclosporine formulated in propylene glycol when given by inhalation route to rats and dogs for 28 days. Sprague-Dawley rats received total inhaled doses of 0 (air), 0 (vehicle, propylene glycol), 7.4, 24.3, and 53.9 mg cyclosporine/kg/day. In a separate study, beagle dogs were exposed to 0, 4.4, 7.7, and 9.7 mg cyclosporine/kg/day. Endpoints used to evaluate potential toxicity of inhaled cyclosporine were clinical observations, body weight, food consumption, respiratory functions, toxicokinetics, and clinical/anatomic pathology. Daily administration of aerosolized cyclosporine did not result in observable accumulation of cyclosporine in blood or lung tissue. Toxicokinetic analysis from the rat study showed that the exposure of cyclosporine was approximately 18 times higher in the lung tissue compared to the blood. Systemic effects were consistent with those known for cyclosporine. There was no unexpected systemic toxicity or clinically limiting local respiratory toxicity associated with inhalation exposure to cyclosporine inhalation solution at exposures up to 2.7 times the maximum human exposure in either rats or dogs. There were no respiratory or systemic effects of high doses of propylene glycol relative to air controls. These preclinical studies demonstrate the safety of aerosolized cyclosporine in propylene glycol and support its continued clinical investigation in patients undergoing allogeneic lung transplantation.

  15. Effect of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer on bioadhesion and release rate property of eplerenone pellets.

    PubMed

    Kendre, Prakash Namdeo; Chaudhari, Pravin Digambar

    2017-05-01

    The present study involved the design and development of oral bioadhesive pellets of eplerenone. A solid dispersion of eplerenone was developed with a hydrophilic carrier, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus(®)). Bioadhesive pellets were prepared from this solid dispersion using a combination of HPMC K4M and Carbopol 934P. Both the solid dispersion and the pellets were evaluated for various physicochemical properties such as solubility, entrapment efficiency, drug content, surface morphology, mucoadhesion and swelling behavior. Analysis carried out using FT-IR, DSC and XRD found no interaction between the eplerenone and excipients. The solid dispersion had irregular-shaped smooth-surfaced particles of diameter 265 ± 105.5 μm. In TEM analysis, eplerenone particles of size 79-120 nm were found. The solubility and dissolution of eplerenone in the Soluplus(®)-based solid dispersion were 5.26 and 2.50 times greater, respectively. Investigation of the swelling behavior of the pellets showed that the thickness of the gel layer increased continuously over the duration of the study. Moreover, a correlation was observed between the thickness and strength of the gel layer and the percentage release. The mechanism of drug release was found to be non-Fickian (anomalous), with the release kinetics approaching first-order kinetics. The bioavailability of the eplerenone bioadhesive pellet formulation was studied using Wistar rats and was found to be improved. An in vivo mucoadhesion study showed that the pellets are retained for 24 h in rabbits. It was concluded that Soluplus(®) had a positive effect on the solubility and dissolution of pellets without affecting the bioadhesion.

  16. The heat-chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)-poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery.

    PubMed

    Payyappilly, Sanal Sebastian; Dhara, Santanu; Chattopadhyay, Santanu

    2014-04-07

    A new method is developed for preparation of amphiphilic block copolymer micellar nanoparticles and investigated as a delivery system for celecoxib, a hydrophobic model drug. Biodegradable block copolymers of poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) were synthesized by ring opening copolymerization and characterized thoroughly using FTIR, (1)H NMR and GPC. The block copolymer was dispersed in distilled water at 60 °C and then it was chilled in an ice bath for the preparation of the micellar nanoparticles. Polymers self-assembled to form micellar nanoparticles (<50 nm) owing to their amphiphilic nature. The prepared micellar nanoparticles were analyzed using HR-TEM, DLS and DSC. The cytotoxicity of the polymer micellar nanoparticles was investigated against HaCaT cell lines. The study of celecoxib release from the micellar nanoparticles was carried out to assess their suitability as a drug delivery vehicle. Addition of the drug to the system at low temperature is an added advantage of this method compared to the other temperature assisted nanoparticle preparation techniques. In a nutshell, polymer micellar nanoparticles prepared using the heat-chill method are believed to be promising for the controlled drug release system of labile drugs, which degrade in toxic organic solvents and at higher temperatures.

  17. Organic solvent-free low temperature method of preparation for self assembled amphiphilic poly(ϵ-caprolactone)-poly(ethylene glycol) block copolymer based nanocarriers for protein delivery.

    PubMed

    Payyappilly, Sanal Sebastian; Panja, Sudipta; Mandal, Pijush; Dhara, Santanu; Chattopadhyay, Santanu

    2015-11-01

    Degradation and denaturation of labile biomolecules during preparation of micelles by organic solvent at high temperature are some of the limitations for fabrication of advanced polymer based protein delivery systems. In this paper, effectiveness of heat-chill method for preparation of micelles containing large labile biomolecules was investigated using insulin as a model protein molecule. Micelles (average size, <120 nm) were prepared using amphiphilic diblock and triblock copolymers of poly(ethylene glycol) (PEG) and poly(ϵ-caprolactone) (PCL). Micelles were prepared by heating PEG-PCL block copolymers with distilled water at 60 °C followed by sudden chilling in an ice-water bath. Effects of molecular architecture on morphology, stability and protein loading capacity of micelles were investigated. Micelles prepared using high molecular weight block copolymers exhibited good colloidal stability, encapsulation efficiency and insulin release characteristics. Insulin retained its secondary structure after micelles preparation as confirmed by CD spectroscopic study. Furthermore, in vitro cytotoxicity test suggested that the prepared micellar nanoparticles possessed biocompatibility. In a nut shell, heat-chill method of micellar nanoparticles preparation is well suited for encapsulating labile proteins and other allied biomolecules which degrade in presence of toxic organic solvents and at elevated temperatures.

  18. Impact of molecular weight and degree of conjugation on the thermodynamics of DNA complexation and stability of polyethylenimine-graft-poly(ethylene glycol) copolymers.

    PubMed

    Smith, Ryan J; Beck, Rachel W; Prevette, Lisa E

    2015-01-01

    Poly(ethylene glycol) (PEG) is often conjugated to polyethylenimine (PEI) to provide colloidal stability to PEI-DNA polyplexes and shield charge leading to toxicity. Here, a library of nine cationic copolymers was synthesized by grafting three molecular weights (750, 2000, 5000Da) of PEG to linear PEI at three conjugation ratios. Using isothermal titration calorimetry, we have quantified the thermodynamics of the associations between the copolymers and DNA and determined the extent to which binding is hindered as a function of PEG molecular weight and conjugation ratio. Low conjugation ratios of 750Da PEG to PEI resulted in little decrease in DNA affinity, but a significant decrease-up to two orders of magnitude-was found for the other copolymers. We identified limitations in determination of affinity using indirect assays (electrophoretic mobility shift and ethidium bromide exclusion) commonly used in the field. Dynamic light scattering of the DNA complexes at physiological ionic strength showed that PEI modifications that did not reduce DNA affinity also did not confer significant colloidal stability, a finding that was supported by calorimetric data on the aggregation process. These results quantify the DNA interaction thermodynamics of PEGylated polycations for the first time and indicate that there is an optimum PEG chain length and degree of substitution in the design of agents that have desirable properties for effective in vivo gene delivery.

  19. Adsorption induced enzyme denaturation: the role of protein surface in adsorption induced protein denaturation on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers.

    PubMed

    Thudi, Lahari; Jasti, Lakshmi S; Swarnalatha, Y; Fadnavis, Nitin W; Mulani, Khudbudin; Deokar, Sarika; Ponrathnam, Surendra

    2012-02-01

    The effects of protein size on adsorption and adsorption-induced denaturation of proteins on copolymers of allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) have been studied. Different responses were observed for the amount of protein adsorbed and denatured on the polymer surface for different proteins (trypsin, alchol dehydrogenase from baker's yeast (YADH), glucose dehydrogenase (GDH) from Gluconobacter cerinus, and alkaline phosphates from calf intestinal mucosa (CIAP). Protein adsorption on the copolymer with 25% crosslink density (AGE-25) was dependent not only on the size of the protein but also on the presence of glycoside residues on the protein surface. Adsorption and denaturation of proteins follows the order YADH>trypsin>GDH>CIAP although the molecular weights of the proteins follow the order YADH>CIAP>GDH>trypsin. The lack of correlation between amount of adsorbed protein and its molecular weight was due to the presence of glycoside residues on CIAP and GDH which protect the enzyme surface from denaturation. Enzyme stabilities in aqueous solutions of 1-cyclohexyl-2-pyrrolidinone (CHP) correlate well with the trend in denaturation by the copolymer, strongly suggesting that hydrophobic interactions play a major role in protein binding and the mechanism of protein denaturation is similar to that for water-miscible organic solvents.

  20. Copolymer of poly(ethylene glycol) and poly(l-lysine) grafting polyethylenimine through a reducible disulfide linkage for siRNA delivery

    NASA Astrophysics Data System (ADS)

    Li, Jingguo; Cheng, Du; Yin, Tinghui; Chen, Weicai; Lin, Yujie; Chen, Jifeng; Li, Ruitang; Shuai, Xintao

    2014-01-01

    siRNA therapy research has primarily focused on the synthesis and development of effective siRNA delivery vectors with easy biodegradability and low toxicity. In the present study, we synthesized a ternary copolymer mPEG-b-PLL-g-(ss-lPEI), denoted as PLI, by introducing disulfide bond linkages to graft low molecular weight linear polyethylenimine (lPEI) to the block copolymer of poly(l-lysine) (PLL) and poly(ethylene glycol) (PEG) for siRNA delivery. The PLL block and disulfide linkage rendered the carrier biodegradability, while lPEI grafting brought about the proton buffering capacity for lysosomal siRNA release and low cationic toxicity. Conjugation of a single chain monoclonal antibody (Herceptin) to the carrier as a targeting ligand for the Her2/neu receptor significantly increased the transfection activity of the copolymer/siRNA nanocomplex (i.e. the polyplex) in Skov-3, a human ovarian cancer cell line. Determination of gene expression at both the mRNA and protein levels demonstrated that Her2-targeted delivery of siRNA (XIAP siRNA) effectively downregulated the targeted XIAP (X-linked inhibitor of apoptosis protein) gene, resulting in enhanced cancer cell apoptosis and improved therapeutic efficacy in vitro and in vivo. The distinct features of low cytotoxicity, easy degradability, and high siRNA transfection efficiency make the copolymer a promising candidate for siRNA therapy in tumors.siRNA therapy research has primarily focused on the synthesis and development of effective siRNA delivery vectors with easy biodegradability and low toxicity. In the present study, we synthesized a ternary copolymer mPEG-b-PLL-g-(ss-lPEI), denoted as PLI, by introducing disulfide bond linkages to graft low molecular weight linear polyethylenimine (lPEI) to the block copolymer of poly(l-lysine) (PLL) and poly(ethylene glycol) (PEG) for siRNA delivery. The PLL block and disulfide linkage rendered the carrier biodegradability, while lPEI grafting brought about the proton

  1. The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips.

    PubMed

    Wang, Qin; Zhang, Yuan; Ding, Hui; Wu, Jing; Wang, Lili; Zhou, Lei; Pu, Qiaosheng

    2011-12-30

    An ethylene glycol solution was used as the electrophoretic running buffer in unmodified cyclic olefin copolymer (COC) microchips to minimize the interactions between the analytes and the hydrophobic walls of the plastic microchannels, enhance the resolution of the analytes and eliminate the uncontrollable dispersion caused by uneven liquid levels and non-uniform surfaces of the separation channels. Five amino acids that were labeled with fluorescein isothiocyanate (FITC) were used as model analytes to examine the separation efficiency. The effects of ethylene glycol concentration, pH and sodium tetraborate concentration were systematically investigated. The five FITC-labeled amino acids were effectively resolved using a COC microchip with an effective length of 2.5 cm under optimum conditions, which included using a running buffer of 20 mmol/L sodium tetraborate in ethylene glycol:water (80:20, v/v), pH 6.7. A theoretical plate number of 4.8 × 10(5)/m was obtained for aspartic acid. The system exhibited good repeatability, and the relative standard deviations (n=5) of the peak areas and migration times were no more than 3.4% and 0.7%, respectively. Furthermore, the system was successfully applied to elucidate these five amino acids in human saliva.

  2. Synthesis, characterization and drug loading property of Monomethoxy-Poly(ethylene glycol)-Poly(ε-caprolactone)-Poly(D,L-lactide) (MPEG-PCLA) copolymers

    PubMed Central

    Chu, BingYang; Zhang, Lan; Qu, Ying; Chen, XiaoXin; Peng, JinRong; Huang, YiXing; Qian, ZhiYong

    2016-01-01

    Amphiphilic block copolymers have attracted a great deal of attention in drug delivery systems. In this work, a series of monomethoxy-poly (ethylene glycol)-poly (ε-caprolactone-co-D,L-lactide) (MPEG-PCLA) copolymers with variable composition of poly (ε-caprolactone) (PCL) and poly (D,L-lactide) (PDLLA) were prepared via ring-opening copolymerization of ε-CL and D,L-LA in the presence of MPEG and stannous octoate. The structure and molecular weight were characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The crystallinity, hydrophilicity, thermal stability and hydrolytic degradation behavior were investigated in detail, respectively. The results showed that the prepared amphiphilic MPEG-PCLA copolymers have adjustable properties by altering the composition of PCLA, which make it convenient for clinical applications. Besides, the drug loading properties were also studied. Docetaxel (DTX) could be entrapped in MPEG-PCLA micelles with high loading capacity and encapsulation efficiency. And all lyophilized DTX-loaded MPEG-PCLA micelles except MPEG-PCL micelles were readily re-dissolved in normal saline at 25 °C. In addition, DTX-loaded MPEG-PCLA micelles showed a slightly enhanced antitumor activity compared with free DTX. Furthermore, DTX micelles exhibited a slower and sustained release behavior in vitro, and higher DTX concentration and longer retention time in vivo. The results suggested that the MPEG-PCLA copolymer with the adjustable ratio of PCL to PDLLA may be a promising drug delivery carrier for DTX. PMID:27677842

  3. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Huanhuan; Li, Hongxiao; Fan, Li-Zhen; Shi, Qiao

    2014-03-01

    Gel polymer electrolytes (GPE) composed of triethylene glycol diacetate (TEGDA)-2-propenoic acid butyl ester (BA) copolymer and commercial used liquid organic electrolyte are prepared via in situ polymerization. The ionic conductivity of the as-prepared GPE can reach 5.5 × 10-3 S cm-1 with 6 wt% monomers and 94 wt% liquid electrolyte at 25 °C. Additionally, the temperature dependence of the ionic conductivity is consistent with an Arrhenius temperature behavior in a temperature range of 20-90 °C. Furthermore, the electrochemical stability window of the GPE is 5 V at 25 °C. A Li|GPE|(Li[Li1/6Ni1/4Mn7/12]O2) cell has been fabricated, which shows good charge-discharge properties and stable cycle performance compared to liquid electrolyte under the same test conditions.

  4. Dual-responsive polypseudorotaxanes based on block-selected inclusion between polyethylene-block-poly(ethylene glycol) diblock copolymers and 1,4-diethoxypillar[5]arene.

    PubMed

    Chen, Jianzhuang; Li, Nan; Gao, Yongping; Sun, Fugen; He, Jianping; Li, Yongsheng

    2015-10-21

    Based on the selective recognition of the polyethylene (PE) block of polyethylene-block-poly(ethylene glycol) (PE-b-PEG) by 1,4-diethoxypillar[5]arene (DEP5A), two novel thermo and competitive guest (1,4-dibromobutane or hexanedinitrile) responsive polypseudorotaxanes (PPRs) have been successfully constructed. The formation of PPRs both in solution and in the solid state was demonstrated by (1)H NMR, 2D NOESY, and WAXD analyses. TGA data illustrate that PPRs exhibit higher thermal stability than their precursor diblock copolymers. Moreover, intriguing porous disk-like aggregates are produced by electrospraying of PPRs in CHCl3 and the self-assembled structures of PPRs are totally changed by the addition of 1,4-dibromobutane or hexanedinitrile, demonstrating their competitive guest stimuli-responsiveness.

  5. Cononsolvency-induced micellization of pyrene end-labeled diblock copolymers of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate.

    PubMed

    Rao, Jingyi; Xu, Jian; Luo, Shizhong; Liu, Shiyong

    2007-11-06

    Pyrene end-labeled double hydrophilic diblock copolymers, poly(N-isopropylacrylamide)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (Py-PNIPAM-b-POEGMA), were synthesized via consecutive reversible addition-fragmentation chain transfer polymerization using a pyrene-containing dithioester as the chain transfer agent. These diblock copolymers molecularly dissolve in pure methanol and water, but form well-defined and nearly monodisperse PNIPAM-core micelles in an appropriate mixture of them due to the cononsolvency of PNIPAM block. 1H NMR, laser light scattering, fluorescence spectroscopy, and transmission electron microscopy were employed to characterize the cononsolvency-induced PNIPAM-core micelles. When the volume fraction of water, phi water, in the methanol/water mixture is in the range of 0.5-0.8, the sizes of micelles are in the range of 20-30 nm in radius for Py-PNIPAM50-b- POEGMA18. At phi water = 0.5, the formed micelles possess the highest overall micelle density and the largest molar mass. The effects of varying the block lengths of Py-PNIPAM-b-POEGMA diblock copolymers on the structural parameters of PNIPAM-core micelles have also been explored. Although we can observe the immediate appearance of bluish tinge upon mixing the diblock copolymer solution in methanol with equal volume of water (phi water = 0.5), which is characteristic of the formation of micellar aggregates, the whole micellization process apparently takes a relatively long time to complete, as revealed by monitoring the time dependence of fluorescence emission spectra. The excimer/monomer fluorescence intensity ratios, IE/IM, continuously decrease with time and then reach a plateau value after approximately 20 min. The decrease of IE/IM after the initial formation of pseudo-equilibrium micelles should be ascribed to the structural rearrangement and further packing of PNIPAM segments within the micelle core, restricting the mobility of pyrene end groups and decreasing the

  6. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials.

    PubMed

    Martinelli, Elisa; Sarvothaman, Mahesh K; Galli, Giancarlo; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Conlan, Sheelagh L; Clare, Anthony S; Sugiharto, Albert B; Davies, Cait; Williams, David

    2012-01-01

    Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.

  7. Design of Poly(L-lactide)-Poly(ethylene glycol) Copolymer with Light-Induced Shape-Memory Effect Triggered by Pendant Anthracene Groups.

    PubMed

    Xie, Hui; He, Man-jie; Deng, Xiao-Ying; Du, Lan; Fan, Cheng-Jie; Yang, Ke-Ke; Wang, Yu-Zhong

    2016-04-13

    A novel light-induced shape-memory material based on poly(l-lactide)-poly(ethylene glycol) copolymer is developed successfully by dangling the photoresponsive anthracene group on the PEG soft segment selectively. For synthesis strategy, the preprepared photoresponsive monomer N,N-bis(2-hydroxyethyl)-9-anthracene-methanamine (BHEAA) is first embedded into PEG chains; then, we couple this anthracene-functionalized PEG precursor with PLA precursor to result in PLA-PEG-A copolymer. The composition of target product can be well-defined by simply adjusting the feed ratio. The chemical structures of intermediate and final products are confirmed by (1)H NMR. Differential scanning calorimetry analysis of material reveals that the PEG soft segment became noncrystallizable when 4% or more BHEAA is introduced, and this feature is beneficial to the mobility of anthracene groups in polymer matrix. The static tensile tests show that the samples exhibit rubberlike mechanical properties except for the PLA-dominant one. The reversibility of [4 + 4] cycloaddition reaction between pendant anthracene groups in PLA-PEG-A film is demonstrated by UV-vis. Eventually, the light-induced shape-memory effect (LSME) is successfully realized in PLA-PEG-A. The results of cyclic photomechanical tests also reveal that the content of PLA hard segment as well as photosensitive anthracene moieties plays a crucial role in LSME.

  8. Cross-linked nanoassemblies from poly(ethylene glycol)-poly(aspartate) block copolymers as stable supramolecular templates for particulate drug delivery.

    PubMed

    Lee, Hyun Jin; Bae, Younsoo

    2011-07-11

    Block copolymer cross-linked nanoassemblies (CNAs) were developed as stable supramolecular templates for particulate drug delivery. Poly(ethylene glycol)-poly(aspartate) [PEG-p(Asp)] block copolymers, consisting of PEG (5 or 12 kDa) and Asp (5, 14, 25, 33, and 37 repeating units), were used as scaffolds and grafts in combination to prepare a nanoassembly library of grafted nanoassemblies (GNAs) and CNAs. Four synthesis routes were tested to maximize the number of drug-binding Asp units per nanoassembly. Grafting-onto-scaffold and grafting-from-scaffold methods were used for GNA synthesis. Either partially or completely deprotected PEG-p(Asp) was cross-linked with diamine compounds to prepare CNAs. (1)H NMR and GPC measurements showed that GNAs and CNAs contained the maximum 183 and 253 Asp units, respectively. Initial screening of the nanoassemblies revealed that GNAs would be impractical for further development as drug carriers due to variable grafting efficiency and low product yields. CNAs were obtained in high yields and identified as a promising supramolecular template that can entrap and release ionizable drugs (doxorubicin), enhancing the particle stability of nanoassemblies in the pharmaceutically relevant pH ranges between 4 and 9. Light scattering measurements demonstrated that the particle size of CNAs remained uniform before and after drug entrapment, causing neither aggregation nor dissociation (<5 mg/mL).

  9. Nonviral Plasmid DNA Carriers Based on N,N'-Dimethylaminoethyl Methacrylate and Di(ethylene glycol) Methyl Ether Methacrylate Star Copolymers.

    PubMed

    Mendrek, Barbara; Sieroń, Łukasz; Żymełka-Miara, Iwona; Binkiewicz, Paulina; Libera, Marcin; Smet, Mario; Trzebicka, Barbara; Sieroń, Aleksander L; Kowalczuk, Agnieszka; Dworak, Andrzej

    2015-10-12

    Star polymers with random and block copolymer arms made of cationic N,N'-dimethylaminoethyl methacrylate (DMAEMA) and nonionic di(ethylene glycol) methyl ether methacrylate (DEGMA) were synthesized via atom transfer radical polymerization (ATRP) and used for the delivery of plasmid DNA in gene therapy. All stars were able to form polyplexes with plasmid DNA. The structure and size of the polyplexes were precisely determined using light scattering and cryo-TEM microscopy. The hydrodynamic radius of a complex of DNA with star was dependent on the architecture of the star arms, the DEGMA content and the number of amino groups in the star compared to the number of phosphate groups of the nucleic acid (N/P ratio). The smallest polyplexes (Rh90°∼50 nm) with positive zeta potentials (∼15 mV) were formed of stars with N/P=6. The introduction of DEGMA into the star structure caused a decrease of polyplex cytotoxicity in comparison to DMAEMA homopolymer stars. The overall transfection efficiency using HT-1080 cells showed that the studied systems are prospective gene delivery agents. The most promising results were obtained for stars with random copolymer arms of high DEGMA content.

  10. Synthesis and self-assembly of brush-type poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly(pentafluorostyrene) amphiphilic diblock copolymers in aqueous solution.

    PubMed

    Tan, B H; Hussain, H; Liu, Y; He, C B; Davis, T P

    2010-02-16

    Well-defined fluorinated brush-like amphiphilic diblock copolymers of poly[poly(ethylene glycol)methyl ether methacrylate] (P(PEGMA)) and poly(pentafluorostyrene) (PPFS) have been successfully synthesized via atom transfer radical polymerization (ATRP). The self-assembly behavior of these polymers in aqueous solutions was studied using (1)H NMR, fluorescence spectrometry, static and dynamic light scattering and transmission electron microscopy techniques. The micellar structure comprised of PPFS as the core and brush-like (hydrophobic main chain and hydrophilic branches) polymers as the coronas. The hydrodynamic radius (R(h)) of the micelles in aqueous solution was in the nanometer range, independent of the polymer concentration, consistent with a closed association model. Diblock copolymers with a longer P(PEGMA) block formed micelles with smaller R(h) and lower aggregation numbers consistent with an improved solubilization of the core. The micelles possessed a thick hydration layer as verified by the ratio of the radius of gyration, R(g) to the hydrodynamic radius, R(h). The aggregation number and ratio of R(g) to R(h) were observed to increase with temperature (20-50 degrees C), while the R(h) of the micelle decreased slightly over the same temperature range. An increase in temperature induced the brush-like PEG segments in the corona to dehydrate and shrink while forming micelles with larger aggregation numbers.

  11. Poly(ethylene glycol)-polyacrylate copolymers modified to control adherent monocyte-macrophage physiology: interactions with attaching Staphylococcus epidermidis or Pseudomonas aeruginosa bacteria.

    PubMed

    Wagner, Victoria E; Bryers, James D

    2004-04-01

    The ability of various surface modifications of poly(ethylene glycol)-graft-polyacrylate (PEG-g-PA) copolymers (tethered adhesion peptides and fragments of monoclonal antibodies) to modulate monocyte-macrophage cell interactions with surface colonizing bacteria is reported. The PEG-g-PA copolymers were made to inhibit nonspecific protein and cellular adhesion. The copolymers were then covalently modified with either cell adhesion peptides (YRGDS, YEILDV, or YRGES) or fragments of antibodies to monocyte-macrophage integrin receptors (anti-VLA4, anti-beta(1), anti-beta(2), and anti-CD64), which are known to enhance macrophage adhesion and perhaps modulate their activation. Cytokine expression and phagocytosis response by surface adherent monocyte-macrophages to Staphylococcus epidermidis and Pseudomonas aeruginosa bacteria were quantified. The cytokine expression (interleukins 6 and 1 beta) of adherent macrophages in response to the modified polymers only and to bacterial challenges were quantified by dynamic ELISA assays. The adherent macrophage phagocytic response (oxidative burst) to various materials is compared to oxidative responses to both opsonized and nonopsonized S. epidermidis and P. aeruginosa bacteria. The efficiency of adherent macrophages to ingest and kill both species was determined using radiolabeled and fluorescent labeled bacterial cell ingestion studies as a function of the PEG-g-PA surface modification. Materials modified with adhesion peptides marginally enhanced (2x) macrophage attachment versus controls but, upon bacterial challenges, these materials predisposed adherent macrophages to overexpress proinflammatory cytokines and to exhibit a significant phagocytic response. Conversely, PEG-g-PA materials modified by fragments of monoclonal antibodies significantly enhanced (7x) macrophage adhesion but, upon bacterial challenge, "per cell" cytokine expression levels were reduced compared to peptide modified materials. Macrophages adhering to

  12. In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers.

    PubMed

    Mao, Hailiang; Pan, Pengju; Shan, Guorong; Bao, Yongzhong

    2015-05-28

    A novel in situ formed gel system with potential biodegradability and biocompatibility is developed by mixing the diblock and triblock poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) copolymers with opposite configurations of PLA blocks. In situ gelation of such system is extremely fast, which happens within 10 s after mixing. In situ gelation, gel-to-sol transition, crystalline structure, microstructures, and mechanical properties of PLA-PEG/PLA-PEG-PLA enantiomerically mixed gels are significantly influenced by the mixing ratio, degree of polymerization for PEG block in triblock (DPPEG,tri) and diblock copolymers (DPPEG,di). It is found that in situ gelation of PLA-PEG/PLA-PEG-PLA enantiomeric mixture just happen at relatively smaller PLA-PEG/PLA-PEG-PLA mass ratio and larger DPPEG,tri. Hydrodynamic diameters of PLA-PEG and PLA-PEG-PLA copolymers in dilute solution increase remarkably upon mixing, indicating the formation of bridging networks. Stereocomplexed crystallites are formed for the PLA hydrophobic domains in PLA-PEG/PLA-PEG-PLA enantiomeric mixtures. As indicated by synchrotron-radiation SAXS analysis, the enantiomeric mixture changes from a compactly to loosely aggregated structure and the intermicellar distance enhances with increasing DPPEG,tri, DPPEG,di, or PLA-PEG-PLA fraction. Gelation mechanism of PLA-PEG/PLA-PEG-PLA enantiomeric mixture is proposed, in which part of PLA-PEG-PLA chains act as the connecting bridges between star and flower-like micelles and the stereocomplexed crystallites in micelle cores act as physically cross-linked points.

  13. Polycaprolactone-poly(ethylene glycol) multiblock copolymers as potential substitutes for di(ethylhexyl) phthalate in flexible poly(vinyl chloride) formulations.

    PubMed

    Ferruti, Paolo; Mancin, Ivan; Ranucci, Elisabetta; De Felice, Claudio; Latini, Giuseppe; Laus, Michele

    2003-01-01

    New high-molecular-weight hydrophobic/hydrophilic segmented copolymers of poly(ester ether carbonate) structure, containing poly(epsilon-caprolactone) (PCL) and poly(ethylene glycol) (PEG) segments in their main chain, were synthesized and characterized. These copolymers were obtained by a two-step chain-extension reaction carried out in the presence of alpha,omega-dihydroxy-oligoPCL of molecular weight 1250 and PEG samples of molecular weight 150, 400, 600, 1000, and 2000. The molecular structures of all synthesized materials were characterized by means of (1)H NMR and (13)C NMR spectroscopy, their molecular weights were determined by means of size exclusion chromatography, and their thermal properties were obtained by means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The poly(ester ether carbonate)s of this study are partly or totally miscible at least up to 50 wt % with poly(vinyl chloride) (PVC) and could be used to produce flexible PVC formulations. The miscibility between PVC and the poly(ester ether carbonate)s reported in this paper was investigated by means of DSC and DMA analysis. PVC blends were also analyzed by determining their swellability and the amount of extractables in aqueous media. By comparison purposes, the chain-extension product of PCL1250, that is, PCL polycarbonate, was also synthesized and characterized. The results obtained demonstrated that the copolymers with shortest PEG segment length, i.e. PEG150, 400, and 600, give the best results in terms of miscibility with PVC and lead to blends with maximum resistance to extraction by water. Therefore, they represent, in principle, good substitutes for low-molecular-weight, leachable PVC plasticizers, such as di(ethylhexyl) phthalate.

  14. Methoxypolyethylene glycol-block-polycaprolactone diblock copolymers reduce P-glycoprotein efflux in the absence of a membrane fluidization effect while stimulating P-glycoprotein ATPase activity.

    PubMed

    Zastre, Jason; Jackson, John K; Wong, Wesley; Burt, Helen M

    2007-04-01

    We have previously shown that amphiphilic diblock copolymers composed of methoxypolyethylene glycol-b-polycaprolactone (MePEG-b-PCL) increased the cellular accumulation and reduced the basolateral to apical flux of the P-glycoprotein substrate, rhodamine 123 (R-123) in caco-2 cells. The purpose of this study was to investigate membrane perturbation effects of MePEG-b-PCL diblock copolymers with erythrocyte membranes and caco-2 cells and the effect on P-gp ATPase activity. The diblock copolymer MePEG(17)-b-PCL(5) induced increasing erythrocyte hemolysis at concentrations which correlated with increasing accumulation of R-123 into caco-2 cells. However, no increase in cellular accumulation of R-123 by non-P-gp expressing cells was observed, suggesting that diblock did not enhance the transmembrane passive diffusion of R-123, but that the accumulation enhancement effect of the diblock in caco-2 cells was likely mediated primarily via P-gp inhibition. Fluorescence anisotropy measurements of membrane fluidity and P-gp ATPase activity demonstrated that MePEG(17)-b-PCL(5) decreased caco-2 membrane fluidity while stimulating ATPase activity approximately threefold at concentrations that maximally enhanced R-123 caco-2 accumulation. These results suggest that inhibition of P-gp efflux by MePEG(17)-b-PCL(5) does not appear to be related to increases in membrane fluidity or through inhibition in P-gp ATPase activities, which are two commonly reported cellular effects for P-gp inhibition mediated by surfactants.

  15. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin.

    PubMed

    Lee, Hyukjin; Ahn, Cheol-Hee; Park, Tae Gwan

    2009-04-08

    PLGA-grafted HA copolymers were synthesized and utilized as target specific micelle carriers for DOX. For grafting hydrophobic PLGA chains onto the backbone of hydrophilic HA, HA was solubilized in an anhydrous DMSO by nano-complexing with dimethoxy-PEG. The carboxylic groups of HA were chemically grafted with PLGA, producing HA-g-PLGA copolymers. Resultant HA-g-PLGA self-assembled in aqueous solution to form multi-cored micellar aggregates and DOX was encapsulated during the self-assembly. DOX-loaded HA-g-PLGA micelle nanoparticles exhibited higher cellular uptake and greater cytotoxicity than free DOX for HCT-116 cells that over-expressed HA receptor, suggesting that they were taken up by the cells via HA receptor-mediated endocytosis.

  16. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary

  17. Enhancement of Airway Gene Transfer by DNA Nanoparticles Using a pH-Responsive Block Copolymer of Polyethylene Glycol and Poly-L-lysine

    PubMed Central

    Boylan, Nicholas J.; Kim, Anthony J.; Suk, Jung Soo; Adstamongkonkul, Pichet; Simons, Brian W.; Lai, Samuel K.; Cooper, Mark J.; Hanes, Justin

    2011-01-01

    Highly compacted DNA nanoparticles, composed of single molecules of plasmid DNA compacted with block copolymers of polyethylene glycol and poly-L-lysine (PEG-CK30), have shown considerable promise in human gene therapy clinical trials in the nares, but may be less capable of transfecting cells that lack surface nucleolin. To address this potential shortcoming, we formulated pH-responsive DNA nanoparticles that mediate gene transfer via a nucleolin-independent pathway. Poly-L-histidine was inserted between PEG and poly-L-lysine to form a triblock copolymer system, PEG-CH12K18. Inclusion of poly-L-histidine increased the buffering capacity of PEG-CH12K18 to levels comparable with branched polyethyleneimine. PEG-CH12K18 compacted DNA into rod-shaped DNA nanoparticles with similar morphology and colloidal stability as PEG-CK30 DNA nanoparticles. PEG-CH12K18 DNA nanoparticles entered human bronchial epithelial cells (BEAS-2B) that lack surface nucleolin by a clathrin-dependent endocytic mechanism followed by endo-lysosomal processing. Despite trafficking through the degradative endo-lysosomal pathway, PEG-CH12K18 DNA nanoparticles improved the in vitro gene transfer by ~ 20-fold over PEG-CK30 DNA nanoparticles, and in vivo gene transfer to lung airways in BALB/c mice by ~ 3-fold, while maintaining a favorable toxicity profile. These results represent an important step toward the rational development of an efficient gene delivery platform for the lungs based on highly compacted DNA nanoparticles. PMID:22182747

  18. [The study of quality characteristics of the hydrogel ointments and films based on copolymers divinyl esters of diethylene glycol].

    PubMed

    Bakirova, R E; Tazhbaeva, E M; Muravleva, L E; Fazylov, S D; Akhmetova, S B

    2014-12-01

    The possibility of using a hydrogel based on divinyl ether co- and terpolymer of diethylene glycol as the backbone polymer for incorporating water-soluble medicinal substances was examined. The character of the influence of emulsifiers, plasticizers, high-boiling liquids and bioactive substances is defined within the changes of physical-chemical properties of obtained hydrogels. The obtained polyelectrolyte hydrogels by their homogeneity, dehydration and rheological characteristics may be of concern in function of matrices to create external prolonged-action dosage forms.

  19. Immobilization of Antibody on a Cyclic Olefin Copolymer Surface with Functionalizable, Non-Biofouling Poly[Oligo(Ethylene Glycol) Methacrylate].

    PubMed

    Jeong, Seung Pyo; Kang, Sung Min; Hong, Daewha; Lee, Hee-Yoon; Choi, Insung S; Ko, Sangwon; Lee, Jungkyu K

    2015-02-01

    We report a perfluoroaryl azide-based photoreaction for synthesizing functionalizable and nonbiofouling poly[oligo(ethylene glycol) methacrylate] (pOEGMA) films on a chemically inert COC substrate, and an estimation of a surface coverage of the antibody immobilized onto the surface with the immuno-gold nanoparticles. The processes were confirmed by water contact angle measurement, FT-IR spectroscopy, and FE-SEM. The strategy demonstrated in this work could be applied to functionalizations of other polymeric materials and determination of the binding capacity of analytes in biosensors and microfluidic devices.

  20. Synthesis and evaluation of clickable block copolymers for targeted nanoparticle drug delivery.

    PubMed

    Zhang, Siyan; Chan, Kiat Hwa; Prud'homme, Robert K; Link, A James

    2012-08-06

    Polymeric nanoparticles with multifunctional capabilities, including surface functionalization, hold great promise to address challenges in targeted drug delivery. Here, we describe a concise, robust synthesis of a heterofunctional polyethylene glycol (PEG), HO-PEG-azide. This macromer was used to synthesize polylactide (PLA)-PEG-azide, a functional diblock copolymer. Rapid precipitation of this copolymer with a hydrophobic cargo resulted in the generation of monodisperse nanoparticles with azides in the surface corona. To demonstrate conjugation to these nanoparticles, a regioselectively modified alkyne-folate was employed as a model small molecule ligand, and the artificial protein A1 with an alkyne moiety introduced by unnatural amino acid substitution was selected as a model macromolecular ligand. Using the copper-catalyzed azide-alkyne ligation reaction, both ligands exhibited good conjugation efficiency even when low concentrations of ligands were used.

  1. Y-shaped biotin-conjugated poly (ethylene glycol)-poly (epsilon-caprolactone) copolymer for the targeted delivery of curcumin.

    PubMed

    Zhu, Wenxia; Song, Zhimei; Wei, Peng; Meng, Ning; Teng, Fangfang; Yang, Fengying; Liu, Na; Feng, Runliang

    2015-04-01

    In order to improve curcumin's low water-solubility and selective delivery to cancer, we reported ligand-mediated micelles based on a Y-shaped biotin-poly (ethylene glycol)-poly (epsilon-caprolactone)2 (biotin-PEG-PCL2) copolymer. Its structure was characterized by (1)H NMR. The blank and drug-loaded micelles obtained by way of thin-film hydration were characterized by dynamic light scattering, X-ray diffraction, infrared spectroscopy and hemolytic test. Curcumin was loaded into micelles with a high encapsulating efficiency (93.83%). Curcumin's water-solubility was enhanced 170,400 times higher than free curcumin. Biotin-PEG-PCL2 micelles showed slower drug release in vitro than H2N-PEG-PCL2 micelles. In vitro cellular uptake and cytotoxicity tests showed that higher dosage of curcumin might overcome the effect of slow release on cytotoxicities because of its higher uptake induced by biotin, resulting in higher anticancer activities against MDA-MB-436 cells. In brief, Y-shaped biotin-PEG-PCL2 is a promising delivery carrier for anticancer drug.

  2. The evaluation of biodegradable four star PEO-PLA copolymer as a drug delivery vector

    NASA Astrophysics Data System (ADS)

    Salaam, Latisha Evette

    Current drug delivery vectors for sustained release include both naturally occurring and artificially synthesized polymers. Several linear copolymer systems have been explored for use as drug delivery systems because they form micelles and microspheres as a result of having hydrophobic and hydrophilic polymer portions. The pharmaceutical agent is released due to degradation of the polymer and/or by swelling of the polymer. This release is dependant upon the material containing the pharmaceutical agent; thus material design is a major parameter in establishing a drug delivery vector. Material design allows tailored physical and chemical characteristics, which are key to establishing release. The overall goal of this research is to obtain and evaluate an unstudied branched Polyethylene glycol based polyether ester as a drug delivery vector through assessing and characterizing the micellar aggregation state, neat material thermal characteristics and morphology, micellar material degradation, effect of degradation on the micelle structure, and computational estimation of molecular aggregate force. This system may present enhanced physical properties for containing and delivering hydrophobic drug molecules due to its covalently linked branches. Three constructs of four star polyethylene oxide polylactide copolymer were examined. The samples differed in molecular weight and chain length of the polylactide subunit and in stereo form. Characterization of micelles revealed that solubility decreased with increasing polylactide chain length and molecular aggregation in aqueous solution and that the critical micelle concentration was lower for the star system than for previously reported systems. Transmission electron microscopy and second virial calculations revealed polydispersity and batch to batch variation. Differential Scanning Calorimetry thermograms show two distinct transition peaks for the neat material samples. Thermogravimetric Analysis sample thermograms exhibited

  3. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications.

  4. All-atom molecular dynamics study of a spherical micelle composed of N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) block copolymers: a potential carrier of drug delivery systems for cancer.

    PubMed

    Kuramochi, Hiroshi; Andoh, Yoshimichi; Yoshii, Noriyuki; Okazaki, Susumu

    2009-11-19

    An all-atom molecular dynamics simulation of a spherical micelle composed of amphiphilic N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) (PEG-PBLG-Ac) block copolymers was performed in aqueous solution at 298.15 K and 1 atm. Such copolymers have received considerable attention as carriers in drug delivery systems. In this study, we used copolymers consisting of 11 EG units and 9 BLG units as models. Starting from the copolymers arranged spherically, the calculation predicted an equilibrium state consisting of a slightly elliptical micelle structure with a hydrophobic PBLG inner core and a hydrophilic PEG outer shell. The micelle structure was dynamically stable during the simulation, with the PEG blocks showing a compact helical conformation and the PBLG blocks an alpha-helix form. Multiple hydrogen bonds with solvent water molecules stabilized the helical conformation of the PEG blocks, leading to their hydration as shown by longer residence times of water molecules near the PEG ether oxygen atoms compared with that of bulk water. Some water molecules have also been found distributed within the hydrophobic core; they showed continuous exchange with bulk water during the simulation. Those molecules existed mostly as a cluster in spaces between the copolymers, forming hydrogen bonds among themselves as well as with the hydrophobic core through hydrophilic groups such as esters and amides. The water molecules forming hydrogen bonds with the micelle may play an important role in the stabilization of the micelle structure.

  5. Characterization of tailor-made copolymers of oligo(ethylene glycol) methyl ether methacrylate and N,N-dimethylaminoethyl methacrylate as nonviral gene transfer agents: influence of macromolecular structure on gene vector particle properties and transfection efficiency.

    PubMed

    Uzgün, Senta; Akdemir, Ozgür; Hasenpusch, Günther; Maucksch, Christof; Golas, Monika M; Sander, Bjoern; Stark, Holger; Imker, Rabea; Lutz, Jean-François; Rudolph, Carsten

    2010-01-11

    Oligo(ethylene glycol) methyl ether methacrylates (OEGMA) of various chain lengths (i.e., 9, 23, or 45 EG units) and N,N-dimethylaminoethyl methacrylate (DMAEMA) were copolymerized by atom transfer radical polymerization (ATRP), yielding well-defined P(DMAEMA-co-OEGMA) copolymers with increasing OEGMA molar fractions (F(OEGMA)) but a comparable degree of polymerization (DP approximately 120). Increase of both F(OEGMA) and OEGMA chain lengths correlated inversely with gene vector size, morphology, and zeta potential. P(DMAEMA-co-OEGMA) copolymers prevented gene vector aggregation at high plasmid DNA (pDNA) concentrations in isotonic solution and did not induce cytotoxicity even at high concentrations. Transfection efficiency of the most efficient P(DMAEMA-co-OEGMA) copolymers was found to be >10-fold lower compared with branched polyethylenimine (PEI) 25 kDa. Although OEGMA copolymerization largely reduced gene vector binding with the cell surface, cellular internalization of the bound complexes was less affected. These observations suggest that inefficient endolysosomal escape limits transfection efficiency of P(DMAEMA-co-OEGMA) copolymer gene vectors. Despite this observation, optimized p(DMAEMA-co-OEGMA) gene vectors remained stable under conditions for in vivo application leading to 7-fold greater gene expression in the lungs compared with PEI. Tailor-made P(DMAEMA-co-OEGMA) copolymers are promising nonviral gene transfer agents that fulfill the requirements for successful in vivo gene delivery.

  6. Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.

    PubMed

    Delorit, Justin D; Racz, LeeAnn

    2014-04-01

    Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.

  7. The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility.

    PubMed

    He, Zelai; Wang, Qi; Sun, Ying; Shen, Ming; Zhu, Mingjie; Gu, Malin; Wang, Yi; Duan, Yourong

    2014-01-01

    Biomaterial poly(lactic-co-glycolic acid) (PLGA), a FDA-approved material for clinical application, showed broad prospects in the past, but gradually can no longer meet present clinical developments and requirements, which we synthesized monomethoxy(polyethylene glycol)-poly(D,L-lactic-co-glycolic acid)-poly(L-lysine) (mPEG-PLGA-PLL) (PEAL) and have had some relevant reports. But studies on biocompatibility and the impacts of LA and GA ratio (LA/GA=60/40, 70/30, and 80/20) in main material have not yet been reported. Hemolysis experiment indicates that the hemolysis rate of PEAL extraction medium is less than 5%. Whole blood clotting time (CT), plasma recalcification time, activated partial thromboplastin time, prothrombin time evaluations, and dynamic CT assay show that the anticoagulant time of PEAL copolymer for blood is longer than that under negative and positive control. Protein adsorption assay indicates that PEAL films adsorb less protein than PLGA films (p<0.01); but comparing with expanded polytetrafluoroethylene, the aforementioned difference is not significant (p>0.05). Complement activation test shows that PEAL surface does not induce complement activation. CCK8 measurement shows that the relative growth rates of Huh7, L02, and L929 cells co-incubated with PEAL nanoparticles (NPs) are more than 90%. PEAL NPs co-incubated with 5% foetal bovine serum or 2% bovine serum albumin, through dynamic light scattering assay, remain stable. Different concentrations of PEAL NPs co-incubated with zebrafish embryos at 6-72 h post fertilization show that comparing with negative control, 10, 100, or 500 μM of NPs for embryos development has no significant effects (p>0.05), only 1000 or 2000 μM of NPs has some effects (p<0.05). It is concluded that the PEAL copolymer, with excellent biocompatibility, proves to be a high-safety dose as drug carrier and implant candidate in vivo.

  8. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration.

    PubMed

    Xu, Guohui; Wang, Xiaolin; Deng, Chao; Teng, Xiaomei; Suuronen, Erik J; Shen, Zhenya; Zhong, Zhiyuan

    2015-03-01

    Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.

  9. An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether (Egbe)

    EPA Science Inventory

    This position paper, An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether, was developed in support of the EPA's evaluation of a petition from the American Chemistry Council requesting to delist EGBE per the Clean Air Act Amendments (CAAA), Titl...

  10. Evaluation of copolymer conformation states of vinylchloride-maleic anhydride

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.

    2016-11-01

    The quantum-chemical analysis and experimental study of alternating vinylchloride-maleic anhydride (VC-MA) copolymer macromolecules with polymerization degree 600 have been carried out. The VC-MA copolymer in solvents of different nature undergoes cycloanhydride-enol tautomerism and the macromolecules take the form of corrugated sticks according to viscometric measurements. The computer simulation has shown that the segment with polymerization degree n < 18 (model compound) is not a helix and rolls while if n = 18 the conformations get distorted. The model molecule optimal structure comprising a random sequence of alternating units of comonomers and their enol tautomers with minimal system total energy has been found by the semiempirical parametric method PM3.

  11. Development and evaluation of ion exchange hollow fibers. [vinyl copolymers

    NASA Technical Reports Server (NTRS)

    Smith, J. K.

    1975-01-01

    An ion exchange hollow fiber impregnated with a vinylpyridine base was developed. The basic exchange resin used to impart the necessary permselectivity to the hollow fiber is a copolymer of vinylpyridine and dibromoethane prepared according to Rembaum. A slight pressure was used to impregnate the exchange monomer mixture into the void structure of the fiber wall, and with maintenance of subambient temperatures, the rate of cross-linking is slow enough to allow the growing polymer to permeate the wall structure before significant increase in polymer molecular weight. These ion exchange fibers are produced from polyacrylonitrile hollow fibers with an appropriate wall structure that enables the impregnating vinylpyridine monomer mixture to form a truly semipermeable anion barrier after curing.

  12. Evaluation of novel biodegradable cyclic carbonate polyester copolymers for cytocompatibility using MRC-5 cells.

    PubMed

    Longino, J; Mullen, B; Benghuzzi, H; Tucci, M; Tang, C; Storey, R; Puckett, A

    2003-01-01

    The objective of this work was to synthesize and characterize a novel series of biodegradable cyclic carbonate polyester copolymers based on lactide and 5-methyl-5-benzyloxy-carbonyl-1,3-dioxan-2-one (MBC). Two compositions were selected for characterization. One copolymer was based on a racemic mixture of 1-lactide with 15.4 mole % MBC and the other was based on 1-lactide with 8.2 mole % MBC. These polymers contain carboxylic acid moieties along the backbone that may be used for tethering bioactive agents, forming ionic crosslinks or be reacted with vinyl containing monomers to allow free radical crosslinking. The initial materials evaluated have the carboxylic acid functionalities blocked with benzene. These polymers and the de-blocked versions may have potential applications for hard and soft tissue scaffolds, control drug delivery matrixes or a variety of other applications in medicine. The copolymer samples were pressed into 7.0-mm diameter disk using a KBr press. The disks were then sterilized using U.V radiation under a laminar flow hood. After sterilization, the copolymer disks were submerged in 2 ml of media and placed in a CO2 regulated incubator at 37 degrees C. A total of six groups per phase (n = 7 test tubes per group) were used in this study. Test tubes in groups I and III were plated with MRC-5 and subsequently treated with media alone (controls). Test tubes in groups II and IV were plated with MRC-5 and subsequently treated with media before being introduced to copolymer samples. Cell number, as well as, biochemical markers such as protein and malondialdehyde (MDA) were determined at the end of the 24, 48 and 72-hour time periods. Representative test tubes were subjected to an H&E staining procedure for microscopic morphological evaluation. The results of this evaluation suggest that the exposure of both copolymers produced a non-cytotoxic environment with the MRC-5 cell line. Although both copolymers are non-cytotoxic, the sample having the higher

  13. Preclinical evaluation of radiosensitizing activity of Pluronic block copolymers

    PubMed Central

    Perera, Reshani H.; Patel, Ravi; Wu, Hanping; Gangolli, Mihika; Traughber, Bryan; Oleinick, Nancy; Exner, Agata A.

    2014-01-01

    Purpose Pluronic block copolymers are non-ionic surfactants with demonstrated sensitizing activity in chemotherapy and hyperthermia in various tumor cell lines. In the current study we investigated the potential activity of Pluronic as a radiosensitizing agent. Materials and methods As a possible mechanism, the effect of Pluronic on Hsp70 and Hsp90 was examined. Gli36 human glioma cells were treated with radiation alone as well as with a combination treatment of Pluronic and radiation. Results Clonogenic cell survival assays show that Pluronic has an elevated effect on radiosensitization (50% high, p < 0.01), even with radiation doses as low as 2 Gy. The Hsp90 level was reduced 24 h after the combined treatment in both in vitro and in vivo. Similarly, Hsp70 levels were also decreased 24 h post treatment. When Gli36 cells were exposed to Pluronic before and during irradiation, DNA DSB: double-strand breaks repair was reduced, and elevated apoptosis was also seen in tumor xenografts. Conclusion Data suggest the potential use of L10 as a radiosensitizer. While the mechanism of sensitization requires additional investigation, the presented results indicate that the effect may be due, in part, to a decrease in Hsp90 and 70 levels and increased DNA damage. PMID:23631609

  14. Characterisation and toxicological assessment of Neutral Methacrylate Copolymer for GRAS evaluation.

    PubMed

    Eisele, Johanna; Haynes, Geoff; Kreuzer, Knut; Rosamilia, Tiana

    2013-12-01

    Neutral Methacrylate Copolymer is a fully polymerised copolymer used in the pharmaceutical industry to permit pH-independent delayed release of active ingredients from oral dosage forms. This function has potential use with food supplements and this article describes available information on the safety of the substance. Oral administration of radiolabelled copolymer to rats resulted in the detection of chemically unchanged copolymer in the faeces, with negligible absorption. Safety studies revealed no adverse toxicity following repeated administration at doses of up to 2000 mg/kg bw/d in a sub-chronic study in rats or 250 mg/kg bw/d in a sub-chronic study in dogs. No reproductive toxicity occurred at up to 2000 mg/kg bw/d in rats or rabbits. The substance shows no evidence of genotoxicity, has low acute toxicity and no irritation or sensitisation potential. An ADI value of 20 mg/kg bw was concluded from two alternative approaches. Daily exposure from use in dietary supplements is estimated as up to 10.0 mg/kg bw in adults and 13.3 mg/kg bw in children. There would therefore appear to be no safety concerns under the intended conditions of use. The information provided is intended to support an evaluation that the substance may be "generally recognized as safe" (GRAS).

  15. Stabilization of solid dispersions of nimodipine and polyethylene glycol 2000.

    PubMed

    Urbanetz, Nora Anne

    2006-05-01

    Previous investigations revealed that solid dispersions consisting of 20% (m/m) nimodipine and 80% (m/m) polyethylene glycol 2000 prepared by the melting method, represent supersaturated solid solutions of nimodipine recrystallizing upon storage at +25 degrees C. The objective of this study was the improvement of the storage stability by preventing recrystallization. The first approach in order to prevent recrystallization was the development of thermodynamically stable solid solutions by using solvents aiming to enhance the solubility of nimodipine in the carrier material. As potential solubility enhancing additives, polyethylene glycol 300, poly(ethylene/propylene glycol) copolymer, polypropylene glycol 1020, propylene glycol, glycerol and ethyl acetate were evaluated. The second approach enhancing storage stability was the addition of recrystallization inhibitors to supersaturated solid solutions, thereby delaying the transformation of the metastable supersaturated system to the thermodynamically stable state. Macrogol cetostearyl ether, macrogol glycerol monostearate, polysorbate 60, cetostearyl alcohol, glycerol monostearate and sodium lauryl sulphate as well as hydroxypropylcellulose, butylmethacrylat-(2-dimethylaminoethyl)methacrylat-methylmethacrylat-copolymer, polyacrylic acid, polyvinyl alcohol and povidone K17 were included in the study. It could be shown that povidone K17 effectively prevents recrystallization in solid solutions containing 20% (m/m) of nimodipine during storage at +25 degrees C over silica gel thereby ensuring a substantial increase in the dissolution rate and degree of supersaturation in water. On the contrary, stabilization by solubility enhancement was only successful at drug loadings not exceeding 1% (m/m) using polyethylene glycol 300 as solubility enhancing additive.

  16. Preparation and characterization of new zinc(II) phthalocyanine - Containing poly(l-lactide)-b-poly(ethylene glycol) copolymer micelles for photodynamic therapy.

    PubMed

    Lamch, Łukasz; Kulbacka, Julita; Pietkiewicz, Jadwiga; Rossowska, Joanna; Dubińska-Magiera, Magda; Choromańska, Anna; Wilk, Kazimiera A

    2016-07-01

    Poly(l-lactide)-b-poly(ethylene oxide) block copolymer (mPEG-b-PLLA) micelles were fabricated and applied as a new biodegradable and biocompatible nanocarrier for solubilization of hydrophobic zinc (II) phthalocyanine (ZnPc). The nanocarrier demonstrated a good colloidal stability and its in vitro sustained cargo release profile was assessed. Photobleaching of ZnPc, both in its native form and encapsulated in the obtained polymeric micelles, was studied by means of spectroscopic measurements. The photodynamic reaction (PDR) protocol for cyto- and photocytotoxicity was performed on metastatic melanoma cells (Me45), normal human keratinocytes (HaCaT) being used for comparison. The intracellular accumulation of free and encapsulated ZnPc was visualized at various time periods (1, 3 and 24h). The proapoptotic potential of the encapsulated phthalocyanine was evaluated by monitoring DNA double strand break damage fragmentation (TUNEL assay) and caspase 3/7 activity. In addition, in vitro biocompatibility studies were conducted by determining hemolytic activity of Zn-Pc-loaded mPEG-b-PLLA micelles and their lack of cytotoxicity against macrophages (P388/D1) and endothelial cells (HUV-EC-C). Our results suggest that the PDR using Zn-Pc-loaded mPEG-b-PLLA micelles can be effective in inhibiting tumor cell growth and apoptosis induction with higher responses, observed for Me45 cells. Additionally, the ZnPc-loaded micelles appear to be hemato-biocompatible and safe for normal keratinocytes, macrophages and endothelial cells.

  17. High-throughput evaluation of olefin copolymer composition by means of attenuated total reflection Fourier tranform infrared spectroscopy.

    PubMed

    Tuchbreiter, A; Marquardt, J; Zimmermann, J; Walter, P; Mülhaupt, R; Kappler, B; Faller, D; Roths, T; Honerkamp, J

    2001-01-01

    As a consequence of developing fully automated reactors for organic and organometallic synthesis and polymerizations combined with rapid on-line analysis, databases, and data mining, the analysis of polymers with respect to composition and properties has been speeded up. High-throughput evaluation of olefin copolymers requires fast measurements and high accuracy without tedious sample preparation such as pressing KBr pellets. This has been achieved by using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR spectroscopy) in conjunction with multivariate calibration in order to determine the composition of olefin copolymers such as ethene/propene, ethene/1-hexene and ethene/1-octene copolymers.

  18. A prospective evaluation of propylene glycol clearance and accumulation during continuous-infusion lorazepam in critically ill patients.

    PubMed

    Nelsen, Jamie L; Haas, Curtis E; Habtemariam, Bahru; Kaufman, David C; Partridge, Amy; Welle, Stephen; Forrest, Alan

    2008-01-01

    Propylene glycol is a commonly used diluent in several pharmaceutical preparations, including the sedative lorazepam. Fifty critically ill patients receiving continuous-infusion lorazepam for a minimum of 36 hours were prospectively evaluated to determine the extent of propylene glycol accumulation over time, characterize propylene glycol clearance in the presence of critical illness, and develop a pharmacokinetic model that would predict clearance based on patient-specific clinical, laboratory, and demographic factors. In this cohort, the median lorazepam infusion rate was 2.1 mg/h (0.5-18). Propylene glycol concentration correlated poorly with osmolality, osmol gap, and lactate. In all, 8 patients (16%) had significant propylene glycol accumulation (>25mg/dL). When propylene glycol concentrations were >25 mg/dL, the median lorazepam infusion rate before sample collection was higher, 6.4 (1.9-11.3) versus 2.0 (0.5-7.4) mg/h (P =.0003). A linear first-order model with interoccasion variability on clearance adjusted for total body weight and Acute Physiology and Chronic Health Evaluation II score predicted propylene glycol concentration.

  19. Preparation and in vitro evaluation of Methotrexate-loaded magnetic nanoparticles modified with biocompatible copolymers.

    PubMed

    Jahangiri, Sahar; Akbarzadeh, Abolfazl

    2016-11-01

    Superparamagnetic iron oxide nanoparticles (SPION) are attractive materials that have been widely used in medicine for drug delivery, diagnostic imaging and therapeutic applications. In our study, SPION and the anticancer drug, Methotrexate, were encapsulated into polycaprolactone-polyethylene glycol (PCL-PEG) nanoparticles for local treatment. The magnetic properties conferred by SPION could help to maintain the nanoparticles in the joint with an external magnet. The drug encapsulation efficiency achieved for Fe3O4 magnetic nanoparticles modified with PCL-PEG copolymer was 92.36%. There is potential for use of these nanoparticles for biomedical application.

  20. Facile and Quantitative Synthesis of a Poly(ethylene glycol)-b-Poly(l-arginine) Block Copolymer and Its Use for the Preparation of Polyion Complex Micelles with Polyanions for Biomedical Applications.

    PubMed

    Kudo, Shinpei; Nagasaki, Yukio

    2015-07-28

    Though l-arginine-containing polymers show versatile biological functions, a precisely controlled synthesis of poly(ethylene glycol)-b-poly(l-arginine) (PEG-b-PArg) block copolymers has not been reported. Here, an effective method for the synthesis of PEG-b-PArg block copolymers is developed. In order to obtain PEG-b-PArg, a two-step reaction, i.e., synthesis of PEG-b-poly(l-ornithine) is employed, followed by guanidinylation with N,N'-bis(tert-butoxycarbonyl)-1H-pyrazole-1-carboxamidine. This procedure quantitatively converts amino groups to guanidium groups at the side chains of peptide segments under mild conditions. Polyion complex (PIC) micelles are prepared by mixing the positively charged PEG-b-PArg with negatively charged homo-polyelectrolytes such as hyaluronic acid (HA) or chondroitin sulfate C (CS). PIC micelles prepared with CS show a higher stability than those prepared with HA, probably due to strong interactions between guanidium cations in PEG-b-PArg and carboxylate/sulfate in CS. Thus, PIC micelles containing PArg are a potentially effective arginine carrier for the development of in vivo therapeutic applications for various diseases related to nitric oxide, which is generated from inducible nitric oxide synthase in macrophages using l-arginine as a substrate.

  1. Pentablock copolymers of poly(ethylene glycol), poly((2-dimethyl amino)ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery.

    PubMed

    Xu, Fu-Jian; Li, Hongzhe; Li, Jun; Zhang, Zhongxing; Kang, En-Tang; Neoh, Koon-Gee

    2008-07-01

    Well-defined pentablock copolymers (PBPs) of P(HEMA)-b-P(DMAEMA)-b-PEG-b-P(DMAEMA)-b-P(HEMA) (in which PEG=poly(ethylene glycol), P(DMAEMA)=poly((2-dimethyl amino)ethyl methacrylate), and P(HEMA)=poly(2-hydroxyethyl methacrylate)), with different block lengths of P(DMAEMA), for non-viral gene delivery were prepared via consecutive atom transfer radical polymerizations (ATRPs) from the same di-2-bromoisobutyryl-terminated PEG (Br-PEG-Br) center block. The PBPs demonstrate good ability to condense plasmid DNA (pDNA) into 100-160 nm size nanoparticles with positive zeta potentials of 25-35 mV at PBPs/pDNA weight ratios of 5-25. The PBPs exhibit very low in vitro cytotoxicity and excellent gene transfection efficiency in HEK293 and COS7 cells. In particular, the transfection efficiencies of all the PBPs in HEK293 cells are comparable to, or higher than those of polyethylenimine (PEI, 25 kDa) at most weight ratios. The ability of the copolymers to condense plasmid DNA and the transfection efficiency of the resulting complexes are dependent on the chain length of P(DMAEMA) blocks. In addition to reducing the cytotoxicity and increasing the stability of the plasmid complexes, the PEG center block and the short P(HEMA) end blocks also help to enhance the gene transfection efficiency. Thus, the approach to well-defined block copolymers via ATRP provides a versatile means for tailoring the structure of non-viral gene vectors to meet the requirements of low cytotoxicity, good stability and high transfection capability for gene therapy applications.

  2. Polyion complex micelle MRI contrast agents from poly(ethylene glycol)-b-poly(l-lysine) block copolymers having Gd-DOTA; preparations and their control of T(1)-relaxivities and blood circulation characteristics.

    PubMed

    Shiraishi, Kouichi; Kawano, Kumi; Maitani, Yoshie; Yokoyama, Masayuki

    2010-12-01

    The current study synthesized macromolecular magnetic resonance imaging (MRI) contrast agents constituted of the poly(ethylene glycol)-b-poly(L-lysine) block copolymer (PEG-P(Lys)). A chelate group, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), was attached to the primary amino group of the block copolymer in desired contents. Gd-DOTA-based macromolecular contrast agents were prepared from PEG-P(Lys) having DOTA (PEG-P(Lys-DOTA) and Gd(III) ions. All of the PEG-P(Lys) block copolymers having gadolinium ions (PEG-P(Lys-DOTA-Gd)) showed higher T(1) relaxivity (per gadolinium), r(1)=5.6-7.3mM(-1)s(-1), than that of a low-molecular-weight gadolinium-chelate, diethylenetriaminepentaacetic acid-gadolinium(III) (Gd-DTPA) at 9.4T. The study prepared the polyion complex (PIC) micelles from the amino groups of the lysine units and an oppositely charged polyanion, poly(methacrylic acid) or dextran sulfate, in an aqueous medium. In contrast, the fully DOTA-attached PEG-P(Lys-DOTA-Gd) formed a PIC with a polycation. Compared with partially DOTA-attached cationic PEG-P(Lys-DOTA-Gd), this PIC micelle yielded a forty percent decrease of r(1). This r(1) decrease was considered to result from a change in the accessibility of water molecules to gadolinium ions in the micelles' inner core. The r(1) was decreased upon formation of the PIC micelle, and this change proved that our concept worked in vitro. Blood-circulation characteristics of PIC micelles were controlled by means of changing the molecular weight of the counter anion. The PIC micelles accumulated in tumor tissues, and MRI study showed T1W image of axial slice of tumor area was significantly enhanced at 24h after the injection.

  3. Temperature effects on the stability of gold nanoparticles in the presence of a cationic thermoresponsive copolymer

    NASA Astrophysics Data System (ADS)

    Pamies, Ramón; Zhu, Kaizheng; Kjøniksen, Anna-Lena; Nyström, Bo

    2016-11-01

    New hybrid complexes composed by a thermoresponsive copolymer and gold nanoparticles (Rh = 22 nm) have been characterized by dynamic light scattering (DLS) and UV-visible spectroscopy. A cationic thermoresponsive triblock copolymer, methoxy-poly(ethylene glycol)- block-poly( N-isopropylacrylamide)- block-poly((3-acrylamidopropyl) trimethyl ammonium chloride), abbreviated as MPEG- b-PNIPAAM- b-PN(+), has been synthesized by atom transfer radical polymerization (ATRP). We have evaluated the thermal response at low concentrations of this triblock copolymer in bulk solution and the effect of concentration on the interaction between this thermosensitive copolymer and the gold nanoparticles (AuNPs) to form new hybrid complexes (60-1000 nm) at different temperatures. The thermosensitive nature of the copolymer causes both aggregation and contraction of the aggregates at elevated temperatures. The AuNPs were found to be separately embedded in the hybrid complexes. Interestingly, the AuNPs prevent macroscopic phase separation of the system at high temperatures.

  4. Evaluation in vitro and in vivo of dimethicone transdermal therapeutic systems. Influence of propylene glycol on drug release.

    PubMed

    Ritschel, W A; Nayak, P M

    1987-03-01

    Coumarin-containing transdermal drug delivery systems were studied in vitro for drug release and in vivo in rats for drug absorption. The matrix of the transdermal delivery system, dimethicone, was a commercially available silicone elastomer. The devices containing 1, 3 and 5% coumarin released in vitro 8.8 (87.4%), 23.4 (74.5%) and 31.6 mg (63.3%) of drug within 24 h. The device containing 5% coumarin was selected for further studies in which 5, 10, 20, 30, 50 and 70% propylene glycol was added. Up to 20% propylene glycol content did not change the amount released. The preparations with 30, 50 and 70% propylene glycol released 69.3, 73.6 and 87.9%, respectively. The 50 and 70% preparations were physically not acceptable. Only the preparations containing 5% coumarin without propylene glycol and 5% coumarin and 30% propylene glycol in the elastomer were evaluated in vivo. The area under the blood level-time curve of the propylene glycol-containing system was twice that of the device without propylene glycol. Blood levels were maintained between about 2 micrograms/ml and 5 micrograms/ml during the time the device was kept on the skin (24 h).

  5. The effect of insulin-loaded linear poly(ethylene glycol)-brush-like poly(l-lysine) block copolymer on renal ischemia/reperfusion-induced lung injury through downregulating hypoxia-inducible factor.

    PubMed

    Tong, Fei; Tang, Xiangyuan; Li, Xin; Xia, Wenquan; Liu, Daojun

    2016-01-01

    The aim of this study was to observe the therapeutic effect of insulin-loaded linear poly(ethylene glycol)-brush-like poly(l-lysine) block copolymer poly(ethylene glycol)-b-(poly(ethylenediamine l-glutamate)-g-poly(l-lysine)) (PEG-b-(PELG-g-PLL) on renal ischemia/reperfusion-induced lung injury through downregulating hypoxia-inducible factor (HIF) as compared to free insulin. Sprague Dawley rats were pretreated with 30 U/kg insulin or insulin/PEG-b-(PELG-g-PLL) complex, and then subjected to 45 minutes of ischemia and 24 hours of reperfusion. The blood and lungs were collected, the level of serum creatinine and blood urea nitrogen were measured, and the dry/wet lung ratios, the activity of superoxide dismutase and myeloperoxidase, the content of methane dicarboxylic aldehyde and tumor necrosis factor-α, and the expression of HIF-1α and vascular endothelial growth factor (VEGF) were measured in pulmonary tissues. Both insulin and insulin/PEG-b-(PELG-g-PLL) preconditioning improved the recovery of renal function, reduced pulmonary oxidative stress injury, restrained inflammatory damage, and downregulated the expression of HIF-1α and VEGF as compared to ischemia/reperfusion group, while insulin/PEG-b-(PELG-g-PLL) significantly improved this effect.

  6. In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles

    PubMed Central

    Guan, Qingxiang; Zhang, Guangyuan; Sun, Dandan; Wang, Yue; Liu, Kun; Wang, Miao; Sun, Cheng; Zhang, Zhuo; Li, Bingjin; Lv, Jiayin

    2017-01-01

    Bletilla striata polysaccharides (BSPs) have been used in pharmaceutical and biomedical industry, the aim of the present study was to explore a BSPs amphiphilic derivative to overcome its application limit as poorly water-soluble drug carriers due to water-soluble polymers. Stearic acid (SA) was selected as a hydrophobic block to modify B. striata polysaccharides (SA-BSPs). Docetaxel (DTX)-loaded SA-BSPs (DTX-SA-BSPs) copolymer micelles were prepared and characterized. The DTX release percentage in vitro and DTX concentration in vivo was carried out by using high performance liquid chromatography. HepG2 and HeLa cells were subjected to MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazonium bromide) assay to evaluate the cell viability. In vitro evaluation of copolymer micelles showed higher drug encapsulation and loading capacity. The release percentage of DTX from DTX-SA-BSPs copolymer micelles and docetaxel injection was 66.93 ± 1.79% and 97.06 ± 1.56% in 2 days, respectively. The DTX-SA-BSPs copolymer micelles exhibited a sustained release of DTX. A 50% increase in growth inhibition was observed for HepG2 cells treated with DTX-SA-BSPs copolymer micelles as compared to those treated with docetaxel injection for 72 h. DTX-SA-BSPs copolymer micelles presented a similar growth inhibition effect on Hela cells. Furthermore, absolute bioavailability of DTX-SA-BSPs copolymer micelles was shown to be 1.39-fold higher than that of docetaxel injection. Therefore, SA-BSPs copolymer micelles may be used as potential biocompatible polymers for cancer chemotherapy. PMID:28334044

  7. In vitro evaluation of elastic multiblock co-polymers as a scaffold material for reconstruction of blood vessels.

    PubMed

    Tzoneva, Rumiana; Weckwerth, Claudia; Seifert, Barbara; Behl, Marc; Heuchel, Matthias; Tsoneva, Iana; Lendlein, Andreas

    2011-01-01

    There is a need to create cell- and histocompatible implant materials, which might temporarily replace the mechanical function of a native tissue for regenerative therapies. To match the elastic behavior of the native tissue two different multiblock co-polymers were investigated: PDC, consisting of poly(p-dioxanone) (PPDO)/poly(ε-caprolactone) (PCL), and PDD, based on PPDO/poly((adipinate-alt-1,4-butanediol)-co-(adipinate-alt-ethylene glycol)-co-adipinate-alt-diethylene glycol) (Diorez). PDC is capable of a shapememory effect. Both multiblock co-polymers show an improved elasticity compared to materials applied in established vascular prosthesis. PDD is softer than PDC at 20°C, while PDC maintains its elasticity at 37°C. Thermodynamic characteristics indicate a more polar surface of PDD. Low cell adhesion was found on surfaces with low molar free energy of hysteresis (ΔG) derived from contact angle measurements in wetting and dewetting mode and high cell adhesion on high-ΔG surfaces. An increasing content of PCL in PDC improved cell adhesion and spreading of human umbilical vein endothelial cells. The prothrombotic potential of PDD is higher than PDC. Finally, it is concluded that PDC is a promising material for vascular tissue engineering because of its improved elastic properties, as well as balanced prothrombotic and anti-thrombotic properties with endothelial cells.

  8. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine a.

    PubMed

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-03-27

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  9. Evaluation of propylene glycol and glycerol infusions as treatments for ketosis in dairy cows.

    PubMed

    Piantoni, P; Allen, M S

    2015-08-01

    To evaluate propylene glycol (PG) and glycerol (G) as potential treatments for ketosis, we conducted 2 experiments lasting 4 d each in which cows received one bolus infusion per day. Blood was collected before infusion, over 240min postinfusion, as well as 24 h postinfusion. Experiment 1 used 6 ruminally cannulated cows (26±7 d in milk) randomly assigned to 300-mL infusions of PG or G (both ≥99.5% pure) in a crossover design experiment with 2 periods. Within each period, cows were assigned randomly to infusion site sequence: abomasum (A)-cranial reticulorumen (R) or the reverse, R-A. Glucose precursors were infused into the R to simulate drenching and the A to prevent metabolism by ruminal microbes. Glycerol infused in the A increased plasma glucose concentration the most (15.8mg/dL), followed by PG infused in the R (12.6mg/dL), PG infused in the A (9.11mg/dL), and G infused in the R (7.3mg/dL). Infusion of PG into the R increased plasma insulin and insulin area under the curve (AUC) the most compared with all other treatments (7.88 vs. 2.13μIU/mL and 321 vs. 31.9min×μIU/mL, respectively). Overall, PG decreased plasma BHBA concentration after infusion (-6.46 vs. -4.55mg/dL) and increased BHBA AUC (-1,055 vs. -558min ×mg/dL) compared with G. Plasma NEFA responses were not different among treatments. Experiment 2 used 8 ruminally cannulated cows (22±5 d in milk) randomly assigned to treatment sequence in a Latin square design experiment balanced for carryover effects. Treatments were 300mL of PG, 300mL of G, 600mL of G (2G), and 300mL of PG + 300mL of G (GPG), all infused into the R. Treatment contrasts compared PG with each treatment containing glycerol (G, 2G, and GPG). Propylene glycol increased plasma glucose (14.0 vs. 5.35mg/dL) and insulin (7.59 vs. 1.11μIU/mL) concentrations compared with G, but only tended to increase glucose and insulin concentrations compared with 2G. Propylene glycol increased AUC for glucose (1,444 vs. 94.3mg/dL) and insulin (326

  10. Evaluation of Propylene Glycol-Based Fluids for Constellation Habitats and Vehicles

    NASA Technical Reports Server (NTRS)

    Lee, Steve

    2009-01-01

    Two fluid life tests have been conducted to evaluate propylene glycol-based fluids for use in Constellation habitats and vehicles. The first test was conducted from November 2008 to January 2009 to help determine the compatibility of the propylene glycol-based fluid selected for Orion at the time. When the first test uncovered problems with the fluid selection, an investigation and selection of a new fluid were conducted. A second test was started in March 2010 to evaluate the new selection. For the first test, the fluid was subjected to a thermal fluid loop that had flight-like properties, as compared to Orion. The fluid loop had similar wetted materials, temperatures, flow rates, and aluminum wetted surface area to fluid volume ratio. The test was designed to last for 10 years, the life expectancy of the lunar habitat. However, the test lasted less than two months. System filters became clogged with precipitate, rendering the fluid system inoperable. Upon examination of the precipitate, it was determined that the precipitate composition contained aluminum, which could have only come from materials in the test stand, as aluminum is not part of the original fluid composition. Also, the fluid pH was determined to have increased from 10.1, at the first test sample, to 12.2, at the completion of the test. This high of a pH is corrosive to aluminum and was certainly a contributing factor to the development of precipitate. Due to the problems encountered during this test, the fluid was rejected as a coolant candidate for Orion. A new propylene glycol-based fluid was selected by the Orion project for use in the Orion vehicle. The Orion project has conducted a series of screening tests to help verify that there will be no problems with the new fluid selection. To compliment testing performed by the Orion project team, a new life test was developed to test the new fluid. The new test bed was similar to the original test bed, but with some improvements based on experience

  11. Synthesis and In Vivo Pharmacokinetic Evaluation of Degradable Shell Crosslinked Polymer Nanoparticles with Poly(carboxybetaine) vs. Poly(ethylene glycol) Surface-grafted Coatings

    PubMed Central

    Li, Ang; Luehmann, Hannah P.; Sun, Guorong; Samarajeewa, Sandani; Zou, Jiong; Zhang, Shiyi; Zhang, Fuwu; Welch, Michael J.; Liu, Yongjian; Wooley, Karen L.

    2012-01-01

    Nanoparticles with tunable pharmacokinetics are desirable for various biomedical applications. Poly(ethylene glycol) (PEG) is well known to create “stealth” effects to stabilize and extend the blood circulation of nanoparticles. In this work, poly(carboxybetaine) (PCB), a new non-fouling polymer material, was incorporated as surface-grafted coatings, conjugated onto degradable shell crosslinked knedel-like nanoparticles (dSCKs) composed of poly(acrylic acid)- based shells and poly(lactic acid) (PLA) cores, to compare the in vivo pharmacokinetics to their PEG-functionalized analogs. A series of five dSCKs was prepared from amphiphilic block copolymers, having different numbers and lengths of either PEG or PCB grafts, by supramolecular assembly in water followed by shell crosslinking, and then studied by a lactate assay to confirm their core hydrolytic degradabilities. Each dSCK was also conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocyclic chelators and tyramine moieties to provide for 64Cu and/or radiohalogen labeling. The high specific activity of 64Cu radiolabeling ensured nanogram administration of dSCKs for in vivo evaluation of their pharmacokinetics. Biodistribution studies demonstrated comparable in vivo pharmacokinetic profiles of PCB-grafted dSCKs to their PEG-conjugated counterparts. These results indicated that PCB-functionalized dSCKs have great potential as a theranostic platform for translational research. PMID:23043240

  12. Initial evaluation of novel polyamide-imides and their copolymers as adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; Dezern, James F.

    1989-01-01

    Continued interest by the research community in thermally stable, tough, high temperature adhesives has resulted in the investigation by Langley Research Center of two linear aromatic polyamide-imide (PAI) homopolymers and two linear aromatic PAI copolymers. The homopolymers were made with either 3,3'=DABA or 4,4'-DABA and BTDA. The two polymers were prepared with a monomer ratio of 0.75 DABP:0.25 DABA:1.00 BTDA. These aromatic PAIs possess high thermal stability because of intermolecular hydrogen bonding and chain stiffness. Lap shear strength (LSS) was the main criteria used to evaluate the polymers as adhesives. LSS of bonded Ti-6Al-4V was determined at room temperature (RT), 177, 204 and 232 C. The glass transition temperature and the type of bond failure were also determined. The best LSS values of the four adhesive systems investigated were obtained with the PAI copolymer identified in the report as LARC-TPI (25 percent 3,3'-DABA); however, it did not produce LSSs nearly as high as LARC-TPI. The poor flow properties observed appear to be due to a combination of high molecular weight and the increased interchain electronic interactions associated with the amide group.

  13. pH-sensitive methacrylic copolymers and the production thereof

    SciTech Connect

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  14. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  15. Synthesis and Characterization of Block Copolymers.

    DTIC Science & Technology

    1987-07-01

    Polyether-Polyimide Block Copolymers; Three series of Polyether-Polyimide (PEPI) block copolymers were synthesized. Soft segments were poly( propylene ... glycol ) (PPO) Mn = 2,000 and 4,000. Hard segments were pyromellitic dianhydride (PMDA) and di-(2-hydroxyethyl)-dimethylhydantoin (H). The hard

  16. FhuA deletion variant Δ1-159 overexpression in inclusion bodies and refolding with Polyethylene-Poly(ethylene glycol) diblock copolymer.

    PubMed

    Dworeck, Tamara; Petri, Anne-Kathrin; Muhammad, Noor; Fioroni, Marco; Schwaneberg, Ulrich

    2011-05-01

    Membrane protein isolation is a challenging problem. In fact especially their extraction from the respective membrane is difficult and often goes along with losses in yield. Usually expensive detergents are needed to extract the target protein from the membrane. Therefore finding an efficient overexpression and extraction method and an alternative to detergents is desirable. In this study we describe a new and fast method to express, extract and purify an engineered variant of the FhuA protein (FhuA Δ1-159) that acts as passive diffusion channel, using a diblock copolymer as an alternative to detergents like octyl-POE (n-octylpolyoxyethylene). The N-terminal leader sequence, facilitating the protein's transport to the outer membrane was deleted (FhuA Δ1-159 Δsignal), resulting in protein accumulation in easy to isolate inclusion bodies. Urea was used to solubilise the unfolded protein and dialysis against phosphate-buffer containing the commercially available diblock copolymer PE-PEG[Polyethylene-Poly(ethyleneglycol)] lead to protein refolding. Circular dichroism spectroscopy revealed a high β-sheet percentage within the refolded protein secondary structure indicating the successful reconstitution of FhuA Δ1-159 Δsignal native state. Furthermore the channel functionality of FhuA Δ1-159 Δsignal was verified by measuring the in and out-flux through the protein when inserted into liposome membrane, using the HRP/TMB (HRP=Horse Radish Peroxidase, TMB=3,3',5,5'-tetramethylbenzidine) assay system.

  17. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds.

    PubMed

    Moroishi, Hitomi; Yoshida, Chikara; Murakami, Yoshihiko

    2013-02-01

    Sheet-shaped materials with a large contact area relative to the drug targeting site lead to advantages over conventional particle-shaped drug carriers and have several advantages for their biomedical applications. The present study proposes a methodology for preparing a novel sheet-shaped "hydrophobic" and biocompatible biomaterial in which polymeric micelles are uniformly dispersed for the incorporation of "hydrophilic" compounds into the sheet. The methoxy-terminated poly(ethylene glycol)-block-poly(lactic acid) block copolymer (CH(3)O-PEG-b-PLA) was successfully synthesized by means of the anionic ring-opening polymerization of both ethylene oxide and dl-lactide. CH(3)O-PEG-b-PLA was self-assembled and formed stable micelle-like w/o emulsion with a hydrophilic inner core in organic solvents. A sheet-shaped material containing a hydrophilic inner space for incorporating hydrophilic compounds was obtained by spin-coating both the micelle solution and a sheet-forming polymer. Fluorescent images of the sheet proved that polymeric micelles providing hydrophilic spaces were uniformly dispersed in the hydrophobic sheet. The facile technique presented in this paper can be a tool for fabricating sheet-shaped biomaterials that have a hydrophilic inner core and, consequently, that are suitable for the sustained release of hydrophilic compounds.

  18. Star-shape redox-responsive PEG-sheddable copolymer of disulfide-linked polyethylene glycol-lysine-di-tocopherol succinate for tumor-triggering intracellular doxorubicin rapid release: head-to-head comparison.

    PubMed

    Ai, Xiaoyu; Sun, Jin; Zhong, Lu; Wu, Chunnuan; Niu, Handong; Xu, Tao; Lian, He; Han, Xiaopeng; Ren, Guolian; Ding, Wenya; Wang, Jia; Pu, Xiaohui; He, Zhonggui

    2014-10-01

    A redox-responsive poly(ethylene glycol) (PEG)-sheddable copolymer of disulfide-linked PEG 5000-lysine-di-tocopherol succinate (P(5k)SSLV) is developed which can self-assemble into nanomicelles in aqueous condition and trigger the rapid release of encapsulated drugs within tumor cells. The reduction-insensitive doxorubicin (DOX)-loaded P(5k)LV (P(5k)LV-DOX) nanomicelles are further prepared. Then head-to-head comparison of P(5k)SSLV-DOX, P(5k)LV-DOX and DOX-Sol is performed concerning in vitro release, cytotoxicity, cellular uptake and apoptosis. Results show that P(5k)SSLV-DOX nanomicelles have a faster DOX release, a higher anti-tumor activity and more DOX concentrating in the nucleus than P(5k)LV-DOX nanomicelles. In conclusion, the redox-responsive P(5k)SSLV nanomicelles might hold a great potential to improve chemotherapy by tumor-triggering intracellular rapid release. The outcomes of this study also address the significance of such head-to-head comparison studies in translational research of nanomedicine.

  19. High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol)

    SciTech Connect

    Deng, Shawn; Hassan, Mohammad K.; Nalawade, Amol; Perry, Kelly A.; More, Karren L.; Mauritz, Kenneth A.; McDonnell, Marshall T.; Keffer, David J.; Mays, Jimmy W.

    2015-09-16

    Hot (at 120 °C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. In this paper, presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology with higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. Finally, this study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions.

  20. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes.

  1. High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol)

    DOE PAGES

    Deng, Shawn; Hassan, Mohammad K.; Nalawade, Amol; ...

    2015-09-16

    Hot (at 120 °C) and dry (20% relative humidity) operating conditions benefit fuel cell designs based on proton exchange membranes (PEMs) and hydrogen due to simplified system design and increasing tolerance to fuel impurities. In this paper, presented are preparation, partial characterization, and multi-scale modeling of such PEMs based on cross-linked, sulfonated poly(1,3-cyclohexadiene) (xsPCHD) blends and block copolymers with poly(ethylene glycol) (PEG). These low cost materials have proton conductivities 18 times that of current industry standard Nafion at hot, dry operating conditions. Among the membranes studied, the blend xsPCHD-PEG PEM displayed the highest proton conductivity, which exhibits a morphology withmore » higher connectivity of the hydrophilic domain throughout the membrane. Simulation and modeling provide a molecular level understanding of distribution of PEG within this hydrophilic domain and its relation to proton conductivities. Finally, this study demonstrates enhancement of proton conductivity at high temperature and low relative humidity by incorporation of PEG and optimized sulfonation conditions.« less

  2. Novel pentablock copolymer (PLA-PCL-PEG-PCL-PLA) based nanoparticles for controlled drug delivery: Effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles.

    PubMed

    Tamboli, Viral; Mishra, Gyan P; Mitra, Ashim K

    2013-05-01

    The purpose of this investigation was to design novel pentablock copolymers (polylatide-polycaprolactone-polyethylene glycol- polycaprolactone-polylatide) (PLA-PCL-PEG-PCL-PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly (L-lactide) (PLLA) or poly (D, L-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA-PCL-PEG-PCL-PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL-PEG-PCL) copolymer. Moreover, pentablock copolymer based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer based nanoparticles can be utilized to achieve continuous near zero-order delivery of corticosteroids from nanoparticles without any burst effect.

  3. Novel pentablock copolymer (PLA-PCL-PEG-PCL-PLA) based nanoparticles for controlled drug delivery: Effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles

    PubMed Central

    Tamboli, Viral; Mishra, Gyan P.; Mitra, Ashim K.

    2012-01-01

    The purpose of this investigation was to design novel pentablock copolymers (polylatide-polycaprolactone-polyethylene glycol- polycaprolactone-polylatide) (PLA-PCL-PEG-PCL-PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly (L-lactide) (PLLA) or poly (D, L-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA-PCL-PEG-PCL-PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL-PEG-PCL) copolymer. Moreover, pentablock copolymer based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer based nanoparticles can be utilized to achieve continuous near zero-order delivery of corticosteroids from nanoparticles without any burst effect. PMID:23626400

  4. Synthesis and characterization of biodegradable cationic poly(propylene fumarate-co-ethylene glycol) copolymer hydrogels modified with agmatine for enhanced cell adhesion.

    PubMed

    Tanahashi, Kazuhiro; Jo, Seongbong; Mikos, Antonios G

    2002-01-01

    We synthesized positively charged biodegradable hydrogels by cross-linking of agmatine-modified poly(ethylene glycol)-tethered fumarate (Agm-PEGF) and poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) to investigate the effect of the guanidino groups of the agmatine on hydrogel swelling behavior and smooth muscle cell adhesion to the hydrogels. The weight swelling ratio of these hydrogels at pH 7.0 increased from 279 +/- 4 to 306 +/- 7% as the initial Agm-PEGF content increased from 0 to 200 mg/g of P(PF-co-EG), respectively. The diffusional exponents, n, during the initial phase of water uptake were independent of the initial Agm-PEGF content and were determined to be 0.66 +/- 0.08, 0.71 +/- 0.07, and 0.60 +/- 0.05 for respective initial Agm-PEGF contents of 0, 100, and 200 mg/g. The heat of fusion of water present in the hydrogels increased from 214 +/- 11 to 254 +/- 4 J/g as the initial Agm-PEGF content increased from 0 to 200 mg/g. The number of adherent smooth muscle cells increased dose-dependently from 15 +/- 6 to 75 +/- 7% of the initial seeding density as the initial Agm-PEGF content increased from 0 to 200 mg/g. These results suggest that the incorporation of the guanidino groups of agmatine into P(PF-co-EG) hydrogels increases the hydrogel free water content and the total water content of the hydrogels and also enhances cell adhesion to the hydrogels.

  5. Evaluation of poly(lactic-co-glycolic acid) plate and screw system for bone fixation.

    PubMed

    Park, Subin; Kim, Jin Hee; Kim, Il Hwan; Lee, Minsu; Heo, Suhak; Kim, Hong; Kim, Eun Hee; Choy, Young Bin; Heo, Chan Yeong

    2013-05-01

    In this study, we investigated the efficacy and safety of the recently developed modifiable bioabsorbable plates and screws, which are made of PLGA [poly(lactic-co-glycolic acids)]. An in vitro extract test and a mammalian erythrocyte micronucleus test revealed that neither cytotoxicity nor genotoxicity was observed with the plates and screws tested in this study. An in vivo mandible fracture model in rabbit was introduced to evaluate the in vivo efficacy and of the PLGA-based plates and screws. At 4, 6, 8, and 10 weeks after implantation, tissue specimens were taken from the implanted sites of the rabbits and a histologic analysis was performed for each of the specimens. After 4 weeks, the plate was covered by connective tissues and severe chronic active inflammation in soft tissue was observed. After 6 weeks, the inflammation decreased and some of the specimens exhibited new bone formation around the periosteum. After 8 and 10 weeks, new bone formation was observed with all samples, where almost no severe inflammation was involved, implying the healing of the fracture. Given these, it can be suggested that the biodegradable plate and screw system that we evaluated in this study is effective for treatment of mandible fracture, one of the regions under a high load-bearing condition. The adjustment process and the long-term follow-up study are in progress for clinical application of the plate and screw system introduced in this study.

  6. Evaluation of a chitosan-polyethylene glycol paste as a local antibiotic delivery device

    PubMed Central

    Rhodes, Cheyenne S; Alexander, Christopher M; Berretta, Joel M; Courtney, Harry S; Beenken, Karen E; Smeltzer, Mark S; Bumgardner, Joel D; Haggard, Warren O; Jennings, J Amber

    2017-01-01

    AIM To investigate the efficacy of a chitosan/polyethylene glycol blended paste as a local antibiotic delivery device, particularly in musculoskeletal wounds. METHODS Acidic (A) chitosan sponges and neutralized (N) chitosan/polyethylene glycol (PEG) blended sponges were combined in ratios of 3A:2N, 1A:1N, and 2A:3N; then hydrated with phosphate buffered saline to form a chitosan/PEG paste (CPP). Both in vitro and in vivo studies were conducted to determine the potential CPP has as a local antibiotic delivery device. In vitro biocompatibility was assessed by the cytotoxic response of fibroblast cells exposed to the experimental groups. Degradation rate was measured as the change in dry mass due to lysozyme based degradation over a 10-d period. The antibiotic elution profiles and eluate activity of CPP were evaluated over a 72-h period. To assess the in vivo antimicrobial efficacy of the CPP, antibiotic-loaded paste samples were exposed to subcutaneously implanted murine catheters inoculated with Staphylococcus aureus. Material properties of the experimental paste groups were evaluated by testing the ejection force from a syringe, as well as the adhesion to representative musculoskeletal tissue samples. RESULTS The highly acidic CPP group, 3A:2N, displayed significantly lower cell viability than the control sponge group. The equally distributed group, 1A:1N, and the highly neutral group, 2A:3N, displayed similar cell viability to the control sponge group and are deemed biocompatible. The degradation studies revealed CPP is more readily degradable than the chitosan sponge control group. The antibiotic activity studies indicated the CPP groups released antibiotics at a constant rate and remained above the minimum inhibitory concentrations of the respective test bacteria for a longer time period than the control chitosan sponges, as well as displaying a minimized burst release. The in vivo functional model resulted in complete bacterial infection prevention in all

  7. ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets

    PubMed Central

    2016-01-01

    Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions. PMID:27795581

  8. Preparation, Characterization and Pharmacodynamic Evaluation of Fused Dispersions of Simvastatin using PEO-PPO Block Copolymer.

    PubMed

    Singh, Harjeet; Philip, Betty; Pathak, Kamla

    2012-01-01

    The solubility enhancement of poorly soluble compounds is an important task in pharmaceutical technology as it leads to better bioavailability and a more efficient application. Fused dispersions (FDs) of simvastatin (SIM) using PEO-PPO block copolymer were prepared which paved the way for the formation of an amorphous product with enhanced dissolution and bioavailability. The accumulative solubility of simvastatin (SIM) from PEO-PPO block copolymer (Lutrol NF 127 prill surfactant) was found to be superior to the drug alone which may be due to the increased oxyethylene content that played the major role in solubility enhancement. A 3(2) full factorial approach was used for optimization wherein the temperature to which the melt-drug mixture cooled (X1) and the drug-to-polymer ratio (X2) were selected as the independent variables and the time required for 90% drug dissolution (t90%) was selected as the dependent variable. A low level of X1 and a high level of X2 were suitable for obtaining higher dissolution of SIM from SIM FDs. On increasing melt to cool drug temperature, t90% increased thus improving dissolution rate of FD2 batch with the maximum drug release (99.63%) in 120 min. The optimized FDs were characterized by saturation solubility study, drug content, in-vitro dissolution, fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, x-ray diffraction, (1)HNMR spectroscopy and pharmacodynamic evaluation. Capsules containing optimized FDs were prepared and compared with marketed brand (SIMVOTIN®). Finally, it can be concluded that the optimized FDs of SIM ameliorate the solubility and dissolution of drug with improved pharmacodynamic activity.

  9. Are block copolymer worms more effective Pickering emulsifiers than block copolymer spheres?

    PubMed

    Thompson, K L; Mable, C J; Cockram, A; Warren, N J; Cunningham, V J; Jones, E R; Verber, R; Armes, S P

    2014-11-21

    RAFT-mediated polymerisation-induced self-assembly (PISA) is used to prepare six types of amphiphilic block copolymer nanoparticles which were subsequently evaluated as putative Pickering emulsifiers for the stabilisation of n-dodecane-in-water emulsions. It was found that linear poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) diblock copolymer spheres and worms do not survive the high shear homogenisation conditions used for emulsification. Stable emulsions are obtained, but the copolymer acts as a polymeric surfactant; individual chains rather than particles are adsorbed at the oil-water interface. Particle dissociation during emulsification is attributed to the weakly hydrophobic character of the PHPMA block. Covalent stabilisation of these copolymer spheres or worms can be readily achieved by addition of ethylene glycol dimethacrylate (EGDMA) during the PISA synthesis. TEM studies confirm that the resulting cross-linked spherical or worm-like nanoparticles survive emulsification and produce genuine Pickering emulsions. Alternatively, stabilisation can be achieved by either replacing or supplementing the PHPMA block with the more hydrophobic poly(benzyl methacrylate) (PBzMA). The resulting linear spheres or worms also survive emulsification and produce stable n-dodecane-in-water Pickering emulsions. The intrinsic advantages of anisotropic worms over isotropic spheres for the preparation of Pickering emulsions are highlighted. The former particles are more strongly adsorbed at similar efficiencies compared to spheres and also enable smaller oil droplets to be produced for a given copolymer concentration. The scalable nature of PISA formulations augurs well for potential applications of anisotropic block copolymer nanoparticles as Pickering emulsifiers.

  10. Suppression of cell and platelet adhesion to star-shaped 8-armed poly(ethylene glycol)-poly(L-lactide) block copolymer films.

    PubMed

    Nagahama, Koji; Ohya, Yuichi; Ouchi, Tatsuro

    2006-06-16

    To explore the potential of a star-shaped 8-armed poly(ethylene glycol)35K-block-poly(L-lactide)37K (8-armed PEG35K-b-PLLA37K: M(n) of PEG = 35 000, M(n) of PLLA = 37 000) film as a novel bioabsorbable adhesion-prevention membrane, the water structure, surface contact angle, protein adsorption, and cell and platelet anti-adhesion properties of such a hydrated film are investigated. Based on the results, it is found that the 8-armed PEG35K-b-PLLA37K film exhibits a biologically inert surface, which is the result of a large number of PEG chains and a free water layer on the film surface. This leads to a reduction in protein absorption and cell and platelet adhesion onto the film surface. This implies that the star-shaped 8-armed PEG35K-b-PLLA37K film can be utilized as a novel bioabsorbable adhesion-prevention membrane.

  11. Subchronic toxicity and immunotoxicity of MeO-PEG-poly(D,L-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats

    NASA Astrophysics Data System (ADS)

    Liao, Longfei; Zhang, Mengtian; Liu, Huan; Zhang, Xuanmiao; Xie, Zhaolu; Zhang, Zhirong; Gong, Tao; Sun, Xun

    2014-06-01

    Although monomethoxy(polyethyleneglycol)-poly (D,L-lactic-co-glycolic acid)-monomethoxy (PELGE) nanoparticles have been widely studied as a drug delivery system, little is known about their toxicity in vivo. Here we examined the subchronic toxicity and immunotoxicity of different doses of PELGE nanoparticles with diameters of 50 and 200 nm (PELGE50 and PELGE200) in rats. Neither size of PELGE nanoparticles showed obvious subchronic toxic effects during 28 d of continuous intravenous administration based on clinical observation, body weight, hematology parameters and histopathology analysis. PELGE200 nanoparticles showed no overt signs of immunotoxicity based on organ coefficients, histopathology analysis, immunoglobulin levels, blood lymphocyte subpopulations and splenocyte cytokines. Conversely, PELGE50 nanoparticles were associated with an increased organ coefficient and histopathological changes in the spleen, increased serum IgM and IgG levels, alterations in blood lymphocyte subpopulations and enhanced expression of spleen interferon-γ. Taken together, these results suggest that PELGE nanoparticles show low subchronic toxicity but substantial immunotoxicity, which depends strongly on particle size. These findings will be useful for safe application of PELGE nanoparticles in drug delivery systems.

  12. Effect of water-soluble polymers, polyethylene glycol and poly(vinylpyrrolidone), on the gelation of aqueous micellar solutions of Pluronic copolymer F127.

    PubMed

    Ricardo, Nágila M P S; Ricardo, Nadja M P S; Costa, Flávia de M L L; Bezerra, Francisco W A; Chaibundit, Chiraphon; Hermida-Merino, Daniel; Greenland, Barnaby W; Burattini, Stefano; Hamley, Ian W; Keith Nixon, S; Yeates, Stephen G

    2012-02-15

    The micellization of F127 (E(98)P(67)E(98)) in dilute aqueous solutions of polyethylene glycol (PEG6000 and PEG35000) and poly(vinylpyrrolidone) (PVP K30 and PVP K90) is studied. The average hydrodynamic radius (r(h,app)) obtained from the dynamic light scattering technique increased with increase in PEG concentration but decreased on addition of PVP, results which are consistent with interaction of the micelles with PEG and the formation of micelles clusters, but no such interaction occurs with PVP. Tube inversion was used to determine the onset of gelation. The critical concentration of F127 for gelation increased on addition of PEG and of PVP K30 but decreased on addition of PVP K90. Small-angle X-ray scattering (SAXS) was used to show that the 30 wt% F127 gel structure (fcc) was independent of polymer type and concentration, as was the d-spacing and so the micelle hard-sphere radius. The maximum elastic modulus (G(max)(')) of 30 wt% F127 decreased from its value for water alone as PEG was added, but was little changed by adding PVP. These results are consistent with the packed-micelles in the 30 wt% F127 gel being effectively isolated from the polymer solution on the microscale while, especially for the PEG, being mixed on the macroscale.

  13. Evaluation of the Effect of Green Tea Extract on Mouth Bacterial Activity in the Presence of Propylene Glycol

    PubMed Central

    Moghbel, Abdolhossein; Farjzadeh, Ahmad; Aghel, Nasrin; Agheli, Homaun; Raisi, Nafiseh

    2012-01-01

    Background Compounds present in green tea have proved to inhibit the growth and activity of bacteria associated with infections. Objectives To assess the effects of green tea leaves extract in presence of propylene glycol on the aerobic mouth bacteria load. Materials and Methods Saliva of 25 volunteer girl students aging 20-25 years were selected and evaluated by a mouthwash sample containing 1% tannin, as the most effective antibacterial complex in green tea. Comparative studies were also conducted between green tea mouthwashes containing 1% tannin and a similar sample with 10% propylene glycol added during extraction. This comparison was applied for a chlorhexidine 0.2% sample as a chemical mouthwash brand, too. Results There was a meaningful difference between the green tea mouthwashes containing 10% propylene glycol and the simple green tea extract (P < 0.05). Significant difference was also seen between the herbal and chemical mouthwashes (P < 0.05). The extract 1% tannin containing 10% propylene glycol reduced the aerobic mouth bacterial load of the student salvia about 64 percent. The pH monotonousness in different days and temperatures approved the stability of tannin in liquid water medium. Conclusions Using green tea extract as a herbal mouthwash is safe and harmless specially for children and pregnant women. This result led us to suppose that green tea may prevent plaque formation on teeth, coming over halitosis due to mouth infection, too. These effects need to be approved in an in vivo trial as a second study. PMID:24624155

  14. Formulation and evaluation of controlled release ethylcellulose and polyethylene glycol microspheres containing metoprolol tartrate

    PubMed Central

    Malipeddi, Venkata Ramana; Awasthi, Rajendra; Dua, Kamal

    2016-01-01

    Metoprolol tartrate is rapidly absorbed from both gastric and intestinal regions, after oral administration. To retard the release rate of the metoprolol tartrate, microspheres were prepared with varying concentrations of a mixture containing ethylcellulose and polyethylene glycol-6000. The prepared microspheres were evaluated for various physicochemical characteristics and in vitro drug release. The percent yield of microspheres was in the range of 75.2–87.3%. The particle size of microspheres was found to be in the range of 73.2–85.5 μm. Fourier transform-infrared spectral analysis and differential scanning calorimetry concluded the absence of any interaction between the drug and the carriers. The release time profile of metoprolol tartrate from microspheres in 0.1 N hydrochloric acid solution was to the extent of 33.4–60.2%. The complete release of metoprolol tartrate occurred from MPT-3 and MPT-4 in phosphate buffer solution (pH 7.4) within 8 and 7 h, respectively, whereas the incomplete release (72.3%) occurred from MPT-1. Nearly, the complete release (98.5%) of metoprolol occurred from MPT-2 in 10 h. Formulation MPT-2 would be a preferred formulation. The release of metoprolol involves diffusion rate limited (R2 = 0.9865) as a mechanism from drug release. The prepared microspheres of metoprolol tartrate eliminate the need for multiple dosing and provide patient compliance. PMID:28386461

  15. Cononsolvency-induced micellization kinetics of pyrene end-labeled diblock copolymer of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate studied by stopped-flow light-scattering and fluorescence.

    PubMed

    Rao, Jingyi; Zhang, Jingyan; Xu, Jian; Liu, Shiyong

    2008-12-01

    Cononsolvency-induced micellization kinetics of a pyrene end-labeled diblock copolymer of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate, Py-PNIPAM-b-POEGMA, was investigated in detail via a combination of stopped-flow light-scattering and fluorescence techniques. Upon a stopped-flow jump from pure methanol to proper methanol/water mixtures, scattered light intensity exhibited an initial increase and then stabilized out; whereas the time-dependence of monomer to excimer fluorescence intensity ratios (I E/I M) revealed an abrupt increase followed by a gradual decrease to plateau values. The dynamic traces of scattered intensity can be well fitted by double exponential functions, the obtained tau 1, scat and tau 2, scat can be ascribed to processes of forming quasi-equilibrium micelles and their relaxation into final equilibrium states, respectively. On the other hand, a triple exponential function was needed to fit the dynamic traces of I E/I M, leading to three characteristic relaxation times (tau 1, fluo, tau 2, fluo, and tau 3, fluo). It was found that the time scales of tau 1, scat and tau 2, scat obtained from stopped-flow light scattering were in general agreement with tau 2, fluo and tau 3, fluo obtained from stopped-flow fluorescence. Considering that excimer fluorescence is extremely sensitive to small aggregates, the newly detected fast process (tau 1, fluo) approximately 10 ms) by stopped-flow fluorescence should be ascribed to the early stage of micellization, i.e., the burst formation of small transient micelles, in which light scattering detection was still not sensitive enough. These small transient micelles fused and grew into quasi-equilibrium micelles, which then slowly relaxed into the final equilibrium state.

  16. Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

    PubMed Central

    Amjadi, Issa; Rabiee, Mohammad; Hosseini, Motahare-Sadat

    2013-01-01

    Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio and doxorubicin amounts have been tailored. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were employed to identify the presence of doxorubicin within nanospheres. The in vitro release studies were performed to determine the initial ant net release rates over 24 h and 20 days, respectively. Furthermore, cytotoxicity assay was measured to evaluate therapeutic potency of doxorubicin-loaded nanoparticles. Spectroscopy and thermal results showed that doxorubicin was loaded into the particles successfully. It was observed that lactide/glycolide content of PLGA nanoparticles containing doxorubicin has more prominent role in tuning particle characteristics. Doxorubicin release profiles from PLGA 75 nanospheres demonstrated that the cumulative release rate increased slightly and higher initial burst was detected in comparison to PLGA 50 nanoparticles. MTT data revealed doxorubicin induced antitumor activity was enhanced by encapsulation process, and increasing drug loading and glycolide portion. The results led to the conclusion that by controlling the drug loading and the polymer hydrophilicity, we can adjust the drug targeting and blood clearance, which may play a more prominent role for application in chemotherapy. PMID:24523742

  17. Evaluation of glove material resistance to ethylene glycol dimethyl ether permeation

    SciTech Connect

    Menke, R.; Chelton, C.F.

    1988-08-01

    Some glycol ethers have been reported to cause adverse reproductive effects in exposed male and female workers, and skin absorption has been determined to be an important route of entry of this class of chemicals. Because ethylene glycol dimethyl ether (EGDME) is a possible component of lithium-based primary battery electrolyte systems, a study was undertaken to determine the resistance of various commercially available gloves to permeation of this liquid. The gloves were tested by the ASTM Method F-739-81, and butyl rubber was found to be the most effective barrier to permeation. Further studies determined that the butyl gloves could be reused if they were reconditioned overnight in a vacuum oven at 50 degrees C. When a mixture of ethylene glycol dimethyl ether (30% v/v) and propylene carbonate (70% v/v) was tested, the results indicated that the propylene carbonate retards the permeation of the glycol ether by a factor of 10. This is believed to be caused by the propylene carbonate coating the surface of the butyl membrane to reduce the sorption of EGDME.

  18. pH-Responsive chimaeric pepsomes based on asymmetric poly(ethylene glycol)-b-poly(l-leucine)-b-poly(l-glutamic acid) triblock copolymer for efficient loading and active intracellular delivery of doxorubicin hydrochloride.

    PubMed

    Chen, Peipei; Qiu, Min; Deng, Chao; Meng, Fenghua; Zhang, Jian; Cheng, Ru; Zhong, Zhiyuan

    2015-04-13

    pH-Responsive chimaeric polypeptide-based polymersomes (refer to as pepsomes) were designed and developed from asymmetric poly(ethylene glycol)-b-poly(l-leucine)-b-poly(l-glutamic acid) (PEG-PLeu-PGA, PEG is longer than PGA) triblock copolymers for efficient encapsulation and triggered intracellular delivery of doxorubicin hydrochloride (DOX·HCl). PEG-PLeu-PGA was conveniently prepared by sequential ring-opening polymerization of l-leucine N-carboxyanhydride and γ-benzyl-l-glutamate N-carboxyanhydride using PEG-NH2 as an initiator followed by deprotection. Pepsomes formed from PEG-PLeu-PGA had unimodal distribution and small sizes of 64-71 nm depending on PLeu block lengths. Interestingly, these chimaeric pepsomes while stable at pH 7.4 were quickly disrupted at pH 5.0, likely due to alternation of ionization state of the carboxylic groups in PGA that shifts PGA blocks from hydrophilic and random coil structure into hydrophobic and α-helical structure. DOX·HCl could be actively loaded into the watery core of pepsomes with a high loading efficiency. Remarkably, the in vitro release studies revealed that release of DOX·HCl was highly dependent on pH, in which about 24.0% and 75.7% of drug was released at pH 7.4 and 5.0, respectively, at 37 °C in 24 h. MTT assays demonstrated that DOX·HCl-loaded pepsomes exhibited high antitumor activity, similar to free DOX·HCl in RAW 264.7 cells. Moreover, they were also potent toward drug-resistant MCF-7 cancer cells (MCF-7/ADR). Confocal microscopy studies showed that DOX·HCl-loaded pepsomes delivered and released drug into the cell nuclei of MCF-7/ADR cells in 4 h, while little DOX·HCl fluorescence was observed in MCF-7/ADR cells treated with free drug under otherwise the same conditions. These chimaeric pepsomes with facile synthesis, efficient drug loading, and pH-triggered drug release behavior are an attractive alternative to liposomes for targeted cancer chemotherapy.

  19. Evaluation of aminoalkylmethacrylate nanoparticles as colloidal drug carrier systems. Part II: characterization of antisense oligonucleotides loaded copolymer nanoparticles.

    PubMed

    Zobel, H P; Stieneker, F; Atmaca-Abdel Aziz, S; Gilbert, M; Werner, D; Noe, C R; Kreuter, J; Zimmer, A

    1999-07-01

    Aminoalkylmethacrylate methylmethacrylate copolymer nanoparticles were evaluated for their use as potential drug carrier systems. Their cytotoxicity, as well as the loading of antisense oligonucleotides that were employed as anionic model drugs depended on the substitution of the basic aminoalkyl copolymer. Toxic influences on the integrity of cell membranes depended on aminoalkyl groups located on the particle surfaces. Toxicity was observed either by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays using African green monkey kidney (AGMK) cells or by a hemolysis test, where the efflux of haemoglobin from disrupted erythrocytes was measured. The cytotoxic effects were increased by the elongation of the N-alkyl chain by four additional methylene groups. Lipophilic polymethylmethacrylate (PMMA) homopolymer nanoparticles showed a negative surface charge and, therefore, were not suitable for the adsorption of anionic drugs. The surface charge was changed to positive values by the incorporation of basic monomers. Consequently, the loading efficacy was increased by raising the basic copolymer portion. Additionally, a pH-dependent loading behaviour of oligonucleotides was observed. Substitution of the amino nitrogen protons by methyl groups led to a decreased oligonucleotide loading and to a reduced cytotoxicity. Nanoparticles with permanent positively charged quarternary ammonium groups showed a high pH-independent loading efficacy, but also possessed a high cytotoxic potential. In this study, cationic copolymer nanoparticles containing 30% (w/w) methylaminoethyl-methacrylate (MMAEMC) were found to be optimal with regard to biocompatibility and carrier properties for hydrophilic anionic antisense oligonucleotides. A significant portion of adsorbed oligonucleotides were protected from enzymatic degradation. The cellular uptake of oligonucleotides into Vero cells was significantly enhanced by this methylaminoethyl-methacrylate derivative.

  20. Clinical evaluation of a flat plate dialyzer equipped with a polycarbonate polyether copolymer membrane.

    PubMed

    Jacobs, C; Sari, R

    1986-01-01

    The performances and clinical tolerance of a flat plate dialyzer equipped with a polycarbonate polyether copolymer membrane (surface area 1.13 and 0.80 m2, membrane thickness 16 micron) were evaluated in 10 patients, among whom 7 underwent a total of 523 dialysis sessions performed over a 6-month investigation period. Clinical and biological parameters recorded during the study were compared to those observed during an immediately preceding control period during which the same patients were dialyzed with flat plate or hollow fiber Cuprophan dialyzers. The clearances of the 1.13 m2 polycarbonate dialyzer for urea, creatinine, uric acid and inorganic phosphate determined at 36 +/- 14 min after start of the dialysis sessions were found respectively at 132 +/- 23, 103 +/- 22, 120 +/- 23 and 103 +/- 18 ml/min and at significantly higher values (except for uric acid) at the 4th hour of dialysis. The ultrafiltration rate was 490 ml/h for a 100 mm Hg transmembrane pressure and the residual blood volume at the end of dialysis was found at 1.1 +/- 0.3 ml. The main clinical and biological parameters recorded in the 7 patients treated for 6 months with polycarbonate dialyzers were not significantly different from those observed during the preceding control period, although 71% of the polycarbonate dialyzers had a smaller surface area than in those used during the control period. The overall blood leakage rate recorded in 555 polycarbonate dialyzers was 1.08%. No sign or symptom suggestive of clinical intolerance to the polycarbonate membrane was recorded during the entire course of the study.

  1. Preliminary evaluation of local drug delivery of amphotericin B and in vivo degradation of chitosan and polyethylene glycol blended sponges.

    PubMed

    Parker, Ashley Cox; Rhodes, Cheyenne; Jennings, Jessica Amber; Hittle, Lauren; Shirtliff, Mark; Bumgardner, Joel D; Haggard, Warren O

    2016-01-01

    This research investigated the combination of polyethylene glycol with chitosan in point-of-care loaded sponges made by one or two lyophilizations for adjunctive local antifungal delivery in musculoskeletal wounds. Blended and control chitosan sponges were evaluated in vitro for antifungal release and activity, degradation, cytocompatibility, and characterized for spectroscopic, crystallinity, thermal, and morphologic material properties. In vivo biocompatibility and degradation of sponges were also evaluated in a rat intramuscular pouch model 4 and 10 days after implantation. Blended sponges released amphotericin B active against Candida albicans (>0.25 µg/mL) over 72 h and did not elicit cytotoxicity response of fibroblasts. Blended sponges exhibited decreases in surface roughness, decreased thermal decomposition temperatures, as well as small Fourier transform infrared spectroscopy and crystallinity differences, compared with chitosan-only sponges. Three of the four blended sponge formulations exhibited 31%-94% increases in in vitro degradation from the chitosan sponges after 10 days, but did not demonstrate the same increase in in vivo degradation. Low inflammatory in vivo tissue response to blended and chitosan-only sponges was similar over 10 days. These results demonstrated that adding polyethylene glycol to chitosan sponges does improve local antifungal release, cytocompatibility, and in vitro degradation, but does not increase in vivo degradation.

  2. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  3. Microscopic cleanliness evaluation of the apical root canal after using calcium hydroxide mixed with chlorhexidine, propylene glycol, or antibiotic paste.

    PubMed

    da Silva, Juliana M; Andrade Junior, Carlos V; Zaia, Alexandre A; Pessoa, Oscar F

    2011-02-01

    This study evaluated cleaning of the dentinal wall after removal of different calcium hydroxide pastes. Sixty-eight single-rooted teeth were prepared using the step-back technique and randomly divided into 4 groups according to medication used: Ca(OH)2 with 0.2% chlorhexidine solution (Group 1), Ca(OH)2 with propylene glycol (Group 2), Ca(OH)2 with antibiotic paste (ciprofloxacin, metronidazole) and distilled water (Group 3), and Ca(OH)2 with antibiotic paste and propylene glycol (Group 4). The samples were stored at 37 °C and 100% relative humidity for 21 days. The medicaments were removed using 5 mL 1% NaOCl, instrumentation with master apical file, 5 mL 1% NaOCl, patency with the K-file #10, ultrasonic instrumentation, and 10 mL 17% EDTA-T. The specimens were analyzed using scanning electron microscopy and chemical analysis. The Kruskal-Wallis (α = 5%) test showed that were no differences between the experimental groups when comparing Ca(OH)2 removal (P = .0951). The chi-square test (α = 5%) indicated a predominance of Ca(OH)2 obstructing dental tubules in all groups. On the basis of the methodology applied, it was concluded that the apical dentine surface remained equally covered by Ca(OH)2, regardless of the vehicle used.

  4. Health Hazard Evaluation Report HETA 83-166-1594, Witco Chemical Corporation, Perth Amboy, New Jersey. [Ethylene oxide, glycols, and adipic acid

    SciTech Connect

    Cummings, C.E.; Roseman, J.

    1985-05-01

    Area and personel air samples were analyzed for ethylene oxide, glycols, and adipic-acid at the Witco Chemical Corporation, Perth Amboy, New Jersey from November to December, 1983 and May, 1984. The evaluation was requested by the union to investigate possible health effects due to polychlorinated biphenyls (PCBs), glycols, and ethylene oxide. The evaluation was assigned to the New Jersey State Department of Health. The authors conclude that health hazards due to ethylene oxide and airborne fatty acid exposures exist. Recommendations include improving ventilation and work practices and implementing an OSHA approved respirator program.

  5. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats.

    PubMed

    S, Saravanan; S, Malathi; P S L, Sesh; S, Selvasubramanian; S, Balasubramanian; V, Pandiyan

    2017-02-01

    The aim of the present study is to evaluate the effect of insulin loaded poly(ethylene glycol) capped poly(lactic-co-glycolic)acid nanoparticles (ISPPLG NPs) by subcutaneous administration in diabetic rats. A series of biodegradable low molecular weight PLGA [90/10 (PLG2) and 80/20 (PLG4)] copolymers were synthesized by melt polycondensation and their ISPPLG NPs were synthesized by water-oil-water (W/O/W) emulsion solvent evaporation method. The PLGA copolymers and their nanoparticles were characterized. The maximum encapsulation efficiency of ISPPLG4 NPs is 66% and the diameter of the nanoparticles is about 140nm. The in-vivo studies of ISPPLG NPs carried out in diabetic rats by subcutaneous administration show considerable reduction in serum glucose level along with partial restoration of tissue defense systems. Histopathological studies reveal that ISPPLG NPs could restore the damages caused by oxidants during hyperglycaemia. The subcutaneous administration of ISPPLG4 NPs is thus an effective method of reducing hyperglycaemia associated complications.

  6. Propylene glycol

    Integrated Risk Information System (IRIS)

    Propylene glycol ; CASRN 57 - 55 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  7. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  8. Evaluation of diclofenac sodium sustained release matrix pellets: impact of polyethylene glycols molecular weight.

    PubMed

    Ibrahim, A; Shazly, A

    2014-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000, were mixed with avicel PH 101 in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheometer was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 μm to 1085 μm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  9. EVALUATION OF DICLOFENAC SODIUM SUSTAINED RELEASE MATRIX PELLETS: IMPACT OF POLYETHYLENE GLYCOLS MOLECULAR WEIGHT.

    PubMed

    Ibrahim, Mohamed A; Shazly, Gamal A

    2015-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000 were mixed with avicel PH 101® in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheomter was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed that increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 to 1085 µm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  10. Thermally sensitive polypeptide-based copolymer for DNA complexation into stable nanosized polyplexes

    NASA Astrophysics Data System (ADS)

    Ivanova, Emilya; Dimitrov, Ivaylo; Kozarova, Rahila; Turmanova, Sevdalina; Apostolova, Margarita

    2013-01-01

    Gene therapy based on non-viral synthetic delivery vectors has attracted much attention in the past two decades. However, it is still in clinical trial stages, mainly due to the lack of safe and efficient delivery vehicles. Herein, we report on the synthesis and DNA complexation ability of novel, hybrid copolymer comprising poly( N-isopropylacrylamide) (PNIPAm) block with poly(ethylene glycol) (PEG) side chains and a polycationic block of poly( l-lysine) (PLLys). The copolymer was synthesized in a two-step procedure. In the first step, a thermally sensitive PNIPAm- g-PEG copolymer with terminal ammonium hydrochloride group was prepared. The second step involves controlled ring-opening polymerization of Z- l-lysine N-carboxyanhydride initiated by the PNIPAm- g-PEG macroinitiator. The hybrid copolymer obtained show high ability to condense DNA into stable polyplexes with sizes below 100 nm. Cytotoxicity evaluation of both hybrid copolymer and its polyplex with DNA indicates that it might be a good candidate for gene-delivery applications.

  11. Tissue engineering of fish skin: behavior of fish cells on poly(ethylene glycol terephthalate)/poly(butylene terephthalate) copolymers in relation to the composition of the polymer substrate as an initial step in constructing a robotic/living tissue hybrid.

    PubMed

    Pouliot, Roxane; Azhari, Rosa; Qanadilo, Hala F; Mahmood, Tahir A; Triantafyllou, Michael S; Langer, Robert

    2004-01-01

    This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds.

  12. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery.

    PubMed

    Yang, You Qiang; Zhao, Bin; Li, Zhen Dong; Lin, Wen Jing; Zhang, Can Yang; Guo, Xin Dong; Wang, Ju Fang; Zhang, Li Juan

    2013-08-01

    A series of amphiphilic 4- and 6-armed star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (4/6AS-PCL-b-PDEAEMA-b-PPEGMA) were developed by a combination of ring opening polymerization and continuous activators regenerated by electron transfer atom transfer radical polymerization. The critical micelle concentration values of the star co-polymers in aqueous solution were extremely low (2.2-4.0mgl(-1)), depending on the architecture of the co-polymers. The self-assembled blank and doxorubicin (DOX)-loaded three layer micelles were spherical in shape with an average size of 60-220nm determined by scanning electron microscopy and dynamic light scattering. The in vitro release behavior of DOX from the three layer micelles exhibited pH-dependent properties. The DOX release rate was significantly accelerated by decreasing the pH from 7.4 to 5.0, due to swelling of the micelles at lower pH values caused by the protonation of tertiary amine groups in DEAEMA in the middle layer of the micelles. The in vitro cytotoxicity of DOX-loaded micelles to HepG2 cells suggested that the 4/6AS-PCL-b-PDEAEMA-b-PPEGMA micelles could provide equivalent or even enhanced anticancer activity and bioavailability of DOX and thus a lower dosage is sufficient for the same therapeutic efficacy. The results demonstrate that the pH-sensitive multilayer micelles could have great potential application in delivering hydrophobic anticancer drugs for improved cancer therapy.

  13. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    PubMed

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use.

  14. Synthesis and evaluation of degradable polyurea block copolymers as siRNA delivery agents.

    PubMed

    Cass, Peter; Knower, Warren; Hinton, Tracey; Shi, Shuning; Grusche, Felix; Tizard, Mark; Gunatillake, Pathiraja

    2013-09-01

    Chain extension by diisocyanate condensation provides a versatile and convenient means for preparing block copolymers. We have utilized this chemistry to prepare reducible multiblock polycations for siRNA delivery. This approach, an alternative to oxidative coupling, was suitable for preparing multiblock polycations with defined molecular weight and architecture. The polymer, PEG-b-multi-(polyhexylurea-co-oligo-L-lysine)-b-PEG, was capable of electrostatically condensing siRNA to form nano-sized polyplexes across a broad compositional range. We demonstrated that the polyplexes enter the cells via endocytosis and interact with the endosome membrane leading to destabilization and hence endosome escape. Another feature of these polymers is their multiple intra-chain disulfide linkages. This enables weakening of the polyplex via chain scission within the cytosol's reductive environment. In addition to the controlled preparation of the polymer, the polyplexes were capable of delivering siRNA in vitro to silence greater than 50% green fluorescent protein expression with negligible toxicity.

  15. Preparation of poly(cyclooctene)-g-poly(ethylene glycol) (PCOE-g-PEG) graft copolymers with tunable PEG side chains via ROMP and its protein adsorption and platelet adhesion properties.

    PubMed

    Yang, Ying; Shi, Dean; Wang, Xueli; Shi, Hengchong; Jiang, Tao; Yang, Yingkui; Luan, Shifang; Yin, Jinghua; Li, Robert K Y

    2014-12-01

    In our previous work [H. Shi, D. Shi et al., Polymer Chemistry 2(2011)679-684], polycyclooctene-g-PEG (PCOE-g-PEG) copolymers were synthesized via ring opening metathesis polymerization (ROMP) from PEG functionalized cyclic olefin macromonomers and cyclooctene. The grafting degree and the grafting site were easily controlled through the "grafting through" approach. The PCOE-g-PEG film surface was imparted excellent anti-protein adsorption properties. In that work, the molecular weight of PEG side chain was fixed at 750 g/mol and the neat PEG content in the copolymer was lower than 50 wt.%. In this work, both the effects of PEG side chain lengths (350 to 1000 g/mol) at a fixed PEG content (50 wt.%) and the neat PEG content (30 wt.% to 70 wt.%) at a fixed PEG molecular weight (750 g/mol) on the anti-protein adsorption and anti-platelet adhesion properties are studied. It is shown that the copolymer with 60 wt.% PEG side chains of 750 g/mol, where both PEG and PCOE form continuous morphology, is optimal to reduce the adsorption of both the bovine serum albumin (BSA) and platelet. When the PEG content reaches 70 wt.%, phase inversion happens. PEG is the continuous phase but PCOE becomes the dispersed phase. The surface roughness of the casting PCOE-g-PEG film increases. In this case, both BSA adsorption and platelet adhesion will slightly increase comparing to the sample with 60 wt.% PEG.

  16. Cisplatin Loaded Poly(L-glutamic acid)-g-Methoxy Poly(ethylene glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, In Vitro and In Vivo Evaluation.

    PubMed

    Yu, Haiyang; Tang, Zhaohui; Li, Mingqiang; Song, Wantong; Zhang, Dawei; Zhang, Ying; Yang, Yan; Sun, Hai; Deng, Mingxiao; Chen, Xuesi

    2016-01-01

    A series of novel polypeptide-based graft copolymer poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol) (PLG-g-mPEG) was synthesized through a Steglich esterification reaction of PLG with mPEG. The structure of the copolymers was confirmed by nuclear magnetic resonance spectra (NMR) and gel permeation chromatography (GPC). MTT assay demonstrated that the PLG-g-mPEGs had good cell compatibility. The unreacted carboxyl groups of the PLG-g-mPEGs were used to complex cisplatin to form polymer-metal complex nanoparticles (CDDP/PLG-g-mPEG) for cancer therapy. The average hydrodynamic radius of the CDDP/PLG-g-mPEG nanoparticles was inr the range of 14-25 nm, which was beneficial for solid tumor targeting delivery. A sustained release without initial burst was achieved for the CDDP/PLG-g-mPEG nanoparticles, indicating that the CDDP-loaded nanoparticles had great potential to suppress the drug release in blood circulation before the nanoparticles had arrived at targeting tumors. The CDDP/PLG-g-mPEG nanoparticles showed a much longer blood retention profile as compared with the free CDDP. This indicated that the CDDP-loaded nanoparticles had much more opportunity to accumulate in tumor tissue by exerting the EPR effect. In vitro tests demonstrated that the CDDP/PLG-g-mPEG nanoparticles could inhibit the proliferation of HeLa, MCF-7 and A549 cancer cells. At equal dose (4 mg kg(-1)), the CDDP/PLG-g-mPEG nanoparticles showed comparable in vivo antitumor efficacy and significantly lower systemic toxicity as compared with free cis-Diaminedichloroplatinum (cisplatin, CDDP) in MCF-7 tumor bearing mice. These suggested that the CDDP/PLG-g-mPEG nanoparticle drug delivery system had a great potential to be used for cancer therapy.

  17. In vitro and in vivo evaluation of the biocompatibility of a calcium phosphate/poly(lactic-co-glycolic acid) composite.

    PubMed

    Gala-García, A; Carneiro, M B H; Silva, G A B; Ferreira, L S; Vieira, L Q; Marques, M M; Sinisterra, R D; Cortes, M E

    2012-07-01

    This study assess the effects of bioceramic and poly(lactic-co-glycolic acid) composite (BCP/PLGA) on the viability of cultured macrophages and human dental pulp fibroblasts, and we sought to elucidate the temporal profile of the reaction of pulp capping with a composite of bioceramic of calcium phosphate and biodegradable polymer in the progression of delayed dentine bridge after (30 and 60 days) in vivo. Histological evaluation of inflammatory infiltrate and dentin bridge formation were performed after 30 and 60 days. There was similar progressive fibroblast growth in all groups and the macrophages showed viability. The in vivo study showed that of the three experimental groups: BCP/PLGA composite, BCP and calcium hydroxide (Ca(OH)(2)) dentin bridging was the most prevalent (90 %) in the BCP/PLGA composite after 30 days, mild to moderate inflammatory response was present throughout the pulp after 30 days. After 60 days was observed dentine bridging in 60 % and necrosis in 40 %, in both groups. The results indicate that understanding BCP/PLGA composite is biocompatible and by the best tissue response as compared to calcium hydroxide in direct pulp capping may be important in the mechanism of delayed dentine bridge after 30 and 60 days.

  18. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.

    PubMed

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery.

  19. Design and evaluation of poly(DL-lactic-co-glycolic acid) nanocomposite particles containing salmon calcitonin for inhalation.

    PubMed

    Yang, Mingshi; Yamamoto, Hiromitsu; Kurashima, Homare; Takeuchi, Hirofumi; Yokoyama, Toyokazu; Tsujimoto, Hiroyuki; Kawashima, Yoshiaki

    2012-08-15

    Salmon calcitonin, for the treatment of calcium homeostasis and bone remodeling, was used as a model peptide drug and adsorbed on the surface of biodegradable polymeric poly(dl-lactic-co-glycolic acid) (PLGA) nanospheres. Subsequently, the nanospheres were treated using lyophilizer and loaded onto inhalable carrier using Mechanofusion to obtain nanocomposite particles suitable for inhalation. The physicochemical properties and in vitro inhalation properties of the nanocomposite particles were investigated. The pulmonary distribution and pharmacological effect were also evaluated in male Wistar rats. The results showed that the drug loading efficiency of salmon calcitonin on PLGA nanospheres were exceeding 96% (w/w). Inhalation efficiency of the lyophilized PLGA nanospheres was largely improved after they were loaded on the surface of inhalable carrier. Over 50% (w/w) of the lyophilized PLGA nanospheres could be deposited in the alveoli section after intratracheal administration to male Wistar rats, while a rapid elimination rate of the lyophilized nanospheres from the lung was found in pulmonary distribution study. The in vivo pharmacological study showed that the nanocomposite particles exhibited superior hypocalcemic action over salmon calcitonion solution and the lyophilized nanospheres. It suggested that the Mechanofusion(TM) technique can impart improved inhalation properties to the lyophilized nanospheres for pulmonary delivery of therapeutic peptide drugs.

  20. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone

    PubMed Central

    Khodaverdi, Elham; Gharechahi, Marzieh; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khashyarmanesh, Bibi Zahra; Hadizadeh, Farzin

    2016-01-01

    In this study, thermosensitive, water-soluble, and biodegradable triblock copolymer PCL600-PEG6000-PCL600 was used to form supramolecular hydrogel (SMGel) by inclusion complexation with γ-cyclodextrin (γ-CD). The prepared SMGel was investigated as a carrier for sustained release of dexamethasone. The triblock copolymer PCL-PEG-PCL [where PCL = polycaprolactone, PEG = poly(ethylene glycol)] was synthesized by the ring-opening polymerization method using microwave irradiation. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). SMGel was prepared in aqueous solution by blending an aqueous γ-CD solution with aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. The sol-to-gel transition time was measured at various concentrations of copolymer and γ-CD. As-prepared SMGel was used to prepare a sustained, controllable drug delivery system of dexamethasone sodium phosphate. The SMGel was also characterized in terms of rheological, morphological, and structural properties. Results obtained from proton nuclear magnetic resonance ( 1H-NMR) and GPC demonstrated that microwave irradiation is a simple and reliable method for synthesis of PEG-PCL copolymer. The SMGel with excellent syringability was prepared by mixing of 20% wt γ-CD and 10% wt of copolymer within 4 s. The SMGel containing 10% wt copolymer, 20% wt γ-CD, and 0.5% or 0.1% wt dexamethasone released approximately 100% and 45% of drug over up to 23 days, respectively. It could be concluded that SMGel based on self-assembly of inclusion complexes between PCL-PEG-PCL copolymer and γ-CD could be used as a basis for injectable drug delivery systems that provide sustained and controlled release of macromolecular drugs such as dexamethasone. PMID:27051627

  1. Reduced hydrophobic interaction of polystyrene surfaces by spontaneous segregation of block copolymers with oligo (ethylene glycol) methyl ether methacrylate blocks: force measurements in water using atomic force microscope with hydrophobic probes.

    PubMed

    Zhang, Rui; Seki, Akiko; Ishizone, Takashi; Yokoyama, Hideaki

    2008-05-20

    Reduction of hydrophobic interaction in water is important in biological interfaces. In our previous work, we have found that poly(styrene- b-triethylene glycol methyl ether methacrylate) (PS-PME3MA) segregates the PME3MA block to the surface in hydrophobic environment, such as in air or in a vacuum, and shows remarkable resistance against adsorption or adhesion of proteins, platelets, and cells in water. In this paper, we report that atomic force microscopy (AFM) with hydrophobic probes can directly monitor the reduced hydrophobic interaction of the PS surfaces modified by poly(styrene- b-origoethylene glycol methyl ether methacrylate) (PS-PME NMA), where N is the number of ethylene glycol units. The pull-off forces between the hydrophobic probes that are coated with octyltrichlorosilane (OLTS) and the PS-PME NMA modified polystyrene (PS) surfaces in water were measured. The absolute spring constants and tip-curvatures of the AFM cantilevers were measured to compute the work of adhesion by the Johnson, Kendall, and Roberts (JKR) theory, which relates the pull-off force at which the separation occurs between a hemisphere and a plane to the work of adhesion. The hydrophobic interactions between the hydrophobic tip and polymer surfaces in water were greatly reduced with the segregated PME NMA blocks. The hydrophobic interactions decrease with increasing N of the series of PS-PME NMA and show a correlation with the amount of protein adsorbed.

  2. Polyethylene Glycol 3350

    MedlinePlus

    Polyethylene glycol 3350 is used to treat occasional constipation. Polyethylene glycol 3350 is in a class of medications ... Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. ...

  3. Ethylene glycol blood test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  4. Effect of ethyl-alpha-hydroxymethylacrylate on selected properties of copolymers and ACP resin composites.

    PubMed

    Antonucci, Joseph M; Fowler, Bruce O; Weir, Michael D; Skrtic, Drago; Stansbury, Jeffrey W

    2008-10-01

    There is an increased interest in the development of bioactive polymeric dental composites and related materials that have potential for mineralized tissue regeneration and preservation. This study explores how the substitution of ethyl alpha-hydroxymethylacryate (EHMA) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated 2,2-bis[p-(2'-hydroxy-3'-methacryloxypropoxy)phenyl]propane (Bis-GMA) and Bis-GMA/tri(ethylene glycol) dimethacrylate (TEGDMA) resins affected selected physicochemical properties of the polymers and their amorphous calcium phosphate (ACP) composites. Rate of polymerization and the degree of conversion (DC) of polymers {EHMA (E), HEMA (H), Bis-GMA/EHMA (BE), Bis-GMA/HEMA (BH), Bis-GMA/TEGDMA/EHMA (BTE) and Bis-GMA/TEGDMA/HEMA (BTH)} were assessed by photo-differential scanning calorimetry and Fourier-Transform Infrared (FTIR) spectroscopy. ACP/BTE and ACP/BTH composites were evaluated for DC, biaxial flexure strength (BFS), water sorption (WS) and mineral ion release. Mid-FTIR and near-IR measurements revealed the following order of decreasing DC: [E, H polymers (97.0%)] > [BE copolymer (89.9%)] > [BH copolymer (86.2%)] > [BTE, BTH copolymers (85.5%)] > [ACP/BTH composite (82.6%)] > [ACP/BTE composite (79.3%)]. Compared to HEMA, EHMA did not adversely affect the BFS of its copolymers and/or ACP composites. Lower WS of BTE copolymers and composites (28% and 14%, respectively, compared to the BTH copolymers and composites) only marginal reduced the ion release from ACP/BTE composites compared to ACP/BTH composites. More hydrophobic ACP composites with acceptable ion-releasing properties were developed by substituting the less hydrophilic EHMA for HEMA.

  5. Clickable Amphiphilic Triblock Copolymers.

    PubMed

    Isaacman, Michael J; Barron, Kathryn A; Theogarajan, Luke S

    2012-06-15

    Amphiphilic polymers have recently garnered much attention due to their potential use in drug-delivery and other biomedical applications. A modular synthesis of these polymers is extremely desirable since it offers precise individual block characterization and increased yields. We present here for the first time a modular synthesis of poly(oxazoline)-poly(siloxane)-poly(oxazoline) block copolymers that have been clicked together using the copper-catalyzed azide-alkyne cycloaddition reaction. Various click methodologies for the synthesis of these polymers have been carefully evaluated and optimized. The approach using copper nanoparticles was found to be the most optimal among the methods evaluated. Furthermore, these results were extended to allow for a reactive Si-H group-based siloxane middle block to be successfully clicked. This enables the design of more complex amphiphilic block copolymers that have additional functionality, such as stimuli responsiveness, to be synthesized via a simple hydrosilylation reaction.

  6. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  7. Fluorinated/siloxane copolymer blends for fouling release: chemical characterisation and biological evaluation with algae and barnacles.

    PubMed

    Marabotti, Ilaria; Morelli, Andrea; Orsini, Lorenzo M; Martinelli, Elisa; Galli, Giancarlo; Chiellini, Emo; Lien, Einar M; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Conlan, Sheelagh L; Mutton, Robert J; Clare, Anthony S; Kocijan, Aleksandra; Donik, Crtomir; Jenko, Monika

    2009-01-01

    Fouling-release coatings were prepared from blends of a fluorinated/siloxane copolymer with a poly(dimethyl siloxane) (PDMS) matrix in order to couple the low modulus character of PDMS with the low surface tension typical for fluorinated polymers. The content of the surface-active copolymer was varied in the blend over a broad range (0.15-10 wt % with respect to PDMS). X-ray photoelectron spectroscopy depth profiling analyses were performed on the coatings to establish the distribution of specific chemical constituents throughout the coatings, and proved enrichment in fluorine of the outermost layers of the coating surface. Addition of the fluorinated/siloxane copolymer to the PDMS matrix resulted in a concentration-dependent decrease in settlement of barnacle, Balanus amphitrite, cyprids. The release of young plants of Ulva, a soft fouling species, and young barnacles showed that adhesion strength on the fluorinated/siloxane copolymer was significantly lower than the siloxane control. However, differences in adhesion strength were not directly correlated with the concentration of copolymer in the blends.

  8. OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability.

    PubMed

    Bao, Hanmei; Jin, Xu; Li, Ling; Lv, Feng; Liu, Tianjun

    2012-08-01

    A novel nanoparticles-based brain drug delivery system made of hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) which was surface functionalized with transferrin antibody (OX26) was prepared. Hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) was synthesized, characterized and applied to prepare nanoparticles by means of double emulsion solvent evaporation technique. Transmission electron micrograph and dynamic light scattering showed that nanoparticles had a round and regular shape with a mean diameter of 170 ± 20 nm. Surface chemical composition was detected by X-ray photoelectron spectroscopy. Endomorphins, as a model drug, was encapsulated in the nanoparticles. In vitro drug release study showed that endomorphins was released continuously for 72 h. Cellular uptake study showed that the uptake of nanoparticles by the brain microvascular endothelial cells was both time- and concentration-dependant. Further uptake inhibition study indicated that the uptake of nanoparticles was via a caveolae-mediated endocytic pathway. In vivo endomorphins brain delivery ability was evaluated based upon the rat model of chronic constriction injury of sciatic nerve. OX26 modified nanoparticles had achieved better analgesic effects, compared with other groups. Thus, OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles may be a promising brain drug delivery carrier.

  9. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... glycol and 1 to 34 mole percent of 1,4-cyclo-hexanedimethanol (70 percent trans isomer, 30 percent cls isomer) Inherent viscosity of a 0.50 percent solution of the copolymer in phenol-tetrachloroethane (60:40... ethylene glycol and 1 to 15 mole percent of 1,4-cyclohexane-di-methanol (70 percent trans isomer,...

  10. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... glycol and 1 to 34 mole percent of 1,4-cyclo-hexanedimethanol (70 percent trans isomer, 30 percent cls isomer) Inherent viscosity of a 0.50 percent solution of the copolymer in phenol-tetrachloroethane (60:40... ethylene glycol and 1 to 15 mole percent of 1,4-cyclohexane-di-methanol (70 percent trans isomer,...

  11. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... glycol and 1 to 34 mole percent of 1,4-cyclo-hexanedimethanol (70 percent trans isomer, 30 percent cls isomer) Inherent viscosity of a 0.50 percent solution of the copolymer in phenol-tetrachloroethane (60:40... ethylene glycol and 1 to 15 mole percent of 1,4-cyclohexane-di-methanol (70 percent trans isomer,...

  12. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... glycol and 1 to 34 mole percent of 1,4-cyclo-hexanedimethanol (70 percent trans isomer, 30 percent cls isomer) Inherent viscosity of a 0.50 percent solution of the copolymer in phenol-tetrachloroethane (60:40... ethylene glycol and 1 to 15 mole percent of 1,4-cyclohexane-di-methanol (70 percent trans isomer,...

  13. Enhancement of the Oral Bioavailability of Felodipine Employing 8-Arm-Poly(Ethylene Glycol): In Vivo, In Vitro and In Silico Evaluation.

    PubMed

    Fasinu, Pius; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Bijukumar, Divya; Khan, Riaz A; Pillay, Viness

    2016-05-12

    Poor oral bioavailability is the single most important challenge in drug delivery. Prominent among the factors responsible for this is metabolic activity of the intestinal and hepatic cytochrome P450 (CYP450) enzymes. In preliminary studies, it was demonstrated that 8-arm-PEG was able to inhibit the felodipine metabolism. Therefore, this report investigated the oral bioavailability-enhancing property of 8-arm-PEG employing detailed in vitro, in vivo, and in silico evaluations. The in vitro metabolism of felodipine by cytochrome P450 3A4-expressed human liver microsomes (HLM) was optimized yielding a typical Michaelis-Menten plot through the application of Enzyme Kinetic Module software from where the enzyme kinetic parameters were determined. In vitro investigation of 8-arm-poly(ethylene glycol) against CYP3A4-catalyzed felodipine metabolism employing human liver microsomes compared closely with naringenin, a typical grapefruit flavonoid, yielding IC50 values of 7.22 and 121.97 μM, respectively. The investigated potential of 8-arm-poly(ethylene glycol) in oral drug delivery yielded satisfactory in vitro drug release results. The in vivo studies of the effects of 8-arm-poly(ethylene glycol) on the oral bioavailability of felodipine as performed in the Large White pig model showed a >100% increase in plasma felodipine levels compared to controls, with no apparent effect on systemic felodipine clearance. The outcome of this research presents a novel CYP3A4 inhibitor, 8-arm-poly(ethylene glycol) for oral bioavailability enhancement.

  14. Evaluation of the developmental toxicity of ethylene glycol aerosol in CD-1 mice by nose-only exposure.

    PubMed

    Tyl, R W; Ballantyne, B; Fisher, L C; Fait, D L; Dodd, D E; Klonne, D R; Pritts, I M; Losco, P E

    1995-08-01

    Ethylene glycol (EG; CAS No. 107-21-1) is teratogenic to mice by whole-body (WB) exposure to aerosol (1000-2500 mg/m3). The WB results were confounded by possible exposure from ingestion after grooming and/or from percutaneous absorption. Therefore, CD-1 mice were exposed to EG aerosol (MMAD 2.6 +/- 1.7 microns) on Gestational Days (GD) 6 through 15, 6 hr/day, by nose-only (NO) (0, 500, 1000, or 2500 mg/m3) or WB exposures (0 or 2100 mg/m3, as positive control), 30/group. Five additional "satellite" females each at 2500 mg/m3 NO and 2100 mg/m3 WB were exposed on GD 6 for measurement of EG on fur. Control environments were water aerosol (4200 mg/m3 for NO; 2700 mg/m3 for WB). Females were weighed and evaluated for clinical signs and water consumption throughout gestation. On GD 18, maternal uterus, liver, and kidneys (2) were weighed, with kidneys examined microscopically. Corpora lutea and implantation sites were recorded. Live fetuses were weighed, sexed, and examined for structural alterations. For NO dams, kidney weights were increased at 1000 and 2500 mg/m3; no renal lesions and no other treatment-related maternal toxicity were observed. There were no effects on pre- or postimplantation loss; fetal body weights/litter were reduced at 2500 mg/m3. At 2500 mg/m3, incidences of fused ribs and skeletal variations were increased. The 2500 mg/m3 NO satellite animals had approximately 330 mg/kg extractable EG. The WB group exhibited maternal and developmental toxicity including increased fetal skeletal malformations and variations, confirming previous results, with 1390 mg/kg extractable EG on fur. Therefore, exposure of CD-1 mice to a respirable EG aerosol during organogenesis by NO inhalation resulted in minimal maternal toxicity at 1000 and 2500 mg/m3 and developmental toxicity at 2500 mg/m3. The NOAEL was 500 mg/m3 NO for maternal and 1000 mg/m3 NO for developmental toxicity. This study supports the interpretation of the initial EG WB results as due to systemic

  15. Fabrication of a Self-Cleaning Surface via the Thermosensitive Copolymer Brush of P(NIPAAm-PEGMA).

    PubMed

    Ye, Yuansong; Huang, Jian; Wang, Xiaolin

    2015-10-14

    Surface hydrophilicity and the inherent washing force are two crucial factors for constructing an underwater self-cleaning surface. Following this self-cleaning mechanism, we fabricated thermosensitive copolymer brushes of N-isopropylacrylamide (NIPAAm) and poly(ethylene glycol) methacrylate (PEGMA) on the polypropylene (PP) surface. Benefiting from the hydrophilic poly(ethylene glycol) (PEG) side chains, the copolymer brushes with the PEGMA content exceeding 5 mol % exhibited good surface hydrophilicity, whenever at temperatures below or above the lower critical solution temperatures (LCST). Hence their underwater oleophobicity was greatly improved with oil contact angles higher than 141° and oil adhesive forces lower than 20 μN. In addition, the sharp volume-phase transition feature was reserved in their copolymer backbones, as proved by the AFM result. Self-cleaning evaluation of the modified surfaces was performed by a simple temperature-change water cleaning method, after which only 0.2 wt % of oil residues remained on the brush surface of P(NIPAAm-5PEGMA) (with 5 mol % of PEGMA contents). The excellent self-cleaning capability is believed to be ascribed to its balanced surface features in hydrophilicity and the sharper volume-phase transition, when a hydrophilic surface can facilitate oil desorption and an intense conformation change of chain stretching and shrinking can offer the strong washing force to assist oil detachment. This study contributes to development of the underwater self-cleaning surface based on a hydrophilic surface with the chain motion.

  16. Development of poly(propylene fumarate-co-ethylene glycol) as an injectable carrier for endothelial cells.

    PubMed

    Suggs, L J; Mikos, A G

    1999-01-01

    Poly(propylene fumarate-co-ethylene glycol) [P(PF-co-EG)] hydrogels were examined as in situ polymerizable carriers for endothelial cells. The temperature increase from 37 degrees C during cross-linking was measured. The maximum temperature did not increase above 38.3 degrees C for any copolymer formulation. The temperature profiles also appeared to be independent of the amount or molecular weight of poly(ethylene glycol). These materials were polymerized in situ in a subcutaneous rat model and evaluated for initial biocompatibility. A normal wound-healing response was seen with formation and subsequent maturity of a fibrous capsule. Endothelial cells were embedded in vitro during the cross-linking process and their proliferation was assessed over the first 24 h. There was significant DNA synthesis by the embedded endothelial cells during this time period. These data suggest that P(PF-co-EG) hydrogels could be developed for use as injectable cell carriers.

  17. Aminoalkyl methacrylate copolymers for improving the solubility of tacrolimus. I: Evaluation of solid dispersion formulations.

    PubMed

    Yoshida, Takatsune; Kurimoto, Ippei; Yoshihara, Keiichi; Umejima, Hiroyuki; Ito, Naoki; Watanabe, Shunsuke; Sako, Kazuhiro; Kikuchi, Akihiko

    2012-05-30

    The aim of this study was to investigate the effect of Eudragit E/HCl (E-SD) on the reprecipitation of a poorly water-soluble drug, tacrolimus. To evaluate the inhibition of reprecipitation of E-SD, reprecipitation studies on tacrolimus were conducted using a dissolution test method. Solubility of tacrolimus was measured at regular intervals in a dissolution media, in which tacrolimus was dissolved in ethanol, and the test media contained additives for inhibiting precipitation. Supersaturation profiles of tacrolimus were observed, and were maintained for 24h only with E-SD. Solid dispersion formulations of tacrolimus prepared with hydroxypropylmethylcellulose (HPMC) or E-SD in different drug/carrier ratios were also investigated. Solid dispersions prepared with E-SD showed higher solubility of tacrolimus compared with that of HPMC. In the E-SD formulation, the drug solubility influences to drug/carrier ratio. The formulation of drug/E-SD (1/5) showed the highest drug solubility. Thus, it may be inferred that a definite drug/carrier ratio exists to increase drug solubility. Further, by mixing E-SD the solid dispersion prepared with HPMC showed enhanced drug solubility.

  18. The effect of RAFT-derived cationic block copolymer structure on gene silencing efficiency.

    PubMed

    Hinton, Tracey M; Guerrero-Sanchez, Carlos; Graham, Janease E; Le, Tam; Muir, Benjamin W; Shi, Shuning; Tizard, Mark L V; Gunatillake, Pathiraja A; McLean, Keith M; Thang, San H

    2012-10-01

    In this work a series of ABA tri-block copolymers was prepared from oligo(ethylene glycol) methyl ether methacrylate (OEGMA(475)) and N,N-dimethylaminoethyl methacrylate (DMAEMA) to investigate the effect of polymer composition on cell viability, siRNA uptake, serum stability and gene silencing. Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization was used as the method of polymer synthesis as this technique allows the preparation of well-defined block copolymers with low polydispersity. Eight block copolymers were prepared by systematically varying the central cationic block (DMAEMA) length from 38 to 192 monomer units and the outer hydrophilic block (OEGMA(475)) from 7 to 69 units. The polymers were characterized using size exclusion chromatography and (1)H NMR. Chinese Hamster Ovary-GFP and Human Embryonic Kidney 293 cells were used to assay cell viability while the efficiency of block copolymers to complex with siRNA was evaluated by agarose gel electrophoresis. The ability of the polymer-siRNA complexes to enter into cells and to silence the targeted reporter gene enhanced green fluorescent protein (EGFP) was measured by using a CHO-GFP silencing assay. The length of the central cationic block appears to be the key structural parameter that has a significant effect on cell viability and gene silencing efficiency with block lengths of 110-120 monomer units being the optimum. The ABA block copolymer architecture is also critical with the outer hydrophilic blocks contributing to serum stability and overall efficiency of the polymer as a delivery system.

  19. Non-clinical safety and pharmacokinetic evaluations of propylene glycol aerosol in Sprague-Dawley rats and Beagle dogs.

    PubMed

    Werley, Michael S; McDonald, Paddy; Lilly, Patrick; Kirkpatrick, Daniel; Wallery, Jeffrey; Byron, Peter; Venitz, Jürgen

    2011-09-05

    Aerosolized propylene glycol (PG) was generated as log-normally distributed particulate clouds in different concentrations using a novel capillary aerosol generator (CAG) and evaluated in a battery of non-clinical studies intended to assess its potential inhalation and systemic toxicity in 2 species before ICH-compliant "first-time-in-man" studies. Exposures were nose-only in rats, and via face mask with oropharyngeal tube in dogs. The CAG-generated PG aerosol had a mass median aerodynamic diameter (MMAD) of 2.29μm, with a 1.56 geometric standard deviation (GSD) in the rat studies, and a MMAD of 1.34μm (1.45 GSD) in the dog studies, consistent with expected particle size exposures in man. International Congress on Harmonization (ICH) Guidelines were followed, which recommend preliminary non-clinical safety studies using the vehicle and device (CAG-PG) prior to the first human exposure including safety pharmacology, pharmacokinetic (PK) studies, single dose toxicity studies, and repeated dose toxicity studies in two species. In the rat, the only biologically relevant findings included clinical signs of ocular and nasal irritation indicated by minor bleeding around the eyes and nose, and minimal laryngeal squamous metaplasia. This finding is commonly observed in inhalation studies in the rat, and likely related to the unique sensitivity of the tissue, as well as the circuitous airflow pathway through the larynx which increases particle deposition. In the female Beagle dog, treatment-related decreases in hemoglobin, red blood cells and hematocrit were observed in the two highest exposure groups, equivalent to approximately 18 and 60mg/kg/day. In male dogs from the high dose group, similar small decreases, albeit, non-statistically significant decreases were observed in these hematological markers as well. PK studies in rats and dogs showed that the absorption of PG following pulmonary inhalation exposure occurs rapidly, and equilibrium between lung tissue and plasma

  20. Multiple sources of sodium starch glycolate, NF: evaluation of functional equivalence and development of standard performance tests.

    PubMed

    Shah, Umang; Augsburger, Larry

    2002-01-01

    Sodium starch glycolate is a commonly used super-disintegrant employed to promote rapid disintegration and dissolution of IR solid dosage forms. It is manufactured by chemical modification of starch, i.e., carboxymethylation to enhance hydrophilicity and cross-linking to reduce solubility. It has been reported in the literature that the source of starch, particle size, amount of sodium chloride (reaction by-product), viscosity, degree of substitution and cross-linking affect the functionality of sodium starch glycolate. Compendial assays provide an accurate representation of the chemical quality of an excipient, but they are not useful in describing the physical properties associated with the excipients. Physical characterization of sodium starch glycolate, NF revealed differences in particle size, surface area, porosity, surface morphology, and viscosity between two of the three sources examined. An automated liquid uptake test (in neutral and acidic medium) demonstrated similar initial rates of uptake, however, the extent of liquid uptake differed for the disintegrant powders examined. Settling volume was also observed to be different for the disintegrant from two sources. Lowering the pH of the medium reduced the rate and extent of liquid uptake and the settling volume in all instances. The extent of liquid uptake and settling volume was observed to be higher for the smaller sieve fractions in either medium, Although differences were also observed in the axial and radial disintegration force measurements of the pure disintegrant compacts, disintegration and dissolution of a model drug (hydrochlorothiazide) from either the soluble or insoluble core did not reveal any significant differences between the multiple sources.

  1. Properties of radiation cured vinyl-divinyl copolymers. [Gamma rays

    SciTech Connect

    Micko, M.M.; Paszner, L.

    1980-04-01

    Analysis of compression stress-strain curves of radiation-cured vinyl methacrylate copolymers shows that addition of small concentrations of vinyl comonomers significantly alter all mechanical strength properties in compression. Stress-strain behavior is found to be a function of the copolymer composition. Best strength results are limited to a narrow comonomer concentration region; between 5 to 10% of divinyl monomer (DVM) for the four systems studied. This concentration range broadens with increasing molecular bridge length of the crosslinking agent being narrowest for ethylene glycol dimethylacrylate and broadest for tetraethylene glycol dimethacrylate. Copolymer connection number (CN/sub co/), as introduced earlier, is found to be useful structural parameter for crosslinked copolymers in that it correlates quantitatively mechanical or thermomechanical properties with crosslink densities within copolymers. The Methyl methacrylate-TEGDMA comonomer system was found to be the most suitable and economically attractive. It represents a well balanced compromise of improved polymerization parameters and copolymer properties desirable in many polymeric products. 9 figures, 2 tables.

  2. Synthesis and evaluation of novel water-soluble copolymers based on acrylamide and modular β-cyclodextrin.

    PubMed

    Liu, Xiangjun; Jiang, Wenchao; Gou, Shaohua; Ye, Zhongbin; Feng, Mingming; Lai, Nanjun; Liang, Lixi

    2013-07-01

    Mono-6-(allyl amino)-β-cyclodextrin (N-β-CD) and mono-2-O-(allyl oxygen radicals-2-hydroxyl propyl)-β-cyclodextrin (O-β-CD) were copolymerized with acrylamide (AM), acrylic acid (AA), and 1-llyl-3-oil acyloxyimidazole-1-ammonion bramide (AOAB) initiated by redox initiation system in an aqueous medium. The AM/AA/AOAB/N-β-CD and AM/AA/AOAB/O-β-CD were prepared by adjusting the reactive conditions, such as initiator concentration, pH, temperature, and monomer ratios. The obtained copolymers were characterized by means of infrared (IR) spectroscopy, (1)H NMR spectroscopy, scanning electron microscope (SEM), rotational rheometer, intrinsic viscosity, salt resistance, core flood test, etc. The temperature-tolerance, shear-tolerance, salt-resistance and thickening function of these copolymers are improved remarkably compared with partially hydrolyzed polyacrylamide (HPAM). About 18.3% and 12.5% oil recovery could be enhanced by 2000mg/L AM/AA/AOAB/N-β-CD and AM/AA/AOAB/O-β-CD comparing with water-flooding. In addition, the result of X-ray diffractometry (XRD) test showed that the solutions of obtained copolymers could remarkably reduce the crystalline interspace of sodium montmorillonite (from 18.9Å to 15.3Å).

  3. Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property.

    PubMed

    Khodaverdi, Elham; Heidari, Zinat; Tabassi, Sayyed A Sajadi; Tafaghodi, Mohsen; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khameneh, Bahman; Hadizadeh, Farzin

    2015-02-01

    Supramolecular hydrogels formed by cyclodextrins and polymers have been widely investigated as a biocompatible, biodegradable and controllable drug delivery system. In this study, a supramolecular hydrogel based on biodegradable poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone) (PCL-PEG-PCL) triblock copolymers and γ-cyclodextrin (γ-CD) was prepared through inclusion complexation as an injectable, sustained-release vehicle for insulin. The triblock copolymer PCL-PEG-PCL was synthesised by the ring-opening polymerisation method, using microwave irradiation. The polymerisation reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The supramolecular hydrogel was prepared in aqueous solution by blending an aqueous γ-CD solution with an aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. In vitro insulin release through the hydrogel system was studied. The relative surface hydrophobicity of standard and released insulin from the SMGel was estimated using 8-anilino-1-naphthalene sulfonic acid (ANS). Results of (1)HNMR and gel permeation chromatography revealed that microwave irradiation is a simple and reliable method for synthesis of PCL-PEG-PCL copolymer. Gelation occurred within a minute. The supramolecular hydrogel obtained by mixing 10.54% (w/v) γ-CD and 2.5% (w/v) copolymer had an excellent syringeability. Insulin was released up to 80% over a period of 20 days. Insulin kept its initial folding after formulating and releasing from SMGel. A supramolecular hydrogel based on complexation of triblock PCL-PEG-PCL copolymer with γ-cyclodextrin is a suitable system for providing sustained release of therapeutic proteins, with desirable flow behaviour.

  4. Phase separations in a copolymer copolymer mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Jin, Guojun; Ma, Yuqiang

    2006-01-01

    We propose a three-order-parameter model to study the phase separations in a diblock copolymer-diblock copolymer mixture. The cell dynamical simulations provide rich information about the phase evolution and structural formation, especially the appearance of onion-rings. The parametric dependence and physical reason for the domain growth of onion-rings are discussed.

  5. Development and Evaluation of a Guideline for Monitoring Propylene Glycol Toxicity in Pediatric Intensive Care Unit Patients Receiving Continuous Infusion Lorazepam

    PubMed Central

    Lange, Rebecca; Gupta, Sameer

    2015-01-01

    OBJECTIVES: To develop and determine the safety of a guideline, by using osmol gap as an indicator of propylene glycol toxicity for pediatric patients receiving continuous infusion lorazepam. METHODS: From existing adult data, a guideline was developed for the use of continuous infusion lorazepam in pediatric critical care patients with recommendations for using osmol gap as an indicator of propylene glycol toxicity. A retrospective medical chart review was performed of patients receiving continuous infusion lorazepam from February 2012 to September 2012 for whom the guideline was used. RESULTS: Twenty-one patients received continuous infusion lorazepam for sedation in the pediatric intensive care unit during the 9-month study period for a total of 23 infusions. Eight patients (34.8%) had an osmol gap of ≥ 12 mOsm/kg during lorazepam infusion, and 7 patients (30.4%) did not have an elevated osmol gap at any point during the infusion. Two patients (8.6%) had clinical toxicity as indicated by elevated anion gap or lactate in addition to an osmol gap ≥ 12 mOsm/kg, while no patients experienced clinical toxicity with an osmol gap < 12 mOsm/kg. CONCLUSIONS: A guideline for the use of lorazepam infusion in pediatric critical care patients was developed and evaluated for safety. Lorazepam continuous infusions appeared to be associated with minimal toxicity in pediatric intensive care unit patients when the osmol gap monitoring guideline was used. PMID:26472950

  6. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration

    PubMed Central

    Li, Jingguo; Li, Zhanrong; Zhou, Tianyang; Zhang, Junjie; Xia, Huiyun; Li, Heng; He, Jijun; He, Siyu; Wang, Liya

    2015-01-01

    Purpose The cornea is a main barrier to drug penetration after topical application. The aim of this study was to evaluate the abilities of micelles generated from a positively charged triblock copolymer to penetrate the cornea after topical application. Methods The triblock copolymer poly(ethylene glycol)-poly(ε-caprolactone)-g-polyethyleneimine was synthesized, and the physicochemical properties of the self-assembled polymeric micelles were investigated, including hydrodynamic size, zeta potential, morphology, drug-loading content, drug-loading efficiency, and in vitro drug release. Using fluorescein diacetate as a model drug, the penetration capabilities of the polymeric micelles were monitored in vivo using a two-photon scanning fluorescence microscopy on murine corneas after topical application. Results The polymer was successfully synthesized and confirmed using nuclear magnetic resonance and Fourier transform infrared. The polymeric micelles had an average particle size of 28 nm, a zeta potential of approximately +12 mV, and a spherical morphology. The drug-loading efficiency and drug-loading content were 75.37% and 3.47%, respectively, which indicates that the polymeric micelles possess a high drug-loading capacity. The polymeric micelles also exhibited controlled-release behavior in vitro. Compared to the control, the positively charged polymeric micelles significantly penetrated through the cornea. Conclusion Positively charged micelles generated from a triblock copolymer are a promising vehicle for the topical delivery of hydrophobic agents in ocular applications. PMID:26451109

  7. Dynamic and static curing of ethylcellulose:PVA-PEG graft copolymer film coatings.

    PubMed

    Muschert, S; Siepmann, F; Leclercq, B; Siepmann, J

    2011-08-01

    When using aqueous polymer dispersions for the preparation of controlled-release film coatings, instability during long-term storage can be a crucial concern. Generally, a thermal after treatment is required to assure sufficient polymer particle coalescence. This curing step is often performed under static conditions in an oven, which is a time-consuming and rather cumbersome process. Dynamic curing in the fluidized bed presents an attractive alternative. However, yet little is known on the required conditions, in particular: temperature, time, and relative humidity, to provide stable film structures. The aim of this study was to better understand the importance of these key factors and to evaluate the potential of dynamic curing compared with that of static curing. Recently proposed ethylcellulose:poly(vinyl alcohol)-poly(ethylene glycol) graft copolymer (PVA-PEG graft copolymer) dispersions were coated on theophylline and metoprolol succinate-loaded starter cores, exhibiting different osmotic activity. Importantly, processing times as short as 2h were found to be sufficient to provide long-term stable films, even upon open storage under stress conditions. For instance, 2-h dynamic curing at 57°C and 15% relative humidity are assuring stable film structures in the case of theophylline matrix cores coated with 15%ethylcellulose:PVA-PEG graft copolymer 85:15. Importantly, the approach is also applicable to other types of drugs and starter cores, and the underlying drug release mechanisms remain unaltered.

  8. Evaluation of the Water Potentials of Solutions of Polyethylene Glycol 8000 Both in the Absence and Presence of Other Solutes

    PubMed Central

    Michel, Burlyn E.

    1983-01-01

    Published and additional data for polyethylene glycol 8000 (PEG), formerly PEG 6000, solution water potentials (Ψ) are compared. Actual bars Ψ over the concentration range of 0 to 0.8 gram PEG per gram H2O and temperature (T) range of 5 to 40°C are best predicted (probably within ± 5%) by this equation: Ψ = 1.29[PEG]2T − 140[PEG]2 − 4.0[PEG]. Although transformable through division by [PEG] to virial equation form, results indicate that the coefficients are not virial. Mannitol (MAN) interacts with PEG to produce Ψ significantly lower than additive. Vapor pressure osmometer (VPO) data for MAN-PEG synergism compared favorably with those from thermocouple hygrometry; and VPO data showing the interactions between PEG and four salts are presented. The synergism of MAN-PEG and of NaCl-PEG are related linearly to the concentration of solute added with PEG. PMID:16662983

  9. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms

    PubMed Central

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.

    2015-01-01

    Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles

  10. Evaluation of CO2-philicity of poly(vinyl acetate) and poly(vinyl acetate-alt-maleate) copolymers through molecular modeling and dissolution behavior measurement.

    PubMed

    Hu, Dongdong; Sun, Shaojun; Yuan, Peiqing; Zhao, Ling; Liu, Tao

    2015-02-19

    Multiscale molecular modeling and dissolution behavior measurement were both used to evaluate the factors conclusive on the CO2-philicity of poly(vinyl acetate) (PVAc) homopolymer and poly(vinyl acetate-alt-maleate) copolymers. The ab initio calculated interaction energies of the candidate CO2-philic molecule models with CO2, including vinyl acetate dimer (VAc), dimethyl maleate (DMM), diethyl maleate (DEM), and dibutyl maleate (DBM), showed that VAc was the most CO2-philc segment. However, the cohesive energy density, solubility parameter, Flory-Huggins parameter, and radial distribution functions calculated by using the molecular dynamics simulations for the four polymer and polymer-CO2 systems indicated that poly(VAc-alt-DBM) had the most CO2-philicity. The corresponding polymers were synthesized by using free radical polymerization. The measurement of cloud point pressures of the four polymers in CO2 also demonstrated that poly(VAc-alt-DBM) had the most CO2-philicity. Although copolymerization of maleate, such as DEM or DBM, with PVAc reduced the polymer-CO2 interactions, the weakened polymer-polymer interaction increased the CO2-philicity of the copolymers. The polymer-polymer interaction had a significant influence on the CO2-philicity of the polymer. Reduction of the polymer-polymer interaction might be a promising strategy to prepare the high CO2-philic polymers on the premise that the strong polymer-CO2 interaction could be maintained.

  11. Conductive area ratio of multiblock copolymer electrolyte membranes evaluated by e-AFM and its impact on fuel cell performance

    NASA Astrophysics Data System (ADS)

    Takimoto, Naohiko; Takamuku, Shogo; Abe, Mitsutaka; Ohira, Akihiro; Lee, Hae-Seung; McGrath, James E.

    The correlation between membrane surface morphology and fuel cell performance was investigated using a series of hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) with different block lengths. The proton conductive regions on the membrane surface were successfully observed by using electrochemical atomic force microscopy (e-AFM). The results revealed a strong dependence of the hydrophilic/hydrophobic microphase-separated structure on the block length. The conductive area ratio (CAR) estimated from the proton conduction image decreased as the block length increased, and it was found to be closely connected with cell resistance that determines fuel cell performance. The well-defined phase-separated structure of multiblock copolymers can improve proton conductivity without any undesirable increments in water uptake or swelling, but in some instances, it affects the interfacial connection with the catalyst layer, resulting in lower fuel cell performance. The results of this study suggest the necessity for further improvement of the membrane morphology by optimizing both the casting conditions and the molecular design of the block sequences.

  12. Amine-reactive biodegradable diblock copolymers.

    PubMed

    Tessmar, Jörg K; Mikos, Antonios G; Göpferich, Achim

    2002-01-01

    A new class of diblock copolymers was synthesized from biodegradable poly(lactic acid) and poly(ethylene glycol)minus signmonoamine. These polymers were activated by covalently attaching linkers such as disuccinimidyl tartrate or disuccinimidyl succinate to the hydrophilic polymer chain. The polymers were characterized by (1)H NMR spectroscopy, (13)C NMR spectroscopy and gel permeation chromatography (GPC). These investigations indicated that the polymers were obtained with the correct composition, in high purities, and the expected molecular weight. By using dyes containing primary amine groups such as 5-aminoeosin as model substrates, it was possible to show that the polymers are able to bind such compounds covalently. The diblock copolymers were developed to suppress unspecific protein adsorption and allow the binding of bioactive molecules by instant surface modification. The polymers are intended to be used for tissue engineering applications where surface immobilized cell adhesion peptides or growth factors are needed to control cell behavior.

  13. Evaluation of the stability of nonfouling ultrathin poly(ethylene glycol) films for silicon-based microdevices.

    PubMed

    Sharma, Sadhana; Johnson, Robert W; Desai, Tejal A

    2004-01-20

    The creation of nonfouling surfaces is one of the major prerequisites for microdevices for biomedical and analytical applications. Poly(ethylene glycol) (PEG), a water soluble, nontoxic, and nonimmunogenic polymer has the unique ability of reducing nonspecific protein adsorption and cell adhesion and, therefore, is generally coupled with a wide variety of surfaces to improve their biocompatibility. The performance of these modified surfaces for long-term biomedical applications largely depends on the stability of these PEG films. To this end, we have investigated the stability of covalently coupled ultrathin PEG films on silicon in aqueous in vivo like conditions for a period of 4 weeks. The PEG-modified silicon substrates were incubated in PBS (37 degrees C, pH 7.4, 5% CO2) for different periods of time and then characterized using the techniques of ellipsometry, contact angle measurement, X-ray photoelectron spectroscopy, and atomic force microscopy. The ability of the PEG-modified surfaces to control protein fouling was examined by protein adsorption studies using fluorescein isothiocyanate labeled bovine serum albumin and ellipsometry. Furthermore, the ability of these films to control fibroblast adhesion was examined. Studies suggest that the PEG-modified surfaces retain their protein and cell repulsive nature even though the PEG film thickness decreases for the period of investigation.

  14. Preparation of sterically stabilized chitin nanowhisker dispersions by grafting of poly(ethylene glycol) and evaluation of their dispersion stability.

    PubMed

    Araki, Jun; Kurihara, Mari

    2015-01-12

    Sterically stabilized chitin nanowhiskers (ChNWs) were prepared by surface grafting monomethoxy poly(ethylene glycol) (mPEG) via reductive amination of primary amino groups on ChNWs and terminal aldehydes on mPEG. The amount of grafted mPEG was determined to be 0.2-0.3 g/g ChNWs, by conductometric titration, from the decrease in amino groups after grafting. ChNWs with controlled amounts of surface amino groups were obtained by deacetylation; however, this did not cause a drastic change in the amount of grafted mPEG. Grafting was confirmed by Fourier-transform infrared spectroscopy; however, X-ray diffractometry indicated no sign of mPEG. Thermogravimetry indicated a higher amount of mPEG than that from titration, suggesting an overestimation due to the facilitated combustion of grafted samples. In contrast to ungrafted samples, all grafted samples were stable in the presence of electrolytes. However, liquid-crystalline phase separation of grafted ChNWs was not observed, possibly owing to the high viscosity of the concentrated sample.

  15. RGD Peptides-Conjugated Pluronic Triblock Copolymers Encapsulated with AP-2α Expression Plasmid for Targeting Gastric Cancer Therapy in Vitro and in Vivo.

    PubMed

    Wang, Wei; Liu, Zhimin; Sun, Peng; Fang, Cheng; Fang, Hongwei; Wang, Yueming; Ji, Jiajia; Chen, Jun

    2015-07-17

    Gastric cancer, a high-risk malignancy, is a genetic disease developing from a cooperation of multiple gene mutations and a multistep process. Gene therapy is a novel treatment method for treating gastric cancer. Here, we developed a novel Arg-Gly-Asp (RGD) peptides conjugated copolymers nanoparticles-based gene delivery system in order to actively targeting inhibit the growth of gastric cancer cells. These transcription factor (AP-2α) expression plasmids were also encapsulated into pluronic triblock copolymers nanoparticles which was constituted of poly(ethylene glycol)-block-poly(propylene glycol)- block-poly(ethylene glycol) (PEO-block-PPO-block-PEO, P123). The size, morphology and composition of prepared nanocomposites were further characterized by nuclear magnetic resonance (NMR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). In MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide) analysis, these nanocomposites have minor effects on the proliferation of GES-1 cells but significantly decreased the viability of MGC-803, suggesting they own low cytotoxicity but good antitumor activity. The following in vivo evaluation experiments confirmed that these nanocomposites could prevent the growth of gastric cancer cells in the tumor xenograft mice model. In conclusion, these unique RGD peptides conjugated P123 encapsulated AP-2α nanocomposites could selectively and continually kill gastric cancer cells by over-expression of AP-2α in vitro and in vivo; this exhibits huge promising applications in clinical gastric cancer therapy.

  16. Characterisation and evaluation of paramagnetic fluorine labelled glycol chitosan conjugates for (19)F and (1)H magnetic resonance imaging.

    PubMed

    De Luca, Elena; Harvey, Peter; Chalmers, Kirsten H; Mishra, Anurag; Senanayake, P Kanthi; Wilson, J Ian; Botta, Mauro; Fekete, Marianna; Blamire, Andrew M; Parker, David

    2014-02-01

    Medium molecular weight glycol chitosan conjugates have been prepared, linked by an amide bond to paramagnetic Gd(III), Ho(III) and Dy(III) macrocyclic complexes in which a trifluoromethyl reporter group is located 6.5 Å from the paramagnetic centre. The faster relaxation of the observed nucleus allows modified pulse sequences to be used with shorter acquisition times. The polydisperse materials have been characterised by gel permeation chromatography, revealing an average molecular weight on the order of 13,800 (Gd), 14,600 (Dy) and 16,200 (Ho), consistent with the presence of 8.5, 9.5 and 13 complexes, respectively. The gadolinium conjugate was prepared for both a q = 1 monoamide tricarboxylate conjugate (r1p 11.2 mM(-1) s(-1), 310 K, 1.4 T) and a q = 0 triphosphinate system, and conventional contrast-enhanced proton MRI studies at 7 T were undertaken in mice bearing an HT-29 or an HCT-116 colorectal tumour xenograft (17 μmol/kg). Enhanced contrast was observed following injection in the tail vein in tumour tissue, with uptake also evident in the liver and kidney with a tumour-to-liver ratio of 2:1 at 13 min, and large amounts in the kidney and bladder consistent with predominant renal clearance. Parallel experiments observing the (19)F resonance in the holmium conjugate complex using a surface coil did not succeed owing to its high R2 value (750 Hz, 7 T). However, the fluorine signal in the dysprosium triphosphinate chitosan conjugate [R1/R2 = 0.6 and R1 = 145 Hz (7 T)] was sharper and could be observed in vivo at -65.7 ppm, following intravenous tail vein injection of a dose of 34 μmol/kg.

  17. Effects of block copolymer properties on nanocarrier protection from in vivo clearance

    PubMed Central

    D’Addio, Suzanne M.; Saad, Walid; Ansell, Steven M.; Squiers, John J.; Adamson, Douglas; Herrera-Alonso, Margarita; Wohl, Adam R.; Hoye, Thomas R.; Macosko, Christopher W.; Mayer, Lawrence D.; Vauthier, Christine; Prud’homme, Robert K.

    2012-01-01

    Drug nanocarrier clearance by the immune system must be minimized to achieve targeted delivery to pathological tissues. There is considerable interest in finding in vitro tests that can predict in vivo clearance outcomes. In this work, we produce nanocarriers with dense PEG layers resulting from block copolymer-directed assembly during rapid precipitation. Nanocarriers are formed using block copolymers with hydrophobic blocks of polystyrene (PS), poly-ε-caprolactone (PCL), poly-D,L-lactide (PLA), or poly-lactide-co-glycolide (PLGA), and hydrophilic blocks of polyethylene glycol (PEG) with molecular weights from 1.5 kg/mol to 9 kg/mol. Nanocarriers with paclitaxel prodrugs are evaluated in vivo in Foxn1nu mice to determine relative rates of clearance. The amount of nanocarrier in circulation after 4 h varies from 10% to 85% of initial dose, depending on the block copolymer. In vitro complement activation assays are conducted in an effort to correlate the protection of the nanocarrier surface from complement binding and activation and in vivo circulation. Guidelines for optimizing block copolymer structure to maximize circulation of nanocarriers formed by rapid precipitation and directed assembly are proposed, relating to the relative size of the hydrophilic and hydrophobic block, the hydrophobicity of the anchoring block, the absolute size of the PEG block, and polymer crystallinity. The in vitro results distinguish between the poorly circulating PEG5k-PCL9k and the better circulating nanocarriers, but could not rank the better circulating nanocarriers in order of circulation time. Analysis of PEG surface packing on monodisperse 200 nm latex spheres indicates that the sizes of the hydrophobic PCL, PS, and PLA blocks are correlated with the PEG blob size, and possibly the clearance from circulation. Suggestions for next step in vitro measurements are made. PMID:22732478

  18. In vitro investigation on poly(lactide)-Tween 80 copolymer nanoparticles fabricated by dialysis method for chemotherapy.

    PubMed

    Zhang, Zhiping; Feng, Si-Shen

    2006-04-01

    Polysorbate 80 (Tween 80) has been widely used as an emulsifier with excellent effects in nanoparticles technology for biomedical applications. This work was thus triggered to synthesize poly(lactide)/Tween 80 copolymers with various copolymer blend ratio, which were synthesized by ring-opening polymerization and characterized by 1H NMR and TGA. Nanoparticles of poly(lactide)/Tween 80 copolymers were prepared by the dialysis method without surfactants/emulsifiers involved. Paclitaxel was chosen as a prototype anticancer drug due to its excellent therapeutic effects against a wide spectrum of cancers. The drug-loaded nanoparticles of poly(lactide)/Tween 80 copolymers were then characterized by various state-of-the-art techniques, including laser light scattering for particles size and size distribution, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) for surface morphology; laser Doppler anemometry for zeta potential; differential scanning calorimetry (DSC) for the physical status of the drug encapsulated in the polymeric matrix; X-ray photoelectron spectrometer (XPS) for surface chemistry; high performance liquid chromatography (HPLC) for drug encapsulation efficiency; and in vitro drug release kinetics. HT-29 cells and Glioma C6 cells were used as an in vitro model of the GI barrier for oral chemotherapy and a brain cancer model to evaluate in vitro cytotoxicity of the paclitaxel-loaded nanoparticles. The viability of C6 cells was decreased from 37.4 +/- 4.0% for poly(D,L-lactide-co-glycolic acid) (PLGA) nanoparticles to 17.8 +/- 4.2% for PLA-Tween 80-10 and 12.0 +/- 5.4% for PLA-Tween 80-20 copolymer nanoparticles, which was comparable with that for Taxol at the same 50 microg/mL drug concentration.

  19. GLYCOLIC - FORMIC ACID FLOWSHEET DEVELOPMENT

    SciTech Connect

    Pickenheim, B.; Stone, M.; Newell, J.

    2010-11-08

    glycolic acid added. The outstanding issues regarding the glycolic/formic flowsheet include increasing understanding of the impact on glass REDOX control and increased metal solubility, particularly iron, during processing. Additionally, evaluations of the utility of the flowsheet over varying sludge compositions should be completed to ensure flowsheet robustness. Work has already been initiated to further understand the REDOX and iron solubility areas.

  20. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications.

    PubMed

    Alexander, Amit; Ajazuddin; Khan, Junaid; Saraf, Swarnlata; Saraf, Shailendra

    2013-12-28

    Stimuli triggered polymers provide a variety of applications related with the biomedical fields. Among various stimuli triggered mechanisms, thermoresponsive mechanisms have been extensively investigated, as they are relatively more convenient and effective stimuli for biomedical applications. In a contemporary approach for achieving the sustained action of proteins, peptides and bioactives, injectable depots and implants have always remained the thrust areas of research. In the same series, Poloxamer based thermogelling copolymers have their own limitations regarding biodegradability. Thus, there is a need to have an alternative biomaterial for the formulation of injectable hydrogel, which must remain biocompatible along with safety and efficacy. In the same context, poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of their biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review stresses on the physicochemical property, stability and composition prospects of smart PEG/poly(lactic-co-glycolic acid) (PLGA) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. The manuscript also highlights the synthesis scheme and stability characteristics of these copolymers, which will surely help the researchers working in the same area. We have also emphasized the applied use of these smart copolymers along with their formulation problems, which could help in understanding the possible modifications related with these, to overcome their inherent associated limitations.

  1. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  2. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene films: chemical characterization and evaluation of the protein adsorption.

    PubMed

    Zanini, Stefano; Riccardi, Claudia; Grimoldi, Elisa; Colombo, Claudia; Villa, Anna Maria; Natalello, Antonino; Gatti-Lafranconi, Pietro; Lotti, Marina; Doglia, Silvia Maria

    2010-01-01

    This work deals with the optimization of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) films in order to obtain surfaces with a reduced protein adsorption for possible biomedical applications. To this end, we examined the protein adsorption on the treated and untreated surfaces. The graft-polymerization process consisted of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. The efficiency of these processes was evaluated in terms of the amount of grafted polymer, coverage uniformity and substrates wettability. The process was monitored by contact angle measurements, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in Phosphate Buffer Saline (PBS) at 37 degrees C. The adsorption of fibrinogen and green fluorescent protein (GFP)--taken as model proteins--on the differently prepared surfaces was evaluated through a fluorescence approach using laser scanning confocal microscopy with photon counting detection. After plasma treatments of short duration, the protein adsorption decreases by about 60-70% with respect to that of the untreated film, while long plasma exposure resulted in a higher protein adsorption, due to damaging of the grafted polymer.

  3. Cycloolefin effect in cycloolefin-(meth)acryl copolymer

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soon; Seo, Dong Chul; Lee, Chang Soo; Park, Sang Wok; Kim, Sang Jin; Shin, Dae Hyeon; Shin, Jin Bong; Park, Joo Hyun

    2008-11-01

    One of the most important factors in ArF resist development is a resin platform, which dominates a lot of parts of resist characteristics. It has been much changed in order to improve their physical properties such as resolution, pattern profile, etch resistance and line edge roughness. Through the low etch resistance in ArF initial (meth)acryl type copolymer and low transmittance in COMA type copolymer most researchers were interested in developing of (meth)acryl type copolymer again for ArF photoresist. On the other hand, we have studied various polymer platforms suitable ArF photoresist except for meth(acryl) type copolymer. As a result of this study we had developed ROMA type polymers and cycloolefin-(meth)acryl type copolymers. Among the polymers cycloolefin-(meth)acryl type copolymer has many attractions such as etch roughness, resist reflow which needs low glass transition temperature and solvent solubility. In this study, we intend to find out cycloolefin-(meth)acryl copolymer characteristics compared with (meth)acryl copolymer. And, we have tried to find out any differences between acrylate type copolymer and cycloolefin-(meth)acrylate type copolymer with various evaluation results. As a result of this study we are going to talk about the reason that the resist using acrylate type copolymer and cycloolefin-(meth)acryl type copolymer show good pattern profile while acrylate type copolymer show poor pattern profile. We also intend to explain the role of cycloolefin as a function of molecular weight variation and substitution ratio variation of cycloolefin in cycloolefin-(meth)acrylate resin.One of the most important factors in ArF resist development is a resin platform, which dominates a lot of parts of resist characteristics. It has been much changed in order to improve their physical properties such as resolution, pattern profile, etch resistance and line edge roughness. Through the low etch resistance in ArF initial (meth)acryl type copolymer and low

  4. Toxicity of ethylene glycol, diethylene glycol, and propylene glycol to human cells in culture

    SciTech Connect

    Mochida, K.; Gomyoda, M.

    1987-01-01

    Tissue culture toxicity of various alcohols has been reported by Dillingham who used mouse L cells and Koerker who used mouse neuroblastoma cells. The toxicity of various polyhydric alcohols (ethylene glycol, diethylene glycol and propylene glycol) has apparently not been determined, under conditions of culture. The authors report the toxicity of ethylene glycol, diethylene glycol and propylene glycol and KB cells and the results are compared with previous data obtained using their cell culture system.

  5. Radical-cured block copolymer-modified thermosets

    SciTech Connect

    Redline, Erica M.; Francis, Lorraine F.; Bates, Frank S.

    2013-01-10

    Poly(ethylene-alt-propylene)-b-poly(ethylene oxide) (PEP-PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP-PEO. The diblock copolymers self-assembled into well-dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer-modified epoxies, and an explanation is proposed.

  6. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  7. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide.

    PubMed

    Behravesh, Esfandiar; Zygourakis, Kyriacos; Mikos, Antonios G

    2003-05-01

    Marrow-derived osteoblasts were cultured on poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) based hydrogels modified in bulk with a covalently linked RGDS model peptide. A poly(ethylene glycol) spacer arm was utilized to covalently link the peptide to the hydrogel. Three P(PF-co-EG) block copolymers were synthesized with varying poly(ethylene glycol) block lengths relative to poly(ethylene glycol) spacer arm. A poly(ethylene glycol) block length of nominal molecular weight 2000 and spacer arm of nominal molecular weight 3400 were found to reduce nonspecific cell adhesion and show RGDS concentration dependent marrow-derived osteoblast adhesion. A concentration of 100 nmol/mL RGDS was sufficient to promote adhesion of 84 +/- 17% of the initial seeded marrow-derived osteoblasts compared with 9 +/- 1% for the unmodified hydrogel after 12 h. Cell spreading was quantified as a method for evaluating adhesivity of cells to the hydrogel. A megacolony migration assay was utilized to assess the migration characteristics of the marrow-derived osteoblasts on RGDS modified hydrogels. Marrow-stromal osteoblasts migration was greater on hydrogels modified with 100 nmol/mL linked RGDS when compared with hydrogels modified with 1000 nmol/mL linked RGDS, while proliferation was not affected. These P(PF-co-EG) hydrogels modified in the bulk with RGDS peptide are potential candidates as in situ forming scaffolds for bone tissue engineering applications.

  8. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery.

    PubMed

    He, Chaoliang; Kim, Sung Wan; Lee, Doo Sung

    2008-05-08

    Stimuli-sensitive block copolymer hydrogels, which are reversible polymer networks formed by physical interactions and exhibit a sol-gel phase-transition in response to external stimuli, have great potential in biomedical and pharmaceutical applications, especially in site-specific controlled drug-delivery systems. The drug may be mixed with a polymer solution in vitro and the drug-loaded hydrogel can form in situ after the in vivo administration, such as injection; therefore, stimuli-sensitive block copolymer hydrogels have many advantages, such as simple drug formulation and administration procedures, no organic solvent, site-specificity, a sustained drug release behavior, less systemic toxicity and ability to deliver both hydrophilic and hydrophobic drugs. Among the stimuli in the biomedical applications, temperature and pH are the most popular physical and chemical stimuli, respectively. The temperature- and/or pH-sensitive block copolymer hydrogels for biomedical applications have been extensively developed in the past decade. This review focuses on recent development of the preparation and application for drug delivery of the block copolymer hydrogels that respond to temperature, pH or both stimuli, including poly(N-substituted acrylamide)-based block copolymers, poloxamers and their derivatives, poly(ethylene glycol)-polyester block copolymers, polyelectrolyte-based block copolymers and the polyelectrolyte-modified thermo-sensitive block copolymers. In addition, the hydrogels based on other stimuli-sensitive block copolymers are discussed.

  9. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  10. Comparison of the biomechanics and histology of two soft-tissue fixators composed of bioabsorbable copolymers.

    PubMed

    Powers, D L; Sonawala, M; Woolf, S K; An, Y H; Hawkins, R; Pietrzak, W S

    2001-01-01

    The purpose of this study was to assess the dynamic in vitro and in vivo characteristics of two different bioabsorbable copolymer soft-tissue fixation devices and to determine their efficacy in reattaching soft tissue to bone. Suretac fixators (Smith & Nephew/Acufex MicroSurgical Inc., Northwood, MA), made of polyglyconate (2:1 glycolic acid:trimethylene carbonate), and Pop Rivets (Arthrotek, Warsaw, IN), made of LactoSorb (82% poly L-lactic acid, 18% polyglycolic acid), were anchored into synthetic bone, and their pull-out strengths were evaluated. The devices were also evaluated with the use of an in vivo goat model in which the medial collateral ligament (MCL) was elevated from the tibia and directly reattached. In the in vitro biomechanical study, the Suretac fixators had negligible strength remaining by four weeks, whereas the Pop Rivets retained 50% of their strength at 4 weeks, 20% at 8 weeks, and negligible strength at 12 weeks. The in vivo strength of MCL repairs affected by each implant was not statistically different at any of the time points. Histologically, both implants were absorbed by 52 weeks, and there was no appreciable adverse tissue response. In conclusion, both copolymer fixators were found to be biocompatible. The Pop Rivet fixators demonstrated in vivo performance comparable to the Suretac fixators, although the Pop Rivets retained strength longer in vitro. Our results suggest that both devices provide adequate strength of fixation before degrading to allow the healing soft tissues to reach or surpass their native strength.

  11. Formulation and evaluation of poly(lactic-co-glycolic acid) microspheres loaded with an altered collagen type II peptide for the treatment of rheumatoid arthritis.

    PubMed

    He, Jintian; Li, Huiqi; Liu, Chao; Wang, Gaizhen; Ge, Lan; Ma, Shufen; Huang, Lijing; Yan, Shaofeng; Xu, Xiaohong

    2015-01-01

    The aim of this research was to evaluate the potential of water-in-oil-in-water (w/o/w) and solid-in-oil-in-water (s/o/w) emulsification techniques to prepare the altered collagen type II peptide AP268-270 (ACTP)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres to make ACTP more convenient as an rheumatoid arthritis treatment. Microspheres produced by the s/o/w method had higher drug encapsulation efficiency (69.7-79.8%) than those prepared by the w/o/w method (21.8-39.3%). In vitro drug release was influenced by the microencapsulation technique, molecular weight, and composition of the polymer. After intramuscular injection of the optimal formulation to Lewis rats, the concentration of ACTP peptide in serum reached its maximum level on day 3 and then remained nearly stable for approximately 4 weeks. In a collagen-induced arthritis rat model, a single intramuscular injection of ACTP-loaded PLGA microspheres had comparable efficacy to the intravenous injection of ACTP peptide solution once every other day.

  12. A toxicological review of the propylene glycols.

    PubMed

    Fowles, Jeff R; Banton, Marcy I; Pottenger, Lynn H

    2013-04-01

    The toxicological profiles of monopropylene glycol (MPG), dipropylene glycol (DPG), tripropylene glycol (TPG) and polypropylene glycols (PPG; including tetra-rich oligomers) are collectively reviewed, and assessed considering regulatory toxicology endpoints. The review confirms a rich data set for these compounds, covering all of the major toxicological endpoints of interest. The metabolism of these compounds share common pathways, and a consistent profile of toxicity is observed. The common metabolism provides scientific justification for adopting a read-across approach to describing expected hazard potential from data gaps that may exist for specific oligomers. None of the glycols reviewed presented evidence of carcinogenic, mutagenic or reproductive/developmental toxicity potential to humans. The pathologies reported in some animal studies either occurred at doses that exceeded experimental guidelines, or involved mechanisms that are likely irrelevant to human physiology and therefore are not pertinent to the exposures experienced by consumers or workers. At very high chronic doses, MPG causes a transient, slight decrease in hemoglobin in dogs and at somewhat lower doses causes Heinz bodies to form in cats in the absence of any clinical signs of anemia. Some evidence for rare, idiosyncratic skin reactions exists for MPG. However, the larger data set indicates that these compounds have low sensitization potential in animal studies, and therefore are unlikely to represent human allergens. The existing safety evaluations of the FDA, USEPA, NTP and ATSDR for these compounds are consistent and point to the conclusion that the propylene glycols present a very low risk to human health.

  13. The Evaluation of the Possibilities of Using PLGA Co-Polymer and Its Composites with Carbon Fibers or Hydroxyapatite in the Bone Tissue Regeneration Process – in Vitro and in Vivo Examinations

    PubMed Central

    Cieślik, Magdalena; Mertas, Anna; Morawska-Chochólł, Anna; Sabat, Daniel; Orlicki, Rajmund; Owczarek, Aleksander; Król, Wojciech; Cieślik, Tadeusz

    2009-01-01

    Synthetic polymers belonging to the aliphatic polyester group have become highly promising biomaterials for reconstructive medicine. The purpose of the present work is a biological evaluation of lactide-glycolide co-polymer (PLGA) and its composites with carbon fibers (PLGA+CF) or hydroxyapatite (PLGA+HA). The cytotoxicity of the evaluated materials towards hFOB 1.19 human osteoblast-like cells was assessed. Moreover, during the one-year contact of the assessed materials with living osseous tissue, the progress of bone formation was analyzed and the accompanying process of the materials’ degradation was evaluated. The materials under evaluation proved to be biocompatible. PMID:19742134

  14. The evaluation of the possibilities of using PLGA co-polymer and its composites with carbon fibers or hydroxyapatite in the bone tissue regeneration process - in vitro and in vivo examinations.

    PubMed

    Cieślik, Magdalena; Mertas, Anna; Morawska-Chochól, Anna; Sabat, Daniel; Orlicki, Rajmund; Owczarek, Aleksander; Król, Wojciech; Cieślik, Tadeusz

    2009-07-15

    Synthetic polymers belonging to the aliphatic polyester group have become highly promising biomaterials for reconstructive medicine. The purpose of the present work is a biological evaluation of lactide-glycolide co-polymer (PLGA) and its composites with carbon fibers (PLGA+CF) or hydroxyapatite (PLGA+HA). The cytotoxicity of the evaluated materials towards hFOB 1.19 human osteoblast-like cells was assessed. Moreover, during the one-year contact of the assessed materials with living osseous tissue, the progress of bone formation was analyzed and the accompanying process of the materials' degradation was evaluated. The materials under evaluation proved to be biocompatible.

  15. Synthesis and characterization of poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s

    NASA Astrophysics Data System (ADS)

    Haw, Tan Ching; Ahmad, Azizan; Anuar, Farah Hannan

    2015-09-01

    In this study, poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s was synthesized in the framework of environmental friendly products to meet the need for highly flexible polymers. Triblock copolymer with poly(ethylene glycol) as center block and poly(D,L-lactide) as side block were first synthesized by ring-opening polymerization of D,L-lactide, followed by chain extension reaction of triblocks using hexamethylene diisocyanate (HMDI). NMR and infra-red spectroscopies were used to determine the molecular composition whereas XRD analysis revealed crystallinity behavior of synthesized multiblock copolymers.

  16. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function

    NASA Astrophysics Data System (ADS)

    Subramani, K.; Birch, M. A.

    2006-09-01

    The aims of this study were to fabricate poly(ethylene glycol) (PEG) hydrogel micropatterns on a biomaterial surface to guide osteoblast behaviour and to study how incorporating vascular endothelial growth factor (VEGF) within the adhered hydrogel influenced cell morphology. Standard photolithographic procedures or photopolymerization through a poly(dimethyl siloxane) (PDMS) mould were used to fabricate patterned PEG hydrogels on the surface of silanized silicon wafers. Hydrogel patterns were evaluated by light microscopy and surface profilometry. Rat osteoblasts were cultured on these surfaces and cell morphology investigated by fluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Release of protein trapped in the polymerized PEG was evaluated and VEGF-PEG surfaces were characterized for their ability to support cell growth. These studies show that photopolymerized PEG can be used to create anti-adhesive structures on the surface of silicon that completely control where cell interaction with the substrate takes place. Using conventional lithography, structures down to 50 µm were routinely fabricated with the boundaries exhibiting sloping sides. Using the PDMS mould approach, structures were fabricated as small as 10 µm and boundaries were very sharp and vertical. Osteoblasts exhibiting typical morphology only grew on the silicon wafer surface that was not coated with PEG. Adding BSA to the monomer solution showed that protein could be released from the hydrogel for up to 7 days in vitro. Incorporating VEGF in the hydrogel produced micropatterns that dramatically altered osteoblast behaviour. At boundaries with the VEGF-PEG hydrogel, there was striking formation of cellular processes and membrane ruffling indicative of a change in cell morphology. This study has explored the morphogenetic properties of VEGF and the applications of nano/microfabrication techniques for guided tissue (bone) regeneration in dental and

  17. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation

    PubMed Central

    Jesus, D.; Oliveira, J. R.; Oliveira, F. E.; Higa, K. C.; Junqueira, J. C.; Jorge, A. O. C.; Back-Brito, G. N.; Oliveira, L. D.

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%. PMID:26605376

  18. Persea americana Glycolic Extract: In Vitro Study of Antimicrobial Activity against Candida albicans Biofilm and Cytotoxicity Evaluation.

    PubMed

    Jesus, D; Oliveira, J R; Oliveira, F E; Higa, K C; Junqueira, J C; Jorge, A O C; Back-Brito, G N; Oliveira, L D

    2015-01-01

    This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.

  19. Science and the perceived environmental risk from ethylene glycol and propylene glycol

    SciTech Connect

    Snellings, W.M.; Shah, S.I.; Garska, D.; Williams, J.B.

    1994-12-31

    Ethylene glycol and propylene glycol are widely used in aircraft deicing fluids (ADF), heat transfer fluids, and engine coolants. Discharges of these compounds to the environment have been reduced in recent years, but remain significant. The perceived environmental risk affects the decisions of businesses and regulatory agencies. There is a perception that propylene glycol poses a lower environmental risk than ethylene glycol. This perception is an inference from the use of low concentrations of propylene glycol in food additives -- something safe for food must be safe for fish. Environmental risk, however, must be established on the basis of scientific data, including acute and chronic toxicity to freshwater and saltwater species, oxygen demand, and persistence. A review of aquatic toxicity data for marine and freshwater species, and a review of treatability data in wastewater and soil for these widely used compounds has been completed. The data show that the two compounds, in fact, pose similar environmental risks, and in certain aspects one or the other glycol appears to be preferable. All aspects must be considered to give a valid perception of risk. The role of additives in deicing fluids is significant. Environmental fate and effect data indicate that additives are usually more toxic than the glycols, and environmental data for particular formulations must be evaluated as part of any risk assessment.

  20. Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis.

    PubMed

    Tai, Hongyun; Wang, Wenxin; Vermonden, Tina; Heath, Felicity; Hennink, Wim E; Alexander, Cameron; Shakesheff, Kevin M; Howdle, Steven M

    2009-04-13

    Thermoresponsive and photocrosslinkable polymers can be used as injectable scaffolds in tissue engineering to yield gels in situ with enhanced mechanical properties and stability. They allow easy handling and hold their shapes prior to photopolymerization for clinical practice. Here we report a novel copolymer with both thermoresponsive and photocrosslinkable properties via a facile one-step deactivation enhanced atom transfer radical polymerization (ATRP) using poly(ethylene glycol) methyl ether methylacrylate (PEGMEMA, M(n) = 475) and poly(propylene glycol) methacrylate (PPGMA, M(n) = 375) as monofunctional vinyl monomers and up to 30% of ethylene glycol dimethacrylate (EGDMA) as multifunctional vinyl monomer. The resultant PEGMEMA-PPGMA-EGDMA copolymers have been characterized by gel permeation chromatography (GPC) and 1H NMR analysis, which demonstrate their multivinyl functionality and hyperbranched structures. These water-soluble copolymers show lower critical solution temperature (LCST) behavior at 32 degrees C, which is comparable to poly(N-isopropylacrylamide) (PNIPAM). The copolymers can also be cross-linked by photopolymerization through their multivinyl functional groups. Rheological studies clearly demonstrate that the photocrosslinked gels formed at a temperature above the LCST have higher storage moduli than those prepared at a temperature below the LCST. Moreover, the cross-linking density of the gels can be tuned to tailor their porous structures and mechanical properties by adjusting the composition and concentration of the copolymers. Hydrogels with a broad range of storage moduli from 10 to 400 kPa have been produced.

  1. Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Xu, Binbin; Yao, Wenqiang; Li, Yongjun; Zhang, Sen; Huang, Xiaoyu

    2016-12-01

    A series of fluorine-containing amphiphilic ABC triblock copolymers comprising hydrophilic poly(ethylene glycol) (PEG) and poly(methacrylic acid) (PMAA), and hydrophobic poly(p-(2-(4-biphenyl)perfluorocyclobutoxy)phenyl methacrylate) (PBPFCBPMA) segments were synthesized by successive atom transfer radical polymerization (ATRP). First, PEG-Br macroinitiators bearing one terminal ATRP initiating group were prepared by chain-end modification of monohydroxy-terminated PEG via esterification reaction. PEG-b-PBPFCBPMA-Br diblock copolymers were then synthesized via ATRP of BPFCBPMA monomer initiated by PEG-Br macroinitiator. ATRP polymerization of tert-butyl methacrylate (tBMA) was directly initiated by PEG-b-PBPFCBPMA-Br to provide PEG-b-PBPFCBPMA-b-PtBMA triblock copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.43). The pendant tert-butyoxycarbonyls were hydrolyzed to carboxyls in acidic environment without affecting other functional groups for affording PEG-b-PBPFCBPMA-b-PMAA amphiphilic triblock copolymers. The critical micelle concentrations (cmc) were determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe and the self-assembly behavior in aqueous media were investigated by transmission electron microscopy. Large compound micelles and bowl-shaped micelles were formed in neutral aqueous solution. Interestingly, large compound micelles formed by triblock copolymers can separately or simultaneously encapsulate hydrophilic Rhodamine 6G and hydrophobic pyrene agents.

  2. Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer

    PubMed Central

    Xu, Binbin; Yao, Wenqiang; Li, Yongjun; Zhang, Sen; Huang, Xiaoyu

    2016-01-01

    A series of fluorine-containing amphiphilic ABC triblock copolymers comprising hydrophilic poly(ethylene glycol) (PEG) and poly(methacrylic acid) (PMAA), and hydrophobic poly(p-(2-(4-biphenyl)perfluorocyclobutoxy)phenyl methacrylate) (PBPFCBPMA) segments were synthesized by successive atom transfer radical polymerization (ATRP). First, PEG-Br macroinitiators bearing one terminal ATRP initiating group were prepared by chain-end modification of monohydroxy-terminated PEG via esterification reaction. PEG-b-PBPFCBPMA-Br diblock copolymers were then synthesized via ATRP of BPFCBPMA monomer initiated by PEG-Br macroinitiator. ATRP polymerization of tert-butyl methacrylate (tBMA) was directly initiated by PEG-b-PBPFCBPMA-Br to provide PEG-b-PBPFCBPMA-b-PtBMA triblock copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.43). The pendant tert-butyoxycarbonyls were hydrolyzed to carboxyls in acidic environment without affecting other functional groups for affording PEG-b-PBPFCBPMA-b-PMAA amphiphilic triblock copolymers. The critical micelle concentrations (cmc) were determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe and the self-assembly behavior in aqueous media were investigated by transmission electron microscopy. Large compound micelles and bowl-shaped micelles were formed in neutral aqueous solution. Interestingly, large compound micelles formed by triblock copolymers can separately or simultaneously encapsulate hydrophilic Rhodamine 6G and hydrophobic pyrene agents. PMID:28000757

  3. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, Saeid; Sano, Rie; Ishigami, Toru; Kakihana, Yuriko; Ohmukai, Yoshikage; Matsuyama, Hideto

    2015-01-01

    Hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties were prepared from brominated vinyl chloride-hydroxyethyl methacrylate copolymer (poly(VC-co-HEMA-Br)). The base membrane was grafted with two different zwitterionic monomers, (2-methacryloyloxyethylphosphorylcholine) (MPC) and [2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide) (MEDSAH), and poly(ethylene glycol) methyl ether methacrylate (PEGMA). The effect of the grafting on the base membrane hydrophilicity and antifouling properties was investigated. For comparison of the results, the pure water permeabilities and pore sizes at the outer surfaces of the grafted hollow fiber membranes were controlled to be similar. A poly(VC-co-HEMA-Br) hollow fiber membrane with similar pure water permeability and pore size was also prepared as a control membrane. A BSA solution was used as a model fouling solution for evaluation of the antifouling properties. Grafting with zwitterionic monomers and PEGMA improved the antifouling properties compared with the control membrane. The PEGMA grafted membrane showed the best antifouling properties among the grafted membranes

  4. Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake.

    PubMed

    Garofalo, Cinzia; Capuano, Giovanna; Sottile, Rosa; Tallerico, Rossana; Adami, Renata; Reverchon, Ernesto; Carbone, Ennio; Izzo, Lorella; Pappalardo, Daniela

    2014-01-13

    One constrain in the use of micellar carriers as drug delivery systems (DDSs) is their low stability in aqueous solution. In this study "tree-shaped" copolymers of general formula mPEG-(PLA)n (n = 1, 2 or 4; mPEG = poly(ethylene glycol) monomethylether 2K or 5K Da; PLA = atactic or isotactic poly(lactide)) were synthesized to evaluate the architecture and chemical composition effect on the micelles formation and stability. Copolymers with mPEG/PLA ratio of about 1:1 wt/wt were obtained using a "core-first" synthetic route. Dynamic Light Scattering (DLS), Field Emission Scanning Electron Microscopy (FESEM), and Zeta Potential measurements showed that mPEG2K-(PD,LLA)2 copolymer, characterized by mPEG chain of 2000 Da and two blocks of atactic PLA, was able to form monodisperse and stable micelles. To analyze the interaction among micelles and tumor cells, FITC conjugated mPEG-(PLA)n were synthesized. The derived micelles were tested on two, histological different, tumor cell lines: HEK293t and HeLa cells. Fluorescence Activated Cells Sorter (FACS) analysis showed that the FITC conjugated mPEG2K-(PD,LLA)2 copolymer stain tumor cells with high efficiency. Our data demonstrate that both PEG size and PLA structure control the biological interaction between the micelles and biological systems. Moreover, using confocal microscopy analysis, the staining of tumor cells obtained after incubation with mPEG2K-(PD,LLA)2 was shown to be localized inside the tumor cells. Indeed, the mPEG2K-(PD,LLA)2 paclitaxel-loaded micelles mediate a potent antitumor cytotoxicity effect.

  5. Synthesis and dose interval dependent hepatotoxicity evaluation of intravenously administered polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticle on Wistar rats.

    PubMed

    Rajan, Balan; Sathish, Shanmugam; Balakumar, Subramanian; Devaki, Thiruvengadam

    2015-03-01

    Superparamagnetic iron oxide nanoparticles are being used in medical imaging, drug delivery, cancer therapy, and so on. However, there is a direct need to identify any nanotoxicity associated with these nanoparticles. However uncommon, drug-induced liver injury (DILI) is a major health concern that challenges pharmaceutical industry and drug regulatory agencies alike. In this study we have synthesized and evaluated the dose interval dependent hepatotoxicity of polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticles (PUSPIOs). To assess the hepatotoxicity of intravenously injected PUSPIOs, alterations in basic clinical parameters, hematological parameters, hemolysis assay, serum levels of liver marker enzymes, serum and liver lipid peroxidation (LPO) levels, enzymatic antioxidant levels, and finally histology of liver, kidney, spleen, lung, brain, and heart tissues were studied in control and experimental Wistar rat groups over a 30-day period. The results of our study showed a significant increase in the aspartate transaminase (AST) enzyme activity at a dose of 10mg/kg b.w. PUSPIOs twice a week. Besides, alanine transaminase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) enzyme activity showed a slender increase when compared with control experimental groups. A significant increase in the serum and liver LPO levels at a dose of 10mg/kg b.w. PUSPIOs twice a week was also observed. Histological analyses of liver, kidney, spleen, lung, brain and heart tissue samples showed no obvious uncharacteristic changes. In conclusion, PUSPIOs were found to posses excellent biocompatibility and Wistar rats showed much better drug tolerance to the dose of 10mg/kg b.w. per week than the dose of 10mg/kg b.w. twice a week for the period of 30 days.

  6. EGFR-targeted poly(ethylene glycol)-distearoylphosphatidylethanolamine micelle loaded with paclitaxel for laryngeal cancer: preparation, characterization and in vitro evaluation.

    PubMed

    Ren, Henglei; Gao, Chunli; Zhou, Liang; Liu, Min; Xie, Cao; Lu, Weiyue

    2015-01-01

    The objective of this study was to evaluate the potential of using polymeric micelles modified with a peptide (termed GE11) ligand of epidermal growth factor receptor as the targeted carriers to achieve increased accumulation in laryngeal cancer and enhanced intracellular delivery for the encapsulated anticancer drugs. Poly (ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) micelles containing paclitaxel were prepared via film-hydration method followed by investigation of in vitro release of paclitaxel in phosphate-buffered saline. The average size of GE11-PEG-DSPE/paclitaxel micelle and mPEG-DSPE/paclitaxel were 35 ± 2.8 nm [the polydispersity index (PDI) = 0.207] and 28 ± 2.1 nm (PDI = 0.154), respectively. Micelles with or without GE11-modified had similar physicochemical properties. Transmission electron microscopy showed that the micelles were homogeneous and spherical in shape. Encapsulation efficiency and drug loading of the micelle were 74.11 ± 3.89% and 3.58 ± 2.82%, respectively. The in vitro targeting characteristic of GE11-modified micelles was investigated by observing the level of cellular uptake of fluorescent coumarin-6-loaded micelles on EGFR over-expressed human laryngeal cancer cell line Hep-2 and EGFR low-expressed human leukemic cell line U-937. Hep-2 cell proliferation was significantly inhibited by GE11-PEG-DSPE/paclitaxel micelle compared to mPEG-DSPE/paclitaxel micelle and Taxol in vitro. Our results suggested that GE11-PEG-DSPE micelle could be a promising strategy for enhancing paclitaxel's chemotherapeutic effects on EGFR over-expressed cancer cells.

  7. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).

    PubMed

    Loh, Xian Jun; Colin Sng, Kian Boon; Li, Jun

    2008-08-01

    Thermo-responsive multiblock poly(ester urethane)s comprising poly(epsilon-caprolactone) (PCL), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. The copolymers were characterized by GPC, NMR, FTIR, XRD, DSC and TGA. Water-swelling analysis carried out at different temperatures revealed that the bulk hydrophilicity of the copolymers could be controlled either by adjusting the composition of the copolymer or by changing the temperature of the environment. These thermo-responsive copolymer films formed highly swollen hydrogel-like materials when soaked in cold water and shrank when soaked in warm water. The changes are reversible. The mechanical properties of the copolymer films were assessed by tensile strength measurement. These copolymers were ductile when compared to PCL homopolymers. Young's modulus and the stress at break increased with increasing PCL content, whereas the strain at break increased with increasing PEG content. The results of the cytotoxicity tests based on the ISO 10993-5 protocol demonstrated that the copolymers were non-cytotoxic and could be potentially used in biomedical applications.

  8. The effect of glycerol, propylene glycol and polyethylene glycol 400 on the partition coefficient of benzophenone-3 (oxybenzone).

    PubMed

    Mbah, C J

    2007-01-01

    Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin.

  9. Review of glycol ether and glycol ether ester solvents used in the coating industry.

    PubMed Central

    Smith, R L

    1984-01-01

    Ethylene oxide-based glycol ether and glycol ether ester solvents have been used in the coatings industry for the past fifty years. Because of their excellent performance properties (evaporation rate, blush resistance, flow-out and leveling properties, solubility for coating resins, solvent activity, mild odor, good coupling ability, good solvent release) a complete line of ethylene oxide-based solvents of various molecular weights has been developed. These glycol ether and glycol ether ester solvents have better solvent activity for coating resin than ester or ketone solvents in their evaporation rate range. The gloss, flow and leveling, and general performance properties of many coating systems are dependent on the use of these products in the coating formula. Because of the concern about the toxicity of certain ethylene oxide-based solvents, other products are being evaluated as replacements in coating formulas. PMID:6499793

  10. Propylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Propylene glycol monoethyl ether ; CASRN 52125 - 53 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  11. Diethylene glycol dinitrate (DEGDN)

    Integrated Risk Information System (IRIS)

    Diethylene glycol dinitrate ( DEGDN ) ; CASRN 693 - 21 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments

  12. Triethylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monoethyl ether ; CASRN 112 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  13. Triethylene glycol monobutyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monobutyl ether ; CASRN 143 - 22 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  14. Design and Comparative Evaluation of In-vitro Drug Release, Pharmacokinetics and Gamma Scintigraphic Analysis of Controlled Release Tablets Using Novel pH Sensitive Starch and Modified Starch- acrylate Graft Copolymer Matrices

    PubMed Central

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-01-01

    The present investigation deals with the development of controlled release tablets of salbutamol sulphate using graft copolymers (St-g-PMMA and Ast-g-PMMA) of starch and acetylated starch. Drug excipient compatibility was spectroscopically analyzed via FT-IR, which confirmed no interaction between drug and other excipients. Formulations were evaluated for physical characteristics like hardness, friability, weight variations, drug release and drug content analysis which satisfies all the pharmacopoeial requirement of tablet dosage form. Release rate of a model drug from formulated matrix tablets were studied at two different pH namely 1.2 and 6.8, spectrophotometrically. Drug release from the tablets of graft copolymer matrices is profoundly pH-dependent and showed a reduced release rate under acidic conditions as compared to the alkaline conditions. Study of release mechanism by Korsmeyer’s model with n values between 0.61-0.67, proved that release was governed by both diffusion and erosion. In comparison to starch and acetylated starch matrix formulations, pharmacokinetic parameters of graft copolymers matrix formulations showed a significant decrease in Cmax with an increase in tmax, indicating the effect of dosage form would last for longer duration. The gastro intestinal transit behavior of the formulation was determined by gamma scintigraphy, using 99mTc as a marker in healthy rabbits. The amount of radioactive tracer released from the labelled tablets was minimal when the tablets were in the stomach, whereas it increased as tablets reached to intestine. Thus, in-vitro and in-vivo drug release studies of starch-acrylate graft copolymers proved their controlled release behavior with preferential delivery into alkaline pH environment. PMID:26330856

  15. Tuning thermoresponsive behavior of diblock copolymers and their gold core hybrids: part 1. Importance of placement of amphiphilic end groups on the diblock copolymers.

    PubMed

    Chen, Ning; Xiang, Xu; Tiwari, Ashutosh; Heiden, Patricia A

    2013-02-01

    We report the effects of use and placement of amphiphilic end groups as a valuable tool to achieve significant changes in the thermoresponsive properties of diblock copolymers without the need to resort to compositional changes. We prepared diblock copolymers of di(ethylene glycol) methyl ether methacrylate and oligo(ethylene glycol) methyl ether acrylate with phenyl dithioester and carboxylic acid chain ends and compared the effects of placement of these amphiphilic chain ends on the cloud points of the copolymers. All the copolymers were high molecular weight (greater than 20 kDa) with a polydispersity between 1.1 and 1.2, and the cloud points were measured by UV-vis spectrophotometry and reported as the temperature at 50% normalized transmission. The thermoresponse showed a significant dependency on end group placement, reaching as much as a 28°C difference in measured cloud point simply by exchanging end group placement rather than compositional changes. The effect is attributed to changes in the solvation and mobility from chain end placement affecting the degree of association of the chains. The underlying effect is due to the hydrophilic/hydrophobic balance in combination with the use of amphiphilic chain end placement that can be applied to copolymers with different blocks at the chain ends. This work shows that substantial changes in thermo-response properties can be achieved by re-arranging monomer components rather than changing monomer composition. This may have value in biomedical materials where the range of acceptable monomers is limited.

  16. Synthesis of long-circulating, backbone degradable HPMA copolymer-doxorubicin conjugates and evaluation of molecular-weight-dependent antitumor efficacy.

    PubMed

    Pan, Huaizhong; Sima, Monika; Yang, Jiyuan; Kopeček, Jindřich

    2013-02-01

    Backbone degradable, linear, multiblock N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (DOX) conjugates are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization followed by chain extension via thiol-ene click reaction. The examination of molecular-weight-dependent antitumor activity toward human ovarian A2780/AD carcinoma in nude mice reveals enhanced activity of multiblock, second-generation, higher molecular weight conjugates when compared with traditional HPMA copolymer-DOX conjugates. The examination of body weight changes during treatment indicates the absence of non-specific adverse effects.

  17. Evaluation of a new biocompatible poly(N-(morpholino ethyl methacrylate)-based copolymer for the delivery of ruthenium oligonucleotides, targeting HPV16 E6 oncogene.

    PubMed

    Reschner, Anca; Shim, Yong Ho; Dubois, Philippe; Delvenne, Philippe; Evrard, Brigitte; Marcélis, Lionel; Moucheron, Cécile; Kirsch-De Mesmaeker, Andrée; Defrancq, Eric; Raes, Martine; Piette, Jacques; Collard, Laurence; Piel, Géraldine

    2013-08-01

    This study investigates the use of a new biocompatible block copolymer poly(2-(dimethylamino)ethyl methacrylate-N-(morpholino)ethyl methacrylate (PDMAEMA-b-PMEMA) for the delivery of a particular antisense oligonucleotide targeting E6 gene from human papilloma virus. This antisense oligonucleotide was derivatized with a polyazaaromatic Ru(II) complex which, under visible illumination, is able to produce an irreversible crosslink with the complementary targeted sequence. The purpose of this study is to determine whether by the use of a suitable transfection agent, it is possible to increase the efficiency of the antisense oligonucleotide targeting E6 gene, named Ru-P-4. In a recent study, we showed that Oligofectamine transfected Ru-P-4 antisense oligonucleotide failed to inhibit efficiently the growth of cervical cancer cell line SiHa, contrarily to the Ru-P-6 antisense oligonucleotide, another sequence also targeting the E6 gene. The ability of PDMAEMA-b-PMEMA to form polyplexes with optimal physicochemical characteristics was investigated first. Then the ability of the PDMAEMA-b-PMEMA/Ru-P-4 antisense oligonucleotide polyplexes to transfect two keratinocyte cell lines (SiHa and HaCat) and the capacity of polyplexes to inhibit HPV16+ cervical cancer cell growth was evaluated. PDMAEMA-b-PMEMA base polyplexes at the optimal molar ratio of polymer nitrogen atoms to DNA phosphates (N/P), were able to deliver Ru-P-4 antisense oligonucleotide and to induce a higher growth inhibition in human cervical cancer SiHa cells, compared to other formulations based on Oligofectamine.

  18. Cell adhesion on poly(propylene fumarate-co-ethylene glycol) hydrogels.

    PubMed

    Tanahashi, Kazuhiro; Mikos, Antonios G

    2002-12-15

    We synthesized poly(propylene fumarate-co-ethylene glycol) block copolymers [P(PF-co-EG)] that were crosslinked to form hydrogels and investigated the effect of copolymer composition on cell adhesion to the hydrogels. These copolymers were water soluble when the molar ratio of ethylene glycol repeating unit to propylene fumarate repeating unit was higher than 4.4. The water content of swollen hydrogels increased from 29 to 63% and the water contact angle decreased from 38 to 21 degrees as the molar ratio increased from 0.6 to 4.4. No significant change in either property was observed for ratios higher than 4.4. In a cell adhesion assay under serum-free conditions, the number of adherent platelets and smooth muscle cells decreased from 21 to 2% and from 78 to 20% of the initial seeding density, respectively, as the molar ratio increased from 0.6 to 7.8. Adherent smooth muscle cells did not spread on the hydrogels of the compositions tested. Adherent platelets did not show any filopodia. These results suggest that the hydrophilicity of P(PF-co-EG) hydrogels is one of the factors affecting cell adhesion, and that copolymer modification may be required for enhancing cell adhesion for an application involving the copolymers as in situ crosslinkable cell carriers.

  19. [Evaluation of the usefulness of tests for production of Beta-D-glucuronidase and propylene glycol utilization for the differentiation of enterobacteriaceae rods].

    PubMed

    Kaluzewski, S; Tomczuk, D

    1995-01-01

    The aim of the study was to inquire about the diagnostic usefulness of determining the activity of glucuronidase and utilisation of propylene glycol in Enterobacteriaceae rods. The study included 1511 strains: 411- E. coli, 278 - Klebsiella, 231 - Salmonella, 159 - Yersinia, 97 - Citrobacter, 75 - Shigella and 260 strains representing 6 other kinds of enteric rods. Determination was performed in a liquid medium containing in 1 ml 25 mcg MUG and 100 mcg ONPG. Propylene glycol (PG) utilisation was observed in peptone water with 2% of the substrate and with the Andrade indicator. In comparative tests Rambach commercial medium and MacConkey agar from the Fluorocult series were used. In the test with MUG a positive result was obtained from 81.8% E. coli, 65% - Shigella and 13% - Salmonella subgenus I. Only exceptionally was this test positive with Providencia, Enterobacter and Yersinia strains (1-5%) but negative with Citrobacter, Klebsiella, Serratia, Hafnia, Proteus and Morganella strains. Glucuronidase production is not sufficiently characteristic of E. coli strains isolated from humans to be the only basis for the preliminary differentiation of these rods from other Enterobacteriaceae. The test with ONPG was positive from 95-100% E. coli, Yersinia, Citrobacter, Klebsiella, Enterobacter and Hafnia strains; 61% - Shigella, 9% - Salmonella and 3% - Providencia, but negative with Serratia, Proteus and Morganella strains. Propylene glycol was decomposed by 74% Salmonella strains of subgenus I, 65-94% - Klebsiella, Yersinia and Citrobacter. Shigella, Enterobacter, Serratia, Proteus, Providencia and Morganella rods did not decompose propylene glycol. Evidence that among strains non-decomposing propylene glycol were all the studied S. typhi, S. paratyphi A, S. paratyphi C, S. choleraesuis, S. virchow and S. gallinarum strains as well as a significant percentage of strains representing 8 other Salmonella serotypes frequently detected allows to believe that the use of

  20. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate.

    PubMed

    Qiao, Hongzhi; Chen, Lihua; Rui, Tianqi; Wang, Jingxian; Chen, Ting; Fu, Tingming; Li, Junsong; Di, Liuqing

    2017-01-01

    Andrographolide (ADG) is a diterpenoid isolated from Andrographis paniculata with a wide spectrum of biological activities, including anti-inflammatory, anticancer and hepatoprotective effects. However, its poor water solubility and efflux by P-glycoprotein have resulted in lower bioavailability. In this study, ADG nanosuspensions (ADG-NS) were prepared using a wet media milling technique followed by freeze drying. d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS), a surfactant that inhibits P-glycoprotein function, and sodium lauryl sulfate were used as surface stabilizers. A Box-Behnken design was used to optimize the nanosuspension preparation. The products of these optimal preparation conditions were amorphous and possessed much faster dissolution in vitro than a coarse powder of ADG. The particle size and redispersibility index of the freeze-dried ADG-NS were 244.6±3.0 nm and 113%±1.14% (n=3), respectively. A short-term stability study indicated that the freeze-dried ADG-NS could remain highly stable as nanosuspensions during the testing period. A test of transport across a Caco-2 cell monolayer revealed that the membrane permeability (Papp) of ADG-NS was significantly higher than the permeability of the ADG coarse powder or ADG-NS without TPGS (P<0.01). Compared to the ADG coarse powder, a physical mixture, commercial dripping pills and ADG-NS without TPGS, ADG-NS exhibited significantly higher plasma exposure with significant enhancements in Cmax and area under the curve of plasma concentration versus time from zero to the last sampling time (AUC0-t ) (P<0.01). An evaluation of the anti-inflammatory effect on Carr-induced paw edema demonstrated that the ADG-NS were more effective in reducing the rate of paw swelling, producing a greater increase in the serum levels of nitric oxide (NO), Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) (P<0.01) and an increase in superoxide dismutase activity (P<0.05) compared to the ADG coarse powder

  1. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate

    PubMed Central

    Qiao, Hongzhi; Chen, Lihua; Rui, Tianqi; Wang, Jingxian; Chen, Ting; Fu, Tingming; Li, Junsong; Di, Liuqing

    2017-01-01

    Andrographolide (ADG) is a diterpenoid isolated from Andrographis paniculata with a wide spectrum of biological activities, including anti-inflammatory, anticancer and hepatoprotective effects. However, its poor water solubility and efflux by P-glycoprotein have resulted in lower bioavailability. In this study, ADG nanosuspensions (ADG-NS) were prepared using a wet media milling technique followed by freeze drying. d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS), a surfactant that inhibits P-glycoprotein function, and sodium lauryl sulfate were used as surface stabilizers. A Box–Behnken design was used to optimize the nanosuspension preparation. The products of these optimal preparation conditions were amorphous and possessed much faster dissolution in vitro than a coarse powder of ADG. The particle size and redispersibility index of the freeze-dried ADG-NS were 244.6±3.0 nm and 113%±1.14% (n=3), respectively. A short-term stability study indicated that the freeze-dried ADG-NS could remain highly stable as nanosuspensions during the testing period. A test of transport across a Caco-2 cell monolayer revealed that the membrane permeability (Papp) of ADG-NS was significantly higher than the permeability of the ADG coarse powder or ADG-NS without TPGS (P<0.01). Compared to the ADG coarse powder, a physical mixture, commercial dripping pills and ADG-NS without TPGS, ADG-NS exhibited significantly higher plasma exposure with significant enhancements in Cmax and area under the curve of plasma concentration versus time from zero to the last sampling time (AUC0−t) (P<0.01). An evaluation of the anti-inflammatory effect on Carr-induced paw edema demonstrated that the ADG-NS were more effective in reducing the rate of paw swelling, producing a greater increase in the serum levels of nitric oxide (NO), Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) (P<0.01) and an increase in superoxide dismutase activity (P<0.05) compared to the ADG coarse powder

  2. [Preparation and evaluation of press-coated aminophylline tablet using crystalline cellulose and polyethylene glycol in the outer shell for timed-release dosage forms].

    PubMed

    Watanabe, Yoshiteru; Mukai, Baku; Kawamura, Ken-ichi; Ishikawa, Tatsuya; Namiki, Michihiro; Utoguchi, Naoki; Fujii, Makiko

    2002-02-01

    In an attempt to achieve chronopharmacotherapy for asthma, press-coated tablets (250 mg), which contained aminophylline in the core tablet in the form of low-substituted hydroxypropylcellulose (L-HPC) and coated with crystalline cellulose (PH-102) and polyethylene glycol (PEG) at various molecular weights and mixing ratios in the amounts of PH-102 and PEG as the outer shell (press-coating material), were prepared (chronopharmaceutics). Their applicability as timed-release (delayed-release) tablets with a lag time of disintegration and a subsequent rapid drug release phase was investigated. Various types of press-coated tablets were prepared using a tableting machine, and their aminophylline dissolution profiles were evaluated by the JP paddle method. Tablets with the timed-release characteristics could be prepared, and the lag time of disintegration was prolonged as the molecular weight and the amount of PEG, for example PEG 500,000, in the outer shell were increased. The lag time of disintegration could be controlled by the above-mentioned method, however, the pH of the medium had no effect on disintegration of the tablet and dissolution behavior of theophylline. The press-coated tablet (core tablet:aminophylline 50 mg, L-HPC and PEG 6000; outer shell:PH-102:PEG = 8:2 200 mg) with the timed-release characteristics was administered orally to rabbits for an in vivo test. Theophylline was first detected in plasma more than 2 h after administration; thus, this tablet showed a timed-release characteristics in the gastrointestinal tract. The time (tmax) required to reach the maximum plasma theophylline concentration (Cmax) observed after administration of the press-coated tablet was significantly (p < 0.05) delayed compared with that observed after administration of aminophylline solution in the control experiment. However, there was no difference in Cmax and area under the plasma theophylline concentration-time curve (AUC0-->24) between the press-coated tablet and

  3. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    PubMed

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.

  4. Glycol leak detection system

    NASA Astrophysics Data System (ADS)

    Rabe, Paul; Browne, Keith; Brink, Janus; Coetzee, Christiaan J.

    2016-07-01

    MonoEthylene glycol coolant is used extensively on the Southern African Large Telescope to cool components inside the telescope chamber. To prevent coolant leaks from causing serious damage to electronics and optics, a Glycol Leak Detection System was designed to automatically shut off valves in affected areas. After two years of research and development the use of leaf wetness sensors proved to work best and is currently operational. These sensors are placed at various critical points within the instrument payload that would trigger the leak detector controller, which closes the valves, and alerts the building management system. In this paper we describe the research of an initial concept and the final accepted implementation and the test results thereof.

  5. Preparation of Biodegradable and Elastic Poly(ε-caprolactone-co-lactide) Copolymers and Evaluation as a Localized and Sustained Drug Delivery Carrier

    PubMed Central

    Park, Ji Hoon; Lee, Bo Keun; Park, Seung Hun; Kim, Mal Geum; Lee, Jin Woo; Lee, Hye Yun; Lee, Hai Bang; Kim, Jae Ho; Kim, Moon Suk

    2017-01-01

    To develop a biodegradable polymer possessing elasticity and flexibility, we synthesized MPEG-b-(PCL-co-PLA) copolymers (PCxLyA), which display specific rates of flexibility and elasticity. We synthesize the PCxLyA copolymers by ring-opening polymerization of ε-caprolactone and l-lactide. PCxLyA copolymers of various compositions were synthesized with 500,000 molecular weight. The PCxLyA copolymers mechanical properties were dependent on the mole ratio of the ε-caprolactone and l-lactide components. Cyclic tensile tests were carried out to investigate the resistance to creep of PCxLyA specimens after up to 20 deformation cycles to 50% elongation. After in vivo implantation, the PCxLyA implants exhibited biocompatibility, and gradually biodegraded over an eight-week experimental period. Immunohistochemical characterization showed that the PCxLyA implants provoked in vivo inflammation, which gradually decreased over time. The copolymer was used as a drug carrier for locally implantable drugs, the hydrophobic drug dexamethasone (Dex), and the water-soluble drug dexamethasone 21-phosphate disodium salt (Dex(p)). We monitored drug-loaded PCxLyA films for in vitro and in vivo drug release over 40 days and observed real-time sustained release of near-infrared (NIR) fluorescence over an extended period from hydrophobic IR-780- and hydrophilic IR-783-loaded PCxLyA implanted in live animals. Finally, we confirmed that PCxLyA films are usable as biodegradable, elastic drug carriers. PMID:28335550

  6. Evaluation of adhesive-free crossed-electrode poly(vinylidene fluoride) copolymer array transducers for high frequency imaging

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank

    2016-07-01

    High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.

  7. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate.

    PubMed

    Abbad, Sarra; Wang, Cheng; Waddad, Ayman Yahia; Lv, Huixia; Zhou, Jianping

    2015-01-01

    Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH), based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate) (HA-PBCA) block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA "plain" nanoparticle (MH-PNs) and HA-PBCA/TPGS "mixed" nanoparticles (MH-MNs) were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs.

  8. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate) and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate

    PubMed Central

    Abbad, Sarra; Wang, Cheng; Waddad, Ayman Yahia; Lv, Huixia; Zhou, Jianping

    2015-01-01

    Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH), based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate) (HA-PBCA) block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs) and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs) were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs. PMID:25609946

  9. Polycationic diblock and random polyethylene glycol- or tris(hydroxymethyl)methyl-grafted (co)telomers for gene transfer: synthesis and evaluation of their in vitro transfection efficiency.

    PubMed

    Le Bon, Bertrand; Van Craynest, Nathalie; Boussif, Otmane; Vierling, Pierre

    2002-01-01

    We report on the synthesis of a series of polycationic telomers, polycationic diblock and random polyethylene glycol (PEG)-grafted (co)telomers, and polycationic random tris(hydroxymethyl)methyl (THM) cotelomers, and on their in vitro gene transfer capability. These compounds were obtained by a telomerization process of various amino-, tetraethylene glycol-, or THM-acrylamide taxogens with thiols which might derive from PEG2000. For N/P ratios [N is the number of (co)telomer amine equivalents; P is the number of DNA phosphate equivalents] from 0.8 to 10, these (co)telomers condensed DNA, forming (co)teloplexes with mean sizes in the 85-330 nm range, even for an N/P ratio of 0.8 or 1.25. Some structure-transfection efficiency relationships were established. Among the new polycationic derivatives that were synthesized and investigated for their transfection efficiency, the (i)Bu-[NH](75) telomers and the diblock polyethylene glycol-conjugated PEG2000-[NH](n) telomers are very promising candidates for gene transfer purposes.

  10. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.

    PubMed

    Torabinejad, Bahman; Mohammadi-Rovshandeh, Jamshid; Davachi, Seyed Mohammad; Zamanian, Ali

    2014-09-01

    The employment of biodegradable polymer scaffolds is one of the main approaches for achieving a tissue engineered construct to reproduce bone tissues, which provide a three dimensional template to regenerate desirable tissues for different applications. The main goal of this study is to design a novel triblock scaffold reinforced with nano-hydroxyapatite (nHA) for hard tissue engineering using gas foaming/salt leaching method with minimum solvent usage. With this end in view, the biodegradable triblock copolymers of l-lactide and ε-caprolactone with different mol% were synthesized by ring-opening polymerization method in the presence of Sn(Oct)2 catalyst as initiator and ethylene glycol as co-initiator. The chemical compositions of biodegradable copolymers were characterized by means of FTIR and NMR. The thermal and crystallization behaviors of copolymers were characterized using TGA and DSC thermograms. Moreover, nano-hydroxyapatite was synthesized by the chemical precipitation process and was thoroughly characterized by FTIR, XRD and TEM. Additionally, the nanocomposites with different contents of nHA were prepared by mixing triblock copolymer with nHA. Mechanical properties of the prepared nanocomposites were evaluated by stress-strain measurements. It was found that the nanocomposite with 30% of nHA showed the optimum result. Therefore, nanocomposite scaffolds with 30% nHA were fabricated by gas foaming/salt leaching method and SEM images were used to observe the microstructure and morphology of nanocomposites and nanocomposite scaffolds before and after cell culture. The in-vitro and cell culture tests were also carried out to further evaluate the biological properties. The results revealed that the porous scaffolds were biocompatible to the osteoblast cells because the cells spread and grew well. The resultant nanocomposites could be considered as good candidates for use in bone tissue engineering.

  11. Enhanced Stability of Polymeric Micelles Based on Post-functionalized Poly(ethylene glycol)-b-Poly(γ-propargyl l-glutamate): the Substituent Effect

    PubMed Central

    Zhao, Xiaoyong; Poon, Zhiyong; Engler, Amanda C.; Bonner, Daniel K.; Hammond, Paula T.

    2012-01-01

    One of the major obstacles that delay the clinical translation of polymeric micelle drug delivery systems is whether these self-assembled micelles can retain their integrity in blood following intravenous (IV) injection. The objective of this study was to evaluate the impact of core functionalization on the thermodynamic and kinetic stability of polymeric micelles. The combination of ring-opening polymerization of N-carboxyanhydride (NCA) with highly efficient “click” coupling has enabled easy and quick access to a family of poly(ethylene glycol)-block-poly(γ-R-glutamate)s with exactly the same block lengths, for which the substituent “R” is tuned. The structures of these copolymers were carefully characterized by 1H NMR, FT-IR and GPC. Using pyrene as the fluorescence probe, the critical micelle concentrations (CMCs) of these polymers were found to be in the range of 10−7-10−6 M, which indicates good thermodynamic stability for the self-assembled micelles. The incorporation of polar side groups in the micelle core leads to high CMC values; however, micelles prepared from these copolymers are kinetically more stable in the presence of serum and upon SDS disturbance. It was also observed that these polymers could effectively encapsulate paclitaxel (PTX) as a model anticancer drug and the micelles possessing better kinetic stability showed better suppression of the initial “burst” release and exhibited more sustained release of PTX. These PTX-loaded micelles exerted comparable cytotoxicity against HeLa cells as the clinically approved Cremophor® PTX formulation while the block copolymers showed much lower toxicity compared to the Cremophor-ethanol mixture. The present work demonstrated that the PEG-b-PPLG can be a uniform block copolymer platform toward development of polymeric micelle delivery systems for different drugs through the facile modification of the PPLG block. PMID:22376183

  12. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  13. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G.; Matzger, Adam J.; Benin, Annabelle I.; Willis, Richard R.

    2012-12-04

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  14. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  15. Block coordination copolymers

    DOEpatents

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  16. Recent advances in PEG-PLA block copolymer nanoparticles.

    PubMed

    Xiao, Ren Zhong; Zeng, Zhao Wu; Zhou, Guang Lin; Wang, Jun Jie; Li, Fan Zhu; Wang, An Ming

    2010-11-26

    Due to their small particle size and large and modifiable surface, nanoparticles have unique advantages compared with other drug carriers. As a research focus in recent years, polyethylene glycol-polylactic acid (PEG-PLA) block copolymer and its end-group derivative nanoparticles can enhance the drug loading of hydrophobic drugs, reduce the burst effect, avoid being engulfed by phagocytes, increase the circulation time of drugs in blood, and improve bioavailability. Additionally, due to their smaller particle size and modified surface, these nanoparticles can accumulate in inflammation or target locations to enhance drug efficacy and reduce toxicity. Recent advances in PEG-PLA block copolymer nanoparticles, including the synthesis of PEG-PLA and the preparation of PEG-PLA nanoparticles, were introduced in this study, in particular the drug release and modifiable characteristics of PEG-PLA nanoparticles and their application in pharmaceutical preparations.

  17. Supramolecular self-assembly of conjugated diblock copolymers.

    SciTech Connect

    Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H.; Univ. of Chicago

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.

  18. Preparation and characterization of infection-resistant antibiotics-releasing hydrogels rods of poly[hydroxyethyl methacrylate-co-(poly(ethylene glycol)-methacrylate]: biomedical application in a novel rabbit penile prosthesis model.

    PubMed

    Arica, M Yakup; Tuğlu, Devrim; Başar, M Murad; Kiliç, Dilek; Bayramoğlu, Gülay; Batislam, Ertan

    2008-07-01

    In this work, preparation and characterization of novel three different antibiotic loaded penile prosthesis in the rod form were investigated by copolymerization of 2-hydroxyethylmethacrylate (HEMA) with poly(ethylene glycol)-methacrylate, (PEG-MA). To achieve this goal, a series of novel copolymer hydrogels were prepared in rod form using HEMA and PEG-MA monomers via UV initiated photopolymerization. The thermal stability of the copolymer was found to be lowered by increase in the ratio of PEG-MA in the rod structure. Contact angle measurements on the surface of copolymer hydrogel demonstrated that the copolymer gave rise to a significant hydrophilic surface compared with pure poly(HEMA). The blood protein adsorption and platelet adhesion were significantly reduced on the surface of the copolymer hydrogels compared with control pure poly(HEMA). Poly(HEMA:PEG-MA;1:1)-1 formulation containing different antibiotics (20 mg antibiotic/g polymer) released about 90, 91, and 55% of the total loaded cephtriaxon, vancomycin, and gentamicin in 48 h at pH 7.4, respectively. Finally, antibiotics loaded biocompatible poly(HEMA:PEG-MA;1:1)-1 hydrogel compositions was used as a penile prosthesis in preventing cavernous tissue infections in a rabbit prosthesis model. The efficacy of the three different antibiotics loaded hydrogel system was evaluated in four different groups of rabbits, in which various infectious agents were inoculated. The animals were sacrificed after predetermined time periods, and clinical, histological and microbiological assessment on the implant side were carried out to detect infections. Eventually, we concluded that three different antibiotic loaded penile prostheses (i.e. poly(HEMA:PEG-MA;1:1)-1 hydrogel systems) were as effective as parenteral antibiotics applications.

  19. Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s.

    PubMed

    Zgoła-Grześkowiak, Agnieszka; Grześkowiak, Tomasz; Zembrzuska, Joanna; Łukaszewski, Zenon

    2006-07-01

    The biodegradation of poly(ethylene glycol)s (PEGs) and poly(propylene glycol)s (PPGs), both being major by-products of non-ionic surfactants biodegradation, was studied under the conditions of the River Water Die-Away Test. PEGs were isolated from a water matrix using solid-phase extraction with graphitized carbon black sorbent, then derivatized with phenyl isocyanate and determined by HPLC with UV detection. PPGs were isolated from a water matrix by liquid-liquid extraction with chloroform, then derivatized with naphthyl isocyanate and determined by HPLC with fluorescence detection. The primary biodegradation of both PEGs and PPGs reached approximately 99% during the test. The tests show different biodegradation pathways of PEG and PPG. During PEG biodegradation, their chains are shortened leading to the formation of ethylene glycol and diethylene glycol. During PPG biodegradation, no short-chained biodegradation products were found.

  20. Interaction of poloxamine block copolymers with lipid membranes: Role of copolymer structure and membrane cholesterol content.

    PubMed

    Sandez-Macho, Isabel; Casas, Matilde; Lage, Emilio V; Rial-Hermida, M Isabel; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-09-01

    Interactions of X-shaped poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) block copolymers with cell membranes were investigated recording the π-A isotherms of monolayer systems of dipalmitoylphosphatidylcholine (DPPC):cholesterol 100:0; 80:20 and 60:40 mol ratio and evaluating the capability of the copolymers to trigger haemolysis or to protect from haemolytic agents. Four varieties of poloxamine (Tetronic 904, 908, 1107 and 1307) were chosen in order to cover a wide range of EO and PO units contents and molecular weights, and compared to a variety of poloxamer (Pluronic P85). The π-A isotherms revealed that the greater the content in cholesterol, the stronger the interaction of the block copolymers with the lipids monolayer. The interactions were particularly relevant at low pressures and low lipid proportions, mimicking the conditions of damaged membranes. Relatively hydrophobic copolymers bearing short PEO blocks (e.g., T904 and P85) intercalated among the lipids expanding the surface area (ΔGexc) but not effectively sealing the pores. These varieties showed haemolytic behavior. Oppositely, highly hydrophilic copolymers bearing long PEO blocks (e.g., T908, T1107 and T1307) caused membrane contraction and outer leaflet sealing due to strong interactions of PEO with cholesterol and diamine core with phospholipids. These later varieties were not haemolytic and exerted a certain protective effect against spontaneous haemolysis for both intact erythrocytes and cholesterol-depleted erythrocytes.

  1. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel.

    PubMed

    Yu, Lin; Zhang, Zheng; Zhang, Huan; Ding, Jiandong

    2009-06-08

    A facile method to obtain a thermoreversible physical hydrogel was found by simply mixing an aqueous sol of a block copolymer with a precipitate of a similar copolymer but with a different block ratio. Two ABA-type triblock copolymers poly(D,L-lactic acid-co-glycolic acid)-B-poly(ethylene glycol)-B-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) were synthesized. One sample in water was a sol in a broad temperature region, while the other in water was just a precipitate. The mixture of these two samples with a certain mix ratio underwent, however, a sol-to-gel-to-precipitate transition upon an increase of temperature. A dramatic tuning of the sol-gel transition temperature was conveniently achieved by merely varying mix ratio, even in the case of a similar molecular weight. Our study indicates that the balance of hydrophobicity and hydrophilicity within this sort of amphiphilic copolymers is critical to the inverse thermal gelation in water resulting from aggregation of micelles. The availability of encapsulation and sustained release of lysozyme, a model protein by the thermogelling systems was confirmed. This "mix" method provides a very convenient approach to design injectable thermogelling biomaterials with a broad adjustable window, and the novel copolymer mixture platform is potentially used in drug delivery and other biomedical applications.

  2. Crystallization of toxic glycol solvates of rifampin from glycerin and propylene glycol contaminated with ethylene glycol or diethylene glycol.

    PubMed

    de Villiers, Melgardt M; Caira, Mino R; Li, Jinjing; Strydom, Schalk J; Bourne, Susan A; Liebenberg, Wilna

    2011-06-06

    This study was initiated when it was suspected that syringe blockage experienced upon administration of a compounded rifampin suspension was caused by the recrystallization of toxic glycol solvates of the drug. Single crystal X-ray structure analysis, powder X-ray diffraction, thermal analysis and gas chromatography were used to identify the ethylene glycol in the solvate crystals recovered from the suspension. Controlled crystallization and solubility studies were used to determine the ease with which toxic glycol solvates crystallized from glycerin and propylene glycol contaminated with either ethylene or diethylene glycol. The single crystal structures of two distinct ethylene glycol solvates of rifampin were solved while thermal analysis, GC analysis and solubility studies confirmed that diethylene glycol solvates of the drug also crystallized. Controlled crystallization studies showed that crystallization of the rifampin solvates from glycerin and propylene glycol depended on the level of contamination and changes in the solubility of the drug in the contaminated solvents. Although the exact source of the ethylene glycol found in the compounded rifampin suspension is not known, the results of this study show how important it is to ensure that the drug and excipients comply with pharmacopeial or FDA standards.

  3. Polyethylene Glycol Propionaldehydes

    NASA Technical Reports Server (NTRS)

    Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.

    1992-01-01

    New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.

  4. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  5. [Interference of ethylene glycol on lactate assays].

    PubMed

    Graïne, H; Toumi, K; Roullier, V; Capeau, J; Lefèvre, G

    2007-01-01

    Ethylene glycol is broken down to three main organic acids: glycolic acid, glyoxylic acid and oxalic acid which cause severe metabolic acidosis. Effect of these three acids on lactate assays was evaluated in five blood gas analysers and two clinical chemistry analysers. For all systems, no influence of oxalic acid on lactate results could be demonstrated. No interference of glycolic acid could be observed on lactate assay performed with Rapid Lab 1265 (R: 104,9 +/- 12,1%), Vitros 950 (R: 105,7 +/- 5,3 %) and Architect ci8200 (R: 104,9 +/- 4,7%), but on the contrary, CCX 4, OMNI S, ABL 725 and 825 demonstrated a concentration-dependent interference. No interference of glyoxylic acid could be observed with Vitros 950, but a positive interference could be observed with ABL 725 and 825, OMNI S, CCX4 and Architect ci8200 A linear relationship between apparent lactate concentration found with ABL 725 and 825, OMNI S, CCX 4, and glyoxylic acid could be observed (0,94 < r < 0,99), a weaker interference being observed with Rapid Lab 1265 and Architect ci 8200. Our results demonstrated that in case of ethylene glycol poisoning, cautious interpretation of lactate assay should be done, since wrong results of lactacidemia could lead to misdiagnostic and delay patient treatment.

  6. Interstellar Antifreeze: Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  7. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    NASA Astrophysics Data System (ADS)

    Park, Sung-Eun; Nho, Young-Chang; Kim, Hyung-Il

    2004-02-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2.

  8. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    No glycolate oxidase activity could be detected by manometric, isotopic, or spectrophotometric techniques in cell extracts from 5 strains of algae grown in the light with CO2. However, NADH:glyoxylate reductase, phosphoglycolate phosphatase and isocitrate dehydrogenase were detected in the cell extracts. The serine formed by Chlorella or Chlamydomonas after 12 seconds of photosynthetic 14CO2 fixation contained 70 to 80% of its 14C in the carboxyl carbon. This distribution of label in serine was similar to that in phosphoglycerate from the same experiment. Thus, in algae serine is probably formed directly from phosphoglycerate. These results differ from those of higher plants which form uniformly labeled serine from glycolate in short time periods when phosphoglycerate is still carboxyl labeled. In glycolate formed by algae in 5 and 10 seconds of 14CO2 fixation, C2 was at least twice as radioactive as C1. A similar skewed labeling in C2 and C3 of 3-phosphoglycerate and serine suggests a common precursor for glycolate and 3-phosphoglycerate. Glycine formed by the algae, however, from the same experiments was uniformly labeled. Manganese deficient Chlorella incorporated only 2% of the total 14CO2 fixed in 10 minutes into glycolate, while in normal Chlorella 30% of the total 14C was found in glycolate. Manganese deficient Chlorella also accumulated more 14C in glycine and serine. Glycolate excretion by Chlorella was maximal in 10 mm bicarbonate and occurred only in the light, and was not influenced by the addition of glycolate. No time dependent uptake of significant amounts of either glycolate or phosphoglycolate was observed. When small amounts of glycolate-2-14C were fed to Chlorella or Scenedesmus, only 2 to 3% was metabolized after 30 to 60 minutes. The algae were not capable of significant glycolate metabolism as is the higher plant. The failure to detect glycolate oxidase, the low level glycolate-14C metabolism, and the formation of serine from phosphoglycerate

  9. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen-Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold.

    PubMed

    Su, Juin-Yih; Chen, Shi-Hui; Chen, Yu-Pin; Chen, Wei-Chuan

    2017-01-04

    Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen-chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen-chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials.

  10. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen–Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold

    PubMed Central

    Su, Juin-Yih; Chen, Shi-Hui; Chen, Yu-Pin; Chen, Wei-Chuan

    2017-01-01

    Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen–chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen–chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials. PMID:28054960

  11. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  12. Baroplastic Block copolymers

    NASA Astrophysics Data System (ADS)

    Hewlett, Sheldon A.

    2005-03-01

    Block copolymers with rubbery and glassy components have been observed to have pressure induced miscibility. These microphase-separated materials, termed baroplastics, were able to flow and be processed at temperatures below the Tg of the glassy component by simple compression molding and extrusion. Diblock and triblock copolymers of polystyrene and poly(butyl acrylate) or poly(2-ethyl hexyl acrylate) were synthesized by atom transfer radical polymerization (ATRP) and processed at room temperature into well defined transparent objects. SAXS and SANS measurements demonstrated partial mixing between components as a result of pressure during processing. DSC results also show the presence of distinct domains even after several processing cycles. Their mechanical properties after processing were tested and compared with commercial thermoplastic elastomers.

  13. Block copolymer battery separator

    SciTech Connect

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  14. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    PubMed Central

    Nagasaki, Yukio

    2010-01-01

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C60/acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review. PMID:27877362

  15. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  16. Thermogelling Biodegradable Copolymer Aqueous Solutions for Injectable Protein Delivery and Tissue Engineering

    SciTech Connect

    Jeong, Byeongmoon; Lee, Kyeonghee M.; Gutowska, Anna; An, Yuehuei H.

    2002-07-01

    This paper reports on the thermogelling, biodegradable polymer formulations based on poly(DL-lactic acid-co-glycolic acid)(polyethylene glycol) graft copolymers for in-vivo biomedical applications. The description includes diabetic control by sustained insulin delivery and cartilage repair by chondrocyte cell delivery. With one injection of the formula, the blood glucose level could be controlled from 5 to 16 days in diabetic rats by varying the polymer composition. Promising cartilage repair was observed using chondrocyte suspension in the thermogelling biodegradable depot.

  17. Anti-tumor activity and safety evaluation of fisetin-loaded methoxy poly(ethylene glycol)-poly(epsilon-caprolactone) nanoparticles.

    PubMed

    Yang, Qian; Liao, Jinfeng; Deng, Xin; Liang, Jian; Long, Chaofeng; Xie, Chengshi; Chen, Xiaoxin; Zhang, Lan; Sun, Jinxin; Peng, Jinrong; Chu, Bingyang; Guo, Gang; Luo, Feng; Qian, Zhiyong

    2014-04-01

    Fisetin (3,3',4',7-tetrahydroxyflavone) is a potential anti-tumor agent but poor water solubility hinders its application and complicates direct parenteral administration. Nanoparticle encapsulation is an efficient way to enhance the solubility of some hydrophobic drugs. In this study, methoxy poly(ethylene glycol)-polycaprolactone (MPEG-PCL) nanoparticles were successfully prepared for fisetin delivery in vitro and in vivo. Narrow distribution fisetin-loaded MPEG-PCL NPs (aproximately100 nm) were obtained via emulsification (O/W) and displayed a sustained release behavior in vitro. Moreover, hemolysis and cell cytotoxicity testing showed that MPEG-PCL is biocompatible and safe for intravenous injection. Most importantly, NPs encapsulation enhanced the anti-cancer activity of fisetin as shown in a subcutaneous LL/2 tumor model, and reduced the hepatotoxicity of fisetin. Therefore, our data demonstrate that fisetin-loaded MPEG-PCL NPs have potential application in cancer chemotherapy.

  18. Biological and mechanical evaluation of poly(lactic-co-glycolic acid) based composites reinforced with one, two and three dimensional carbon biomaterials for bone tissue regeneration.

    PubMed

    Kaur, Tejinder; Kulanthaivel, Senthilguru; Arunachalam, Thirugnanam; Banerjee, Indranil; Pramanik, Krishna

    2017-02-09

    Considering the fact that life on earth is carbon based, carbon materials are being introduced in biological systems. However, very limited information is existing concerning the potential effects of different structures of carbon materials on biological systems. In the present study, poly(lactic-co-glycolic acid) (PLGA) based carbonaceous composites were developed by reinforcing 1 wt% of three different carbon based materials i.e. carbon nanotubes (CNTs-one dimensional), graphene nanoplatelets (GNPs-two dimensional) and activated carbon (AC-three dimensional). The developed composites were characterized for physicochemical, biological and mechanical properties. Along with their hemocompatible nature, the composites exhibited better swelling ratio, degradation percentage, bioactivity and tensile strength. The improvement in hydrophilicity and protein adsorption resulted in enhancement of cell proliferation and differentiation. Amongst all, sheet like GNPs showed strongest effect on composite's properties due to its larger area exposed. These results demonstrate the potential of PLGA based carbonaceous composites for accelerating bone tissue regeneration.

  19. How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: Experimental evaluation and correlation development

    NASA Astrophysics Data System (ADS)

    Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.

  20. Interfacial Modification by Copolymers: The Importance of Copolymer Microstructure

    NASA Astrophysics Data System (ADS)

    Dadmun, Mark; Eastwood, Eric

    2002-03-01

    The dispersion of nanoscale particles or domains in a polymer matrix can readily lead to nonlinear enhancement of material properties. Our research group has been examining two primary methods to improve the properties of multicomponent polymer systems: compatibilization of a blend with an interfacial modifier or improving the miscibility and properties of polymer blends with specific interactions. In this talk, the importance of specific copolymer microstructure on its ability to strengthen a biphasic interface will be discussed. Atom transfer radical polymerization has been utilized to polymerize a series of multiblock copolymers containing styrene and methyl methacrylate. This, in turn, has allowed the synthesis of a series of copolymers with careful control of the sequence distribution. Subsequent experiments that determine the interfacial strength between two polymers in the presence and absence of these copolymers has provided critical information that documents the importance of copolymer sequence distribution on its ability to strengthen a biphasic interface.

  1. Block copolymers encapsulated poly (aryl benzyl ether) dendrimer silicon (IV) phthalocyanine for in vivo and in vitro photodynamic efficacy of choroidal neovascularization

    NASA Astrophysics Data System (ADS)

    Wang, Xiongwei; Chen, Kuizhi; Huang, Zheng; Peng, Yiru

    2015-03-01

    A novel series of poly (aryl benzyl ether) dendrimer silicon phthalocyanines loaded block copolymers ethoxypoly(ethylene glycol)-poly (lactic-co-glycolic acid) (MPEG-PLGA)were formed. The time-dependent intracellular uptake of nanoparticles in HUVECs cells increased as they were incorporated into nanoparticles. With its highly effective selective accumulation on choroidal neovascularization(CNV). This treatment resulted in a efficacious choroidal neovascularization (CNV) occlusion with minimal unfavorable phototoxicity.

  2. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Pickenheim, B.; Bibler, N.

    2010-06-08

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be

  3. Polyether/Polyester Graft Copolymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  4. Nitroxide-mediated radical ring-opening copolymerization: chain-end investigation and block copolymer synthesis.

    PubMed

    Delplace, Vianney; Harrisson, Simon; Tardy, Antoine; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2014-02-01

    Well-defined, degradable copolymers are successfully prepared by nitroxide-mediated radical ring opening polymerization (NMrROP) of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA), a small amount of acrylonitrile (AN) and cyclic ketene acetals (CKAs) of different structures. Phosphorous nuclear magnetic resonance allows in-depth chain-end characterization and gives crucial insights into the nature of the copoly-mer terminal sequences and the living chain fractions. By using a small library of P(OEGMA-co-AN-co-CKA) and P(MMA-co-AN-co-CKA) as macroinitiators, chain extensions with styrene are performed to furnish (amphiphilic) block copolymers comprising a degradable segment.

  5. Photothermal degradation of ethylene/vinylacetate copolymer

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Chung, S.; Clayton, A.; Di Stefano, S.; Oda, K.; Hong, S. D.; Gupta, A.

    1983-01-01

    Photothermal degradation studies were conducted on a 'stabilized' formulation of ethylene/vinyl acetate copolymer (EVA) in the temperature range 25-105 C under three different oxygen environments (in open air, with limited access to O2, and in a dark closed stagnant oven). These studies were performed in order to evaluate the utility of EVA as an encapsulation material for photovoltaic modules. Results showed that at low temperature (25 C), slow photooxidation of the polymer occurred via electronic energy transfer involving the UV absorber incorporated in the polymer. However, no changes in the physical properties of the bulk polymer were detected up to 1500 hours of irradiation. At elevated temperatures, leaching and evaporation of the additives occurred, which ultimately resulted in the chemical crosslinking of the copolymer and the formation of volatile photoproducts such as acetic acid.

  6. Nanocomposites of Molybdenum Disulfide/Methoxy Polyethylene Glycol-co-Polypyrrole for Amplified Photoacoustic Signal.

    PubMed

    Lee, Hohyeon; Kim, Haemin; Nguyen, Thang Phan; Chang, Jin Ho; Kim, Soo Young; Kim, Hyuncheol; Kang, Eunah

    2016-11-02

    Photoacoustic activity is the generation of an ultrasonic signal via thermal expansion or bubble formation, stimulated by laser irradiation. Photoacoustic nanoplatforms have recently gained focus for application in bioelectric interfaces. Various photoacoustic material types have been evaluated, including gold nanoparticles, semiconductive π-conjugating polymers (SP), etc. In this study, surfactant-free methoxy-polyethylene glycol-co-polypyrrole copolymer (mPEG-co-PPyr) nanoparticles (NPs) and mPEG-co-PPyr NP/molybdenum disulfide (mPEG-co-PPyr/MoS2) nanocomposites (NCs) were prepared and their photoacoustic activity was demonstrated. The mPEG-co-PPyr NPs and mPEG-co-PPyr/MoS2 NCs both showed photoacoustic signal activity. The mPEG-co-PPyr/MoS2 NCs presented a higher photoacoustic signal amplitude at 700 nm than the mPEG-co-PPyr NPs. The enhanced photoacoustic activity of the mPEG-co-PPyr/MoS2 NCs might be attributed to heterogeneous interfacial contact between mPEG-co-PPyr and the MoS2 nanosheets due to complex formation. Laser ablation of MoS2 might elevate the local temperature and facilitate the thermal conductive transfer in the mPEG-co-PPyr/MoS2 NCs, amplifying PA signal. Our study, for the first time, demonstrates enhanced PA activity in SP/transition metal disulfide (TMD) composites as photoacoustic nanoplatforms.

  7. Retinal pigment epithelium cell culture on thin biodegradable poly(DL-lactic-co-glycolic acid) films.

    PubMed

    Lu, L; Garcia, C A; Mikos, A G

    1998-01-01

    Thin films of 50:50 and 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) were manufactured with a controlled thickness of less than 10 microm. The effect of PLGA copolymer ratio on in vitro cell attachment, proliferation, morphology, and tight junction formation was evaluated using a human D407 retinal pigment epithelium (RPE) cell line. Almost complete cell attachment was achieved on both PLGA films after 8 h of cell seeding, which was comparable to that on tissue culture polystyrene (TCPS) controls. The initial cell seeding density affected attachment, and the optimal value for 50:50 PLGA was 25000 cells cm(-2). After 7 days of in vitro culture, cell density on 50:50 and 75:25 PLGA films increased 45 and 40 folds, respectively, and a 34-fold increase was observed on TCPS. The RPE cells cultured on PLGA films at confluence had a characteristic cobblestone morphology. Confluent RPE cells also developed normal tight junctions in vitro which were concentrated mainly at the apical surfaces of cell-cell junctions. These results demonstrated that thin biodegradable PLGA films can provide suitable substrates for human RPE cell culture, and may serve as temporary carriers for subretinal implantation of organized sheets of RPE.

  8. Alumina interaction with AMPS-MPEG random copolymers I. Adsorption and electrokinetic behavior.

    PubMed

    Bouhamed, H; Boufi, S; Magnin, A

    2003-05-15

    Adsorption of brush copolymers, bearing sulfonate groups and polyethylene glycol segments, on to alumina particles in suspension in water has been investigated. Study of the adsorption isotherms revealed that the copolymers displayed a strong affinity for the surface of the alumina regardless of the fraction of ionic groups on the polymer. For poly(ethylene glycol) content greater than 50%, the adsorption isotherms revealed an initial adsorption plateau followed by a second one. The shape of the adsorption isotherms was interpreted in terms of the polymer configuration at the solid-to-liquid interface. The effects of the pH and the ionic force on adsorption were studied and connected to the effects of interaction between chain segments at the surface of the alumina particles. Changes in the electrokinetic properties of the alumina particles after addition of the copolymers were investigated by following the zeta potential of particles as a function of pH. In the presence of the copolymer continuous shift of the isoelectric point IEP to a more acidic values was observed. Beyond a certain concentration the zeta potential remained negative regardless of the pH.

  9. Multifunctional triblock copolymers for intracellular messenger RNA delivery.

    PubMed

    Cheng, Connie; Convertine, Anthony J; Stayton, Patrick S; Bryers, James D

    2012-10-01

    Messenger RNA (mRNA) is a promising alternative to plasmid DNA (pDNA) for gene vaccination applications, but safe and effective delivery systems are rare. Reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to synthesize a series of triblock copolymers designed to enhance the intracellular delivery of mRNA. These materials are composed of a cationic dimethylaminoethyl methacrylate (DMAEMA) segment to mediate mRNA condensation, a hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMA) segment to enhance stability and biocompatibility, and a pH-responsive endosomolytic copolymer of diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) designed to facilitate cytosolic entry. The blocking order and PEGMA segment length were systematically varied to investigate the effect of different polymer architectures on mRNA delivery efficacy. These polymers were monodisperse, exhibited pH-dependent hemolytic activity, and condensed mRNA into 86-216 nm particles. mRNA polyplexes formed from polymers with the PEGMA segment in the center of the polymer chain displayed the greatest stability to heparin displacement and were associated with the highest transfection efficiencies in two immune cell lines, RAW 264.7 macrophages (77%) and DC2.4 dendritic cells (50%). Transfected DC2.4 cells were shown to be capable of subsequently activating antigen-specific T cells, demonstrating the potential of these multifunctional triblock copolymers for mRNA-based vaccination strategies.

  10. Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery

    NASA Astrophysics Data System (ADS)

    Chen, Li; Xie, Zhigang; Hu, Junli; Chen, Xuesi; Jing, Xiabin

    2007-10-01

    A novelty approach to self-assembling stereocomplex micelles by enantiomeric PLA-PEG block copolymers as a drug delivery carrier was described. The particles were encapsulated by enantiomeric PLA-PEG stereocomplex to form nanoscale micelles different from the microspheres or the single micelles by PLLA or PDLA in the reported literatures. First, the block copolymers of enantiomeric poly( l-lactide)-poly(ethylene-glycol) (PLLA-PEG) and poly( D-lactide)-poly(ethylene-glycol) (PDLA-PEG) were synthesized by the ring-opening polymerization of l-lactide and d-lactide in the presence of monomethoxy PEG, respectively. Second, the stereocomplex block copolymer micelles were obtained by the self-assembly of the equimolar mixtures of enantiomeric PLA-PEG copolymers in water. These micelles possessed partially the crystallized hydrophobic cores with the critical micelle concentrations (cmc) in the range of 0.8-4.8 mg/l and the mean hydrodynamic diameters ranging from 40 to 120 nm. The micelle sizes and cmc values obviously depended on the hydrophobic block PLA content in the copolymer. Compared with the single PLLA-PEG or PDLA-PEG micelles, the cmc values of the stereocomplex micelles became lower and the sizes of the stereocomplex micelles formed smaller. And lastly, the stereocomplex micelles encapsulated with rifampin were tested for the controlled release application. The rifampin loading capacity and encapsulation efficiency by the stereocomplex micelles were higher than those by the single polymer micelles, respectively. The drug release time in vitro was depending on the composites of the block copolymers and also could be controlled by the polymer molecular weight and the morphology of the polymer micelles.

  11. Evaluations of therapeutic efficacy of intravitreal injected polylactic-glycolic acid microspheres loaded with triamcinolone acetonide on a rabbit model of uveitis.

    PubMed

    Li, Wenchang; He, Bing; Dai, Wenbing; Zhang, Qiang; Liu, Yuling

    2014-06-01

    Conventional treatments of uveitis are not ideal because of the short period of therapeutic efficacy. In the present study, biodegradable polylactic-glycolic acid microspheres loaded with triamcinolone acetonide (TA) were prepared to achieve sustained drug release and their therapeutic efficacy was investigated on a rabbit model of uveitis. TA-loaded microspheres (TA-MS) were prepared by the solvent evaporation method and characterized for encapsulation efficiency, particle size, morphology and in vitro release. The therapeutic efficacy was studied on the rabbit experimental uveitis model based on scoring of the inflammation, aqueous leukocyte counting, aqueous protein determination and histological examination. The TA-MS exhibited smooth and intact surfaces with an average diameter of 50.87 μm. The drug-loading coefficient and encapsulation efficiency were 15.2 ± 0.6 % and 91.24 ± 3.77 %, respectively. The drug release from TA-MS lasted up to 87 days, but only 46 days for TA suspension. The change in surface morphology also showed sustained drug release from TA-MS. TA-MS exhibited improved therapeutic efficacy in lipopolysaccharide -induced uveitis compared to TA suspension, especially in regard to the inhibition of inflammation. The TA-MS had a longer-term therapeutic effect on intraocular inflammation in LPS-induced uveitis in rabbits compared to TA suspension. The results suggested that TA-MS can be developed as a potential sustained-release system for the treatment of uveitis.

  12. Evaluation of poly(lactic-co-glycolic acid) and poly(dl-lactide-co-ε-caprolactone) electrospun fibers for the treatment of HSV-2 infection.

    PubMed

    Aniagyei, Stella E; Sims, Lee B; Malik, Danial A; Tyo, Kevin M; Curry, Keegan C; Kim, Woihwan; Hodge, Daniel A; Duan, Jinghua; Steinbach-Rankins, Jill M

    2017-03-01

    More diverse multipurpose prevention technologies are urgently needed to provide localized, topical pre-exposure prophylaxis against sexually transmitted infections (STIs). In this work, we established the foundation for a multipurpose platform, in the form of polymeric electrospun fibers (EFs), to physicochemically treat herpes simplex virus 2 (HSV-2) infection. To initiate this study, we fabricated different formulations of poly(lactic-co-glycolic acid) (PLGA) and poly(dl-lactide-co-ε-caprolactone) (PLCL) EFs that encapsulate Acyclovir (ACV), to treat HSV-2 infection in vitro. Our goals were to assess the release and efficacy differences provided by these two different biodegradable polymers, and to determine how differing concentrations of ACV affected fiber efficacy against HSV-2 infection and the safety of each platform in vitro. Each formulation of PLGA and PLCL EFs exhibited high encapsulation efficiency of ACV, sustained-delivery of ACV through one month, and in vitro biocompatibility at the highest doses of EFs tested. Additionally, all EF formulations provided complete and efficacious protection against HSV-2 infection in vitro, regardless of the timeframe of collected fiber eluates tested. This work demonstrates the potential for PLGA and PLCL EFs as delivery platforms against HSV-2, and indicates that these delivery vehicles may be expanded upon to provide protection against other sexually transmitted infections.

  13. Laboratory-scale evaluation of a combined soil amendment for the enhanced biodegradation of propylene glycol-based aircraft de-icing fluids.

    PubMed

    Libisch, Balázs; French, Helen K; Hartnik, Thomas; Anton, Attila; Biró, Borbála

    2012-01-01

    A combined soil amendment was tested in microcosm experiments with an aim to enhance the aerobic biodegradation of propylene glycol (PG)-based aircraft de-icing fluids during and following the infiltration of contaminated snowmelt. A key objective under field conditions is to increase degradation of organic pollutants in the surface soil where higher microbial activity and plant rhizosphere effects may contribute to a more efficient biodegradation of PG, compared to subsoil ground layers, where electron acceptors and nutrients are often depleted. Microcosm experiments were set up in Petri dishes using 50 g of soil mixed with appropriate additives. The samples contained an initial de-icing fluid concentration of 10,000 mg/kg soil. A combined amendment using calcium peroxide, activated carbon and 1 x Hoagland solution resulted in significantly higher degradation rates for PG both at 4 and 22 degrees C. Most probable numbers of bacteria capable of utilizing 10,000 mg/kg de-icing fluid as a sole carbon source were about two orders of magnitude higher in the amended soil samples compared to unamended controls at both temperatures. The elevated numbers of such bacteria in surface soil may be a source of cells transported to the subsoil by snowmelt infiltration. The near-surface application of amendments tested here may enhance the growth of plants and plant roots in the contaminated area, as well as microbes to be found at greater depth, and hence increase the degradation of a contaminant plume present in the ground.

  14. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    PubMed

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  15. Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water.

    PubMed

    Yu, Lin; Zhang, Zheng; Zhang, Huan; Ding, Jiandong

    2010-08-09

    This study examines in vitro and in vivo biodegradation and biocompatibility of a thermogelling polymeric material, which we call a mixture hydrogel. The mixture contains two ABA-type triblock copolymers poly(d,l-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(d,l-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) with different block ratios, and one polymer is soluble in water, but the other is not. The aqueous solutions of some mixtures with appropriate mix ratios form hydrogels at the body temperature. The degradation of mixture hydrogels proceeded by hydrolysis of ester bonds followed by the erosion of gel in phosphate saline buffer solution at 37 degrees C for nearly one month. The mass loss and reduction of molecular weight were detected. The mix ratio was found to significantly influence the degradation profiles. The rapid in vivo gel formation was confirmed after subcutaneous injection of the thermogelling copolymer mixtures into Sprague-Dawley rats. The in vivo degradation was a bit accelerated than in vitro hydrolysis, and the persistence time of injected hydrogels in vivo was found to be tuned by mix ratio. MTT assay and histological observations were used to examine the copolymer mixtures. Both in vitro and in vivo results illustrate acceptable biocompatibility of our materials. As such, the thermosensitive hydrogel of copolymer mixture is confirmed to be a promising candidate of an injectable biomaterial for drug delivery and tissue engineering.

  16. Paclitaxel-loaded poly(glycolide-co-ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 2000 succinate nanoparticles for lung cancer therapy

    PubMed Central

    Zhao, Tiejun; Chen, Hezhong; Dong, Yuchao; Zhang, Jiajun; Huang, Haidong; Zhu, Ji; Zhang, Wei

    2013-01-01

    In order to improve the therapeutic efficacy and minimize the side effects of lung cancer chemotherapy, the formulation of paclitaxel-loaded poly(glycolide-co-ε-caprolactone)-b-D-α-tocopheryl polyethylene glycol 2000 succinate nanoparticles (PTX-loaded [PGA-co-PCL]-b-TPGS2k NPs) was prepared. The novel amphiphilic copolymer (PGA-co-PCL)-b-TPGS2k was synthesized by ring-opening polymerization and characterized by proton nuclear magnetic resonance spectroscopy and gel permeation chromatography. The PTX-loaded (PGA-co-PCL)-b-TPGS2k NPs were characterized in terms of size, size distribution, zeta potential, drug encapsulation, surface morphology, and drug release. In vitro cellular uptakes of NPs were investigated with confocal laser scanning microscopy, indicating the coumarin 6-loaded (PGA-co-PCL)-b-TPGS2k NPs could be internalized by human lung cancer A-549 cells. The antitumor effect of PTX-loaded NPs was evaluated, both in vitro and in vivo, on an A-549 cell tumor-bearing mouse model via intratumoral injection. The commercial PTX formulation Taxol was chosen as the reference. Experimental results showed that the PTX-loaded NPs possessed higher cytotoxicity and could effectively inhibit the growth of tumor. All the results suggested that amphiphilic copolymer (PGA-co-PCL)-b-TPGS2k could act as a potential biological material for nanoformulation in the treatment of lung cancer. PMID:23696703

  17. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Hay, M.

    2011-06-20

    The Defense Waste Processing Facility (DWPF) is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and

  18. Second generation copolymers for EOR

    SciTech Connect

    McCormick, C.L.

    1988-05-01

    In this report, the authors review four types of acrylamide-based copolymers with distinctly different dilute solutions and rheological behavior. Each of these ''second generation'' systems possesses characteristics which, in theory, should be superior to conventional polymers under certain operational conditions. Type I copolymers are prepared from acrylamide (AM) and sodium-3-acrylamido-3-methylbutanoate (NaAMB). The high molecular weight, viscosity maintenance, and phase stability in the presence of divalent ions make these copolymers especially attractive for mobility control in EOR. Type II copolymers address the problems of entrapment, pore clogging, and shear degradation often encountered with ultrahigh molecular weight copolymers. The copolymers of this type are lower molecular weight than Type 1 but associate in a cooperative manner in semi-dilute solutions to enhance solution viscoscity. In this report, the authors discuss associative polymers of acrylamide/N-alkyl acrylamides which contain low mole percentages of C/sub 8/, C/sub 10/, or C/sub 12/ comonomers. In practice, a third charged comonomer such as carboxylated or sulfonated one, might be necessary to reduce adsorption to reservoir rock. Type III systems are relatively low molecular weight and hyrophibically modified in order to bring about intramolecular micelle-like association in aqueous solution. The aqueous solutions are non-viscous; viscosification occurs upon solubilization of hydrocarbons in the hydrophobic domains. Copolymers of acrylamide with N-propyl diacetone acrylamide are examples of Type III.

  19. Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels.

    PubMed

    Suggs, L J; Kao, E Y; Palombo, L L; Krishnan, R S; Widmer, M S; Mikos, A G

    1998-01-01

    We describe the preparation and bulk characterization of a cross-linked poly(propylene fumarate-co-ethylene glycol), p(PF-co-EG), hydrogel. Eight block copolymer formulations were made varying four different design parameters including: poly(ethylene glycol) (PEG) molecular weight, poly(propylene fumarate) (PPF) molecular weight, copolymer molecular weight, and ratio of PEG to PPF. Two different cross-linking formulations were also tested, one with a cross-linking monomer and one without. The extent of the cross-linking reaction and the degree of swelling in aqueous solution were determined on copolymer formulations made without a cross-linking monomer. The values of molecular weight between cross-links, Mc ranged from 300 +/- 120 to 1190 +/- 320 as determined from swelling data (n = 3). The equilibrium volume swelling ratios, Q, varied from 1.5 +/- 0.1 to 3.0 +/- 0.1. This ratio was found to increase with increasing PEG content in the copolymer and decrease with increasing PPF molecular weight. The values for complex dynamic elastic moduli magnitudes of E*, ranged from 0.9 +/- 0.2 to 13.1 +/- 1.1 MPa for the formulations with the cross-linking monomer, N-vinyl pyrrolidinone (VP) (n = 3). The ultimate tensile stresses on the formulations made with VP ranged from 0.15 +/- 0.03 to 1.44 +/- 1.06 MPa, and tensile moduli ranged from 1.11 +/- 0.20 to 20.66 +/- 2.42 MPa (n = 5). All of the mechanical properties increased with increasing PPF molecular weight and decreased with increasing PEG content in the copolymer. These data show that the physical properties of p(PF-co-EG) hydrogels can be tailored for specific applications by altering the material composition.

  20. New adhesive systems based on functionalized block copolymers

    SciTech Connect

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  1. Characterization, in Vivo and in Vitro Evaluation of Solid Dispersion of Curcumin Containing d-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Mannitol.

    PubMed

    Song, Im-Sook; Cha, Jin-Sun; Choi, Min-Koo

    2016-10-17

    The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1:10:15 (w/w/w). The solubility and dissolution rate of the curcumin solid dispersion markedly improved compared with those of curcumin powder and a physical mixture of curcumin, TPGS, and mannitol. About 90% of the curcumin was released from the solid dispersion formulation within 10 min. After administering the formulation orally to rats, higher plasma concentrations of curcumin were observed, with increases in the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) of 86- and 65-fold, respectively, compared with those of curcumin powder. The solid dispersion formulation effectively increased intestinal permeability and inhibited P-gp function. These effects increased the anti-proliferative effect of curcumin in MDA-MB-231 breast cancer cells. Moreover, 2 h incubation with curcumin powder, solid dispersion formulation, and its physical mixture resulted in differential cytotoxic effect of paclitaxel in P-gp overexpressed LLC-PK1-P-gp and MDA-MB-231 cells through the inhibition of P-gp-mediated paclitaxel efflux. In conclusion, compared with curcumin, a solid dispersion formulation of curcumin with TPGS and mannitol could be a promising option for enhancing the oral bioavailability and efficacy of curcumin through increased solubility, dissolution rate, cell permeability, and P-gp modulation.

  2. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical.

    PubMed

    Shen, Roger; Kim, Jane J; Yao, Mingyi; Elbayoumi, Tamer A

    2016-01-01

    Berberine (Brb) is an active alkaloid occurring in various common plant species, with well-recognized potential for cancer therapy. Brb not only augments the efficacy of antineoplastic chemotherapy and radiotherapy but also exhibits direct antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities in a variety of tumors. Despite its low systemic toxicity, several pharmaceutical challenges limit the application of Brb in cancer therapy (ie, extremely low solubility and permeability, very poor pharmacokinetics (PKs), and oral bioavailability). Among lipid-based nanocarriers investigated recently for Brb, stealth amphiphilic micelles of polymeric phospholipid conjugates were studied here as a promising strategy to improve Brb delivery to tumors. Specifically, physicochemically stable micelles made of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (PEG-PE) mixed with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-succinate ester of vitamin E), in a 3:1 M ratio, increased Brb solubilization by 300%. Our PEG-PE/TPGS-mixed micelles firmly retained the incorporated Brb, displaying extended-release profile in simulated media, with up to 30-fold projected improvement in simulated PKs of Brb. Owing to the markedly better uptake of Brb-containing mixed micelles in vitro, our Brb-mixed micelles nanoformulation significantly amplified apoptosis and overall cytotoxic effectiveness against monolayer and spheroid cultures of human prostate carcinomas (16- to 18-fold lower half-maximal inhibitory concentration values in PC3 and LNPaC, respectively), compared to free Brb. Mixed PEG-PE/TPGS micelles represent a promising delivery platform for the sparingly soluble anticancer agent, Brb, encouraging further pharmaceutical development of this drug for cancer therapy.

  3. Evaluation of the diffusion coefficient for controlled release of oxytetracycline from alginate/chitosan/poly(ethylene glycol) microbeads in simulated gastrointestinal environments.

    PubMed

    Cruz, Maria C Pinto; Ravagnani, Sergio P; Brogna, Fabio M S; Campana, Sérgio P; Triviño, Galo Cardenas; Lisboa, Antonio C Luz; Mei, Lucia H Innocentini

    2004-12-01

    Diffusion studies of OTC (oxytetracycline) entrapped in microbeads of calcium alginate, calcium alginate coacervated with chitosan (of high, medium and low viscosity) and calcium alginate coacervated with chitosan of low viscosity, covered with PEG [poly(ethylene glycol) of molecular mass 2, 4.6 and 10 kDa, were carried out at 37+/-0.5 degrees C, in pH 7.4 and pH 1.2 buffer solutions - conditions similar to those found in the gastrointestinal system. The diffusion coefficient, or diffusivity (D), of OTC was calculated by equations provided by Crank [(1975) Mathematics in Diffusion, p. 85, Clarendon Press, Oxford] for diffusion, which follows Fick's [(1855) Ann. Physik (Leipzig) 170, 59] second law, considering the diffusion from the inner parts to the surface of the microbeads. The least-squares and the Newton-Raphson [Carnahan, Luther and Wilkes (1969) Applied Numerical Methods, p. 319, John Wiley & Sons, New York] methods were used to obtain the diffusion coefficients. The microbead swelling at pH 7.4 and OTC diffusion is classically Fickian, suggesting that the OTC transport, in this case, is controlled by the exchange rates of free water and relaxation of calcium alginate chains. In case of acid media, it was observed that the phenomenon did not follow Fick's law, owing, probably, to the high solubility of the OTC in this environment. It was possible to modulate the release rate of OTC in several types of microbeads. The presence of cracks formed during the process of drying the microbeads was observed by scanning electron microscopy.

  4. Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery.

    PubMed

    Rahme, Kamil; Guo, Jianfeng; Holmes, Justin D; O'Driscoll, Caitriona M

    2015-11-01

    The potential of RNA interference (RNAi)-based therapeutics for cancer has received much attention; however, delivery of RNAi effectors, such as small interfering RNA (siRNA), remains an obstacle to clinical translation. Non-viral delivery vectors have been used extensively to enhance siRNA delivery. Recently, the potential of gold nanoparticles (AuNPs) for transporting drugs, proteins and genetic materials has been demonstrated. Previously, our laboratory synthesised positively charged, surfactant-free AuNPs in water by the reduction of gold (III) chloride (AuCl3) using hydroxylamine hydrochloride (NH2OH·HCl) in the presence of L-cysteine methyl ester hydrochloride (HSCH2CH(NH2)COOCH3·HCl) as a capping agent. These AuNPs, which achieve higher cell viability in comparison to cetyl trimethyl ammonium bromide (CTAB, a surfactant)-capped counterparts, have demonstrated potential for siRNA delivery. However, it is well known that systemic administration of cationic delivery systems without biological stablising moieties causes non-specific binding with negatively charged serum proteins, resulting in particle aggregation and opsonisation. Consequently, highly stable AuNPs capped with l-cysteine methyl ester hydrochloride conjugated to poly(ethylene glycol) (PEG) were synthesised in this study. PEGylation enhanced the biocompatibility of the AuNPs by reducing toxicity in a range of cell types, by inhibiting interaction with serum proteins thus avoiding aggregation, and, by providing protection against degradation by nucleases. Moreover, these PEGylated AuNPs formed nanoparticles (NPs) with siRNA (which was first compacted with protamine), and had a diameter within the nanoscale range (∼ 250 nm) and a near neutral surface charge (∼ 10 mV). In the future a bifunctional PEG chain on the AuNPs (i.e., SH-PEG-NH2, SH-PEG-COOH) will be used to facilitate conjugation of a targeting ligand to enhance cell specific uptake.

  5. Novel "star anise"-like nano aggregate prepared by self-assembling of preformed microcrystals from branched crystalline-coil alternating multi-block copolymer.

    PubMed

    Chen, Si-Chong; Wu, Gang; Shi, Jing; Wang, Yu-Zhong

    2011-04-14

    Nano aggregates in aqueous medium with a novel "star anise"-like morphology were prepared from a branched alternating multi-block copolymer composed of 3-arm star-like hydrophobic poly(p-dioxanone) block and linear hydrophilic poly(ethylene glycol) block. The influence of block length on the morphology of the nano aggregate was investigated.

  6. Chain bridging in a model of semicrystalline multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Shah, Manas; Ganesan, Venkat

    2009-02-01

    Recent experimental observations have suggested an intimate connection between the chain conformations and mechanical properties of semicrystalline multiblock copolymers. Motivated by these studies, we present a theoretical study evaluating the bridging/looping fractions in a model of semicrystalline multiblock copolymers. We model the noncrystalline block (A) as a flexible Gaussian chain and the crystalline block (B) as a semiflexible chain with a temperature dependent rigidity and interactions that favor the formation of parallel oriented bonds. Using self-consistent field theory, the bridging fractions of the various domains in different multiblock copolymers (ABA, BAB, ABABA, and BABAB) are evaluated and compared with their flexible counterparts. In general, we observe that for both triblock and pentablock copolymers, rendering one of the blocks crystallizable promotes bridging in that component while reducing the bridging in the other noncrystallizable component. Moreover, the bridging fractions in tri- and pentablock copolymers were seen to be quantitatively similar except insofar as being normalized by the volume fraction of bridgeable units.

  7. Supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases for drug delivery.

    PubMed

    Wang, Dali; Su, Yue; Jin, Chengyu; Zhu, Bangshang; Pang, Yan; Zhu, Lijuan; Liu, Jinyao; Tu, Chunlai; Yan, Deyue; Zhu, Xinyuan

    2011-04-11

    Novel supramolecular copolymer micelles with stimuli-responsive abilities were successfully prepared through the complementary multiple hydrogen bonds of nucleobases and then applied for rapid intracellular release of drugs. First, both adenine-terminated poly(ε-caprolactone) (PCL-A) and uracil-terminated poly(ethylene glycol) (PEG-U) were synthesized. The supramolecular amphiphilic block copolymers (PCL-A:U-PEG) were formed based on multiple hydrogen bonding interactions between PCL-A and PEG-U. The micelles self-assembled from PCL-A:U-PEG were sufficiently stable in water but prone to fast aggregation in acidic condition due to the dynamic and sensitive nature of noncovalent interactions. The low cytotoxicity of supramolecular copolymer micelles was confirmed by MTT assay against NIH/3T3 normal cells. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these supramolecular copolymer micelles. In vitro release studies demonstrated that the release of DOX from micelles was significantly faster at mildly acid pH of 5.0 compared to physiological pH. MTT assay against HeLa cancer cells showed DOX-loaded micelles had high anticancer efficacy. Hence, these supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases are very promising candidates for rapid controlled release of drugs.

  8. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    SciTech Connect

    Determan, Michael Duane

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  9. Conjugates of superoxide dismutase 1 with amphiphilic poly(2-oxazoline) block copolymers for enhanced brain delivery: synthesis, characterization and evaluation in vitro and in vivo.

    PubMed

    Tong, Jing; Yi, Xiang; Luxenhofer, Robert; Banks, William A; Jordan, Rainer; Zimmerman, Matthew C; Kabanov, Alexander V

    2013-01-07

    Superoxide dismutase 1 (SOD1) efficiently catalyzes dismutation of superoxide, but its poor delivery to the target sites in the body, such as brain, hinders its use as a therapeutic agent for superoxide-associated disorders. Here to enhance the delivery of SOD1 across the blood-brain barrier (BBB) and in neurons the enzyme was conjugated with poly(2-oxazoline) (POx) block copolymers, P(MeOx-b-BuOx) or P(EtOx-b-BuOx), composed of (1) hydrophilic 2-methyl-2-oxazoline (MeOx) or 2-ethyl-2-oxazoline (EtOx) and (2) hydrophobic 2-butyl-2-oxazoline (BuOx) repeating units. The conjugates contained from 2 to 3 POx chains joining the protein amino groups via cleavable -(ss)- or noncleavable -(cc)- linkers at the BuOx block terminus. They retained 30% to 50% of initial SOD1 activity, were conformationally and thermally stable, and assembled in 8 or 20 nm aggregates in aqueous solution. They had little if any toxicity to CATH.a neurons and displayed enhanced uptake in these neurons as compared to native or PEGylated SOD1. Of the two conjugates, SOD1-(cc)-P(MeOx-b-BuOx) and SOD1-(cc)-P(EtOx-b-BuOx), compared, the latter was entering cells 4 to 7 times faster and at 6 h colocalized predominantly with endoplasmic reticulum (41 ± 3%) and mitochondria (21 ± 2%). Colocalization with endocytosis markers and pathway inhibition assays suggested that it was internalized through lipid raft/caveolae, also employed by the P(EtOx-b-BuOx) copolymer. The SOD activity in cell lysates and ability to attenuate angiotensin II (Ang II)-induced superoxide in live cells were increased for this conjugate compared to SOD1 and PEG-SOD1. Studies in mice showed that SOD1-POx had ca. 1.75 times longer half-life in blood than native SOD1 (28.4 vs 15.9 min) and after iv administration penetrated the BBB significantly faster than albumin to accumulate in brain parenchyma. The conjugate maintained high stability both in serum and in brain (77% vs 84% at 1 h postinjection). Its amount taken up by the brain

  10. Passive and active hepatoma tumor targeting of new N-(2-hydroxypropyl)methacrylamide copolymer conjugates: synthesis, characterization, and evaluation in vitro and in vivo.

    PubMed

    Yuan, Jianchao; Yuan, Bingnian; Guo, Hongyun; Zeng, Xianwu; Wang, Xiaoqi; Liao, Shiqi; Li, Jing; Jia, Zong; Song, Fengying; Wang, Fuzhou

    2013-01-01

    Human hepatocellular carcinoma (HCC) is one of the major causes of death worldwide. To investigate the relative importance of active and passive targeting strategies, the synthesis, characterization, in vitro uptake, and in vivo biodistribution of specific sulfapyridine HPMA (HPMA: N-(2-hydroxypropyl methacrylamide)) copolymer (sulfapyridine: SPD) conjugates, nonspecific HPMA copolymer conjugates, and DTPA are described in this study. The poly(HPMA)-SPD-DTPA (DTPA: diethylenetriaminepentaacetic acid), poly(HPMA)-DTPA, and DTPA conjugates were radiolabeled with the radionuclide (99m)Tc and tested for uptake by cultured H22 cells. The cellular accumulation of poly(HPMA)-SPD-DTPA-(99m)Tc complex was found to be time-dependent. The poly(HPMA)-SPD-DTPA-(99m)Tc tracer exhibited rapid uptake kinetics in cell culture with a t(1/2) of ~5 min. The uptake of poly(HPMA)-SPD-DTPA-(99m)Tc was significantly higher than that of poly(HPMA)-DTPA-(99m)Tc, indicating that the uptake of the poly(HPMA)-SPD-DTPA-(99m)T was active binding. The uptake of poly(HPMA)-DTPA-(99m)Tc was significantly higher than that of DTPA-(99m)Tc, suggesting that the uptake of the poly(HPMA)-DTPA-(99m)T was passive binding. Twenty-four hour necropsy data in the hepatocellular carcinoma tumor model showed significantly higher (p < 0.001) tumor localization for poly(HPMA)-SPD-DTPA-(99m)Tc (4.98 ± 0.48%ID/g [percentage injected dose per gram tissue]) compared with poly(HPMA)-DTPA-(99m)Tc (2.69 ± 0.15% ID/g) and DTPA-(99m)Tc (0.83 ± 0.03%ID/g). Moreover, higher T/B for poly(HPMA)-SPD-DTPA-(99m)Tc indicated reduced extravazation of the targeted polymeric conjugates in normal tissues. Specific molecular targeting and nonspecific vascular permeability are both significant in the relative tumor localization of poly(HPMA)-SPD-DTPA-(99m)Tc. Extravascular leak in nonspecific organs appears to be a major factor in reducing the T/B for the sulfapyridine molecules. Thus, the poly(HPMA)-SPD-DTPA is expected to be used

  11. Controlling Domain Orientations in Thin Films of AB and ABA Block Copolymers

    SciTech Connect

    Vu, Thai; Mahadevapuram, Nikhila; Perera, Ginusha M.; Stein, Gila E.

    2012-03-15

    Domain orientations in thin films of lamellar copolymers are evaluated as a function of copolymer architecture, film thickness, and processing conditions. Two copolymer architectures are considered: An AB diblock of poly(styrene-b-methyl methacrylate) and an ABA triblock of poly(methyl methacrylate-b-styrene-b-methyl methacrylate). All films are cast on substrates that are energetically neutral with respect to the copolymer constituents. Film structures are evaluated with optical microscopy, atomic force microscopy, and grazing-incidence small-angle X-ray scattering. For AB diblock copolymers, the domain orientations are very sensitive to film thickness, annealing temperature, and imperfections in the 'neutral' substrate coating: Diblock domains are oriented perpendicular to the substrate when annealing temperature is elevated ({>=} 220 C) and defects in the substrate coating are minimized; otherwise, parallel or mixed parallel/perpendicular domain orientations are detected for most film thicknesses. For ABA triblock copolymers, the perpendicular domain orientation is stable for all the film thicknesses and processing conditions that were studied. The orientations of diblock and triblock copolymers are consistent with recent works that consider architectural effects when calculating the copolymer surface tension (Macromolecules 2006, 39, 9346 and Macromolecules 2010, 43, 1671). Significantly, the data demonstrate that triblocks are easier to process for applications in nanopatterning - in particular, when high-aspect-ratio nanostructures are required. However, both diblock and triblock films contain a high density of 'tilted' or bent domains, and these kinetically trapped defects should be minimized for most patterning applications.

  12. Biological materials: Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. Biobased nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Ning

    The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery "wastes": lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization (≤ 5-10 μm), but it was concluded that cellulose was not a suitable binder. Cellulose lignin fibers before carbonization showed up to 90% decrease in moisture uptake compared to pure cellulose. Peptidoglycan (a bacterial cell wall

  13. The effects of molecular structure on sol-to-gel transition of biodegradable poly(depsipeptide-co-lactide)-g-PEG copolymers.

    PubMed

    Takahashi, Akihiro; Umezaki, Masaya; Yoshida, Yasuyuki; Kuzuya, Akinori; Ohya, Yuichi

    2014-01-01

    We report on the effects of number and length of PEG chains in poly(depsipeptide-co-dl-lactide)-g-poly(ethylene glycol) (P(DG-dl-LA)-g-PEG) copolymers on their sol-to-gel transition behavior. The graft-type copolymer is suitable for the systematic study of the effects of molecular structure and hydrophilic/hydrophobic balance on its sol-to-gel transition. We prepared various P(DG-dl-LA)-g-PEG copolymers through coupling reactions between the pendant carboxylic acid groups of P(GD-dl-LA) and the end hydroxyl group of MeO-PEG having various molecular weights. Temperature-responsive sol-to-gel transition of the obtained copolymer solution in phosphate-buffered solution (pH 7.4, ionic strength = 0.14) was investigated by the test tube inverting method and rheological measurements. P(GD-dl-LA)-g-PEG copolymer prepared from higher molecular weight PEG showed higher sol-to-gel transition temperatures compared with the copolymers prepared from lower molecular weight PEG, although these copolymers have similar weight content of PEG (23-24 wt.%). Similar trends were observed for groups of copolymers whose PEG contents were 27 or 30 wt.%. These results are informative for providing strategies on rational design of thermo-gelling polymers.

  14. Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells

    PubMed Central

    Chen, Xiao-Ai; Zhang, Li-Jun; He, Zhi-Jie; Wang, Wei-Wei; Xu, Bo; Zhong, Qian; Shuai, Xin-Tao; Yang, Li-Qun; Deng, Yu-Bin

    2011-01-01

    Background: Mesenchymal stem cell transplantation is a promising method in regenerative medicine. Gene-modified mesenchymal stem cells possess superior characteristics of specific tissue differentiation, resistance to apoptosis, and directional migration. Viral vectors have the disadvantages of potential immunogenicity, carcinogenicity, and complicated synthetic procedures. Polyethylene glycol-grafted polyethylenimine (PEG-PEI) holds promise in gene delivery because of easy preparation and potentially targeting modification. Methods: A PEG8k-PEI25k graft copolymer was synthesized. Agarose gel retardation assay and dynamic light scattering were used to determine the properties of the nanoparticles. MTT reduction, wound and healing, and differentiation assays were used to test the cytobiological characteristics of rat mesenchymal stem cells, fluorescence microscopy and flow cytometry were used to determine transfection efficiency, and atomic force microscopy was used to evaluate the interaction between PEG-PEI/plasmid nanoparticles and mesenchymal stem cells. Results: After incubation with the copolymer, the bionomics of mesenchymal stem cells showed no significant change. The mesenchymal stem cells still maintained high viability, resettled the wound area, and differentiated into adipocytes and osteoblasts. The PEG-PEI completely packed plasmid and condensed plasmid into stable nanoparticles of 100–150 nm diameter. After optimizing the N/P ratio, the PEG-PEI/plasmid microcapsules delivered plasmid into mesenchymal stem cells and obtained an optimum transfection efficiency of 15%–21%, which was higher than for cationic liposomes. Conclusion: These data indicate that PEG-PEI is a valid gene delivery agent and has better transfection efficiency than cationic liposomes in mesenchymal stem cells. PMID:21589652

  15. Hyperbranched-dendrimer architectural copolymer gene delivery using hyperbranched PEI conjugated to poly(propyleneimine) dendrimers: synthesis, characterization, and evaluation of transfection efficiency

    NASA Astrophysics Data System (ADS)

    Alavi, Seyyed Jamal; Gholami, Leila; Askarian, Saeedeh; Darroudi, Majid; Massoudi, Abdolhossein; Rezaee, Mehdi; Kazemi Oskuee, Reza

    2017-02-01

    The applications of dendrimer-based vectors seem to be promising in non-viral gene delivery because of their potential for addressing the problems with viral vectors. In this study, generation 3 poly(propyleneimine) (G3-PPI) dendrimers with 1, 4-diaminobutane as a core initiator was synthesized using a divergent growth approach. To increase the hydrophobicity and reduce toxicity, 10% of primary amines of G3-PPI dendrimers were replaced with bromoalkylcarboxylates with different chain lengths (6-bromohexanoic and 10-bromodecanoic). Then, to retain the overall buffering capacity and enhance transfection, the alkylcarboxylate-PPIs were conjugated to 10 kDa branched polyethylenimine (PEI). The results showed that the modified PPI was able to form complexes with the diameter of less than 60 nm with net-positive surface charge around 20 mV. No significant toxicity was observed in modified PPIs; however, the hexanoate conjugated PPI-PEI (PPI-HEX-10% PEI) and the decanoate conjugated PPI-PEI (PPI-DEC-10%-PEI) showed the best transfection efficiency in murine neuroblastoma (Neuro-2a) cell line, even PPI-HEX-10%-PEI showed transfection efficiency equal to standard PEI 25 kDa with reduced toxicity. This study suggested a new series of hyperbranched (PEI)-dendrimer (PPI) architectural copolymers as non-viral gene delivery vectors with high transfection efficiency and low toxicity.

  16. Original research paper. Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by spray drying.

    PubMed

    Amelian, Aleksandra; Szekalska, Marta; Ciosek, Patrycja; Basa, Anna; Winnicka, Katarzyna

    2017-03-01

    Taste of a pharmaceutical formulation is an important parameter for the effectiveness of pharmacotherapy. Cetirizine dihydrochloride (CET) is a second-generation antihistamine that is commonly administered in allergy treatment. CET is characterized by extremely bitter taste and it is a great challenge to successfully mask its taste; therefore the goal of this work was to formulate and characterize the microparticles obtained by the spray drying method with CET and poly(butyl methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl methacrylate 1:2:1 copolymer (Eudragit E PO) as a barrier coating. Assessment of taste masking by the electronic tongue has revealed that designed formulations created an effective taste masking barrier. Taste masking effect was also confirmed by the in vivo model and the in vitro release profile of CET. Obtained data have shown that microparticles with a drug/polymer ratio (0.5:1) are promising CET carriers with efficient taste masking potential and might be further used in designing orodispersible dosage forms with CET.

  17. Toxicity evaluation of diethylene glycol and its combined effects with produced waters of off-shore gas platforms in the Adriatic Sea (Italy): bioassays with marine/estuarine species.

    PubMed

    Tornambè, Andrea; Manfra, Loredana; Mariani, Livia; Faraponova, Olga; Onorati, Fulvio; Savorelli, Federica; Cicero, Anna Maria; Virno Lamberti, Claudia; Magaletti, Erika

    2012-06-01

    Diethylene glycol (DEG) is commonly used to dehydrate natural gas in off-shore extraction plants and to prevent formation of gas hydrates. It may be released into the sea accidentally or in discharged produced waters (PWs). PWs samples from off-shore gas platforms in the Adriatic Sea (Italy) have been used in this study. The objectives of the study were: a) to evaluate the toxicity of DEG for marine organisms; b) to evaluate if a high DEG content in PWs may alter their toxicity; c) to verify whether the DEG threshold concentration established by the Italian legislation (3.5 g/l) for PWs discharged at sea is safe for marine environment. Ten different species (Vibrio fischeri, Phaeodactylum tricornutum, Dunaliella tertiolecta, Brachionus plicatilis, Artemia franciscana, Tigropus fulvus, Mytilus galloprovincialis, Crassostrea gigas, Tapes philippinarum and Dicentrarchus labrax) have been exposed to DEG; four of these species were also exposed to PWs in combination with DEG. The results showed that: a) DEG is not toxic at levels normally detected in Adriatic PWs; b) DEG in combination with PW showed mainly additive or synergistic effects; c) short-term bioassays showed that the DEG limit of 3.5 g/l could be acceptable.

  18. Effects of copolymer component on the properties of phosphorylcholine micelles.

    PubMed

    Wu, Zhengzhong; Cai, Mengtan; Cao, Jun; Zhang, Jiaxing; Luo, Xianglin

    2017-01-01

    Zwitterionic polymers have unique features, such as good compatibility, and show promise in the application of drug delivery. In this study, the zwitterionic copolymers, poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) with disulfide (PCL-ss-PMPC) or poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) or without disulfide (PCL-PMPC) and with different block lengths in PCL-ss-PMPC, were designed. The designed copolymers were obtained by a combination of ring-opening polymerization and atom transferring radical polymerization. The crystallization properties of these polymers were investigated. The micelles were prepared based on the obtained copolymers with zwitterionic phosphorylcholine as the hydrophilic shell and PCL as the hydrophobic core. The size distributions of the blank micelles and the doxorubicin (DOX)-loaded micelles were uniform, and the micelle diameters were <100 nm. In vitro drug release and intracellular drug release results showed that DOX-loaded PCL-ss-PMPC micelles could release drugs faster responding to the reduction condition and the intracellular microenvironment in contrast to PCL-PMPC micelles. Moreover, in vitro cytotoxicity evaluation revealed that the designed copolymers possessed low cell toxicity, and the inhibiting effect of DOX-loaded phosphorylcholine micelles to tumor cells was related to the components of these copolymers. These results reveal that the reduction-responsive phosphorylcholine micelles with a suitable ratio of hydrophilic/hydrophobic units can serve as promising drug carriers.

  19. Effects of copolymer component on the properties of phosphorylcholine micelles

    PubMed Central

    Wu, Zhengzhong; Cai, Mengtan; Cao, Jun; Zhang, Jiaxing; Luo, Xianglin

    2017-01-01

    Zwitterionic polymers have unique features, such as good compatibility, and show promise in the application of drug delivery. In this study, the zwitterionic copolymers, poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) with disulfide (PCL-ss-PMPC) or poly(ε-caprolactone)-b-poly(2-methacryloyloxyethyl phosphorylcholine) or without disulfide (PCL-PMPC) and with different block lengths in PCL-ss-PMPC, were designed. The designed copolymers were obtained by a combination of ring-opening polymerization and atom transferring radical polymerization. The crystallization properties of these polymers were investigated. The micelles were prepared based on the obtained copolymers with zwitterionic phosphorylcholine as the hydrophilic shell and PCL as the hydrophobic core. The size distributions of the blank micelles and the doxorubicin (DOX)-loaded micelles were uniform, and the micelle diameters were <100 nm. In vitro drug release and intracellular drug release results showed that DOX-loaded PCL-ss-PMPC micelles could release drugs faster responding to the reduction condition and the intracellular microenvironment in contrast to PCL-PMPC micelles. Moreover, in vitro cytotoxicity evaluation revealed that the designed copolymers possessed low cell toxicity, and the inhibiting effect of DOX-loaded phosphorylcholine micelles to tumor cells was related to the components of these copolymers. These results reveal that the reduction-responsive phosphorylcholine micelles with a suitable ratio of hydrophilic/hydrophobic units can serve as promising drug carriers. PMID:28138244

  20. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  1. Chitosan-glutaraldehyde copolymers and their sorption properties.

    PubMed

    Poon, Louis; Wilson, Lee D; Headley, John V

    2014-08-30

    This study reports the preparation of chitosan-glutaraldehyde (Chi-Glu) copolymers at modified reaction conditions such as the temperature prior to gelation, pH, and reagent ratios. The chitosan copolymers were characterized using infrared spectroscopy (FT-IR), CHN elemental analysis, and thermal gravimetric analysis (TGA). Evidence of self-polymerized glutaraldehyde was supported by CHN and TGA results. The sorption properties of Chi-Glu copolymers were evaluated in aqueous solutions containing p-nitrophenol at variable pH (4.6, 6.6, and 9.0). The sorption properties of the copolymers correlated with the level of the accessibility of the sorption sites in accordance with the relative cross-linker content. The relative sorption capacity of the Chi-Glu copolymers increases as the level of cross-linking increases. Chitosan displays the lowest sorptive uptake while an optimal sorption capacity was concluded at the 4:1 glutaraldehyde:chitosan monomer mole ratio, in close agreement with the three reactive sites (i.e. OH/NH) per glucosamine monomer. The PNP dye probe was determined to bind to chitosan through an electrostatic interaction due to the increased sorption capacity of the phenolate anion, as evidenced by the change in pH from 4.6 to 9.0.

  2. RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels

    PubMed Central

    Hemp, Sean T.; Smith, Adam E.; Bunyard, W. Clayton; Rubinstein, Michael H.; Long, Timothy E.

    2016-01-01

    Reversible-addition fragmentation chain transfer (RAFT) polymerization enabled the synthesis of novel, stimuli-responsive, AB and ABA block copolymers. The B block contained oligo(ethylene glycol) methyl ether methacrylate (OEG) and was permanently hydrophilic in the conditions examined. The A block consisted of diethylene glycol methyl ether methacrylate (DEG) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMA). The A block displayed both salt- and temperature-response with lower critical solution temperatures (LCSTs) dependent on the molar content of TMA and the presence of salt. Higher TMA content in the AB diblock copolymers increased the critical micelle temperatures (CMT) in HPLC-grade water due to an increased hydrophilicity of the A block. Upon addition of 0.9 wt% NaCl, the CMTs of poly(OEG-b-DEG95TMA5) decreased from 50 °C to 36 °C due to screening of electrostatic repulsion between the TMA units. ABA triblock copolymers displayed excellent hydrogel properties with salt- and temperature-dependent gel points. TMA incorporation in the A block increased the gel points for all triblock copolymers, and salt-response increased with higher TMA composition in the A block. For example, poly(DEG98TMA2-b-OEG-b-DEG98TMA2) formed a hydrogel at 40 °C in HPLC-grade water and 26 °C in 0.9 wt% NaCl aqueous solution. These salt- and temperature-responsive AB diblock and ABA triblock copolymers find applications as drug delivery vehicles, adhesives, and hydrogels. PMID:27041771

  3. Blood cell separation using amphiphilic copolymers containing N,N-dimethylacrylamide.

    PubMed

    Natori, Shizue Hayashi; Kurita, Keisuke

    2007-05-01

    To develop leukocyte removal filters effective for whole blood, amphiphilic copolymers based on N,N-dimethylacrylamide were synthesized and evaluated as coating materials for poly(ethylene terephthalate) filters. The copolymers with methyl methacrylate or 2-hydroxypropyl methacrylate as a comonomer showed higher platelet permeation ratios (more than 90%) than that of the copolymer with n-butyl methacrylate, though the logarithmic reductions of leukocytes by these copolymers were less than four. An increase in the platelet permeation for whole blood tended to increase the leukocyte permeation. The permeation of both platelets and leukocytes increased with the amount of copolymer coated on the filters because of the change in the physical properties such as the average pore size, total surface area, and total pore volume of coated filters. These results confirm that both the chemical and physical properties of the filters play important roles to control the permeation behavior.

  4. Colorometric detection of ethylene glycol vapor

    NASA Technical Reports Server (NTRS)

    Helm, C.; Mosier, B.; Verostko, C. E.

    1970-01-01

    Very low concentrations of ethylene glycol in air or other gases are detected by passing a sample through a glass tube with three partitioned compartments containing reagents which successively convert the ethylene glycol vapor into a colored compound.

  5. Taste responses of dogs to ethylene glycol, propylene glycol, and ethylene glycol-based antifreeze.

    PubMed

    Marshall, D A; Doty, R L

    1990-12-15

    Although it is widely believed that ethylene glycol-based antifreeze (AF) is an attractive tastant to dogs and other animals, empirical data on this point are not available. In experiment 1, we examined the propensity of 178 adult mixed-breed dogs to approach, sniff, and lick a concentration of AF commonly used in automotive cooling systems (50%). Despite the fact that most of the dogs approached and sniffed the AF in these 5-minute tests, only 9% initiated lick responses and most of these were brief and not followed by additional licking. In experiment 2, the lick responses of five gastric-cannulated dogs to aqueous solutions of 20% sucrose, 50% ethylene glycol, 50% propylene glycol, water, and 50% AF were examined in 14-minute tests before and after periods of food and water deprivation. Under the latter conditions, 2 of the 5 dogs drank amounts of ethylene glycol that would have been lethal to uncannulated dogs. None of the five dogs drank potentially lethal amounts of AF. The preference order for these tastants was sucrose greater than water greater than ethylene glycol greater than AF = propylene glycol. Although these findings question the general belief that AF is highly palatable to most dogs, they do imply that large individual differences in responsiveness exist and that AF ingestion is likely influenced by motivational state. Furthermore, they suggest the possibility that unpleasant-tasting additives could be successfully developed to eliminate the ingestion of AF, because the initial attractiveness of AF is relatively low. Such additives would have to be stable in vehicular cooling systems and not adversely affect the functional aspects of AF performance.

  6. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... copolymer when extracted for 6 hours with distilled water at reflux temperature. (ii) Not to exceed 0.15 percent by weight of the copolymer when extracted for 6 hours with n-heptane at reflux temperature....

  7. Lignin poly(lactic acid) copolymers

    DOEpatents

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  8. 21 CFR 184.1666 - Propylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Propylene glycol. 184.1666 Section 184.1666 Food... Specific Substances Affirmed as GRAS § 184.1666 Propylene glycol. (a) Propylene glycol (C3H8O2, CAS Reg. No. 57-55-6) is known as 1,2-propanediol. It does not occur in nature. Propylene glycol is...

  9. 21 CFR 184.1666 - Propylene glycol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Propylene glycol. 184.1666 Section 184.1666 Food... Specific Substances Affirmed as GRAS § 184.1666 Propylene glycol. (a) Propylene glycol (C3H8O2, CAS Reg. No. 57-55-6) is known as 1,2-propanediol. It does not occur in nature. Propylene glycol is...

  10. 21 CFR 184.1666 - Propylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propylene glycol. 184.1666 Section 184.1666 Food... Specific Substances Affirmed as GRAS § 184.1666 Propylene glycol. (a) Propylene glycol (C3H8O2, CAS Reg. No. 57-55-6) is known as 1,2-propanediol. It does not occur in nature. Propylene glycol is...

  11. 21 CFR 184.1666 - Propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol. 184.1666 Section 184.1666 Food... GRAS § 184.1666 Propylene glycol. (a) Propylene glycol (C3H8O2, CAS Reg. No. 57-55-6) is known as 1,2-propanediol. It does not occur in nature. Propylene glycol is manufactured by treating propylene...

  12. 21 CFR 184.1666 - Propylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Propylene glycol. 184.1666 Section 184.1666 Food... Specific Substances Affirmed as GRAS § 184.1666 Propylene glycol. (a) Propylene glycol (C3H8O2, CAS Reg. No. 57-55-6) is known as 1,2-propanediol. It does not occur in nature. Propylene glycol is...

  13. Propylene glycol monomethyl ether (PGME)

    Integrated Risk Information System (IRIS)

    Propylene glycol monomethyl ether ( PGME ) ; CASRN 107 - 98 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess

  14. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  15. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  16. Glycolate transporter of the pea chloroplast envelope

    SciTech Connect

    Howitz, K.T.

    1985-01-01

    The discovery of a glycolate transporter in the pea (Pisum sativum) chloroplast envelope is described. Several novel silicone oil centrifugation methods were developed to resolve the initial rate kinetics of (/sup 14/C)glycolate transport by isolated, intact pea chloroplasts. Chloroplast glycolate transport was found to be carrier mediated. Transport rates saturated with increasing glycolate concentration. N-Ethylmaleimide (NEM) pretreatment of chloroplasts inhibited transport, an inhibition prevented by glycolate. Glycolate distributed across the envelope in a way which equalized stromal and medium glycolic acid concentrations, limiting possible transport mechanisms to facilitated glycolic acid diffusion, proton symport or hydroxyl antiport. The effects of stomal and medium pH's on the K/sub m/ and V/sub max/ fit the predictions of mobile carrier kinetic models of hydroxyl antiport or proton symport (H/sup +/ binds first). The carrier mediated transport was fast enough to be consistent with in vivo rates of photorespiration. The 2-hydroxymonocarboxylates, glycerate, lactate and glyoxylate are competitive inhibitors of chloroplast glycolate uptake. Glyoxylate, D-lactate and D-glycerate cause glycolate counterflow, indicating that they are also substrates of the glycolate carrier. This finding was confirmed for D-glycerate by studies on glycolate effects on (1-/sup 14/C)D-glycerate transport.

  17. 21 CFR 582.1666 - Propylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This...

  18. 21 CFR 582.1666 - Propylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This...

  19. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is...

  20. 21 CFR 582.1666 - Propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This...

  1. 21 CFR 582.1666 - Propylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This...

  2. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is...

  3. Pumping glycol solutions in the HVAC industry

    SciTech Connect

    Rishel, J.B.; Schlachter, J.P.

    1997-12-31

    Ethylene and propylene glycols are used in heating, ventilating, and airconditioning (HVAC) water systems for operations that can occur below the freezing point of pure water. Typical applications are for generating ice storage and preventing freezing in coils that are exposed to outside air. The type of glycol and the percentage of solution to be used are decisions that are made by the designer of the water system utilizing the glycols. The purpose of this paper is to (1) present the basic procedures required for the selection of piping and pumps for the glycol that has been selected for a particular water system and (2) to demonstrate the effect that the specific gravity and the viscosity of the glycol solution can have on pipe friction and pump performance. Although much of this information has been presented in other ASHRAE technical documents, it is repeated here in the hopes that a relatively simple procedure will be provided for determining the effect of glycol solution viscosity and specific gravity upon piping design and pump operation. A brief review will be made of a glycol`s characteristics followed by the procedures for calculation of piping friction for a glycol system and computation of pump performance. Review also will be made of the use of variable-speed pumping on glycol systems. All of the information will be based upon ethylene glycol; similar data and calculations could be generated for propylene glycol.

  4. 21 CFR 582.1666 - Propylene glycol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1666 Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This...

  5. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is...

  6. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is...

  7. 21 CFR 582.4666 - Propylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Propylene glycol. 582.4666 Section 582.4666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Propylene glycol. (a) Product. Propylene glycol. (b) Conditions of use. This substance is...

  8. 21 CFR 173.65 - Divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.65 Divinylbenzene copolymer. Divinylbenzene copolymer may be used for the removal of organic substances from aqueous foods under the following... contacting the polymer is maintained at 79.4 °C (175 °F) or less. (d) The copolymer may be used in...

  9. Polyethylene glycol plus ascorbic acid for bowel preparation in chronic kidney disease

    PubMed Central

    Lee, Jae Min; Keum, Bora; Yoo, In Kyung; Kim, Seung Han; Choi, Hyuk Soon; Kim, Eun Sun; Seo, Yeon Seok; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Kim, Myung Gyu; Jo, Sang Kyung

    2016-01-01

    Abstract The safety of polyethylene glycol plus ascorbic acid has not been fully investigated in patients with renal insufficiency. High-dose ascorbic acid could induce hyperoxaluria, thereby causing tubule-interstitial nephritis and renal failure. This study aims to evaluate the safety and efficacy of polyethylene glycol plus ascorbic acid in patients with chronic kidney disease. We retrospectively reviewed prospectively collected data on colonoscopy in patients with impaired renal function. Patients were divided into 2 groups: 2 L polyethylene glycol plus ascorbic acid (n = 61) and 4 L polyethylene glycol (n = 80). The safety of the 2 groups was compared by assessing the differences in laboratory findings before and after bowel cleansing. The laboratory findings were not significantly different before and after the administration of 2 L polyethylene glycol plus ascorbic acid or 4 L polyethylene glycol. In both groups, the estimated glomerular filtration rate was not influenced by the administration of the bowel-cleansing agent. Patients’ reports on tolerance and acceptability were better in the 2 L polyethylene glycol plus ascorbic acid group than in the 4 L polyethylene glycol group. The 2 L polyethylene glycol plus ascorbic acid solution is a safe choice for bowel preparation before colonoscopy in patients with impaired renal function. PMID:27603372

  10. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    PubMed

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  11. Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.

    PubMed

    Gnanaprakasam Thankam, Finosh; Muthu, Jayabalan

    2014-11-04

    Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N'-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate-acrylic acid (ALGP-PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.

  12. d-α-Tocopheryl polyethylene glycol succinate/Solutol HS 15 mixed micelles for the delivery of baohuoside I against non-small-cell lung cancer: optimization and in vitro, in vivo evaluation

    PubMed Central

    Yan, Hongmei; Zhang, Zhenhai; Jia, Xiaobin; Song, Jie

    2016-01-01

    Baohuoside I, extracted from the Herba epimedii, is an effective but a poorly soluble antitumor drug. To improve its solubility, formulation of baohuoside I-loaded mixed micelles with d-α-tocopheryl polyethylene glycol succinate and Solutol HS 15 (BTSM) has been developed in this study. We performed a systematic comparative evaluation of the antiproliferative effect, cellular uptake, antitumor efficacy, and in vivo tumor targeting of these micelles using non-small-cell lung cancer (NSCLC) A549 cells. Results showed that the obtained micelles have a mean particle size of ~62.54 nm, and the size of micelles was narrowly distributed. With the improved cellular uptake, BTSM displayed a more potent anti-proliferative action on A549 cell lines than baohuoside I; half-maximal inhibitory concentration was 7.83 vs 20.37 µg/mL, respectively. The antitumor efficacy test in nude mice showed that BTSM exhibited significantly higher antitumor activity against NSCLC with lesser toxic effects on normal tissues. The imaging study for in vivo targeting demonstrated that the mixed micelles formulation achieved effective and targeted drug delivery. Therefore, BTSM might be a potential antitumor formulation. PMID:27660448

  13. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  14. Copolymers For Capillary Gel Electrophoresis

    SciTech Connect

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  15. Preparation of polyion complex micelles from poly(ethylene glycol)-block-polyions.

    PubMed

    Bayó-Puxan, Núria; Dufresne, Marie-Hélène; Felber, Arnaud E; Castagner, Bastien; Leroux, Jean-Christophe

    2011-12-10

    Polyion complex micelles (PICMs) arise from the spontaneous self-assembly of ionic polymers of opposite charges to form a condensate that is dispersed in aqueous media by a hydrophilic segment, usually poly(ethylene glycol) (PEG), present on at least one of the two ionic polymers. PICMs are used for many applications, especially drug delivery. This protocol paper describes the preparation by atom transfer radical polymerization (ATRP) of diblock copolymers of PEG bearing either positive or negative charges, both of which have been shown to form PICMs. Furthermore, methods of preparation and characterization of PICMs loaded with nucleic acid drugs are presented.

  16. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.

    PubMed

    Fu, Shaozhi; Guo, Gang; Gong, Changyang; Zeng, Shi; Liang, Hang; Luo, Feng; Zhang, Xiaoning; Zhao, Xia; Wei, Yuquan; Qian, Zhiyong

    2009-12-31

    In this study, we synthesized a biodegradable triblock copolymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) by ring-opening copolymerization, and nanohydroxyapatite (n-HA) powder was prepared by a hydrothermal precipitation method. The obtained n-HA was incorporated into the PECE matrix to prepare injectable thermosensitive hydrogel nanocomposites. (1)H NMR, FT-IR, XRD, DSC, and TEM were used to investigate the properties of PECE copolymer and n-HA/PECE nanocomposites. The rheological measurements for n-HA/PECE nanocomposites revealed that the gelation temperature was approximately 36 degrees C. The sol-gel-sol transition behavior and phase transition diagrams were recorded through a test tube inverting method. The results showed that n-HA/PECE nanocomposites still had thermoresponsivity like that of PECE thermosensitive hydrogel. The morphology of the nanocomposites was observed by SEM; the results showed that the nanocomposites had a 3D network structure. In addition, the effects of n-HA contents on the properties of n-HA/PECE nanocomposites are also discussed in the paper. From the results, n-HA/PECE hydrogel is believed to be promising for injectable orthopedic tissue engineering due to its good thermosensitivity and injectability.

  17. Directing the self-assembly of semiconducting copolymers: the consequences of grafting linear or hyperbranched polyether side chains.

    PubMed

    zur Borg, Lisa; Schüll, Christoph; Frey, Holger; Zentel, Rudolf

    2013-08-01

    The synthesis and self-assembly of novel semiconducting rod-coil type graft block copolymers based on poly(para-phenylene vinylene) (PPV) copolymers is presented, focusing on the ordering effect of linear versus hyperbranched side chains. Using an additional reactive ester block, highly polar, linear poly(ethylene glycol), and hyperbranched polyglycerol side chains are attached in a grafting-to approach. Remarkably, the resulting novel semiconducting graft copolymers with polyether side chains show different solubility and side-chain directed self-assembly behavior in various solvents, e.g., cylindrical or spherical superstructures in the size range of 10 to 120 nm, as shown by TEM. By adjusting the molecular weight and the topology of the polyether segments, self-assembly into defined superstructures can be achieved, which is important for the efficient charge transport in potential electronic applications.

  18. Degradable and comb-like PEG-based copolymers by nitroxide-mediated radical ring-opening polymerization.

    PubMed

    Delplace, Vianney; Tardy, Antoine; Harrisson, Simon; Mura, Simona; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2013-10-14

    Three cyclic ketene acetals, 2-methylene-1,3-dioxepane (MDO), 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), and 2-methylene-4-phenyl-1,3-dioxolane (MPDL), have been copolymerized with oligo(ethylene glycol) methyl ether methacrylate and a small amount of acrylonitrile (or styrene) at 90 °C by nitroxidemediated radical ring-opening polymerization, as a convenient way to prepare degradable PEG-based copolymers for biomedical applications. MPDL was the best candidate, enabling high monomer conversions to be reached and well-defined PEG-based copolymers with adjustable amount of ester groups in the main chain to be synthesized, leading to nearly complete hydrolytic degradation (5% KOH aqueous solution, ambient temperature). The noncytotoxicity of the obtained copolymers was shown on three different cell lines (i.e., fibroblasts, endothelial cells and macrophages), representing a promising approach for the design of degradable precursors for PEGylation and bioconjugation via the NMP technique.

  19. Physicochemical Properties and Applications of Poly(lactic-co-glycolic acid) for Use in Bone Regeneration

    PubMed Central

    Félix Lanao, Rosa P.; Jonker, Anika M.; Wolke, Joop G.C.; Jansen, John A.; van Hest, Jan C.M.

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most often used synthetic polymer within the field of bone regeneration owing to its biocompatibility and biodegradability. As a consequence, a large number of medical devices comprising PLGA have been approved for clinical use in humans by the American Food and Drug Administration. As compared with the homopolymers of lactic acid poly(lactic acid) and poly(glycolic acid), the co-polymer PLGA is much more versatile with regard to the control over degradation rate. As a material for bone regeneration, the use of PLGA has been extensively studied for application and is included as either scaffolds, coatings, fibers, or micro- and nanospheres to meet various clinical requirements. PMID:23350707

  20. Propylene Glycol Poisoning From Excess Whiskey Ingestion

    PubMed Central

    Ku, Kevin; Sue, Gloria R.

    2015-01-01

    In this report, we describe a case of high anion gap metabolic acidosis with a significant osmolal gap attributed to the ingestion of liquor containing propylene glycol. Recently, several reports have characterized severe lactic acidosis occurring in the setting of iatrogenic unintentional overdosing of medications that use propylene glycol as a diluent, including lorazepam and diazepam. To date, no studies have explored potential effects of excess propylene glycol in the setting of alcohol intoxication. Our patient endorsed drinking large volumes of cinnamon flavored whiskey, which was likely Fireball Cinnamon Whisky. To our knowledge, this is the first case of propylene glycol toxicity from an intentional ingestion of liquor containing propylene glycol. PMID:26904700

  1. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  2. Photosensitive cross-linked block copolymers with controllable release.

    PubMed

    Yu, Lili; Lv, Cong; Wu, LiZhu; Tung, ChenHo; Lv, WanLiang; Li, ZhongJin; Tang, XinJing

    2011-01-01

    We intend to form photosensitive block copolymer micelles for controllable release of encapsulated substances. Here, we designed and synthesized a new photocleavable cross-linker (2-nitrophenyl ethylene glycol dimethacrylate) for methyl methacrylate (MMA) atom transfer radical polymerization. Four different ratios (0:1, 1:26, 1:16, 1:8.8) of the photocleavable cross-linker to MMA monomer were used and four block copolymers (P0, P1, P2, P3) were synthesized with PEO-Br as the macroinitiator. Gel permeation chromatography and (1) H NMR studies showed that linear polymer molecules could be cross-linked by the photocleavable linker. The fluorescence studies of the encapsulated Nile Red (NR) showed that there were lower critical micelle concentrations for the polymer P1, P2 and P3 than polymer P0. And dynamic light scattering and SEM confirmed the formation of polymer micelles. Photolysis experiments demonstrated that NR encapsulated in the polymer micelles could be released upon UV irradiation (365 nm, 11 mW cm(-2)) due to the breakage of the photocleavable linker and the generation of more hydrophilic acid moieties, which destabilized polymer micelles. Our study shows a new strategy for the possibility of photocontrollable drug release for hydrophobic drugs.

  3. Role of poly(ethylene glycol) in surfactant-free emulsion polymerization of styrene and methyl methacrylate.

    PubMed

    Shi, Yiming; Shan, Guorong; Shang, Yue

    2013-03-05

    Through zeta potential and surface tension measurements and a series of polymerization experiments, the role of poly(ethylene glycol) (PEG) in the process of surfactant-free polymerization of styrene (St)/methyl methacrylate (MMA) has been investigated experimentally. Nanoscale and stable copolymer particles were formed after an abnormal process, in which the nucleation and growth of particles was different from that in previously proposed mechanisms. It has been observed that PEG can exist in both the monomer and the aqueous phases at high temperature. PEG in the aqueous phase could form copolymer particles with a loose structure, making them prone to enter the monomer phase. Entry of these copolymer particles into the monomer phase would introduce excess PEG. From the ternary phase diagram, a solubility curve could be delineated in the ternary system of PEG/monomer/copolymer. The system used the ternary solubility property to regenerate copolymer particles in the monomer phase, which maintained their morphology until the end of the polymerization. At the end, consumption of the monomer resulted in the volume contraction of the particles, and the surface potential increased. This increasing potential is a driving force to prevent particles from stacking, leading to the formation of nanoscale and stable particles.

  4. Alumina interaction with AMPS-MPEG copolymers produced by RAFT polymerization: stability and rheological behavior.

    PubMed

    Bouhamed, H; Boufi, S; Magnin, A

    2009-05-01

    Different copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium salt (AMPS), methoxypolyethyleneglycol methacrylate (MPEG), were prepared using two methods of radical polymerization: classical and RAFT-controlled radical polymerization. The effect of polymer structure and architecture on the adsorption behavior, electrokinetic and rheological properties of the alumina suspensions was investigated. Adsorption isotherms showed that copolymer interaction depended not only on the ratio of the monomers and their distribution within the macromolecular backbone, but also on the method of copolymerization. Electrokinetic analysis indicated that adsorption of the copolymer is accompanied by a shift in the isoelectric point (IEP) towards acid pH values. Above a certain concentration, of the order of 1 wt%, the absolute value of the zeta-potential reaches a saturation plateau. At this stage, the maximum zeta-potential value (in absolute value) depends on both the ratio of the monomers for statistical copolymer and the length of the two blocks in the case of block distribution. The rheological behavior is greatly affected in the presence of added polymer; the viscosity of the alumina suspension decreases and reaches an optimum, which depends on both the ratio of the monomers and their distribution within the macromolecular backbone. The viscoelastic properties of the suspensions were found to be functions of both the structure and the architecture of the copolymer. Adding AMPS-MPEG copolymer increases the stability of the suspension via electrostatic effects, but also via steric effects induced by the polyethylene glycol (PEG) segments. The steric contribution to the stabilization process is much important in the presence of block distribution, which is more efficient as dispersant for concentrated alumina suspensions.

  5. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.

    PubMed

    He, Shu; Lin, Kai-Feng; Sun, Zhen; Song, Yue; Zhao, Yi-Nan; Wang, Zheng; Bi, Long; Liu, Jian

    2016-07-01

    The aim of the current study was to prepare microsphere-based composite scaffolds made of nano-hydroxyapatite (nHA)/poly (DL-lactic-co-glycolic acid) (PLGA) at different ratios and evaluate the effects of nHA on the characteristics of scaffolds for tissue engineering application. First, microsphere-based composite scaffolds made of two ratios of nHA/PLGA (nHA/PLGA = 20/80 and nHA/PLGA = 50/50) were prepared. Then, the effects of nHA on the wettability, mechanical strength, and degradation of scaffolds were investigated. Second, the biocompatibility and osteoinductivity were evaluated and compared by co-culture of scaffolds with bone marrow stromal stem cells (BMSCs). The results showed that the adhesion, proliferation, and osteogenic differentiation of BMSCs with nHA/PLGA (50/50) were better than those with nHA/PLGA (20/80). Finally, we implanted the scaffolds into femur bone defects in a rabbit model, then the capacity of guiding bone regeneration as well as the in vivo degradation were observed by micro-CT and histological examinations. After 4 weeks' implantation, there was no significant difference on the repair of bone defects. However, after 8 and 12 weeks' implantation, the nHA/PLGA (20/80) exhibited better bone formation than nHA/PLGA (50/50). These results suggested that a proper concentration of nHA in the nHA/PLGA composite should be taken into account when the composite scaffolds were prepared, which plays an important role in the biocompatibility, degradation rate and osteoconductivity.

  6. Measuring exposures to glycol ethers.

    PubMed

    Clapp, D E; Zaebst, D D; Herrick, R F

    1984-08-01

    In 1981, NIOSH began investigating the potential reproductive health effects resulting from exposures to a class of organic solvents known generically as glycol ethers (GE). This research was begun as a result of the NIOSH criteria document development program which revealed little data available on the health effects of glycol ether exposure. Toxicologic research was begun by NIOSH and other researchers which suggested substantial reproductive effects in animals. These animal data motivated a study of human exposures in the occupational setting. In 1981 and 1982 NIOSH conducted several walk-through surveys which included preliminary measurements of exposures in a variety of industries including painting trades, coal mining, production blending and distribution facilities, aircraft fueling, and communications equipment repair facilities. The human exposure data from these surveys is summarized in this paper with most results well below 1 parts per million (ppm) and only a few values approaching 10 ppm. Blood samples were collected at one site resulting in GE concentrations below the limit of detection. Exposures to airborne glycol ethers, in the industries investigated during the collection of this data, revealed several problems in reliably sampling GE at low concentrations. It became apparent, from the data and observations of work practices, that air monitoring alone provided an inadequate index of GE exposure. Further field studies of exposure to GE are anticipated, pending location of additional groups of exposed workers and development of more reliable methods for characterizing exposure, especially biological monitoring.

  7. Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection.

    PubMed

    Yu, Lin; Xu, Wei; Shen, Wenjia; Cao, Luping; Liu, Yan; Li, Zhaoshen; Ding, Jiandong

    2014-03-01

    Endoscopic submucosal dissection (ESD) is a clinical therapy for early stage neoplastic lesions in the gastrointestinal tract. It is, however, faced with a crucial problem: the high occurrence of perforation. The formation of a submucosal fluid cushion (SFC) via a fluid injection is the best way to avoid perforation, and thus an appropriate biomaterial is vital for this minimally invasive endoscopic technique. In this study, we introduced an injectable thermogel as a novel submucosal injection substance in ESD. The hydrogel synthesized by us was composed of poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymers. The polymer/water system was a low-viscosity fluid at room temperature and thus easily injected, and turned into a non-flowing gel at body temperature after injection. The submucosal injection of the thermogel to create SFCs was performed in both resected porcine stomachs and living minipigs. High mucosal elevation with a clear margin was maintained for a long duration. Accurate en bloc resection was achieved with the assistance of the thermogel. The mean procedure time was strikingly reduced. Meanwhile, no obvious bleeding, perforation and tissue damage were observed. The application of the thermogel not only facilitated the ESD procedure, but also increased the efficacy and safety of ESD. Therefore, the PLGA-PEG-PLGA thermogel provides an excellent submucosal injection system, and has great potential to improve the ESD technique significantly.

  8. Liquid ethylene-propylene copolymers

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.; Humphrey, M. F.

    1975-01-01

    Oligomers are prepared by heating solid ethylene-propylene rubber in container that retains solid and permits liquid product to flow out as it is formed. Molecular weight and viscosity of liquids can be predetermined by process temperature. Copolymers have low viscosity for given molecular weight.

  9. Polyether-polyester graft copolymer

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor)

    1987-01-01

    Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.

  10. Electrochemical Deposition Of Conductive Copolymers

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesan; Distefano, Salvador; Liang, Ranty H.

    1991-01-01

    Experiments show electrically conductive films are deposited on glassy carbon or indium tin oxide substrates by electrochemical polymerization of N-{(3-trimethoxy silyl) propyl} pyrrole or copolymerization with pyrrole. Copolymers of monomer I and pyrrole exhibit desired electrical conductivity as well as desired adhesion and other mechanical properties. When fully developed, new copolymerization process useful in making surface films of selectable conductivity.

  11. Oligothiol graft-copolymer coatings stabilize gold nanoparticles against harsh experimental conditions.

    PubMed

    Kang, Jun Sung; Taton, T Andrew

    2012-12-11

    We report that poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) copolymers that bear multiple thiol groups on the polymer backbone are exceptional ligands for gold nanoparticles (AuNPs). In general, these graft copolymer ligands stabilize AuNPs against environments that would ordinarily lead to particle aggregation. To characterize the effect of copolymer structure on AuNP stability, we synthesized thiolated PLL-g-PEGs (PLL-g-[PEG:SH]) with different backbone lengths, PEG grafting densities, and number of thiols per polymer chain. AuNPs were then combined with these polymer ligands, and the stabilities of the resulting AuNP@PLL-g-[PEG:SH] particles against high temperature, oxidants, and competing thiol ligands were characterized using dynamic light scattering, visible absorption spectroscopy, and fluorescence spectrophotometry. Our observations indicate that thiolated PLL-g-PEG ligands combine thermodynamic stabilization via multiple Au-S bonds and steric stabilization by PEG grafts, and the best graft copolymer ligands balance these two effects. We hope that this new ligand system enables AuNPs to be applied to biotechnological applications that require harsh experimental conditions.

  12. Acid-Cleavable Unimolecular Micelles from Amphiphilic Star Copolymers for Triggered Release of Anticancer Drugs.

    PubMed

    Zhang, Shan; Xu, Jianbin; Chen, Heng; Song, Zhangfa; Wu, Yalan; Dai, Xingyi; Kong, Jie

    2017-03-01

    In this contribution, amphiphilic star copolymers (H40-star-PCL-a-PEG) with an H40 hyperbranched polyester core and poly(ε-caprolactone)-a-poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring-opening polymerization and a copper (I)-catalyzed alkyne-azide cycloaddition click reaction. The acid-cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid-cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid-cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  13. Ketal containing amphiphilic block copolymer micelles as pH-sensitive drug carriers.

    PubMed

    Lee, Iljae; Park, Minhyung; Kim, Yerang; Hwang, On; Khang, Gilson; Lee, Dongwon

    2013-05-01

    pH-Responsive linkages have been widely exploited in the development of polymeric drug delivery systems, which trigger drug release selectively at tumor tissues or endosomes and lysosomes of cells. Herein we report new pH-sensitive amphiphilic poly(ketal adipate)-co-poly(ethylene glycol) block copolymers (PKA-PEG), which have acid-cleavable ketal linkages in their hydrophobic backbone. PKA-PEG copolymers self-assemble to form stable micelles with a mean diameter of ~175 nm, which can encapsulate a payload of anticancer drugs and rapidly dissociate to release drug payload at the acid environment. The micelles are biocompatible and exhibit abilities to disrupt endosomes to enhance the cytosol drug delivery. Taken together, we anticipate that the pH-sensitive PKA-PEG micelles have great potential as anticancer drug carriers.

  14. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery.

    PubMed

    Cerritelli, Simona; Velluto, Diana; Hubbell, Jeffrey A

    2007-06-01

    Under appropriate conditions, block copolymeric macroamphiphiles will self-assemble in water to form vesicles, referred to as polymersomes. We report here polymersomes that can protect biomolecules in the extracellular environment, are taken up by endocytosis, and then suddenly burst within the early endosome, releasing their contents prior to exposure to the harsh conditions encountered after lysosomal fusion. Specifically, block copolymers of the hydrophile poly(ethylene glycol) (PEG) and the hydrophobe poly(propylene sulfide) (PPS) were synthesized with an intervening disulfide, PEG17-SS-PPS30. Polymersomes formed from this block copolymer were demonstrated to disrupt in the presence of intracellular concentrations of cysteine. In cellular experiments, uptake, disruption, and release were observed within 10 min of exposure to cells, well within the time frame of the early endosome of endolysosomal processing. This system may be useful in cytoplasmic delivery of biomolecular drugs such as peptides, proteins, oligonucleotides, and DNA.

  15. Block and graft copolymers and NanoGel copolymer networks for DNA delivery into cell.

    PubMed

    Lemieux, P; Vinogradov, S V; Gebhart, C L; Guérin, N; Paradis, G; Nguyen, H K; Ochietti, B; Suzdaltseva, Y G; Bartakova, E V; Bronich, T K; St-Pierre, Y; Alakhov, V Y; Kabanov, A V

    2000-01-01

    Self-assembling complexes from nucleic acids and synthetic polymers are evaluated for plasmid and oligonucleotide (oligo) delivery. Polycations having linear, branched, dendritic. block- or graft copolymer architectures are used in these studies. All these molecules bind to nucleic acids due to formation of cooperative systems of salt bonds between the cationic groups of the polycation and phosphate groups of the DNA. To improve solubility of the DNA/polycation complexes, cationic block and graft copolymers containing segments from polycations and non-ionic soluble polymers, for example, poly(ethylene oxide) (PEO) were developed. Binding of these copolymers with short DNA chains, such as oligos, results in formation of species containing hydrophobic sites from neutralized DNA polycation complex and hydrophilic sites from PEO. These species spontaneously associate into polyion complex micelles with a hydrophobic core from neutralized polyions and a hydrophilic shell from PEO. Such complexes are very small (10-40 nm) and stable in solution despite complete neutralization of charge. They reveal significant activity with oligos in vitro and in vivo. Binding of cationic copolymers to plasmid DNA forms larger (70-200 nm) complexes. which are practically inactive in cell transfection studies. It is likely that PEO prevents binding of these complexes with the cell membranes ("stealth effect"). However attaching specific ligands to the PEO-corona can produce complexes, which are both stable in solution and bind to target cells. The most efficient complexes were obtained when PEO in the cationic copolymer was replaced with membrane-active PEO-b-poly(propylene oxide)-b-PEO molecules (Pluronic 123). Such complexes exhibited elevated levels of transgene expression in liver following systemic administration in mice. To increase stability of the complexes, NanoGel carriers were developed that represent small hydrogel particles synthesized by cross-linking of PEI with double end

  16. Why use glycols in HVAC systems?

    SciTech Connect

    Eppelheimer, D.M.

    1997-12-31

    Glycols are used to prevent damage to heating, ventilating, and airconditioning (HVAC) equipment due to freezing and corrosion. Two glycols enjoy wide acceptance--ethylene glycol and propylene glycol. Both glycols have lower heat transfer characteristics and increased pumping requirements when compared to water. The loss of heat transfer and the increase in pumping power are influenced by temperature and the concentration of the fluid. The physical effects of glycol are almost unnoticed in heating systems where higher temperatures prevail. However, in cooling applications, the effect of glycol on system capacity and pump power must be carefully considered. Capricious addition of glycol to cooling systems is inappropriate. The effects of glycol can be mitigated by careful selection of equipment. This paper illustrates methods by which to reduce the impact of glycols when selecting cooling coils and chillers. Techniques such as increasing log mean temperature difference (LMTD) and modifications in coil circuiting or tube geometry can have a dramatic effect. The benefits of these techniques will be reviewed.

  17. Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels.

    PubMed

    Pollock, Jacob F; Healy, Kevin E

    2010-04-01

    The dimensional stability and rheological properties of a series of comb-like copolymers of N-isopropyl acrylamide (NIPAAm) and methoxy poly(ethylene glycol) methacrylate (mPEGMA), poly(NIPAAm-co-mPEGMA), with varying poly(ethylene glycol) (PEG) graft densities and molecular weights were studied. The thermoresponsive character of the copolymer solutions was investigated by kinetic and equilibrium swelling, as well as by static and dynamic mechanical analysis. Surface response mapping was employed to target particular compositions and concentrations with excellent dimensional stability and a relatively large change in dynamic mechanical properties upon thermoreversible gelation. The mechanical characteristics of the gels depended strongly upon concentration of total polymer and less so upon copolymer ratio. Increased PEG graft density was shown to slow the deswelling rate and increase the equilibrium water content of the gels. Upon gelation at sol concentrations of 1-20 wt.% the materials underwent no deswelling or syneresis and maintained stable gels with a large elastic regime and high yield strain (i.e. elastic and soft but tough), even within the Pascal range of complex shear moduli. These materials are unique in that they maintained a physiologically useful lower critical solution temperature (approximately 33 degrees C), despite having a high PEG content. Copolymers with a high PEG content and low polymer fraction were conveniently transparent in the gel phase, allowing visualization of cellular activity without disrupting the microenvironment. Mesenchymal stem cells showed good viability and proliferation in three-dimensional culture within the gels, despite the lack of ligand incorporation to promote cellular interaction. Multi-component matrices can be created through simple mixing of copolymer solutions and peptide-conjugated linear polymers and proteins to produce combinatorial microenvironments with the potential for use in cell biology, tissue

  18. Impacts of Repeat Unit Structure and Copolymer Architecture on Thermal and Solution Properties in Homopolymers, Copolymers, and Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Marrou, Stephen Raye

    Gradient copolymers are a relatively new type of copolymer architecture in which the distribution of comonomers gradually varies over the length of the copolymer chain, resulting in a number of unusual properties derived from the arrangement of repeat units. For example, nanophase-segregated gradient copolymers exhibit extremely broad glass transition temperatures (Tgs) resulting from the wide range of compositions present in the nanostructure. This dissertation presents a number of studies on how repeat unit structure and copolymer architecture dictate bulk and solution properties, specifically taking inspiration from the gradient copolymer architecture and comparing the response from this compositionally heterogeneous material to other more conventional materials. The glass transition behavior of a range of common homopolymers was studied to determine the effects of subunit structure on Tg breadth, observing a significant increase in T g breadth with increasing side chain length in methacrylate-based homopolymers and random copolymers. Additionally, increasing the composition distribution of copolymers, either by blending individual random copolymers of different overall composition or synthesizing random copolymers to high conversion, resulted in significant increases to Tg breadth. Plasticization of homopolymers and random copolymers with low molecular weight additives also served to increase the Tg breadth; the most dramatic effect was observed in the selective plasticization of a styrene/4-vinylpyridine gradient copolymer with increases in T g breadth to values above 100 °C. In addition, the effects of repeat unit structure and copolymer architecture on other polymer properties besides Tg were also investigated. The intrinsic fluorescence of styrene units in styrene-containing copolymers was studied, noting the impact of repeat unit structure and copolymer architecture on the resulting fluorescence spectra in solution. The impact of repeat unit structure on

  19. Comparative study of guanidine-based and lysine-based brush copolymers for plasmid delivery

    PubMed Central

    Carlson, Peter M.; Schellinger, Joan G.; Pahang, Joshuel A.; Johnson, Russell N.; Pun, Suzie H.

    2013-01-01

    Polyethylenimine (PEI), one of the most frequently used polycations for non-viral nucleic acid delivery, exhibits good transfection efficiency to cultured cells but generally has to be used in restricted concentration ranges due to high cytotoxicity. We recently reported a family of HPMA-co-oligolysine brush copolymers that show nucleic acid delivery efficiencies approaching that of PEI. Guanidine-containing polymers have been reported in some systems to be more effective at cellular delivery of cargo than their primary-amine analogs. The goal of this work is to investigate the effect of guanidinylation on gene transfer ability of HPMA-co-oligolysine copolymers. Several parameters were evaluated: arginine versus homoarginine monomers, oligopeptide length, and charge density within the peptide. Using reversible addition-fragmentation chain transfer (RAFT) polymerization, a series of six copolymers were synthesized containing the cationic peptides K10, R10, K5, and (GK)5. Lysine-containing copolymers were functionalized with guanidine by reaction with O-methylisourea to generate an additional five homoarginine-based copolymers. All eleven copolymers readily condensed DNA into small, < 150 nm polyplexes and remained stable in physiological salt conditions. The best performing copolymers provided more efficient gene transfection with less associated cytotoxicity than PEI. Reducing the number of charge centers (from 10 to 5) further reduced toxicity while retaining comparable transfection efficiency to PEI. PMID:23750319

  20. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  1. Electrospun mats from styrene/maleic anhydride copolymers: modification with amines and assessment of antimicrobial activity.

    PubMed

    Ignatova, Milena; Stoilova, Olya; Manolova, Nevena; Markova, Nadya; Rashkov, Iliya

    2010-08-11

    New antimicrobial microfibrous electrospun mats from styrene/maleic anhydride copolymers were prepared. Two approaches were applied: (i) grafting of poly(propylene glycol) monoamine (Jeffamine® M-600) on the mats followed by formation of complex with iodine; (ii) modification of the mats with amines of 8-hydroxyquinoline or biguanide type with antimicrobial activity. Microbiological screening against S. aureus, E. coli and C. albicans revealed that both the formation of complex with iodine and the covalent attachment of 5-amino-8-hydroxyquinoline or of chlorhexidine impart high antimicrobial activity to the mats. In addition, S. aureus bacteria did not adhere to modified mats.

  2. Nanostructured Block Copolymer Solutions and Composites: Mechanical and Structural Properties

    NASA Astrophysics Data System (ADS)

    Walker, Lynn

    2015-03-01

    Self-assembled block copolymer templates are used to control the nanoscale structure of materials that would not otherwise order in solution. In this work, we have developed a technique to use close-packed cubic and cylindrical mesophases of a thermoreversible block copolymer (PEO-PPO-PEO) to impart spatial order on dispersed nanoparticles. The thermoreversible nature of the template allows for the dispersion of particles synthesized outside the template. This feature extends the applicability of this templating method to many particle-polymer systems, including proteins, and also permits a systematic evaluation of the impact of design parameters on the structure and mechanical properties of the nanocomposites. The criteria for forming co-crystals have been characterized using small-angle scatting and the mechanical properties of these soft crystals determined. Numerous crystal structures have been reported for the block copolymer system and we have taken advantage of several to generate soft co-crystals. The result of this templating is spatially ordered nanoparticle arrays embedded within the block copolymer nanostructure. These soft materials can be shear aligned into crystals with long range order and this shear alignment is discussed. Finally, the dynamics of nanoparticles within the nanostructured material are characterized with fluorescence recovery after photobleaching (FRAP). The applications and general behavior of these nanostructured hydrogels are outlined.

  3. Copolymer-in-oil phantom materials for elastography.

    PubMed

    Oudry, J; Bastard, C; Miette, V; Willinger, R; Sandrin, L

    2009-07-01

    Phantoms that mimic mechanical and acoustic properties of soft biological tissues are essential to elasticity imaging investigation and to elastography device characterization. Several materials including agar/gelatin, polyvinyl alcohol and polyacrylamide gels have been used successfully in the past to produce tissue phantoms, as reported in the literature. However, it is difficult to find a phantom material with a wide range of stiffness, good stability over time and high resistance to rupture. We aim at developing and testing a new copolymer-in-oil phantom material for elastography. The phantom is composed of a mixture of copolymer, mineral oil and additives for acoustic scattering. The mechanical properties of phantoms were evaluated with a mechanical test instrument and an ultrasound-based elastography technique. The acoustic properties were investigated using a through-transmission water-substituting method. We showed that copolymer-in-oil phantoms are stable over time. Their mechanical and acoustic properties mimic those of most soft tissues: the Young's modulus ranges from 2.2-150 kPa, the attenuation coefficient from 0.4-4.0 dB.cm(-1) and the ultrasound speed from 1420-1464 m/s. Their density is equal to 0.90 +/- 0.04 g/cm3. The results suggest that copolymer-in-oil phantoms are attractive materials for elastography.

  4. The world of DNA in glycol solution.

    PubMed

    Lindahl, Tomas

    2016-05-23

    The properties of high-molecular-weight DNA are usually investigated in neutral aqueous solutions. Strong acids and strong alkaline solutions are obviously unsuitable, as are corrosive solvents, and DNA is insoluble in most organic solvents; precipitation of DNA from aqueous solution with ethanol or isopropanol is therefore frequently used as a purification step. An exception is the organic solvent glycol (ethylene glycol, 1,2-ethanediol, dihydroxyethane, HOCH2CH2OH) and the similar solvent glycerol. Double-stranded DNA remains soluble in salt-containing glycol, although it precipitates in polyethylene glycol. (DNA also remains soluble in formamide, but the double-helical structure of DNA is much less stable in this solvent than in glycol.) However, DNA in glycol has been little investigated during the last half-century.

  5. Water absorbing and quick degradable PLLA/PEG multiblock copolymers reduce the encapsulation and inflammatory cytokine production.

    PubMed

    Ehashi, Tomo; Kakinoki, Sachiro; Yamaoka, Tetsuji

    2014-12-01

    Biomaterials that contact with soft tissues such as postoperative adhesion prevention membrane or tissue-regenerative scaffolds should possess specific features such as hydrophilicity, mild to no immunogenicity, and quick degradability. The inflammation reaction to multiblock copolymers of poly(L-lactic acid) (PLLA) and poly(ethylene glycol), named as Multi, which we developed as a good adhesion prevention materials with a very high degradation rate were investigated and compared with usual PLLA, non-degradable polyethylene (PE), and acellular collagenous tissue (COL). Tissue encapsulation, inflammatory cell recruitment, and expression of four cytokines (IL-1β, IL-6, IL-10, and TGFβ) affecting the promotion or inhibition of inflammation and wound healing were evaluated. The thick encapsulation for PE might have related to high expression of TGFβ, and it was largely reduced in the cases of PLLA and Multi. The cytokine expression pattern in PE was dominantly alternatively activated macrophage (M2) type, while expression patterns to Multi were classically activated macrophage (M1)-type dominant, as with the COL specimen. Thus, multi is a tissue compatible material in spite of the large degradability. By introducing low molecular weight PEG into PLLA as multiblock-type sequence, we successfully prepared biocompatible PLLA derivatives with high molecular weight, large degradation rate, and mild tissue responses.

  6. Synthesis and characterization of polyimide copolymers containing ladder-like polysiloxane

    NASA Astrophysics Data System (ADS)

    Feng, Linqian

    This research is focused on the synthesis, development, analysis and evaluation of properties of polyurea-b-polyimide (PUI) copolymers containing ladder-like polysiloxane. PUI block copolymers were successfully synthesized by condensation polymerization methods. The structure and properties of the copolymers were controlled by controlling the (i) co-monomer concentration and (ii) curing temperature. Thermally controlled self-assembly of semi-crystalline copolymers occurred at higher annealing temperatures T ≥ 150°C, resulting in remarkable enhancement in their thermomechanical properties. The observed improvement in the structure and mechanical properties of the copolymers annealed at higher temperature is believed to be due to the development of inter and intra-hydrogen bonding interactions between adjacent copolymer chains. The dynamic mechanical property of the copolymers was determined by dynamic mechanical analysis (DMA) using solution cast thin films. Fourier transform infrared spectroscopy, FTIR and Wide angle X-ray diffraction (WAXD) method were used to study the composition and structure of the copolymers. The presence of hydrogen-bonded (H-bonded) polyimide units in the copolymer resulted in a significant enhancement in the corrosion protection of aluminum alloy 2024-T3. The corrosion performance of PUI coatings was studied by direct current polarization method (DCP) and electrochemical impedance spectroscopy (EIS) in a 3.5wt% NaCl solution. Corrosion performance was remarkably increased by increasing (i) polyurea concentration and (ii) annealing temperature. The coating lifetime was evaluated by using information from time-based Bode plot as well as gravimetric weight gain analysis. The surface energy and diffusivity of PUI copolymers were remarkably decreased as polyurea concentration increased. Semi-crystalline ladder-like polysiloxanes (LPS) containing both mercapto and fluoride side groups were synthesized by using both the sol-gel and monomer

  7. MMA/MPEOMA/VSA copolymer as a novel blood-compatible material: ex vivo platelet adhesion study.

    PubMed

    Lee, Jin Ho; Oh, Se Heang; Kim, Won Gon

    2004-02-01

    MMA/MPEOMA/VSA copolymers with both pendant polyethylene oxide (PEO) side chains and negatively chargeable side groups were synthesized by random copolymerization of methyl methacrylate (MMA), methoxy PEO monomethacrylate (MPEOMA; PEO mol. wt, 1000), and vinyl sulfonic acid sodium salt (VSA) monomers with different monomer composition to evaluate their blood compatibility. MMA/MPEOMA copolymer (with PEO side chains) and MMA/VSA copolymer (with negatively chargeable side groups) were also synthesized for the comparison purpose. The synthesized copolymers were coated onto polyurethane (PU) tubes (inner diameter, 4.6 mm) by a spin coating. The platelet adhesion of the MMA/MPEOMA/VSA copolymer-coated tube surfaces was compared with that of tube surface coated with MMA/MPEOMA or MMA/VSA copolymer with similar MPEOMA or VSA composition, using an ex vivo canine arterio-artery shunt method. The platelet adhesion was evaluated by radioactivity counting of technetium (99mTc)-labeled platelets adhered on the surfaces after 30 and 120 min of blood circulation. The MMA/MPEOMA/VSA copolymer (monomer molar ratio 9/0.5/0.5 or 8/1/1) was better in preventing platelet adhesion on the surface than the MMA/MPEOMA or MMA/VSA copolymer with similar MPEOMA or VSA composition, probably owing to the combined effects of highly mobile, hydrophilic PEO side chains and negatively charged VSA side groups.

  8. Bioinspired catecholic copolymers for antifouling surface coatings.

    PubMed

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  9. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol alginate. 172.858 Section 172.858... Propylene glycol alginate. The food additive propylene glycol alginate (CAS Reg. No. 9005-37-2) may be used... the act: (1) The name of the additive, “propylene glycol alginate” or “propylene glycol ester...

  10. Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure.

    PubMed

    Kim, Ran; Kang, Boseok; Sin, Dong Hun; Choi, Hyun Ho; Kwon, Soon-Ki; Kim, Yun-Hi; Cho, Kilwon

    2015-01-28

    Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains, serving as solubilizing groups, are designed and introduced into naphthalene-diimide-based n-channel copolymers. The synthesized polymers exhibit unipolar n-type operation with an electron mobility of up to 1.64 cm(2) V(-1) s(-1), which demonstrates the usefulness of the hybrid side chains in polymer electronics applications.

  11. Crystalline Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    Series of imide/arylene ether block copolymers prepared by using arylene ether blocks to impart low melt viscosity, and imide blocks to provide high strength and other desirable mechanical properties. Work represents extension of LAR-14159 on imide/arylene ether copolymers in form of films, moldings, adhesives, and composite matrices. Copolymers potentially useful in variety of high-temperature aerospace and microelectronic applications.

  12. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability.

    PubMed

    Zhu, Zhengxi

    2013-12-01

    This study systematically compares the effects of amphiphilic diblock copolymer (di-BCP) on stabilizing hydrophobic drug nanoparticles formed by flash nanoprecipitation (FNP), and provides a guideline on choosing suitable di-BCPs. Four widely used di-BCPs, i.e., polystyrene-block-poly(ethylene glycol) (PS-b-PEG), polycaprolactone-block-poly(ethylene glycol) (PCL-b-PEG), polylactide-block-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid) (PLGA-b-PEG), and β-carotene as a model drug were used. The study showed that PLGA-b-PEG was the most suitable one, whose hydrophobic block was biodegradable and noncrystallizable as well as had relatively high glass transition temperature (Tg) and a right solubility parameter (δ). The molecular weight of PLGA block over the range from 5k to 15k showed an insignificant effect on controlling the particle size. Amorphous drug particles with a high drug loading of over 83 wt% can be achieved. Much remarkable evidence supported the nanoparticles with kinetically frozen and non-equilibrium packing structures of polymer chains rather than either the micelles or micellar nanoparticles with two well segregated polymer blocks. The thermodynamic effects of the drug and BCP on the particle stability, size and structures were discussed by using solubility parameters.

  13. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability

    PubMed Central

    Zhu, Zhengxi

    2013-01-01

    This study systematically compares the effects of amphiphilic diblock copolymer (di-BCP) on stabilizing hydrophobic drug nanoparticles formed by flash nanoprecipitation (FNP), and provides a guideline on choosing suitable di-BCPs. Four widely used di-BCPs, i.e., polystyrene-block-poly(ethylene glycol) (PS-b-PEG), polycaprolactone-block-poly(ethylene glycol) (PCL-b-PEG), polylactide-block-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid) (PLGA-b-PEG), and β-carotene as a model drug were used. The study showed that PLGA-b-PEG was the most suitable one, whose hydrophobic block was biodegradable and noncrystallizable as well as had relatively high glass transition temperature (Tg) and a right solubility parameter (δ). The molecular weight of PLGA block over the range from 5k to 15k showed an insignificant effect on controlling the particle size. Amorphous drug particles with a high drug loading of over 83 wt% can be achieved. Much remarkable evidence supported the nanoparticles with kinetically frozen and nonequilibrium packing structures of polymer chains rather than either the micelles or micellar nanoparticles with two well segregated polymer blocks. The thermodynamic effects of the drug and BCP on the particle stability, size and structures were discussed by using solubility parameters. PMID:24070569

  14. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    PubMed

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric (Curcuma longa) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly(ε-caprolactone) and methoxy poly(ethylene glycol) poly(ε-caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly(ε-caprolactone) and poly(ethylene glycol) poly(ε-caprolactone) nanoparticles ranged between 200-240 nm for poly(ε-caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly(ε-caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly(ε-caprolactone) and poly(ethylene glycol) poly(ε-caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly(ε-caprolactone) nanoparticles was higher in comparison to poly(ε-caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly(ε-caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly(ε-caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to free curcumin and curcumin

  15. Copolymers of fluorinated polydienes and sulfonated polystyrene

    DOEpatents

    Mays, Jimmy W.; Gido, Samuel P.; Huang, Tianzi; Hong, Kunlun

    2009-11-17

    Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.

  16. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  17. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin

    PubMed Central

    Liu, Ran; Wang, Yonglu; Li, Xueming; Bao, Wen; Xia, Guohua; Chen, Wei; Cheng, Jian; Xu, Yuanlong; Guo, Liting; Chen, Baoan

    2015-01-01

    To increase the encapsulation of hydrophilic antitumor agent daunorubicin (DNR) and multidrug resistance reversal agent tetrandrine (Tet) in the drug delivery system of nano-particles (NPs), a functional copolymer NP composed of poly(lactic-co-glycolic acid) (PLGA), poly-L-lysine (PLL), and polyethylene glycol (PEG) was synthesized and then loaded with DNR and Tet simultaneously to construct DNR/Tet–PLGA–PLL–PEG-NPs using a modified double-emulsion solvent evaporation/diffusion method. And to increase the targeted antitumor effect, DNR/Tet–PLGA–PLL–PEG-NPs were further modified with transferrin (Tf) due to its specific binding to Tf receptors (TfR), which is highly expressed on the surface of tumor cells. In this study, the influence of the diversity of formulation parameters was investigated systematically, such as drug loading, mean particle size, molecular weight, the concentration of PLGA–PLL–PEG–Tf, volume ratio of acetone to dichloromethane, the concentration of polyvinyl alcohol (PVA) in the external aqueous phase, the volume ratio of the internal aqueous phase to the external aqueous phase, and the type of surfactants in the internal aqueous phase. Meanwhile, its possible effect on cell viability was evaluated. Our results showed that the regular spherical DNR/Tet–PLGA–PLL–PEG–Tf-NPs with a smooth surface, a relatively low polydispersity index, and a diameter of 213.0±12.0 nm could be produced. The encapsulation efficiency was 70.23%±1.91% for DNR and 86.5%±0.70% for Tet, the moderate drug loading was 3.63%±0.15% for DNR and 4.27%±0.13% for Tet. Notably, the accumulated release of DNR and Tet could be sustained over 1 week, and the Tf content was 2.18%±0.04%. In cell viability tests, DNR/Tet–PLGA–PLL–PEG–Tf-NPs could inhibit the proliferation of K562/ADR cells in a dose-dependent manner, and the half maximal inhibitory concentration value (total drug) of DNR/Tet–PLGA–PLL–PEG–Tf-NPs was lower than that of DNR

  18. Insulin/poly(ethylene glycol)-block-poly(L-lysine) Complexes: Physicochemical Properties and Protein Encapsulation.

    PubMed

    Pippa, Natassa; Kalinova, Radostina; Dimitrov, Ivaylo; Pispas, Stergios; Demetzos, Costas

    2015-06-04

    Insulin (INS) was encapsulated into complexes with poly(ethylene glycol)-block-poly(L-lysine) (PEG-b-PLys), which is a polypeptide-based block copolymer (a neutral-cationic block polyelectrolyte). The particular cationic-neutral block copolymer can complex INS molecules in aqueous media via electrostatic interactions. Light-scattering techniques are used to study the complexation process and structure of the hybrid nanoparticles in a series of buffers, as a function of protein concentration. The physicochemical and structural characteristics of the complexes depend on the ionic strength of the aqueous medium, while the concentration of PEG-b-PLys was constant through the series of solutions. As INS concentration increased the size distribution of the complexes decreased, especially at the highest ionic strength. The size/structure of complexes diluted in biological medium indicated that the copolymer imparts stealth properties and colloidal and biological stability to the complexes, features that could in turn affect the clearance properties in vivo. Therefore, these studies could be a rational roadmap for designing the optimum complexes/effective nanocarriers for proteins and peptides.

  19. Polyethylene glycol-grafted polyethylenimine used to enhance adenovirus gene delivery.

    PubMed

    Singarapu, Kumar; Pal, Ivy; Ramsey, Joshua D

    2013-07-01

    An improved adenoviral-based gene delivery vector was developed by complexing adenovirus (Ad) with a biocompatible, grafted copolymer PEG-g-PEI composed of polyethylene glycol (PEG) and polyethylenimine (PEI). Although an Ad-based gene vector is considered relatively safe, its native tropism, tendency to elicit an immune response, and susceptibility to inactivating antibodies makes the virus less than ideal. The goal of the current study was to determine whether Ad could be complexed with a PEG-g-PEI copolymer that would enable the virus to transduce cells lacking the Ad receptor, while avoiding the issues commonly associated with PEI. A copolymer library was synthesized using 2 kDa PEG and either linear or branched PEI (25 kDa) with a PEG to PEI grafting ratio of 10, 20, or 30. The results of the study indicate that PEG-g-PEI/Ad complexes are indeed able to transduce CAR-negative NIH 3T3 cells. The results also demonstrate that the PEG-g-PEI/Ad complexes are less toxic, less hemolytic, and more appropriately sized than PEI/Ad complexes.

  20. The thickening additives for mineral and synthetic oils based on the copolymers of alkyl acrylates or methacrylates and butyl vinyl ether

    NASA Astrophysics Data System (ADS)

    Geraskina, Evgeniya V.; Moikin, Alexey A.; Semenycheva, Ludmila L.

    2014-05-01

    A new method for synthesizing of the copolymers of acrylic and methacrylic acid esters with butyl vinyl ether in an excess of low-boiling monomer, which has proven effective for a number of alkyl methacrylates was proposed. Tests of thickening efficiency of the obtained copolymers were carried out. The resistance to mechanical degradation of the mineral, semi synthetic and synthetic base oils doped with the copolymers was evaluated.

  1. Copolymer resins made of agricultural and forest residues extracts for wood laminating adhesives

    SciTech Connect

    Chen, C.M.

    1995-11-01

    Extracts of Southern pine bark, peanut hulls, pecan nut pitch, and pecan shell flour were used to synthesize copolymer resins using resorcinol, phenol, and formaldehyde. The test joints of both southern pine and oak were laminated in room temperature. The gluability of these copolymer resins were evaluated with shear compression loading test. The effects of resorcinol level, the molar ratio of formaldehyde to phenolic, and the composition of the hardener on bonding quality were investigated. With a more than 80% wood failure after vacuum pressure treatment, several copolymer resins provided good bonding quality as a wood laminating adhesive. Different extracts required different formulations of copolymer resin and hardner to obtain the best bonding quality.

  2. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  3. [Ethylene glycol and propylene glycol ethers - Reproductive and developmental toxicity].

    PubMed

    Starek-Świechowicz, Beata; Starek, Andrzej

    2015-01-01

    Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively) are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors.

  4. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer.

    PubMed

    Fan, Wei; Shi, Wen; Zhang, Wenting; Jia, Yinnong; Zhou, Zhengyuan; Brusnahan, Susan K; Garrison, Jered C

    2016-10-01

    This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that

  5. Determination of the Impact of Glycolate on ARP and MCU Operations

    SciTech Connect

    Taylor-Pashow, K. M.L.; Peters, T. B.; Fondeur, F. F.; Shehee, T. C.; Washington, A. L.

    2012-12-13

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal, phase separation, or coalescer performance at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU). Sorption testing was performed using both MST and modified MST (mMST) in the presence of 5000 and 10,000 ppm (mass basis) glycolate. 10,000 ppm is the estimated bounding concentration expected in the DWPF recycle stream based on DWPF melter flammable gas model results. The presence of glycolate was found to slow the removal of Sr and Pu by MST, while increasing the removal rate of Np. Results indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. There was no measurable effect on U removal at either glycolate concentration. The slower removal rates for Sr and Pu at 5000 and 10,000 ppm glycolate could result in lower DF values for these sorbates in ARP based on the current (12 hours) and proposed (8 hours) contact times. For the highest glycolate concentration used in this study, the percentage of Sr removed at 6 hours of contact decreased by 1% and the percentage of Pu removed decreased by nearly 7%. The impact may prove insignificant if the concentration of glycolate that is returned to the tank farm is well below the concentrations tested in this study. The presence of glycolate also decreased the removal rates for all three sorbates (Sr, Pu, and Np) by mMST. Similar to MST, the results for mMST indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. The

  6. 76 FR 70896 - Polyethylene Glycol; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... AGENCY 40 CFR Part 180 Polyethylene Glycol; Tolerance Exemption AGENCY: Environmental Protection Agency... amu), 17,000; also known as polyethylene glycol, when used as an inert ingredient in a pesticide...(oxyethylene, minimum number average molecular weight (in amu), 17,000; also known as polyethylene...

  7. Ethylene Glycol Metabolism by Pseudomonas putida

    PubMed Central

    Mückschel, Björn; Simon, Oliver; Klebensberger, Janosch; Graf, Nadja; Rosche, Bettina; Altenbuchner, Josef; Pfannstiel, Jens; Huber, Armin

    2012-01-01

    In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol. PMID:23023748

  8. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment

    PubMed Central

    Wu, Hao; Zhong, Qingxiang; Zhong, Rongling; Huang, Houcai; Xia, Zhi; Ke, Zhongcheng; Zhang, Zhenhai; Song, Jie; Jia, Xiaobin

    2016-01-01

    Oleanolic acid (OA) is a triterpenoid found in various fruits and vegetables and used in traditional Chinese medicine. OA plays a crucial role in the treatment of several cancers, but poor water solubility, low permeability, and significant efflux have limited its widespread clinical use. Vitamin E-d-α-tocopheryl polyethylene glycol succinate (vitamin E-TPGS) and Pluronic P105 were used to improve the solubility and permeability and to decrease the efflux of OA. OA-loaded mixed micelles were prepared by ethanol thin-film hydration. The physicochemical properties of the micelles, including zeta potential, morphology, particle size, solubility, drug loading, and drug entrapment efficiency were characterized. OA release from micelles was slower than that from the free drug system. OA uptake by A549 non-small-cell lung cancer (NSCLC) cells was enhanced by the micelles. A tumor model was established by injecting A549 cells into nude mice. In vivo imaging showed that OA-micelles could accumulate in the tumors of nude mice. Additionally, smaller tumor size and increased expression of pro-apoptotic proteins were observed in OA-micelle-treated mice, indicating that OA-micelles are more effective than free OA in treating cancer. In vitro experiments were performed using two NSCLC cell lines (A549 and PC-9). Cytotoxicity evaluations showed that the half-maximal inhibitory concentrations of free OA and OA-micelles were 36.8±4.8 and 20.9±3.7 μM, respectively, in A549 cells and 82.7±7.8 and 56.7±4.7 μM, respectively, in PC-9 cells. Apoptosis assays revealed that the apoptotic rate of OA-micelle-treated A549 and PC-9 cells was higher than that of cells treated with the same concentration of free OA. Wound healing and transwell assays showed that migration and invasion were significantly suppressed in OA-micelle-treated cells. Immunofluorescence and Western blot analyses confirmed that the epithelial–mesenchymal transition was reversed in OA-micelle-treated cells. Mixed

  9. Preparation and antitumor evaluation of self-assembling oleanolic acid-loaded Pluronic P105/d-α-tocopheryl polyethylene glycol succinate mixed micelles for non-small-cell lung cancer treatment.

    PubMed

    Wu, Hao; Zhong, Qingxiang; Zhong, Rongling; Huang, Houcai; Xia, Zhi; Ke, Zhongcheng; Zhang, Zhenhai; Song, Jie; Jia, Xiaobin

    Oleanolic acid (OA) is a triterpenoid found in various fruits and vegetables and used in traditional Chinese medicine. OA plays a crucial role in the treatment of several cancers, but poor water solubility, low permeability, and significant efflux have limited its widespread clinical use. Vitamin E-d-α-tocopheryl polyethylene glycol succinate (vitamin E-TPGS) and Pluronic P105 were used to improve the solubility and permeability and to decrease the efflux of OA. OA-loaded mixed micelles were prepared by ethanol thin-film hydration. The physicochemical properties of the micelles, including zeta potential, morphology, particle size, solubility, drug loading, and drug entrapment efficiency were characterized. OA release from micelles was slower than that from the free drug system. OA uptake by A549 non-small-cell lung cancer (NSCLC) cells was enhanced by the micelles. A tumor model was established by injecting A549 cells into nude mice. In vivo imaging showed that OA-micelles could accumulate in the tumors of nude mice. Additionally, smaller tumor size and increased expression of pro-apoptotic proteins were observed in OA-micelle-treated mice, indicating that OA-micelles are more effective than free OA in treating cancer. In vitro experiments were performed using two NSCLC cell lines (A549 and PC-9). Cytotoxicity evaluations showed that the half-maximal inhibitory concentrations of free OA and OA-micelles were 36.8±4.8 and 20.9±3.7 μM, respectively, in A549 cells and 82.7±7.8 and 56.7±4.7 μM, respectively, in PC-9 cells. Apoptosis assays revealed that the apoptotic rate of OA-micelle-treated A549 and PC-9 cells was higher than that of cells treated with the same concentration of free OA. Wound healing and transwell assays showed that migration and invasion were significantly suppressed in OA-micelle-treated cells. Immunofluorescence and Western blot analyses confirmed that the epithelial-mesenchymal transition was reversed in OA-micelle-treated cells. Mixed

  10. Doxorubicin-loaded micelles based on multiarm star-shaped PLGA-PEG block copolymers: influence of arm numbers on drug delivery.

    PubMed

    Ma, Guilei; Zhang, Chao; Zhang, Linhua; Sun, Hongfan; Song, Cunxian; Wang, Chun; Kong, Deling

    2016-01-01

    Star-shaped block copolymers based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(ethylene glycol) (PEG) (st-PLGA-PEG) were synthesized with structural variation on arm numbers in order to investigate the relationship between the arm numbers of st-PLGA-PEG copolymers and their micelle properties. st-PLGA-PEG copolymers with arm numbers 3, 4 and 6 were synthesized by using different cores such as trimethylolpropane, pentaerythritol and dipentaerythritol, and were characterized by nuclear magnetic resonance and gel permeation chromatography. The critical micelle concentration decreased with increasing arm numbers in st-PLGA-PEG copolymers. The doxorubicin-loaded st-PLGA-PEG micelles were prepared by a modified nanoprecipitation method. Micellar properties such as particle size, drug loading content and in vitro drug release behavior were investigated as a function of the number of arms and compared with each other. The doxorubicin-loaded 4-arm PLGA-PEG micelles were found to have the highest cellular uptake efficiency and cytotoxicity compared with 3-arm PLGA-PEG micelles and 6-arm PLGA-PEG micelles. The results suggest that structural tailoring of arm numbers from st-PLGA-PEG copolymers could provide a new strategy for designing drug carriers of high efficiency. Structural tailoring of arm numbers from star shaped-PLGA-PEG copolymers (3-arm/4-arm/6-arm-PLGA-PEG) could provide a new strategy for designing drug carriers of high efficiency.

  11. Characterization of copolymer latexes by capillary electrophoresis.

    PubMed

    Anik, Nadia; Airiau, Marc; Labeau, Marie-Pierre; Bzducha, Wojciech; Cottet, Hervé

    2010-02-02

    Latexes are widely used for industrial applications, including decorative paints, binders for the papermaking industry, and drilling fluids for oil-field applications. In this work, the interest of capillary zone electrophoresis (CE) for the characterization of hydrophobic block copolymer latexes obtained by the conventional emulsion polymerization technique consisting of a core of polystyrene (PS) surrounded by a layer of poly(ethyl acrylate) (PEA) has been investigated. The PEA part of the copolymer can be partially hydrolyzed in poly(acrylic acid) (PAA) leading to PS-PEA-AA water-soluble amphiphilic copolymer having high viscosifying properties. The main purpose of this work was to evaluate the potential of CE for the characterization of the latexes at the different stages of the synthesis (PS core, PS-PEA diblock latex, and hydrolyzed PS-PEA-AA gel). The main analytical issues were to state (i) if there was free PS or PEA homopolymer latexes in the PS-PEA latex sample and (ii) if there was free PS, PEA, PS-PEA latexes, or free PAA chains in the PS-PEA-AA gel. Within this scope, this work describes the optimization of the selectivity of the separation between the different species (PS, PEA particles in the not hydrolyzed diblock latex and PS, PEA, PS-PEA particles as well as the polymer PAA chains in the PS-PEA-AA diblock gel sample obtained by latter latex hydrolysis). For that purpose, several experimental parameters were investigated such as pH and ionic strength of the background electrolyte (BGE) or the concentration of neutral surfactant added in the BGE. A challenging issue was to overcome the high viscosity of the PS-PEA-AA gel. This was resolved by the addition of 10 mM neutral surfactant in the gel sample and in the BGE. Finally, it is demonstrated that, within the detection limits, CE is a suitable analytical tool for controlling and monitoring the syntheses of these latexes and for intrinsically characterizing the distribution in charge density of

  12. Enhanced bioconversion of ethylene glycol to glycolic acid by a newly isolated Burkholderia sp. EG13.

    PubMed

    Gao, Xiaoxin; Ma, Zhengfei; Yang, Limin; Ma, Jiangquan

    2014-10-01

    Burkholderia sp. EG13 with high ethylene glycol-oxidizing activity was isolated from soil, which could be used for the synthesis of glycolic acid from the oxidation of ethylene glycol. Using the resting cells of Burkholderia sp. EG13 as biocatalysts, the optimum reaction temperature and pH were 30 °C and 6.0, respectively. After 24 h of biotransformation, the yield of glycolic acid from 200 mM ethylene glycol was 98.8 %. Furthermore, an integrated bioprocess for the production of glycolic acid which involved in situ product removal (ISPR) was investigated. Using fed-batch method with ISPR, a total of 793 mM glycolic acid has been accumulated in the reaction mixture after the 4th feed.

  13. Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics.

    PubMed

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2012-01-01

    Propylene glycol is an aliphatic alcohol that functions as a skin conditioning agent, viscosity decreasing agent, solvent, and fragrance ingredient in cosmetics. Tripropylene glycol functions as a humectant, antioxidant, and emulsion stabilizer. Polypropylene glycols (PPGs), including PPG-3, PPG-7, PPG-9, PPG-12, PPG-13, PPG-15, PPG-16, PPG-17, PPG-20, PPG-26, PPG-30, PPG-33, PPG-34, PPG-51, PPG-52, and PPG-69, function primarily as skin conditioning agents, with some solvent use. The majority of the safety and toxicity information presented is for propylene glycol (PG). Propylene glycol is generally nontoxic and is noncarcinogenic. Clinical studies demonstrated an absence of dermal sensitization at use concentrations, although concerns about irritation remained. The CIR Expert Panel determined that the available information support the safety of tripropylene glycol as well as all the PPGs. The Expert Panel concluded that PG, tripropylene glycol, and PPGs ≥3 are safe as used in cosmetic formulations when formulated to be nonirritating.

  14. Interaction between amphipathic triblock copolymers and L-α-dipalmitoyl phosphatidylcholine large unilamellar vesicles.

    PubMed

    Palominos, M A; Vilches, D; Bossel, E; Soto-Arriaza, M A

    2016-12-01

    This study contributes to an understanding of how different polymeric structures, in special triblock copolymers can interact with the lipid bilayer. To study the phospholipid-copolymer vesicles system, we report the effect of two amphipathic triblock copolymers of the type BAB, i.e., hydrophobic-hydrophilic-hydrophobic triblock copolymers arranged as poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) (PCLn-PEOm-PCLn), where n=12 and m=45 for COP1 and n=16 and m=104 for COP2, on the dynamic and structural properties of dipalmitoyl-phosphatidylcholine (DPPC) large unilamellar vesicles (LUVs). The interaction between the copolymers and DPPC LUVs was evaluated by means of several techniques: (a) Photographs of the dispersion for evaluation of colloidal stability; (b) Thermotropic behavior from generalized polarization of Laurdan and fluorescence anisotropy of DPH (c) Main phase transition temperature determination; (d) Order parameters and limiting anisotropy by time-resolved fluorescence anisotropy measurements; (e) Water outflow through the lipid bilayer and (f) Calcein release from DPPC LUVs. Steady-state fluorescence measurements as a function of temperature show a typical behavior. Laurdan and DPH are fluorescent probes that sense the interface and the inner part of the bilayer, respectively. Both copolymers increase the Tm value of DPPC LUVs sensed by DPH, i.e., in the inner part of the bilayer. On the contrary, only COP2 had an effect on increasing the Tm value at the interface of the bilayer. At low temperature, in the gel phase, the presence of the copolymers produced a slight decrease in generalized polarization of Laurdan sensed in the interface of the lipid bilayer, but in the liquid-crystalline phase it produced an increase. In contrast, the order parameters obtained from time-resolved fluorescence anisotropy of DPH show an increase in the presence of the copolymers in the gel phase, but a decrease in the liquid-crystalline phase. COP2

  15. PEG-chitosan and glycol-chitosan for improvement of biopharmaceutical properties of recombinant L-asparaginase from Erwinia carotovora.

    PubMed

    Sukhoverkov, K V; Kudryashova, E V

    2015-01-01

    Conjugation with the new branched copolymers, PEG-chitosan and glycol-chitosan, is suggested to improve the therapeutic properties of L-asparaginase from Erwinia carotovora (EwA). The structure and composition of such conjugates were optimized for maximal catalytic efficiency (kcat/KM) under physiological conditions, yielding improvement by a factor of 3-6 compared to the native enzyme. This effect is attributed mainly to the shift of pH activity profile towards lower pH values due to the polycationic nature of the copolymer. The thermostability of EwA conjugates was also considerably improved. Chito-PEGylation, similarly to PEGylation, can be expected to improve pharmacokinetic properties and to reduce immunogenicity of this medically relevant enzyme. It is worth mentioning that a new versatile approach based on IR spectroscopy has been developed to determine PEG-chitosan copolymer composition as well as composition of copolymer-enzyme conjugates. The proposed analytic method is "reagent-free" and allows fast and reliable determination of parameters of interest from the single IR spectrum in contrast to laborious and unreliable methods based on polymer free amino group titration with TNBS and OPA.

  16. Modeling and self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohan; Li, Suming; Coumes, Fanny; Darcos, Vincent; Lai Kee Him, Joséphine; Bron, Patrick

    2013-09-01

    A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and

  17. Analysis of automobile radiator performance with ethylene glycol/water and propylene glycol/water coolants

    SciTech Connect

    Gollin, M.; Bjork, D.

    1996-12-31

    The heat transfer and hydraulic performance of the following coolants was examined in five automobile radiators in a wind tunnel: 100% water; 100% propylene glycol; 70/30 propylene glycol/water (volume); 50/50 propylene glycol/water (volume); 70/30 ethylene glycol/water (volume); 50/50 ethylene glycol water (volume). The results of these studies are presented to demonstrate the relative performance of these coolant mixtures in terms of heat transfer, coolant pressure drop and radiator effectiveness for a range of coolant and air flowrates. It is concluded that the most effective of the coolants in transferring heat in the test radiators was water, followed by 50/50 ethylene glycol/water, 50/50 propylene glycol/water, 70/30 ethylene glycol/water, 70/30 propylene glycol and, finally, 100% propylene glycol. There will be a negligible differences between the performance of a radiator using a 50/50 propylene glycol/water coolant and a 50/50 ethylene glycol/water coolant. It is estimated that, with 50/50 propylene glycol coolant replacing 50/50 ethylene glycol/water, the temperature of the coolant throughout the cooling loop will increase by approximately 5%. The effect that the flow regime (fully turbulent/transition/laminar) has upon the performance of a given radiator/coolant combination was found to be significant. The design of the coolant passages in radiators can affect the onset of fully turbulent flow in the coolant passages in a radiator.

  18. In vitro controlled release of clove essential oil in self-assembly of amphiphilic polyethylene glycol-block-polycaprolactone.

    PubMed

    Thonggoom, O; Punrattanasin, N; Srisawang, N; Promawan, N; Thonggoom, R

    2016-05-01

    In this study, a micellar delivery system with an amphiphilic diblock copolymer of poly (ethylene glycol) and poly (ɛ-caprolactone) was synthesised and used to incorporate hydrophobic clove essential oil (CEO). To determine an optimal delivery system, the effects of the copolymer's hydrophobic block length and the CEO-loading content on the encapsulation of CEO were investigated. Percentages of entrapment efficiency (%EE), CEO loading (%CEO), and in vitro release profiles were determined. The size, size distribution, zeta potential, and morphology of the obtained micelles were determined by DLS, FE-SEM, and TEM. The %EE, %CEO, and in vitro release profiles of CEO incorporated in micelles were analysed by HPLC. The study revealed a sustained release profile of CEO from CEO-loaded micelles. The results indicate the successful formulation of CEO-loaded PEG-b-PCL micelle nanoparticles. It is suggested that this micelle system has considerably potential applications in the sustained release of CEO in intravascular drug delivery.

  19. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  20. Thermochemical characteristics of chitosan-polylactide copolymers

    NASA Astrophysics Data System (ADS)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  1. Process-Accessible States of Block Copolymers

    NASA Astrophysics Data System (ADS)

    Sun, De-Wen; Müller, Marcus

    2017-02-01

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear A C B triblock copolymers after a rapid transformation of the middle C block from B to A . This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the A B B copolymer into a well-defined but unstable, starting state of the A A B copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear A B diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the A A B copolymer possesses the same symmetry as the initial, equilibrium mesophase of the A B B copolymer.

  2. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended...

  3. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended...

  4. 21 CFR 177.2470 - Polyoxymethylene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....2470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Components of Articles Intended for Repeated Use § 177.2470 Polyoxymethylene copolymer. Polyoxymethylene copolymer identified in this section may be safely used as an article or component of articles intended...

  5. Chiral Block Copolymer Structures for Metamaterial Applications

    DTIC Science & Technology

    2015-01-27

    Final 3. DATES COVERED (From - To) 25-August-2011 to 24-August-2014 4. TITLE AND SUBTITLE Chiral Block Copolymer Structures for...researchers focused o synthesis and processing, morphology and physical characterization of chiral block copolymer (BCP) materials. Such materials a...valuable for both their optical and mechanical properties, particularly for their potential as chiral metamaterials and lightweig energy absorbing

  6. Nanostructured high-performance dielectric block copolymers.

    PubMed

    Liu, Wenmei; Liao, Xiaojuan; Li, Yawei; Zhao, Qiuhua; Xie, Meiran; Sun, Ruyi

    2015-10-25

    A new type of insulating-conductive block copolymer was synthesized by metathesis polymerization. The copolymer can self-assemble into unique nanostructures of micelles or hollow spheres. It exhibits a high dielectric constant, low dielectric loss, and high stored/released energy density due to the strong dipolar and nano-interfacial polarization contributions.

  7. Process-Accessible States of Block Copolymers.

    PubMed

    Sun, De-Wen; Müller, Marcus

    2017-02-10

    Process-directed self-assembly of block copolymers refers to thermodynamic processes that reproducibly direct the kinetics of structure formation from a starting, unstable state into a selected, metastable mesostructure. We investigate the kinetics of self-assembly of linear ACB triblock copolymers after a rapid transformation of the middle C block from B to A. This prototypical process (e.g., photochemical transformation) converts the initial, equilibrium mesophase of the ABB copolymer into a well-defined but unstable, starting state of the AAB copolymer. The spontaneous structure formation that ensues from this unstable state becomes trapped in a metastable mesostructure, and we systematically explore which metastable mesostructures can be fabricated by varying the block copolymer composition of the initial and final states. In addition to the equilibrium mesophases of linear AB diblock copolymers, this diagram of process-accessible states includes 7 metastable periodic mesostructures, inter alia, Schoen's F-RD periodic minimal surface. Generally, we observe that the final, metastable mesostructure of the AAB copolymer possesses the same symmetry as the initial, equilibrium mesophase of the ABB copolymer.

  8. Responsive copolymers for enhanced petroleum recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    1992-01-01

    The overall goal of this research is the development of advanced water-soluble copolymers for use in enhanced oil recovery which rely on reversible microheterogeneous associations for mobility control and reservoir conformance. Technical progress is summarized for the following tasks: advanced copolymer synthesis; characterization of macromolecular structure and properties; and solution rheology in a porous media.

  9. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  10. Click chemistry grafting of poly(ethylene glycol) brushes to alkyne-functionalized pseudobrushes.

    PubMed

    Ostaci, Roxana-Viorela; Damiron, Denis; Grohens, Yves; Léger, Liliane; Drockenmuller, Eric

    2010-01-19

    A versatile method for the grafting of azide-terminated polymer chains to alkyne-functionalized pseudobrushes by the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition has been developed. First, poly[(propargyl methacrylate)-r-(glycidyl methacrylate)-r-(methyl methacrylate)] random copolymers with monomer ratios of respectively 27/27/46, 41/31/28, and 45/55/0 were synthesized by RAFT polymerization. Then, dense alkyne-functionalized pseudobrushes were grafted in melt by thermal ring-opening of the glycidyl groups by the silanols from the silicon substrate. Finally, the grafting of tailor-made alpha-methoxy-omega-azido-poly(ethylene glycol)s (M(w) approximately 5000, 20,000, and 50,000 g/mol) by Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition was performed in sealed reactors at 60 degrees C for 72 h using a polymer weight fraction of 10% in tetrahydrofuran and Cu(PPh(3))(3)Br/DIPEA as the catalytic system. Alkyne-functionalized pseudobrushes and poly(ethylene glycol) brushes were characterized by ellipsometry, scanning probe microscopy, and water contact angle measurements. This "grafting-to" approach represents a fast and versatile method to provide thick and homogeneous polymer brushes with a high surface coverage. A major benefit of this strategy is the tunable and versatile tethering of alkyne functionalities to silicon substrates using a straightforward spin-coating procedure.

  11. Poly(ethylene glycol) analogs grafted with low molecular weight poly(ethylene imine) as non-viral gene vectors.

    PubMed

    Zhang, Zhenfang; Yang, Cuihong; Duan, Yajun; Wang, Yanming; Liu, Jianfeng; Wang, Lianyong; Kong, Deling

    2010-07-01

    A novel class of non-viral gene vectors consisting of low molecular weight poly(ethylene imine) (PEI) (molecular weight 800 Da) grafted onto degradable linear poly(ethylene glycol) (PEG) analogs was synthesized. First, a Michael addition reaction between poly(ethylene glycol) diacrylates (PEGDA) (molecular weight 258 Da) and d,l-dithiothreitol (DTT) was carried out to generate a linear polymer (PEG-DTT) having a terminal thiol, methacrylate and pendant hydroxyl functional groups. Five PEG-DTT analogs were synthesized by varying the molar ratio of diacrylates to thiols from 1.2:1 to 1:1.2. Then PEI (800 Da) was grafted onto the main chain of the PEG-DTTs using 1,1'-carbonyldiimidazole as the linker. The above reaction gave rise to a new class of non-viral gene vectors, (PEG-DTT)-g-PEI copolymers, which can effectively complex DNA to form nanoparticles. The molecular weights and structures of the copolymers were characterized by gel permeation chromatography, (1)H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The size of the nanoparticles was<200 nm and the surface charge of the nanoparticles, expressed as the zeta potential, was between+20 and+40 mV. Cytotoxicity assays showed that the copolymers exhibited much lower cytotoxicities than high molecular weight PEI (25 kDa). Transfection was performed in cultured HeLa, HepG2, MCF-7 and COS-7 cells. The copolymers showed higher transfection efficiencies than PEI (25 kDa) tested in four cell lines. The presence of serum (up to 30%) had no inhibitory effect on the transfection efficiency. These results indicate that this new class of non-viral gene vectors may be a promising gene carrier that is worth further investigation.

  12. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    NASA Astrophysics Data System (ADS)

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  13. Processible Polyaniline Copolymers and Complexes.

    NASA Astrophysics Data System (ADS)

    Liao, Yun-Hsin

    1995-01-01

    Polyaniline (PANI) is an intractable polymer due to the difficulty of melt processing or dissolving it in common solvents. The purpose of the present investigation was to prepare a new class of conducting polyanilines with better solubility both in base and dope forms by (1) adding external salt to break aggregated chains, (2) introducing ring substituted units onto the backbone without disturbing the coplanar structure, and (3) complexing with polymeric dopants to form a soluble polymer complex. Aggregation of PANI chains in dilute solution was investigated in N-methyl-2-pyrrolidinone (NMP) by light scattering, gel permeation chromatography, and viscosity measurements. The aggregation of chains resulted in a negative second virial coefficient in light scattering measurement, a bimodal molecular weight distribution in gel permeation chromatography, and concave reduced viscosity curves. The aggregates can be broken by adding external salt, which resulting in a higher reduced viscosity. The driving force for aggregation is assumed to be a combination of hydrogen bonding between the imine and amine groups, and the rigidity of backbone. The aggregation was modeled to occur via side-on packing of PANI chains. The ring substituted PANI copolymers, poly(aniline -co-phenetidine) were synthesized by chemical oxidation copolymerization using ammonium persulfate as an oxidant. The degree of copolymerization declined with an increasing feed of o-phenetidine in the reaction mixture. The o-phenetidine had a higher reactivity than aniline in copolymerization resulting in a higher content of o-phenetidine in copolymers. The resulting copolymers can be readily dissolved in NMP up to 20% (w/w), and other common solvents, and solutions possess a longer gelation time. The highly soluble copolymer with 20 mole % o-phenetidine in the backbone has same order of conductivity as the unsubstituted PANI after it is doped by HCl. Complexation of PANI and polymeric dopant, poly

  14. Hybridization of Block Copolymer Micelles

    DTIC Science & Technology

    1993-01-01

    J. Macromol. Sci., Part A 1973, 7,601. (10) Tiara, M.; Ramireddy, C.; Webber, S. K; Munk,P. Collect. Czer" (14) 0snford, C. In The Hydrophobic Effect ...equilibrate In the first series of experiments we have studied the within 20 min, similarly as ASA-10 micelles do. However, effect of the copolymer...high. This may happen after a sudden The Johnston-Ogston effect 2’ 6- also may play a role in jump in temperature or in the composition of the mixed

  15. Glycolic acid modulates the mechanical property and degradation of poly(glycerol, sebacate, glycolic acid).

    PubMed

    Sun, Zhi-Jie; Wu, Lan; Huang, Wei; Chen, Chang; Chen, Yan; Lu, Xi-Li; Zhang, Xiao-Lan; Yang, Bao-Feng; Dong, De-Li

    2010-01-01

    The development of biodegradable materials with controllable degradation properties is beneficial for a variety of applications. Poly(glycerol-sebacate) (PGS) is a promising candidate of biomaterials; so we synthesize a series of poly(glycerol, sebacate, glycolic acid) (PGSG) with 1:2:0, 1:2:0.2, 1:2:0.4, 1:2:0.6, 1:2:1 mole ratio of glycerol, sebacate, and glycolic acid to elucidate the relation of doped glycolic acid to the degradation rate and mechanical properties. The microstructures of the polymers with different doping of glycolic acid were dissimilar. PGSG with glycolic acid in the ratio of 0.2 displayed an integral degree of ordering, different to those with glycolic acid in the ratio of 0, 0.4, 0.6, and 1, which showed mild phase separation structure. The number, DeltaH(m), and temperature of the PGSG melting peaks tended to decrease with the increasing ratio of doped glycolic acid. In vitro and in vivo degradation tests showed that the degradation rate of PGSG with glycolic acid in the ratio of 0.2 was slowest, but in the ratio range of 0, 0.4, and 0.6, the degradation rate increased with the increase of glycolic acid. All PGSG samples displayed good tissue response and anticoagulant effects. Our data suggest that doping glycolic acid can modulate the microstructure and degree of crosslinking of PGS, thereby control the degradation rate of PGS.

  16. Glycolate kinase activity in human red cells.

    PubMed

    Fujii, S; Beutler, E

    1985-02-01

    Human red cells manifest glycolate kinase activity. This activity copurifies with pyruvate kinase and is decreased in the red cells of subjects with hereditary pyruvate kinase deficiency. Glycolate kinase activity was detected in the presence of FDP or glucose-1,6-P2. In the presence of 1 mmol/L FDP, the Km for adenosine triphosphate (ATP) was 0.28 mmol/L and a half maximum velocity for glycolate was obtained at 40 mmol/L. The pH optimum of the reaction was over 10.5 With 10 mumol/L FDP, 500 mumol/L glucose-1,6-P2, 2 mmol/L ATP, 5 mmol/L MgCl2, and 50 mmol/L glycolate at pH 7.5, glycolate kinase activity was calculated to be approximately 0.0013 U/mL RBC. In view of this low activity even in the presence of massive amounts of glycolate, the glycolate kinase reaction cannot account for the maintenance of the reported phosphoglycolate level in human red cells.

  17. Ruminal fermentation of propylene glycol and glycerol.

    PubMed

    Trabue, Steven; Scoggin, Kenwood; Tjandrakusuma, Siska; Rasmussen, Mark A; Reilly, Peter J

    2007-08-22

    Bovine rumen fluid was fermented anaerobically with 25 mM R-propylene glycol, S-propylene glycol, or glycerol added. After 24 h, all of the propylene glycol enantiomers and approximately 80% of the glycerol were metabolized. Acetate, propionate, butyrate, valerate, and caproate concentrations, in decreasing order, all increased with incubation time. Addition of any of the three substrates somewhat decreased acetate formation, while addition of either propylene glycol increased propionate formation but decreased that of butyrate. R- and S-propylene glycol did not differ significantly in either their rates of disappearance or the products formed when they were added to the fermentation medium. Fermentations of rumen fluid containing propylene glycol emitted the sulfur-containing gases 1-propanethiol, 1-(methylthio)propane, methylthiirane, 2,4-dimethylthiophene, 1-(methylthio)-1-propanethiol, dipropyl disulfide, 1-(propylthio)-1-propanethiol, dipropyl trisulfide, 3,5-diethyl-1,2,4-trithiolane, 2-ethyl-1,3-dithiane, and 2,4,6-triethyl-1,3,5-trithiane. Metabolic pathways that yield each of these gases are proposed. The sulfur-containing gases produced during propylene glycol fermentation in the rumen may contribute to the toxic effects seen in cattle when high doses are administered for therapeutic purposes.

  18. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained...

  19. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylate ester copolymer coating. 175.210 Section... Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as... prepared food, subject to the provisions of this section: (a) The acrylate ester copolymer is a...

  20. Surface self-assembled PEGylation of fluoro-based PVDF membranes via hydrophobic-driven copolymer anchoring for ultra-stable biofouling resistance.

    PubMed

    Lin, Nien-Jung; Yang, Hui-Shan; Chang, Yung; Tung, Kuo-Lun; Chen, Wei-Hao; Cheng, Hui-Wen; Hsiao, Sheng-Wen; Aimar, Pierre; Yamamoto, Kazuo; Lai, Juin-Yih

    2013-08-13

    Stable biofouling resistance is significant for general filtration requirements, especially for the improvement of membrane lifetime. A systematic group of hyper-brush PEGylated diblock copolymers containing poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) was synthesized using an atom transfer radical polymerization (ATRP) method and varying PEGMA lengths. This study demonstrates the antibiofouling membrane surfaces by self-assembled anchoring PEGylated diblock copolymers of PS-b-PEGMA on the microporous poly(vinylidene fluoride) (PVDF) membrane. Two types of copolymers are used to modify the PVDF surface, one with different PS/PEGMA molar ratios in a range from 0.3 to 2.7 but the same PS molecular weights (MWs, ∼5.7 kDa), the other with different copolymer MWs (∼11.4, 19.9, and 34.1 kDa) but the similar PS/PEGMA ratio (∼1.7 ± 0.2). It was found that the adsorption capacities of diblock copolymers on PVDF membranes decreased as molar mass ratios of PS/PEGMA ratio reduced or molecular weights of PS-b-PEGMA increased because of steric hindrance. The increase in styrene content in copolymer enhanced the stability of polymer anchoring on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be in the range between 1.5 and 2.0 with copolymer MWs above 20.0 kDa for the ultrastable resistance of protein adsorption on the PEGylated PVDF membranes. The PVDF membrane coated with such a diblock copolymer owned excellent biofouling resistance to proteins of BSA and lysozyme as well as bacterium of Escherichia coli and Staphylococcus epidermidis and high stable microfiltration operated with domestic wastewater solution in a membrane bioreactor.

  1. Designing poly[(R)-3-hydroxybutyrate]-based polyurethane block copolymers for electrospun nanofiber scaffolds with improved mechanical properties and enhanced mineralization capability.

    PubMed

    Liu, Kerh Li; Choo, Eugene Shi Guang; Wong, Siew Yee; Li, Xu; He, Chao Bin; Wang, John; Li, Jun

    2010-06-10

    Efforts to mineralize electrospun hydrophobic polyester scaffold often require prior surface modification such as plasma or alkaline treatment, which may affect the mechanical integrity of the resultant scaffold. Here through rational design we developed a series of polyurethane block copolymers containing poly[(R)-3-hydroxybutyrate] (PHB) as hard segment and poly(ethylene glycol) (PEG) as soft segment that could be easily fabricated into mineralizable electrospun scaffold without the need of additional surface treatment. To ensure that the block copolymers do not swell excessively in water, PEG content in the polymers was kept below 50 wt %. To obtain good dry and hydrated state mechanical properties with limited PEG, low-molecular-weight PHB-diol with M(n) 1230 and 1790 were used in various molar feed ratios. The macromolecular characteristics of the block copolymers were confirmed by (1)H NMR spectroscopy, gel permeation chromatography (GPC), and thermal gravimetric analyses (TGA). With the incorporation of the hydrophilic PEG segments, the surface and bulk hydrophilicity of the block copolymers were significantly improved. Differential scanning calorimetry (DSC) revealed that the block copolymers had low PHB crystallinity and no PEG crystallinity. This was further confirmed by X-ray diffraction analyses (XRD) in both dry and hydrated states. With short PHB segments and soft PEG coupled together, the block copolymers were no longer brittle. Tensile measurements showed that the block copolymers with higher PEG content or shorter PHB segments were more ductile. Furthermore, their ductility was enhanced in hydrated states with one particular example showing increment in strain at break from 1090 to 1962%. The block copolymers were fabricated into an electrospun fibrous scaffold that was easily mineralized by simple incubation in simulated body fluid. The materials have good potential for bone regeneration application and may be extended to other applications by

  2. Impact of starch content on protein adsorption characteristics in amphiphilic hybrid graft copolymers.

    PubMed

    Sengupta, Arijit; Linehan, Allison R; Iovine, Peter M

    2016-01-01

    Amphiphilic hybrid graft copolymers were synthesized using a graft-to methodology and their protein adsorption profiles studied. Three different hydrophilic side chains were studied: hydroxypropylated high amylose starch, maltodextrin, and polyethylene glycol (PEG). In the high amylose starch compositions, there was a pronounced decrease in protein adsorption with increasing polysaccharide content. As the starch content in the graft copolymers increased from 10 wt% to 53 wt%, BSA protein adsorption decreased by 83% whereas fibrinogen adsorption was reduced by 40%. Comparisons between the starch-containing hybrid polymers and their respective hydrophobic urethane-linked polyesters were also made. Hybrid 53, containing 53 wt% starch, showed a 85% reduction in BSA adsorption and 51% reduction in fibrinogen relative to their urethane-linked polyester backbone controls. Grafting branched high amylopectin-derived maltodextrin to the synthetic polymer backbones also conferred modest protein resistance to the hydrophobic backbone polymer. Lastly, it was found that a high amylose graft structure provided comparable, if not slightly more effective, protein resistance compared to a similarly constructed PEG-containing amphiphilic copolymer.

  3. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity.

    PubMed

    Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Maji, Samarendra; Hoogenboom, Richard; Rohner, Nathan A; Thomas, Susan N; Román, Julio San

    2016-12-01

    Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance.

  4. PEGMA/MMA copolymer graftings: generation, protein resistance, and a hydrophobic domain.

    PubMed

    Stadler, Volker; Kirmse, Robert; Beyer, Mario; Breitling, Frank; Ludwig, Thomas; Bischoff, F Ralf

    2008-08-05

    We synthesized various graft copolymer films of poly(ethylene glycol) methacrylate (PEGMA) and methyl methacrylate (MMA) on silicon to examine the dependency of protein-surface interactions on grafting composition. We optimized atom transfer radical polymerizations to achieve film thicknesses from 25 to 100 nm depending on the monomer mole fractions, and analyzed the resulting surfaces by X-ray photoelectron spectroscopy (XPS), ellipsometry, contact angle measurements, and atomic force microscopy (AFM). As determined by XPS, the stoichiometric ratios of copolymer graftings correlated with the concentrations of provided monomer solutions. However, we found an unexpected and pronounced hydrophobic domain on copolymer films with a molar amount of 10-40% PEGMA, as indicated by advancing contact angles of up to 90 degrees . Nevertheless, a breakdown of the protein-repelling character was only observed for a fraction of 15% PEGMA and lower, far in the hydrophobic domain. Investigation of the structural basis of this exceptional wettability by high-resolution AFM demonstrated the independence of this property from morphological features.

  5. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    SciTech Connect

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C.

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  6. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  7. Cationic nanoparticles with quaternary ammonium-functionalized PLGA-PEG-based copolymers for potent gene transfection

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Hsung; Fu, Yin-Chih; Chiu, Hui-Chi; Wang, Chau-Zen; Lo, Shao-Ping; Ho, Mei-Ling; Liu, Po-Len; Wang, Chih-Kuang

    2013-11-01

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA- phe-PEG- qDETA (PPD), phe-PEG- qDETA-PLGA (PDP), and PLGA- phe-PEG- qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH2), phenylalanine ( phe), and poly(lactic- co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of 217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  8. RAFT-synthesized Graft Copolymers that Enhance pH-dependent Membrane Destabilization and Protein Circulation Times

    PubMed Central

    Crownover, Emily; Duvall, Craig L.; Convertine, Anthony; Hoffman, Allan S.; Stayton, Patrick S.

    2012-01-01

    Here we describe a new graft copolymer architecture of poly(propylacrylic acid) (polyPAA) that displays potent pH-dependent, membrane-destabilizing activity and in addition is shown to enhance protein blood circulation kinetics. PolyPAA containing a single telechelic alkyne functionality was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization with an alkyne-functional chain transfer agent (CTA) and coupled to RAFT polymerized poly(azidopropyl methacrylate) (polyAPMA) through azide-alkyne [3+2] Huisgen cycloaddition. The graft copolymers become membrane destabilizing at endosomal pH values and are active at significantly lower concentrations than the linear polyPAA. A biotin terminated polyPAA graft copolymer was prepared by grafting PAA onto polyAPMA polymerized with a biotin functional RAFT CTA. The blood circulation time and biodistribution of tritium labeled avidin conjugated to the polyPAA graft copolymer was characterized along with a clinically utilized 40 kDa branched polyethylene glycol (PEG) also possessing biotin functionalization. The linear and graft polyPAA increase the area under the curve (AUC) over avidin alone by 9 and 12 times, respectively. Furthermore, polyPAA graft copolymer conjugates accumulated in tumor tissue significantly more than the linear polyPAA and the branched PEG conjugates. The collective data presented in this report indicate that the polyPAA graft copolymers exhibit robust pH-dependent, membrane-destabilizing activity, low cytotoxicity and significantly enhance blood circulation time and tumor accumulation. PMID:21699931

  9. Synthetic copolymer kit for radionuclide blood-pool imaging

    SciTech Connect

    Bogdanov, A.A. Jr.; Callahan, R.J.; Wilkinson, R.A.

    1994-11-01

    A synthetic blood pool imaging agent labeled with {sup 99m}Tc is reported. The agent, methoxypolyethylene glycolpoly-L-Iysyl-diethylenetriaminepentaacetate monoamide was synthesized from a covalent graft copolymer of methoxypolyethylene glycol succinate (molecular weight 5.1 kD) with subsequent modification of the product with diethylenetriamineacetyl residues. The polymer was formulated into a kit that contained Sn(II) and sodium acetate for radiolabeling with {sup 99m}Tc. Biodistribution studies were performed in rats. Blood-pool imaging and blood clearance determination was carried out in rabbits and in a rhesus monkey. The {sup 99m}Tc-labeled agent [specific activity greater than 3.7 GBq/mg; radiochemical purity more than 98% by thin-layer and high-performance liquid chromatography (HPLC)] demonstrated remarkable stability in solution (pH 5.5-6.5) with no radioactive products of degradation detectable by HPLC even at 24 hr postlabeling. The agent exhibited prolonged circulation in the blood with a half-life of 31.5 hr in rabbits. Bio-distribution in rats showed a lack of substantial accumulation of the agent in the reticuloendothelial system. Sequential acquisitions were performed in a rhesus monkey. The {sup 99m}Tc-labeled polymer kit was compared with the {sup 99m}Tc-red blood cells (RBCs) labeled in vitro. Both methods produced similar heart-to-lung ratios. The ratios remained essentially unchanged for up to 15 hr postinjection. The {sup 99m}Tc-labeled methaxypolyethylene glycol-poly-L-lysyl-diethylenetriamine pentaacetate monoamide is an attractive alternative to radiolabeled RBCs for blood pool imaging applications. 33 refs., 7 figs.

  10. Immune activity and biodistribution of polypeptide K237 and folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles radiolabeled with 99mTc

    PubMed Central

    Wu, Yufeng; Huang, Xuanzhang; Chen, Jie; Xia, Junyong; Jiang, Hao; Ma, Jing; Wu, Jian

    2016-01-01

    In a previous study, amphiphilic copolymer, polypeptide K237 (HTMYYHHYQHHL) and folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (K237/FA-PEG-PLGA) nanoparticles were developed and studied as a drug carrier. To further promote the clinical application of K237/FA-PEG-PLGA nanoparticles and provide guidance for future research, we need to examine their specific biodistribution in vivo. In this study, K237/FA-PEG-PLGA nanoparticles were effectively labeled by a direct method with Technetium-99m (99mTc) using stannous chloride as a reducing agent. The optimal stability of the labeled nanoparticles was determined by evaluating their radiochemical purity in serum, physiological saline, diethylenetriaminepentaacetic acid (DTPA) and cysteine solutions. The affinity of ligands and receptors was elicited by cell binding and blocking experiments in KDR/folate receptor high expressing SKOV-3 ovarian cancer cells. The nanoparticles biodistribution was studied after intravenous administration in healthy mice xenografted with SKOV-3 cells. A higher percent injected dose per gram of tissue (% ID/g) was observed in liver, kidney, spleen, blood and tumor at 3 and 9 h post-injection. Scintigraphic images revealed that the radioactivity was mainly concentrated in tumor, liver, kidney and bladder; and in the heart, lung, and muscle was significantly lower at 3 h. The radioactivity distribution in the images is consistent with the in vivo biodistribution data. Our works demonstrated that K237/FA-PEG-PLGA nanoparticles have great potential as biodegradable drug carriers, especially for tumors expressing the folate and KDr receptor. PMID:27791199

  11. Microphase separation in random multiblock copolymers

    NASA Astrophysics Data System (ADS)

    Govorun, E. N.; Chertovich, A. V.

    2017-01-01

    Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.

  12. Soluplus graft copolymer: potential novel carrier polymer in electrospinning of nanofibrous drug delivery systems for wound therapy.

    PubMed

    Paaver, Urve; Tamm, Ingrid; Laidmäe, Ivo; Lust, Andres; Kirsimäe, Kalle; Veski, Peep; Kogermann, Karin; Heinämäki, Jyrki

    2014-01-01

    Electrospinning is an effective method in preparing polymeric nanofibrous drug delivery systems (DDSs) for topical wound healing and skin burn therapy applications. The aim of the present study was to investigate a new synthetic graft copolymer (Soluplus) as a hydrophilic carrier polymer in electrospinning of nanofibrous DDSs. Soluplus (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PCL-PVAc-PEG)) was applied in the nonwoven nanomats loaded with piroxicam (PRX) as a poorly water-soluble drug. Raman spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and scanning electron microscopy (SEM) were used in the physical characterization of nanofibrous DDSs. According to the SEM results, the drug-loaded PCL-PVAc-PEG nanofibers were circular in cross-section with an average diameter ranging from 500 nm up to 2  µm. Electrospinning stabilized the amorphous state of PRX. In addition, consistent and sustained-release profile was achieved with the present nanofibrous DDSs at the physiologically relevant temperature and pH applicable in wound healing therapy. In conclusion, electrospinning can be used to prepare nanofibrous DDSs of PCL-PVAc-PEG graft copolymer (Soluplus) and to stabilize the amorphous state of a poorly water-soluble PRX. The use of this synthetic graft copolymer can open new options to formulate nanofibrous DDSs for wound healing.

  13. Manipulating Interfaces through Surface Confinement of Poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone), a Dually Reactive Block Copolymer

    SciTech Connect

    Lokitz, Bradley S; Wei, Jifeng; Hinestrosa Salazar, Juan P; Ivanov, Ilia N; Browning, James B; Ankner, John Francis; Kilbey, II, S Michael; Messman, Jamie M

    2012-01-01

    The assembly of dually reactive, well-defined diblock copolymers incorporating the chemoselective/functional monomer, 4,4-dimethyl-2-vinylazlactone (VDMA) and the surface-reactive monomer glycidyl methacrylate (GMA) is examined to understand how competition between surface attachment and microphase segregation influences interfacial structure. Reaction of the PGMA block with surface hydroxyl groups not only anchors the copolymer to the surface, but limits chain mobility, creating brush-like structures comprising PVDMA blocks, which contain reactive azlactone groups. The block copolymers are spin coated at various solution concentrations and annealed at elevated temperature to optimize film deposition to achieve a molecularly uniform layer. The thickness and structure of the polymer thin films are investigated by ellipsometry, infrared spectroscopy, and neutron reflectometry. The results show that deposition of PGMA-b-PVDMA provides a useful route to control film thickness while preserving azlactone groups that can be further modified with biotin-poly(ethylene glycol)amine to generate designer surfaces. The method described herein offers guidance for creating highly functional surfaces, films, or coatings through the use of dually reactive block copolymers and postpolymerization modification.

  14. Occupational chronic exposure to organic solvents. XIV. Examinations concerning the evaluation of a limit value for 2-ethoxyethanol and 2-ethoxyethyl acetate and the genotoxic effects of these glycol ethers.

    PubMed

    Söhnlein, B; Letzel, S; Weltle, D; Rüdiger, H W; Angerer, J

    1993-01-01

    Two groups of workers occupationally exposed to glycol ethers in a varnish production plant or the ceramic industry were examined. For 19 persons the external and internal exposure was assessed on the Monday and Tuesday after an exposure-free weekend. In the varnish production area the concentrations of 2-ethoxyethanol (EE), 2-ethoxyethyl acetate (EEAc), and 2-butoxyethanol (BE) in air averaged 2.9, 0.5, and 0.5 ppm, respectively, on the Monday, and 2.1, 0.1, and 0.6 ppm, respectively, on the Tuesday. At the same workplaces the mean urinary 2-ethoxyacetic acid (EAA) and 2-butoxyacetic acid (BAA) concentrations were 53.2 and 0.2 mg/l on Monday preshift and 53.8 and 16.4 mg/l on Tuesday postshift. The results show that glycol ethers are very well absorbed through the skin. Therefore biological monitoring is indispensable. To study the kinetics of the toxic metabolite, 17 persons were examined for their excretion of EAA in urine during an exposure-free weekend. The median values of the calculated half-times were 57.4 and 63.4 h, respectively, which are longer than the values presented in literature until now. According to our calculations the limit value should not exceed 50 mg EAA per liter of urine, which is the current German biological tolerance value (BAT value) for EAA in urine. The maximum concentration value at the workplace (MAK value) for EE and EEAc in air should be revised. Finally, the subjects from the varnish production plant as well as a group of reference persons were studied for cytogenetic effects of glycol ethers (sister chromatid exchange, micronucleus test). Such effects could not be detected.

  15. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or...

  16. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or...

  17. 21 CFR 172.858 - Propylene glycol alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Propylene glycol alginate. 172.858 Section 172.858... CONSUMPTION Multipurpose Additives § 172.858 Propylene glycol alginate. The food additive propylene glycol... information required by the act: (1) The name of the additive, “propylene glycol alginate” or...

  18. Triethylene Glycol Monomethyl Ether; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule under section 4 of the Toxic Substances Control Act (TSCA) requiring manufacturers and processors of triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) to perform developmental neurotoxicity tasting.

  19. Low temperature specific heat of propylene glycol

    SciTech Connect

    Zhu, Da-Ming; Chen, Huiwei

    1997-01-01

    The specific heat of propylene glycol has been measured at temperatures from 0.1 K to 6 K. The magnitude and the temperature dependence of the specific heat are similar to that found in other fragile glasses.

  20. Safe antifreeze: The real difference between ethylene glycol and propylene glycol

    SciTech Connect

    Wray, T.K.

    1995-04-01

    Antifreeze-coolants are added to the radiators of internal combustion engines to prevent freezing during the winter and boil-over during the summer. Although ethylene glycol is the most commonly used coolant, products containing propylene glycol have been used--at least, experimentally--for years. Both substances have similar characteristics; however, some manufacturers claim that antifreeze-coolants containing propylene glycol are more environmentally friendly and safer to humans and animals than ethylene glycol products. This article examines these two substances, and addresses the similarities and differences of their physical and chemical compounds, thereby enabling users to determine whether such claims are valid or merely advertising hyperbole.

  1. Silicate stabilization studies in propylene glycol

    SciTech Connect

    Schwartz, S.A.

    1999-08-01

    In most North American and many European coolant formulations, the corrosion inhibition of heat-rejecting aluminum surfaces is provided by alkali metal silicates. But, their tendency towards polymerization, leading to gelation and/or precipitation, can reduce the effectiveness of a coolant. This paper presents the results of experiments which illustrate formulation-dependent behavior of inorganic silicate in propylene glycol compositions. Specific examples of the effects of glycol matrix, stabilizer type, and hard water on silicate stabilization are provided.

  2. Block Copolymer Membranes for Biofuel Purification

    NASA Astrophysics Data System (ADS)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  3. (Electro)Mechanical Properties of Olefinic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Spontak, Richard

    2014-03-01

    Conventional styrenic triblock copolymers (SBCs) swollen with a midblock-selective oil have been previously shown to exhibit excellent electromechanical properties as dielectric elastomers. In this class of electroactive polymers, compliant electrodes applied as active areas to opposing surfaces of an elastomer attract each other, and thus compress the elastomer due to the onset of a Maxwell stress, upon application of an external electric field. This isochoric process is accompanied by an increase in lateral area, which yields the electroactuation strain (measuring beyond 300% in SBC systems). Performance parameters such as the Maxwell stress, transverse strain, dielectric breakdown, energy density and electromechanical efficiency are determined directly from the applied electric field and resulting electroactuation strain. In this study, the same principle used to evaluate SBC systems is extended to olefinic block copolymers (OBCs), which can be described as randomly-coupled multiblock copolymers that consist of crystallizable polyethylene hard segments and rubbery poly(ethylene-co-octene) soft segments. Considerations governing the development of a methodology to fabricate electroresponsive OBC systems are first discussed for several OBCs differing in composition and bulk properties. Evidence of electroactuation in selectively-solvated OBC systems is presented and performance metrics measured therefrom are quantitatively compared with dielectric elastomers derived from SBC and related materials.

  4. Fabrication of Thiol-Ene "Clickable" Copolymer-Brush Nanostructures on Polymeric Substrates via Extreme Ultraviolet Interference Lithography.

    PubMed

    Dübner, Matthias; Gevrek, Tugce N; Sanyal, Amitav; Spencer, Nicholas D; Padeste, Celestino

    2015-06-03

    We demonstrate a new approach to grafting thiol-reactive nanopatterned copolymer-brush structures on polymeric substrates by means of extreme ultraviolet (EUV) interference lithography. The copolymer brushes were designed to contain maleimide functional groups as thiol-reactive centers. Fluoropolymer films were exposed to EUV radiation at the X-ray interference lithography beamline (XIL-II) at the Swiss Light Source, in order to create radical patterns on their surfaces. The radicals served as initiators for the copolymerization of thiol-ene "clickable" brushes, composed of a furan-protected maleimide monomer (FuMaMA) and different methacrylates, namely, methyl methacrylate (MMA), ethylene glycol methyl ether methacrylate (EGMA), or poly(ethylene glycol) methyl ether methacrylate (PEGMA). Copolymerization with ethylene-glycol-containing monomers provides antibiofouling properties to these surfaces. The number of reactive centers on the grafted brush structures can be tailored by varying the monomer ratios in the feed. Grafted copolymers were characterized by using attenuated total reflection infrared (ATR-IR) spectroscopy. The reactive maleimide methacrylate (MaMA) units were utilized to conjugate thiol-containing moieties using the nucleophilic Michael-addition reaction, which proceeds at room temperature without the need for any metal-based catalyst. Using this approach, a variety of functionalities was introduced to yield polyelectrolytes, as well as fluorescent and light-responsive polymer-brush structures. Functionalization of the brush structures was demonstrated via ATR-IR and UV-vis spectroscopy and fluorescence microscopy, and was also indicated by a color switch. Furthermore, grafted surfaces were generated via plasma activation, showing a strongly increased wettability for polyelectrolytes and a reversible switch in static water contact angle (CA) of up to 18° for P(EGMA-co-MaMA-SP) brushes, upon exposure to alternating visible and UV-light irradiation.

  5. Comparative toxicity of formulated glycol deicers and pure ethylene and propylene glycol to Ceriodaphnia dubia and Pimephales promelas

    SciTech Connect

    Pillard, D.A. )

    1995-02-01

    Airlines use deicers to remove ice and snow from aircraft before flights, and to retard the inflight buildup of these materials. Many of the deicers are formulated mixtures of ethylene glycol (EG) or propylene glycol (PG) and a variety of additives. Because these deicers may be intentionally or accidentally released into aquatic ecosystems, the possibility exists for direct and indirect adverse effects on aquatic organisms. Laboratory studies evaluated the comparative toxicity of formulated glycol deicers and pure materials on the water flea, Ceriodaphnia dubia, and fathead minnow, Pimephales promelas. Acute and short-term chronic tests were performed according to US Environmental Protection Agency (EPA) guidelines. The formulated mixtures were found to be substantially more toxic than either of the pure glycol materials. The 48-h LC50s for C. dubia were 13,140 mg/L and 1,020 mg/L using formulated EG and PG, and 34,400 mg/L and 18,340 mg/L using pure EG and PG, respectively. The 96-h LC50s for P. promelas were 8,050 mg/L and 710 mg/L using formulated EG and PG, and 72,860 mg/L and 55,770 mg/L using pure EG and PG, respectively. Chronic IC25s for C. dubia were 3,960 mg/L and 640 mg/L using formulated EG and PG; 12,310 mg/L and 13,470 mg/L using pure EG and PG. Chronic IC25s for P. promelas were 3,660 mg/L and 110 mg/L using formulated EG and PG; 22,520 mg/L and 6,940 mg/L using pure EG and PG. For airports that have stormwater discharge permits, numerical limits for EG and PG are generally listed; potential toxicity is assumed to be due to the glycol materials. However, other compounds in the mixtures may either contribute substantially to, or in some cases overshadow, the toxicity of the glycol materials.

  6. DETERMINATION OF THE IMPACT OF GLYCOLATE ON ARP AND MCU OPERATIONS

    SciTech Connect

    Taylor-Pashow, K.; Peters, T.; Shehee, T.

    2012-06-04

    Savannah River Remediation (SRR) is evaluating an alternate flowsheet for the Defense Waste Processing Facility (DWPF) using glycolic acid as a reductant. An important aspect of the development of the glycolic acid flowsheet is determining if glycolate has any detrimental downstream impacts. Testing was performed to determine if there is any impact to the strontium and actinide sorption by monosodium titanate (MST) and modified monosodium titanate (mMST) or if there is an impact to the cesium removal at the Modular Caustic-Side Solvent Extraction Processing Unit (MCU). Sorption testing was performed using both MST and modified MST (mMST) in the presence of 5,000 and 10,000 ppm (mass basis) glycolate. 10,000 ppm is the estimated bounding concentration expected in the DWPF recycle stream based on DWPF melter flammable gas model results. The presence of glycolate was found to slow the removal of Sr and Pu by MST, while increasing the removal rate of Np. Results indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. There was no measurable effect on U removal at either glycolate concentration. The slower removal rates for Sr and Pu at 5,000 and 10,000 ppm glycolate could result in lower DF values for these sorbates in ARP based on the current (12 hours) and proposed (8 hours) contact times. For the highest glycolate concentration used in this study, the percentage of Sr removed at 6 hours of contact decreased by 1% and the percentage of Pu removed decreased by nearly 7%. The impact may prove insignificant if the concentration of glycolate that is returned to the tank farm is well below the concentrations tested in this study. The presence of glycolate also decreased the removal rates for all three sorbates (Sr, Pu, and Np) by mMST. Similarly to MST, the results for mMST indicate that the impact is a kinetic effect, and the overall capacity of the material is not affected. The presence of glycolate did not change the lack

  7. Design, syntheses, and properties of tunable, dual-stimuli (temperature and pH) responsive copolymers

    NASA Astrophysics Data System (ADS)

    Manokruang, Kiattikhun

    polymer aggregates for each pH, rather than random/polydisperse structures. TEM images of the collapsed morphology showed polymer aggregates that included numerous small hydrophobic cores, demonstrating that the phase transition of these copolymers involved the formation of micelles with many hydrophobic clusters. Finally, these copolymers were used to prepare hollow microcapsules that provided an exceptional protection and a prolonged stability of an encapsulated matter at acidic conditions (pH 2) and a sharp and fast pH-triggered release at physiological conditions (pH 7). A second series of copolymers was synthesized to compose of ethylene glycol oligomers (EOm) connected in an alternating fashion with hydrophobic alkyls (EEn), (EOm-alt-EE n). Also, terpolymers were synthesized to compose of EOm connected in an alternating fashion with EEn and lysine ethyl ester (LyE), (EOm-alt-(EEn;LyE). Both copolymers and terpolymers demonstrated temperature responsive LCST phase behavior in aqueous solution, whose critical temperature is dictated by the thermodynamics of the hydrophilic/hydrophobic balance. In addition, the terpolymers' LCST can be further tuned by tailoring the ratio of EEn to LyE yielding dual responsive, viz. temperature and pH responsive, polymers upon conversion of LyE to ionizable Lysine (Lys). These last polymers that included ionizable units showed a reversible temperature and pH sensitive phase transition, allowing for such polymers to exhibit a phase separation with both-or-either temperature increase and pH-decrease. The extended phase diagrams, collected from turbidity measurements and modulated differential scanning callorimetry (MDSC), showed that the phase diagram remained a genuine LCST binodal throughout the complete concentration range. In addition, 1H-NMR provided additional strong evidence that the phase transition proceeded without micelle formation. Finally, hydrogels were prepared from EOm-alt-EEn, which exhibited reversible swelling

  8. Open-label evaluation of a novel skin brightening system containing 0.01% decapeptide-12 in combination with 20% buffered glycolic acid for the treatment of mild to moderate facial melasma.

    PubMed

    Ramírez, Sandra P; Carvajal, Alfonso C; Salazar, Juan C; Arroyave, Gladys; Flórez, Ana M; Echeverry, Hector F

    2013-06-01

    Melasma is a cutaneous disorder that primarily affects females of Hispanic and Asian descent. Previous studies have shown that use of a brightening system comprised of 0.01% decapeptide-12 cream, an antioxidant cleanser, a 20% buffered glycolic acid lotion, and a broad spectrum SPF 30 sunscreen yields good clearance of mild-to-moderate melasma in Caucasian and Asian volunteers. The present open-label, prospective, and multicenter study sought to determine the tolerability and efficacy of the above-mentioned brightening system on mild-to-moderate melasma in 33 Hispanic females over 16 weeks. Clinical measures included self-assessment of tolerability, clinical grading, determination of Melasma Area and Severity Index (MASI) scores, and standardized clinical photography. Results showed that the system was well tolerated with no adverse events reported. Mean decreases of 36%, 46%, 54%, and 60% in MASI scores were observed at weeks 4, 8, 12, and 16, respectively, which were further corroborated by standardized photography showing visible reduction in the appearance of melasma. Results suggest that the brightening system consisting of 0.01% decapeptide-12 cream, an antioxidant cleanser, 20% buffered glycolic acid lotion, and broad spectrum SPF 30 sunscreen is safe and efficacious for the treatment of mild-to-moderate melasma in Hispanic females.

  9. Curable polyphosphazene copolymers and terpolymers

    NASA Technical Reports Server (NTRS)

    Reynard, Kennard A. (Inventor); Rose, Selwyn H. (Inventor)

    1976-01-01

    Copolymers and terpolymers comprising randomly repeating units represented by the general formulae ##EQU1## wherein the R' radicals contain OH functionality and R being at least one member of the group of monovalent radicals selected from alkyl, substituted alkyl, aryl, substituted aryl and arylalkyl, and R' is represented by ##EQU2## wherein Q represents either --(CH.sub.2).sub. n or --C.sub.6 H.sub.4 X(CH.sub.2).sub. m, the --X(CH.sub.2).sub. m group being either meta or para and n is an integer from 1 to 6, m is an integer from 1 to 3, X is O or CH.sub.2, and R is H or a lower alkyl radical with up to four carbon atoms (methyl, ethyl, etc.). The ratio of R to R' is between 99.5 to 0.5 and 65 to 35.

  10. Organosilane Polymers. III. Block Copolymers.

    DTIC Science & Technology

    1980-04-01

    5446 (1969) 9) R. West, J. Polym. Sci., C, 29, 65 (1970) 10) V.F. Traven and R. West, J. Am. Chem. Soc., 95, 6824 (1973) 11) W.G. Boberski and-A.L...COMPOSITION Alkyl H/Aryl H (2 ) Copolymer Method,1 , Calculated Found 111-3 A 0.72 0.73 B 0.72 0.73 111-5 A 0.80 0.85 B 0.80 0.80 111-8 A 1.0 1.4 B 1.0...1.1 (1) A: Chloro-oligomer added to lithio-oligomer. B : Lithio-oligomer added to chloro-oligomer. (2) By HI-NMR TABLE 2 INFRA-RED ABSORPTIONS

  11. Electrostatic control of block copolymer morphology

    NASA Astrophysics Data System (ADS)

    Sing, Charles E.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    2014-07-01

    Energy storage is at present one of the foremost issues society faces. However, material challenges now serve as bottlenecks in technological progress. Lithium-ion batteries are the current gold standard to meet energy storage needs; however, they are limited owing to the inherent instability of liquid electrolytes. Block copolymers can self-assemble into nanostructures that simultaneously facilitate ion transport and provide mechanical stability. The ions themselves have a profound, yet previously unpredictable, effect on how these nanostructures assemble and thus the efficiency of ion transport. Here we demonstrate that varying the charge of a block copolymer is a powerful mechanism to predictably tune nanostructures. In particular, we demonstrate that highly asymmetric charge cohesion effects can induce the formation of nanostructures that are inaccessible to conventional uncharged block copolymers, including percolated phases desired for ion transport. This vastly expands the design space for block copolymer materials and is informative for the versatile design of battery electrolyte materials.

  12. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  13. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  14. Salt Complexation in Block Copolymer Thin Films

    SciTech Connect

    Kim,S.; Misner, M.; Yang, L.; Gang, O.; Ocko, B.; Russell, T.

    2006-01-01

    Ion complexation within cylinder-forming block copolymer thin films was found to affect the ordering process of the copolymer films during solvent annealing, significantly enhancing the long-range positional order. Small amounts of alkali halide or metal salts were added to PS-b-PEO, on the order of a few ions per chain, where the salt complexed with the PEO block. The orientation of the cylindrical microdomains strongly depended on the salt concentration and the ability of the ions to complex with PEO. The process shows large flexibility in the choice of salt used, including gold or cobalt salts, whereby well-organized patterns of nanoparticles can be generated inside the copolymer microdomains. By further increasing the amount of added salts, the copolymer remained highly ordered at large degrees of swelling and demonstrated long-range positional correlations of the microdomains in the swollen state, which holds promise as a route to addressable media.

  15. Clinical Features of Reported Ethylene Glycol Exposures in the United States

    PubMed Central

    Jobson, Meghan A.; Hogan, Susan L.; Maxwell, Colin S.; Hu, Yichun; Hladik, Gerald A.; Falk, Ronald J.; Beuhler, Michael C.; Pendergraft, William F.

    2015-01-01

    Background Ethylene glycol is highly toxic and represents an important cause of poisonings worldwide. Toxicity can result in central nervous system dysfunction, cardiovascular compromise, elevated anion gap metabolic acidosis and acute kidney injury. Many states have passed laws requiring addition of the bittering agent, denatonium benzoate, to ethylene glycol solutions to reduce severity of exposures. The objectives of this study were to identify differences between unintentional and intentional exposures and to evaluate the utility of denatonium benzoate as a deterrent. Methods and Findings Using the National Poison Data System, we performed a retrospective analysis of reported cases of ethylene glycol exposures from January 2006 to December 2013. Outcome classification was summed for intentionality and used as a basis for comparison of effect groups. There were 45,097 cases of ethylene glycol exposures resulting in 154 deaths. Individuals more likely to experience major effects or death were older, male, and presented with more severe symptoms requiring higher levels of care. Latitude and season did not correlate with increased exposures; however, there were more exposures in rural areas. Denatonium benzoate use appeared to have no effect on exposure severity or number. Conclusion Deaths due to ethylene glycol exposure were uncommon; however, there were major clinical effects and more exposures in rural areas. Addition of denatonium benzoate was not associated with a reduction in exposures. Alternative means to deter ingestion are needed. These findings suggest the need to consider replacing ethylene glycol with alternative and less toxic agents. PMID:26566024

  16. Effect of glycol-based coolants on the suppression and recovery of platinum fuel cell electrocatalysts

    NASA Astrophysics Data System (ADS)

    Garsany, Yannick; Dutta, Sreya; Swider-Lyons, Karen E.

    2012-10-01

    We use cyclic and rotating disk electrode voltammetry to study glycol-based coolant formulations to show that individual constituents have either negligible or significant poisoning effects on the nanoscale Pt/carbon catalysts used in proton exchange membrane fuel cells. The base fluid in all these coolants is glycol (1, 3 propanediol), commercially available in a BioGlycol coolant formulation with an ethoxylated nonylphenol surfactant, and azole- and polyol-based non-ionic corrosion inhibitors. Exposure of a Pt/Vulcan carbon electrode to glycol-water or glycol-water-surfactant mixtures causes the loss of Pt electrochemical surface area (ECSA), but the Pt ECSA is fully recovered in clean electrolyte. Only mixtures with the azole corrosion inhibitor cause irreversible losses to the Pt ECSA and oxygen reduction reaction (ORR) activity. The Pt ECSA and ORR activity can only be recovered to within 70% of its initial values after aggressive voltammetric cycling to 1.50 V after azole poisoning. When poisoned with a glycol mixture containing the polyol corrosion inhibitor instead, the Pt ECSA and ORR activity is completely recovered by exposure to a clean electrolyte. The results suggest that prior to incorporation in a fuel cell, voltammetric evaluation of the constituents of coolant formulations is worthwhile.

  17. Reactivity ratios for organotin copolymer systems.

    PubMed

    El-Newehy, Mohamed H; Al-Deyab, Salem S; Al-Hazmi, Ali Mohsen Ali

    2010-04-15

    Di(tri-n-butyltin) itaconate (DTBTI) and monoethyl tributyltin fumarate (METBTF) were synthesized as organotin monomers. The organotin monomers were copolymerized with styrene (ST) and methyl methacrylate (MMA) via a free radical polymerization technique. The overall conversion was kept low (copolymer composition was determined from tin analysis. The synthesized monomers and copolymers were characterized by elemental analysis, 1H- and 13C-NMR, and FTIR spectroscopy.

  18. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  19. Responsive Copolymers for Enhanced Petroleum Recovery

    SciTech Connect

    McCormick, C.; Hester, R.

    2001-02-27

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  20. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.