DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajewska, A., E-mail: aldonar@jinr.ru; Medrzycka, K.; Hallmann, E.
2016-01-15
The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.
40 CFR Table 6 to Subpart Jj of... - VHAP of Potential Concern
Code of Federal Regulations, 2011 CFR
2011-07-01
... glycol butyl ether, ethylene glycol ethyl ether (2-ethoxy ethanol), ethylene glycol hexyl ether, ethylene..., ethylene glycol mono-2-ethylhexyl ether, diethylene glycol butyl ether, diethylene glycol ethyl ether... glycol propyl ether, triethylene glycol butyl ether, triethylene glycol ethyl ether, triethylene glycol...
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Monomethyl Ether *Dimer Acids Dioxane Ethane Ethylene Glycol Monophenyl Ether *Ethoxylates, Misc. Ethylene Glycol Dimethyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monoethyl Ether Ethylene Glycol...
Alonso, Hernan; Roujeinikova, Anna
2012-11-01
The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C(12)E(8)]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-D-maltopyranoside (DM), n-dodecyl-β-D-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism.
76 FR 38026 - Diethylene Glycol Mono Butyl Ether; Exemption From the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... chemicals. Immunotoxicity studies were available for ethylene glycol mono butyl ether, also a glycol ether... the glycol ether class of chemicals which include structurally similar chemicals ethylene glycol and... potential to cause cancer. Based on the lack of evidence of carcinogenicity potential for ethylene glycol...
Molecular structure impacts on secondary organic aerosol formation from glycol ethers
NASA Astrophysics Data System (ADS)
Li, Lijie; Cocker, David R.
2018-05-01
Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA formation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid (H3BO3), mixed esters with... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...
Alonso, Hernan
2012-01-01
The alkane hydroxylase system of Pseudomonas putida GPo1 allows it to use alkanes as the sole source of carbon and energy. Bacterial alkane hydroxylases have tremendous potential as biocatalysts for the stereo- and regioselective transformation of a wide range of chemically inert unreactive alkanes into valuable reactive chemical precursors. We have produced and characterized the first 2-dimensional crystals of the integral membrane component of the P. putida alkane hydroxylase system, the nonheme di-iron alkane monooxygenase AlkB. Our analysis reveals for the first time that AlkB reconstituted into a lipid bilayer forms trimers. Addition of detergents that do not disrupt the AlkB oligomeric state (decyl maltose neopentyl glycol [DMNG], lauryl maltose neopentyl glycol [LMNG], and octaethylene glycol monododecyl ether [C12E8]) preserved its activity at a level close to that of the detergent-free control sample. In contrast, the monomeric form of AlkB produced by purification in n-decyl-β-d-maltopyranoside (DM), n-dodecyl-β-d-maltopyranoside (DDM), octyl glucose neopentyl glycol (OGNG), and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO) was largely inactive. This is the first indication that the physiologically active form of membrane-embedded AlkB may be a multimer. We present for the first time experimental evidence that 1-octyne acts as a mechanism-based inhibitor of AlkB. Therefore, despite the lack of any significant full-length sequence similarity with members of other monooxygenase classes that catalyze the terminal oxidation of alkanes, AlkB is likely to share a similar catalytic mechanism. PMID:22941083
NASA Astrophysics Data System (ADS)
Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk
2015-11-01
We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.
40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfate 77781 6. Dinitrotoluene (2,4) 121142 7. Dioxane (1,4) 123911 8. Ethylene glycol dimethyl ether 110714 9. Ethylene glycol monobutyl ether acetate 112072 10. Ethylene glycol monomethyl ether acetate...
40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Dinitrotoluene (2,4) 121142 7. Dioxane (1,4) 123911 8. Ethylene glycol dimethyl ether 110714 9. Ethylene glycol monobutyl ether acetate 112072 10. Ethylene glycol monomethyl ether acetate 110496 11. Isophorone 78591 12...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether (EGBE,2-Butoxyethanol...
40 CFR Table 9 to Subpart Ggg of... - Default Biorates for Soluble HAP
Code of Federal Regulations, 2010 CFR
2010-07-01
....178 Dinitrotoluene(2,4) 0.784 Dioxane(1,4) 0.393 Ethylene glycol dimethyl ether 0.364 Ethylene glycol monobutyl ether acetate 0.496 Ethylene glycol monomethyl ether acetate 0.159 Isophorone 0.598 Methanol a...
40 CFR Table 37 to Subpart G of... - Default Biorates for List 1 Compounds
Code of Federal Regulations, 2010 CFR
2010-07-01
... DIMethyl sulfate 0.178 Dinitrophenol 2,4 0.620 Dinitrotoluene(2,4) 0.784 Dioxane(1,4) 0.393 Ethylene glycol dimethyl ether 0.364 Ethylene glycol monomethyl ether acetate 0.159 Ethylene glycol monobutyl ether acetate...
Fromme, H; Nitschke, L; Boehmer, S; Kiranoglu, M; Göen, T
2013-03-01
Glycol ethers are a class of semi-volatile substances used as solvents in a variety of consumer products like cleaning agents, paints, cosmetics as well as chemical intermediates. We determined 11 metabolites of ethylene and propylene glycol ethers in 44 urine samples of German residents (background level study) and in urine samples of individuals after exposure to glycol ethers during cleaning activities (exposure study). In the study on the background exposure, methoxyacetic acid and phenoxyacetic acid (PhAA) could be detected in each urine sample with median (95th percentile) values of 0.11 mgL(-1) (0.30 mgL(-1)) and 0.80 mgL(-1) (23.6 mgL(-1)), respectively. The other metabolites were found in a limited number of samples or in none. In the exposure study, 5-8 rooms were cleaned with a cleaner containing ethylene glycol monobutyl ether (EGBE), propylene glycol monobutyl ether (PGBE), or ethylene glycol monopropyl ether (EGPE). During cleaning the mean levels in the indoor air were 7.5 mgm(-3) (EGBE), 3.0 mgm(-3) (PGBE), and 3.3 mgm(-3) (EGPE), respectively. The related metabolite levels analysed in the urine of the residents of the rooms at the day of cleaning were 2.4 mgL(-1) for butoxyacetic acid, 0.06 mgL(-1) for 2-butoxypropionic acid, and 2.3 mgL(-1) for n-propoxyacetic acid. Overall, our study indicates that the exposure of the population to glycol ethers is generally low, with the exception of PhAA. Moreover, the results of the cleaning scenarios demonstrate that the use of indoor cleaning agents containing glycol ethers can lead to a detectable internal exposure of residents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fogeron, Marie-Laure; Badillo, Aurélie; Jirasko, Vlastimil; Gouttenoire, Jérôme; Paul, David; Lancien, Loick; Moradpour, Darius; Bartenschlager, Ralf; Meier, Beat H; Penin, François; Böckmann, Anja
2015-01-01
Membrane proteins are notoriously difficult to express in a soluble form. Here, we use wheat germ cell-free expression in the presence of various detergents to produce the non-structural membrane proteins 2, 4B and 5A of the hepatitis C virus (HCV). We show that lauryl maltose neopentyl glycol (MNG-3) and dodecyl octaethylene glycol ether (C12E8) detergents can yield essentially soluble membrane proteins at detergent concentrations that do not inhibit the cell-free reaction. This finding can be explained by the low critical micelle concentration (CMC) of these detergents, which keeps the monomer concentrations low while at the same time providing the necessary excess of detergent concentration above CMC required for full target protein solubilization. We estimate that a tenfold excess of detergent micelles with respect to the protein concentration is sufficient for solubilization, a number that we propose as a guideline for detergent screening assays. Copyright © 2014 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Ethylene Glycol MonobutylEther Acetate Chloroprene. Ethylene Glycol MonomethylEther Acetate Cumene (isopropylbenzene). Ethylene Glycol Dimethyl Ether Dibromoethane 1,2. Hexachlorobenzene Dichlorobenzene 1,4.... Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...
40 CFR Table 1 to Subpart F of... - Synthetic Organic Chemical Manufacturing Industry Chemicals
Code of Federal Regulations, 2010 CFR
2010-07-01
... III Ethylcellulose 9004573 V Ethylcyanoacetate 105566 V Ethylene carbonate 96491 I Ethylene dibromide (Dibromoethane) 106934 I Ethylene glycol 107211 I Ethylene glycol diacetate 111557 I Ethylene glycol dibutyl ether 112481 V Ethylene glycol diethyl ether 629141 I (1,2-diethoxyethane). Ethylene glycol 110714 I...
The influence of water mixtures on the dermal absorption of glycol ethers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.
2007-01-15
Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a correspondingmore » increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.« less
To determine the merit of a petition to remove ethylene glycol ether (EGBE) from the Agency's Hazardous Air Pollutant (HAP) list, EPA has developed an interim final position paper, called An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether, tha...
Lavergne, Aurélie; Zhu, Ying; Pizzino, Aldo; Molinier, Valérie; Aubry, Jean-Marie
2011-08-15
Two agro-based anionic surfactants containing an isosorbide moiety have been synthesized and their amphiphilic properties evaluated. Since isosorbide is now considered as an important platform chemical of the starch industry, these compounds could represent bio-sourced alternatives to the alkyl ether sulfates (notably lauryl ether sulfate, LES) that are based on petroleum-derived ethylene oxides. As isosorbide is an asymmetric diol, two isomers can be prepared (2-O-dodecyl isosorbide sulfate and 5-O-dodecyl isosorbide sulfate) that show significantly different aqueous properties as regards to their Krafft temperatures and critical micellar concentrations. 5-O-dodecyl isosorbide sulfate is the most soluble and the most efficient surfactant. It possesses a much lower critical micelle concentration (cmc) than sodium dodecyl sulfate, SDS, leading to comparable foaming properties with a three times lower concentration. Its behavior compares well with the one of pure diethoxylated dodecyl sulfate that has also been prepared and evaluated in this work. Copyright © 2011 Elsevier Inc. All rights reserved.
Dynamic phase diagram of a nonionic surfactant lamellar phase.
Gentile, Luigi; Behrens, Manja A; Balog, Sandor; Mortensen, Kell; Ranieri, Giuseppe A; Olsson, Ulf
2014-04-03
The dynamic phase diagram of triethylene glycol dodecyl ether (C12E3) in D2O was determined for 40, 50, and 60 wt % of surfactant. The shear flow effect on the nonionic lamellar phase was investigated as a function of temperature and concentration. The transition from planar lamellae (Lα)-to-multilamellar vesicles (MLVs) was characterized by means of rheology, rheo-small-angle neutron and light scattering. New insight into the nature of the transition region between Lα and the MLVs state is provided. A disorder-order transition was also observed by SANS. This is attributed to a transition from disordered MLVs to a close-packed array of MLV's with slightly higher order than before. Moreover flow instability was observed in the shear-thickening regime at 40 °C.
Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.
Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.
Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer
Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426
Finishing Systems for Naval Aircraft Applications: Current Schemes and Future Trends
2000-01-01
glycidyl ether (CGE) and the difunctional neopentyl glycol , diglycidyl ether (NGDE) are pictured below in Figure 7. 16 o r CH3 OH CH2- XCH-CH2--0-<Q)-C...glycidyl ether (CGE) and neopentyl glycol , diglycidyl ether (NGDE). Coatings prepared with CGE were unacceptable due to poor surface properties and
Developmental toxicity and structure/activity correlates of glycols and glycol ethers.
Johnson, E M; Gabel, B E; Larson, J
1984-01-01
In recent years, the National Toxicology Program (NTP) has selected numerous glycol ethers for testing in routine laboratory mammals to ascertain the magnitude of their ability to injure the conceptus. From the lists available of ongoing and projected NTP test chemicals, a series of glycol ethers was selected for examination in vitro in the hydra assay. Also tested were additional chemicals of similar molecular configuration and/or composition. This short-term screening test placed the 14 glycols and glycol ethers tested into a rank order sequence according to their degree of hazard potential to developmental biology, i.e., their ability to interfere with the developmental events characteristic of all ontogenic systems. They were ranked according to the difference between the lowest dose or concentration overtly toxic to adults (A) and the lowest concentration interfering with development (D) of the artificial embryo of reaggregated adult hydra cells and the A/D ratio. Published data from mammalian studies were available for a few of the test chemicals, and in each instance the hydra assay was in direct agreement with the outcomes reported of the more elaborate and standard animal tests. Ethylene glycol and ethylene glycol monomethyl ether were shown by both standard evaluations in mammals, and by the hydra assay, to disrupt embryos only at or very near to their respective adult toxic doses, whereas the mono-ethyl ether perturbed development at approximately one-fifth of the lowest dose overtly toxic to adults.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. A FIGURE 1. B FIGURE 1. C PMID:6499797
Multigner, L; Brik, E Ben; Arnaud, I; Haguenoer, J M; Jouannet, P; Auger, J; Eustache, F
2007-01-01
Objectives Apparent increases in human male reproductive disorders, including low sperm production, may have occurred because of increased chemical exposure. Various glycol ether‐based solvents have pronounced adverse effects on sperm production and male fertility in laboratory animals. The authors investigated the effects of past and current exposure to glycol ether‐containing products on semen quality and reproductive hormones among men employed by the Paris Municipality. Methods Between 2000 and 2001 the authors recruited 109 men who gave semen, blood and urine samples and underwent an andrological examination. Information on lifestyle, occupation, exposure and medical history was obtained by interview. According to their job and chemical products used during the period 1990–2000, men were classified as either occupationally exposed or non‐exposed. Current exposure levels to glycol ethers at the time of the study were evaluated by biological monitoring of six urinary metabolites. Results Previous exposure to glycol ethers was associated with an increased risk for sperm concentration, for rapid progressive motility and for morphologically normal sperm below the World Health Organization semen reference values. No effect of previous glycol ether exposure on hormones levels was observed. By contrast, current glycol ether exposure levels were low and not correlated with either seminal quality or hormone levels. Conclusions This study suggests that most glycol ethers currently used do not impact on human semen characteristics. Those that were more prevalent from the 1960s until recently may have long lasting negative effects on human semen quality. PMID:17332140
Occupational exposure to glycol ethers: implications for occupational health nurses.
Snow, J E
1994-09-01
1. Evaluation of workplace exposure to reproductive hazards is difficult and is often confounded by occupational exposure to multiple agents and exposure to non-occupational factors. 2. A growing body of evidence from animal and human study data supports a causal association between occupational exposure to certain glycol ethers and adverse reproductive outcomes. 3. Occupational health nurses providing services to employees exposed to glycol ethers should remain knowledgeable about the results of epidemiologic studies and current trends in the regulation of glycol ethers in industry. 4. Occupational health nurses are in a key position to reduce exposure to reproductive hazards by monitoring trends in group data and by implementing training and education programs to employees exposed to reproductive hazards.
Agrawal, Gaurav; Oh, Jungmin; Sreedhar, Balamurali; Tie, Shan; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki
2014-09-19
In this article, we extend the simulated moving bed reactor (SMBR) mode of operation to the production of propylene glycol methyl ether acetate (DOWANOL™ PMA glycol ether) through the esterification of 1-methoxy-2-propanol (DOWANOL™ PM glycol ether) and acetic acid using AMBERLYST™ 15 as a catalyst and adsorbent. In addition, for the first time, we integrate the concept of modulation of the feed concentration (ModiCon) to SMBR operation. The performance of the conventional (constant feed) and ModiCon operation modes of SMBR are analyzed and compared. The SMBR processes are designed using a model based on a multi-objective optimization approach, where a transport dispersive model with a linear driving force for the adsorption rate has been used for modeling the SMBR system. The adsorption equilibrium and kinetics parameters are estimated from the batch and single column injection experiments by the inverse method. The multiple objectives are to maximize the production rate of DOWANOL™ PMA glycol ether, maximize the conversion of the esterification reaction and minimize the consumption of DOWANOL™ PM glycol ether which also acts as the desorbent in the chromatographic separation. It is shown that ModiCon achieves a higher productivity by 12-36% over the conventional operation with higher product purity and recovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Potential Replacements for Solvents that are Ozone Depleting Substances
1994-09-01
18.4 d-Lumonene 17.8 Glidsafe-LUI54B 18.2 Turpentine 16.5 isobutyl acetate 17.2 Diisobutyl phthalate 18.3 Dipropylene glycol monomethyl ether 19.0...Diethylene glycol monomethyl ether 22.3 N- Methyl pyrrolidone 23.0 Water 47.8 1. Barton (1983): 2. Gallagher (date unknown). 9 TI DSTO-TR-0046 For blends...parameters. For example, Glidsafe UTS-4B which is a mixture of terpenes and dipropylene glycol monomethyl ether has a Hildebrand solubility of 18.2 MPal/ 2
Code of Federal Regulations, 2010 CFR
2010-07-01
... Dichlorobenzidine (3,3″-) 91941 Dichloroethane (1,2-) (Ethylene dichloride) (EDC) 107062 Dichloroethyl ether (Bis(2... Ethyl acrylate 140885 Ethylbenzene 100414 Ethyl chloride (Chloroethane) 75003 Ethylene dibromide (Dibromoethane) 106934 Ethylene glycol dimethyl ether 110714 Ethylene glycol monobutyl ether 111762 Ethylene...
Bacterial Utilization of Ether Glycols
Fincher, Edward L.; Payne, W. J.
1962-01-01
A soil bacterium capable of using oligo- and polyethylene glycols and ether alcohols as sole sources of carbon for aerobic growth was isolated. The effects of substituent groups added to the ether bonds on the acceptability of the compounds as substrates were studied. Mechanisms for the incorporation of two-carbon compounds were demonstrated by the observation that acetate, glyoxylate, ethylene glycol, and a number of the tricarboxylic acid cycle intermediates served as growth substrates in minimal media. The rate of oxidation of the short-chained ethylene glycols by adapted resting cells varied directly with increasing numbers of two-carbon units in the chains from one to four. The amount of oxygen consumed per carbon atom of oligo- and polyethylene glycols was 100% of theoretical, but only 67% of theoretical for ethylene glycol. Resting cells oxidized oligo- and polyethylene glycols with 2 to 600 two-carbon units in the chains. Longer chained polyethylene glycols (up to 6,000) were oxidized at a very slow rate by these cells. Dehydrogenation of triethylene glycol by adapted cells was observed, coupling the reaction with methylene blue reduction. PMID:13945208
Biocidal Properties of Anti-Icing Additives for Aircraft Fuels
Neihof, R. A.; Bailey, C. A.
1978-01-01
The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol. PMID:646356
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl...
Triethylene Glycol Monomethyl Ether; Final Test Rule
EPA is issuing a final test rule under section 4 of the Toxic Substances Control Act (TSCA) requiring manufacturers and processors of triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) to perform developmental neurotoxicity tasting.
Studies of Plasticized-Polymer Electrolytes Containing Mixed Zn(II) and Li(I)
1992-06-12
iIIIII1iIIII!I 14. SUBJECT TERMS 15. tdUMnnrri . 9 poly(ethylene glycol) ( PEG ), poly(ethylene glycol dimethyl ether) (PEGDME), 16. PRICE CODE...glycol) ( PEG ) and poly(ethylene glycol dimethyl ether) (PEGDME). The addition of salts to either PEO or plasticized-PEO strongly influences the...were found to depend on salt concentration. Td varied from 385 to 3350 C as the zinc content was increased from 0 to 100%. Thus the overall thermal
Propylene glycol monomethyl ether (PGME)
Integrated Risk Information System (IRIS)
Propylene glycol monomethyl ether ( PGME ) ; CASRN 107 - 98 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess
Triethylene glycol monobutyl ether
Integrated Risk Information System (IRIS)
Triethylene glycol monobutyl ether ; CASRN 143 - 22 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo
Triethylene glycol monoethyl ether
Integrated Risk Information System (IRIS)
Triethylene glycol monoethyl ether ; CASRN 112 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo
Propylene glycol monoethyl ether
Integrated Risk Information System (IRIS)
Propylene glycol monoethyl ether ; CASRN 52125 - 53 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo
IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (External Review Draft)
EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database.
Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol)
Integrated Risk Information System (IRIS)
Ethylene glycol monobutyl ether ( EGBE ) ( 2 - Butoxyethanol ) ; CASRN 111 - 76 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I (
40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants
Code of Federal Regulations, 2011 CFR
2011-07-01
... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...
40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants
Code of Federal Regulations, 2014 CFR
2014-07-01
... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...
40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants
Code of Federal Regulations, 2012 CFR
2012-07-01
... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...
40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants
Code of Federal Regulations, 2010 CFR
2010-07-01
... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...
40 CFR Table 1 to Subpart Eeee of... - Organic Hazardous Air Pollutants
Code of Federal Regulations, 2013 CFR
2013-07-01
... (N,N-) 121-69-7 Diethylene glycol monobutyl ether 112-34-5 Diethylene glycol monomethyl ether 111-77... Formaldehyde 50-00-0 Hexachloroethane 67-72-1 Hexane 110-54-3 Hydroquinone 123-31-9 Isophorone 78-59-1 Maleic...
COMPARATIVE IMMUNOSUPPRESSION OF VARIOUS GLYCOL ETHERS ORALLY ADMINISTERED TO FISCHER 344 RATS
Oral dosing of adult rats F344 rats with the glycol ether 2-methoxyethanol (ME) or its principal metabolite 2-methoxyacetic acid (MAA) results in the suppression of the primary plaque-forming cell (PFC) response to trinitrophenyl-lipopolysaccharide (TNP_LPS). n the present study,...
EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from ot...
An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether (Egbe)
This position paper, An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether, was developed in support of the EPA's evaluation of a petition from the American Chemistry Council requesting to delist EGBE per the Clean Air Act Amendments (CAAA), Titl...
IRIS Toxicological Review of Ethylene Glycol Mono Butyl Ether (Egbe) (Final Report)
EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.
Synthesis and amphiphilic properties of decanoyl esters of tri- and tetraethylene glycol.
Zhu, Ying; Molinier, Valérie; Queste, Sébastien; Aubry, Jean-Marie
2007-08-15
Well-defined decanoyl triethylene glycol ester and decanoyl tetraethylene glycol ester were synthesized and compared to their ether counterparts (C(10)E(4) and C(10)E(3)). Their physicochemical properties i.e. critical micelle concentrations (CMC), cloud points, and equilibrium surface tensions were determined. Binary water-surfactant phase behavior was also studied by polarized optical microscopy. The stability of the ester bond was determined by investigating alkaline hydrolysis of the compounds. It was found that CMC, cloud point and equilibrium surface tension are roughly the same for corresponding ethers and esters. In the binary diagram, the esters form only lamellar phases, the area of which is smaller than that of the ether counterparts. These different behaviors can be related to the modification of the molecular conformation induced by the replacement of the ether group by the ester group.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Diethylene glycol, polymer with... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... subject to reporting. (1) The chemical substance identified generically as diethylene glycol, polymer with...
Allergenic activity of an air-oxidized ethoxylated surfactant.
Karlberg, Ann-Therese; Bodin, Anna; Matura, Mihaly
2003-11-01
Ethoxylated surfactants are used in household and industrial cleaners, topical pharmaceuticals, cosmetics and laundry products. Polyethers, e.g. ethoxylated surfactants and polyethylene glycols, are oxidized by atmospheric oxygen (autoxidized) when stored and handled. We have previously shown that a chemically well-defined non-ionic surfactant, the ethoxylated alcohol penta-ethylene glycol mono-n-dodecyl ether (C12E5), forms a complex mixture of autoxidation products when exposed to air. Predictive testing in guinea pigs showed that the surfactant itself is a non-sensitizer, but that oxidation products formed are skin sensitizers. The aim of this study was to investigate the sensitizing capacity of a total oxidation mixture of C12E5 obtained after autoxidation. The allergenic activity of different oxidation products is discussed as well as the clinical importance of the findings. This study shows that the non-ionic surfactant C12E5 containing 20% oxidation products is a sensitizing mixture. The result accords with what is observed for other compounds that are unstable when in contact with air, e.g. limonene and linalool, major fragrance terpenes. Studies regarding the clinical relevance of our findings should be performed. However, it is already clear from this study that precautions must be taken in handling and storage of ethoxylated surfactants to avoid formation of allergenic mixtures.
Poet, Torka; Ball, Nicholas; Hays, Sean M
2016-01-01
Glycol ethers are a widely used class of solvents that may lead to both workplace and general population exposures. Biomonitoring studies are available that have quantified glycol ethers or their metabolites in blood and/or urine amongst exposed populations. These biomonitoring levels indicate exposures to the glycol ethers, but do not by themselves indicate a health hazard risk. Biomonitoring Equivalents (BEs) have been created to provide the ability to interpret human biomonitoring data in a public health risk context. The BE is defined as the concentration of a chemical or metabolite in a biological fluid (blood or urine) that is consistent with exposures at a regulatory derived safe exposure limit, such as a tolerable daily intake (TDI). In this exercise, we derived BEs for general population exposures for selected E- and P-series glycol ethers based on their respective derived no effect levels (DNELs). Selected DNELs have been derived as part of respective Registration, Evaluation, Authorisation and Regulation of Chemicals (REACh) regulation dossiers in the EU. The BEs derived here are unique in the sense that they are the first BEs derived for urinary excretion of compounds following inhalation exposures. The urinary mass excretion fractions (Fue) of the acetic acid metabolites for the E-series GEs range from approximately 0.2 to 0.7. The Fues for the excretion of the parent P-series GEs range from approximately 0.1 to 0.2, with the exception of propylene glycol methyl ether and its acetate (Fue = 0.004). Despite the narrow range of Fues, the BEs exhibit a larger range, resulting from the larger range in DNELs across GEs. The BEs derived here can be used to interpret human biomonitoring data for inhalation exposures to GEs amongst the general population. Copyright © 2015 Elsevier GmbH. All rights reserved.
40 CFR 799.1560 - Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sadleir (1978) and the vaginal smear method in Hafez (1970) under paragraphs (d) (3) and (7) of this section or equivalent methods should be used. Data should be provided on whether the animal is cycling and... examined to adequately detail oocyte and follicular morphology. The methods of Mattison and Thorgiersson...
40 CFR 799.1560 - Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Sadleir (1978) and the vaginal smear method in Hafez (1970) under paragraphs (d) (3) and (7) of this section or equivalent methods should be used. Data should be provided on whether the animal is cycling and... examined to adequately detail oocyte and follicular morphology. The methods of Mattison and Thorgiersson...
40 CFR 799.1560 - Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sadleir (1978) and the vaginal smear method in Hafez (1970) under paragraphs (d) (3) and (7) of this section or equivalent methods should be used. Data should be provided on whether the animal is cycling and... examined to adequately detail oocyte and follicular morphology. The methods of Mattison and Thorgiersson...
40 CFR 799.1560 - Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sadleir (1978) and the vaginal smear method in Hafez (1970) under paragraphs (d) (3) and (7) of this section or equivalent methods should be used. Data should be provided on whether the animal is cycling and... examined to adequately detail oocyte and follicular morphology. The methods of Mattison and Thorgiersson...
40 CFR 799.1560 - Diethylene glycol butyl ether and diethylene glycol butyl ether acetate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Sadleir (1978) and the vaginal smear method in Hafez (1970) under paragraphs (d) (3) and (7) of this section or equivalent methods should be used. Data should be provided on whether the animal is cycling and... examined to adequately detail oocyte and follicular morphology. The methods of Mattison and Thorgiersson...
Acetylcholinesterase and Acetylcholine Receptor
1989-01-30
trimethyl analogue, neopentyl alcohol, (CH 3 ) 3 CCH20H, Ki(comi - 29 mM, Ki(nonc)’ = 74 mM, and to the ether isomer of the latter, =-butyl methyl ether, (CH...Trietrylene glycol di-tert-butylether is being prepared from the glycol via the di-p-toluenesulfonate, mp 80-81"C from methanol, lit. 80-810C (60). 2-N,N
Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.
Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2016-07-01
The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.
Thermal diffusion behavior of nonionic surfactants in water.
Ning, Hui; Kita, Rio; Kriegs, Hartmut; Luettmer-Strathmann, Jutta; Wiegand, Simone
2006-06-08
We studied the thermal diffusion behavior of hexaethylene glycol monododecyl ether (C12E6) in water by means of thermal diffusion forced Rayleigh scattering (TDFRS) and determined Soret coefficients, thermal diffusion coefficients, and diffusion constants at different temperatures and concentrations. At low surfactant concentrations, the measured Soret coefficient is positive, which implies that surfactant micelles move toward the cold region in a temperature gradient. For C12E6/water at a high surfactant concentration of w1 = 90 wt % and a temperature of T = 25 degrees C, however, a negative Soret coefficient S(T) was observed. Because the concentration part of the TDFRS diffraction signal for binary systems is expected to consist of a single mode, we were surprised to find a second, slow mode for C12E6/water system in a certain temperature and concentration range. To clarify the origin of this second mode, we investigated also, tetraethylene glycol monohexyl ether (C6E4), tetraethylene glycol monooctyl ether (C8E4), pentaethylene glycol monododecyl ether (C12E5), and octaethylene glycol monohexadecyl ether (C16E8) and compared the results with the previous results for octaethylene glycol monodecyl ether (C10E8). Except for C6E4 and C10E8, a second slow mode was observed in all systems usually for state points close to the phase boundary. The diffusion coefficient and Soret coefficient derived from the fast mode can be identified as the typical mutual diffusion and Soret coefficients of the micellar solutions and compare well with the independently determined diffusion coefficients in a dynamic light scattering experiment. Experiments with added salt show that the slow mode is suppressed by the addition of w(NaCl) = 0.02 mol/L sodium chloride. This suggests that the slow mode is related to the small amount of absorbing ionic dye, less than 10(-5) by weight, which is added in TDFRS experiments to create a temperature grating. The origin of the slow mode of the TDFRS signal will be tentatively interpreted in terms of a ternary mixture of neutral micelles, dye-charged micelles, and water.
[Ethylene glycol and propylene glycol ethers - Reproductive and developmental toxicity].
Starek-Świechowicz, Beata; Starek, Andrzej
2015-01-01
Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively) are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Kevan, L.
1988-08-11
Electron spin echo modulation and electron spin resonance spectra of photogenerated N,N,N',N'-tetramethylbenzidine (TMB) cation radical and n-doxylstearic acids (n-DSA) in frozen micellar solutions of sodium and lithium dodecyl sulfate containing 15-crown-5 and 18-crown-6 ethers in D/sub 2/O have been studied as a function of crown ether concentration. Modulation effects due to N-DSA with water deuteriums give direct evidence that both crown ethers are mainly located at the micellar interface and that this causes a decrease of the hydration of the micellar interface. Crown ether complexation constants for sodium and lithium micellar counterions are reported and show that 18-crown-6 > 15-crown-5more » for sodium counterion and 15-crown-5 > 18-crown-6 for lithium counterion. Modulation effects from TMB/sup +/ interaction with water deuteriums indicate that the TMB molecule moves toward the micelle interfacial region when sodium or lithium cations are complexed by crown ethers. The TMB/sup +/ yield upon TMB photoionization increases by about 10% with crown ether addition for SDS and LDS micellar systems, but it is greater if the absolute values for the LDS system are compared to those for the SDS micellar system. This behavior correlates with the strength of TMB/sup +/-water interactions and suggests that the main factor in the photoionization efficiency is the photocation-water interaction.« less
Maleate/vinyl ether UV-cured coatings: Effects of composition on curing and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noren, G.K.
1996-10-01
The effect of the composition of the maleate polyester and the vinyl ether terminated compound on their UV-curing and properties has been investigated. Linear unsaturated polyester resins based on maleic anhydride and 1,5-pentane diol were synthesized. The molecular weight of the unsaturated polyesters was varied by changing the ratio of maleic anhydride to 1,5-pentane diol and the double bond equivalent weight was varied by replacing maleic anhydride with succinic anhydride. Coating formulations containing these unsaturated polyesters, triethylene glycol divinyl ether and a free radical photoinitiator were crosslinked in the presence of UV light. The coatings were very brittle, exhibiting tensilemore » strengths in the range of 1.5-4.0 MPa and elongations of only 3-7%. Diethyl maleate and isobutyl vinyl ether were effective diluents for reducing viscosity but reduced the cure speed. A vinyl ether urethane oligomer was synthesized and enhanced the flexibility and toughness of the coatings when substituted for triethylene glycol divinyl ether.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... Environmental Releases Report November 18, 1994. 112-35-6 Triethylene glycol monomethyl ether Health effects... Health effects November 23, 1993. 994-05-8 Tertiary-amyl methyl ether Health effects March 21, 1995. 1634-04-4 Methyl tert-butyl ether Health effects March 31, 1988. 2461-18-9 Lauryl glycidyl ether 1 Health...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (generic). 721.10189...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N..., propylene glycol diamine and aliphatic polyamine, N-(1,3 -dimethylbutylidene) derivs (PMN P-05-186, Chemical...
Melchior Gerster, Fabian; Brenna Hopf, Nancy; Pierre Wild, Pascal; Vernez, David
2014-08-01
A growing body of epidemiologic evidence suggests an association between exposure to cleaning products and respiratory dysfunction. Due to the lack of quantitative assessments of respiratory exposures to airborne irritants and sensitizers among professional cleaners, the culpable substances have yet to be identified. Focusing on previously identified irritants, our aims were to determine (i) airborne concentrations of monoethanolamine (MEA), glycol ethers, and benzyl alcohol (BA) during different cleaning tasks performed by professional cleaning workers and assess their determinants; and (ii) air concentrations of formaldehyde, a known indoor air contaminant. Personal air samples were collected in 12 cleaning companies, and analyzed by conventional methods. Nearly all air concentrations [MEA (n = 68), glycol ethers (n = 79), BA (n = 15), and formaldehyde (n = 45)] were far below (<1/10) of the corresponding Swiss occupational exposure limits (OEL), except for ethylene glycol mono-n-butyl ether (EGBE). For butoxypropanol and BA, no OELs exist. Although only detected once, EGBE air concentrations (n = 4) were high (49.48-58.72mg m(-3)), and close to the Swiss OEL (49mg m(-3)). When substances were not noted as present in safety data sheets of cleaning products used but were measured, air concentrations showed no presence of MEA, while the glycol ethers were often present, and formaldehyde was universally detected. Exposure to MEA was affected by its amount used (P = 0.036), and spraying (P = 0.000) and exposure to butoxypropanol was affected by spraying (P = 0.007) and cross-ventilation (P = 0.000). Professional cleaners were found to be exposed to multiple airborne irritants at low concentrations, thus these substances should be considered in investigations of respiratory dysfunctions in the cleaning industry; especially in specialized cleaning tasks such as intensive floor cleaning. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Liu, Ping-Chung; Chuang, Wen-Hsiao; Lee, Kuo-Kau
2011-01-01
The aim of the present study was to purify and characterize a toxic protease secreted by the pathogenic Photobacterium damselae subsp. piscicida strain CP1 originally isolated from diseased cobia (Rachycentron canadum). The toxin isolated by anion exchange chromatography, was a metalloprotease, inhibited by L-cysteine, ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA), 1,10-phenanthroline, N-tosyl-L-phenylalanine-chloromethyl ketone (TPCK), and N-alpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK), and showed maximal activity at pH 6.0-8.0 and an apparent molecular mass of about 34.3 kDa. The toxin was also completely inhibited by HgCl2, and partially by sodium dodecyl sulfate (SDS) and CuCl2. The extracellular products and the partially purified protease were lethal to cobia with LD50 values of 1.26 and 6.8 microg protein/g body weight, respectively. The addition of EDTA completely inhibited the lethal toxicity of the purified protease, indicating that this metalloprotease was a lethal toxin produced by the bacterium.
2010-03-01
still be effective at controlling microbial growth. DiEGME and TriEGME’s ability to inhibit biofilm growth is also demonstrated. TriEGME is shown to...MO) with DiEGME or TriEGME added as appropriate. Fuel was filtered with a 0.45µm hydrophobic cellulose nitrate filter (Nalge Nunc, Rochester, NY... biofilm formation. However, no numerical standards have been universally accepted which define a particular colony count level as problematic (27). This
Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki
2016-09-30
Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium salt. 721.4040 Section 721.4040 Protection of...-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium salt. (a) Chemical..., polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetramethyl butyl)phenyl ether, sodium salt (P-90-1565) is...
Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.
2001-01-01
Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.
Metal reduction at point-of-use filtration
NASA Astrophysics Data System (ADS)
Umeda, Toru; Daikoku, Shusaku; Varanasi, Rao; Tsuzuki, Shuichi
2016-03-01
We explored the metal removal efficiency of Nylon 6,6 and HDPE (High Density Polyethylene) membrane based filters, in solvents of varying degree of polarity such as Cyclohexanone and 70:30 mixture of PGME (Propylene Glycol Monomethyl Ether) and PGMEA (Propylene Glycol Monomethyl Ether), In all the solvents tested, Nylon 6,6 membrane filtration was found to be significantly more effective in removing metals than HDPE membranes, regardless of their respective membrane pore sizes. Hydrophilic interaction chromatography (HILIC) mechanism was invoked to rationalize metal removal efficiency dependence on solvent hydrophobicity.
New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.
Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun
2016-07-18
The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)
Lithium air batteries having ether-based electrolytes
Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook
2016-10-25
A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.
Li-air batteries having ether-based electrolytes
Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook
2015-03-03
A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.
Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles
Jiang, Xingmao; Liu, Nanguo; Assink, Roger A.; ...
2011-01-01
Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureido)azobenzene (TSUA). The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG), propylene glycol propyl ether (PGPE), and dipropylene glycol propyl ether (DPGPE) delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchablemore » pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.« less
Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a New Biodiesel
Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo
2011-01-01
A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P1PH NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%–75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%–20.4% when fueled with the biodiesel compared with diesel fuel. PMID:21403894
Rapeseed oil monoester of ethylene glycol monomethyl ether as a new biodiesel.
Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo
2011-01-01
A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P(1P)H NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%-75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%-20.4% when fueled with the biodiesel compared with diesel fuel.
Preparation and physicochemical characterization of 5 niclosamide solvates and 1 hemisolvate.
van Tonder, Elsa C; Mahlatji, Mabatane D; Malan, Sarel F; Liebenberg, Wilna; Caira, Mino R; Song, Mingna; de Villiers, Melgardt M
2004-02-23
The purpose of the study was to characterize the physicochemical, structural, and spectral properties of the 1:1 niclosamide and methanol, diethyl ether, dimethyl sulfoxide, N,N' dimethylformamide, and tetrahydrofuran solvates and the 2:1 niclosamide and tetraethylene glycol hemisolvate prepared by recrystallization from these organic solvents. Structural, spectral, and thermal analysis results confirmed the presence of the solvents and differences in the structural properties of these solvates. In addition, differences in the activation energy of desolvation, batch solution calorimetry, and the aqueous solubility at 25 degrees C, 24 hours, showed the stability of the solvates to be in the order: anhydrate > diethyl ether solvate > tetraethylene glycol hemisolvate > methanol solvate > dimethyl sulfoxide solvate > N,N' dimethylformamide solvate. The intrinsic and powder dissolution rates of the solvates were in the order: anhydrate > diethyl ether solvate > tetraethylene glycol hemisolvate > N,N' dimethylformamide solvate > methanol solvate > dimethyl sulfoxide solvate. Although these nonaqueous solvates had higher solubility and dissolution rates than the monohydrous forms, they were unstable in aqueous media and rapidly transformed to one of the monohydrous forms.
NASA Astrophysics Data System (ADS)
Zhabina, A. A.; Krasnykh, E. L.
2017-12-01
Gas chromatography is used to study the sorption characteristics and retention of a series of mono-, di-, and triethylene glycol ethers on nonpolar phase DB-1 in the temperature range of 70-180°C. Temperature dependences of the retention indices of the compounds are obtained and their linear character in the investigated range of temperatures is demonstrated. The enthalpies of sorption of the investigated compounds are calculated and analyzed, based on the temperature dependences of the retention factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManus, H.J.D.; Young Soo Kang; Kevan, L.
1993-01-07
The study of model membrane systems enjoys increasing attention within the area of solar energy research. An electron nuclear double resonance and electron spin resonance study of photogenerated N,N,N[prime],N[prime]-tetramethylbenzidine (TMB) cation in frozen suspensions of lithium (LDS) and sodium (SDS) dodecyl sulfate micelles containing various concentrations of cyclic polyethers was undertaken. The relative location of the TMB cation within the organic aggregate was determined from the proton matrix ENDOR line width at 142 K. A broader line width was observed in LDS compared to SDS micelles, which is due to the fact that the larger lithium cation opens the micellarmore » interface resulting in increased hydration and deeper solubilization of TMB. The proton matrix ENDOR line width decreased upon addition of crown ethers. This decrease may be explained by displacement of the TMB toward the interface as a result of the decrease in ionic strength caused by the complexation of the countercations. The photoyield shows a slight increase with addition of crown ethers. This increase is most likely caused by the increase in the effective anionic charge of the micelle effected by the complexation of the sodium or lithium ions by the crown ethers. This increase in the anionic charge mitigates the rate of thermal back electron transfer resulting in an increased photoyield. 54 refs., 6 figs., 2 tabs.« less
IRIS Toxicological Review of Ethylene Glycol Mono Butyl ...
EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. N/A
Immunoprecipitation of PDE2 phosphorylated and inactivated by an associated protein kinase.
Bentley, J Kelley
2005-01-01
A PDE2A2-associated protein kinase phosphorylates PDE2A2 in vivo and in vitro to inhibit its catalytic activity. Rat brain PDE2A2 may be solubilized using nona (ethylene glycol) mono dodecyl ether (Lubrol 12A9). PDE2A2 exists in a complex with a protein kinase regulating its activity in an adenosine triphosphate-dependent manner. When native or recombinant PDE2 is immunoprecipitated from PC12 cells using an antibody to the amino terminus in a buffer containing Lubrol 12A9, protease inhibitors, and phosphatase inhibitors, a coimmunoprecipitating nerve growth factor-stimulated protein kinase acts to phosphorylate it. PDE2A2 phosphoryla-tion occurs optimally at pH 6.5 in a sodium 2-(4-morpholino)-ethane sulfonate buffer with 5 mM MgCl2 and 1 mM Na3VO4. I describe protocols for producing an antibody to an amino-terminal bacterial fusion protein encoding amino acids 1-251 of PDE2A2 as well as the use of this antibody in immunoprecipitating a PDE2: tyrosine protein-kinase complex from rat brain or PC12 cells.
NASA Astrophysics Data System (ADS)
Vu, Tuan V.; Papavassiliou, Dimitrios V.
2018-05-01
In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented. The key is to place the theoretically calculated number of surfactant molecules on the interface at the critical micelle concentration. Based on this approach, the molecular description of surfactants and the effects of various interaction parameters on the interfacial tension are investigated. The results indicate that the interfacial tension is affected mostly by the head-water and tail-oil interaction. Even though the procedure presented herein is used with dissipative particle dynamics models, it can be applied for other coarse-grained methods to obtain the appropriate set of parameters (or force fields) to describe the surfactant behavior on the oil-water interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglioni, P.; Rivara-Minten, E.; Stenland, C.
1991-11-28
Electron spin-echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N[prime],N[prime]-tetramethylbenzidine (TMB) cation radical in frozen mixed micelles of sodium dodecyl sulfate (SDS) or dodecyltrimethylammonium chloride (DTAC) and hexakis(ethylene glycol) monododecyl ether (C[sub 12]E[sub 6]), selectively deuterated along the poly(ethylene glycol) group (C[sub 12]D[sub 6]) or along the alkyl chain ((CD)[sub 12]E[sub 6]), have been studied as a function of the mixed-micelle composition in H[sub 2]O and D[sub 2]O. ESEM effects due to TMB[sup +] interactions with deuterium in D[sub 2]O show a decrease of the TMB[sup +]-water interactions for the system DTAC/C[sub 12]E[sub 6] and anmore » increase for the system SDS/C[sub 12]E[sub 6] that depend on the composition of the mixed micelle. The location of TMB[sup +] in the mixed micelles, deduced by comparing the modulation effects due to interactions of the photocation with water deuteriums or deuteriums of deuterated surfactants, is reported for the SDS/C[sub 12]E[sub 6] and DTAC/C[sub 12]E[sub 6] mixed micelles. The efficiency of charge separation upon the photoionization of TMB to produce TMB[sup +] measured by ESR correlates with the surface charge and with the degree of water penetration into the mixed micelle.« less
Gulyas, Holger; Argáez, Ángel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf
2013-01-01
The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF ≈ 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472
Refolding of SDS-Unfolded Proteins by Nonionic Surfactants.
Kaspersen, Jørn Døvling; Søndergaard, Anne; Madsen, Daniel Jhaf; Otzen, Daniel E; Pedersen, Jan Skov
2017-04-25
The strong and usually denaturing interaction between anionic surfactants (AS) and proteins/enzymes has both benefits and drawbacks: for example, it is put to good use in electrophoretic mass determinations but limits enzyme efficiency in detergent formulations. Therefore, studies of the interactions between proteins and AS as well as nonionic surfactants (NIS) are of both basic and applied relevance. The AS sodium dodecyl sulfate (SDS) denatures and unfolds globular proteins under most conditions. In contrast, NIS such as octaethylene glycol monododecyl ether (C 12 E 8 ) and dodecyl maltoside (DDM) protect bovine serum albumin (BSA) from unfolding in SDS. Membrane proteins denatured in SDS can also be refolded by addition of NIS. Here, we investigate whether globular proteins unfolded by SDS can be refolded upon addition of C 12 E 8 and DDM. Four proteins, BSA, α-lactalbumin (αLA), lysozyme, and β-lactoglobulin (βLG), were studied by small-angle x-ray scattering and both near- and far-UV circular dichroism. All proteins and their complexes with SDS were attempted to be refolded by the addition of C 12 E 8 , while DDM was additionally added to SDS-denatured αLA and βLG. Except for αLA, the proteins did not interact with NIS alone. For all proteins, the addition of NIS to the protein-SDS samples resulted in extraction of the SDS from the protein-SDS complexes and refolding of βLG, BSA, and lysozyme, while αLA changed to its NIS-bound state instead of the native state. We conclude that NIS competes with globular proteins for association with SDS, making it possible to release and refold SDS-denatured proteins by adding sufficient amounts of NIS, unless the protein also interacts with NIS alone. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Soliman, Mahmoud E; Elmowafy, Enas; Casettari, Luca; Alexander, Cameron
2018-05-30
The aim of this work was to obtain an intranasal delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the delivery of risedronate (RS). For this, novel in situ forming gels comprising thermo-responsive star-shaped polymers, utilizing either polyethylene glycol methyl ether (PEGMA-ME 188, Mn 188) or polyethylene glycol ethyl ether (PEGMA-EE 246, Mn 246), with polyethylene glycol methyl ether (PEGMA-ME 475, Mn 475), were synthesized and characterized. RS was trapped in the selected gel-forming solutions at a concentration of 0.2% w/v. The pH, rheological properties, in vitro drug release, ex vivo permeation as well as mucoadhesion were also examined. MTT assays were conducted to verify nasal tolerability of the developed formulations. Initial in vivo studies were carried out to evaluate anti-osteoporotic activity in a glucocorticoid induced osteoporosis model in rats. The results showed successful development of thermo-sensitive formulations with favorable mechanical properties at 37 °C, which formed non-irritant, mucoadhesive porous networks, facilitating nasal RS delivery. Moreover, sustained release of RS, augmented permeability and marked anti-osteoporotic efficacy as compared to intranasal (IN) and intravenous (IV) RS solutions were realized. The combined results show that the in situ gels should have promising application as nasal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal..., reaction products with polyethylene-polypropylene glycol Bu glycidal ether. (a) Chemical substance and... silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene glycol Bu glycidal..., reaction products with polyethylene-polypropylene glycol Bu glycidal ether. (a) Chemical substance and... silicones, 3-[(2-aminoethyl) amino]propyl Me, di-Me, reaction products with polyethylene-polypropylene...
Kawakami, Tsuyoshi; Isama, Kazuo; Tanaka-Kagawa, Toshiko; Jinnno, Hideto
2017-11-10
The aim of this investigation is to clarify the types and concentrations of VOCs present in various commercial household water-based hand pump spray products used in Japan, and to estimate their average concentrations in indoor air when the spray product is used. We selected glycol and glycol ethers as the main target compounds, as these chemicals were detected at high frequencies and concentrations in a national survey of Japanese indoor air pollution. The extraction of these chemicals using graphite carbon cartridges was examined, with good recoveries and reproducibilities being obtained. Eighteen chemicals were analyzed in 54 commercial products and 8 chemicals were detected. More specifically, dipropylene glycol (DPG) was present in 44 samples (1.1 × 10 1 -1.8 × 10 4 μg/mL); propylene glycol (PG) was present in 22 samples (1.5 × 10 1 -2.9 × 10 4 μg/mL); diethylene glycol monoethyl ether (DGMEE) was found in 15 samples (trace amount-1.9 × 10 3 μg/mL); diethylene glycol (DEG) was present in 9 samples (1.0 × 10 1 -2.4 × 10 3 μg/mL); 1,3-butandiol (13BG) was found in 5 samples (trace amount-7.4 × 10 3 μg/mL); 2-ethyl-1-hexanol (2E1H) was detected in 5 samples (3.2 × 10 -1 -4.4 × 10 1 μg/mL); diethylene glycol monobutyl ether (DGMBE) was present in 4 samples (2.1 × 10 1 -7.1 × 10 1 μg/mL); and 3-methoxy-3-methylbutanol (MMB) was found in 2 samples (2.4 × 10 1 -4.7 × 10 2 μg/mL). In addition, the average concentrations of these chemicals in indoor air were estimated using their maximum concentrations observed in the spray product. The estimated average concentrations of the chemicals in indoor air were determined to range between 1.0 × 10 -2 and 1.0 mg/m 3 , with the exception of 2E1H and DGMBE. Furthermore, the estimated average concentrations of PG, 13BG, and DGMEE in indoor air were comparable to or higher than those reported in a national survey of Japanese indoor air pollution. It therefore appeared that household water-based hand pump sprays may contribute to the presence of these chemicals in indoor air. In contrast, estimated average concentrations of 2E1H in indoor air were low, its concentrations observed in a national survey of Japanese indoor air pollution are likely due to the use of plasticizers and paints.
Dielectric properties of binary mixtures of ethylene glycol monophenyl ether and methanol
NASA Astrophysics Data System (ADS)
Vaghela, K. C.; Vankar, H. P.; Trivedi, C. M.; Rana, V. A.
2017-05-01
Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of ethylene glycol monophenyl ether (EGMPE), methanol (MeOH) and their binary mixtures of varying concentrations have been measured at room temperature (T=299.15 K). The investigation showed a systematic change in permittivity with change in concentration of MeOH in binary mixture system. Measured data have been used to calculate the various dielectric parameters such as E E excess static permittivity (ɛ0E), excess permittivity at optical frequency (ɛ∞E) and Bruggeman factor (fB). Determined parameters provided some information about the molecular interaction among the molecular species of the binary mixtures.
Synthesis of uniform cyclodextrin thioethers to transport hydrophobic drugs
Becker, Lisa F; Schwarz, Dennis H
2014-01-01
Summary Methyl and ethyl thioether groups were introduced at all primary positions of α-, β-, and γ-cyclodextrin by nucleophilic displacement reactions starting from the corresponding per-(6-deoxy-6-bromo)cyclodextrins. Further modification of all 2-OH positions by etherification with iodo terminated triethylene glycol monomethyl ether (and tetraethylene glycol monomethyl ether, respectively) furnished water-soluble hosts. Especially the β-cyclodextrin derivatives exhibit very high binding potentials towards the anaesthetic drugs sevoflurane and halothane. Since the resulting inclusion compounds are highly soluble in water at temperatures ≤37 °C they are good candidates for new aqueous dosage forms which would avoid inhalation anaesthesia. PMID:25550759
Pastor-Belda, Marta; Campillo, Natalia; Hernández-Córdoba, Manuel; Viñas, Pilar
2016-06-01
A rapid and simple procedure is reported for the determination of six ethylene glycol ethers in cleaning products and detergents using gas chromatography with mass spectrometry. The analytes were extracted from 2.0 g samples in acetonitrile (3 mL) and the extract was submitted to a clean-up step by QuEChERS method, using a mixture containing 0.3 g magnesium sulfate, 0.15 g primary/secondary amine, and 0.05 g C18 . The clean acetonitrile extract (1 μL) was injected into the chromatographic system. No matrix effect was observed, so the quantification of the samples was carried out against external standards. Detection limits were in the range 3.0-27 ng/g for the six ethylene glycol ethers. The recoveries obtained, using the optimized procedure, were in the 89.4-118% range, with relative standard deviations lower than 14%. Twenty-three different household cleaning products, including glass cleaner, degreaser, floor, softeners, and clothes and dishwashing detergents, were analyzed. Large interindividual variations were observed between samples and compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamada, Takashi; Tanaka, Yushiro; Hasegawa, Ryuichi; Sakuratani, Yuki; Yamazoe, Yasushi; Ono, Atsushi; Hirose, Akihiko; Hayashi, Makoto
2014-12-01
We propose a category approach to assessing the testicular toxicity of chemicals with a similar structure to ethylene glycol methyl ether (EGME). Based on toxicity information for EGME and related chemicals and accompanied by adverse outcome pathway information on the testicular toxicity of EGME, this category was defined as chemicals that are metabolized to methoxy- or ethoxyacetic acid, a substance responsible for testicular toxicity. A Japanese chemical inventory was screened using the Hazard Evaluation Support System, which we have developed to support a category approach for predicting the repeated-dose toxicity of chemical substances. Quantitative metabolic information on the related chemicals was then considered, and seventeen chemicals were finally obtained from the inventory as a shortlist for the category. Available data in the literature shows that chemicals for which information is available on the metabolic formation of EGME, ethylene glycol ethyl ether, methoxy- or ethoxyacetic acid do in fact possess testicular toxicity, suggesting that testicular toxicity is a concern, due to metabolic activation, for the remaining chemicals. Our results clearly demonstrate practical utility of AOP-based category approach for predicting repeated-dose toxicity of chemicals. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong
2003-01-01
Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.
Shih, H C; Tsai, S W; Kuo, C H
2012-01-01
A solid-phase microextraction (SPME) device was used as a diffusive sampler for airborne propylene glycol ethers (PGEs), including propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), and dipropylene glycol monomethyl ether (DPGME). Carboxen-polydimethylsiloxane (CAR/PDMS) SPME fiber was selected for this study. A polytetrafluoroethylene (PTFE) tubing was used as the holder, and the SPME fiber assembly was inserted into the tubing as a diffusive sampler. The diffusion path length and area of the sampler were 0.3 cm and 0.00086 cm(2), respectively. The theoretical sampling constants at 30°C and 1 atm for PGME, PGMEA, and DPGME were 1.50 × 10(-2), 1.23 × 10(-2) and 1.14 × 10(-2) cm(3) min(-1), respectively. For evaluations, known concentrations of PGEs around the threshold limit values/time-weighted average with specific relative humidities (10% and 80%) were generated both by the air bag method and the dynamic generation system, while 15, 30, 60, 120, and 240 min were selected as the time periods for vapor exposures. Comparisons of the SPME diffusive sampling method to Occupational Safety and Health Administration (OSHA) organic Method 99 were performed side-by-side in an exposure chamber at 30°C for PGME. A gas chromatography/flame ionization detector (GC/FID) was used for sample analysis. The experimental sampling constants of the sampler at 30°C were (6.93 ± 0.12) × 10(-1), (4.72 ± 0.03) × 10(-1), and (3.29 ± 0.20) × 10(-1) cm(3) min(-1) for PGME, PGMEA, and DPGME, respectively. The adsorption of chemicals on the stainless steel needle of the SPME fiber was suspected to be one of the reasons why significant differences between theoretical and experimental sampling rates were observed. Correlations between the results for PGME from both SPME device and OSHA organic Method 99 were linear (r = 0.9984) and consistent (slope = 0.97 ± 0.03). Face velocity (0-0.18 m/s) also proved to have no effects on the sampler. However, the effects of temperature and humidity have been observed. Therefore, adjustments of experimental sampling constants at different environmental conditions will be necessary.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Mechanisms of anionic detergent-induced hemolysis.
Chernitsky, E; Senkovich, O
1998-09-01
The effect of osmotic protectors (sucrose and polyethylene glycols) and of a decrease in the detergent concentration at different points of hemolysis of human erythrocytes by sodium dodecyl sulphate on the shape of kinetic curves of hemolysis were studied. It is shown that slow detergent-induced hemolysis follows the colloid-osmotic mechanisms. Evidence is provided that rapid hemolysis by sodium dodecyl sulphate is caused by opening of large pores sufficient for the release of hemoglobin molecules rather than by the colloid-osmotic mechanism, and that the kinetics of hemolysis is mainly determined by time dependence of the opening probability of these pores.
76 FR 36109 - Certain New Chemicals; Receipt and Status Information
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
...-, dodecyl ester, telomer with methyl 2-methyl- 2-propenoate, tridecyl 2- methyl-2- propenoate, 3... (retard) n6-bis (3- set times in carboxy-1- calcium sulfate oxopropyl)-, based binders sodium salt such as..., hydroxyalkyl methacrylates, epoxypropyl acrylates and polyalkene glycol hydrogen sulfate, alkyloxyalkyl...
Lanigan, R S
2001-01-01
The Polypropylene Glycol (PPG) Butyl Ethers function as skinand hair-conditioning agents in cosmetics. Intestinal absorption of the PPG Butyl Ethers was inversely proportional to the molecular weight. In general, the toxicity of the PPG Butyl Ethers decreased as the molecular weight increased. In acute studies, moderate intraperitoneal (IP) doses of various PPG Butyl Ethers caused convulsive seizures in mice and anesthetized dogs, and large oral doses caused decreased activity, anuria, renal tubular swelling and necrosis, and hepatic swelling and necrosis. PPG-2 Butyl Ether vapors were nontoxic by the inhalation route. PPG-2 Butyl Ether was nontoxic in short-term feeding and dermal exposure studies in rats. In animal irritation studies, PPG-2 Butyl Ether caused minor, transient erythema and desquamation; in addition, erythema, edema, ecchymosis, necrosis, and other changes were observed during an acute percutaneous study. PPG-2 Butyl Ether also caused minor to moderate conjunctival irritation and minor corneal injury. PPG-2 Butyl Ether when dermally applied was nontoxic to pregnant rats and was nonteratogenic at doses up to 1.0 ml/kg/day. PPG BE800 at concentrations of 0.001% to 0.26% in feed was noncarcinogenic to rats after 2 years of treatment. In clinical studies, PPG BE800 was nonirritating and nonsensitizing to the skin when tested using 200 subjects. PPG-40 Butyl Ether was neither an irritant nor a sensitizer in a repeat-insult patch test using 112 subjects. Although clinical testing did not indicate significant skin irritation is produced by these ingredients, the animal test data did indicate the potential that these ingredients can be irritating. Therefore, it was concluded that the PPG Butyl Ethers can be used safely in cosmetic products if they are formulated to avoid irritation. Data on the component ingredients, Propylene Glycol, PPG, and n-Butyl Alcohol, from previous cosmetic ingredient safety assessments were also considered and found to support the safety of PPG Butyl Ethers.
Single ether group in a glycol-based ultra-thin layer prevents surface fouling from undiluted serum.
Sheikh, Sonia; Yang, David Yi; Blaszykowski, Christophe; Thompson, Michael
2012-01-30
Through systematic structural modification, it is shown that the internal, single oxygen atom of simple monoethylene glycol-based organic films is essential for radically altering the fouling behaviour of quartz against undiluted serum, as characterized by the electromagnetic piezoelectric acoustic sensor. The synergy is strongest with distal hydroxyls.
Zhu, Ying; Fournial, Anne-Gaëlle; Molinier, Valérie; Azaroual, Nathalie; Vermeersch, Gaston; Aubry, Jean-Marie
2009-01-20
In the context of environmental concerns for the production of surface active species, the introduction of a carbonyl function into the skeleton of ethyleneglycol-derived solvo-surfactants is a way to access cleavable compounds with presumed enhanced biodegradability. Ethylene glycol monobutyrate (C(3)COE(1)) was synthesized and compared to its ether counterparts, ethylene glycol monopropyl (C(3)E(1)) and monobutyl ethers (C(4)E(1)), to assess the effect of the insertion of a carbonyl function in the skeleton of short-chain ethoxylated amphiphilic compounds. In aqueous solutions, the ester has intermediate behavior between that of the two ethers with regard to surface tension, solubilization of Me-naphtalene in water, and self-diffusion by PGSE NMR. In ternary systems, C(3)COE(1) and C(3)E(1) have the same optimal oil (EACN = 2.8), which is much more polar than that of C(4)E(1) (EACN = 8.5). With regard to the ability to form structured systems, the behavior in water does not differ significantly for the three compounds, and the transition between nonassociating solvents and amphiphilic solvents, sometimes called solvo-surfactants, is gradual. In ternary systems, however, only C(4)E(1) and C(3)COE(1) form a third phase near the optimal formulation, which tends to show that C(3)COE(1) possesses the minimum amphiphilicity to get a structuration. Self-diffusion NMR studies of the one-phase domains do not, however, allow us to distinguish between different degrees of organization in the three systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
........... 156-60-5 1,4-dioxane (oral) 123-91-1 ethylene glycol monobutyl ether 111-76-2 (EGBE...-dichlorobenzene 106-46-7 1,2-dichloroethane (ethylene 107-06-2 dichloride). dichloromethane (methylene 75-09-2... 131-18-0 ethanol 64-17-5 ethyl tertiary butyl ether (ETBE). 637-92-3 ethylbenzene 100-41-4 ethylene...
A high selective cataluminescence sensor for the determination of tetrahydrofuran vapor
NASA Astrophysics Data System (ADS)
Cao, Xiaoan; Dai, Huimei; Chen, Suilin; Zeng, Jiayi; Zhang, Keke; Sun, Yan
2013-02-01
A novel tetrahydrofuran (THF) vapor sensor was designed based on the cataluminescence (CTL) of THF on nanosized γ-Al2O3/MgO (mol ratio = 1.5:1). SEM and XRD were applied for its characterization. We found that the CTL was strongly produced when THF vapor flowed through a nanosized Al-Mg mixed-metal oxide surface, while the CTL was weakly generated when THF vapor flowed through a single nanosized γ-Al2O3 or MgO surface. Quantitative analysis was performed at an optimal temperature of 279 °C, a wavelength of 460 nm and a flow rate of 360 mL min-1. The linear range of the CTL intensity versus concentrations of THF vapor was 1.0-3000 mL m-3 with a detection limit of 0.67 mL m-3. No (or only very low) interference was observed by formaldehyde, methanol, ethanol, benzene, toluene, ethyl acetate, ammonia, cyclohexane, chloroform, glycol armour ether, glycol ether, isopropyl ether and n-butyl ether or acetic acid. Since the response of the sensor was rapid and the system was easy to handle, we believe that the sensor has great potential for real-world use.
THE STIMULATING EFFECT OF GLYCOLS AND THEIR POLYMERS ON THE TARSAL RECEPTORS OF BLOWFLIES
Dethier, V. G.; Chadwick, L. E.
1948-01-01
The rejection thresholds of Phormia regina Meigen for twenty-four glycols have been determined. A definite relationship between the concentration of the test material and the distribution of thresholds has been noted regularly in samples of flies selected at random from a population of known age which had been reared under standard conditions. The scattering of thresholds is normal with respect to the logarithm of concentration. Recalculation of the data of other workers reveals the same sort of relationship with other species of insects and the minnow Phoxinus. The underlying reason for the phenomenon is not known. The glycols in common with other series of homologous alipbatic compounds are rejected at logarithmically decreasing concentrations as the chain length is increased. In general the straight chain diols are more stimulating than the corresponding polyethylene and polypropylene glycols. This difference is related in some manner to the presence of ether linkages in the latter. Polypropylene glycols, with chains of three carbon atoms between the ether linkages are more stimulating than polyethylene glycols, where the spacing is —O—C—C—O—. Unipolymers are more stimulating than mixtures of homologues with the same average molecular weights. Polyethylene glycol 1540 is the largest molecule of measured molecular weight known to stimulate chemoreceptors. The introduction of a second terminal hydroxyl group into the straight hydrocarbon chain reduces the stimulating effect. Alcohols corresponding to the first three diols average about four times as stimulating as the latter while those corresponding to the higher diols average more than one hundred times as stimulating. PMID:18891141
NASA Astrophysics Data System (ADS)
Guan, Shanshan; Zhang, Shouhai; Liu, Peng; Zhang, Guozhen; Jian, Xigao
2014-03-01
Sulfonated copoly (phthalazinone biphenyl ether sulfone) (SPPBES) composite nanofiltration membranes were fabricated by adding low molecular weight additives into SPPBES coating solutions during a dip coating process. Three selected additives: glycol, glycerol and hydroquinone were used in this work. The effect of additives on the membrane performance was studied and discussed in terms of rejection and permeation flux. Among all the composite membranes, the membrane prepared with glycol as an additive achieved the highest Na2SO4 rejection, and the membrane fabricated with glycerol as an additive exhibited the highest flux. The salts rejection of SPPBES composite membranes increased in the following order MgCl2 < NaCl ≤ MgSO4 < Na2SO4. The morphologies of the SPPBES composite membranes were characterized by SEM, it was found that the membrane prepared with hydroquinone showed a rough membrane surface. Composite membrane fabricated with glycol or glycerol as the additive showed very good chemical stability.
Characterization of a Biomimetic Mesophase Composed of Nonionic Surfactants and an Aqueous Solvent.
Adrien, V; Rayan, G; Reffay, M; Porcar, L; Maldonado, A; Ducruix, A; Urbach, W; Taulier, N
2016-10-11
We have investigated the physical and biomimetic properties of a sponge (L 3 ) phase composed of pentaethylene glycol monododecyl ether (C 12 E 5 ), a nonionic surfactant, an aqueous solvent, and a cosurfactant. The following cosurfactants, commonly used for solubilizing membrane proteins, were incorporated: n-octyl-β-d-glucopyranoside (β-OG), n-dodecyl-β-d-maltopyranoside (DDM), 4-cyclohexyl-1-butyl-β-d-maltoside (CYMAL-4), and 5-cyclohexyl-1-pentyl-β-d-maltoside (CYMAL-5). Partial phase diagrams of these systems were created. The L 3 phase was characterized using crossed polarizers, diffusion of a fluorescent probe by fluorescence recovery after pattern photobleaching (FRAPP), and freeze fracture electron microscopy (FFEM). By varying the hydration of the phase, we were able to tune the distance between adjacent bilayers. The characteristic distance (d b ) of the phase was obtained from small angle scattering (SAXS/SANS) as well as from FFEM, which yielded complementary d b values. These d b values were neither affected by the nature of the cosurfactant nor by the addition of membrane proteins. These findings illustrate that a biomimetic surfactant sponge phase can be created in the presence of several common membrane protein-solubilizing detergents, thus making it a versatile medium for membrane protein studies.
Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan
2014-03-21
Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.
IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...
EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of propionaldehyde that will appear on the Integrated Risk Information System (IRIS) database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Liang; Ferrandon, Magali; Barton, John L.
The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemicalmore » and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.« less
21 CFR 172.870 - Hydroxypropyl cellulose.
Code of Federal Regulations, 2014 CFR
2014-04-01
... by weight aqueous solution at 25 degrees C. (2) A cellulose ether containing propylene glycol groups... disintegrator in tablets or wafers containing dietary supplements of vitamins and/or minerals. The additive is...
Stanley, F. E.; Warner, A. M.; Schneiderman, E.; Stalcup, A. M.
2009-01-01
This work demonstrates a novel, convenient utilization of capillary electrophoresis (CE) instrumentation for the determination of critical micelle concentrations (CMCs). Solution viscosity differences across a range of surfactant concentrations were monitored by hydrodynamically forcing an analyte towards the detector. Upon reaching the surfactant's CMC value, migration times were observed to change drastically. CMC values for four commonly employed anionic surfactants were determined - sodium dodecyl sulfate: 8.1 mM; sodium caprylate- 300 mM; sodium decanoate- 86 mM; sodium laurate- 30 mM; and found to be in excellent agreement with values previously reported in the literature. The technique was then applied to the less well-characterized nonionic surfactants poly(oxyethylene) 8 myristyl ether (CMC ~ 9 μM), poly(oxyethylene) 8 decyl ether (CMC ~ 0.95 mM) and poly(oxyethylene) 4 lauryl ether. PMID:19836753
Ma, Ming-Guo; Zhu, Ying-Jie; Chang, Jiang
2006-07-27
Agglomerated nanorods of hydroxyapatite have been synthesized using monetite as a precursor in a NaOH solution. Monetite consisting of nanosheets has been successfully synthesized by a one-step microwave-assisted method using CaCl(2).2.5H(2)O, NaH(2)PO(4), and sodium dodecyl sulfate (SDS) in water/ethylene glycol (EG) mixed solvents. The effects of the molar ratio of water to EG and the reaction time on the products were investigated. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectrometry (FTIR).
Evolution of mixed surfactant aggregates in solutions and at solid/solution interfaces
NASA Astrophysics Data System (ADS)
Zhang, Rui
Surfactant systems have been widely used in such as enhanced oil recovery, waste treatment and metallurgy, etc., in order to solve the problem of global energy crisis, to remove the pollutants and to generate novel energy resources. Almost all surfactant systems are invariably mixtures due to beneficial and economic considerations. The sizes and shapes of aggregates in solutions and at solid/solution interfaces become important, since the nanostructures of mixed aggregates determine solution and adsorption properties. A major hurdle in science is the lack of information on the type of complexes and aggregates formed by mixtures and the lack of techniques for deriving such information. Using techniques such as analytical ultracentrifuge, small angle neutron scattering, surface tension, fluorescence, cryo-TEM, light scattering and ultrafiltration, the nanostructures of aggregates of sugar based n-dodecyl-beta-D-maltoside (DM) and nonionic pentaethyleneglycol monododecyl ether or nonyl phenol ethoxylated decyl ether (NP-10) and their mixtures have been investigated to prove the hypothesis that the aggregation behavior is linked to packing of the surfactant governed by the molecular interactions as well as the molecular structures. The results from both sedimentation velocity and sedimentation equilibrium experiments suggest coexistence of two types of micelles in nonyl phenol ethoxylated decyl ether solutions and its mixtures with n-dodecyl-beta-D-maltoside while only one micellar species is present in n-dodecyl-beta-D-maltoside solutions, in good agreement with those from small angle neutron scattering, cryo-TEM, light scattering and ultrafiltration. Type I micelles were primary micelles at cmc while type II micelles were elongated micelles. On the other hand, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing index. As a continuation of the Somasundaran-Fuersteneau adsorption model, a modified one-step model has been developed to fully understand the adsorption behavior of surfactant mixtures and obtained thermodynamic information on aggregation number and standard free energy for surface aggregation. The findings are expected to provide fundamental basis for the design optimal surfactant schemes for desired purposes.
On the size of pores arising in erythrocytes under the action of detergents.
Senkovich, O A; Chernitsky, E A
1998-01-01
The size of pores arising in human erythrocytes under the action of two detergents (Triton X-100 and sodium dodecyl sulfate) and causing the slow component of hemolysis was estimated by the method of osmotic protectors. The pore diameters were found to be about 40 A. The pores responsible for the fast component of hemolysis induced by sodium dodecyl sulfate were shown to be of greater size and even molecules of polyethylene glycol 4000 could pass through them. The unusual decrease. In the rate and percentage of this hemolytic component was caused by the side action of the protectors, i.e., by the acceleration of erythrocyte vesiculation, a process that competed with pore formation. Vesiculation protected erythrocytes against fast and slow detergent-induced hemolysis. It is shown that the method of osmotic protectors can not be used for estimation of pore size in fast hemolysis by sodium dodecyl sulfate. The application of this method for hemolysis by other amphiphilic compounds is discussed.
Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo
2017-05-31
Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.
NASA Astrophysics Data System (ADS)
Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H.
2011-12-01
We investigated the phase separation phenomena in dilute surfactant pentaethylene glycol monodedecyl ether (C12E5) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.
An Evaluation of the Human Carcinogenic Potential of ...
This position paper, An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether, was developed in support of the EPA's evaluation of a petition from the American Chemistry Council requesting to delist EGBE per the Clean Air Act Amendments (CAAA), Title III, section 112(b)(1). The position paper was a key component of the Agency's recent determination to grant this petition. It will also be used in the Agency's IRIS assessment of ethylene glycol butyl ether (EGBE). An NTP (1998; 2000) study has reported some evidence of carcinogenic activity in male B6C3F1 mice based on increased incidence of hemangiosarcomas of the liver, and some evidence of carcinogenic activity in female B6C3F1 mice based on increased incidence of forestomach squamous cell papillomas or carcinomas.
Nandy, Debdurlav; Mitra, Rajib K; Paul, Bidyut K
2007-06-01
The phase diagrams of the pseudo-quaternary systems poly(oxyethylene) (10) stearyl ether (Brij-76)/1-butanol/isooctane/water (with equal amounts of oil and water in the presence of two nonaqueous polar solvents (NPS), ethylene glycol (EG), and tetraethylene glycol (TEG)), have been constructed at 30 degrees C. Regular fish-tail diagrams were obtained up to psi (weight fraction of EG or TEG in the mixture of polar solvents) equal to 0.5, confirming the establishment of hydrophile-lipophile balance (HLB) of the systems. The maximum solubilization capacity passed through a minimum at psi=0.2. No HLB was obtained at higher psi. The usual fish-tail diagrams were also obtained in temperature-induced phase mapping at fixed W(1) (weight fraction of 1-butanol in total amphiphile). Solubilization capacity and HLB temperature (T(HLB)) decreased with increasing psi at a fixed W(1), the effect being more pronounced for TEG than EG. A correlation between HLB temperature (T(HLB)) and HLB number (N(HLB)) of mixed amphiphiles (Brij-76+Bu) in pseudo-quaternary systems (in the presence of water and partial substitution of water with both NPS) has been established. The novelty of the work with respect to possible applications has been discussed.
Breitkreitz, Márcia C; Sabin, Guilherme P; Polla, Griselda; Poppi, Ronei J
2013-01-25
A methodology based on Raman image spectroscopy and chemometrics for homogeneity evaluation of formulations containing atorvastatin calcium in Gelucire(®) 44/14 is presented. In the first part of the work, formulations with high amounts of Gelucire(®) 44/14 (80%) and solvents of different polarities (diethylene glycol monoethyl ether, propyleneglycol, propylene glycol monocaprylate and glyceryl mono/dicaprylate/caprate) were prepared for miscibility screening evaluation by classical least squares (CLS). It was observed that Gelucire(®) 44/14 presented higher affinity for the lipophilic solvents glyceryl mono/dicaprylate/caprate and propylene glycol monocaprylate, whose samples were observed to be homogeneous, and lower affinity for the hydrophilic solvents diethylene glycol monoethyl ether and propyleneglycol, whose samples were heterogeneous. In the second part of the work, the ratio of glyceryl mono/dicaprylate/caprate and Gelucire(®) 44/14 was determined based on studies in water and allowed the selection of the proportions of these two excipients in the preconcentrate that provided supersaturation of atorvastatin upon dilution. The preconcentrate was then evaluated for homogeneity by partial least squares (PLS) and an excellent miscibility was observed in this proportion as well. Therefore, it was possible to select a formulation that presented simultaneously homogeneous preconcentrate and solubility enhancement in water by Raman image spectroscopy and chemometrics. Copyright © 2012 Elsevier B.V. All rights reserved.
Finger-like pattern formation in dilute surfactant pentaethylene glycol monododecyl ether solutions.
Kubo, Yoshihide; Yokoyama, Yasuhiro; Tanaka, Shinpei
2013-04-07
We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen
2017-11-01
It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.
Paul, M; Kurtz, S
1994-03-01
Material Safety Data Sheets (MSDSs) are essential sources of information regarding health risks from exposure to toxic chemicals. We analyzed the reproductive health hazard descriptions on nearly 700 MSDSs for lead- or ethylene glycol ether-containing products submitted by central Massachusetts firms to the Department of Environmental Protection under provisions of the Massachusetts Right-to-Know Law. Over 60% of the MSDSs made no mention whatsoever of effects on the reproductive system. Those that did were much more likely to address developmental risks than male reproductive effects. The MSDSs from firms employing 100 or more workers mentioned reproductive system effects more frequently than those from smaller companies. While the informativeness of the health hazard descriptions increased over time, 53% of the MSDSs prepared after promulgation of the OSHA Hazard Communication Standard still contained no information on reproductive risks.
Method for rigless zone abandonment using internally catalyzed resin system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R.C.
1980-02-19
A zone of a subterranean formation penetrated by a well bore is permanently plugged by injecting a liquid resin system containing at least one thermosetting resin and at least one curing agent or catalyst therefor into the formation and injecting into the wellbore following the resin system, a second liquid containing at least one chain stopping compound to react with one component in the resin system to prevent any of the resin system remaining in the well bore from crosslinking to a sufficient crosslink density to form a solid in the wellbore. Preferably, the second liquid also contains a fluidmore » loss additive to minimize loss of the second liquid from the wellbore to the formation. The method permits a zone to be plugged off and abandoned without the need to erect a drilling rig to drill out excess plugging material remaining in the wellbore. In a preferred embodiment, the resin system comprises the diglycidyl ether of bisphenol a and polymethylene phenylamine in ethylene glycol ethyl ether, and the preferred second liquid is monoethanolamine in ethylene glycol ethyl ether as a solvent with ethylcellulose and silic flour to control fluid loss.« less
Composition for preventing a resin system from setting up in a well bore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, R. C.
1981-06-09
A zone of a subterranean formation penetrated by a well bore is permanently plugged by injecting a liquid resin system containing at least one thermosetting resin and at least one curing agent or catalyst therefor into the formation and injecting into the wellbore following the resin system, a second liquid containing at least one chain stopping compound to react with one component in the resin system to prevent any of the resin system remaining in the well bore from crosslinking to a sufficient crosslink density to form a solid in the wellbore. Preferably, the second liquid also contains a fluidmore » loss additive to minimize loss of the second liquid from the wellbore to the formation. The method permits a zone to be plugged off and abandoned without the need to erect a drilling rig to drill out excess plugging material remaining in the wellbore. In a preferred embodiment, the resin system comprises the diglycidyl ether of bisphenol a and polymethylene phenylamine in ethylene glycol ethyl ether, and the preferred second liquid is monoethanolamine in ethylene glycol ethyl ether as a solvent with ethylcellulose and silica flour to control fluid loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, J.P. III; Deng, H.; Boyd, E.P.
1994-04-13
The first lanthanide(II) cationic species with coordination numbers 7,8, and 9 have been structurally characterized. Mercury amalgams of the elemental lanthanides (Ln(Hg) where Ln = Sm, Eu, Yb) cleanly reduce Mn[sub 2](CO)[sub 10] and Co[sub 2](CO)[sub 8] in polydentate ethers to [Mn(CO)[sub 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Rick A.; Gies, Richard A.; Wu, Hong
2005-03-05
Propylene glycol monomethyl ether (PM), along with its acetate, is the most widely used of the propylene glycol ether family of solvents. The most common toxic effects of PM observed in animal studies include sedation, very slight alpha2u globulin-mediated nephropathy (male rats only) and hepatomegally at high exposures (typically >1000 ppm). Sedation in animal studies usually resolves within a few exposures to 3000 ppm (the highest concentration used in subchronic and chronic inhalation studies) due to the induction of metabolizing enzymes. Data from a variety of pharmacokinetic and mechanistic studies have been incorporated into a PBPK model for PM andmore » its acetate in rats and mice. Published controlled exposure and workplace biomonitoring studies have also been included for comparisons of the internal dosimetry of PM and its acetate between laboratory animals and humans. PM acetate is rapidly hydrolyzed to PM, which is further metabolized to either glucuronide or sulphate conjugates (minor pathways) or propylene glycol (major pathway). In vitro half-lives for PM acetate range from 14-36 min depending upon the tissue and species. In vivo half-lives are considerably faster, reflecting the total contributions of esterases in the blood and tissues of the body, and are on the order of just a few minutes. Thus, very little PM acetate is found in vivo and, other than potential portal of entry irritation, the toxicity of PM acetate is related to PM. Regardless of the source for PM (either PM or its acetate), rats were predicted to have a higher Cmax and AUC for PM in blood than humans, especially at concentrations greater than the current ACGIH TLV of 100 ppm. This would indicate that the major systemic effects of PM would be expected to be less severe in humans than rats at comparable inhalation exposures.« less
Dougherty, Thomas J; Sumlin, Adam B; Greco, William R; Weishaupt, Kenneth R; Vaughan, Lurine A; Pandey, Ravindra K
2002-07-01
A study has been carried out to define the importance of the peripheral benzodiazepine receptor (PBR) as a binding site for a series of chlorin-type photosensitizers, pyropheophorbide-a ethers, the subject of a previous quantitative structure-activity relationship study by us. The effects of the PBR ligand PK11195 on the photodynamic activity have been determined in vivo for certain members of this series of alkyl-substituted ethers: two of the most active derivatives (hexyl and heptyl), the least active derivative (dodecyl [C12]) and one of intermediate activity (octyl [C8]). The photodynamic therapy (PDT) effect was inhibited by PK11195 for both of the most active derivatives, but no effect on PDT activity was found for the less active C12 or C8 ethers. The inhibitory effects of PK11195 were predicted by the binding of only the active derivatives to the benzodiazepine site on albumin, ie. human serum albumin (HSA)-Site II. Thus, as with certain other types of photosensitizers, it has been demonstrated with this series of pyropheophorbide ethers that in vitro binding to HSA-Site II is a predictor of both optimal in vivo activity and binding to the PBR in vivo.
IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...
EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Towata, Tomomi; Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811; Komizu, Yuji
Primary effusion lymphoma (PEL) is an aggressive neoplasm caused by human herpes virus-8 infection, and is generally resistant to chemotherapy. Hybrid liposomes, composed of dimyristoylphosphatidylcholine (DMPC) and polyoxyethylene (21) dodecyl ether (C{sub 12}(EO){sub 21}) (HL-21), were rapidly accumulated in the membrane of PEL cells. HL-21 also increased membrane fluidity of PEL cells, and induced caspase-3 activation along with cell death. These results suggest that HL-21 should be an effective and attractive regent for PEL treatment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
... use on growing crops and raw agricultural commodities, without limitation. Huntsman, Dow AgroSciences... a maximum permissible level for residues of DEGEE on growing crops and raw agricultural commodities... antifreeze [[Page 36350
Code of Federal Regulations, 2012 CFR
2012-07-01
... glycol dimethyl ether 111966 Diethyl sulfate 64675 Dimethylaniline (N,N-) 121697 Dimethylhydrazine (1,1... 67721 Hexane 110543 Isophorone 78591 Methanol 67561 Methyl bromide (Bromomethane) 74839 Methyl chloride...
Sources of Propylene Glycol and Glycol Ethers in Air at Home
Choi, Hyunok; Schmidbauer, Norbert; Spengler, John; Bornehag, Carl-Gustaf
2010-01-01
Propylene glycol and glycol ether (PGE) in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs) and semi-VOCs (SVOCs), including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP), and di(2-ethylhexyl)phthalate (DEHP). Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child’s birth, and “newest” surface material in the child’s bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m3) additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively. PMID:21318004
Sources of propylene glycol and glycol ethers in air at home.
Choi, Hyunok; Schmidbauer, Norbert; Spengler, John; Bornehag, Carl-Gustaf
2010-12-01
Propylene glycol and glycol ether (PGE) in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building's structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs) and semi-VOCs (SVOCs), including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP), and di(2-ethylhexyl)phthalate (DEHP). Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child's birth, and "newest" surface material in the child's bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m³) additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.
40 CFR Table 1 to Subpart Ggggg of... - List of Hazardous Air Pollutants
Code of Federal Regulations, 2011 CFR
2011-07-01
....000 78591 Isophorone 0.506 58899 Lindane (all isomers) 1.000 67561 Methanol 0.855 74839 Methyl bromide... Fm 305 factors for some of the more common glycol 305 ethers can be obtained by contacting the Waste...
40 CFR Table 1 to Subpart Ggggg of... - List of Hazardous Air Pollutants
Code of Federal Regulations, 2010 CFR
2010-07-01
....000 78591 Isophorone 0.506 58899 Lindane (all isomers) 1.000 67561 Methanol 0.855 74839 Methyl bromide... Fm 305 factors for some of the more common glycol 305 ethers can be obtained by contacting the Waste...
Dayan, Caroline; Hales, Barbara F
2014-01-01
Exposure to ethylene glycol monomethyl ether (EGME), a glycol ether compound found in numerous industrial products, or to its active metabolite, 2-methoxyacetic acid (2-MAA), increases the incidence of developmental defects. Using an in vitro limb bud culture system, we tested the hypothesis that the effects of EGME on limb development are mediated by 2-MAA-induced alterations in acetylation programming. Murine gestation day 12 embryonic forelimbs were exposed to 3, 10, or 30 mM EGME or 2-MAA in culture for 6 days to examine effects on limb morphology; limbs were cultured for 1 to 24 hr to monitor effects on the acetylation of histones (H3K9 and H4K12), a nonhistone protein, p53 (p53K379), and markers for cell cycle arrest (p21) and apoptosis (cleaved caspase-3). EGME had little effect on limb morphology and no significant effects on the acetylation of histones or p53 or on biomarkers for cell cycle arrest or apoptosis. In contrast, 2-MAA exposure resulted in a significant concentration-dependent increase in limb abnormalities. 2-MAA induced the hyperacetylation of histones H3K9Ac and H4K12Ac at all concentrations tested (3, 10, and 30 mM). Exposure to 10 or 30 mM 2-MAA significantly increased acetylation of p53 at K379, p21 expression, and caspase-3 cleavage. Thus, 2-MAA, the proximate metabolite of EGME, disrupts limb development in vitro, modifies acetylation programming, and induces biomarkers of cell cycle arrest and apoptosis PMID:24798094
Peper, Shane; Gonczy, Chad
2011-01-01
Csmore » + -selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1 × 10 − 3 and 1 × 10 − 4 M + , a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10 -1 –10 -5 M + , a conventional lower detection limit of 8.1 × 10 − 6 M + , and a response slope of 57.7 mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3.« less
Focus-tunable low-power electrowetting lenses with thin parylene films.
Watson, Alexander M; Dease, Kevin; Terrab, Soraya; Roath, Christopher; Gopinath, Juliet T; Bright, Victor M
2015-07-10
Electrowetting lenses with record low power consumption (microwatts) have been demonstrated using high-quality parylene AF-4 dielectric layers and large dodecyl sulfate ions. Water and propylene glycol are interchanged as the polar liquid to enable diverging and converging lens operation achievable with the application of 15 V. The optical quality of the lenses is comparable to conventional microlenses and the tuning exhibits very little (<0.5°) contact angle hysteresis.
Fukuda, Chihiro; Yahata, Chie; Kinoshita, Takuya; Watanabe, Takafumi; Tsukamoto, Hideo; Mochizuki, Akira
2017-10-01
It is well known that polyether-based copolymers have good blood compatibility, although many mechanisms have been proposed to explain their favorable performance. Our objective in carrying out the present study was to obtain a better understanding of the effect of the (poly)ether segment on blood compatibility. Therefore, we synthesized poly(propylene glycol) (PPG)-based initiators for atom transfer polymerization, where the number of propylene glycol (PG) units in the PPG (Pn(PG) was varied from 1 to 94. Methyl methacrylate (MMA) was polymerized using the initiators, resulting in the formation of polyMMAs with a PG-based ether part at the polymer terminal. We mainly investigated the effects of Pn(PG) on the surface properties and platelet compatibility of the PPG-polyMMA. X-ray photoelectron spectroscopy and surface contact angle (CA) analysis revealed the exposure of the PG units at the surface of the polymer. The platelet compatibility of the polymers was improved compared with a commercial polyMMA, even when Pn(PG) = 1. These results suggest that PG units have an important influence on favorable blood compatibility, regardless of the Pn(PG) value. We also investigated protein adsorption behavior in terms of the amount and deformation of fibrinogen adsorbed on the polymer surface.
Satishchandran, C; Boyle, S M
1986-01-01
The putrescine biosynthetic enzyme agmatine ureohydrolase (AUH) (EC 3.5.3.11) catalyzes the conversion of agmatine to putrescine in Escherichia coli. AUH was purified approximately 1,600-fold from an E. coli strain transformed with the plasmid pKA5 bearing the speB gene encoding the enzyme. The purification procedure included ammonium sulfate precipitation, heat treatment, and DEAE-sephacel column chromatography. The molecular mass of nondenatured AUH is approximately 80,000 daltons as determined by gel-sieving column chromatography, while on denaturing polyacrylamide gels, the molecular mass is approximately 38,000 daltons; thus, native AUH is most likely a dimer. A radiolabeled protein extracted from minicells carrying the pKA5 plasmid comigrated with the purified AUH in both sodium dodecyl sulfate-polyacrylamide and native polyacrylamide gels. The pI of purified AUH is between 8.2 and 8.4, as determined by either chromatofocusing or isoelectric focusing. The Km of purified AUH for agmatine is 1.2 mM; the pH optimum is 7.3. Neither the numerous ions and nucleotides tested nor polyamines affected AUH activity in vitro. EDTA and EGTA [ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] at 1 mM inactivated AUH activity by 53 and 74%, respectively; none of numerous divalent cations tested restored AUH activity. Ornithine inhibited AUH activity noncompetitively (Ki = 6 X 10(-3) M), while arginine inhibited AUH activity competitively (Ki = 9 X 10(-3) M). Images PMID:3081491
40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD
Code of Federal Regulations, 2011 CFR
2011-07-01
... Methanol 0.855 74-83-9 Methyl bromide (Bromomethane) 1.000 74-87-3 Methyl chloride (Choromethane) 1.000 71... more common glycol ethers can be obtained by contacting the Waste and Chemical Processes Group, Office...
40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD
Code of Federal Regulations, 2010 CFR
2010-07-01
... Methanol 0.855 74-83-9 Methyl bromide (Bromomethane) 1.000 74-87-3 Methyl chloride (Choromethane) 1.000 71... more common glycol ethers can be obtained by contacting the Waste and Chemical Processes Group, Office...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henni, A.; Maham, Y.; Tontiwachwuthikul, P.
2000-04-01
Recent studies done on the absorption and desorption of acid gases (CO{sub 2}, H{sub 2}S) from natural gas, petroleum, and ammonia synthesis streams have shown that aqueous solutions of N-methyldiethanolamine (MDEA) can be used effectively for the selective removal of H{sub 2}S. This paper reports the measured values of the density and viscosity of binary mixtures of N-methyldiethanolamine (MDEA) and triethylene glycol monomethyl ether (TEGMME) at five temperatures in the range 25 C to 70 C over the whole concentration range. The authors also report the density and viscosity of the binary mixture MDEA + ethanol at 40 C. Themore » results are compared with data for aqueous mixtures and other alkanolamines when these are available. The derived excess molar volumes and viscosity deviations were correlated as a function of composition. The Grunberg-Nissan interaction energy constants are also reported.« less
Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H
2015-08-01
A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lunter, Dominique; Daniels, Rolf
2014-12-01
A methodology that employs confocal Raman microscopy (CRM) on ex vivo skin samples is proposed for the investigation of drug content and distribution in the skin. To this end, the influence of the penetration enhancers propylene glycol and polyoxyethylene-23-lauryl ether on the penetration and permeation of procaine as a model substance was investigated. The drug content of skin samples that had been incubated with semisolid formulations containing one of these enhancers was examined after skin segmentation. The experiments showed that propylene glycol did not affect the procaine content that was delivered to the skin, whereas polyoxyethylene-23-lauryl ether led to higher procaine contents and deeper penetration. Neither substance was found to influence the permeation rate of procaine. It is thereby shown that CRM can provide additional information on drug penetration and permeation. Furthermore, the method was found to enhance the depth from which Raman spectra can be collected and to improve the depth resolution compared to previously proposed methods.
Singh, Jagbir; Michel, Deborah; Getson, Heather M; Chitanda, Jackson M; Verrall, Ronald E; Badea, Ildiko
2015-02-01
Recently, we synthesized amino acid- and peptide-substituted gemini surfactants, 'biolipids' that exhibited high transfection efficiency in vitro. In this study, we developed these plasmid DNA and gemini surfactant lipid particles for noninvasive administration in vaginal cavity. Novel formulations of these gene delivery systems were prepared with poloxamer 407 to induce in situ gelling of the formulation and diethylene glycol monoethyl ether to improve their penetration across mucosal tissue. Poloxamer at 16% w/v concentration in diethylene glycol monoethyl ether aqueous solution produced dispersions that gelled near body temperature and had a high yield value, preventing leakage of the formulation from the vaginal cavity. Intravaginal administration in rabbits showed that the glycyl-lysine-substituted gemini surfactant led to a higher gene expression compared with the parent unsubstituted gemini surfactant. This provides a proof-of-concept that amino acid substituted gemini surfactants can be used as noninvasive mucosal (vaginal) gene delivery systems to treat diseases associated with mucosal epithelia.
Provisional Peer-Reviewed Toxicity Values for Diethylene Glycol Monomethyl Ether
Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...
NASA Astrophysics Data System (ADS)
Liu, Bo-Qing; Chen, Yi-Ting; Chen, Yu-Wei; Chung, Kun-You; Tsai, Yi-Hsuan; Li, Yi-Jhen; Chao, Chi-Min; Liu, Kuan-Miao; Tseng, Huan-Wei; Chou, Pi-Tai
2016-03-01
Triethylene glycol monomethyl ether and poly(ethylene glycol) monomethyl ether modified 2-(2‧-aminophenyl)benzothiazoles, namely ABT-P3EG, ABT-P7EG and ABT-P12EG varied by different chain length of poly(ethylene glycol) at the amino site, were synthesized to probe their photophysical and bio-imaging properties. In polar, aprotic solvents such as CH2Cl2 ultrafast excited-state intramolecular proton transfer (ESIPT) takes place, resulting in a large Stokes shifted tautomer emission in the green-yellow (550 nm) region. In neutral water, ABT-P12EG forms micelles with diameters of 15 ± 3 nm under a critical micelle concentration (CMC) of ~80 μM, in which the tautomer emission is greatly enhanced free from water perturbation. Cytotoxicity experiments showed that all ABT-PnEGs have negligible cytotoxicity against HeLa cells even at doses as high as 1 mM. Live-cell imaging experiments were also performed, the results indicate that all ABT-PnEGs are able to enter HeLa cells. While the two-photon excitation emission of ABT-P3EG in cells cytoplasm shows concentration independence and is dominated by the anion blue fluorescence, ABT-P7EG and ABT-P12EG exhibit prominent green tautomer emission at > CMC and in part penetrate to the nuclei, adding an additional advantage for the cell imaging.
Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose
Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas
2014-01-01
Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...
Predicting the enthalpies of melting and vaporization for pure components
NASA Astrophysics Data System (ADS)
Esina, Z. N.; Korchuganova, M. R.
2014-12-01
A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.
IMMUNOTOXICITY OF 2-METHOXYETHANOL FOLLOWING ORAL ADMINISTRATION IN FISCHER 344 RATS
The immunotoxicity of the glycol ether 2-methoxyethanol (ME) as evaluated in adult Fischer 344 rats using a variety of in vitro and in vivo immune function assays. n the first phase of this study, male rats are dosed by oral gavage with ME in water, at dosages ranging from 50 to ...
21 CFR 177.2600 - Rubber articles intended for repeated use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Rubber articles intended for repeated use. 177... sanction or approval. (3) Substances that by regulation in parts 170 through 189 of this chapter may be... omega-laurolactam and adipic acid with poly(tetramethylene ether glycol). The polyamide and polyether...
40 CFR 721.3550 - Dipropylene glycol dimethyl ether.
Code of Federal Regulations, 2010 CFR
2010-07-01
... described in paragraph (a)(2) of this section. This class 2 substance is exempt from the notification...′-oxybis[1-methoxy- (CAS No. 189354-80-1), which is one of the possible products of the manufacturing... as specified in § 721.63 (a)(1), (a)(2)(i), and (a)(3). (ii) Industrial, commercial, and consumer...
Lai, Chenhuan; Tang, Shuo; Yang, Bo; Gao, Ziqi; Li, Xin; Yong, Qiang
2017-11-01
A novel pretreatment process of corn stover was established in this study by in situ modification of lignin with poly (ethylene glycol) diglycidyl ether (PEGDE) during low temperature alkali pretreatment. The addition of PEGDE obviously improved the enzymatic hydrolysis by covalently modifying the residual lignins in substrates. Under the optimized conditions (pretreated with 10% (w/w) NaOH and 10% (w/w) PEGDE at 70°C for 2.5h), the total fermentable sugar yield was increased by 46.4%, from 23.7g to 34.7g per 100g raw materials. Additionally, the remaining activities of exo-glucanase and β-glucosidase in supernatant were increased by 58.6% and 40.6% respectively, demonstrating that the enhancement of enzymatic hydrolysis was mainly due to the alleviation of enzyme non-productive binding. Although the isolated lignin modified with PEGDE enhanced the enzymatic hydrolysis of substrates as well, this in situ lignin modification provided an efficient but simple way to improve enzymatic saccharification. Copyright © 2017. Published by Elsevier Ltd.
Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer
Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.
2014-01-01
Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653
NASA Astrophysics Data System (ADS)
Entezarian, Majid; Geiger, Bob
2016-03-01
The trend in microelectronics fabrication is to produce nano-features measuring down to 10 nm and finer. The PPT levels of organic and inorganic contaminants in the photoresist, solvent and cleaning solutions are becoming a major processing variable affecting the process capability and defectivity. The photoresist usually contains gels, metals, and particulates that could interfere with the lithography process and cause microbridging defects. Nano filters of 5 nm polypropylene, 5 nm polyethylene, and 10 nm natural nylon were used to filter propylene glycol methyl ether acetate PGMEA containing 50 ppb of Na, Mg, Al, Ca, Cr, Mn, Fe, Cu, Zn, and Pb. All filters were effective in removing trivalent Al, Cr, and Fe metals indicating the mechanism for their removal as mechanical sieving. However, the nylon was also very effective in removing the divalent metals showing adsorptive properties. Furthermore, the metal removal of the nylon membrane was studied as a function of surface chemistry. Natural and charged 40 nm nylon membranes were tested and found that charged nylon is more effective for metal removal.
Shahrousvand, Mohsen; Mir Mohamad Sadeghi, Gity; Salimi, Ali
2016-12-01
The cells as a tissue component need to viscoelastic, biocompatible, biodegradable, and wettable extracellular matrix for their biological activity. In this study, in order to prepare biomedical polyurethane elastomers with good mechanical behavior and biodegradability, a series of novel polyester-polyether- based polyurethanes (PUs) were synthesized using a two-step bulk reaction by melting pre-polymer method, taking 1,4-Butanediol (BDO) as chain extender, hexamethylene diisocyanate as the hard segment, and poly (tetramethylene ether) glycol (PTMEG) and poly (ε-caprolactone diol) (PCL-Diol) as the soft segment without a catalyst. The soft to the hard segment ratio was kept constant in all samples. Polyurethane characteristics such as thermal and mechanical properties, wettability and water adsorption, biodegradability, and cellular behavior were changed by changing the ratio of polyether diol to polyester diol composition in the soft segment. Our present work provides a new procedure for the preparation of engineered polyurethanes in surface properties and biodegradability, which could be a good candidate for bone, cartilage, and skin tissue engineering.
NASA Astrophysics Data System (ADS)
Moultos, Othonas A.; Zhang, Yong; Tsimpanogiannis, Ioannis N.; Economou, Ioannis G.; Maginn, Edward J.
2016-08-01
Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO2, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH3O-(CH2CH2O)n-CH3 with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.
Kim, Hyeon; Kim, Hyeong Jun; Choi, Min Sun; Kim, In Sook; Gye, Myung Chan; Yoo, Hye Hyun
2017-05-01
Alcohol ethoxylates (AEs) are a major class of non-ionic surfactants, which are widely used in household, institutional and industrial cleaners, and they are considered as an alternative of nonylphenol. In this study, a rapid, sensitive and reliable bioanalytical method was developed for the determination of octaethylene glycol monodecyl ether (C10E8, an AE) in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Chromatographic separation was performed on a reversed-phase C18 column (2.1 mm × 50 mm, 2.1 μm). The mobile phase consisted of 0.1% formic acid in distilled water and 0.1% formic acid in acetonitrile (40:60% v/v). The flow rate was 0.3 mL/min. For mass spectrometric detection, the multiple reaction monitoring (MRM) mode was used; the MRM transitions were m/z 511.5 → m/z 133.1 for C10E8 and m/z 423.3 → m/z 133.1 for hexaethylene glycol monodecyl ether (internal standard) in the positive ion mode. A calibration curve was constructed within the range of 2-2,000 ng/mL; the intra- (n = 5) and inter-day (n = 3) precision and accuracy were within 10%. The LC-MS-MS method was specific, accurate and reproducible, and this method was successfully applied in a pharmacokinetic study of C10E8 in rats. C10E8 was intravenously (1 mg/kg, n = 6) and orally (10 mg/kg, n = 7) administered to rats. The kinetic parameters were analyzed based on a noncompartmental statistical model using the pharmacokinetic modeling software (WinNonlin). The oral bioavailability of C10E8 was 34.4%. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
/sup 45/Ca distribution and transport in saponin skinned vascular smooth muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stout, M.A.; Diecke, F.P.
1983-04-01
/sup 45/Ca distribution and transport were studied in chemically skinned strips of caudal artery from Kyoto Wistar rats. Sarcolemmal membranes were made hyperpermeable by exposure for 60 min to solutions containing 0.1 mg/ml of saponin. Skinned helical strips responded with graded contractions to changes in ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid buffered free Ca solutions (10(-7) to 10(-5) M) and were sensitive to the Mg-ATP concentration. Tissues loaded in the presence of 10(-7) M Ca contracted in response to 10 mM caffeine. These experiments indicate the strips are skinned and possess a functional regulatory and contractile system and an intact Camore » sequestering system. /sup 45/Ca distributes in three compartments in skinned caudal artery strips. The Ca contents of two components are linear functions of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration and desaturate at rapid rates. They correspond to the extracellular and cytoplasmic spaces. A significantly smaller component releases Ca at comparatively slower rates. /sup 45/Ca uptake by the slow component consists of an ATP-dependent and an ATP-independent fraction. The /sup 45/Ca content of the ATP-dependent fraction is a function of the free Ca concentration and is independent of the Ca-ethylene glycol bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid concentration. Its content was enhanced by oxalate and was abolished by Triton X-100 skinning solutions. The ATP-independent component was not affected by Triton X-100 skinning and may represent Ca binding to cytoplasmic molecules and structures. The sequestered Ca was released with caffeine or Ca but not by epinephrine. The observations indicate that the sarcoplasmic reticulum and mitochondria of vascular smooth muscle strips skinned with saponin retain their functional integrity after saponin skinning.« less
Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert
2016-10-04
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
Zhang, Wei; Du, Zhiping; Chang, Chien-Hsiang; Wang, Guoyong
2009-09-15
The comb-like surfactants, poly(styrene-co-maleic anhydride)-g-(poly(ethylene glycol) monomethyl ether), poly(St-co-MA)-g-(MPEG), have been prepared using a macromonomer approach to get controlled molecular structures. The macromonomer (MAMPEG) was obtained by esterification of poly(ethylene glycol) monomethyl ether with maleic anhydride. Poly(St-co-MA)-g-(MPEG) with various molar ratios of St to MAMPEG (R) were then constructed by radical copolymerization. The comb-like structures of the surfactants were confirmed by infrared and (1)H nuclear magnetic resonance spectroscopy. It is found from gel permeation chromatography characterization that the molecular weight of the surfactants increases as R increases. The polydispersity index was in the range between 1.4 and 2.0 in all the cases. The surfactants with a higher St percentage are less soluble in water due to aggregation. The value of critical aggregation concentration (CAC) and the surface tension at the CAC (gamma(CAC)) decrease as R increases. The steady-shear measurements show that the surfactant solutions at 50 g/L are dilatant fluids. In addition, it appears that there are two break points in the viscosity-shear rate curve. Both break points increase with increasing R. It can therefore be concluded that the properties of comb-like surfactants poly(St-co-MA)-g-(MPEG) are related to molecular structure. The results demonstrate that the properties of these comb-like surfactants can be tailored through appropriate molecular design.
Esters of oligo-(glycerol carbonate-glycerol): New biobased oligomeric surfactants.
Holmiere, Sébastien; Valentin, Romain; Maréchal, Philippe; Mouloungui, Zéphirin
2017-02-01
Glycerol carbonate is one of the most potentially multifunction glycerol-derived compounds. Glycerol is an important by-product of the oleochemical industry. The oligomerization of glycerol carbonate, assisted by the glycerol, results in the production of polyhydroxylated oligomers rich in linear carbonate groups. The polar moieties of these oligomers (M w <1000Da) were supplied by glycerol and glycerol carbonate rather than ethylene oxide as in most commercial surfactants. The insertion of linear carbonate groups into the glycerol-based skeleton rendered the oligomers amphiphilic, resulting in a decrease in air/water surface tension to 57mN/m. We improved the physical and chemical properties of the oligomers, by altering the type of acylation reaction and the nature of the acyl donor. The polar head is constituted of homo-oligomers and hetero-oligomers. Homo-oligomers are oligoglycerol and/or oligocarbonate, hetero-oligomers are oligo(glycerol-glycerol carbonate). Coprah oligoesters had the best surfactant properties (CMC<1mg/mL, π cmc <30mN/m), outperforming molecules of fossil origin, such as ethylene glycol monododecyl ether, glycol ethers and fatty acid esters of sorbitan polyethoxylates. The self-assembling properties of oligocarbonate esters were highlighted by their ability to stabilize inverse and multiple emulsions. The oligo-(glycerol carbonate-glycerol ether) with relatively low molecular weights showed properties of relatively high-molecular weight molecules, and constitute a viable "green" alternative to ethoxylated surfactants. Copyright © 2016 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... information, and any information on methods for protecting against such risk, into an MSDS as described at... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF... substance is any manner or method of manufacture, import, or processing associated with any use of this...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... in residential settings. If EPA is able to determine that a finite tolerance is not necessary to... elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed in 40 CFR 723.250(d)(2)(ii). 4. The...
New polymers for phase partitioning
NASA Technical Reports Server (NTRS)
Harris, J. M.
1981-01-01
The synthesizing of several polyethylene glycols having crown ethers attached is reported. This work led to the identification of three new polymer types which promise to be more effective at selectively binding specific cell types. Work was completed on identification of chemical properties of the new polymer crowns and on development of new techniques for determination of polymer-phase composition.
Zhi, Zelun; Su, Yajuan; Xi, Yuewei; Tian, Liang; Xu, Miao; Wang, Qianqian; Padidan, Sara; Li, Peng; Huang, Wei
2017-03-29
In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol 1200/2400 modified PHMB (APEG 1200/2400 -PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG 1200/2400 -PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG 2400 -PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG 2400 -PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG 2400 -PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.
Li, Wei-Shi; Saeki, Akinori; Yamamoto, Yohei; Fukushima, Takanori; Seki, Shu; Ishii, Noriyuki; Kato, Kenichi; Takata, Masaki; Aida, Takuzo
2010-07-05
To tailor organic p/n heterojunctions with molecular-level precision, a rational design strategy using side-chain incompatibility of a covalently connected donor-acceptor (D-A) dyad has been successfully carried out. An oligothiophene-perylenediimide dyad, when modified with triethylene glycol side chains at one terminus and dodecyl side chains at the other (2(Amphi)), self-assembles into nanofibers with a long-range D/A heterojunction. In contrast, when the dyad is modified with dodecyl side chains at both termini (2(Lipo)), ill-defined microfibers result. In steady-state measurements using microgap electrodes, a cast film of the nanofiber of 2(Amphi) displays far better photoconducting properties than that of the microfiber of 2(Lipo). Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly indicate that the nanofiber of 2(Amphi) intrinsically allows for better carrier generation and transport properties than the microfibrous assembly of 2(Lipo).
Broadband terahertz dynamics of propylene glycol monomer and oligomers
NASA Astrophysics Data System (ADS)
Koda, Shota; Mori, Tatsuya; Kojima, Seiji
2016-12-01
We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.
Leclercq, Loïc; Lubart, Quentin; Aubry, Jean-Marie; Nardello-Rataj, Véronique
2013-05-28
The surface tension equations of binary surfactant mixtures (di-n-decyldimethylammonium chloride and octaethylene glycol monododecyl ether) are established by combining the Szyszkowski equation of surfactant solutions, the ideal or nonideal mixing theory, and the phase separation model. For surfactant mixtures, the surface tension at the air-water interface is calculated using nonideal theory due to synergism between the two adsorbed surfactant types. The incorporation of cyclodextrin complexation model to the surface tension equations gives a robust model for the description of the surface tension isotherms of binary, ternary, and more complex systems involving numerous inclusion complexes. The surface tension data obtained experimentally shows excellent agreement with the theoretical model below and above the formation of micelles. The strong synergistic effect observed between the two surfactants is disrupted by the presence of CDs, leading to ideal behavior of ternary systems. Indeed, depending on the nature of the cyclodextrin (i.e., α, β, or γ), which allows a tuning of the cavity size, the binding constants with the surfactants are modified as well as the surface properties due to strong modification of equilibria involved in the ternary mixture.
Chen, Maoxia; Fan, Rong; Zou, Wenhui; Zhou, Houzhen; Tan, Zhouliang; Li, Xudong
2016-05-15
A novel bacterial strain BDG-2 was isolated and used to augment the treatment of silicon plate manufacturing wastewater that primarily contains diethylene glycol monobutyl ether (DGBE). BDG-2 was identified as a Serratia sp. Under the optimal conditions of 30 °C, pH 9 and DGBE concentration of 2000 mg L(-1), the bioaugmented system achieved 96.92% COD removal after 39.9h. Laboratory-scale technological matching results indicated that, in a biofilm process with the addition of 100 mg L(-1) ammonia and 5 mg L(-1) total phosphorus (TP), 70.61% COD removal efficiency could be obtained in 46 h. Addition of polyaluminium chloride (PAC) to the reactors during the suspension process enhanced the settleability of the BDG-2 culture. Subsequently, successful start-up and stable operation of a full-scale bioaugmented treatment facilities were accomplished, and the volumetric organic load in the plug-flow aeration tank was 2.17 ± 0.81 kg m(-3) d(-1). The effluent COD of the facilities was stable and always below 100 mg L(-1). Copyright © 2016 Elsevier B.V. All rights reserved.
Zeng, Pei-Yuan; Li, Jian-Jun; Liao, Dong-Qi; Tu, Xiang; Xu, Mei-Ying; Sun, Guo-Ping
2013-12-01
Emission characteristics of volatile organic compounds (VOCs) were investigated in an automotive coating manufacturing enterprise. Air samples were taken from eight different manufacturing areas in three workshops, and the species of VOCs and their concentrations were measured by gas chromatography-mass spectrometry (GC-MS). Safety evaluation was also conducted by comparing the concentration of VOCs with the permissible concentration-short term exposure limit (PC-STEL) regulated by the Ministry of Health. The results showed that fifteen VOCs were detected in the indoor air of the automotive coatings workshop, including benzene, toluene, ethylbenzene, xylene, ethyl acetate, butyl acetate, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, trimethylbenzene and ethylene glycol monobutyl ether, Their concentrations widely ranged from 0.51 to 593.14 mg x m(-3). The concentrations of TVOCs were significantly different among different manufacturing processes. Even in the same manufacturing process, the concentrations of each component measured at different times were also greatly different. The predominant VOCs of indoor air in the workshop were identified to be ethylbenzene and butyl acetate. The concentrations of most VOCs exceeded the occupational exposure limits, so the corresponding control measures should be taken to protect the health of the workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moultos, Othonas A.; Economou, Ioannis G.; Zhang, Yong
Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO{sub 2}, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH{sub 3}O–(CH{sub 2}CH{sub 2}O){sub n}–CH{sub 3} with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. Themore » magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.« less
Carbone, Lorenzo; Di Lecce, Daniele; Gobet, Mallory; Munoz, Stephen; Devany, Matthew; Greenbaum, Steve; Hassoun, Jusef
2017-05-24
Triethylene glycol dimethyl ether (TREGDME) dissolving lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) is studied as a suitable electrolyte medium for lithium battery. Thermal and rheological characteristics, transport properties of the dissolved species, and the electrochemical behavior in lithium cell represent the most relevant investigated properties of the new electrolyte. The self-diffusion coefficients, the lithium transference numbers, the ionic conductivity, and the ion association degree of the solution are determined by pulse field gradient nuclear magnetic resonance and electrochemical impedance spectroscopy. The study sheds light on the determinant role of the lithium nitrate (LiNO 3 ) addition for allowing cell operation by improving the electrode/electrolyte interfaces and widening the voltage stability window. Accordingly, an electrochemical activation procedure of the Li/LiFePO 4 cell using the upgraded electrolyte leads to the formation of stable interfaces at the electrodes surface as clearly evidenced by cyclic voltammetry, impedance spectroscopy, and ex situ scanning electron microscopy. Therefore, the lithium battery employing the TREGDME-LiCF 3 SO 3 -LiNO 3 solution shows a stable galvanostatic cycling, a high efficiency, and a notable rate capability upon the electrochemical conditions adopted herein.
Structure and self-assembly properties of a new chitosan-based amphiphile.
Huang, Yuping; Yu, Hailong; Guo, Liang; Huang, Qingrong
2010-06-17
A new chitosan-based amphiphile, octanoyl-chitosan-polyethylene glycol monomethyl ether (acylChitoMPEG), has been prepared using both hydrophobic octanoyl and hydrophilic polyethylene glycol monomethyl ether (MPEG) substitutions. The success of synthesis was confirmed by Fourier transform infrared (FT-IR) and (1)H NMR spectroscopy. The synthesized acylChitoMPEG exhibited good solubility in either aqueous solution or common organic solvents such as ethanol, acetone, and CHCl(3). The self-aggregation behavior of acylChitoMPEG in solutions was studied by a combination of pyrene fluorescence technique, dynamic light scattering, atomic force microscopy, and small-angle X-ray scattering (SAXS). The critical aggregation concentration (CAC) and hydrodynamic diameter were found to be 0.066 mg/mL and 24.4 nm, respectively. SAXS results suggested a coiled structure of the triple helical acylChitoMPEG backbone with the hydrophobic moieties hiding in the center of the backbone, and the hydrophilic MPEG chains surrounding the acylChitoMPEG backbone in a random Gaussian chain conformation. Cytotoxicity results showed that acylChitoMPEG exhibited negligible cytotoxicity even at concentrations as high as 1.0 mg/mL. All results implied that acylChitoMPEG has the potential to be used for biological or medical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coeyman, M.
1995-02-08
Hoechst Celanese`s (Somerville, NJ) 150 million lbs/year alcohol ethoxylates plant at Clear lake, TX is in start-up and has begun trial production. The company says it plans to begin shipping product to customers by the end of the first quarter. The plant replaces production facilities previously leased from Union Carbide at Texas City. Meanwhile, Union Carbide has completed the purchase of certain ICI ethylene oxide (EO) derivatives businesses, including ethylene glycol, glycol ethers and acetates, ethanomalamines, and brake fluids. ICI will retain the ethoxylates business. Carbide and ICI will jointly fund an expansion of an EO unit and Wilton, U.K.more » from 240,000 m.t./year to 300,000 m.t./year.« less
Waterborne Polyurethane Coatings with Covalently Linked Black Dye Sudan Black B
Sun, Wei; Xu, Haiyan; Xu, Fei
2017-01-01
Colored waterborne polyurethanes have been widely used in paintings, leathers, textiles, and coatings. Here, a series of black waterborne polyurethanes (WPUs) with different ratios of black dye, Sudan Black B (SDB), were prepared by step-growth polymerization. WPU emulsions as obtained exhibit low particle sizes and remarkable storage stability at the same time. At different dye loadings, essential structural, statistical and thermal properties are characterized. FTIR (fourier transform infrared) spectra indicate that SDB is covalently linked into waterborne polyurethane chains. All of the WPUs with covalently linked SDB show better color fastness and resistance of thermal migration than those with SDB mixed physically. Besides, WPUs incorporated SDB covalently with different polymeric diols, polytetramethylene ether glycol (PTMG), polypropylene glycol (PPG), poly-1, 4-butylene adipate glycol (PBA) and polycaprolactone glycol (PCL), were prepared to obtain different properties to cater to a variety of practical demands. By a spraying method, the black WPUs can be directly used as metal coatings without complex dyeing process by simply mixing coating additive and other waterborne resins, which exhibit excellent coating performance. PMID:29143785
NASA Astrophysics Data System (ADS)
Menzies, Donna J.; Jasieniak, Marek; Griesser, Hans J.; Forsythe, John S.; Johnson, Graham; McFarland, Gail A.; Muir, Benjamin W.
2012-12-01
In this work we report a detailed X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) study of poly(ethylene glycol) PEG-like chemical gradients deposited via plasma enhanced chemical vapour deposition (PECVD) at two different load powers using diethylene glycol dimethyl ether (DG) as a monomer. Principal component analysis (PCA) was applied to the ToF-SIMS data both before and after protein adsorption on the plasma polymer thin films. Results of the PCA loadings indicated a higher content of hydrocarbon fragments across the higher load power gradient, which adsorbed higher amounts of proteins. Gradients deposited at a lower load power retained a higher degree of monomer like functionality as did the central region directly underneath the knife edge electrode. Analysis of the adsorption of serum proteins (human serum albumin and fetal bovine serum) was monitored across the gradient films and increased with decreasing ether (PEG-like) film chemistries. The effect of protein incubation time on the levels adsorbed fetal bovine serum on the plasma polymer films was critical, with significantly more protein adsorbing after 24 hour incubation times on both gradient films. The attachment of HeLa cells on the gradients appeared to be dictated not only by the surface chemistry, but also by the adsorption of serum proteins. XPS analysis revealed that at surface ether concentrations of less than 70% in the gradient films, significant increases in protein and cell attachment were observed.
van de Ven, W J; Vermorken, A J; Onnekink, C; Bloemers, H P; Bloemendal, H
1978-01-01
A preparative method for isolating pure viral envelopes from a type-C RNA tumor virus, Rauscher murine leukemia virus, is described. Fractionation of virions of Rauscher murine leukemia virus was studied after disruption of the virions with the detergents sodium dodecyl sulfate of Nonidet P-40 in combination with ether. Fractionation was performed through flotation in a discontinuous sucrose gradient and, as appeared from electron microscopic examination, a pure viral envelope fraction was obtained in this way. By use of sensitive competition radioimmunoassays or sodium dodecyl sulfate-polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera directed against Rauscher murine leukemia virus proteins, the amount of the gag and env gene-encoded structural polypeptides in the virions and the isolated envelope fraction was compared. The predominant viral structural polypeptides in the purified envelope fraction were the env gene-encoded polypeptides gp70, p15(E), and p12(E), whereas, except for p15, there was only a relatively small amount of the gag gene-encoded structural polypeptides in this fraction. Images PMID:702639
NASA Astrophysics Data System (ADS)
Nascimento, Danielle Silva; Insausti, Matías; Band, Beatriz Susana Fernández; Grünhut, Marcos
2018-02-01
Octyl p-methoxycinnamate (OMC) is one of the most widely used sunscreen agents. However, the efficiency of OMC as UV filter over time is affected due to the formation of the cis-isomer which presents a markedly lower extinction coefficient (εcis = 12,600 L mol- 1 cm- 1 at 291 nm) than the original trans-isomer (εtrans = 24,000 L mol- 1 cm- 1 at 310 nm). In this work, a novel carrier for OMC based on an oil-in-water microemulsion is proposed in order to improve the photostability of this sunscreen. The formulation was composed of 29.2% (w/w) of a 3:1 mixture of ethanol (co-surfactant) and decaethylene glycol mono-dodecyl ether (surfactant), 1.5% (w/w) of oleic acid (oil phase) and 69.2% (w/w) of water. This microemulsion was prepared in a simple way, under moderate stirring at 25 °C and using acceptable, biocompatible and accessible materials for topical use. OMC was incorporated in the vehicle at a final concentration of 5.0% (w/w), taking into account the maximum permitted levels established by international norms. Then, a photolysis study of the loaded formulation was performed using a continuous flow system. The direct photolysis was monitored over time by molecular fluorescence. The recorded spectra data between 370 y 490 nm were analyzed by multivariate curve resolution-alternating least squares algorithm. The kinetic rate constants corresponding to the photolysis of the trans-OMC were calculated from the concentration profiles, resulting in 0.0049 s- 1 for the trans-OMC loaded microemulsion and 0.0131 s- 1 for the trans-OMC in aqueous media. These results demonstrate a higher photostability of the trans-OMC when loaded in the proposed vehicle with respect to the free trans-OMC in aqueous media.
2012-02-21
Testing and Materials °C Celsius DiEGME Diethylene Glycol Monomethyl Ether EPDM Ethylene Propylene Diene Monomer FARE Forward Area Refueling...urethane class AU, polyether urethane class EU, EPDM , Viton®, fluorosilicone class FQ, polytetrafluoroethylene (PTFE), polyolefin and polyester...sleeve Material not provided AAFARS 4720-00-540-1368 Hose, nonmetallic Material not provided AAFARS 4720-01-218-6958 Hose, preformed Rubber
Containers of DS-2 Decontaminating Solution
1982-03-01
percent sodium hydroxide, and the remainder is ethylene glycol monomethyl ether. Because of its reactivity, it must be protected from moisture and... carbon dioxide. It has been demonstrated that DS-2 does not corrode terneplate or steel. However, satisfactory terneplate and steel containers are...not produce a pail with a polyethylene insert. However, Mr. Wood told me that Hedwin Corporation (a subsidiary of Solvay ) does produce this kind of
A brief review of other notable protein detection methods on acrylamide gels.
Kurien, Biji T; Scofield, R Hal
2012-01-01
Several methods have been described to stain proteins analyzed on acrylamide gels. These include ultrasensitive protein detection in one-dimensional and two-dimensional gel electrophoresis using a fluorescent product from the fungus Epicoccum nigrum; a fluorescence-based Coomassie Blue protein staining; visualization of proteins in acrylamide gels using ultraviolet illumination; fluorescence visualization of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution; and increasing the sensitivity four- to sixfold for detecting trace proteins in dye or silver stained polyacrylamide gels using polyethylene glycol 6000. All these methods are reviewed briefly in this chapter.
Woo, Kang-Lyung
2005-01-01
Low molecular weight alcohols including fusel oil were determined using diethyl ether extraction and capillary gas chromatography. Twelve kinds of alcohols were successfully resolved on the HP-FFAP (polyethylene glycol) capillary column. The diethyl ether extraction method was very useful for the analysis of alcohols in alcoholic beverages and biological samples with excellent cleanliness of the resulting chromatograms and high sensitivity compared to the direct injection method. Calibration graphs for all standard alcohols showed good linearity in the concentration range used, 0.001-2% (w/v) for all alcohols. Salting out effects were significant (p < 0.01) for the low molecular weight alcohols methanol, isopropanol, propanol, 2-butanol, n-butanol and ethanol, but not for the relatively high molecular weight alcohols amyl alcohol, isoamyl alcohol, and heptanol. The coefficients of variation of the relative molar responses were less than 5% for all of the alcohols. The limits of detection and quantitation were 1-5 and 10-60 microg/L for the diethyl ether extraction method, and 10-50 and 100-350 microg/L for the direct injection method, respectively. The retention times and relative retention times of standard alcohols were significantly shifted in the direct injection method when the injection volumes were changed, even with the same analysis conditions, but they were not influenced in the diethyl ether extraction method. The recoveries by the diethyl ether extraction method were greater than 95% for all samples and greater than 97% for biological samples.
[Studies on the chemical constituents of Lonicera macranthoides].
Jia, Xiao-Dong; Zhao, Xing-Zeng; Wang, Ming; Dong, Yun-Fa; Feng, Xu
2008-07-01
To study the chemical constituents of flower buds of Lonicera macranthoides. The 90% EtOH extract of Lonicera macranthoides. was successively partitioned with petroleum ether and ethyl acetete. Repeated column chromatography of the ethyl acetete fraction afforded the following compounds (1-9): ginnol (1), triacontanol (2), ursolic acid (3), beta-sitosterol (4), triacontane (5), palmitic acid (6), beta-daucosterol (7), 3-decyl-3-octyldocosan-1-ol (8), 3-dodecyl-3-nonyldocosan-1-ol (9). All compounds except 4 are isolated from this plant for the first time while compounds 2, 3, 5, 8 and 9 are their first time been isolated from genus Lonicera.
Direct Observation Of Nanoparticle-Surfactant Interactions Using Small Angle Neutron Scattering
NASA Astrophysics Data System (ADS)
Kumar, Sugam; Aswal, V. K.
2010-12-01
Interactions of anionic silica nanoparticles with anionic, cationic and nonionic surfactants have directly been studied by contrast variation small angle neutron scattering (SANS). The measurements are performed on 1 wt% of both silica nanoparticles and surfactants of anionic sodium dodecyle sulphate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB) and non-ionic polyoxyethylene 10 lauryl ether (C12E10) in aqueous solution. We show that there is no direct interaction in the case of SDS with silica particles, whereas strong interaction for DTAB leads to the aggregation of silica particles. The interaction of C12E10 is found through the micelles adsorbed on the silica particles.
Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study.
Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul; Gotfryd, Kamil; Lee, Ho Jin; Go, Juyeon; Kim, Jin Woong; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok
2015-05-07
Detergents are typically used to both extract membrane proteins (MPs) from the lipid bilayers and maintain them in solution. However, MPs encapsulated in detergent micelles are often prone to denaturation and aggregation. Thus, the development of novel agents with enhanced stabilization characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n-dodecyl-β-D-maltopyranoside (DDM), in terms of membrane protein stabilization efficacy. Interestingly, optimal stabilization was achieved with different MNG-3 analogues depending on the target MP. The origin for such detergent specificity could be explained by a novel concept: compatibility between detergent hydrophobicity and MP tendency to denature and aggregate. This set of MNGs represents viable alternatives to currently available detergents for handling MPs, and can be also used as tools to estimate MP sensitivity to denaturation and aggregation.
Electronics Manufacturing Seminar Proceedings. 17th Annual
1992-12-01
a CFC Solvent Cleaning Alternative Page 3 In operation dirty parts are immersed in the boil cham- ber where they contact the agitated mixture of...component. Some glycol ethers have an uncertain regulatory future due to a variety of health concerns. Semi-aqueous solvents can have a strong odor . Proper...thermoset 5 materials, elastomers, marking inks, sealants, and locking compounds after repeated exposure to the selected cleaners. Epoxy and polyimide PWBs
Proceedings of the Workshop on High Temperature Superconductivity
1989-11-01
such magnetic excitations in neutron scattering studies of UPt3 and measured a corresponding Debye energy owc = 2 K, in excellent agreement with the...procedure of Budhani et al. Propylene carbonate has been found to be a suitable vehicle for direct painting, while poly (ethylene glycol methyl ether ...through neutron irradiation and chemical means will also be discussed. Specifically, results of comparative studies on the kinetics of flux motion in
Navy Fuel Composition and Screening Tool (FCAST) v2.8
2016-05-10
allowed us to develop partial least squares (PLS) models based on gas chromatography–mass spectrometry (GC-MS) data that predict fuel properties. The...Chemometric property modeling Partial least squares PLS Compositional profiler Naval Air Systems Command Air-4.4.5 Patuxent River Naval Air Station Patuxent...Cumulative predicted residual error sum of squares DiEGME Diethylene glycol monomethyl ether FCAST Fuel Composition and Screening Tool FFP Fit for
Development of GREET Catalyst Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhichao; Benavides, Pahola T.; Dunn, Jennifer B.
2015-09-01
In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al 2O3, and Pt/ γ-Al 2O 3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.
Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E
2017-04-12
Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca 2+ , Mg 2+ , and Zn 2+ ) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG 8k -co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.
NASA Astrophysics Data System (ADS)
Wang, Haidong; Lu, Xiaofei; Lu, Xinglin; Wang, Zhenghui; Ma, Jun; Wang, Panpan
2017-12-01
In this study, the GO-g-P(PEGMA) nanoplates were first synthesized by grafting hydrophilic poly (poly (ethylene glycol) methyl ether methacrylate) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. A novel polysulfone (PSF) nanocomposite membrane using GO-g-P(PEGMA) nanoplates as nanofillers was fabricated. FTIR, TGA, 1H NMR, GPC and TEM were applied to verify the successful synthesis of the prepared nanoplates, while SEM, AFM, XPS, contact angle goniometry and filtration experiments were used to characterize the fabricated nanocomposite membranes. It was found that the new prepared nanofillers were well dispersed in organic PSF matrix, and the PSF/GO-g-P(PEGMA) nanocomposite membrane showed significant improvements in water flux and flux recovery rate. Based on the results of resistance-in-series model, the nanocomposite membrane exhibited superior resistance to the irreversible fouling. The excellent filtration and antifouling performance are attributed to the segregation of GO-g-P(PEMGA) nanofillers toward the membrane surface and the pore walls. Notably, the blended nanofillers appeared a stable retention in/on nanocomposite membrane after 30 days of washing time. The demonstrated method of synthesis GO-g-P(PEGMA) in this study can also be extended to preparation of other nanocomposite membrane in future.
NASA Astrophysics Data System (ADS)
Ghosh, Santaneel; Ghoshmitra, Somesree; Cai, Tong; Diercks, David R.; Mills, Nathaniel C.; Hynds, Dianna L.
2010-01-01
Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate- co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly- N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.
Spencer, Pamela J; Crissman, James W; Stott, William T; Corley, Richard A; Cieszlak, Frank S; Schumann, Alan M; Hardisty, Jerry F
2002-01-01
A series of inhalation studies with propylene glycol monomethyl ether (PGME) vapor were undertaken to characterize its subchronic toxicity in mice and chronic toxicity/oncogenicity in rats and mice. Groups of male and female Fischer 344 rats and B6C3F1 mice were exposed to 0, 300, 1,000, or 3,000 ppm vapor from 1 week to 2 years. Primary treatment-related effects included: initial sedation of animals exposed to 3,000 ppm and its subsequent resolution correlating with induction of hepatic mixed function oxidase activity and S-phase DNA synthesis; elevated mortality in high-exposure male rats and mice (chronic study); elevated deposition of alpha2u-globulin (alpha2U-G) and associated nephropathy and S-phase DNA synthesis in male rat kidneys; accelerated atrophy of the adrenal gland X-zone in female mice (subchronic study only); and increased occurrence and/or severity of eosinophilic foci of altered hepatocytes in male rats. No toxicologically relevant statistically significant increases in neoplasia occurred in either species. A numerical increase in the incidence of kidney adenomas occurred in intermediate-exposure male rats; however, the association with alpha2U-G nephropathy, a male rat specific effect, indicated a lack of relevance for human risk assessment.
Nardello-Rataj, Véronique; Leclercq, Loïc
2016-09-10
Micellization of di-n-decyldimethylammonium chloride, [DiC10][Cl], and octaethylene glycol monododecyl ether, C12E8, mixtures have been investigated by surface tension and conductivity measurements. From these results, various physicochemical and thermodynamic key parameters (e.g. micellar mole fraction of [DiC10][Cl], interaction parameter, free energy of micellization, etc.) have been evaluated and discussed in detail. The results prove high synergistic effect between the two surfactants. Based on these results, the virucidal activity of an equimolar mixture of [DiC10][Cl] and C12E8 has been investigated. A marked synergism was observed on lipid-containing deoxyribonucleic and ribonucleic acid viruses, such as herpes virus, respiratory syncytial virus, and vaccinia viruses. In contrast, Coxsackievirus (non-enveloped virus) was not inactivated. These results support that the mechanism is based on the extraction of lipids and/or proteins from the envelope inside the mixed micelles. This extraction creates "holes" the size of which increases with concentration up to a specific value which triggers the virus inactivation. Such a mixture could be used to extend the spectrum of virucidal activity of the amphiphiles virucides commonly employed in numerous disinfectant solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Hopf, Nancy B; Vernez, David; Berthet, Aurelie; Charriere, Nicole; Arnoux, Christine; Tomicic, Catherine
2012-05-20
Aging adults represent the fastest growing population segment in many countries. Physiological and metabolic changes in the aging process may alter how aging adults biologically respond to pollutants. In a controlled human toxicokinetic study (exposure chamber; 12 m³), aging volunteers (n=10; >58 years) were exposed to propylene glycol monomethyl ether (PGME, CAS no. 107-98-2) at 50 ppm for 6 h. The dose-dependent renal excretion of oxidative metabolites, conjugated and free PGME could potentially be altered by age. (1) Compare PGME toxicokinetic profiles between aging and young volunteers (20-25 years) and gender; (2) test the predictive power of a compartmental toxicokinetic (TK) model developed for aging persons against urinary PGME concentrations found in this study. Urine samples were collected before, during, and after the exposure. Urinary PGME was quantified by capillary GC/FID. Differences in urinary PGME profiles were not noted between genders but between age groups. Metabolic parameters had to be changed to fit the age adjusted TK model to the experimental results, implying a slower enzymatic pathway in the aging volunteers. For an appropriate exposure assessment, urinary total PGME should be quantified. Age is a factor that should be considered when biological limit values are developed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Qi, Yizhi; Simakova, Antonina; Ganson, Nancy J.; Li, Xinghai; Luginbuhl, Kelli M.; Özer, Imran; Liu, Wenge; Hershfield, Michael S.; Matyjaszewski, Krzysztof; Chilkoti, Ashutosh
2017-01-01
The delivery of therapeutic peptides and proteins is often challenged by a short half-life, and thus the need for frequent injections that limit efficacy, reduce patient compliance and increase treatment cost. Here, we demonstrate that a single subcutaneous injection of site-specific (C-terminal) conjugates of exendin-4 (exendin) — a therapeutic peptide that is clinically used to treat type 2 diabetes — and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) with precisely controlled molecular weights lowered blood glucose for up to 120 h in fed mice. Most notably, we show that an exendin-C-POEGMA conjugate with an average of 9 side-chain ethylene glycol (EG) repeats exhibits significantly lower reactivity towards patient-derived anti-poly(ethylene glycol) (PEG) antibodies than two FDA-approved PEGylated drugs, and that reducing the side-chain length to 3 EG repeats completely eliminates PEG antigenicity without compromising in vivo efficacy. Our findings establish the site-specific conjugation of POEGMA as a next-generation PEGylation technology for improving the pharmacological performance of traditional PEGylated drugs, whose safety and efficacy are hindered by pre-existing anti-PEG antibodies in patients. PMID:28989813
Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori
2013-04-12
Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels.
Oshima, Atsunori; Matsuzawa, Tomohiro; Nishikawa, Kouki; Fujiyoshi, Yoshinori
2013-01-01
Innexin is the molecular component of invertebrate gap junctions. Here we successfully expressed and purified Caenorhabditis elegans innexin-6 (INX-6) gap junction channels and characterized the molecular dimensions and channel permeability using electron microscopy (EM) and microinjection of fluorescent dye tracers, respectively. Negative staining and thin-section EM of isolated INX-6 gap junction membranes revealed a loosely packed hexagonal lattice and a greater cross-sectional width than that of connexin26 and connexin43 (Cx43)-GFP. In gel filtration analysis, the elution profile of purified INX-6 channels in dodecyl maltoside solution exhibited a peak at ∼400 kDa that was shifted to ∼800 kDa in octyl glucose neopentyl glycol. We also obtained the class averages of purified INX-6 channels from these peak fractions by single particle analysis. The class average from the ∼800-kDa fraction showed features of the junction form with a longitudinal height of 220 Å, a channel diameter of 110 Å in the absence of detergent micelles, and an extracellular gap space of 60 Å, whereas the class averages from the ∼400-kDa fraction showed diameters of up to 140 Å in the presence of detergent micelles. These findings indicate that the purified INX-6 channels are predominantly hemichannels in dodecyl maltoside and docked junction channels in octyl glucose neopentyl glycol. Dye transfer experiments revealed that the INX-6-GFP-His channels are permeable to 3- and 10-kDa tracers, whereas no significant amounts of these tracers passed through the Cx43-GFP channels. Based on these findings, INX-6 channels have a larger overall structure and greater permeability than connexin channels. PMID:23460640
Rosenfeld, Andrew; Morgan, Janet; Goswami, Lalit N; Ohulchanskyy, Tymish; Zheng, Xiang; Prasad, Paras N; Oseroff, Allan; Pandey, Ravindra K
2006-01-01
The effects of an additional keto group on absorption wavelength and the corresponding metal complexes Zn(II), Cu(II) In(III) on singlet oxygen production and photodynamic efficacy were examined among the alkyl ether analogs of pyropheophorbide-a. For the preparation of the desired photosensitizers, the methyl 13(2)-oxo-pyropheophorbide-a obtained by reacting methyl pyropheophorbide-a with aqueous LiOH-THF was converted into a series of alkyl ether analogs. These compounds were evaluated for photophysical properties and in vitro (by means of the MTT assay and intracellular localization in RIF cells) and in vivo (in C3H mice implanted with RIF tumors) photosensitizing efficacy. Among the alkyl ether derivatives, the methyl 3-decyloxyethyl-3-devinyl-13(2)-oxo-pyropheophorbide-a was found to be most effective and the insertion of In(III) into this analog further enhanced its in vitro and in vivo photosensitizing efficacy. Fluorescence microscopy showed that, in contrast to the hexyl and dodecyl ether derivatives of HPPH (which localize in mitochondria and lysosomes, respectively), the diketo-analogs and their In(III) complexes localized in Golgi bodies. The preliminary in vitro and in vivo results suggest that, in both free-base and metalated analogs, the introduction of an additional keto group at the five-member exocyclic ring in pyropheophorbide-a diminishes its photosensitizing efficacy. This may be due to a shift in subcellular localization from mitochondria to the Golgi bodies. The further introduction of In(III) enhances photoactivity, but not by shifting the localization of the photosensitizer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robeson, R.M.; Bonnesen, P.
2007-01-01
The synthesis of a series of novel dinorbornyl-16-crown-5 and dinorbornyl-18-crown-6 ethers that incorporate the exo-cis-2,3-norbornyl moiety within the macrocycle framework is described. The key starting material for the crown ethers, exo-cis-2,3-norbornanediol, was successfully prepared on a large (>30g) scale in 88% yield from norbornylene by osmium tetroxide-catalyzed hydroxylation. The syn and anti isomers of the dinorbornyl-16-crown-5 ether family were prepared using diethylene glycol with ring closure achieved using a methallyl linkage. The isomers cis-syn-cis and cis-anti-cis di-norbornano-15-methyleno-16-crown-5 (6A and 6B) could be separated using column chromatography, and a single crystal of the syn isomer 6A suitable for X-ray crystal structuremore » analysis was obtained, thereby confi rming the syn orientation. The syn and anti isomers of the dinorbornyl-18-crown-6 ether family were successfully prepared employing a different synthetic strategy, involving the potassium–templated cyclization of two bis-hydroxyethoxy-substituted exo-cis-2,3-norbornyl groups under high dilution conditions. Attempts to fully separate cis-syn-cis di-norbornano-18-crown-6 (10A) and cis-anti-cis di-norbornano-18-crown-6 (10B) from one another using column chromatography were unsuccessful. All intermediates and products were checked for purity using either thin layer chromatography or gas chromatography, and characterized by proton and carbon NMR. Crown ethers 6AB and 10AB are to our knowledge the fi rst crown ethers to incorporate the exo-cis-2,3-norbornyl moiety into the crown ring to be successfully synthesized and characterized.« less
Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi
2016-10-01
Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae.
Kaneko, Fumitoshi; Seto, Naoki; Sato, Shuma; Radulescu, Aurel; Schiavone, Maria Maddalena; Allgaier, Jürgen; Ute, Koichi
2016-01-01
Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae. PMID:27738412
J.B. Fischer; J.L. Michael
1997-01-01
The herbicide triclopyr (3,5,6-trichloro-2-pyridinyl)-oxyacetic acid has been marketed by the Dow Chemical Co. since the mid 1970's as the triethylammonium salt (Garlon 3A) and as the ethylene glycol butyl ether ester (Garlon 4). Shortly after its introduction, McKellar (1977) published a method for the extraction, isolation, and electron capture gas...
Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.
Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K
2015-06-05
Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.
The Reactions of Nitrogen Peroxide with Possible Stabilisers for Propellants
1957-03-01
ether Carbamite Phe nyl-be nzyl-ure thane (pure) Cyclohexanyl-urethane Cyclohexano ne Die thyl phthalate Di-isoamyl phthalate Dibutyl oxalate Glycollic...saponification" arises from the presence of phenyl urethane and diphenyl urea; differences in contents of these impurities and of benzyl aniline...nitrogen that is recovered from a product. 4.2.2 Ure are fairly reactive. Triphenylethylurea present with diphenyl - amine in 蠢 compound" leads to a
Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.
Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong
Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.
Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation
NASA Astrophysics Data System (ADS)
Zhou, Ruimin; Wu, Xinfeng; Hao, Xufeng; Zhou, Fei; Li, Hongbin; Rao, Weihong
2008-02-01
Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration.
Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae
Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng
2015-01-01
Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS) ], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO) ] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337
Bioenvironmental Engineer’s Guide to TVA-1000B Toxic Vapor Analyzer
2014-01-01
chemicals including aromatics, unsaturated chlorinated hydrocarbons, aldehydes , ketones , ethylene oxide, hydrogen sulfide, and glycol ether solvents. The...Dimethoxyethane 9.65 Diethyl ketone 9.32 Ethyl amine 8.86 1,1-Dimethylhydrazine 7.28 Diethyl sulfide 8.43 Ethyl benzene 8.76 1,2-Dibromoethene 9.45...Chemical IP (eV) Chemical IP (eV) Chemical IP (eV) Freon 13 (chlorotrifluoromethane) 12.91 Isobutyric acid 10.02 Methyl butyl ketone 9.34
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Cosmin E.; Mueller, Charles J.; Kurtz, Eric
Natural luminosity and chemiluminescence imaging diagnostics were employed to investigate if a 50/50 blend by volume of tripropylene-glycol monomethyl ether (TPGME) and ultra-low sulfur #2 diesel certification fuel (CF) could enable leaner-lifted flame combustion (LLFC), a non-sooting mode of mixing-controlled combustion associated with equivalence ratios below approximately 2. The experiments were performed in a singlecylinder heavy-duty optical compression-ignition engine at three injection pressures and three dilution levels. Results indicate that TPGME addition effectively eliminated engine-out smoke emissions by curtailing soot production and/or increasing soot oxidation during and after the end of fuel injection. TPGME greatly reduced soot luminosity when compared with neat CF, but did not enable LLFC because the equivalence ratios at the lift-off length,more » $$\\phi$$(H), never reached the non-sooting limit. Nevertheless, this study showed that TPGME addition has the potential to enable LLFC under different experimental conditions that would further decrease $$\\phi$$(H) to ~ 2 and below. Concerning other engine-out emissions, injection pressure influenced the effects of TPGME addition on NO x emissions. Finally, HC and CO emissions were higher compared to baseline fuel likely due to the lower net heat of combustion of TPGME and the need to limit fuel-injection duration for valid optical measurements.« less
Bao, Quan-Ying; Liu, Ai-Yun; Ma, Yu; Chen, Huan; Hong, Jin; Shen, Wen-Bin; Zhang, Can; Ding, Ya
2016-10-01
The shape, size, and surface features of nanoparticles greatly influence the structure and properties of resulting hybrid nanosystems. In this work, gold nanoparticles (GNPs) were modified via S-Au covalent bonding by glycol monomethyl ether thioctate with poly(ethylene glycol) methyl ether of different molecular weights (i.e., 350, 550, and 750Da). These modified GNPs (i.e., GNP350, GNP550, and GNP750) showed different oil-water partition coefficients (Kp), as detected using inductively coupled plasma-atomic emission spectroscopy. The different Kp values of the gold conjugates (i.e., 13.98, 2.11, and 0.036 for GNP350, GNP550, and GNP750, respectively) resulted in different conjugate localization within liposomes, as observed by transmission electron microscopy. In addition, the cellular uptake of hybrid liposomes co-encapsulating gold conjugates and Nile red was evaluated using intracellular fluorescence intensity. The results indicated that precise GNP localization in the hydrophilic or hydrophobic liposome cavity could be achieved by regulating the GNP oil-water partition coefficient via surface modification; such localization could further affect the properties and functions of hybrid liposomes, including their cellular uptake profiles. This study furthers the understanding not only of the interaction between liposomes and inorganic nanoparticles but also of adjusting liposome-gold hybrid nanostructure properties via the surface chemistry of gold materials. Copyright © 2016 Elsevier B.V. All rights reserved.
In vitro toxicities of experimental jet fuel system ice-inhibiting agents.
Geiss, K T; Frazier, J M
2001-07-02
One research emphasis within the Department of Defense has been to seek the replacement of operational compounds with alternatives that pose less potential risk to human and ecological systems. Alternatives to glycol ethers, such as diethylene glycol monomethyl ether (M-DE), were investigated for use as jet fuel system ice-inhibiting agents (FSIIs). This group of chemicals includes three derivatives of 1,3-dioxolane-4-methanol (M-1, M-2, and M-3) and a 1,3-dioxane (M-27). In addition, M-DE was evaluated as a reference compound. Our approach was to implement an in vitro test battery based on primary rat hepatocyte cultures to perform initial toxicity evaluations. Hepatocytes were exposed to experimental chemicals (0, 0.001, 0.01, 0.1, 1, 10 mM dosages) for periods up to 24 h. Samples were assayed for lactate dehydrogenase (LDH) release, MTT dye reduction activity, glutathione level, and rate of protein synthesis as indicators of toxicity. Of the compounds tested, M-1, especially at the 10-mM dose, appeared to be more potent than the other chemicals, as measured by these toxicity assays. M-DE, the current FSII, elicited little response in the toxicity assays. Although some variations in toxicity were observed at the 10-mM dose, the in vitro toxicities of the chemicals tested (except for M-1) were not considerably greater than that of M-DE.
NASA Astrophysics Data System (ADS)
Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.
2008-05-01
Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.
Han, Alice A; Fabyanic, Emily B; Miller, Julie V; Prediger, Maren S; Prince, Nicole; Mouch, Julia A; Boyd, Jonathan
2017-04-01
Thousands of gallons of industrial chemicals, crude 4-methylcyclohexanemethanol (MCHM) and propylene glycol phenyl ether (PPh), leaked from industrial tanks into the Elk River in Charleston, West Virginia, USA, on January 9, 2014. A considerable number of people were reported to exhibit symptoms of chemical exposure and an estimated 300,000 residents were advised not to use or drink tap water. At the time of the spill, the existing toxicological data of the chemicals were limited for a full evaluation of the health risks, resulting in concern among those in the impacted regions. In this preliminary study, we assessed cell viability and plasma membrane degradation following a 24-h exposure to varying concentrations (0-1000 μM) of the two compounds, alone and in combination. Evaluation of different cell lines, HEK-293 (kidney), HepG2 (liver), H9c2 (heart), and GT1-7 (brain), provided insight regarding altered cellular responses in varying organ systems. Single exposure to MCHM or PPh did not affect cell viability, except at doses much higher than the estimated exposure levels. Certain co-exposures significantly reduced metabolic activity and increased plasma membrane degradation in GT1-7, HepG2, and H9c2 cells. These findings highlight the importance of examining co-exposures to fully understand the potential toxic effects.
Thudi, Lahari; Jasti, Lakshmi S; Swarnalatha, Y; Fadnavis, Nitin W; Mulani, Khudbudin; Deokar, Sarika; Ponrathnam, Surendra
2012-02-01
The effects of protein size on adsorption and adsorption-induced denaturation of proteins on copolymers of allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) have been studied. Different responses were observed for the amount of protein adsorbed and denatured on the polymer surface for different proteins (trypsin, alchol dehydrogenase from baker's yeast (YADH), glucose dehydrogenase (GDH) from Gluconobacter cerinus, and alkaline phosphates from calf intestinal mucosa (CIAP). Protein adsorption on the copolymer with 25% crosslink density (AGE-25) was dependent not only on the size of the protein but also on the presence of glycoside residues on the protein surface. Adsorption and denaturation of proteins follows the order YADH>trypsin>GDH>CIAP although the molecular weights of the proteins follow the order YADH>CIAP>GDH>trypsin. The lack of correlation between amount of adsorbed protein and its molecular weight was due to the presence of glycoside residues on CIAP and GDH which protect the enzyme surface from denaturation. Enzyme stabilities in aqueous solutions of 1-cyclohexyl-2-pyrrolidinone (CHP) correlate well with the trend in denaturation by the copolymer, strongly suggesting that hydrophobic interactions play a major role in protein binding and the mechanism of protein denaturation is similar to that for water-miscible organic solvents. Copyright © 2011 Elsevier B.V. All rights reserved.
Reddy, M.M.; Claassen, H.C.; Rutherford, D.W.; Chiou, C.T.
1994-01-01
Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01-0.02??m. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075-0.0187 ??m. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05??m. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock. ?? 1994.
Dumitrescu, Cosmin E.; Mueller, Charles J.; Kurtz, Eric
2015-12-31
Natural luminosity and chemiluminescence imaging diagnostics were employed to investigate if a 50/50 blend by volume of tripropylene-glycol monomethyl ether (TPGME) and ultra-low sulfur #2 diesel certification fuel (CF) could enable leaner-lifted flame combustion (LLFC), a non-sooting mode of mixing-controlled combustion associated with equivalence ratios below approximately 2. The experiments were performed in a singlecylinder heavy-duty optical compression-ignition engine at three injection pressures and three dilution levels. Results indicate that TPGME addition effectively eliminated engine-out smoke emissions by curtailing soot production and/or increasing soot oxidation during and after the end of fuel injection. TPGME greatly reduced soot luminosity when compared with neat CF, but did not enable LLFC because the equivalence ratios at the lift-off length,more » $$\\phi$$(H), never reached the non-sooting limit. Nevertheless, this study showed that TPGME addition has the potential to enable LLFC under different experimental conditions that would further decrease $$\\phi$$(H) to ~ 2 and below. Concerning other engine-out emissions, injection pressure influenced the effects of TPGME addition on NO x emissions. Finally, HC and CO emissions were higher compared to baseline fuel likely due to the lower net heat of combustion of TPGME and the need to limit fuel-injection duration for valid optical measurements.« less
Hsieh, G-Y; Wang, J-D; Cheng, T-J; Chen, P-C
2005-08-01
It has been shown that female workers exposed to ethylene glycol ethers (EGEs) in the semiconductor industry have higher risks of spontaneous abortion, subfertility, and menstrual disturbances, and prolonged waiting time to pregnancy. To examine whether EGEs or other chemicals are associated with long menstrual cycles in female workers in the semiconductor manufacturing industry. Cross-sectional questionnaire survey during the annual health examination at a wafer manufacturing company in Taiwan in 1997. A three tiered exposure-assessment strategy was used to analyse the risk. A short menstrual cycle was defined to be a cycle less than 24 days and a long cycle to be more than 35 days. There were 606 valid questionnaires from 473 workers in fabrication jobs and 133 in non-fabrication areas. Long menstrual cycles were associated with workers in fabrication areas compared to those in non-fabrication areas. Using workers in non-fabrication areas as referents, workers in photolithography and diffusion areas had higher risks for long menstrual cycles. Workers exposed to EGEs and isopropanol, and hydrofluoric acid, isopropanol, and phosphorous compounds also showed increased risks of a long menstrual cycle. Exposure to multiple chemicals, including EGEs in photolithography, might be associated with long menstrual cycles, and may play an important role in a prolonged time to pregnancy in the wafer manufacturing industry; however, the prevalence in the design, possible exposure misclassification, and chance should be considered.
NASA Astrophysics Data System (ADS)
Hong, Pengbo; Xu, Mengqing; Zheng, Xiongwen; Zhu, Yunmin; Liao, Youhao; Xing, Lidan; Huang, Qiming; Wan, Huaping; Yang, Yongjun; Li, Weishan
2016-10-01
Ethylene glycol bis (propionitrile) ether (EGBE) is used as an electrolyte additive to improve the cycling stability and rate capability of Li/Li1.2Mn0.54Ni0.13Co0.13O2 cells at high operating voltage (4.8 V). After 150 cycles, cells with 1.0 wt% of EGBE containing electrolyte have remarkable cycling performance, 89.0% capacity retention; while the cells with baseline electrolyte only remain 67.4% capacity retention. Linear sweep voltammetry (LSV) and computation results demonstrate that EGBE preferably oxidizes on the cathode surface compared to the LiPF6/carbonate electrolyte. In order to further understand the effects of EGBE on Li1.2Mn0.54Ni0.13Co0.13O2 cathode upon cycling at high voltage, electrochemical behaviors and ex-situ surface analysis of Li1.2Mn0.54Ni0.13Co0.13O2 are investigated via electrochemical impedance spectroscopy (EIS), scanning electron spectroscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and inductive coupled plasma spectroscopy (ICP-MS). The improved cycling performance can be attributed to more stable and robust surface layer yield via incorporation of EGBE, which mitigates the oxidation of electrolyte on the cathode electrode, and also inhibits the dissolution of bulk transition metal ions as well upon cycling at high voltage.
Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming
2012-01-01
Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176
Mura, P; Faucci, M T; Bramanti, G; Corti, P
2000-02-01
The influence of diethyleneglycol monoethyl ether (transcutol), alone or in combination with propylene glycol, on clonazepam permeation through an artificial membrane and excised rabbit ear skin from Carbopol hydrogels was investigated. Drug kinetic permeation parameters were determined for both series of experiments and compared. Rheological characteristics, drug solubility and membrane/vehicle partition coefficient for each gel formulation were also determined, and their role in the formulation performance was investigated. Both series of experiments showed an increase of drug permeation as a function of transcutol content in the formulation. The combination of transcutol and propylene glycol resulted in a synergistic enhancement of clonazepam flux. A different trend was found in experiments with gels containing mixtures of the two enhancers, where an increase (in the case of artificial membrane) or a decrease (in the case of rabbit ear skin) of drug permeation was found by increasing the transcutol/propylene glycol ratio in the mixture. Such a result is explained on the basis of the particular mechanism of action demonstrated for transcutol which associates the increase of drug solubility to the potent effect of a depot in the skin.
NASA Astrophysics Data System (ADS)
Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.
2018-05-01
One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.
Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles
NASA Astrophysics Data System (ADS)
Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa
2000-06-01
Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.
Injectible bodily prosthetics employing methacrylic copolymer gels
Mallapragada, Surya K.; Anderson, Brian C.
2007-02-27
The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.
pH-sensitive methacrylic copolymer gels and the production thereof
Mallapragada, Surya K [Ames, IA; Anderson, Brian C [Lake Bluff, IA
2007-05-15
The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.
NASA Astrophysics Data System (ADS)
Rao, B. Narasimha; Suvarna, R. Padma
2016-05-01
Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.
Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films
NASA Astrophysics Data System (ADS)
Yang, Zhilu; Wang, Jin; Li, Xin; Tu, Qiufen; Sun, Hong; Huang, Nan
2012-02-01
For blood-contacting biomedical implants like retrievable vena cava filters, surface-based diagnostic devices or in vivo sensors, limiting thrombosis and cell adhesion is paramount, due to a decrease even failure in performance. Plasma deposited PEO-like films were investigated as surface modifications. In this work, mixed gas composed of tetraethylene glycol dimethyl ether (tetraglyme) vapor and oxygen was used as precursor. It was revealed that plasma polymerization under high ratio of oxygen/tetraglyme led to deposition of the films that had high content of ether groups. This kind of PEO-like films had good stability in phosphate buffer solution. In vitro hemocompatibility and endothelial cell (EC) adhesion revealed low platelet adhesion, platelet activation, fibrinogen adhesion, EC adhesion and proliferation on such plasma deposited PEO-like films. This made it a potential candidate for the applications in anti-fouling surfaces of blood-contacting biomedical devices.
A plasticized polymer-electrolyte-based photoelectrochemical solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, D.; Ibrahim, M.A.; Frank, A.J.
1998-01-01
A photoelectrochemical solar cell based on an n-GaAs/polymer-redox-electrolyte junction is reported. Di(ethylene glycol) ethyl ether acrylate containing ferrocene as a redox species and benzoin methyl ether as a photoinitiator is polymerized in situ. Propylene carbonate is used as a plasticizer to improve the conductivity of the polymer redox electrolyte. For thin (1 {micro}m) polymer electrolytes, the series resistance of the cell is negligible. However, the short-circuit photocurrent density of the cell at light intensities above 10 mW/cm{sup 2} is limited by mass transport of redox species within the polymer matrix. At a light intensity of 70 mW/cm{sup 2}, a moderatemore » light-to-electrical energy conversion efficiency (3.1%) is obtained. The interfacial charge-transfer properties of the cell in the dark and under illumination are studied.« less
Momenbeik, Fariborz; Roosta, Mostafa; Nikoukar, Ali Akbar
2010-06-11
An environmentally benign and simple method has been proposed for separation and determination of fat-soluble vitamins using isocratic microemulsion liquid chromatography. Optimization of parameters affecting the separation selectivity and efficiency including surfactant concentration, percent of cosurfactant (1-butanol), and percent of organic oily solvent (diethyl ether), temperature and pH were performed simultaneously using genetic algorithm method. A new software package, MLR-GA, was developed for this purpose. The results indicated that 73.6mM sodium dodecyl sulfate, 13.64% (v/v) 1-butanol, 0.48% (v/v) diethyl ether, column temperature of 32.5 degrees C and 0.02M phosphate buffer of pH 6.99 are the best conditions for separation of fat-soluble vitamins. At the optimized conditions, the calibration plots for the vitamins were obtained and detection limits (1.06-3.69microgmL(-1)), accuracy (recoveries>94.3), precision (RSD<3.96) and linearity (0.01-10mgmL(-1)) were estimated. Finally, the amount of vitamins in multivitamin syrup and a sample of fish oil capsule were determined. The results showed a good agreement with those reported by manufactures. Copyright 2010 Elsevier B.V. All rights reserved.
Liu, Jinggao; Benedict, Chauncey R.; Stipanovic, Robert D.; Bell, Alois A.
1999-01-01
Cotton contains a unique group of terpenoids including desoxyhemigossypol, hemigossypol, gossypol, hemigossypolone, and the heliocides that are part of the plant's defense system against pathogenic fungi and insects. Desoxyhemigossypol is a key intermediate in the biosynthesis of these compounds. We have isolated, purified, and characterized from cotton stele tissue infected with Verticillium dahliae a methyltransferase (S-adenosyl-l-Met: desoxyhemigossypol-6-O-methyltransferase) that specifically methylates the 6-position of desoxyhemigossypol to form desoxyhemigossypol-6-methyl ether with a Km value of 4.5 μm for desoxyhemigossypol and a Kcat/Km of 5.08 × 104 s−1 (mol/L)−1. The molecular mass of the native enzyme is 81.4 kD and is dissociated into two subunits of 41.2 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. The enzymatic reaction does not require Mg+2 and is inhibited 98% with 10 mm p-chloromercuribenzoate. Desoxyhemigossypol-6-methyl ether leads to the biosynthesis of methylated hemigossypol, gossypol, hemigossypolone, and the heliocides, which lowers their effectiveness as phytoalexins and insecticides. PMID:10557251
Hydrophobic tail length plays a pivotal role in amyloid beta (25-35) fibril-surfactant interactions.
Bag, Sudipta; Chaudhury, Susmitnarayan; Pramanik, Dibyendu; DasGupta, Sunando; Dasgupta, Swagata
2016-09-01
The amyloid β-peptide fragment comprising residues 25-35 (Aβ25-35 ) is known to be the most toxic fragment of the full length Aβ peptide which undergoes fibrillation very rapidly. In the present work, we have investigated the effects of the micellar environment (cationic, anionic, and nonionic) on preformed Aβ25-35 fibrils. The amyloid fibrils have been prepared and characterized by several biophysical and microscopic techniques. Effects of cationic dodecyl trimethyl ammonium bromide (DTAB), cetyl trimethylammonium bromide (CTAB), anionic sodium dodecyl sulfate (SDS), and nonionic polyoxyethyleneoctyl phenyl ether (Triton X-100 or TX) on fibrils have been studied by Thioflavin T fluorescence, UV-vis spectroscopy based turbidity assay and microscopic analyses. Interestingly, DTAB and SDS micelles were observed to disintegrate prepared fibrils to some extent irrespective of their charges. CTAB micelles were found to break down the fibrillar assembly to a greater extent. On the other hand, the nonionic surfactant TX was found to trigger the fibrillation process. The presence of a longer hydrophobic tail in case of CTAB is assumed to be a reason for its higher fibril disaggregating efficacy, the premise of their formation being largely attributed to hydrophobic interactions. Proteins 2016; 84:1213-1223. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Myeongjin; Oh, Ilgeun; Kim, Jooheon
2015-05-01
Three-dimensional hierarchical micro and mesoporous silicon carbide spheres (MMPSiC) are prepared by the template method and carbonization reaction via the aerosol spray drying method. The mesopores are generated by the self-assembly of the structure-directing agents, whereas the micropores are derived from the partial evaporation of Si atoms during carbonization. To investigate the effect of mesopore size on electrochemical performance, three types of MMPSiC with different mesopore size were fabricated by using three different structure directing agents (cetyltriethylammonium bromide (CTAB), Polyethylene glycol hexadecyl ether (Brij56), and Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (P123)). The MMPSiC electrode prepared with Brij56 exhibits the highest charge storage capacity with a specific capacitance of 253.7 F g-1 at a scan rate of 5 mV s-1 and 87.9% rate performance from 5 to 500 mV s-1 in 1 M Na2SO4 aqueous electrolyte. The outstanding electrochemical performance might be because of the ideal mesopore size, which effectively reduces the resistant pathways for ion diffusion in the pores and provides a large accessible surface area for ion transport/charge storage. These encouraging results demonstrate that the MMPSiC prepared with Brij56 is a promising candidate for high performance electrode materials for supercapacitors.
Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.
Nielsen, A D; Borch, K; Westh, P
2000-06-15
The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.
Altunay, Nail; Gürkan, Ramazan
2017-03-01
A new and simple ultrasonic-assisted extraction (UAE) procedure was developed for the determination of inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry (HG-AAS). The various analytical variables affecting complex formation and extraction efficiency were investigated and optimised. The method is based on selective complex formation of As(III) and Se(IV) in the presence of excess As(V) and Se(VI) with toluidine red in the presence of tartaric acid at pH 4.5, and then extraction of the resulting condensation products into the micellar phase of non-ionic surfactant, polyethylene glycol dodecyl ether, Brij 35. Under optimised conditions, good linear relationships were obtained in the ranges of 4-225 and 12-400 ng l - 1 with limits of detection of 1.1 and 3.5 ng l - 1 for As(III) and Se(IV), respectively. The repeatability was better than 3.9% for both analytes (n = 10, 25 ng l - 1 ) while reproducibility ranged from 4.2% to 4.8%. The recoveries of As(III) and Se(IV) spiked at 25-100 ng l - 1 were in the range of 94.2-104.8%. After pre-concentration of a 5.0 ml sample, the sensitivity enhancement factors for As(III) and Se(IV) were 185 and 140, respectively. Accuracy was assessed by analysis of two standard reference materials (SRMs) and spiked recovery experiments. The method was successfully applied to the accurate and reliable determination of total As and total Se by HG-AAS after pre-reduction with a mixture of L-cysteine and tartaric acid. Finally, the method was shown to be rapid and sensitive, with good results for extraction, pre-concentration and determination of total As and Se contents (as As(III) and Se(IV)) from food samples.
Nascimento, Danielle Silva; Insausti, Matías; Band, Beatriz Susana Fernández; Grünhut, Marcos
2018-02-15
Octyl p-methoxycinnamate (OMC) is one of the most widely used sunscreen agents. However, the efficiency of OMC as UV filter over time is affected due to the formation of the cis-isomer which presents a markedly lower extinction coefficient (ε cis =12,600L mol -1 cm -1 at 291nm) than the original trans-isomer (ε trans =24,000L mol -1 cm -1 at 310nm). In this work, a novel carrier for OMC based on an oil-in-water microemulsion is proposed in order to improve the photostability of this sunscreen. The formulation was composed of 29.2% (w/w) of a 3:1 mixture of ethanol (co-surfactant) and decaethylene glycol mono-dodecyl ether (surfactant), 1.5% (w/w) of oleic acid (oil phase) and 69.2% (w/w) of water. This microemulsion was prepared in a simple way, under moderate stirring at 25°C and using acceptable, biocompatible and accessible materials for topical use. OMC was incorporated in the vehicle at a final concentration of 5.0% (w/w), taking into account the maximum permitted levels established by international norms. Then, a photolysis study of the loaded formulation was performed using a continuous flow system. The direct photolysis was monitored over time by molecular fluorescence. The recorded spectra data between 370 y 490nm were analyzed by multivariate curve resolution-alternating least squares algorithm. The kinetic rate constants corresponding to the photolysis of the trans-OMC were calculated from the concentration profiles, resulting in 0.0049s -1 for the trans-OMC loaded microemulsion and 0.0131s -1 for the trans-OMC in aqueous media. These results demonstrate a higher photostability of the trans-OMC when loaded in the proposed vehicle with respect to the free trans-OMC in aqueous media. Copyright © 2017 Elsevier B.V. All rights reserved.
Taketa, Yoshikazu; Inoue, Kaoru; Takahashi, Miwa; Sakamoto, Yohei; Watanabe, Gen; Taya, Kazuyoshi; Yoshida, Midori
2016-06-01
Sulpiride and ethylene glycol monomethyl ether (EGME) are known ovarian toxicants that stimulate prolactin (PRL) secretion, resulting in hypertrophy of the corpora lutea and increased progesterone (P4) production. The purpose of the present study was to investigate how the PRL stimulatory agents affected uterine carcinogenesis and to clarify the effects of PRL on endometrial adenocarcinoma progression in rats. Ten-week-old female Donryu rats were treated once with N-ethyl-N'-nitro-N-nitrosoguanidine (20 mg kg(-1) ), followed by treatment with sulpiride (200 ppm) or EGME (1250 ppm) from 11 weeks of age to 12 months of age. Sulpiride treatment inhibited the incidence of uterine adenocarcinoma and precancerous lesions of atypical endometrial hyperplasia, whereas EGME had no effect on uterine carcinogenesis. Sulpiride markedly prevented the onset of persistent estrus throughout the study period, and EGME delayed and inhibited the onset of persistent estrus. Moreover, sulpiride-treated animals showed high PRL and P4 serum levels without changes in the levels of estradiol-17β, low uterine weights and histological luteal cell hypertrophy. EGME did not affect serum PRL and P4 levels. These results suggest that the prolonged low estradiol-17β to P4 ratio accompanied by persistent estrous cycle abnormalities secondary to the luteal stimulatory effects of PRL may explain the inhibitory effects of sulpiride on uterine carcinogenesis in rats. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Nibu; Suemori; Inoue
1997-07-01
Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) were used to construct and characterize the phase diagram for a binary mixture of heptaethylene glycol decyl ether (C10 E7 ) and water in the temperature range from -60 to 80°C. Plots of the endothermic peak temperatures obtained by DSC measurements against compositions provided eutectic solid-liquid phase boundaries with a eutectic composition of 34 wt% of H2 O. On the other hand, heat of fusion per unit weight of the mixture changed discretely at the composition corresponding to the "eutectic" composition. Furthermore, the IR spectra obtained for the mixture in the solid phase were well reproduced as a superposition of those for the mixture of 34 wt% H2 O and pure components but were not reproduced by superimposing the spectra obtained for the solid surfactant and ice. These observations indicate that a solid phase compound is formed between C10 E7 and water with a stoichiometry of 1:14 and that the compound and pure components exist as separate phases, rather than the phases separating into surfactant and ice, which would be expected if the C10 E7 /water mixture formed a true eutectic mixture system. It is estimated from the composition corresponding to the phase compounds that two molecules of water per oxyethylene unit are bound to hydrophilic polyoxyethylene chain of C10 E7 to form a hydrated compound.
Zhang, Jianjun; Wen, Huijie; Yue, Liping; Chai, Jingchao; Ma, Jun; Hu, Pu; Ding, Guoliang; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan
2017-01-01
Sodium ion battery is one of the promising rechargeable batteries due to the low-cost and abundant sodium sources. In this work, a monolithic sodium ion battery based on a Na 3 V 2 (PO 4 ) 3 cathode, MoS 2 layered anode, and polyether-based polymer electrolyte is reported. In addition, a new kind of polysulfonamide-supported poly(ethylene glycol) divinyl ether based polymer electrolyte is also demonstrated for monolithic sodium ion battery via in situ preparation. The resultant polymer electrolyte exhibits relatively high ionic conductivity (1.2 mS cm -1 ) at ambient temperature, wide electrochemical window (4.7 V), and favorable mechanical strength (25 MPa). Moreover, such a monolithic Na 3 V 2 (PO 4 ) 3 /MoS 2 sodium ion battery using this polymer electrolyte delivers outstanding rate capability (up to 10 C) and superior cyclic stability (84%) after 1000 cycles at 0.5 C. What is more essential, such a polymer electrolyte based soft-package monolithic sodium ion cell can still power a red light emitting diode lamp and run finite times without suffering from any internal short-circuit failures, even in the case of a bended and wrinkled state. Considering these aspects, this work no doubt provides a new approach for the design of a high-performance polymer electrolyte toward monolithic sodium ion battery with exceptional rate capability and high safety. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chang, Ta-Yuan; Huang, Kuei-Hung; Liu, Chiu-Shong; Shie, Ruei-Hao; Chao, Keh-Ping; Hsu, Wen-Hsin; Bao, Bo-Ying
2010-06-15
Many volatile organic compounds (VOCs) are emitted during the manufacturing of thin film transistor liquid crystal displays (TFT-LCDs), exposure to some of which has been reported to be associated with kidney dysfunction, but whether such an effect exists in TFT-LCD industry workers is unknown. This cross-sectional study aimed to investigate the association between exposure to VOCs and kidney dysfunction among TFT-LCD workers. The results showed that ethanol (1811.0+/-1740.4 ppb), acetone (669.0+/-561.0 ppb), isopropyl alcohol (187.0+/-205.3 ppb) and propylene glycol monomethyl ether acetate (PGMEA) (102.9+/-102.0 ppb) were the four dominant VOCs present in the workplace. The 63 array workers studied had a risk of kidney dysfunction 3.21-fold and 3.84-fold that of 61 cell workers and 18 module workers, respectively. Workers cumulatively exposed to a total level of isopropyl alcohol, PGMEA and propylene glycol monomethyl ether> or =324 ppb-year had a significantly higher risk of kidney dysfunction (adjusted OR=3.41, 95% CI=1.14-10.17) compared with those exposed to <25 ppb-year after adjustment for potential confounding factors. These findings indicated that array workers might be the group at greatest risk of kidney dysfunction within the TFT-LCD industry, and cumulative exposure to specific VOCs might be associated with kidney dysfunction. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.
RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels.
Hemp, Sean T; Smith, Adam E; Bunyard, W Clayton; Rubinstein, Michael H; Long, Timothy E
2014-05-13
Reversible-addition fragmentation chain transfer (RAFT) polymerization enabled the synthesis of novel, stimuli-responsive, AB and ABA block copolymers. The B block contained oligo(ethylene glycol) methyl ether methacrylate (OEG) and was permanently hydrophilic in the conditions examined. The A block consisted of diethylene glycol methyl ether methacrylate (DEG) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMA). The A block displayed both salt- and temperature-response with lower critical solution temperatures (LCSTs) dependent on the molar content of TMA and the presence of salt. Higher TMA content in the AB diblock copolymers increased the critical micelle temperatures (CMT) in HPLC-grade water due to an increased hydrophilicity of the A block. Upon addition of 0.9 wt% NaCl, the CMTs of poly(OEG- b -DEG 95 TMA 5 ) decreased from 50 °C to 36 °C due to screening of electrostatic repulsion between the TMA units. ABA triblock copolymers displayed excellent hydrogel properties with salt- and temperature-dependent gel points. TMA incorporation in the A block increased the gel points for all triblock copolymers, and salt-response increased with higher TMA composition in the A block. For example, poly(DEG 98 TMA 2 - b -OEG- b -DEG 98 TMA 2 ) formed a hydrogel at 40 °C in HPLC-grade water and 26 °C in 0.9 wt% NaCl aqueous solution. These salt- and temperature-responsive AB diblock and ABA triblock copolymers find applications as drug delivery vehicles, adhesives, and hydrogels.
Toxicity review of ethylene glycol monomethyl ether and its acetate ester.
Johanson, G
2000-05-01
Ethylene glycol monomethyl ether (EGME) and its acetate ester (EGMEA) are highly flammable, colorless, moderately volatile liquids with very good solubility properties. They are used in paints, lacquers, stains, inks and surface coatings, silk-screen printing, photographic and photo lithographic processes, for example, in the semiconductor industry, textile and leather finishing, production of food-contact plastics, and as an antiicing additive in hydraulic fluids and jet fuel. EGME and EGMEA are efficiently absorbed by inhalation as well as via dermal penetration. Dermal absorption may contribute substantially to the total uptake following skin contact with liquids or vapours containing EGME or EGMEA. EGMEA is rapidly converted to EGME in the body and the two substances are equally toxic in animals. Therefore, the two substances should be considered as equally hazardous to man. Effects on peripheral blood, testes, and sperm have been reported at occupational exposure levels ranging between 0.4 and 10 ppm EGME in air, and with additional, possibly substantial, dermal exposure. Severe malformations and disturbed hematopoiesis have been linked with exposure to EGME and EGMEA at unknown, probably high, levels. Embryonic deaths in monkeys and impaired spermatogenesis in rabbits have been reported after daily oral doses of 12 and 25 mg per kg body weight, respectively. In several studies, increased frequency of spontaneous abortions, disturbed menstrual cycle, and subfertility have been demonstrated in women working in the semiconductor industry. The contribution of EGME in relation to other exposure factors in the semiconductor industry is unclear.
Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W
2006-06-01
Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter excessive exposures to these pollutants owing to cleaning product emissions. Mitigation options include screening of product ingredients and increased ventilation during and after cleaning. Certain practices, such as the use of some products in dilute solution vs. full-strength and the prompt removal of cleaning supplies from occupied spaces, can reduce emissions and exposures to 2-butoxyethanol and other volatile constituents. Also, it may be prudent to limit use of products containing ozone-reactive constituents when indoor ozone concentrations are elevated either because of high ambient ozone levels or because of the indoor use of ozone-generating equipment.
Molecularly Imprinted Microrods via Mesophase Polymerization.
Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco
2017-12-28
The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.
2010-03-01
added as appropriate. Fuel was filtered with a 0.45µm hydrophobic cellulose nitrate filter (Nalge Nunc, Rochester, NY) prior to use in the test setup...it may not be clear from the images above, biofilms were also present in all 0% test setups. In fuel systems, a biofilm is a microbial growth...formation that typically appears as a sheen, pellicule, or mat that forms between the fuel and water layers or on the interior sides of a tank. Biofilms
NASA Astrophysics Data System (ADS)
Kohyama, Tetsu; Kaneko, Fumiya; Ly, Saksatha; Hamzik, James; Jaber, Jad; Yamada, Yoshiaki
2017-03-01
Weak-polar solvents like PGMEA (Propylene Glycol Monomethyl Ether Acetate) or CHN (Cyclohexanone) are used to dissolve hydrophobic photo-resist polymers, which are challenging for traditional cleaning methods such as distillation, ion-exchange resins service or water-washing processes. This paper investigated two novel surface modifications to see their effectiveness at metal removal and to understand the mechanism. The experiments yielded effective purification methods for metal reduction, focusing on solvent polarities based on HSP (Hansen Solubility Parameters), and developing optimal purification strategies.
2010-08-01
ALTERNATIVE FUEL SYSTEM ICING INHIBITOR FOR JP-8 FUEL 5a. CONTRACT NUMBER F33615-03-2-2347 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62203F...Government. The authors would like to acknowledge funding support from the DoD Reduction of Total Ownership Cost program through Ed Wells of ASC...following individuals contributed substantially to the success of this program : Rex Cash of the 540 ACSS/GFLBB, Travis Whitmer of Boeing IDS, Tedd Biddle of
Synthesis, characterization and cells and tissues imaging of carbon quantum dots
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Qilong; Zhou, JingE.; Wang, Yiting; Yu, Lei; Peng, Hui; Zhu, Jianzhong
2017-10-01
Compare to other quantum dots, carbon quantum dots have its own incomparable advantages, such as low cell toxicity, favorable biocompatibility, cheap production cost, mild reaction conditions, easy to large-scale synthesis and functionalization. In this thesis, we took citric acid monohydrate and diethylene glycol bis (3-aMinopropyl) ether as materials, used decomposition method to acquire carbon quantum dots (CQDs) which can emission blue fluorescence under ultraviolet excitation. In the aspect of application, we achieved the biological imaging of CQDs in vivo and in vitro.
Hydrogen bonding directed self-assembly of small-molecule amphiphiles in water.
Xu, Jiang-Fei; Niu, Li-Ya; Chen, Yu-Zhe; Wu, Li-Zhu; Tung, Chen-Ho; Yang, Qing-Zheng
2014-08-01
Compounds comprising one or two quadruply hydrogen bonding units, 2-ureido-4[1H]-pyrimidinone (UPy) and tris(tetraethylene glycol monomethyl ether) moieties, were reported to form highly stable hydrogen-bonded assemblies in water. Compound 1, containing one UPy, assembles into vesicles, and compound 2, containing two UPy units, forms micelles. The aggregates disassemble reversibly when the solution pH is raised to 9.0 or above. The results demonstrate the utility of hydrogen bonding to direct the self-assembly of small-molecule building blocks in aqueous media.
Delplace, Vianney; Guégain, Elise; Harrisson, Simon; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien
2015-08-18
2-Methylene-4-phenyl-1,3-dioxolane (MPDL) was successfully used as a controlling comonomer in NMP with oligo(ethylene glycol) methyl ether methacrylate (MeOEGMA) to prepare well-defined and degradable PEG-based P(MeOEGMA-co-MPDL) copolymers. The level of ester group incorporation is controlled, leading to reductions in molecular weight of up to 95% on hydrolysis. Neither the polymer nor its degradation products displayed cytoxicity. The method was also successfully applied to methyl methacrylate.
Aduri, Nanda G; Ernst, Heidi A; Prabhala, Bala K; Bhatt, Shweta; Boesen, Thomas; Gajhede, Michael; Mirza, Osman
2018-01-08
The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer. Copyright © 2017 Elsevier Inc. All rights reserved.
Hojniak, Sandra D; Silverwood, Ian P; Khan, Asim Laeeq; Vankelecom, Ivo F J; Dehaen, Wim; Kazarian, Sergei G; Binnemans, Koen
2014-07-03
Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, the two classes of ILs benefit from the presence of a nitrile group in different ways. The difunctionalized pyrrolidinium ILs exhibit an increase in CO2 permeance, whereas the permeances of the contaminant gases rise negligibly, resulting in high gas separation selectivities. In the imidazolium ILs, the presence of a nitrile group does not always increase the CO2 permeance nor does it increase the CO2 solubility, as showed in situ by the ATR-FTIR spectroscopic method. High selectivity of these ILs is caused by the considerably reduced permeances of N2 and CH4, most likely due to the ability of the -CN group to reject the nonpolar contaminant gases. Apart from the CO2 solubility, IL-CO2 interactions and IL swelling were studied with the in situ ATR-FTIR spectroscopy. Different strengths of the IL-CO2 interactions were found to be the major difference between the two classes of ILs. The difunctionalized ILs interacted stronger with CO2 than the glycol-functionalized ILs, as manifested in the smaller bandwidths of the bending mode band of CO2 for the latter.
NASA Astrophysics Data System (ADS)
Bergantini, Alexandre; Góbi, Sándor; Abplanalp, Matthew J.; Kaiser, Ralf I.
2018-01-01
The underlying formation mechanisms of complex organic molecules (COMs)—in particular, structural isomers—in the interstellar medium (ISM) are largely elusive. Here, we report new experimental findings on the role of methanol (CH3OH) and methane (CH4) ices in the synthesis of two C2H6O isomers upon interaction with ionizing radiation: ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3). The present study reproduces the interstellar abundance ratios of both species with ethanol to dimethyl ether branching ratios of (2.33 ± 0.14):1 suggesting that methanol and methane represents the key precursor to both isomers within interstellar ices. Exploiting isotopic labeling combined with reflectron time-of-flight mass spectrometry (Re-TOF-MS) after isomer selective vacuum ultra-violet (VUV) photoionization of the neutral molecules, we also determine the formation mechanisms of both isomers via radical–radical recombination versus carbene (CH2) insertion with the former pathway being predominant. Formation routes to higher molecular weight reaction products such as ethylene glycol (HOCH2CH2OH), dimethyl peroxide (CH3OOCH3), and methoxymethanol (CH3OCH2OH) are discussed briefly as well.
Park, Sin Young; Cheong, Won Jo
2015-09-01
This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.
Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława
2016-02-01
Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.
2005-08-01
Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractionalmore » emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.« less
Zhu, Chongyu; Schneider, Elena K; Nikolaou, Vasiliki; Klein, Tobias; Li, Jian; Davis, Thomas P; Whittaker, Michael R; Wilson, Paul; Kempe, Kristian; Velkov, Tony; Haddleton, David M
2017-07-19
Through the recently developed copper-mediated photoinduced living radical polymerization (CP-LRP), a novel and well-defined polymeric prodrug of the antimicrobial lipopeptide colistin has been developed. A colistin initiator (Boc 5 -col-Br 2 ) was synthesized through the modification of colistin on both of its threonine residues using a cleavable initiator linker, 2-(2-bromo-2-methylpropanoyloxy) acetic acid (BMPAA), and used for the polymerization of acrylates via CP-LRP. Polymerization proceeds from both sites of the colistin initiator, and through the polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA 480 ), three water-soluble polymer-colistin conjugates (col-PPEGA, having degrees of polymerization of 5, 10, and 20) were achieved with high yield (conversion of ≥93%) and narrow dispersities (Đ < 1.3) in 2-4 h. Little or no effect on the structure and activity of the colistin was observed during the synthesis, and most of the active colistin can be recovered from the conjugates in vitro within 2 days. Furthermore, in vitro biological analyses including disk diffusion, broth microdilution, and time-kill studies suggested that all of the conjugates have the ability to inhibit the growth of multidrug-resistant (MDR) Gram-negative bacteria, of which col-PPEGA DP5 and DP10 showed similar or better antibacterial performance compared to the clinically relevant colistin prodrug CMS, indicating their potential as an alternative antimicrobial therapy. Moreover, considering the control over the polymerization, the CP-LRP technique has the potential to provide an alternative platform for the development of polymer bioconjugates.
NASA Astrophysics Data System (ADS)
Rusen, Laurentiu; Neacsu, Patricia; Cimpean, Anisoara; Valentin, Ion; Brajnicov, Simona; Dumitrescu, L. N.; Banita, Janina; Dinca, Valentina; Dinescu, Maria
2016-06-01
Understanding and controlling natural and synthetic biointerfaces is known to be the key to a wide variety of application within cell culture and tissue engineering field. As both material characteristics and methods are important in tailoring biointerfaces characteristics, in this work we explore the feasibility of using Matrix Assisted Pulsed Laser Evaporation technique for obtaining synthetic copolymeric biocoatings (i.e. poly(ethylene glycol)-block-poly(ɛ-caprolactone) methyl ether) for evaluating in vitro Vero and MC3T3-E1 pre-osteoblasts cell response. Characterization and evaluation of the coated substrates were carried out using different techniques. The Fourier transform infrared spectroscopy data demonstrated that the main functional groups in the MAPLE-deposited films remained intact. Atomic Force Microscopy images showed the coatings to be continuous, with the surface roughness depending on the deposition parameters. Moreover, the behaviour of the coatings in medium mimicking the pH and temperature of the human body was studied and corelated to degradation. Spectro-ellipsometry (SE) and AFM measurements revealed the degradation trend during immersion time by the changes in coating thickness and roughness. In vitro biocompatibility was studied by indirect contact tests on Vero cells in accordance with ISO 10993-5/2009. The results obtained in terms of cell morphology (phase contrast microscopy) and cytotoxicity (LDH and MTT assays) proved biocompatibility. Furthermore, direct contact assays on MC3T3-E1 pre-osteoblasts demonstrated the capacity of all analyzed specimens to support cell adhesion, normal cellular morphology and growth.
Jia, Tao; Huang, Shuo; Yang, Cangjie; Wang, Mingfeng
2017-08-07
Multifunctional stable and stimuli-responsive drug delivery systems are important for efficient cancer treatment due to their advantages such as enhanced cancer-targeting efficiency, improved pharmacokinetics, minimized drug leaching, and reduced undesirable side effects. Here we report a robust and pH-responsive anticancer drug delivery system based on unimolecular micelles of star-like amphiphilic copolymers. The polymers (denoted as CPOFs) were facilely synthesized via one-step atom transfer radical polymerization of functionalizable benzoaldehyde and hydrophilic poly[(oligo ethylene glycol) methyl ether methacrylate] as comonomers from the core of heptakis [2,3,6-tri-o-(2-bromo-2-methyl propionyl]-β-cyclodextrin as the initiator. Doxorubicin (DOX) as an anticancer drug was covalently linked to the benzoaldehyde groups of CPOFs through pH-sensitive Schiff-base bonds. The DOX-conjugated polymers, denoted as CPOF-DOX, formed robust unimolecular micelles with an average diameter of 18 nm in aqueous media. More importantly, these unimolecular micelles showed higher drug loading capacity and more controllable drug release characteristics, compared to our previous unimolecular micelles of β-cyclodextrin-poly(lactic acid)-b-poly[(oligo ethylene glycol) methyl ether methacrylates] that physically encapsulated DOX via hydrophobic interaction. Moreover, the CPOF-DOX unimolecular micelles could be internalized by human cervical cancer HeLa cells in a stepwise way and showed less cytotoxicity compared to carrier-free DOX. We foresee that CPOF-DOX would provide a promising robust and controllable anticancer drug delivery system for future animal study and clinical trials for cancer treatment.
NASA Astrophysics Data System (ADS)
Boehman, B.; Lyons, S. L.; Geng, Z.; White, H. K.
2016-02-01
In an attempt to mitigate the impact of the oil released from the Deepwater Horizon (DWH) oil spill, chemical dispersants (Corexit 9527 and Corexit 9500A, from Nalco Co.) were applied to the surface and subsurface waters of the Gulf of Mexico. Over the past five years studies have investigated the fate of oil from the spill and the applied dispersants, although significantly less is known about the latter. To determine the presence of dispersant in environmental samples, dioctyl sodium sulfosuccinate (DOSS), a component of both Corexit mixtures, has previously been examined in samples taken from the water column, coastal beaches and deep-sea sediments. This study expands upon this work by developing a method to extract dipropylene glycol n-butyl ether (DPnB), an additional compound present in Corexit, from sand and sediment samples contaminated with oil from the DWH spill. Controls spiked with a known quantity of DPnB were extracted with a range of organic solvents of different polarities to optimize the extraction of DPnB. Total organic extracts were then subjected to silica gel chromatography to isolate DPnB from any oil that was co-extracted. All samples were concentrated prior to analysis via gas chromatography mass spectrometry (GC/MS) using selected ion monitoring (SIM). The analysis and quantification of DPnB, which has different chemical properties than DOSS, will provide additional insight into the mechanisms that control the fate of oil and dispersant mixtures in the marine environment.
Lahari, Challa; Jasti, Lakshmi S; Fadnavis, Nitin W; Sontakke, Kalpana; Ingavle, Ganesh; Deokar, Sarika; Ponrathnam, Surendra
2010-01-19
Effects of changes in hydrophobicity of polymeric support on structure and activity of alpha-chymotrypsin (E.C. 3.4.21.1) have been studied with copolymers of allyl glycidyl ether (AGE) and ethylene glycol dimethacrylate (EGDM) with increasing molar ratio of EGDM to AGE (cross-link density 0.05 to 1.5). The enzyme is readily adsorbed from aqueous buffer at room temperature following Langmuir adsorption isotherms in unexpectedly large amounts (25% w/w). Relative hydrophobicity of the copolymers has been assessed by studying adsorption of naphthalene and Fmoc-methionine by the series of copolymers from aqueous solutions. Polymer hydrophobicity appears to increase linearly on increasing cross-link density from 0.05 to 0.25. Further increase in cross-link density causes a decrease in naphthalene binding but has little effect on binding of Fmoc-Met. Binding of alpha-chymotrypsin to these copolymers follow the trend for Fmoc-methionine binding, rather than naphthalene binding, indicating involvement of polar interactions along with hydrophobic interactions during binding of protein to the polymer. The adsorbed enzyme undergoes extensive denaturation (ca. 80%) with loss of both tertiary and secondary structure on contact with the copolymers as revealed by fluorescence, CD and Raman spectra of the adsorbed protein. Comparison of enzyme adsorption behavior with Eupergit C, macroporous Amberlite XAD-2, and XAD-7 suggests that polar interactions of the EGDM ester functional groups with the protein play a significant role in enzyme denaturation.
Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan
2015-01-01
Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413
Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.
Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin
2014-02-01
A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance.
Zhang, Zhenxiao; Dou, Qian; Gao, Hongkai; Bai, Bing; Zhang, Yongmei; Hu, Debo; Yetisen, Ali K; Butt, Haider; Yang, Xiaoxia; Li, Congju; Dai, Qing
2018-03-01
Potassium detection is critical in monitoring imbalances in electrolytes and physiological status. The development of rapid and robust potassium sensors is desirable in clinical chemistry and point-of-care applications. In this study, composite supramolecular hydrogels are investigated: polyethylene glycol methacrylate and acrylamide copolymer (P(PEGMA-co-AM)) are functionalized with 18-crown-6 ether by employing surface initiated polymerization. Real-time potassium ion monitoring is realized by combining these compounds with quartz crystal microbalance. The device demonstrates a rapid response time of ≈30 s and a concentration detection range from 0.5 to 7.0 × 10 -3 m. These hydrogels also exhibit high reusability and K + ion selectivity relative to other cations in biofluids such as Na + , NH 4 + , Mg 2+ , and Ca 2+ . These results provide a new approach for sensing alkali metal ions using P(PEGMA-co-AM) hydrogels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lin, Xuliang; Qiu, Xueqing; Yuan, Long; Li, Zihao; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie
2015-06-01
Water-soluble lignin-based polyoxyethylene ether (EHL-PEG), prepared from enzymatic hydrolysis lignin (EHL) and polyethylene glycol (PEG1000), was used to improve enzymatic hydrolysis efficiency of corn stover. The glucose yield of corn stover at 72h was increased from 16.7% to 70.1% by EHL-PEG, while increase in yield with PEG4600 alone was 52.3%. With the increase of lignin content, EHL-PEG improved enzymatic hydrolysis of microcrystalline cellulose more obvious than PEG4600. EHL-PEG could reduce at least 88% of the adsorption of cellulase on the lignin film measured by quartz crystal microbalance with dissipation monitoring (QCM-D), while reduction with PEG4600 was 43%. Cellulase aggregated at 1220nm in acetate buffer analyzed by dynamic light scattering. EHL-PEG dispersed cellulase aggregates and formed smaller aggregates with cellulase, thereby, reduced significantly nonproductive adsorption of cellulase on lignin and enhanced enzymatic hydrolysis of lignocelluloses. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, D.W.; Marchetti, A.A.
2001-10-01
Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject ofmore » extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.« less
Mathew, Asha; Cao, Hongliang; Collin, Estelle; Wang, Wenxin; Pandit, Abhay
2012-09-15
A unique hyperbranched polymeric system with a linear poly-2-dimethylaminoethyl methacrylate (pDMAEMA) block and a hyperbranched polyethylene glycol methyl ether methacrylate (PEGMEMA) and ethylene dimethacrylate (EGDMA) block was designed and synthesized via deactivation enhanced atom transfer radical polymerisation (DE-ATRP) for efficient gene delivery. Using this unique structure, with a linear pDMAEMA block, which efficiently binds to plasmid DNA (pDNA) and hyperbranched polyethylene glycol (PEG) based block as a protective shell, we were able to maintain high transfection levels without sacrificing cellular viability even at high doses. The transfection capability and cytotoxicity of the polymers over a range of pDNA concentration were analysed and the results were compared to commercially available transfection vectors such as polyethylene imine (branched PEI, 25 kDa), partially degraded poly(amido amine)dendrimer (dPAMAM; commercial name: SuperFect(®)) in fibroblasts and adipose tissue derived stem cells (ADSCs). Copyright © 2012 Elsevier B.V. All rights reserved.
Preparation and Characterization of Modified Soda Lignin with Polyethylene Glycol
Zhang, Fangda; Lin, Jian; Zhao, Guangjie
2016-01-01
Soda lignin does not have thermal flowing characteristics and it is impossible for it to be further thermally molded. To achieve the fusibility of soda lignin for fiber preparation by melt-spinning, an effective method for soda lignin modification was conducted by cooking it with polyethylene glycol (PEG) 400 at various ratios. The higher the ratio of PEG that was used, the more PEG molecular chains were grafted at the alpha carbon of the soda lignin through ether bonds, resulting in lower thermal transition temperatures and more excellent fusibility. The modified soda lignin with a weight ratio of lignin to PEG of 1:4 exhibited a relative thermal stability of molten viscosity at selected temperatures. Thereafter, the resultant fusible soda lignin was successfully melt-spun into filaments with an average diameter of 33 ± 5 μm, which is smaller than that of some industrial lignins. Accordingly, it is possible to utilize soda lignin to produce fibrous carbonaceous materials. PMID:28773943
Characterization of a developmental toxicity dose-response model.
Faustman, E M; Wellington, D G; Smith, W P; Kimmel, C A
1989-01-01
The Rai and Van Ryzin dose-response model proposed for teratology experiments has been characterized for its appropriateness and applicability in modeling the dichotomous response data from developmental toxicity studies. Modifications were made in the initial probability statements to reflect more accurately biological events underlying developmental toxicity. Data sets used for the evaluation were obtained from the National Toxicology Program and U.S. EPA laboratories. The studies included developmental evaluations of ethylene glycol, diethylhexyl phthalate, di- and triethylene glycol dimethyl ethers, and nitrofen in rats, mice, or rabbits. Graphic examination and statistical evaluation demonstrate that this model is sensitive to the data when compared to directly measured experimental outcomes. The model was used to interpolate to low-risk dose levels, and comparisons were made between the values obtained and the no-observed-adverse-effect levels (NOAELs) divided by an uncertainty factor. Our investigation suggests that the Rai and Van Ryzin model is sensitive to the developmental toxicity end points, prenatal deaths, and malformations, and appears to model closely their relationship to dose. PMID:2707204
Tian, Li Yan; Liu, Yuan Mei; Tian, Guang-Xuan; Wu, Xiang Hua; Li, Zhen; Kou, Jun-Feng; Ou, Ya-Ping; Liu, Sheng Hua; Fu, Wen-Fu
2014-03-14
A series of 1,4-disubstituted ruthenium-vinyl complexes, (E,E)-[{(PMe3)3(CO)ClRu}2(μ-HC=CH-Ar-CH=CH)], in which the 1,4-diethenylphenylene bridge bears two oligo(ethylene glycol)methyl ether side chains at different positions (2,5- and 2,3-positions), were prepared. The respective products were characterized by elemental analyses and NMR spectroscopy. The structures of complexes 1b and 1e were established by X-ray crystallography. The electronic properties of the complexes were investigated by cyclic voltammetry, and IR and UV-vis/NIR spectroscopies. Electrochemical studies showed that the 2,5-substituents better stabilized the mixed-valence states; the electrochemical behavior was greatly affected by lithium cations, especially complex 1g with 2,3-substituents, which was further supported by IR and UV-vis/NIR spectra changes. Spectroelectrochemical studies showed that the redox chemistry was dominated by the non-innocent character of the bridging fragment.
Influence of different surfactants on the physicochemical properties of elastic liposomes.
Barbosa, R M; Severino, P; Preté, P S C; Santana, M H A
2017-05-01
Elastic liposomes are capable to improve drug transport through the skin by acting as penetration enhancers due to the high fluidity and elasticity of the liposome membranes. Therefore, elastic liposomes were prepared and characterized to facilitate the transdermal transport of bioactive molecules. Liposomes consisted of dimyristoylphosphatidylcholine (DMPC) as the structural component, with different surfactants derived from lauric acid as elastic components: C 12 E 5 (polyoxyethylene-5-lauryl ether), PEG4L (polyethyleneglycol-4-lauryl ester), PEG4DL (polyethylene glycol-4-dilauryl ester), PEG8L (polyethylene glycol-8-lauryl ester) and PEG8DL (polyethylene glycol-8-dilauryl ester). The elastic liposomes were characterized in terms of their phospholipid content, mean diameter, size distribution, elasticity and stability during storage, as well as their ability to incorporate surfactant and permeate through 50 nm pore size membranes. The results showed that the phospholipid phase transition temperature, the fluidity of the lipid bilayer resulting from incorporation of the surfactant and the preservation of particle integrity were factors determining the performance of the elastic liposomes in permeating through nanoporous membranes. The best results were obtained using DMPC combined with the surfactants PEG8L or PEG8DL. The findings demonstrate the potential of using elastic liposomes for transdermal administration of drugs.
Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.
Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian
2009-03-26
The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.
Manfra, Loredana; Canepa, Sara; Piazza, Veronica; Faimali, Marco
2016-01-01
Swimming speed alteration and mortality assays with the marine crustacean Artemia franciscana were carried out. EC50 and LC50 values after 24-48h exposures were calculated for two reference toxicants, copper sulphate pentahydrate (CuSO4·5H2O) and Sodium Dodecyl Sulphate (SDS), and an ecotoxicological concern organic compound, Diethylene Glycol (DEG). Different end-points have been evaluated, in order to point out their sensitivity levels. The swimming speed alteration (SSA) was compared to mortality values and also to the hatching rate inhibition (literature data). SSA resulted to be more sensitive than the mortality and with a sensitivity comparable to (or even higher than) the hatching rate endpoint. Copyright © 2015 Elsevier Inc. All rights reserved.
High work function materials for source/drain contacts in printed polymer thin film transistors
NASA Astrophysics Data System (ADS)
Sholin, V.; Carter, S. A.; Street, R. A.; Arias, A. C.
2008-02-01
Studies of materials for source-drain electrodes in ink-jet printed polymer-based thin film transistors (TFTs) are reported. Two systems are studied: a blend of Ag nanoparticles with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and an ethylene glycol-doped PEDOT:PSS solution (modified-PEDOT). The semiconductor used is the polythiophene derivative poly [5,5'-bis(3-dodecyl-2-thienyl)-2,2,2'-bithiophene]. PEDOT:Ag blends and modified-PEDOT yield TFTs with mobilities around 10-2 and 10-3cm2/Vs, respectively, subthreshold slopes around 1.6V/decade and on-to-off current ratios of 106-107. Both systems show considerable improvement over printed TFTs with Ag nanoparticle source-drain electrodes. Results on film resistivity and morphology are discussed along with device characteristic analysis.
Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank
2014-06-03
We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.
Biodegradable containers from green waste materials
NASA Astrophysics Data System (ADS)
Sartore, Luciana; Schettini, Evelia; Pandini, Stefano; Bignotti, Fabio; Vox, Giuliano; D'Amore, Alberto
2016-05-01
Novel biodegradable polymeric materials based on protein hydrolysate (PH), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) were obtained and their physico-chemical properties and mechanical behaviour were evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, were used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable-based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of PH or in packaging.
NASA Astrophysics Data System (ADS)
Yokoyama, Shun; Takahashi, Hideyuki; Itoh, Takashi; Motomiya, Kenichi; Tohji, Kazuyuki
2014-01-01
Surface oxides on small (2-5 μm) copper metal particles can be removed by chemical reaction with tris(2,3-dibromopropyl) isocyanurate (TIC) in diethylene glycol mono-n-hexyl ether (DGHE) solution under mild conditions where metal particles are not damaged. Surface oxides convert to copper bromide species and subsequently dissolve into the solvent. It was found that resultant surface species are resistant to re-oxidation due to remaining surface bromides. This finding opens up a possibility to create microclines based on cheap copper nanoparticles.
Liquid Quinones for Solvent-Free Redox Flow Batteries.
Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi
2017-11-01
Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.
2005-04-01
Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeksmore » 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations were performed: (1) uncertainty factor application followed by interspecies extrapolation (PBPK modeling); and (2) interspecies extrapolation followed by uncertainty factor application. The resulting reference values for these two approaches are substantially different, with values from the former approach being 7-fold higher than those from the latter approach. Such a striking difference between the two approaches reveals an underlying issue that has received little attention in the literature regarding the application of uncertainty factors and interspecies extrapolations to compounds where saturable kinetics occur in the range of the NOAEL. Until such discussions have taken place, reference values based on the latter approach are recommended for risk assessments involving human exposures to PGME and PGMEA.« less
Osanai, Arihiro; Harada, Shigeharu; Sakamoto, Kimitoshi; Shimizu, Hironari; Inaoka, Daniel Ken; Kita, Kiyoshi
2009-01-01
In adult Ascaris suum (roundworm) mitochondrial membrane-bound complex II acts as a rhodoquinol-fumarate reductase, which is the reverse reaction to that of mammalian complex II (succinate-ubiquinone reductase). The adult A. suum rhodoquinol-fumarate reductase was crystallized in the presence of octaethyleneglycol monododecyl ether and n-dodecyl-β-d-maltopyranoside in a 3:2 weight ratio. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 123.75, b = 129.08, c = 221.12 Å, and diffracted to 2.8 Å resolution using synchrotron radiation. The presence of two molecules in the asymmetric unit (120 kDa × 2) gives a crystal volume per protein mass (V M) of 3.6 Å3 Da−1. PMID:19724139
MacDonald, I J; Morgan, J; Bellnier, D A; Paszkiewicz, G M; Whitaker, J E; Litchfield, D J; Dougherty, T J
1999-11-01
To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.
Radioiodinated cholesteryl ester analogs as residualizing tracers of lipoproteins disposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeForge, L.E.
1989-01-01
Due to the importance of low density lipoprotein (LDL) in lipid metabolism and atherosclerosis, efforts were made to incorporate {sup 125}I-cholesteryl iopanoate ({sup 125}I-CI), a residualizing cholesteryl ester (CE) analog, into the lipid core of LDL. This preparation is potentially useful as a scintigraphically detectable tracer of LDL uptake into atheroma and tissues such as the adrenal and liver. Initial studies using a cholesterol-fed rabbit model of atherosclerosis validated the use of {sup 125}I-CI as a tracer of CE deposition. However, scintigraphy revealed considerable nonspecific {sup 125}I-CI uptake due to tissue cholesterol loading. An alternative animal model was the guineamore » pig, which responds moderately to cholesterol feeding and carries the plasma cholesterol predominantly as LDL. Dietary fat and cholesterol, coupled with chronic aortic injury caused by an indwelling catheter, resulted in lipid containing, smooth muscle cell proliferative lesions in many animals. However, further studies are necessary to fully characterize this model. In additional studies, in vitro methods for incorporating {sup 125}I-CI into LDL were examined. These included a reconstitution procedure described by Krieger et al. and a procedure involving incubation of detergent (Tween 20)-solubilized {sup 125}I-CI with plasma. Although both LDL preparations were taken up normally by cultured fibroblasts, the plasma clearance rate of reconstituted LDL was markedly abnormal in guinea pigs. In contrast, LDL labeled by the detergent method cleared from the plasma identically to a radioiodinated LDL control. Therefore, this latter procedure was also used to incorporate two novel radioiodinated cholesteryl ether analogs {sup 125}I-CI cholesteryl m-iodobenzyl ether ({sup 125}I-CIDE) and {sup 125}I-cholesteryl 12-(miodophenyl)dodecyl ether ({sup 125}I-CIDE) into LDL.« less
Assay, Purification, and Partial Characterization of Choline Monooxygenase from Spinach.
Burnet, M.; Lafontaine, P. J.; Hanson, A. D.
1995-01-01
The osmoprotectant glycine betaine is synthesized via the path-way choline -> betaine aldehyde -> glycine betaine. In spinach (Spinacia oleracea), the first step is catalyzed by choline monooxygenase (CMO), and the second is catalyzed by betaine aldehyde dehydrogenase. Because betaine aldehyde is unstable and not easily detected, we developed a coupled radiometric assay for CMO. [14C]Choline is used as substrate; NAD+ and betaine aldehyde dehydrogenase prepared from Escherichia coli are added to oxidize [14C]betaine aldehyde to [14C]glycine betaine, which is isolated by ion exchange. The assay was used in the purification of CMO from leaves of salinized spinach. The 10-step procedure included polyethylene glycol precipitation, polyethyleneimine precipitation, hydrophobic interaction, anion exchange on choline-Sepharose, dimethyldiethanolamine-Sepharose, and Mono Q, hydroxyapatite, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following gel filtration, overall purification was about 600-fold and recovery of activity was 0.5%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a polypeptide with a molecular mass of 45 kD. Taken with the value of 98 kD estimated for native CMO (R. Brouquisse, P. Weigel, D. Rhodes, C.F. Yocum, A.D. Hanson [1989] Plant Physiol 90: 322-329), this indicates that CMO is a homodimer. CMO preparations were red-brown, showed absorption maxima at 329 and 459 nm, and lost color upon dithionite addition, suggesting that CMO is an iron-sulfur protein. PMID:12228495
Mahendra, Shaily; Petzold, Christopher J; Baidoo, Edward E; Keasling, Jay D; Alvarez-Cohen, Lisa
2007-11-01
1,4-dioxane is a probable human carcinogen and an emerging water contaminant. Monooxygenase-expressing bacteria have been shown to degrade dioxane via growth-supporting as well as cometabolic mechanisms. In this study, the intermediates of dioxane degradation by monooxygenase-expressing bacteria were determined by triple quadrupole-mass spectrometry and Fourier transform ion cyclotron resonance-mass spectrometry. The major intermediates were identified as 2-hydroxyethoxyacetic acid (HEAA), ethylene glycol, glycolate, and oxalate. Studies with uniformly labeled 14C dioxane showed that over 50% of the dioxane was mineralized to CO2 by CB1190, while 5% became biomass-associated after 48 h. Volatile organic acids and non-volatiles, respectively, accounted for 20 and 11% of the radiolabeled carbon. Although strains cometabolizing dioxane exhibited limited transformation capacities, nearly half of the initial dioxane was recovered as CO2. On the basis of these analytical results, we propose a pathway for dioxane oxidation by monooxygenase-expressing cells in which dioxane is first converted to 2-hydroxy-1,4-dioxane, which is spontaneously oxidized to HEAA. During a second monooxygenation step, HEAA is further hydroxylated, resulting in a mixture of dihydroxyethoxyacetic acids with a hydroxyl group at the ortho or para position. After cleavage of the second ether bond, small organic molecules such as ethylene glycol, glycolate, glyoxalate, and oxalate are progressively formed, which are then mineralized to CO2 via common cellular metabolic pathways. Bioremediation of dioxane via this pathway is not expected to cause an accumulation of toxic compounds in the environment.
Prenatal exposure to glycol ethers and cryptorchidism and hypospadias: a nested case-control study.
Warembourg, Charline; Botton, Jérémie; Lelong, Nathalie; Rouget, Florence; Khoshnood, Babak; Le Gléau, Florent; Monfort, Christine; Labat, Laurence; Pierre, Fabrice; Heude, Barbara; Slama, Rémy; Multigner, Luc; Charles, Marie-Aline; Cordier, Sylvaine; Garlantézec, Ronan
2018-01-01
Glycol ethers (GE) are oxygenated solvents frequently found in occupational and consumer products. Some of them are well-known testicular and developmental animal toxicants. This study aims to evaluate the risk of male genital anomalies in association with prenatal exposure to GE using urinary biomarkers of exposure. We conducted a case-control study nested in two joint mother-child cohorts (5303 pregnant women). Cases of cryptorchidism and hypospadias were identified at birth and confirmed during a 2-year follow-up period (n=14 cryptorchidism and n=15 hypospadias). Each case was matched to three randomly selected controls within the cohorts for region of inclusion and gestational age at urine sampling. Concentrations of five GE acidic metabolites were measured in spot maternal urine samples collected during pregnancy. ORs were estimated with multivariate conditional logistic regressions including a Firth's penalisation. Detection rates of urinary GE metabolites ranged from 8% to 93% and only two were sufficiently detected (>33%) in each cohort to be studied: methoxyacetic acid (MAA) and phenoxyacetic acid (PhAA). A significantly higher risk of hypospadias was associated with the highest tertile of exposure to MAA: OR (95% CI) 4.5(1.4 to 23.4). No association were observed with urinary concentration of PhAA, nor with the risk of cryptorchidism. In view of the toxicological plausibility of our results, this study, despite its small sample size, raises concern about the potential developmental toxicity of MAA on the male genital system and calls for thorough identification of current sources of exposure to MAA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Gardner, Susan E.; Anderson, Donald C.; Webb, Bette J.; Stitzel, Ann E.; Edwards, Morven S.; Spitzer, Roger E.; Baker, Carol J.
1982-01-01
The relative roles of serum factors required for opsonization of type XIV Streptococcus pneumoniae were investigated by means of luminol-enhanced chemiluminescence (CL), bactericidal, and immunofluorescence assays employing adult sera containing high (>1,000 ng of antibody nitrogen per ml) or low (<200 ng of antibody nitrogen per ml) antibody concentrations as determined by radioimmunoassay. Specific antibody concentration correlated directly with both total and heat-labile CL activity (P < 0.005) and with the bactericidal index (P < 0.05) at a serum concentration of 10%. The importance of specific antibody as an opsonin was confirmed by the abolition of CL activity and immunoglobulin immunofluorescence observed after absorption of heated sera with type XIV pneumococcal cells and by the dose response in CL and bactericidal activity observed with the addition of immunoglobulin G to hypogammaglobulinemic serum. A role for the classical complement pathway in opsonization was indicated by significantly greater CL integrals for high-antibody sera than for low-antibody sera depleted of factor D and by the bactericidal activity noted for untreated, but not magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid-chelated low-antibody sera. The alternative pathway contributed more than half of the CL activity of both high- and low-antibody sera. However, after magnesium ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid chelation, only sera with high antibody concentrations or agammaglobulinemic serum reconstituted with immunoglobulin G with high specific antibody levels supported significant bactericidal activity. Therefore, type-specific antibody and complement promote opsonization of type XIV S. pneumoniae, and this may occur via either complement pathway. These results suggest that CL is a suitable tool to delineate serum factors and their contribution to opsonization, but results must be related to other functional assays. PMID:6802760
Li, Guanhua; Hu, Zuojun; Yin, Henghui; Zhang, Yunjian; Huang, Xueling; Wang, Shenming; Li, Wen
2013-01-01
The application of RNA interference techniques is promising in gene therapeutic approaches, especially for cancers. To improve safety and efficiency of small interfering RNA (siRNA) delivery, a triblock dendritic nanocarrier, polyamidoamine-polyethylene glycol-cyclic RGD (PAMAM-PEG-cRGD), was developed and studied as an siRNA vector targeting the human ether-à-go-go-related gene (hERG) in human anaplastic thyroid carcinoma cells. Structure characterization, particle size, zeta potential, and gel retardation assay confirmed that complete triblock components were successfully synthesized with effective binding capacity of siRNA in this triblock nanocarrier. Cytotoxicity data indicated that conjugation of PEG significantly alleviated cytotoxicity when compared with unmodified PAMAM. PAMAM-PEG-cRGD exerted potent siRNA cellular internalization in which transfection efficiency measured by flow cytometry was up to 68% when the charge ratio (N/P ratio) was 3.5. Ligand-receptor affinity together with electrostatic interaction should be involved in the nano-siRNA endocytosis mechanism and we then proved that attachment of cRGD enhanced cellular uptake via RGD-integrin recognition. Gene silencing was evaluated by reverse transcription polymerase chain reaction and PAMAM-PEG-cRGD-siRNA complex downregulated the expression of hERG to 26.3% of the control value. Furthermore, gene knockdown of hERG elicited growth suppression as well as activated apoptosis by means of abolishing vascular endothelial growth factor secretion and triggering caspase-3 cascade in anaplastic thyroid carcinoma cells. Our study demonstrates that this novel triblock polymer, PAMAM-PEG-cRGD, exhibits negligible cytotoxicity, effective transfection, “smart” cancer targeting, and therefore is a promising siRNA nanocarrier. PMID:23569377
Fertility and developmental toxicity studies of diethylene glycol monobutyl ether (DGBE) in rats.
Sitarek, Krystyna; Gromadzińska, Jolanta; Lutz, Piotr; Stetkiewicz, Jan; Świercz, Radosław; Wąsowicz, Wojciech
2012-09-01
The solvent, dimethylene glycol monobutyl ether (DGBE), is a component of latex paints, inks; it is used as a degreasing agent, industrial detergent. The aim of the study was evaluating the effects of DGBE administered by gavage on the estrous cycle and given with drinking water on fertility in rats and early development of their progeny. Female rats were exposed to DGBE by gavage during 8 weeks at 250, 500 or 1000 mg/kg/day. Vaginal smears were collected during the exposure and 4 weeks after its cessation. Fertility studies were performed in male and female animals exposed to in drinking water. Males were exposed for 10 weeks and then mated with females exposed before mating, during pregnancy and lactation. Young animals were observed during 3 weeks after birth. DGBE does not cause disturbances of the menstrual cycle in females. Parameters used to assess the general toxicity indicate that males receiving DGBE in drinking water are more sensitive to this compound than females: significantly greater, dose-dependent relative spleen weight, significant decrease in hematological parameters from 8% to 15% depending on the dose, were observed. Clinical chemistry parameters (HDL-cholesterol, BUN) and some markers of oxidative stress differ between the exposed groups and the control one, but without adverse health effect. The microscopic examination of internal organs did not reveal morphological changes in male and female rats. The results of our study on the impact of exposure to DGBE on fertility in rats indicate that the substance administered for 9-10 weeks to females and males at a limit dose of 1000 mg/kg did not impair fertility or viability of their offspring during the first three weeks of life.
Koizumi, A; Hamade, N; Arai, M; Takatoku, M; Yasuhiko, W; Tsukada, M; Kamiyama, S
1990-01-01
Phosphoglycerate kinase (PGK, EC 2.7.2.3), which is expressed specifically in sperm and spermatids, is an enzyme in the Embden-Meyerhof pathway that converts glucose to pyruvate. We developed an electrophoresis method to determine relative PGK-2 quantity and applied it to evaluate spermatogenesis activity. In the ethylene glycol monomethyl ether (EGME)-induced testicular toxicity, relative PGK-2 quantity had not decreased until 4 weeks of exposure. Mean relative PGK-2 quantities, defined as PGK-2 quantity over PGK-1 quantity in a pooled spleen sample (+/- SD) were: 1.43 +/- 0.32 for control animals (N = 10); 1.67 +/- 0.24 for the group exposed at 500 mg/kg for 5 days (N = 6); 1.85 +/- 0.58 for the group exposed at 500 mg/kg for 2 weeks (N = 6); 0.09 +/- 0.06 for the group exposed at 500 mg/kg for 4 weeks (N = 6); not detectable in animals exposed at 500 mg/kg for 5 weeks (N = 7); 0.208 +/- 0.103 for the group exposed at 250 mg/kg for 5 weeks (N = 6); and 1.35 +/- 0.38 for the group exposed at 125 mg/kg for 5 weeks (N = 6). These relative quantities showed a good correlation with sperm/spermatid counts (r = 0.823, p less than 0.01) and histological findings. These findings suggest that EGME has toxicity on primary spermatocytes and spermatogonia. In the case of sterility associated with a chromosomal abnormality (chromosomal translocation between chromosome X and 16), relative PGK-2 quantity was not detected in any of the seven adult (12 weeks of age) mice, although many primary spermatocytes were detected by histological examination.(ABSTRACT TRUNCATED AT 250 WORDS)
Staples, Charles A; Davis, John W
2002-10-01
Propylene glycol ethers (PGEs) are comprised of mono-, di- and tri-PGEs and several of their acetate esters. The nature of the range of applications that use PGEs suggests that there is a potential for both intentional and unintentional entry of the materials into the environment. Selected physical/chemical properties, fate characteristics, aquatic toxicity data and calculated environmental concentrations were used to assess potential risks from the manufacture, handling, use, and disposal of PGEs. In general, the PGEs are low to moderately volatile, have high aqueous solubilities, low octanol-water partition coefficients (Kow), and bioconcentration factor values of <10, which indicate they are unlikely to accumulate in aquatic food chains. Both abiotic and biological degradation processes reduce environmental concentrations of PGEs. In air, vapor-phase PGEs react with photo-chemically produced hydroxyl radicals and have half-lives ranging from 5.5 to 34.4 h. A variety of ready and inherent biodegradation test methods, as well as tests that simulate biodegradation in wastewater treatment plants, surface water and soil have been conducted on PGEs. Significant aerobic biodegradation was generally observed, with a range of biodegradation half-lives on the order of 5-25 d. Acute aquatic toxicity studies with PGEs resulted in LC50 values ranging from approximately >100 to >20,000 mg/l for freshwater fish, the pelagic invertebrate Daphnia magna, green algae Selenastrum capricornutum (now called Pseudokirchneriella capricornutum) and bacteria. Level 3 multi-media modeling (EQC model of Mackay) was used to simulate regional-scale concentrations of PGEs in air, soil, water, and sediment. Toxicity thresholds were then compared with regional-scale water, soil and sediment concentrations to determine hazard quotients. Based upon this analysis, concentrations of PGEs are unlikely to pose adverse risks to the environment.
Jäger, Alessandro; Jäger, Eliézer; Syrová, Zdeňka; Mazel, Tomas; Kováčik, Lubomír; Raška, Ivan; Höcherl, Anita; Kučka, Jan; Konefal, Rafal; Humajova, Jana; Poučková, Pavla; Štěpánek, Petr; Hrubý, Martin
2018-04-11
Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature < body temperature < melting temperature, lower toxicity (including the toxicity of their degradation products), drug solubilization efficacy, stability against spontaneous hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.
Sato, R; Oshio, H; Koike, H; Inoue, Y; Yoshida, S; Takahashi, N
1991-06-01
Porphyrin accumulation in excised cucumber cotyledons (Cucumis sativus L.) treated with a N-phenylimide S-23142 (N-[4-chloro-2-fluoro-5-propargyloxyphenyl]-3,4,5,6- tetrahydrophthalimide) and a diphenylether acifluorfen-ethyl (ethyl-5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitro benzoic acid) was studied. Most of the accumulated porphyrins were found in the membrane fractions of 6,000g and 30,000g pellets, forming a complex with a membrane polypeptide. The complex was solubilized with 1% n-dodecyl beta-d-maltoside and its molecular mass was estimated to be 63,000 and 66,000 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel permeation high performance liquid chromatography (HPLC), respectively. The polypeptide also existed in untreated cotyledons but had little protoporphyrin IX. The complex was also formed in vitro by mixing the 30,000g pellets from untreated cotyledons and authentic protoporphyrin IX. However, protoporphyrin IX formed the complex specifically with the 63,000 dalton polypeptide and not with the other proteins both in vivo and in vitro. At least four fluorescent porphyrins, including protoporphyrin IX, were found in the acetone extract of the cotyledons by HPLC using a reversed phase column. Protoporphyrin IX was one of the two porphyrins that formed the complex. These results suggest that S-23142 and acifluorfenethyl enhance the accumulation of protoporphyrin IX, which forms the complex with the membrane protein.
Feng, Zujian; Zhao, Junqiang; Li, Yin; Xu, Shuxin; Zhou, Junhui; Zhang, Jianhua; Deng, Liandong; Dong, Anjie
2016-10-20
Thermo-sensitive injectable hydrogels based on poly(ε-caprolactone)/poly(ethylene glycol) (PCL/PEG) block copolymers have attracted considerable attention for sustained drug release and tissue engineering applications. Previously, we have reported a thermo-sensitive hydrogel of P(CL-co-TOSUO)-PEG-P(CL-co-TOSUO) (PECT) triblock copolymers modified by hydrophilic cyclic ether pendant groups 1,4,8-trioxa-[4.6]spiro-9-undecanone (TOSUO). Unfortunately, the low gel modulus of PECT (only 50-70 Pa) may limit its applications. Herein, another kind of thermogelling triblock copolymer of a pendant cyclic ether-modified caprolactonic poloxamer analog, PEG-P(CL-co-TOSUO)-PEG (PECTE), was successfully prepared by control of the hydrophilicity/hydrophobicity balance and chemical compositions of the copolymers. PECTE powder could directly disperse in water to form a stable nanoparticle (NP) aqueous dispersion and underwent sol-gel-sol transition behavior at a higher concentration with the temperature increasing from ambient or lower temperatures. Significantly, the microstructure parameters (e.g., different chemical compositions of the hydrophobic block and topology) played a critical role in the phase transition behavior. Furthermore, comparison studies on PECTE and PEG-PCL-PEG (PECE) showed that the introduction of pendant cyclic ether groups into PCL blocks could avoid unexpected ahead-of-time gelling of the PECE aqueous solution. In addition, the rheological analysis of PECTE and PECT indicated that the storage modulus of the PECTE hydrogel could be 100 times greater than that of the PECT hydrogel under the same mole ratios of TOSUO/CL and lower molecular weight. Consequently, PECTE thermal hydrogel systems are believed to be promising as in situ gel-forming biomaterials for drug delivery and tissue engineering.
Search of non-ionic surfactants suitable for micellar liquid chromatography.
Peris-García, Ester; Rodríguez-Martínez, Jorge; Baeza-Baeza, Juan J; García-Alvarez-Coque, María Celia; Ruiz-Angel, María José
2018-06-19
Most reports in reversed-phase liquid chromatography (RPLC) with micellar mobile phases make use of the anionic sodium dodecyl sulfate. This surfactant masks efficiently the silanol groups that are the origin of the poor efficiencies and tailing peaks observed for basic compounds in conventional RPLC. However, it has the handicap of yielding excessive retention, which forces the addition of an organic solvent to reduce the retention times to practical values. Other surfactants, such as the non-ionic polyoxyethylene(23)lauryl ether (Brij-35), are rarely used. Brij-35 allows the separation of a large range of analytes in adequate retention times, without the need of adding an organic solvent to the mobile phase. However, this non-ionic surfactant shows irreversible adsorption on chromatographic columns and peak shape is poorer. Therefore, the search of non-ionic surfactants with similar properties to Brij-35, but showing reversible adsorption and better peak shape, can be of great interest. In this work, the adequacy of several non-ionic surfactants as modifiers in RPLC has been explored, being polyoxyethylene(10)tridecyl ether particularly attractive. The separation of different types of compounds was checked: sulfonamides (acidic), β-adrenoceptor antagonists and tricyclic antidepressants (basic with diverse polarity), and flavonoids (with and without hydroxyl groups on the aromatic rings). The chromatographic behaviors were examined in terms of retention and peak shape. The results were compared with those obtained with Brij-35.
Rico-Yuste, A; Walravens, J; Urraca, J L; Abou-Hany, R A G; Descalzo, A B; Orellana, G; Rychlik, M; De Saeger, S; Moreno-Bondi, M C
2018-03-15
Molecularly imprinted porous polymer microspheres selective to Alternaria mycotoxins, alternariol (AOH) and alternariol monomethyl ether (AME), were synthesized and applied to the extraction of both mycotoxins in food samples. The polymer was prepared using 4-vinylpiridine (VIPY) and methacrylamide (MAM) as functional monomers, ethylene glycol dimethacrylate (EDMA) as cross-linker and 3,8,9-trihydroxy-6H-dibenzo[b,d]pyran-6-one (S2) as AOH surrogate template. A molecularly imprinted solid phase extraction (MISPE) method has been optimized for the selective isolation of the mycotoxins from aqueous samples coupled to HPLC with fluorescence (λ ex =258nm; λ em =440nm) or MS/MS analysis. The MISPE method was validated by UPLC-MS/MS for the determination of AOH and AME in tomato juice and sesame oil based on the European Commission Decision 2002/657/EC. Method performance was satisfactory with recoveries from 92.5% to 106.2% and limits of quantification within the 1.1-2.8µgkg -1 range in both samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Yide; Yu, Huizhen; Lv, Huafei; Zhang, Hong; Ma, Dongdong; Yang, Hongqin; Xie, Shusen; Peng, Yiru
2016-12-01
A novel series of nanoparticles formed via an electrostatic interaction between the periphery of negatively charged 1-2 generation aryl benzyl ether dendrimer zinc (II) phthalocyanines and positively charged poly(L-lysin) segment of triblock copolymer, poly(L-lysin)-block-poly(ethylene glycol)-block-poly(L-lysin), was developed for the use as an effective photosensitizers in photodynamic therapy. The dynamic light scattering, atomic force microscopy showed that two nanoparticles has a relevant size of 80-150nm. The photophysical properties and singlet oxygen quantum yields of free dendrimer phthalocyanines and nanoparticles exhibited generation dependence. The intracellular uptake of dendrimer phthalocyanines in Hela cells was significantly elevated as they were incorporated into the micelles, but was inversely correlated with the generation of dendrimer phthalocyanines. The photocytotoxicity of dendrimer phthalocyanines incorporated into polymeric micelles was also increased. The presence of nanoparticles induced efficient cell death. Using a mitochondrial-sepcific dye rhodamine 123 (Rh123), our fluorescence microscopic result indicated that nanoparticles localized to the mitochondria. Copyright © 2016 Elsevier B.V. All rights reserved.
Phase equilibrium measurements on twelve binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giles, N.F.; Wilson, H.L.; Wilding, W.V.
1996-11-01
Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model tomore » represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.« less
Adsorption mechanism for xanthene dyes to cellulose granules.
Tabara, Aya; Yamane, Chihiro; Seguchi, Masaharu
2012-01-01
The xanthene dyes, erythrosine, phloxine, and rose bengal, were adsorbed to charred cellulose granules. The charred cellulose granules were preliminarily steeped in ionic (NaOH, NaCl, KOH, KCl, and sodium dodecyl sulfate (SDS)), nonionic (glucose, sucrose, and ethanol), and amphipathic sucrose fatty acid ester (SFAE) solutions, and adsorption tests on the dye to the steeped and charred cellulose granules were conducted. Almost none of the dye was adsorbed when the solutions of ionic and amphipathic molecules were used, but were adsorbed in the case of steeping in the nonionic molecule solutions. Thin-layer chromatography (TLC) and the Fourier transform infra-red (FT-IR) profiles of SFAE which was adsorbed to the charred cellulose granules and extracted by ethyl ether suggested the presence of hydrophobic sites on the surface of the charred cellulose granules. We confirmed that the xanthene dyes could bind to the charred cellulose granules by ionic and hydrophobic bonds.
Maezawa, S; Hayashi, Y; Nakae, T; Ishii, J; Kameyama, K; Takagi, T
1983-09-28
An assessment study was carried out to evaluate the performance of the low-angle laser light scattering technique combined with high-performance gel chromatography in the presence of a nonionic surfactant, octaethyleneglycol n-dodecyl ether, precision differential refractometry and ultraviolet photometry. It was found that the combined technique is highly promising as a method for the determination of the molecular weight of a membrane protein solubilized by the surfactant. For trial, molecular weights of the following membrane proteins of Escherichia coli, both solubilized in oligomeric forms, were measured; porin that forms the transmembrane diffusion pore in the outer membrane, and lambda-receptor protein that facilitates the diffusion of maltose-maltodextrins across the outer membrane. The result obtained indicates that both porin and lambda-receptor protein exist as trimers in the surfactant solution.
Inoue, Tohru; Higuchi, Yuka; Misono, Takeshi
2009-10-01
The melting behavior of polyethyleneglycol dodecyl ethers (C(12)E(6), C(12)E(7), and C(12)E(8)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), was investigated by means of differential scanning calorimetry (DSC). The melting temperature as a function of the surfactant concentration, combined with the cmc curve and cloud point curve, provided phase diagrams for the surfactant/bmimBF(4) mixtures in solvent-rich region. The characteristic feature of the mixtures is an existence of the Krafft temperature which is usually not observed with aqueous solutions of nonionic surfactants. The heat of fusion as a function of the surfactant concentration provided the interaction energy between the surfactant and bmimBF(4). The interaction energy shows a linear dependence on the length of polyoxyethylene (POE) chain of the surfactants, which suggests that the solvation takes place around the POE chain.
NASA Astrophysics Data System (ADS)
Lunter, Dominique; Daniels, Rolf
2016-03-01
Confocal Raman microscopy has become an advancing technique in the characterization of drug transport into the skin. In this study the skin penetration of a local anesthetic from a semisolid preparation was investigated. Furthermore, the effect of the chemical enhancers propylene glycol and POE-23-lauryl ether on its penetration was investigated. The results show that confocal Raman microscopy may provide detailed information on the penetration of APIs into the skin and may elucidate their distribution within the skin with high resolution. The results of the CRM analysis are fully in line with those of conventional permeation and penetration experiments.
2-Methyltetrahydrofuran and cyclopentyl methyl ether for green solid-phase peptide synthesis.
Jad, Yahya E; Acosta, Gerardo A; Khattab, Sherine N; de la Torre, Beatriz G; Govender, Thavendran; Kruger, Hendrik G; El-Faham, Ayman; Albericio, Fernando
2016-02-01
2-MeTHF and CPME were evaluated as greener alternatives for the most employed solvents in peptide synthesis. The ability of these solvents to dissolve amino acid derivatives and a range of coupling reagents were evaluated as well as the swelling of polystyrene and polyethylene glycol resins. In addition, racemization and coupling efficiencies were also determined. We concluded that the use of 2-MeTHF with combination of DIC/OxymaPure gave the lowest racemization level during stepwise synthesis of Z-Phg-Pro-NH2 and the highest purity during SPPS of Aib-enkephalin pentapeptide (H-Tyr-Aib-Aib-Phe-Leu-NH2).
In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.
Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C
2005-11-01
In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.
Deen, G Roshan; Pedersen, Jan Skov
2010-06-17
A clear and stable nonionic model microemulsion consisting of pentaoxyethylene glycol dodecyl ether (C(12)E(5)), water, and 1-chlorotetradecane (CLTD) was prepared. This system was subjected to a systematic temperature quench (perturbation out of equilibrium) in steps of 1.0 degrees C from 20.4 to 15.3 degrees C in the unstable region of its phase diagram. The change in turbidity (for droplet volume fractions of 0.02 and 0.08) and hydrodynamic radius (R(h)) (for a droplet volume fraction of 0.02) of the system on its way to its new equilibrium was measured at each quench temperature. For small systematic temperature quenches just below the emulsification failure boundary (EFB) the turbidity decreases and remains constant indicating quick changes in the microstructures. Further lowering of temperature brings the system to the unstable region where the turbidity and light scattering increase sharply as function of time because of expulsion of excess oil from the microemulsion droplets. The newly formed oil-rich droplets grow in size as a function of time. These observations indicate the existence of a narrow but observable metastable region en route to the new equilibrium where both microemulsion droplets and larger oil-rich droplets coexist. The region in which microemulsion droplets are metastable is very narrow and is concentration-dependent. The presence of a metastable region is as for other similar systems attributed to the presence of a free energy barrier for the formation of the larger oil-rich droplets associated with curvature free energy of the surfactant film. The turbidity-time curves were converted to the radius-time curves using a model assuming monodisperse spherical droplets. The obtained results are in good agreement with the results for the hydrodynamic radius. The observed average radius from both type of measurements decreases in the metastable region. By performing calculation of the influence of eccentricity and size polydispersity on the observed radius, we have shown that the distribution of the microemulsion droplets becomes more homogeneous in the metastable region.
Bournival, G; Ata, S; Karakashev, S I; Jameson, G J
2014-01-15
Most processes involving bubbling in a liquid require small bubbles to maximise mass/energy transfer. A common method to prevent bubbles from coalescing is by the addition of surfactants. In order to get an insight into the coalescence process, capillary bubbles were observed using a high speed cinematography. Experiments were performed in solutions of 1-pentanol, 4-methyl-2-pentanol, tri(propylene glycol) methyl ether, and poly(propylene glycol) for which information such as the coalescence time and the deformation of the resultant bubble upon coalescence was extracted. It is shown in this study that the coalescence time increases with surfactant concentration until the appearance of a plateau. The increase in coalescence time with surfactant concentration could not be attributed only to surface elasticity. The oscillation of the resultant bubble was characterised by the damping of the oscillation. The results suggested that a minimum elasticity is required to achieve an increased damping and considerable diffusion has a detrimental effect on the dynamic response of the bubble, thereby reducing the damping. Copyright © 2013 Elsevier Inc. All rights reserved.
Pereira, Jorge F B; Kurnia, Kiki A; Freire, Mara G; Coutinho, João A P; Rogers, Robin D
2015-07-20
The formation of aqueous biphasic systems (ABS) when mixing aqueous solutions of polyethylene glycol (PEG) and an ionic liquid (IL) can be controlled by modifying the hydrogen-bond-donating/-accepting ability of the polymer end groups. It is shown that the miscibility/immiscibility in these systems stems from both the solvation of the ether groups in the oxygen chain and the ability of the PEG terminal groups to preferably hydrogen bond with water or the anion of the salt. The removal of even one hydrogen bond in PEG can noticeably affect the phase behavior, especially in the region of the phase diagram in which all the ethylene oxide (EO) units of the polymeric chain are completely solvated. In this region, removing or weakening the hydrogen-bond-donating ability of PEG results in greater immiscibility, and thus, in a higher ability to form ABS, as a result of the much weaker interactions between the IL anion and the PEG end groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Živković, N.; Šerbanović, S.; Kijevčanin, M.; Živković, E.
2013-06-01
Densities, viscosities, and refractive indices of three binary systems consisting of 1-butanol with polyethylene glycols of different molecular weights (PEG 200 and PEG 400) or tetraethylene glycol dimethyl ether (TEGDME) were measured at ten temperatures (288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, 323.15, 328.15, and 333.15) K and atmospheric pressure. Densities of the selected binary mixtures were measured with an Anton Paar DMA 5000 digital vibrating U-tube densimeter, refractive indices were measured with an automatic Anton Paar RXA-156 refractometer, while for viscosity measurements, a digital Stabinger SVM 3000/G2 viscometer was used. From these data, excess molar volumes were calculated and fitted to the Redlich-Kister equation. The obtained results have been analyzed in terms of specific molecular interactions and mixing behavior between mixture components, as well as the influence of temperature on them. Viscosity data were also correlated by Grunberg-Nissan, Eyring-UNIQUAC, three-body McAlister, and Eyring-NRTL models.
Yang, Ting-ting; Zhou, Lin-feng; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan
2013-05-24
A capillary poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith was in situ synthesized by thermally initiated free radical co-polymerization using trimethyl-2-methacroyloxyethylammonium chloride (MATE) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. N,N-dimethylformamide and polyethylene glycol 6000 were used as solvent and porogen, respectively. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope. In order to prepare practically useful poly(MATE-co-EGDMA) monoliths with low flow resistance and good mechanical strength, some parameters such as PEG-6000 to DMF ratio, total monomer to porogen ratio, and crosslinker to monomer ratio were optimized systematically. Moreover, the extraction mechanism was evaluated using two series of compounds, alkylbenzenes and weak acids, as model compounds on poly(MATE-co-EGDMA) monoliths as liquid chromatographic stationary phase. Finally, the monoliths were applied as the solid phase microextraction medium, and a simple off-line method for simultaneous determination of three brominated flame retardants, 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and 4,4'-dibrominated diphenyl ether (DBDPE), in environmental waters was developed by coupling the polymer monolith microextraction to HPLC with UV detection. The regression equations for these three brominated flame retardants showed good linearity from their limit of quantification to 5000ng/mL. The limits of detection were 0.20, 0.15 and 0.10ng/mL for TBP, TBBPA and DBDPE, respectively. The recovery of the proposed method was 78.7-106.1% with intra-day relative standard deviation of 1.3-4.4%. Copyright © 2013 Elsevier B.V. All rights reserved.
Adenosinetriphosphatase site stoichiometry in sarcoplasmic reticulum vesicles and purified enzyme.
Barrabin, H; Scofano, H M; Inesi, G
1984-03-27
The stoichiometry of phosphorylation (catalytic) sites in sarcoplasmic reticulum vesicles ( SRV ) and SR ATPase purified by differential solubilization with deoxycholate was found to be 4.77 +/- 0.4 and 6.05 +/- 0.18 nmol/mg of protein, respectively, when phosphorylation was carried out under conditions permitting 32P labeling of nearly all sites. Assuming that each site corresponds to a single 115K ATPase chain, the observed site stoichiometry accounts only for 55% and 70% of the total protein. Failure to obtain higher phosphorylation levels was due to the presence of nonspecific protein contaminants in SRV or to the presence of inactive aggregates in the ATPase purified with deoxycholate. This was demonstrated by dissolving SRV and purified ATPase with lithium dodecyl sulfate, subjecting them to molecular sieve HPLC, and collecting the elution fractions for determination of protein, measurement of 32P-labeled sites, and electrophoretic analysis. In fact, in the specific elution peak containing the 115K ATPase chains, phosphorylation levels were 6.62 +/- 0.33 and 7.03 +/- 0.18 in SRV and purified ATPase, corresponding to 68% and 86% of the protein in the specific elution peak. An alternate purification method was then developed, based on solubilization of SRV with dodecyl octaethylene glycol monoether ( C12E8 ), separation of delipidated ATPase by anion-exchange chromatography, and enzyme reactivation with phosphatidylcholine. This preparation yields 7.3 +/- 0.44 nmol of phosphorylation site/mg of protein of the SRV fraction before HPLC.(ABSTRACT TRUNCATED AT 250 WORDS)
Scsukova, Sona; Bujnakova, Mlynarcikova A; Kiss, A; Rollerova, E
2017-04-25
Development of nanoparticles (NPs) for biomedical applications, including medical imaging and drug delivery, is currently undergoing a dramatic expansion. Diverse effects of different type NPs relating to mammalian reproductive tissues have been demonstrated. Th e objective of this study was to explore the in vitro effects of polymeric nanoparticle poly(ethylene glycol)-blockpolylactide methyl ether (PEG-b-PLA NPs) on functional state and viability of ovarian granulosa cells (GCs), which play an important role in maintaining ovarian function and female fertility. The GCs isolated from porcine ovarian follicles were incubated with the different concentrations of PEG-b-PLA NPs (PEG average Mn=350 g/mol and PLA average Mn=1000 g/mol; 0.2-100 μg/ml) or poly(ethylene glycol) with an average molecular weight of 300 (PEG-300; 0.2- 40 mg/ml) in the presence or absence of stimulators, follicle-stimulating hormone (FSH; 1 μg/ml), androstenedione (100 nM), forskolin (10 μM) or 8Br-cAMP (100 μM), for different time periods (24, 48, 72 h). At the end of the incubation, progesterone and estradiol levels produced by GCs were measured in the culture media by radioimmunoassay. Th e viability of GCs was determined by the method using a colorimetric assay with MTT. Treatment of GCs with PEG-b-PLA NPs induced a significant decrease in basal as well as FSH-stimulated progesterone secretion above the concentration of 20 and 4 μg/ml, respectively. Moreover, PEG-b-PLA NPs reduced forskolin-stimulated, but not cAMP-stimulated progesterone production by GCs. A dose-dependent inhibition of androstenedione-stimulated estradiol release by GCs was found by the action of PEG-b-PLA NPs. Incubation of GCs with PEG-300 significantly inhibited basal as well as FSH-stimulated progesterone secretion above the concentration of 40 mg/ml. PEG-b-PLA NPs and PEG-300 significantly reduced the viability of GCs at the highest tested concentrations (100 μg/ml and 40 mg/ml, respectively). The obtained results indicate that polymeric NPs PEG-b-PLA might induce alterations in steroid hormone production by ovarian GCs and thereby could modify reproductive functions.
NASA Astrophysics Data System (ADS)
Calisir, Umit; Çiçek, Baki
2017-11-01
Macrocyclic benzo-thio crown ethers and benzo-oxo crown ethers were prepared using an esterification-ring closing method. These compounds were synthesised using 2,2‧-dithiodibenzoyl chloride, and various glycols and dithiols, in the presence of pyridine base under a nitrogen atmosphere in chloroform. All reactions were performed under reflux condition with conventional heating and microwave (MW) irradiation. The synthesised macrocycles were characterised by FT-IR, 1H NMR, 13C NMR, LC-MS, and elemental analysis methods. Extraction studies have been performed on these original macrocycles using liquid-liquid ion-pair extraction with Li+, Na+, K+, Ni2+, Ca2+, Mg2+, Zn2+, Fe2+,Fe3+, Co3+, Pb2+, Cr3+, Ag+, and Cd2+.The KD, ext.%, ΔG and log KExt values were also calculated. While (U1-U7) ligands exhibits selectivity for Zn2+, Ag+, Ca2+, Pb2+, Fe3+, Cr3+, Co2+, Mg2+, Cd2+, and Ni2+ metal salts, they showed no selectivity for Li+, K+ and Na+ metal salts. Furthermore, Fe3+is the most selective cation for all ligands for competitive extraction. We also observed that microwave heating can have certain benefits over conventional ovens: reaction rate acceleration, milder reaction conditions, higher chemical yield, and lower energy usage. These ligands could be used as metal sensors, enzyme inhibitors, antimicrobial/antifungal agents, and in biological applications.
Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S
2015-06-23
Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.
An epidemic of allergic contact dermatitis due to epilating products.
Goossens, A; Armingaud, P; Avenel-Audran, M; Begon-Bagdassarian, I; Constandt, L; Giordano-Labadie, F; Girardin, P; Coz, C J L E; Milpied-Homsi, B; Nootens, C; Pecquet, C; Tennstedt, D; Vanhecke, E
2002-08-01
Over a period of 19 months, 33 cases of acute allergic contact dermatitis from Veet epilating waxes and/or the accompanying tissue (Reckitt Benckiser, Massy, France) were observed in France and Belgium. The lesions started on the legs and spread to other parts of the body, especially the face, and were sometimes so severe that hospitalization and/or systemic corticosteroids were required. Primary sensitization occurred as early as after the first application in several patients. Patch tests were performed in 26 of the patients and produced strong positive reactions to the tissue (25 times) and/or the wax (13 times). The allergenic culprits in the wax were modified-colophonium derivatives (colophonium in the standard series testing negatively in all except 4 patients), while methoxy PEG-22/dodecyl glycol copolymer and to a lesser degree lauryl alcohol turned out to be the main causal allergens in the tissue.
Medina-Alarcón, Kaila P.; Singulani, Junya L.; Voltan, Aline R.; Sardi, Janaina C. O.; Petrônio, Maicon S.; Santos, Mariana B.; Polaquini, Carlos R.; Regasini, Luis O.; Bolzani, Vanderlan S.; da Silva, Dulce H. S.; Chorilli, Marlus; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.
2017-01-01
Dodecyl protocatechuate (dodecyl) is a derivative of protocatechuic acid (3,4-dihydroxybenzoic acid) that possesses anti-oxidant and antifungal properties. Nanostructured lipid systems (NLS) can potentiate the action of many antifungal agents, reducing the required dose and side effects by improving their activity. This work aimed to evaluate dodecyl protocatechuate loaded into a NLS (NLS+dodecyl) as a strategy for the treatment of Paracoccidioides brasiliensis and P. lutzii in vitro. Antifungal activity against P. brasiliensis and P. lutzii was evaluated using the microdilution technique. NLS+dodecyl showed high antifungal activity with a minimum inhibitory concentration ranging from 0.06 to 0.03 μg/mL; 4- to 16-fold higher than that of free dodecyl. NLS+dodecyl was able to inhibit fungal adhesion of the extracellular artificial matrix proteins (laminin and fibronectin), resulting in 82.4 and 81% inhibition, respectively, an increase of 8–17% compared with free dodecyl. These findings corroborate previous results demonstrating 65 and 74% inhibition of fungal adhesion in pulmonary fibroblast cells by dodecyl and NLS+dodecyl, respectively, representing a 9% increase in inhibition for NLS+dodecyl. Subsequently, cytotoxicity was evaluated using the 0.4% sulforhodamine B assay. NLS+dodecyl did not exhibit cytotoxicity in MRC5 (human pneumocyte) and HepG2 (human hepatic carcinoma) cells, thus increasing the selectivity index for NLS+dodecyl. In addition, cytotoxicity was evaluated in vivo using the Caenorhabditis elegans model; neither dodecyl nor NLS+dodecyl exhibited any toxic effects. Taken together, these results suggest that NLS can be used as a strategy to improve the activity of dodecyl against P. brasiliensis and P. lutzii because it improves antifungal activity, increases the inhibition of fungal adhesion in lung cells and the extracellular matrix in vitro, and does not exhibit any toxicity both in vitro and in vivo. PMID:28659880
Zhang, Lei; Li, Bao; Xia, Yangchao; Liu, Shengyu
2017-09-01
Lignite is an important and useful fossil fuel in the world and the strong hydrophilicity of it limits its applications. Surfactant adsorption on lignite is an effective way to make it hydrophobic. In this work, aiming to examine the effect of the degree of ethoxylation on the adsorption behavior of dodecyl poly ethoxylated surfactants on lignite and the wettability modification of modified lignite by surfactant adsorption, different combined systems formed by surfactants, water and a model surface of Wender lignite have been studied using molecular dynamics simulation. The adsorption configurations vary with the degree of ethoxylation. At the same adsorption amounts, increasing the degree of ethoxylation can make the adsorption layer more compactness and bring stronger adsorption strength. The results of binding energy and its components show that the adsorption of alkyl polyoxyethylene ethers surfactant on lignite is physically adsorbed rather than electrostatically or chemisorbed. Meanwhile, van der Waals interaction plays a dominant role in the adsorption. The addition of surfactant could reduce the possibility of the interaction between water and lignite. Compared to the original lignite, the interaction between them is weakened after surfactant adsorption in water/surfactant/lignite system, thus strengthening the hydrophobicity of lignite. Similar to the adsorption strength, hydrophobicity of modified lignite increases with the increase of the degree of ethoxylation. The lignite surface properties are changed due to surfactant adsorption by analyzing the compositions of interaction energy and the change of hydrogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.
Ye, Penglin; Ding, Xiang; Ye, Qing; Robinson, Ellis S; Donahue, Neil M
2016-03-10
Semivolatile organic compounds (SVOCs) play an essential role in secondary organic aerosol (SOA) formation, chemical aging, and mixing of organic aerosol (OA) from different sources. Polyethylene glycol (PEG400) particles are liquid, polar, and nearly nonvolatile; they provide a new vehicle to study the interaction between SVOCs with OA. With a unique fragment ion C4H9O2(+) (m/z 89), PEG400 can be easily separated from α-pinene SOA in aerosol mass spectra. By injecting separately prepared PEG probe particles into a chamber containing SOA coated on ammonium sulfate seeds, we show that a substantial pool of SVOCs exists in equilibrium with the original SOA particles. Quantitative findings are based on bulk mass spectra, size-dependent composition, and the evolution of individual particle mass spectra, which we use to separate the two particle populations. We observed a larger fraction of SVOC vapors with increased amounts of reacted α-pinene. For the same amount of reacted α-pinene, the SOA formed from α-pinene oxidized by OH radicals had a higher fraction of SOA vapors than SOA formed by α-pinene ozonolysis. Compared to the PEG400 probe particles, we observed a lower mass fraction of SVOCs in poly(ethylene glycol) dimethyl ether (MePEG500) probe particles under otherwise identical conditions; this may be due to the lower polarity of the MePEG500 or caused by esterification reactions between the PEG400 and organic acids in the SOA.
NASA Astrophysics Data System (ADS)
Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming
2014-12-01
A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.
Skin exposure: Assessing the hazard in the workplace
NASA Technical Reports Server (NTRS)
Cummins, Kevin
1994-01-01
An outline of the Occupational Safety and Health Agency's concerns of skin exposure to hazardous chemicals is presented, followed by the corresponding slide narrations. Specifically, dermatitis and skin absorption as compared to lung absorption are addressed. Lung versus skin exposure is examined for glycol ethers and acrylamide. Examples of skin exposure include PBC's in transformers, toluene and xylene from autobody work, polynuclear aromatics (PNA's) among Coke oven workers, toluene diisocyanate (TDI), and occupational chemical exposures in an academic medical center. Permeation through gloves in the semiconductor industry is addressed as evidence for the need to assess the effectiveness of PPE (Personal Protective Equipment). This leads to the revisions of the PPE standard and the Safety and Health Program standard.
Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri
1997-01-01
Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.
Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery
NASA Astrophysics Data System (ADS)
Christy, Maria; Arul, Anupriya; Zahoor, Awan; Moon, Kwang Uk; Oh, Mi Young; Stephan, A. Manuel; Nahm, Kee Suk
2017-02-01
The choice of electrolyte solvent is expected to play a key role in influencing the lithium-oxygen battery performance. The electrochemical performances of three electrolytes composed of lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) salt and different solvents namely, ethylene carbonate/propylene carbonate (EC/PC), tetra ethylene glycol dimethyl ether (TEGDME) and dimethyl sulfoxide (DMSO) are investigated by assembling lithium oxygen cells. The electrolyte composition significantly varied the specific capacity of the battery. The choice of electrolyte also influences the overpotential, cycle life, and rechargeability of the battery. Electrochemical impedance spectra, cyclic voltammetry, and chronoamperometry were utilized to determine the reversible reactions associated with the air cathode.
Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes.
Niu, Xiaoqin; Ran, Fen; Chen, Limei; Lu, Gabriella Jia-En; Hu, Peiguang; Deming, Christopher P; Peng, Yi; Rojas-Andrade, Mauricio D; Chen, Shaowei
2016-05-03
Well-defined thermoswitchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes were fabricated by combining ligand exchange reactions and the Langmuir technique. Stimuli-responsive polydi(ethylene glycol) methyl ether methacrylate was prepared by addition-fragmentation chain-transfer polymerization. The polymer brushes were then anchored onto the nanoparticle surface by interfacial ligand exchange reactions with hexanethiolate-protected gold nanoparticles, leading to the formation of a hydrophilic (polymer) hemisphere and a hydrophobic (hexanethiolate) one. The resulting Janus nanoparticles showed temperature-switchable wettability, hydrophobicity at high temperatures, and hydrophilicity at low temperatures, due to thermally induced conformational transition of the polymer ligands. The results further highlight the importance of interfacial engineering in the deliberate functionalization of nanoparticle materials.
Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.
1997-09-09
Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.
Chang, Shih-Hsien; Wang, Kai-Sung; Hu, Pei-I; Lui, I-Chun
2009-04-30
Copper-surfactant wastewaters are often encountered in electroplating, printed circuit boards manufacturing, and metal finishing industries, as well as in retentates from micellar-enhanced ultrafiltration process. A low-cost three-dimensional steel wool cathode reactor was evaluated for electrolytic recovery of Cu ion from dilute copper solution (0.2mM) in the presence of sodium dodecyl sulfate (SDS), octylphenol poly (ethyleneglycol) 9.5 ether (TX), nonylphenol poly (oxyethylene) 9 ether (NP9) and polyoxyethylene (20) sorbitan monooleate (TW) and also mixed surfactants (anionic/nonionic). The reactor showed excellent copper recovery ability in comparison to a parallel-plate reactor. The reactor rapidly recovered copper with a reasonable current efficiency. 93% of copper was recovered at current density of 1 A m(-2) and pH 4 in the presence of 8.5mM SDS. Initial solution pH, cathodic current density, solution mixing condition, SDS concentration, and initial copper concentrations significantly influenced copper recovery. The copper recovery rate increased with an increase in aqueous SDS concentrations between 5 and 8.5mM. The influences of nonionic surfactants on Cu recovery from SDS-Cu solution depended not only on the type of surfactants used, but also on applied concentrations. From the copper recovery perspective, TX at 0.1mM or NP should be selected rather than TW, because they did not inhibit copper recovery from SDS-Cu solution.
Marchetti, Alfredo A; Knize, Mark G; Chiarappa-Zucca, Marina L; Pletcher, Ronald J; Layton, David W
2003-08-01
The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.
Yokota, Kozo; Ueno, Hiroshi; Ikeda, Naoko; Johyama, Yasushi; Michitsuji, Hiromi; Yamada, Seiji
2007-10-01
To examine the correlation between airborne ethylene glycol dimethyl ether (EGdiME) exposures and the urinary methoxyacetic acid (MAA) and to approach the issue of a permissible exposure limit for EGdiME. The survey was conducted on Thursday. Workers occupationally exposed to EGdiME, as well as nonexposed controls, were studied in combination with one of the authors, who was coincidentally exposed to EGdiME while carrying out the study. Air levels of EGdiME were determined by personal sampling on passive gas tubes. Urine was collected from nine control subjects and ten workers immediately before and after the shift, and from one of the authors at intervals during 12 h. The analyses of EGdiME in air and MAA in urine were performed by gas chromatography with flame ionization detection. The time-weighted average (TWA) air levels of EGdiME ranged from 0.7 to 10.5 ppm during 8 h work shifts. The urinary levels of MAA in one of the authors increased continuously during exposure and after the end of exposure. The levels of urinary MAA in the exposed workers were significantly higher than those in the control subjects. On the other hand, the postshift values were higher than the preshift values in the exposed workers, but the difference was not significant. A linear correlation was found between the TWA air levels of EGdiME and creatinine-adjusted MAA levels in urine collected at the end of the shift (r = 0.933; P < 0.0001). According to our equation, a linear extrapolation to the biological limit value recommended by Shih et al. (1999) of 40 mg MAA/g crea indicated an average inhalation exposure to EGdiME over the workweek of 12 ppm. These results indicate that the determination of MAA in urine is suitable for use in the biological monitoring of EGdiME exposure.
Garg, Varun; Kaur, Puneet; Singh, Sachin Kumar; Kumar, Bimlesh; Bawa, Palak; Gulati, Monica; Yadav, Ankit Kumar
2017-11-15
Development of self-nanoemulsifying drug delivery systems (SNEDDS) of polypeptide-k (PPK) is reported with the aim to achieve its oral delivery. Box-Behnken design (BBD) was adopted to develop and optimize the composition of SNEDDS. Oleoyl polyoxyl-6 glycerides (A), Tween 80 (B), and diethylene glycol monoethyl ether (C) were used as oil, surfactant and co-surfactant, respectively as independent variables. The effect of variation in their composition was observed on the mean droplet size (y1), polydispersity index (PDI) (y2), % drug loading (y3) and zeta potential (y4). As per the optimal design, seventeen SNEDDS prototypes were prepared. The optimized composition of SNEDDS formulation was 25% v/v Oleoyl polyoxyl-6 glycerides, 37% v/v Tween 80, 38% v/v diethylene glycol monoethyl ether, and 3% w/v PPK. The optimized formulation revealed values of y1, y2, y3, and y4 as 31.89nm, 0.16, 73.15%, and -15.65mV, respectively. Further the optimized liquid SNEDDS were solidified through spray drying using various hydrophilic and hydrophobic carriers. Among the various carriers, Aerosil 200 was found to provide desirable flow, compression, disintegration and dissolution properties. Both, liquid and solid-SNEDDS have shown release of >90% within 10min. The formulation was found stable with change in pH, dilution, temperature variation and freeze thaw cycles in terms of droplet size, zeta potential, drug precipitation and phase separation. Crystalline PPK was observed in amorphous state in solid SNEDDS when characterized through DSC and PXRD studies. The biochemical, hematological and histopathological results of streptozotocin induced diabetic rats shown promising antidiabetic potential of PPK loaded in SNEDDS at its both the doses (i.e. 400mg/kg and 800mg/kg) as compared to its naïve form at both the doses. The study revealed successful formulation of SNEDDS for oral delivery of PPK. Copyright © 2017 Elsevier B.V. All rights reserved.
Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke
2007-11-01
High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin derivatives. The cyclodextrin derivatives may be applicable as a new type of sacrificial material under the photoresist in ArF lithography.
Raman and Brillouin scattering of LiClO4 complexed in poly(propylene-glycol)
NASA Astrophysics Data System (ADS)
Schantz, S.; Torell, L. M.; Stevens, J. R.
1988-08-01
Raman spectra of LiClO4 complexed in poly(propylene-glycol) (PPG) have been obtained for concentrations of the monomer to salt ratio (ether oxygen):Li in the range 30:1-5:1. Splitting of the symmetric stretching mode of the ClO4- anion was observed with an intensity profile that varied with salt concentration. This phenomenon indicates a changing environment about the anion. A two-component band analysis leads to the identification of dissociated ions on one hand and solvent-separated ion pairs on the other. The concentration of ion pairs is relatively low compared to that of the dissociated ions, which are predominant for all concentrations. Despite the observed increase in the absolute number of dissociated ions at higher salt concentration, the electrical conductivity is reported to decrease in the same range. This indicates that the number of ``free'' charge carriers is of less importance for the conductivity than the mobility, which is damped in this concentration range. Frequency shifts of the disordered longitudinal-acoustic mode and increased hypersonic velocities, measured with Raman and Brillouin scattering techniques, respectively, indicate increased stiffness of the polymer matrix for increasing salt concentration, which probably results in decreased ion mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido
The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less
Manandhar, Sudha; Singh, Rajendra P; Eggers, Gary V; Shreeve, Jean'ne M
2002-09-06
Interactions of various fluorinated and nonfluorinated alcohols with trans-stilbene in the presence of electrophilic reagents were studied. Under neat conditions, reactions of trans-stilbene (1) with fluorinated alcohols, R(f)OH (R(f) = CF3CH2-, CFH2CH2-, CF3CF2CH2-, CF2H(CF2)3CH2-, (CF3)2CH-, (CF3)3C- (2a-f) in the presence of an electrophilic reagent, 1-(chloromethyl)-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor) or N,N-difluoro-2,2'-bipyridinium bis(tetrafluoroborate) (MEC-31), gave alpha-keto ethers (3a-f) and benzil (4) in good to moderate yields. alpha-Keto ether and benzil formation was very much dependent on the reaction time, the degree of fluorination of the alcohols, and whether a solvent such as CH3CN, DMF or DMA was utilized. In solution, alpha-keto ethers and benzil did not form. Interestingly, under neat conditions, nonfluorinated alcohols, ROH (R = CH3-, CH3CH2-, CH3CH2CH2-, CH3CH2CH2CH2-, CH3CH2CH2CH2CH2CH2-) (5g-k) did not react with trans-stilbene in the presence of MEC-31 but gave 6,6'-dialkoxy-2,2'-bipyridines (6g-k), regioselectively, in excellent isolated yields. On the other hand, fluorinated alcohols did not react with MEC-31. Reaction of MEC-31 with an excess of diethylene glycol (7) gave the bipyridine derivative (8) in 88% isolated yield. Reaction of 8 either with diethylaminosulfur trifluoride (DAST) or bis(2-methoxyethyl)aminosulfur trifluoride (Deoxofluor) readily produced the corresponding difluoro derivative (9) in 85% isolated yield. All new compounds have been characterized by spectroscopic and elemental analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barillas, Mary Katharine; Enick, Robert M.; O’Brien, Michael
2011-04-01
The objective of this work was to design polymeric membranes that have very high CO 2 permeability and high mixed gas selectivity toward CO 2 rather than hydrogen. Therefore the membranes were based on "CO 2-philic" polymers that exhibit thermodynamically favorable Lewis acid:Lewis base and hydrogen bonding interactions with CO 2. CO 2-philic polymers that are solid at ambient temperature include polyfluoroacrylate (PFA); polyvinyl acetate (PVAc); and amorphous polylactic acid (PLA). Literature CO 2 permeability values for PVAc and PLA are disappointingly low. The cast PFA membranes from this study had low permeabilities (45 barrers at 25º C) and verymore » low CO 2/H 2 selectivity of 1.4. CO 2-philic polymers that are liquid at ambient conditions include polyethylene glycol (PEG), polypropylene glycol (PPG), polybutylene glycol with a linear -((CH 2) 4O)-repeat unit (i.e., polytetramethylene ether glycol (PTMEG)), polybutylene glycol (PBG) with a branched repeat unit, perfluoropolyether (PFPE), poly(dimethyl siloxane) (PDMS), and polyacetoxy oxetane (PAO). A small compound, glycerol triacetate (GTA) was also considered because it is similar in chemical structure to a trimer of PVAc. These liquids were tested as supported liquid membranes (SLM) and also (with the exception of PAD and GTA) as rubbery, crosslinked materials. Mixed gas permeability was measured using equimolar mixtures of CO 2 and H 2 feed streams at one atmosphere total pressure in steady-state flux experiments over the 298-423 K temperature range. The most promising SLMs were those composed of PEG, PTMEG, GTA, and PDMS. For example, at 37º C the PEG-, PTMEG-, GTA- and PDMS-based SLMs exhibited CO 2/H 2 selectivity values of ~11, 9, 9, and 3.5, respectively, and CO 2 permeability values of ~800, 900, 1900, and 2000 barrers, respectively. Crosslinked versions of the PEG, PTMEG and PDMS membranes at 37º C exhibited selectivity values of ~5, 6, and 3.5, respectively, and CO 2 permeability values of ~50, 300, and 3000 barrers, respectively.« less
Chen, Xing-Wei; Ke, Mei-Rong; Li, Xing-Shu; Lan, Wen-Liang; Zhang, Miao-Fen; Huang, Jian-Dong
2013-12-01
Two new tetra- or di-α-substituted zinc(II) phthalocyanines 5 and 6 have been prepared through a "side-strapped" method. In the molecules, the adjacent benzene rings of the phthalocyanine core are linked at α-position through a triethylene glycol bridge to form a hybrid aza-/oxa-crown ether. The tetra-α-substituted phthalocyanine 5 shows an eclipsed self-assembly property in CH2Cl2 and the effect on the di-α-substituted analogue 6 is significantly weakened. Furthermore, the crown ethers of these compounds can selectively complex with Fe(3+) or Cu(2+) ion in DMF, leading to formation of J-aggregated nano-assemblies, which can be disaggregated in the presence of some organic or inorganic ligands, such as triethylamine, tetramethylethylenediamine, CH3COO(-), or OH(-). In addition, both compounds are efficient singlet oxygen generators with the singlet oxygen quantum yields (Φ(Δ)) of 0.54-0.74 in DMF relative to unsubstituted zinc(II) phthalocyanine (Φ(Δ)=0.56). They exhibit photodynamic activities toward HepG2 human hepatocarcinoma cells, but the compound 6, which has more than 40-fold lower IC50 value (0.08 μM) compared to the analogue 5 (IC50=3.31 μM), shows remarkablely higher in vitro photocytotoxicity due to its significantly higher cellular uptake and singlet oxygen generation efficiency. The results suggest that these compounds can serve as promising multifunctional materials both in (opto)electronic field and photodynamic therapy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of Surfactants on Chlorobenzene Absorption on Pyrite Surface
NASA Astrophysics Data System (ADS)
Hoa, P. T.; Suto, K.; Inoue, C.; Hara, J.
2007-03-01
Recently, both surfactant extraction of chlorinated compounds from contaminated soils and chemical reduction of chlorinated compounds by pyrite have had received a lot of attention. The reaction of the natural mineral pyrite was found as a surface controlling process which strongly depends on absorption of contaminants on the surface. Surfactants were not only aggregated into micelle which increase solubility of hydrophobic compounds but also tend to absorb on the solid surface. This study investigated effects of different kinds of Surfactants on absorption of chlorobenzene on pyrite surface in order to identify coupling potential of surfactant application and remediation by pyrite. Surfactants used including non-ionic, anionic and cationic which were Polyoxyethylene (23) Lauryl Ether (Brij35), Sodium Dodecyl Sulfate (SDS) and Cetyl TrimethylAmmonium Bromide (CTAB) respectively were investigated with a wide range of surfactant concentration up to 4 times of each critical micelle concentration (CMC). Chlorobenzene was chosen as a representative compound. The enhancement or competition effects of Surfactants on absorption were discussed.
Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced Subsurface Remediation.
Wang, Li; Peng, Libin; Xie, Liling; Deng, Peiyan; Deng, Dayi
2017-06-20
Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate. C 12 -MADS (sodium dodecyl diphenyl ether disulfonate, a representative divalent anionic surfactant) stands out as the most compatible surfactant. Batch treatability study with coal tar, an example of challenging scenarios for traditional ISCO, was then conducted. The results show that C 12 -MADS can significantly enhance not only the oxidation of polyaromatic hydrocarbons contained in coal tar but also oxidant utilization efficiency, indicating the potential of the proposed coupling process for the treatment of organic contaminants with low aqueous availability.
Hildebrandt, K M; Anderson, J S
1990-01-01
Cytoplasmic membrane fragments of Micrococcus luteus catalyze in vitro biosynthesis of teichuronic acid from uridine diphosphate D-glucose (UDP-glucose), uridine diphosphate N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), and uridine diphosphate N-acetyl-D-glucosamine. Membrane fragments solubilized with Thesit (dodecyl alcohol polyoxyethylene ether) can utilize UDP-glucose and UDP-ManNAcA to effect elongation of teichuronic acid isolated from native cell walls. When UDP-glucose is the only substrate supplied, the detergent-solubilized glucosyltransferase incorporates a single glucosyl residue onto each teichuronic acid acceptor. When both UDP-glucose and UDP-ManNAcA are supplied, the glucosyltransferase and the N-acetylmannosaminuronosyltransferase act cooperatively to elongate the teichuronic acid acceptor by multiple additions of the disaccharide repeat unit. As shown by polyacrylamide gel electrophoresis, low-molecular-weight fractions of teichuronic acid are converted to higher-molecular-weight polymers by the addition of as many as 17 disaccharide repeat units. Images PMID:2118507
Hsu, Joy; Del Rosario, Maria C; Thomasson, Erica; Bixler, Danae; Haddy, Loretta; Duncan, Mary Anne
2017-10-01
In January 2014, a chemical spill of 4-methylcyclohexanemethanol and propylene glycol phenyl ethers contaminated the potable water supply of approximately 300,000 West Virginia residents. To understand the spill's impact on hospital operations, we surveyed representatives from 10 hospitals in the affected area during January 2014. We found that the spill-related loss of potable water affected many aspects of hospital patient care (eg, surgery, endoscopy, hemodialysis, and infection control of Clostridium difficile). Hospital emergency preparedness planning could be enhanced by specifying alternative sources of potable water sufficient for hemodialysis, C. difficile infection control, and hospital processing and cleaning needs (in addition to drinking water). (Disaster Med Public Health Preparedness. 2017;11:621-624).
NASA Astrophysics Data System (ADS)
Chernysheva, M. G.; Tyasto, Z. A.; Badun, G. A.
2009-02-01
The distribution of Triton X-100 nonionic surfactant in the water-cyclohexane system was investigated by the scintillating phase method. It was shown that an increase in the distribution coefficient as the volume ratio between the aqueous and organic phases grew was explained by the presence in Triton X-100 of homologues with different numbers of ethoxyethyl groups and with the distribution coefficients between the phases different by many times. For the real composition of Triton X-100, distribution coefficients of components of the surfactant were estimated, and the behavior of the surfactant in the system under consideration was simulated; the results were in close agreement with the experimental data.
Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.
Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2015-09-01
The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.
Effects of vehicles and enhancers on transdermal delivery of clebopride.
Rhee, Yun-Seok; Huh, Jai-Yong; Park, Chun-Woong; Nam, Tae-Young; Yoon, Koog-Ryul; Chi, Sang-Cheol; Park, Eun-Seok
2007-09-01
The effects of vehicles and penetration enhancers on the skin permeation of clebopride were evaluated using Franz type diffusion cells fitted with excised rat dorsal skins. The binary vehicle system, diethylene glycol monoethyl ether/isopropyl myristate (40/60, w/w), significantly enhanced the skin permeation rate of clebopride. The skin permeation enhancers, oleic acid and ethanol when used in the binary vehicle system, resulted in relatively high clebopride skin permeation rates. A gel formulation consisting of 1.5% (w/w) clebopride, 5% (w/w) oleic acid, and 7% (w/w) gelling agent with the binary vehicle system resulted in a permeation rate of 28.90 microg/cm2/h. Overall, these results highlight the potential of clebopride formulation for the transdermal route.
Preparation and characterizations of EGDE crosslinked chitosan electrospun membranes.
Aqil, A; Tchemtchoua, V T; Colige, A; Atanasova, G; Poumay, Y; Jérôme, C
2015-01-01
Composite Crosslinked nanofibrous membranes of chitosan, ethylene glycol diglycidyl ether (EGDE) and polyethylene oxide was successfully prepared with bead free morphology via electrospinning technique followed by heat mediated chemical crosslinking. Architectural stability of nanofiber mat in aqueous medium was achieved by chemical crosslinking of only 1% EGDE, and tensile strength tests revealed that increasing EGDE content has considerably enhance the elastic modulus of nanofibers. The structure, morphology and mechanical properties of nanofibers were characterized by Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and Instron machine, respectively. Skin fibroblasts and endothelial cells showed good attachment, proliferation and viability on crosslinked electrospun membranes. The results indicate a good biocompatibility and non-toxic nature of the resulted membrane.
Delplace, Vianney; Harrisson, Simon; Tardy, Antoine; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien
2014-02-01
Well-defined, degradable copolymers are successfully prepared by nitroxide-mediated radical ring opening polymerization (NMrROP) of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA), a small amount of acrylonitrile (AN) and cyclic ketene acetals (CKAs) of different structures. Phosphorous nuclear magnetic resonance allows in-depth chain-end characterization and gives crucial insights into the nature of the copoly-mer terminal sequences and the living chain fractions. By using a small library of P(OEGMA-co-AN-co-CKA) and P(MMA-co-AN-co-CKA) as macroinitiators, chain extensions with styrene are performed to furnish (amphiphilic) block copolymers comprising a degradable segment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mobilization of arsenic from contaminated sediment by anionic and nonionic surfactants.
Liang, Chuan; Peng, Xianjia
2017-06-01
The increasing manufacture of surfactants and their wide application in industry, agriculture and household detergents have resulted in large amounts of surfactant residuals being discharged into water and distributed into sediment. Surfactants have the potential to enhance arsenic mobility, leading to risks to the environment and even human beings. In this study, batch and column experiments were conducted to investigate arsenic mobilization from contaminated sediment by the commercial anionic surfactants sodium dodecylbenzenesulfonate (SDBS), sodium dodecyl sulfate (SDS), sodium laureth sulfate (AES) and nonionic surfactants phenyl-polyethylene glycol (Triton X-100) and polyethylene glycol sorbitan monooleate (Tween-80). The ability of surfactants to mobilize arsenic followed the order AES>SDBS>SDS≈Triton X-100>Tween 80. Arsenic mobilization by AES and Triton X-100 increased greatly with the increase of surfactant concentration and pH, while arsenic release by SDBS, SDS and Tween-80 slightly increased. The divalent ion Ca 2+ caused greater reduction of arsenic mobilization than Na + . Sequential extraction experiments showed that the main fraction of arsenic mobilized was the specifically adsorbed fraction. Solid phase extraction showed that arsenate (As(V)) was the main species mobilized by surfactants, accounting for 65.05%-77.68% of the total mobilized arsenic. The mobilization of arsenic was positively correlated with the mobilization of iron species. The main fraction of mobilized arsenic was the dissolved fraction, accounting for 70% of total mobilized arsenic. Copyright © 2016. Published by Elsevier B.V.
Beshkar, Farshad; Khojasteh, Hossein; Salavati-Niasari, Masoud
2017-01-01
In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG) at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac)2 in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D) aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG) 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%. PMID:28773056
Beshkar, Farshad; Khojasteh, Hossein; Salavati-Niasari, Masoud
2017-06-25
In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG) at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac)₂ in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D) aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG) 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%.
Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A
2016-05-15
The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goveas, J. J., E-mail: jenicegoveas@gmail.com; Gonsalves, R. A.; Rao, P.
2016-05-23
Dyes act as major pollutants in water and can be degraded by photocatalysis. This paper establishes the role of electrochemically generated nanostructures of Zinc-Molybdenum oxides (ZMO) as photocatalysts by degrading EBT (Eriochrome Black- T) taken as a model pollutant under UV light. A facile, rapid and low cost process to synthesize these nanostructures (ZMO) is presented. Various factors that affect the synthesis and photocatalytic activity of these nanostructures are discussed. The role of calcination temperature and pulverization on the photocatalytic action has also been established. Particles have been synthesized in pure form as well as using surfactants such as cetrimidemore » (cetyl trimethyl ammonium bromide), polyethylene glycol (PEG) and SDS (sodium dodecyl sulphate) to enhance their photocatalytic action. This paper also discusses the characterization of these nanoparticles by powder XRD, SEM, FT-IR and UV-Visible spectroscopy. Decolourisation was achieved to completion under optimum experimental conditions at room temperature ascertaining the application of these nanostructures as effective photocatalysts.« less
Evidence for an intermediate conformational state of LacY.
Jiang, Xiaoxu; Guan, Lan; Zhou, Yonggang; Hong, Wen-Xu; Zhang, Qinghai; Kaback, H Ronald
2012-03-20
LacY mutant Cys154 → Gly exhibits a periplasmic-closed crystal structure identical to the WT, but is periplasmic-open in the membrane. The mutant hardly catalyzes transport, but binds galactosides from either side of the membrane with the same affinity and is resistant to site-directed proteolysis relative to the pseudo-WT. Site-directed alkylation was also applied to 11 single-Cys mutants in Cys154 → Gly LacY in right-side-out membrane vesicles or after solubilization and purification in dodecyl-β-D-maltopyranoside (DDM). Unlike the pseudo-WT, Cys replacements on the periplasmic side of the Cys154 → Gly mutant label rapidly in the membrane without sugar, but labeling decreases markedly after the mutant proteins are purified. Thus, Cys154 → Gly LacY likely favors a higher-energy intermediate periplasmic-open conformation in situ, but collapses to a lower-energy periplasmic-closed conformation in DDM after purification. Notably, branched-chain or neopentyl glycol maltoside detergents stabilize Cys154 → Gly LacY in the membrane-embedded form.
Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases.
Kellosalo, Juho; Kajander, Tommi; Honkanen, Riina; Goldman, Adrian
2013-02-01
Membrane-bound pyrophosphatases (M-PPases) are enzymes that enhance the survival of plants, protozoans and prokaryotes in energy constraining stress conditions. These proteins use pyrophosphate, a waste product of cellular metabolism, as an energy source for sodium or proton pumping. To study the structure and function of these enzymes we have crystallized two membrane-bound pyrophosphatases recombinantly produced in Saccharomyces cerevisae: the sodium pumping enzyme of Thermotoga maritima (TmPPase) and the proton pumping enzyme of Pyrobaculum aerophilum (PaPPase). Extensive crystal optimization has allowed us to grow crystals of TmPPase that diffract to a resolution of 2.6 Å. The decisive step in this optimization was in-column detergent exchange during the two-step purification procedure. Dodecyl maltoside was used for high temperature solubilization of TmPPase and then exchanged to a series of different detergents. After extensive screening, the new detergent, octyl glucose neopentyl glycol, was found to be the optimal for TmPPase but not PaPPase.
Forst, D; Schülein, K; Wacker, T; Diederichs, K; Kreutz, W; Benz, R; Welte, W
1993-01-05
The sucrose-specific outer membrane porin ScrY of Salmonella typhimurium was isolated from Escherichia coli K-12 strain KS 26 containing the plasmid pPSO112. The protein was purified to homogeneity by differential extraction of the cell envelope in the presence of the detergents sodium dodecyl sulfate and lauryl (dimethyl)-amine oxide (LDAO). The porin had apparent molecular weights of 58 kDa and 120 kDa for the monomer and for the trimer, respectively, on SDS/PAGE. The purified trimers were crystallized using poly(ethylene glycol) 2000 and the detergents octylglucoside (OG) and hexyl-(dimethyl)-amine oxide (C6DAO). X-ray diffraction of the crystals showed reflections to 2.3 A. The space group of the crystals was R3 and the lattice constants of the hexagonal axes were a = b = 112.85 A and c = 149.9 A. The crystal volume per unit of protein molecular weight was 3.47 A3/Da.
The binding of sodium dodecyl sulphate to various proteins
Pitt-Rivers, Rosalind; Impiombato, F. S. Ambesi
1968-01-01
1. The binding of sodium dodecyl sulphate to proteins by equilibrium dialysis was investigated. 2. Most of the proteins studied bound 90–100% of their weight of sodium dodecyl sulphate. 3. The glycoproteins studied bound 70–100% of their weight of sodium dodecyl sulphate, calculated in terms of the polypeptide moiety of the molecule. 4. Proteins not containing S·S groups bound about 140% of their weight of sodium dodecyl sulphate. 5. Reduction of four proteins containing S·S groups caused a rise in sodium dodecyl sulphate binding to 140% of the weight of protein. 6. The apparent micellar molecular weights of the protein–sodium dodecyl sulphate complexes were measured by the dye-solubilization method; they were all found to have approximately the same micellar molecular weight (34000–41000) irrespective of the molecular weight of the protein to which they were attached. PMID:4177067
40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Glycine, N-(carboxymethyl)-N-dodecyl... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject to...
40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Glycine, N-(carboxymethyl)-N-dodecyl... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject to...
Awual, Md. Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu
2016-01-01
Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater. PMID:26818070
Awual, Md Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu
2016-01-28
Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.
Wu, Bo; Chun, Byong-Wa; Gu, Le; Kuhl, Tonya L
2018-05-09
Poly(carboxylate ether)-based (PCE) superplasticizers consist of a carboxylic acid backbone and grafted poly(ethylene glycol) (PEG) side chains. Ca 2+ ion bridging mechanism is commonly purported to control PCE's adsorption on negatively charged cement particle surfaces in cement suspension, thus PCE was expected to adsorb on negatively charged surfaces in synthetic pore solutions via Ca 2+ /COO - interactions. Adsorption behaviors of a commercial PCE on negatively charged mica were studied in aqueous electrolyte solutions by a surface forces apparatus. Direct force measurements indicated that the PCE adsorbed onto mica from 0.1 M K 2 SO 4 due to K + ion chelation by the ether oxygen units CH 2 CH 2 O on the PEG chains, but surprisingly did not adsorb from either 0.1 M K 2 SO 4 with saturated Ca(OH) 2 or 0.1 M Ca(NO 3 ) 2 . The adsorption in K 2 SO 4 was weak, enabling the adsorbed PCE layers to be squeezed out under modest compression. Upon separating the surfaces, the PCE immediately achieved an identical re-adsorption. In high-calcium conditions, the PCE was highly positively charged due to Ca 2+ ion chelation by PEG chains and backbone carboxylic groups COO - , and mica also underwent charge reversal due to electrostatic adsorption/binding of Ca 2+ ions. Consequently, the interaction between mica and PCE was electrostatically repulsive and no PCE adsorption occurred. These findings can be explained by the complex interplay of ion chelation by PEG chains, electrostatic binding and screening interactions with charged surfaces in the presence of monovalent and divalent counterions, and ultimately charge reversal of both the charged surfaces and polyelectrolyte in high divalent ion conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Synthesis and Characterization of Fatty Acid/Amino Acid Self-Assemblies
Gajowy, Joanna; Bolikal, Durgadas; Kohn, Joachim; El Fray, Miroslawa
2014-01-01
In this paper, we discuss the synthesis and self-assembling behavior of new copolymers derived from fatty acid/amino acid components, namely dimers of linoleic acid (DLA) and tyrosine derived diphenols containing alkyl ester pendent chains, designated as “R” (DTR). Specific pendent chains were ethyl (E) and hexyl (H). These poly(aliphatic/aromatic-ester-amide)s were further reacted with poly(ethylene glycol) (PEG) and poly(ethylene glycol methyl ether) of different molecular masses, thus resulting in ABA type (hydrophilic-hydrophobic-hydrophilic) triblock copolymers. We used Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies to evaluate the chemical structure of the final materials. The molecular masses were estimated by gel permeation chromatography (GPC) measurements. The self-organization of these new polymeric systems into micellar/nanospheric structures in aqueous environment was evaluated using ultraviolet/visible (UV-VIS) spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The polymers were found to spontaneously self-assemble into nanoparticles with sizes in the range 196–239 nm and critical micelle concentration (CMC) of 0.125–0.250 mg/mL. The results are quite promising and these materials are capable of self-organizing into well-defined micelles/nanospheres encapsulating bioactive molecules, e.g., vitamins or antibacterial peptides for antibacterial coatings on medical devices. PMID:25347356
Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium diclofenac
Tawfeek, Hesham M.
2013-01-01
The aim of this study was to synthesize and evaluate novel biodegradable polyesters namely; poly(ethylene glycol)-Poly(glycerol adipate-co-ω-pentadecalactone), PEG-PGA-co-PDL-PEG, and poly(ethylene glycol methyl ether)-Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL-PEGme as an alternative sustained release carrier for lung delivery compared with non-PEG containing polymer PGA-co-PDL. The co-polymers were synthesized through lipase catalysis ring opening polymerization reaction and characterized using GPC, FT-IR, 1H-NMR and surface contact angle. Furthermore, microparticles containing a model hydrophilic drug, sodium diclofenac, were prepared via spray drying from a modified single emulsion and characterized for their encapsulation efficiency, geometrical particle size, zeta potential, tapped density, primary aerodynamic diameter, amorphous nature, morphology, in vitro release and the aerosolization performance. Microparticles fabricated from mPEG-co-polymer can be targeted to the lung periphery with an optimum in vitro deposition. Furthermore, a significantly higher in vitro release (p > 0.05, ANOVA/Dunnett’s) was observed with the PEG and mPEG-co-polymers compared to PGA-co-PDL. In addition, these co-polymers have a good safety profile upon testing on human bronchial epithelial, 16HBE14o- cell lines. PMID:24227959
Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell
Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; ...
2016-11-10
The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less
Lee, Hwankyu; Venable, Richard M; Mackerell, Alexander D; Pastor, Richard W
2008-08-01
A revision (C35r) to the CHARMM ether force field is shown to reproduce experimentally observed conformational populations of dimethoxyethane. Molecular dynamics simulations of 9, 18, 27, and 36-mers of polyethylene oxide (PEO) and 27-mers of polyethylene glycol (PEG) in water based on C35r yield a persistence length lambda = 3.7 A, in quantitative agreement with experimentally obtained values of 3.7 A for PEO and 3.8 A for PEG; agreement with experimental values for hydrodynamic radii of comparably sized PEG is also excellent. The exponent upsilon relating the radius of gyration and molecular weight (R(g) proportional, variantM(w)(upsilon)) of PEO from the simulations equals 0.515 +/- 0.023, consistent with experimental observations that low molecular weight PEG behaves as an ideal chain. The shape anisotropy of hydrated PEO is 2.59:1.44:1.00. The dimension of the middle length for each of the polymers nearly equals the hydrodynamic radius R(h)obtained from diffusion measurements in solution. This explains the correspondence of R(h) and R(p), the pore radius of membrane channels: a polymer such as PEG diffuses with its long axis parallel to the membrane channel, and passes through the channel without substantial distortion.
Harding-Marjanovic, Katie C; Yi, Shan; Weathers, Tess S; Sharp, Jonathan O; Sedlak, David L; Alvarez-Cohen, Lisa
2016-04-05
The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly- and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination are not well-understood. Various AFFF formulations, PFASs, and ethylene glycols were amended to the growth medium of a D. mccartyi-containing enrichment culture to determine the impact on dechlorination, fermentation, and methanogenesis. The community was capable of fermenting organics (e.g., diethylene glycol butyl ether) in all AFFF formulations to hydrogen and acetate, but the product concentrations varied significantly according to formulation. TCE was dechlorinated in the presence of an AFFF formulation manufactured by 3M but was not dechlorinated in the presence of formulations from two other manufacturers. Experiments amended with AFFF-derived PFASs and perfluoroalkyl acids (PFAAs) indicated that dechlorination could be inhibited by PFASs but that the inhibition depends on surfactant concentration and structure. This study revealed that the fermentable components of AFFF can stimulate TCE dechlorination, while some of the fluorinated compounds in certain AFFF formulations can inhibit dechlorination.
Polymer-xerogel composites for controlled release wound dressings.
Costache, Marius C; Qu, Haibo; Ducheyne, Paul; Devore, David I
2010-08-01
Many polymers and composites have been used to prepare active wound dressings. These materials have typically exhibited potentially toxic burst release of the drugs within the first few hours followed by a much slower, potentially ineffective drug release rate thereafter. Many of these materials also degraded to produce inflammatory and cytotoxic products. To overcome these limitations, composite active wound dressings were prepared here from two fully biodegradable and tissue compatible components, silicon oxide sol-gel (xerogel) microparticles that were embedded in tyrosine-poly(ethylene glycol)-derived poly(ether carbonate) copolymer matrices. Sustained, controlled release of drugs from these composites was demonstrated in vitro using bupivacaine and mepivacaine, two water-soluble local anesthetics commonly used in clinical applications. By systematically varying independent compositional parameters of the composites, including the hydrophilic:hydrophobic balance of the tyrosine-derived monomers and poly(ethylene glycol) in the copolymers and the porosity, weight ratio and drug content of the xerogels, drug release kinetics approaching zero-order were obtained. Composites with xerogel mass fractions up to 75% and drug payloads as high as 13% by weight in the final material were fabricated without compromising the physical integrity or the controlled release kinetics. The copolymer-xerogel composites thus provided a unique solution for the sustained delivery of therapeutic agents from tissue compatible wound dressings. 2010 Elsevier Ltd. All rights reserved.
[Effect of polyethylene glycol-lipid derivatives on the stability of grafted liposomes].
Xu, Yang; Shi, Li; Deng, Yi-hui
2011-10-01
It is reported that polyethylene glycol-lipid (PEG-lipid) derivatives increase liposomes stability, prolong the blood circulation of liposomes, enhance their tumor-targeting efficiency, and improve drug efficacy. Therefore, it is of great importance to investigate the influence of modified PEG-lipid derivatives on the physical, chemical, and biological characteristics of liposomes for the promotion of dealing with the existed problems, such as the accelerated blood clearance (ABC) phenomenon when repeated intravous injection at a certain time-interval, and developing novel targeted pharmaceutical preparations. In this review, the effects of modified PEG-lipid derivatives were summarized in many aspects. It indicats that the chemical bonds (amide, ether, ester, and disulfide) between PEG and lipid, as well as the species of lipids, such as the commonly used phosphatidylethanolamine, cholesterol, and diacylglycerol have substantial effects on the grafted liposomes stability in vitro and in vivo. Besides, the properties of lipids (the fatty acid chain length and saturation) and the groups (methoxy, carboxylic and amino) at the distal ends of the PEG chains were also considered to be important factors. In the end, the influence of the average molecular weight of PEG and the molar ratio of PEG-lipid derivatives in the total lipid were further focused.
Beugin, S; Edwards, K; Karlsson, G; Ollivon, M; Lesieur, S
1998-01-01
Monomethoxypoly(ethylene glycol) cholesteryl carbonates (M-PEG-Chol) with polymer chain molecular weights of 1000 (M-PEG1000-Chol) and 2000 (M-PEG2000-Chol) have been newly synthesized and characterized. Their aggregation behavior in mixture with diglycerol hexadecyl ether (C16G2) and cholesterol has been examined by cryotransmission electron microscopy, high-performance gel exclusion chromatography, and quasielastic light scattering. Nonaggregated, stable, unilamellar vesicles were obtained at low polymer levels with optimal shape and size homogeneity at cholesteryl conjugate/ lipids ratios of 10 mol% M-PEG1000-Chol or 5 mol% M-PEG2000-Chol, corresponding to the theoretically predicted brush conformational state of the PEG chains. At 20 mol% M-PEG1000-Chol or 10 mol% M-PEG2000-Chol, the saturation threshold of the C16G2/cholesterol membrane in polymer is exceeded, and open disk-shaped aggregates are seen in coexistence with closed vesicles. Higher levels up to 30 mol% lead to the complete solubilization of the vesicles into disk-like structures of decreasing size with increasing PEG content. This study underlines the bivalent role of M-PEG-Chol derivatives: while behaving as solubilizing surfactants, they provide an efficient steric barrier, preventing the vesicles from aggregation and fusion over a period of at least 2 weeks. PMID:9635773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calm, J.M.
1992-11-09
The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerantmore » circuits. A computerized version is available that includes retrieval software.« less
NASA Astrophysics Data System (ADS)
Manap, Siti Munirah; Ahmad, Azizan; Anuar, Farah Hannan
2016-11-01
A polyurethane films consisting of PLLA, PPG and PLLA-PPG were prepared using solution casting method. Three types of polyurethane were prepared: PPLA:PMDI, PPG:PMDI and PLLA-PPG:PMDI in the presence of polymeric diphenylmethane diisocyanate (PMDI) as the coupling agent and catalyst, Sn(Oct)2. The aim of this research was to improve the physicals properties of PLLA and PPG homopolymers through copolymerization between the two polymers. The homopolymers and polyurethane films were characterized using ATR-FTIR spectroscopy. Chemical reaction between PLLA, PPG and PMDI before and after the reaction were confirmed by observing the shifting of wavenumber for the carbonyl and ether group. Other than that, the additional band for N-H after the reaction indicated that the reaction was successful.
Single step synthesis and organization of gold colloids assisted by copolymer templates
NASA Astrophysics Data System (ADS)
Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas
2014-06-01
We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.
Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices
NASA Astrophysics Data System (ADS)
Lisboa, Patrícia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, François
2007-03-01
This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.
NASA Astrophysics Data System (ADS)
Groeneveld, Bart G. H. M.; Najafi, Mehrdad; Steensma, Bauke; Adjokatse, Sampson; Fang, Hong-Hua; Jahani, Fatemeh; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Loi, Maria Antonietta
2017-07-01
We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to perovskite solar cells with PCBM (phenyl-C61-butyric acid methyl ester). The improved performance of PTEG-1 devices is attributed to the reduced trap-assisted recombination and improved charge extraction in these solar cells, as determined by light intensity dependence and photoluminescence measurements. Through optimization of the hole and electron transport layers, the power conversion efficiency of the NiOx/perovskite/PTEG-1 solar cells was increased up to 16.1%.
Kuwabara, Tetsuo; Satake, Ryota; Guo, Haocheng
2015-01-01
Two benzocrown ether-bipyridinium conjugates, 1 and 2, each having a different length of alkyl chains with butyl and dodecyl groups, respectively, have been synthesized for the purpose of developing a new guest-responsive color-change chemosensor. Both 1 and 2 showed yellow colors with broad absorption bands around 400 nm in acetonitrile. These are associated with the intramolecular charge transfer (CT) absorption, in which the benzocrown ether and bipyridinium units act as the donor and acceptor, respectively. Upon addition of the guest; such as Na(+), they faded in color due to the blue shift in their intramolecular charge transfer absorption bands. These are associated with the formation of 1:1 host-guest inclusion complex. Analogues, 3 and 4, both being similar in structure to 1 and 2 with non-crown ether unit, also showed intramolecular CT absorptions around 400 nm, but did not change their absorption spectra upon addition of the guest because of the lack of guest-binding abilities. The guest-induced color change of 1 and 2 can be used for alkali and alkaline metal ion sensing. Both 1 and 2 could detect divalent cations such as Mg(2+) and Ca(2+) rather than univalent ones, Li(+), Na(+), K(+), Rb(+), and Cs(+). Although a marked difference between 1 and 2 was not observed in their guest sensing abilities, the remarkable recognition of 1 and 2 for Mg(2+) and Ca(2+) was found compared with that of 5, which has benzyl unit instead of alkyl chains of 1 and 2. The sensitivity values of 1 and 2 were roughly proportional to their binding constants, as shown by the binding constants with Li(+), Na(+), Mg(2+), and Ca(2+) with the values of 910, 260, 820, and 2300 M(-1) for 1 and 930, 290, 1270, and 2790 M(-1) for 2, while the binding constants of 5 were estimated to be 930, 440, 210, and 1200 M(-1) for Li(+), Na(+), Mg(2+), and Ca(2+), respectively. The limit concentration of detection of 2 for Ca(2+) was estimated to be 0.016 mM, which was the smallest value in this system.
Dong, Kai; Yan, Yan; Wang, Pengchong; Shi, Xianpeng; Zhang, Lu; Wang, Ke; Xing, Jianfeng; Dong, Yalin
2016-01-01
In this study, a type of multifunctional mixed micelles were prepared by a novel biodegradable amphiphilic polymer (MPEG-SS-2SA) and a multidrug resistance (MDR) reversal agent (d-α-tocopheryl polyethylene glycol succinate, TPGS). The mixed micelles could achieve rapid intracellular drug release and reversal of MDR. First, the amphiphilic polymer, MPEG-SS-2SA, was synthesized through disulfide bonds between poly (ethylene glycol) monomethyl ether (MPEG) and stearic acid (SA). The structure of the obtained polymer was similar to poly (ethylene glycol)-phosphatidylethanolamine (PEG-PE). Then the mixed micelles, MPEG-SS-2SA/TPGS, were prepared by MPEG-SS-2SA and TPGS through the thin film hydration method and loaded paclitaxel (PTX) as the model drug. The in vitro release study revealed that the mixed micelles could rapidly release PTX within 24 h under a reductive environment because of the breaking of disulfide bonds. In cell experiments, the mixed micelles significantly inhibited the activity of mitochondrial respiratory complex II, also reduced the mitochondrial membrane potential, and the content of adenosine triphosphate, thus effectively inhibiting the efflux of PTX from cells. Moreover, in the confocal laser scanning microscopy, cellular uptake and 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assays, the MPEG-SS-2SA/TPGS micelles achieved faster release and more uptake of PTX in Michigan Cancer Foundation-7/PTX cells and showed better antitumor effects as compared with the insensitive control. In conclusion, the biodegradable mixed micelles, MPEG-SS-2SA/TPGS, could be potential vehicles for delivering hydrophobic chemotherapeutic drugs in MDR cancer therapy. PMID:27785018
Cacao, Eliedonna E.; Nasrullah, Azeem; Sherlock, Tim; Kemper, Steven; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E.; Willson, Richard C.
2013-01-01
In this work, a collimated helium beam was used to activate a thiol-poly(ethylene glycol) (SH-PEG) monolayer on gold to selectively capture proteins in the exposed regions. Protein patterns were formed at high throughput by exposing a stencil mask placed in proximity to the PEG-coated surface to a broad beam of helium particles, followed by incubation in a protein solution. Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (ATR–FTIR) spectra showed that SH-PEG molecules remain attached to gold after exposure to beam doses of 1.5–60 µC/cm2 and incubation in PBS buffer for one hour, as evidenced by the presence of characteristic ether and methoxy peaks at 1120 cm−1 and 2870 cm−1, respectively. X-ray Photoelectron Spectroscopy (XPS) spectra showed that increasing beam doses destroy ether (C–O) bonds in PEG molecules as evidenced by the decrease in carbon C1s peak at 286.6 eV and increased alkyl (C–C) signal at 284.6 eV. XPS spectra also demonstrated protein capture on beam-exposed PEG regions through the appearance of a nitrogen N1s peak at 400 eV and carbon C1s peak at 288 eV binding energies, while the unexposed PEG areas remained protein-free. The characteristic activities of avidin and horseradish peroxidase were preserved after attachment on beam-exposed regions. Protein patterns created using a 35 µm mesh mask were visualized by localized formation of insoluble diformazan precipitates by alkaline phosphatase conversion of its substrate bromochloroindoyl phosphate-nitroblue tetrazolium (BCIP-NBT) and by avidin binding of biotinylated antibodies conjugated on 100 nm gold nanoparticles (AuNP). Patterns created using a mask with smaller 300 nm openings were detected by specific binding of 40 nm AuNP probes and by localized HRP-mediated deposition of silver nanoparticles. Corresponding BSA-passivated negative controls showed very few bound AuNP probes and little to no enzymatic formation of diformazan precipitates or silver nanoparticles. PMID:23717382
High performance dental resin composites with hydrolytically stable monomers.
Wang, Xiaohong; Huyang, George; Palagummi, Sri Vikram; Liu, Xiaohui; Skrtic, Drago; Beauchamp, Carlos; Bowen, Rafael; Sun, Jirun
2018-02-01
The objectives of this project were to: 1) develop strong and durable dental resin composites by employing new monomers that are hydrolytically stable, and 2) demonstrate that resin composites based on these monomers perform superiorly to the traditional bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) composites under testing conditions relevant to clinical applications. New resins comprising hydrolytically stable, ether-based monomer, i.e., triethylene glycol divinylbenzyl ether (TEG-DVBE), and urethane dimethacrylate (UDMA) were produced via composition-controlled photo-polymerization. Their composites contained 67.5wt% of micro and 7.5wt% of nano-sized filler. The performances of both copolymers and composites were evaluated by a battery of clinically-relevant assessments: degree of vinyl conversion (DC: FTIR and NIR spectroscopy); refractive index (n: optical microscopy); elastic modulus (E), flexural strength (F) and fracture toughness (K IC ) (universal mechanical testing); Knoop hardness (HK; indentation); water sorption (W sp ) and solubility (W su ) (gravimetry); polymerization shrinkage (S v ; mercury dilatometry) and polymerization stress (tensometer). The experimental UDMA/TEG-DVBE composites were compared with the Bis-GMA/TEGDMA composites containing the identical filler contents, and with the commercial micro hybrid flowable composite. UDMA/TEG-DBVE composites exhibited n, E, W sp , W su and S v equivalent to the controls. They outperformed the controls with respect to F (up to 26.8% increase), K IC (up to 27.7% increase), modulus recovery upon water sorption (full recovery vs. 91.9% recovery), and stress formation (up to 52.7% reduction). In addition, new composites showed up to 27.7% increase in attainable DC compared to the traditional composites. Bis-GMA/TEGDMA controls exceeded the experimental composites with respect to only one property, the composite hardness. Significantly, up to 18.1% lower HK values in the experimental series (0.458GPa) were still above the clinically required threshold of approx. 0.4GPa. Hydrolytic stability, composition-controlled polymerization and the overall enhancement in clinically-relevant properties of the new resin composites make them viable candidates to replace traditional resin composites as a new generation of strong and durable dental restoratives. Copyright © 2017 The Academy of Dental Materials. All rights reserved.
Thermodynamics of Interaction between Some Cellulose Ethers and SDS by Titration Microcalorimetry.
Singh; Nilsson
1999-05-01
The interaction between certain nonionic cellulose ethers (ethyl hydroxyethyl cellulose and hydroxypropyl methyl cellulose) and sodium dodecyl sulphate (SDS) has been investigated using isothermal titration microcalorimetry at temperatures between 25-50 degrees C. The observed heat flow curves have been interpreted in terms of a plausible mechanism of the interaction of the substituent groups with SDS monomers and clusters. The data have been related to changes occuring in the system at the macro- and microscopic levels with the addition of surfactants and with temperature. The process consists predominantly of polymer-surfactant interactions initially and surfactant-surfactant interactions at the later stages. A phenomenological model of the cooperative interaction (adsorption) process has been derived, and earlier published equilibrium binding data have been used to recover binding constants and Gibbs energy changes for this process. The adsorption enthalpies and entropies have been recovered along with the heat capacity change. The enthalpic cost of confining the nonpolar regions of the polymers in surfactant clusters is high, but the entropy gain from release of hydration shell water molecules as well as increased freedom of movement of these nonpolar regions in the clusters gives the process a strong entropic driving force. The process is entropy-driven initially and converts to being both enthalpy and entropy-driven at high SDS concentrations. An enthalpy-entropy compensation behavior is seen. Strongly negative heat capacity changes have been obtained resulting from the transfer of nonpolar groups from aqueous into nonpolar environments, as well as a reduction of conformational domains that the chains can populate. Changes in these two components cause the heat capacity change to become less negative at the higher binding levels. The system can be classified as exhibiting nonclassical hydrophobic binding at the later stages of binding. Copyright 1999 Academic Press.
Iovescu, Alina; Băran, Adriana; Stîngă, Gabriela; Cantemir-Leontieş, Anca Ruxandra; Maxim, Monica Elisabeta; Anghel, Dan Florin
2015-12-01
The study systematically investigates aqueous mixtures of fixed bovine serum albumin (BSA) and various ethoxylated nonionic surfactants belonging to a homologous series or not. Mono-disperse tetra-(C12E4), hexa-(C12E6) and octa-ethyleneglycol mono-n-dodecyl ether (C12E8), and poly-disperse eicosa-ethyleneglycol mono-n-tetradecyl ether (C14EO20) are respectively employed. Fluorescence and circular dichroism measurements are performed at surfactant/protein molar ratios (rm)s lower and higher than one. We aim to get new insights into the binding mechanism of these species and to differentiate among the interaction abilities of these surfactants. The relative magnitude of the binding thermodynamic parameters by fluorescence, and the increase of α-helix prove that hydrogen bonding drives the interaction next to the hydrophobic attraction. C12En (n=4,6,8) develop more H bonds with the albumin than C14EO20 owing to a zigzag conformation of their short ethyleneoxide chains. Among the homologous surfactants, C12E6 has a slightly stronger interaction with BSA due to a maximal number of H bonds at a minimal hindering. Static fluorescence and dynamic fluorescence indicate an inter-conversion between the tryptophan (Trp) rotamers which happens around the surfactants critical micellar concentration. For C14EO20, the meander conformation of the polar group determines a less evident conversion of the Trp rotamers and smaller α-helix rise. Binding isotherms of the homologous surfactants and the fluorescence quenching mechanism by C12E6 are also provided. Copyright © 2015 Elsevier B.V. All rights reserved.
Organics Characterization Of DWPF Alternative Reductant Simulants, Glycolic Acid, And Antifoam 747
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, T. L.; Wiedenman, B. J.; Lambert, D. P.
The present study examines the fate of glycolic acid and other organics added in the Chemical Processing Cell (CPC) of the Defense Waste Processing Facility (DWPF) as part of the glycolic alternate flowsheet. Adoption of this flowsheet is expected to provide certain benefits in terms of a reduction in the processing time, a decrease in hydrogen generation, simplification of chemical storage and handling issues, and an improvement in the processing characteristics of the waste stream including an increase in the amount of nitrate allowed in the CPC process. Understanding the fate of organics in this flowsheet is imperative because tankmore » farm waste processed in the CPC is eventually immobilized by vitrification; thus, the type and amount of organics present in the melter feed may affect optimal melt processing and the quality of the final glass product as well as alter flammability calculations on the DWPF melter off gas. To evaluate the fate of the organic compounds added as the part of the glycolic flowsheet, mainly glycolic acid and antifoam 747, samples of simulated waste that was processed using the DWPF CPC protocol for tank farm sludge feed were generated and analyzed for organic compounds using a variety of analytical techniques at the Savannah River National Laboratory (SRNL). These techniques included Ion Chromatography (IC), Gas Chromatography-Mass Spectrometry (GC-MS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES), and Nuclear Magnetic Resonance (NMR) Spectroscopy. A set of samples were also sent to the Catholic University of America Vitreous State Laboratory (VSL) for analysis by NMR Spectroscopy at the University of Maryland, College Park. Analytical methods developed and executed at SRNL collectively showed that glycolic acid was the most prevalent organic compound in the supernatants of Slurry Mix Evaporator (SME) products examined. Furthermore, the studies suggested that commercially available glycolic acid contained minor amounts of impurities such as formic and diglycolic acid that were then carried over in the SME products. Oxalic acid present in the simulated tank farm waste was also detected. Finally, numerous other compounds, at low concentrations, were observed present in etheric extracts of aqueous supernate solutions of the SME samples and are thought to be breakdown products of antifoam 747. The data collectively suggest that although addition of glycolic acid and antifoam 747 will introduce a number of impurities and breakdown products into the melter feed, the concentrations of these organics is expected to remain low and may not significantly impact REDOX or off-gas flammability predictions. In the SME products examined presently, which contained variant amounts of glycolic acid and antifoam 747, no unexpected organic degradation product was found at concentrations above 500 mg/kg, a reasonable threshold concentration for an organic compound to be taken into account in the REDOX modeling. This statement does not include oxalic or formic acid that were sometimes observed above 500 mg/kg and acetic acid that has an analytical detection limit of 1250 mg/kg due to high glycolate concentration in the SME products tested. Once a finalized REDOX equation has been developed and implemented, REDOX properties of known organic species will be determined and their impact assessed. Although no immediate concerns arose during the study in terms of a negative impact of organics present in SME products of the glycolic flowsheet, evidence of antifoam degradation suggest that an alternative antifoam to antifoam 747 is worth considering. The determination and implementation of an antifoam that is more hydrolysis resistant would have benefits such as increasing its effectiveness over time and reducing the generation of degradation products.« less
Chemical Modification of Polysaccharides
Cumpstey, Ian
2013-01-01
This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javni, Ivan; Bilić, Olivera; Bilić, Nikola
2015-06-30
Isosorbide, a cyclic, rigid and renewable diol was used as a chain extender in two series of thermoplastic polyurethanes. Isosorbide was used in combination with butane diol or alone to examine the effects on polyurethane morphology. Two series of materials were prepared -one with dispersed hard domains in the matrix of polytetramethylene ether glycol soft segments of molecular weight 1400 (at 70% soft segment concentration-SSC) and the other with co-continuous soft and hard phases at 50% SSC. Morphology of materials was studied by optical and atomic force microscopy, as well as with ultra small angle x-ray scattering (USAXS). The radiusmore » of spherical hard domains, correlation lengths, mean separation distances and boundary layer thickness were measured as a function of isosorbide content.« less
Mallegni, Norma; Phuong, Thanh Vu; Coltelli, Maria-Beatrice
2018-01-01
Poly(lactic acid) (PLA) was melt mixed in a laboratory extruder with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in the presence of polypropylene glycol di glycidyl ether (EJ400) that acted as both plasticizer and compatibilizer. The process was then scaled up in a semi-industrial extruder preparing pellets having different content of a nucleating agent (LAK). All of the formulations could be processed by blowing extrusion and the obtained films showed mechanical properties dependent on the LAK content. In particular the tearing strength showed a maximum like trend in the investigated composition range. The films prepared with both kinds of blends showed a tensile strength in the range 12–24 MPa, an elongation at break in the range 150–260% and a significant crystallinity. PMID:29342099
Construction of protein-resistant pOEGMA films by helicon plasma-enhanced chemical vapor deposition.
Lee, Bong Soo; Yoon, Ok Ja; Cho, Woo Kyung; Lee, Nae-Eung; Yoon, Kuk Ro; Choi, Insung S
2009-01-01
This paper describes the formation of protein-resistant, poly(ethylene glycol) methyl ether methacrylate (pOEGMA) thin films by helicon plasma-enhanced chemical vapor deposition (helicon-PECVD). pOEGMA was successfully grafted onto a silicon substrate, as a model substrate, without any additional surface initiators, by plasma polymerization of OEGMA. The resulting pOEGMA films were characterized by ellipsometry, FT-IR spectroscopy, X-ray photoelectron spectroscopy and contact angle goniometry. To investigate the protein-resistant property of the pOEGMA films, four different proteins, bovine serum albumin, fibrinogen, lysozyme and ribonuclease A, were tested as model proteins for ellipsometric measurements. The ellipsometric thickness change for all the model proteins was less than 3 A, indicating that the formed pOEGMA films are protein-resistant. (c) Koninklijke Brill NV, Leiden, 2009
Polyether complexes of groups 13 and 14.
Swidan, Ala'aeddeen; Macdonald, Charles L B
2016-07-21
Notable aspects of the chemistry of complexes of polyether ligands including crown ethers, cryptands, glycols, glymes, and related polyether ligands with heavier group 13 and 14 elements are reviewed with a focus on results from 2005 to the present. The majority of reported polyether complexes contain lead(ii) and thallium(i) but recent breakthroughs in regard to the preparation of low oxidation state reagents of the lighter congeners have allowed for the generation of complexes containing indium(i), gallium(i), germanium(ii), and even silicon(ii). The important roles of ligand size, donor types, and counter anions in regard to the chemical properties of the polyether complexes is highlighted. A particular focus on the structural aspects of the numerous coordination complexes provides a rationale for some of the spectacular contributions that such compounds have made to Modern Main Group Chemistry.
Zinchenko, Anatoly; Taki, Yosuke; Sergeyev, Vladimir G.; Murata, Shizuaki
2015-01-01
A simple method for preparation of DNA-carbon nanotubes hybrid hydrogel based on a two-step procedure including: (i) solubilization of multi-walled carbon nanotubes (MWCNT) in aqueous solution of DNA, and (ii) chemical cross-linking between solubilized MWCNT via adsorbed DNA and free DNA by ethylene glycol diglycidyl ether is reported. We show that there exists a critical concentration of MWCNT below which a homogeneous dispersion of MWCNT in hybrid hydrogel can be achieved, while at higher concentrations of MWCNT the aggregation of MWCNT inside hydrogel occurs. The strengthening effect of carbon nanotube in the process of hydrogel shrinking in solutions with high salt concentration was demonstrated and significant passivation of MWCNT adsorption properties towards low-molecular-weight aromatic binders due to DNA adsorption on MWCNT surface was revealed. PMID:28347011
Zinchenko, Anatoly; Taki, Yosuke; Sergeyev, Vladimir G; Murata, Shizuaki
2015-03-03
A simple method for preparation of DNA-carbon nanotubes hybrid hydrogel based on a two-step procedure including: (i) solubilization of multi-walled carbon nanotubes (MWCNT) in aqueous solution of DNA, and (ii) chemical cross-linking between solubilized MWCNT via adsorbed DNA and free DNA by ethylene glycol diglycidyl ether is reported. We show that there exists a critical concentration of MWCNT below which a homogeneous dispersion of MWCNT in hybrid hydrogel can be achieved, while at higher concentrations of MWCNT the aggregation of MWCNT inside hydrogel occurs. The strengthening effect of carbon nanotube in the process of hydrogel shrinking in solutions with high salt concentration was demonstrated and significant passivation of MWCNT adsorption properties towards low-molecular-weight aromatic binders due to DNA adsorption on MWCNT surface was revealed.
Ma, Hongyan; Darmawan, Erica T.; Zhang, Min; Zhange, Lei; Bryers, James D.
2013-01-01
Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, surplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly (ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3 months. All drug-loaded PEU films exhibited in vitro ≥ 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes. PMID:24140747
Ma, Hongyan; Darmawan, Erica T; Zhang, Min; Zhang, Lei; Bryers, James D
2013-12-28
Traditional antibiotic therapy to control medical device-based infections typically fails to clear biofilm infections and may even promote the evolution of antibiotic resistant species. We report here the development of two novel antibiofilm agents; gallium (Ga) or zinc (Zn) complexed with protoporphyrin IX (PP) or mesoprotoporphyrin IX (MP) that are both highly effective in negating suspended bacterial growth and biofilm formation. These chelated gallium or zinc complexes act as iron siderophore analogs, supplanting the natural iron uptake of most bacteria. Poly (ether urethane) (PEU; Biospan®) polymer films were fabricated for the controlled sustained release of the Ga- or Zn-complexes, using an incorporated pore-forming agent, poly(ethylene glycol) (PEG). An optimum formulation containing 8% PEG (MW=1450) in the PEU polymer effectively sustained drug release for at least 3months. All drug-loaded PEU films exhibited in vitro ≥ 90% reduction of Gram-positive (Staphylococcus epidermidis) and Gram-negative (Pseudomonas aeruginosa) bacteria in both suspended and biofilm culture versus the negative control PEU films releasing nothing. Cytotoxicity and endotoxin evaluation demonstrated no adverse responses to the Ga- or Zn-complex releasing PEU films. Finally, in vivo studies further substantiate the anti-biofilm efficacy of the PEU films releasing Ga- or Zn- complexes. © 2013.
NASA Astrophysics Data System (ADS)
Ueno, Nami; Wakabayashi, Tomonari; Morisawa, Yusuke
2018-05-01
We measured the attenuated total reflectance-far ultraviolet (ATR-FUV) spectra of poly(ethylene glycol) (PEG; average molecular weights of 200, 300, and 400) and related materials in the liquid state in the 145-200-nm wavelength region. For appropriately assigning the absorption bands, we also performed theoretical simulation of the unit-number dependent electronic spectra. The FUV spectra of PEGs contain three bands, which are assigned to the transitions between n(CH2OCH2)-3s Rydberg state (176 nm), n(CH2OCH2)-3p Rydberg state (163 nm), and n(OH)-3p Rydberg state (153 nm). Since the contribution of n(OH) decreases compared to n(CH2OCH2) with increase in the number of units, the ratios of the molar absorption coefficients, ε, at 153 nm relative to 163 nm, decrease. On the other hand, the ratio of ε at 176 nm to that at 163 nm increases with increase in the number of units, because of the difference in the number of unoccupied orbitals in the transitions. The calculated results suggest that n orbitals form two electronic bands. In the upper band, the electrons expand over the ether chain, whereas in the lower band, the electrons are localized in the terminal OH in the PEGs.
Tan, Liwei; Song, Jia; Luo, Feng
2013-01-01
A kind of chemically cross-linked pH-sensitive hydrogels based on methoxyl poly(ethylene glycol)-poly(caprolactone)-acryloyl chloride (MPEG-PCL-AC, PECA), poly(ethylene glycol) methyl ether methacrylate (MPEGMA, MEG), N,N-methylenebisacrylamide (BIS), and itaconic acid (IA) were prepared without using any organic solvent by heat-initiated free radical method. The obtained macromonomers and hydrogels were characterized by 1H NMR and FT-IR, respectively. Morphology study of hydrogels was also investigated in this paper, and it showed that the hydrogels had good pH-sensitivity. The acute toxicity test and histopathological study were conducted in BALB/c mice. The results indicated that the maximum tolerance dose of the hydrogel was higher than 10000 mg/kg body weight. No morality or signs of toxicity were observed during the whole 7-day observation period. Compared to the control groups, there were no important adverse effects in the variables of hematology routine test and serum chemistry analysis both in male or female treatment group. Histopathological study also did not show any significant lesions, including heart, liver, lung, spleen, kidney, stomach, intestine, and testis. All the results demonstrated that this hydrogel was nontoxic after gavage. Thus, the hydrogel might be the biocompatible potential candidate for oral drug delivery system. PMID:24364030
Korinth, Gintautas; Wellner, Tanja; Schaller, Karl Heinz; Drexler, Hans
2012-11-23
Aqueous amphiphilic compounds may exhibit enhanced skin penetration compared with neat compounds. Conventional models do not predict this percutaneous penetration behaviour. We investigated the potential of the octanol-water partition coefficient (logP) to predict dermal fluxes for eight compounds applied neat and as 50% aqueous solutions in diffusion cell experiments using human skin. Data for seven other compounds were accessed from literature. In total, seven glycol ethers, three alcohols, two glycols, and three other chemicals were considered. Of these 15 compounds, 10 penetrated faster through the skin as aqueous solutions than as neat compounds. The other five compounds exhibited larger fluxes as neat applications. For 13 of the 15 compounds, a consistent relationship was identified between the percutaneous penetration behaviour and the logP. Compared with the neat applications, positive logP were associated with larger fluxes for eight of the diluted compounds, and negative logP were associated with smaller fluxes for five of the diluted compounds. Our study demonstrates that decreases or enhancements in dermal penetration upon aqueous dilution can be predicted for many compounds from the sign of logP (i.e., positive or negative). This approach may be suitable as a first approximation in risk assessments of dermal exposure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Shen, Kaini; Sun, Jian; Cao, Xinxin; Zhou, Daobin; Li, Jian
2015-01-01
We determined the best extraction buffer for proteomic investigation using formalin-fixation and paraffin-embedded (FFPE) specimens. A Zwittergent 3-16 based buffer, sodium dodecyl sulfate (SDS)-containing buffer with/without polyethylene glycol 20000 (PEG20000), urea-containing buffer, and FFPE-FASP protein preparation kit were compared for protein extraction from different types of rat FFPE tissues, including the heart, brain, liver, lung, and kidney. All of the samples were divided into two groups of laser microdissected (LMD) and non-LMD specimens. For both kinds of specimens, Zwittergent was the most efficient buffer for identifying peptides and proteins, was broadly applicable to different tissues without impairing the enzymatic digestion, and was well compatible with mass spectrometry analysis. As a high molecular weight carrier substance, PEG20000 improved the identification of peptides and proteins; however, such an advantage is limited to tissues containing submicrograms to micrograms of protein. Considering its low lytic strength, urea-containing buffer would not be the first alternative for protein recovery. In conclusion, Zwittergent 3-16 is an effective buffer for extracting proteins from FFPE specimens for downstream proteomics analysis.
End Functionalized Nonionic Water-Dispersible Conjugated Polymers.
Zhan, Ruoyu; Liu, Bin
2017-09-01
2,7-Dibromofluorene monomers carrying two or four oligo(ethylene glycol) (OEG) side chains are synthesized. Heck coupling between the monomers and 1,4-divinylbenzene followed by end capping with [4-(4-bromophenoxy)butyl]carbamic acid tert-butyl ester leads to two nonionic water-dispersible poly(fluorene-alt-1,4-divinylenephenylene)s end-functionalized with amine groups after hydrolysis. In water, the polymer with a lower OEG density (P1) has poor water dispersibility with a quantum yield of 0.24, while the polymer with a higher OEG density (P2) possesses excellent water-dispersibility with a high quantum yield of 0.45. Both polymers show fluorescence enhancement and blue-shifted absorption and emission maxima in the presence of surfactant sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The polymers are also resistant to ionic strength with minimal nonspecific interactions to bovine serum albumin. When biotin is incorporated into the end of the polymer backbones through N-hydroxysuccinimide/amine coupling reaction, the biotinylated polymers interact specifically with streptavidin on solid surface. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The internalization of fluorescence-labeled PLA nanoparticles by macrophages.
Li, Fengjuan; Zhu, Aiping; Song, Xiaoli; Ji, Lijun; Wang, Juan
2013-09-10
Rhodamine B (RhB)-labeled PLA nanoparticles were prepared through surface grafting copolymerization of glycidyl methacrylate (GMA) onto PLA nanoparticles during the emulsion/evaporation process. RhB firstly interacts with sodium dodecyl sulfate (SDS) through electrostatic interaction to form hydrophobic complex (SDS-RhB). Due to the high-affinity of SDS-RhB with GMA, hydrophilic RhB can be successfully combined into PLA nanoparticles. The internalization of RhB-labeled PLA nanoparticles by macrophages was investigated with fluorescence microscope technology. The effects of the PLA nanoparticle surface nature and size on the internalization were investigated. The results indicate that the PLA particles smaller than 200 nm can avoid the uptake of phagocytosis. The bigger PLA particles (300 nm) with polyethylene glycol (PEG) surface showed less internalization by macrophage compared with those with poly(ethylene oxide-propylene oxide) copolymer (F127) or poly(vinyl alcohol) (PVA) surface. The "stealth" function of PEG on the PLA nanoparticles from internalization of macrophages due to the low protein adsorption is revealed by electrochemical impedance technology. Copyright © 2013 Elsevier B.V. All rights reserved.
Dissolution and oral bioavailability enhancement of praziquantel by solid dispersions.
Liu, Yanyan; Wang, Tianzi; Ding, Wenya; Dong, Chunliu; Wang, Xiaoting; Chen, Jianqing; Li, Yanhua
2018-06-01
The aim of the present investigation was to enhance the solubility, dissolution, and oral bioavailability of praziquantel (PZQ), a poorly water-soluble BCS II drug (Biopharmaceutical Classification System), using a solid dispersion (SD) technique involving hydrophilic copolymers. The SD formulations were prepared by a solvent evaporation method with PZQ and PEG 4000 (polyethylene glycol 4000), PEG 6000, or P 188 polymers at various weight ratios or a combination of PEG 4000/P 188. The optimized SD formulation, which had the highest solubility in distilled water, was further characterized by its surface morphology, crystallinity, and dissolution in 0.1 M HCl with 0.2% w/v of sodium dodecyl sulfate (SDS). X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed the amorphous form of PZQ in the SDs. Moreover, at an oral dosage of 5 mg/kg PZQ, the SDs had higher C max values and areas under the curve (AUCs) compared to those of commercial PZQ tablets. Preparation of PZQ-loaded SDs using PEG 4000/P 188 is a promising strategy to improve the oral bioavailability of PZQ.
Tang, Jian; Qu, Zhou; Luo, Jianhui; He, Lanyan; Wang, Pingmei; Zhang, Ping; Tang, Xianqiong; Pei, Yong; Ding, Bin; Peng, Baoliang; Huang, Yunqing
2018-02-15
The detachment process of an oil molecular layer situated above a horizontal substrate was often described by a three-stage process. In this mechanism, the penetration and diffusion of water molecules between the oil phase and the substrate was proposed to be a crucial step to aid in removal of oil layer/drops from substrate. In this work, the detachment process of a two-dimensional alkane molecule layer from a silica surface in aqueous surfactant solutions is studied by means of molecular dynamics (MD) simulations. By tuning the polarity of model silica surfaces, as well as considering the different types of surfactant molecules and the water flow effects, more details about the formation of water molecular channel and the expansion processes are elucidated. It is found that for both ionic and nonionic type surfactant solutions, the perturbation of surfactant molecules on the two-dimensional oil molecule layer facilitates the injection and diffusion of water molecules between the oil layer and silica substrate. However, the water channel formation and expansion speed is strongly affected by the substrate polarity and properties of surfactant molecules. First, only for the silica surface with relative stronger polarity, the formation of water molecular channel is observed. Second, the expansion speed of the water molecular channel upon the ionic surfactant (dodecyl trimethylammonium bromide, DTAB and sodium dodecyl benzenesulfonate, SDBS) flooding is more rapidly than the nonionic surfactant system (octylphenol polyoxyethylene(10) ether, OP-10). Third, the water flow speed may also affect the injection and diffusion of water molecules. These simulation results indicate that the water molecular channel formation process is affected by multiple factors. The synergistic effects of perturbation of surfactant molecules and the electrostatic interactions between silica substrate and water molecules are two key factors aiding in the injection and diffusion of water molecules and helpful for the oil detachment from silica substrate.
Alvarez, Sara D.; Derfus, Austin M.; Schwartz, Michael P.; Bhatia, Sangeeta N.; Sailor, Michael J.
2008-01-01
Porous Si is a nanostructured material that is of interest for molecular and cell-based biosensing, drug delivery, and tissue engineering applications. Surface chemistry is an important factor determining the stability of porous Si in aqueous media, its affinity for various biomolecular species, and its compatibility with tissues. In this study, the attachment and viability of a primary cell type to porous Si samples containing various surface chemistries is reported, and the ability of the porous Si films to retain their optical reflectivity properties relevant to molecular biosensing is assessed. Four chemical species grafted to the porous Si surface are studied: silicon oxide (via ozone oxidation), dodecyl (via hydrosilylation with dodecene), undecanoic acid (via hydrosilylation with undecylenic acid), and oligo(ethylene) glycol (via hydrosilylation with undecylenic acid followed by an oligo(ethylene) glycol coupling reaction). Fourier Transform Infrared (FTIR) spectroscopy and contact angle measurements are used to characterize the surface. Adhesion and short-term viability of primary rat hepatocytes on these surfaces, with and without pre-adsorption of collagen type I, are assessed using vital dyes (calcein-AM and ethidium homodimer I). Cell viability on undecanoic acid-terminated porous Si, oxide-terminated porous Si, and oxide-terminated flat (non-porous) Si are monitored by quantification of albumin production over the course of 8 days. The stability of porous Si thin films after 8 days in cell culture is probed by measuring the optical interferometric reflectance spectra. Results show that hepatocytes adhere better to surfaces coated with collagen, and that chemical modification does not exert a deleterious effect on primary rat hepatocytes. The hydrosilylation chemistry greatly improves the stability of porous Si in contact with cultured primary cells while allowing cell coverage levels comparable to standard culture preparations on tissue culture polystyrene. PMID:18845334
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, W.V.
2002-07-01
Ideal-gas enthalpies of formation of methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and diethylene glycol are reported. The standard energy of combustion and hence standard enthalpy of formation of each compound in the liquid phase has been measured using an oxygen rotating-bomb calorimeter without rotation. Vapor pressures were measured to a pressure limit of 270 kPa or the lower decomposition point for each of the six compounds using a twin ebulliometric apparatus. Liquid-phase densities along the saturation line were measured for each compound over a range of temperature (ambient to a maximum of 548 K). A differential scanningmore » calorimeter was used to measure two-phase (liquid + vapor) heat capacities for each compound in the temperature region ambient to the critical temperature or lower decomposition point. For methyl benzoate and tert-amyl methyl ether, critical temperatures and critical densities were determined from the DSC results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for each of the remaining compounds. The results of the measurements were combined to derive a series of thermophysical properties including critical temperature, critical density, critical pressure, acentric factor, enthalpies of vaporization (restricted to within {+-}50 K of the temperature region of the experimentally determined vapor pressures), and heat capacities along the saturation line. Wagner-type vapor-pressure equations were derived for each compound. All measured and derived values were compared with those obtained in a search of the literature. Recommended critical parameters are listed for each of the compounds studied. Group-additivity parameters, useful in the application of the Benson gas-phase group-contribution correlations, were derived.« less
Wang, Qian; Li, Chan; Ren, Tianyang; Chen, Shizhu; Ye, Xiaoxia; Guo, Hongbo; He, Haibing; Zhang, Yu; Yin, Tian; Liang, Xing-Jie; Tang, Xing
2017-10-02
Bioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.0%. The nanoparticles were uniform and spherical in shape and exhibited a sustained drug release compared with Taxol. m-NPs also exhibited favorable bioadhesive efficiency at the same time. Coumarin 6 or DiR-loaded nanoparticles with/without PVMMA (C6-m-NPs/DiR-m-NPs or C6-p-NPs/DiR-p-NPs) were used for cellular uptake and intestinal adhesion experiments, respectively. C6-m-NPs were shown to enhance cellular uptake, and caveolae/lipid raft mediated endocytosis was the primary route for the uptake of the nanoparticles. Favorable bioadhesive efficiency led to prolonged retention in the intestine reflected by the fluorescence in isolated intestines ex vivo. In a ligated intestinal loops model, C6-m-NPs showed a clear advantage for transporting NPs across the mucus layer over C6-p-NPs and free C6. The apparent permeability coefficient (Papp) of PTX-m-NPs through Caco-2/HT29 monolayers was 1.3- and 1.6-fold higher than PTX-p-NPs and Taxol, respectively, which was consistent with the AUC 0-t of different PTX formulations after oral administration in rats. PTX-m-NPs also exhibited a more effective anticancer efficacy, with an IC 50 of 0.2 ± 1.4 μg/mL for A549 cell lines, further demonstrating the advantage of bioadhesive nanoparticles. The bioadhesive nanoparticles m-NPs demonstrated both mucus permeation and epithelial absorption, and thus, this bioadhesive drug delivery system has the potential to improve the bioavailability of drugs that are insoluble in the gastrointestinal environment.
Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Susan K; Gordon, John C; Thorn, David L
2009-01-01
The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress hasmore » been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A), 2-phenoxyethanol (B), and 1,2-diphenyl-2-methoxyethanol (C) (Figure 1). Reaction of (dipic)V{sup V}(O)O{sup i}Pr (1a) or (dipic)V{sup v}(O)OEt (lb) with A, B, or C in acetonitrile yielded new vanadium(V) complexes where the alcohol-ether ligand was bound in a chelating fashion. From the reaction of 1b with pinacol monomethyl ether (A) in acetonitrile solution, (dipic)V{sup v}(O)(pinOMe) (2) (PinOMe = 2,3-dimethyl-3-methoxy-2-butanoxide) was isolated in 61 % yield. Reaction of 1b with 2-phenoxyethanol (B) in acetonitrile gave the new complex (dipic)V{sup v}(O)(OPE) (3) (OPE = 2-phenoxyethoxide), which was isolated in 76% yield. In a similar fashion, 1a reacted with 1,2-diphenyl-2-methoxyethanol (C) to give (dipic)V(O)(DPME) (4) (DPME = 1,2-diphenyl-2-methoxyethoxide), which was isolated in 39% yield. Complexes 2, 3, and 4 were characterized by {sup 1}H NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Compared to the previously reported vanadium(V) pinacolate complex (dipic)V(O)(pinOH) the X-ray structure of complex 2 reveals a slightly shorter V = O bond, 1.573(2) {angstrom} vs 1.588(2) {angstrom} for the pinOH structure. Complexes 3 and 4 display similar vanadium oxo bond distances of 1.568(2) {angstrom} and 1.576(2) {angstrom}, respectively. All three complexes show longer bonds to the ether-oxygen trans to the oxo (2.388(2) {angstrom} for 2, 2.547(2) {angstrom} for 3, and 2.438(2) {angstrom} for 4) than to the hydroxy-oxygen in the pinOH structure (2.252(2) {angstrom}).« less
Chemically programmed ink-jet printed resistive WORM memory array and readout circuit
NASA Astrophysics Data System (ADS)
Andersson, H.; Manuilskiy, A.; Sidén, J.; Gao, J.; Hummelgård, M.; Kunninmel, G. V.; Nilsson, H.-E.
2014-09-01
In this paper an ink-jet printed write once read many (WORM) resistive memory fabricated on paper substrate is presented. The memory elements are programmed for different resistance states by printing triethylene glycol monoethyl ether on the substrate before the actual memory element is printed using silver nano particle ink. The resistance is thus able to be set to a broad range of values without changing the geometry of the elements. A memory card consisting of 16 elements is manufactured for which the elements are each programmed to one of four defined logic levels, providing a total of 4294 967 296 unique possible combinations. Using a readout circuit, originally developed for resistive sensors to avoid crosstalk between elements, a memory card reader is manufactured that is able to read the values of the memory card and transfer the data to a PC. Such printed memory cards can be used in various applications.
Shi, Hui; Liu, Congcong; Jiang, Qinglin; Xu, Jingkun; Lu, Baoyang; Jiang, Fengxing; Zhu, Zhengyou
2015-06-19
Single-walled carbon nanotubes (SWCNTs), PSS/SWCNTs, and SWCNTs/ PSS nanofilms were used as working electrodes to electrodeposit polyaniline (PANI) in a mixed alcohol solution of isopropyl alcohol (IPA), boron trifluoride ethyl ether (BFEE), and polyethylene glycol (PEG). The thermoelectric (TE) performances of the resulting nanofilms were systematically investigated. SWCNTs/ PSS/PANI nanofilms showed a relatively high electrical conductivity value of 232.0 S cm(-1). The Seebeck coefficient was enhanced and exhibited the values of 33.8, 25.6, and 23.0 μV K(-1) for the SWCNTs/PANI, PEDOT:PSS/SWCNTs/PANI, and SWCNTs/ PSS/PANI films, respectively. The maximum power factor achieved was 12.3 μW m(-1) K(-2). This technique offers a facile and versatile approach to a class of layered nanostructures, and it may provide a general strategy for fabricating a new generation of conducting polymer/SWCNTs materials for further practical applications.
Urbano, Laura; Clifton, Luke; Ku, Hoi Ki; Kendall-Troughton, Hannah; Vandera, Kalliopi-Kelli A; Matarese, Bruno F E; Abelha, Thais; Li, Peixun; Desai, Tejal; Dreiss, Cécile A; Barker, Robert D; Green, Mark A; Dailey, Lea Ann; Harvey, Richard D
2018-05-17
π-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer. Hydrophobic interaction chromatography, contact angle, quartz crystal microbalance, and neutron reflectivity studies were used to assess the affinity of the surfactant to the conjugated polymer surface and indicated that all surfactants were displaced by the addition of a model serum protein. In summary, CPN preparation methods which rely on surface coating of a conjugated polymer core with amphiphilic surfactants may produce systems with good yields and colloidal stability in vitro, but may be susceptible to significant surface alterations in physiological fluids.
Life cycle assessment of biomethane use in Argentina.
Morero, Betzabet; Groppelli, Eduardo; Campanella, Enrique A
2015-04-01
Renewable substitutes for natural gas, such as biogas, require adequate treatment to remove impurities. This paper presents the life cycle and environmental impact of upgrading biogas using absorption-desorption process with three different solvents: water, diglycolamine and polyethylene glycol dimethyl ether. The results showed that water produces a minor impact in most of the considered categories, and an economic analysis showed that water is the most feasible solvent for obtaining the lowest payback period. This analysis includes three different sources for biogas production and two end uses for biomethane. The use of different wastes as sources results in different environmental impacts depending on the type of energy used in the anaerobic digestion. The same situation occurs when considering the use of biomethane as a domestic fuel or for power generation. Using energy from biogas to replace conventional energy sources in production and upgrading biogas significantly reduce the environmental impacts of processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chakraborty, Rajesh; Bhattacharaya, Koustava; Chattopadhyay, Pabitra
2014-02-01
Nanostructured zirconium phosphates (ZPs) of different sizes were synthesized using Tritron X-100 (polyethylene glycol-p-isooctylphenyl ether) surfactant. The materials were characterized by FTIR and powdered X-ray diffraction (XRD). The structural and morphological details of the material were established by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM study was followed by energy dispersive spectroscopic analysis (EDS) for elemental analysis of the sample. The particle sizes were determined by dynamic light scattering (DLS) method. Ion exchange capacity of these nanomaterials towards different metal ions was measured and size-dependent ion exchange property of the materials was investigated thoroughly. The nanomaterial of the smallest size (ca. 21.04nm) was employed to separate carrier-free (137m)Ba from (137)Cs in column chromatographic technique using 1.0M HNO3 as eluting agent at pH=5. © 2013 Elsevier Ltd. All rights reserved.
Sinha, Godhuli; Ganguli, Dibyendu; Chaudhuri, Subhadra
2008-03-01
Gallium oxide (beta-Ga2O3) nanoparticles were successfully deposited on quartz glass substrates using sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane/ethylene glycol monomethyl ether (EGME) reverse micelle-mediated solvothermal process with different omega values. The mean diameter of Ga2O3 particles was approximately 2-3 nm and found to be approximately independent of omega values of the reverse micelles. However, when the Ga2O3 nanocrystalline films were nitrided at 900 degrees C under flowing NH3 atmosphere for 1 h, the mean diameter of the resulted gallium nitride (wurtzite-GaN) nanoparticles varied from 3-9 nm. Both nanocrystalline films of Ga2O3 and GaN were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence in order to study their chemical and physical properties explicitly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.
We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less
Roshan Deen, G; Oliveira, Cristiano L P; Pedersen, Jan Skov
2009-05-21
The phase behavior and phase separation kinetics of a model ternary nonionic microemulsion system composed of pentaethylene glycol dodecyl ether (C12E5), water, and 1-chlorotetradecane were studied. With increasing temperature, the microemulsion exhibits the following rich phase behavior: oil-in-water phase (L1+O), droplet microemulsion phase (L1), lamellar liquid crystalline phase (Lproportional), and sponge-like (liquid) phase (L3). The microemulsion with a fixed surfactant-to-oil volume fraction ratio (Phis/Phio) of 0.81 and droplet volume fraction of 0.087 was perturbed from equilibrium by a temperature quench from the L1 region (24 degrees C) to an unstable region L1+O (13 degrees C), where the excess oil phase is in equilibrium with the microemulsion droplets. The process of phase separation in the unstable region was followed by time-resolved small-angle X-ray scattering (TR-SAXS) and time-resolved turbidity methods. Due to the large range of scattering vector (q=0.004-0.22 A(-1)) that is possible to access with the TR-SAXS method, the growth of the oil droplets and shrinking of the microemulsion droplets as a result of phase separation could be studied simultaneously. By using an advanced polydisperse ellipsoidal hard-sphere model, the experimental curves have been quantitatively analyzed. The microemulsion droplets were modeled as polydisperse core-shell ellipsoidal particles, using molecular constraints, and the oil droplets are modeled as polydisperse spheres. The radius of gyration (Rg) of the growing oil droplets, volume fraction of oil in the microemulsion droplets, and polydispersity were obtained from the fit parameters. The volume equivalent radius at the neutral plane between the surfactant head and tail of the microemulsion droplet decreased from 76 to 51 A, while the radius of oil drop increased to 217 A within the 160 min of the experiment. After about 48 min from the temperature quench, the system reaches a steady state and continues to coarsen at a constant fraction of the oil of 0.51 in the oil phase by Ostwald ripening with the power law dependence of Roil proportional, variant t1/3. The size of the oil droplets determined by the time-resolved turbidity method is in good agreement with that of the TR-SAXS, highlighting the usefulness of the method in the size determination of oil-in-water microemulsions on an absolute scale.
Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna
2013-06-03
The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies indicated that, in most cases, absorption of IFNα was low and that an increase in SC lipid disorder does not correspond to an increase in IFNα absorption.
De Vrieze, Mike; Lynen, Frédéric; Chen, Kai; Szucs, Roman; Sandra, Pat
2013-07-01
Several in vitro methods have been tested for their ability to predict drug penetration across the blood-brain barrier (BBB) into the central nervous system (CNS). In this article, the performance of a variety of micellar liquid chromatographic (MLC) methods and immobilized artificial membrane (IAM) liquid chromatographic approaches were compared for a set of 45 solutes. MLC measurements were performed on a C18 column with sodium dodecyl sulfate (SDS), polyoxyethylene (23) lauryl ether (Brij35), or sodium deoxycholate (SDC) as surfactant in the micellar mobile phase. IAM liquid chromatography measurements were performed with Dulbecco's phosphate-buffered saline (DPBS) and methanol as organic modifier in the mobile phase. The corresponding retention and computed descriptor data for each solute were used for construction of models to predict transport across the blood-brain barrier (log BB). All data were correlated with experimental log BB values and the relative performance of the models was studied. SDS-based models proved most suitable for prediction of log BB values, followed closely by a simplified IAM method, in which it could be observed that extrapolation of retention data to 0% modifier in the mobile phase was unnecessary.
NASA Astrophysics Data System (ADS)
Ossola, Annalisa; Macerata, Elena; Tinonin, Dario A.; Faroldi, Federica; Giola, Marco; Mariani, Mario; Casnati, Alessandro
2016-07-01
Within the Partitioning and Transmutation strategies, great efforts have been devoted in the last decades to the development of lipophilic ligands able to co-extract trivalent Lanthanides (Ln) and Actinides (An) from spent nuclear fuel. Because of the harsh working conditions these ligands undergo, it is important to prove their chemical and radiolytic stability during the counter-current multi-stage extraction process. In the present work the hydrolytic and radiolytic resistance of the freshly prepared and aged organic solutions containing the new ligand (2,6-bis[(N-methyl-N-dodecyl)carboxamide]-4-methoxy-tetrahydro-pyran) were investigated in order to evaluate the impact on the safety and efficiency of the process. Liquid-liquid extraction tests with spiked solutions showed that the ligand extracting performances are strongly impaired by storing the samples at room temperature and in the light. Moreover, the extracting efficiency of the irradiated samples resulted to be influenced by gamma irradiation, while selectivity remains unchanged. Preliminary mass spectrometric data showed that degradation is mainly due to the acid-catalysed reaction of the ligand carboxamide and ether groups with the 1-octanol present in the diluent.
1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343.
Inoue, Daisuke; Tsunoda, Tsubasa; Yamamoto, Norifumi; Ike, Michihiko; Sei, Kazunari
2018-06-01
Rhodococcus aetherivorans JCM 14343 can degrade 1,4-dioxane as a sole carbon and energy source. This study aimed to characterize this 1,4-dioxane degradation ability further, and assess the potential use of the strain for 1,4-dioxane removal in industrial wastewater. Strain JCM 14343 was able to degrade 1,4-dioxane inducibly, and its 1,4-dioxane degradation was also induced by tetrahydrofuran and 1,4-butanediol. The demonstration that 1,4-butanediol not only induced but also enhanced 1,4-dioxane degradation was a novel finding of this study. Although strain JCM 14343 appeared not to be an effective 1,4-dioxane degrader considering the maximum specific 1,4-dioxane degradation rate (0.0073 mg-dioxane/mg-protein/h), half saturation concentration (59.2 mg/L), and cell yield (0.031 mg-protein/mg-1,4-dioxane), the strain could degrade over 1100 mg/L of 1,4-dioxane and maintain its degradation activity at a wide range of temperature (5-40 °C) and pH (4-9) conditions. This suggests the usefulness of strain JCM 14343 in 1,4-dioxane treatment under acidic and cold conditions. In addition, 1,4-dioxane degradation experiments in the presence of ethylene glycol (EG) or other cyclic ethers revealed that 1,4-dioxane degradation by strain JCM 14343 was inhibited in the presence of other cyclic ethers, but not by EG, suggesting certain applicability of strain JCM 14343 for industrial wastewater treatment.
NASA Astrophysics Data System (ADS)
Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong
2016-08-01
This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.
Yan, Sijing; LU, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong
2016-01-01
This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093
Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong
2016-08-18
This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.
NASA Astrophysics Data System (ADS)
Dworak, Andrzej; Lipowska, Daria; Szweda, Dawid; Suwinski, Jerzy; Trzebicka, Barbara; Szweda, Roza
2015-10-01
This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species.This study describes a novel approach to the preparation of crosslinked polymeric nanoparticles of controlled sizes that can be degraded under basic conditions. For this purpose thermoresponsive copolymers containing azide and alkyne functions were obtained by ATRP of di(ethylene glycol) monomethyl ether methacrylate (D) and 2-aminoethyl methacrylate (A) followed by post polymerization modification. The amino groups of A were reacted with propargyl chloroformate or 2-azido-1,3-dimethylimidazolinium hexafluorophosphate, which led to two types of copolymers. Increasing the temperature of aqueous solutions of the mixed copolymers caused their aggregation into spherical nanoparticles composed of both types of chains. Their dimensions could be controlled by changing the concentration and heating rate of the solutions. Covalent stabilization of aggregated chains was performed by a ``click'' reaction between the azide and alkyne groups. Due to the presence of a carbamate bond the nanoparticles undergo pH dependent degradation under mild basic conditions. The proposed procedure opens a route to new carriers for the controlled release of active species. Electronic supplementary information (ESI) available: GPC-MALLS chromatograms for P(D-co-A)_1 and P(D-co-A)_2 copolymers, absorbance spectra of P(D-co-A)_1, P(D-co-A)_2, P(D-co-A_Pr) and P(D-co-A_Az) after reaction with ninhydrine. See DOI: 10.1039/c5nr04448k
Kummer, R; van Sittert, N J
1986-10-01
Two field studies to assess the health implications for farmers applying two different formulations containing organophosphorus (OP) pesticides to cotton by hand-held ULV are described. The first study, carried out in the Ivory Coast, involved the application of an endrin/DDT/methylparathion (MEP) formulation in an aromatic hydrocarbon solvent. The second study took place in Indonesia with a 20% monocrotophos formulation in a mixture of a glycol and a glycol ether. Both studies were carried out under actual field conditions. The purpose of the studies was to get a good assessment of the health hazards of the particular formulation, used under the specific circumstances and agronomic requirements of the area of application and taking into account all local, climatic and cultural conditions that could be of possible influence. The results showed that in both studies skin exposures took place during application and especially during handling, filling and cleaning, and that inhalation of spray mist was negligible. Absorption was confirmed by the presence in urine of metabolites of endrin and methylparathion in the Ivory Coast study, and of dimethyl phosphate in the Indonesia study. No clinical signs or symptoms of intoxication were discovered in either study, nor were inhibitions of cholinesterase (ChE) activity of health significance established under the conditions of the studies. In addition, various practical aspects such as choice of apparatus, of formulation, the application procedures etc. are discussed.
Di, Yan; Li, Ting; Zhu, Zhihong; Chen, Fen; Jia, Lianqun; Liu, Wenbing; Gai, Xiumei; Wang, Yingying; Pan, Weisan; Yang, Xinggang
2017-01-01
The aim of this study was to simultaneously introduce pH sensitivity and folic acid (FA) targeting into a micelle system to achieve quick drug release and to enhance its accumulation in tumor cells. Paclitaxel-(+)-α-tocopherol (PTX-VE)-loaded mixed micelles (PHIS/FA/PM) fabricated by poly(ethylene glycol) methyl ether-poly(histidine) (MPEG-PHIS) and folic acid-poly(ethylene glycol)-(+)-α-tocopherol (FA-PEG-VE) were characterized by dynamic light scattering and transmission electron microscopy (TEM). The mixed micelles had a spherical morphology with an average diameter of 137.0±6.70 nm and a zeta potential of -48.7±4.25 mV. The drug encapsulation and loading efficiencies were 91.06%±2.45% and 5.28%±0.30%, respectively. The pH sensitivity was confirmed by changes in particle size, critical micelle concentration, and transmittance as a function of pH. MTT assay showed that PHIS/FA/PM had higher cytotoxicity at pH 6.0 than at pH 7.4, and lower cytotoxicity in the presence of free FA. Confocal laser scanning microscope images demonstrated a time-dependent and FA-inhibited cellular uptake. In vivo imaging confirmed that the mixed micelles targeted accumulation at tumor sites and the tumor inhibition rate was 85.97%. The results proved that the mixed micelle system fabricated by MPEG-PHIS and FA-PEG-VE is a promising approach to improve antitumor efficacy.
Zhang, Xiaofang; Liu, Bo; Yang, Zhe; Zhang, Chao; Li, Hao; Luo, Xingen; Luo, Huiyan; Gao, Di; Jiang, Qing; Liu, Jie; Jiang, Zhaozhong
2014-03-01
A series of PEGylated poly(amine-co-ester) terpolymers were successfully synthesized in one step via lipase-catalyzed copolymerization of ω-pentadecalactone (PDL), diethyl sebacate (DES), and N-methyldiethanolamine (MDEA) comonomers in the presence of poly(ethylene glycol) methyl ether as a chain-terminating agent. The resultant amphiphilic poly(ethylene glycol)-poly(PDL-co-MDEA-co-sebacate) (PEG-PPMS) block copolymers consisted of hydrophilic PEG chain segments and hydrophobic random PPMS chain segments, which self-assembled in aqueous medium to form stable, nanosized micelles at physiological pH of 7.4. Upon decreasing the medium pH from 7.4 to 5.0, the copolymer micelles swell significantly due to protonation of the amino groups in the micelle PPMS cores. Correspondingly, docetaxel (DTX)-encapsulated PEG2K-PPMS copolymer micelles showed gradual sustained drug release at pH of 7.4, but remarkably accelerated DTX release at acidic pH of 5.0. The drug-loaded micelle particles were readily internalized by SK-BR-3 cancer cells and, compared to free DTX drug, DTX-loaded micelles of the copolymers with optimal compositions exhibited enhanced potency against the cells. Biodegradable PEG-PPMS copolymer micelles represent a new type of promising, pH-responsive nanocarriers for anticancer drug delivery, and the drug release rate from the micelles can be systematically controlled by both pH and the copolymer composition. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kowsari, Elaheh; Abdpour, Soheil
2017-12-01
A novel mesoporous structure of zinc oxide was synthesized in hydrothermal autocalve in the presence of a functional ionic liquid (FIL) {[CH2CH2] O2 (mm)2}. This FIL with ether groups was used simultaneously as a designer templating agent and a source of the hydroxyl radical. The presence of this ionic liquid led to producing ethylene glycol in the reaction media, which adsorb on the surface of mesoporous hexagonal ZnO plates. These mesoporous structures can adsorb pollutant gases and increase photocatalytic oxidation of pollutant gases in compare with commercial ZnO nanoparticles and agglomerated nanoparticles synthesized in this work. XPS data confirmed ethylene glycol production by the ionic liquid, which could prove a role for ionic liquids as designers. The estimated BET surface area values of ZnO hexagonal mesoporous plates and agglomerated particles were 84 m2/g and 12 m2/g respectively. Optical properties of the mesoporous structures were analyzed by photoluminescence spectroscopy and diffuse reflectance UV-visible spectroscopy. The performance of these structures as efficient photocatalysts was further demonstrated by their removal of NOx, SO2, and CO under UV irradiation. The removal of NOx, SO2, and CO under UV irradiation was 56%, 81%, and 35% respectively, after 40 min of irradiation time. Reusability of the photocatalyst was determined; the results show no significant decrease of activity of photocatalyst. after five cycles.
Park, Seunghyun; Ra, Youngchul; Reitz, Rolf D.; ...
2016-03-01
A reduced chemical kinetic mechanism for Tri-Propylene Glycol Monomethyl Ether (TPGME) has been developed and applied to computational fluid dynamics (CFD) calculations for predicting combustion and soot formation processes. The reduced TPGME mechanism was combined with a reduced n-hexadecane mechanism and a Poly-Aromatic Hydrocarbon (PAH) mechanism to investigate the effect of fuel oxygenation on combustion and soot emissions. The final version of the TPGME-n-hexadecane-PAH mechanism consists of 144 species and 730 reactions and was validated with experiments in shock tubes as well as in a constant volume spray combustion vessel (CVCV) from the Engine Combustion Network (ECN). The effects ofmore » ambient temperature, varying oxygen content in the tested fuels on ignition delay, spray liftoff length and soot formation under diesel-like conditions were analyzed and addressed using multidimensional reacting flow simulations and the reduced mechanism. Here, the results show that the present reduced mechanism gives reliable predictions of the combustion characteristics and soot formation processes. In the CVCV simulations, two important trends were identified. First, increasing the initial temperature in the CVCV shortens the ignition delay and lift-off length, reduces the fuel-air mixing, thereby increasing the soot levels. Secondly, fuel oxygenation introduces more oxygen into the central region of a fuel jet and reduces residence times of fuel rich area in active soot forming regions, thereby reducing soot levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Seunghyun; Ra, Youngchul; Reitz, Rolf D.
A reduced chemical kinetic mechanism for Tri-Propylene Glycol Monomethyl Ether (TPGME) has been developed and applied to computational fluid dynamics (CFD) calculations for predicting combustion and soot formation processes. The reduced TPGME mechanism was combined with a reduced n-hexadecane mechanism and a Poly-Aromatic Hydrocarbon (PAH) mechanism to investigate the effect of fuel oxygenation on combustion and soot emissions. The final version of the TPGME-n-hexadecane-PAH mechanism consists of 144 species and 730 reactions and was validated with experiments in shock tubes as well as in a constant volume spray combustion vessel (CVCV) from the Engine Combustion Network (ECN). The effects ofmore » ambient temperature, varying oxygen content in the tested fuels on ignition delay, spray liftoff length and soot formation under diesel-like conditions were analyzed and addressed using multidimensional reacting flow simulations and the reduced mechanism. Here, the results show that the present reduced mechanism gives reliable predictions of the combustion characteristics and soot formation processes. In the CVCV simulations, two important trends were identified. First, increasing the initial temperature in the CVCV shortens the ignition delay and lift-off length, reduces the fuel-air mixing, thereby increasing the soot levels. Secondly, fuel oxygenation introduces more oxygen into the central region of a fuel jet and reduces residence times of fuel rich area in active soot forming regions, thereby reducing soot levels.« less
Cabrera, Gil Felicisimo S; Balbin, Michelle M; Eugenio, Paul John G; Zapanta, Charleo S; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N
2017-03-18
The Turkevich method has been used for many years in the synthesis of gold nanoparticles. Lately, the use of plant extracts and amino acids has been reported, which is valuable in the field of biotechnology and biomedicine. The AuNPs was synthesized from the reduction of HAuCl4 3H2O by sodium glutamate and stabilized with sodium dodecyl sulfate. The optimum concentrations for sodium glutamate and sodium dodecyl sulfate in the synthesis process were determined. The characteristics of the synthesized AuNPs was analysed through UV-Vis Spectroscopy and SEM. The AuNPs have spherical shape with a mean diameter of approximately 21.62 ± 4.39 nm and is well dispersed. FTIR analysis of the AuNPs reflected that the sulfate head group of sodium dodecyl sulfate is adsorbed at the surface of the AuNPs. Thus, we report herein the synthesis of AuNPs using sodium glutamate and sodium dodecyl sulfate. Copyright © 2017 Elsevier Inc. All rights reserved.
Shen, Kaini; Sun, Jian; Cao, Xinxin; Zhou, Daobin; Li, Jian
2015-01-01
We determined the best extraction buffer for proteomic investigation using formalin-fixation and paraffin-embedded (FFPE) specimens. A Zwittergent 3–16 based buffer, sodium dodecyl sulfate (SDS)-containing buffer with/without polyethylene glycol 20000 (PEG20000), urea-containing buffer, and FFPE-FASP protein preparation kit were compared for protein extraction from different types of rat FFPE tissues, including the heart, brain, liver, lung, and kidney. All of the samples were divided into two groups of laser microdissected (LMD) and non-LMD specimens. For both kinds of specimens, Zwittergent was the most efficient buffer for identifying peptides and proteins, was broadly applicable to different tissues without impairing the enzymatic digestion, and was well compatible with mass spectrometry analysis. As a high molecular weight carrier substance, PEG20000 improved the identification of peptides and proteins; however, such an advantage is limited to tissues containing submicrograms to micrograms of protein. Considering its low lytic strength, urea-containing buffer would not be the first alternative for protein recovery. In conclusion, Zwittergent 3–16 is an effective buffer for extracting proteins from FFPE specimens for downstream proteomics analysis. PMID:26580073
THE RHODOPSIN-TRANSDUCIN COMPLEX HOUSES TWO DISTINCT RHODOPSIN MOLECULES
Jastrzebska, Beata; Ringler, Philipe; Palczewski, Krzysztof; Engel, Andreas
2013-01-01
Upon illumination the visual receptor rhodopsin (Rho) transitions to the activated form Rho*, which binds the heterotrimeric G protein, transducin (Gt) causing GDP to GTP exchange and Gt dissociation. Using succinylated concanavalin A (sConA) as a probe, we visualized native Rho dimers solubilized in 1 mM n-dodecyl-β-D-maltoside (DDM) and Rho monomers 5 mM in DDM. By nucleotide depletion and affinity chromatography together with crosslinking and size exclusion chromatography, we trapped and purified nucleotide-free Rho*•Gt and sConA-Rho*•Gt complexes kept in solution by either DDM or lauryl-maltose-neopentyl-glycol (LMNG). The 3-D envelope calculated from projections of negatively stained Rho*•Gt-LMNG complexes accommodated two Rho molecules, one Gt heterotrimer and a detergent belt. Visualization of triple sConA-Rho*•Gt complexes unequivocally demonstrated a pentameric assembly of the Rho*•Gt complex in which the photoactivated Rho* dimer serves as a platform for binding the Gt heterotrimer. Importantly, individual monomers of the Rho* dimer in the heteropentameric complex exhibited different capabilities to be regenerated with either 11-cis or 9-cis-retinal. PMID:23458690
Combination strategies for enhancing transdermal absorption of sumatriptan through skin.
Femenía-Font, A; Balaguer-Fernández, C; Merino, V; López-Castellano, A
2006-10-12
The aim of the present work was to characterize in vitro sumatriptan transdermal absorption through human skin and to investigate the effect of chemical enhancers and iontophoresis applied both individually and in combination. A secondary objective was to compare the results obtained with those in porcine skin under the same conditions, in order to characterize the relationship between the two skin models and validate the porcine model for further research use. Transdermal flux of sumatriptan was determined in different situations: (a) after pre-treatment of human skin with ethanol, Azone (1-dodecyl-azacycloheptan-2-one), polyethylene glycol 600 and R-(+)-limonene, (b) under iontophoresis application (0.25 and 0.50 mA/cm(2)) and (c) combining chemical pre-treatment and iontophoresis at 0.50 mA/cm(2) current density. All the strategies applied enhance sumatriptan transdermal absorption. A linear relationship between the fluxes in the two skin models in the different conditions assayed can be established. The combination of both strategies, Azone and iontophoresis, proved to be the most effective of the techniques for enhancing the transdermal absorption of sumatriptan. The flux obtained with porcine skin in vitro is approximately double that obtained in human skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loginova, T. P., E-mail: tlg@ineos.ac.ru; Timofeeva, G. I.; Lependina, O. L.
2016-01-15
Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.
NASA Astrophysics Data System (ADS)
Topa, Monika; Ortyl, Joanna; Chachaj-Brekiesz, Anna; Kamińska-Borek, Iwona; Pilch, Maciej; Popielarz, Roman
2018-06-01
Applicability of 15 trivalent samarium complexes as novel luminescent probes for monitoring progress of photopolymerization processes or thickness of polymer coatings by the Fluorescence Probe Technique (FPT) was studied. Three groups of samarium(III) complexes were evaluated in cationic photopolymerization of triethylene glycol divinyl ether monomer (TEGDVE) and free-radical photopolymerization of trimethylolpropane triacrylate (TMPTA). The complexes were the derivatives of tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate)samarium(III), tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionate)samarium(III) and tris(4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate)samarium(III), which were further coordinated with auxiliary ligands, such as 1,10-phenanthroline, triphenylphosphine oxide, tributylphosphine oxide and trioctylphosphine oxide. It has been found that most of the complexes studied are sensitive enough to be used as luminescent probes for monitoring progress of cationic photopolymerization of vinyl ether monomers over entire range of monomer conversions. In the case of free-radical polymerization processes, the samarium(III) complexes are not sensitive enough to changes of microviscosity and/or micropolarity of the medium, so they cannot be used to monitor progress of the polymerization. However, high stability of luminescence intensity of some of these complexes under free-radical polymerization conditions makes them good candidates for application as thickness sensors for polymer coatings prepared by free-radical photopolymerization. A quantitative relationship between a coating thickness and the luminescence intensity of the samarium(III) probes has been derived and verified experimentally within a broad range of the thicknesses.
Thomas, Vinoy; Jayabalan, Muthu
2002-01-01
In vitro oxidative degradation and lipid sorption of aliphatic, low elastic modulus and virtually cross-linked poly(urethane urea)s based on 4,4' methylene bis(cyclohexyl isocyanate), hydroxy terminated poly butadiene and hexamethylene diamine were evaluated. The aged samples revealed no weight loss in the oxidation medium. The IR spectral analyses revealed the stability of unsaturated double bonds at 964 cm(-1) (characteristic for polybutadiene soft segment) with no change in peak intensity. The poly(tetramethylene glycol) (PTMG)-added poly(ether urethane urea) polymer also revealed no disappearance of IR peaks for ether and unsaturated double bonds in samples aged in vitro oxidation medium. All the polymers have shown increase in weight due to lipid up take in lipid-rich medium (palm oil) but it was rather low in Dulbecco's modified eagle medium (DMEM) cholesterol. The slight change in mechanical properties of the present polymers in oxidation and DMEM is due to the rearrangement of molecular structure with virtual cross links of hydrogen bonding (physical cross linking) without degradation and plasticization effect of lipid. The influence of these media on the rearrangement of virtual cross links has been observed. Higher the virtual cross-link density, lesser is the loss of tensile properties of poly(urethane urea)s in the oxidation medium and vice versa. On the other hand, higher the virtual cross-link density of poly(urethane urea), higher is the loss of ultimate tensile strength and stress at 100% strain and vice versa in DMEM medium.
NASA Astrophysics Data System (ADS)
Seo, Kwang Su
The objective of this research was to design and synthesize multifunctional poly(ethylene glycol)s (PEG)s using enzyme-catalyzed reactions for multivalent targeted drug delivery. Based on computer simulation for optimum folate binding, a four-arm PEG star topology with Mn = 1000 g/mol was proposed. First, a four-functional core based on tetraethylene glycol (TEG) was designed and synthesized using transesterification and Michael addition reactions in the presence of Candida antarctica lipase B (CALB) as a biocatalyst. The four-functional core (HO)2-TEG-(OH)2 core was successfully prepared by the CALB-catalyzed transesterification of vinyl acrylate (VA) with TEG and then Michael addition of diethanolamine to the resulting TEG diacrylate with/without the use of solvent. The functional PEG arms with fluorescein isothiocyanate (FITC) and folic acid (FA) were prepared using both traditional organic chemistry and enzyme-catalyzed reactions. FITC was reacted with the amine group of H2N-PEG-OH in the presence of triethylamine via nucleophilic addition onto the isothiocyanate group. Then, divinyl adipate (DVA) was transesterified with the FITC-PEG-OH product in the presence of CALB to produce the FITC-PEG vinyl ester that will be attached to the four-functional core via CALC-catalyzed transesterification. For the synthesis of FA-PEG vinyl ester arm, DVA was first reacted with PEG-monobenzyl ether (BzPEG-OH) in bulk in the presence of CALB. The BzPEG vinyl ester was then transesterified with 12-bromo-1-dodecanol in the presence of CALB. Finally, BzPEG-Br was attached to FA exclusively in the gamma position using a new method. The thesis also discusses fundamental studies that were carried out in order to get better understanding of enzyme catalyzed transesterification and Michael addition reactions. First, in an effort to investigate the effects of reagent and enzyme concentrations in transesterification, vinyl methacrylate (VMA) was reacted with 2-(hydroxyethyl) acrylate (2HEA) in the presence of CALB. When the reaction was performed in tetrahydrofuran (THF) with a 2HEA concentration of 0.10 mol/L, only 19% conversion was observed within 4 hours, whereas complete conversion was achieved under solventless conditions. The effect of enzyme concentration in reactions with and without solvent was also studied. The effect of DVA concentration on the CALB-catalyzed transesterification with TEG was studied under solventless conditions. When 1.5 molar equivalent of DVA per OH in TEG was used, 42% divinyl-functionalized product was observed together with 56.5% oligomerized (di-, tri-, tetra- and pentamer) products. At 10 eq. of DVA, only 18.4% oligomerized products were obtained. The effect of diol molecular weight was also investigated. At 10.0 eq. DVA per OH only 2% dimer was observed with PEG Mn=1000 g/mol, and a single divinyl functionalized product was obtained with M n=2000 g/mol. The effects of polymer molecular weight and DVA concentration were also studied in the reaction of DVA with PEG monomethyl ether (MPEG-OH, Mn=1100 g/mol and 2000 g/mol). The extent of coupling decreased from 35% to 0.4% when the DVA concentration was increased from 1.5 to 10 per -OH in the MPEG-OH. No coupling was observed with MPEG-OH Mn=2000 g/mol at 5 eq. DVA per -OH. Following these fundamental studies, TEGs and PEGs were enzymatically functionalized. TEGs were transesterified with VMA and vinyl crotonate in the presence of CALB under solventless conditions within 4 hours of reaction time. Benzyl protected TEG-OHs were also successfully functionalized with VMA and vinyl crotonate in the presence of CALB under solventless conditions within 2 hours. An eight-functional molecule was also synthesized from (HO)2-TEG-(OH) 2. First an alpha-vinyl-o-acrylate linker was prepared by the transesterification of DVA with 2HEA. This linker was then transesterified with (HO)-TEG-(OH)2, followed by Michael addition of DEA to the tetra-acrylated TEG. (Abstract shortened by UMI.)
Li, Guolin; Slansky, Adam; Dobhal, Mahabeer P; Goswami, Lalit N; Graham, Andrew; Chen, Yihui; Kanter, Peter; Alberico, Ronald A; Spernyak, Joseph; Morgan, Janet; Mazurchuk, Richard; Oseroff, Allan; Grossman, Zachary; Pandey, Ravindra K
2005-01-01
A clinically relevant photosensitizer, 3-devinyl-3-(1-hexyloxyethyl)pyropheophorbide-a (HPPH, a chlorophyll-a derivative), was conjugated with Gd(III)-aminobenzyl-diethylenetriaminepentaacetic acid (DTPA), an experimental magnetic resonance (MR) imaging agent. In vivo reflectance spectroscopy confirmed tumor uptake of HPPH-aminobenzyl-Gd(III)-DTPA conjugate was higher than free HPPH administered intraveneously (iv) to C3H mice with subcutaneously (sc) implanted radiation-induced fibrosarcoma (RIF) tumor cells. In other experiments, Sprague-Dawley (SD) rats with sc implanted Ward Colon Carcinoma cells yielded markedly increased MR signal intensities from tumor regions-of-interest (ROIs) 24 h post-iv injection of HPPH-aminobenzyl-Gd(III)-DTPA conjugate as compared to unconjugated HPPH. In both in vitro (RIF tumor cells) and in vivo (mice bearing RIF tumors and rats bearing Ward Colon tumors) the conjugate produced significant increases in tumor conspicuity at 1.5 T and retained therapeutic efficacy following PDT. Also synthesized were a series of novel bifunctional agents containing two Gd(III) atoms per HPPH molecule that remained tumor-avid and PDT-active and yielded improved MR tumor conspicuity compared to their corresponding mono-Gd(III) analogues. Administered iv at a MR imaging dose of 10 micromol/kg, these conjugates produced severe skin phototoxicity. However, by replacing the hexyl group of the pyropheophorbide-a with a tri(ethylene glycol) monomethyl ether (PEG-methyl ether), these conjugates produced remarkable MR tumor enhancement at 8 h post-iv injection, significant tumoricidal activity (80% of mice were tumor-free on day 90), and reduced skin phototoxicity compared to their corresponding hexyl ether analogues. The poor water-solubility characteristic of these conjugates was resolved by incorporation into a liposomal formulation. This paper presents the synthesis of tumor-avid contrast enhancing agents for MR imaging and thus represents an important milestone toward improving cancer diagnosis and tumor characterization. More importantly, this paper describes a new family of bifunctional agents that combine two modalities into a single cost-effective "see and treat" approach, namely, a single agent that can be used for contrast agent-enhanced MR imaging followed by targeted photodynamic therapy.
NASA Astrophysics Data System (ADS)
Bocchio, Javier; Wittemberg, Víctor; Quagliano, Javier
2017-05-01
Polyurethanes (PUs) and polyurethane nanocomposites (PUNC) with bentonite nanoclay were prepared by the reaction of toluene-2,4-diisocyanate (TDI), dimeryl diisocyanate (DDI) and isophorone diisocyanate (IPDI) with two different polymers: hydroxyl terminated polybutadiene (HTPB) and polytetramethylene ether glycol (PTMEG), and the chains were further extended with 1,4-butanediol (1,4-BDO) to get final PUs and PUNCs. PUNCs were prepared by dispersing within the polymers a commercial and a synthesized bentonite nanoclay by mechanical dispersion. Mechanical properties showed that the addition of a small amount of nanoclay resulted in a significant increase in tensile strength and reduction in elongation at break (maximum increase of 2.3 and 5-times reduction, respectively, for a HTPB-TDI-BDO PUNCs). Thermal analysis revealed that the addition of nanoclays improved the thermal stability and increased decomposition temperature of PUNCs. We concluded that there is a positive correlation between mechanical and thermal properties as a result of nanoclay addition.
Copper sulfide nanodisk as photoacoustic contrast agent for ovarian tumor detection
NASA Astrophysics Data System (ADS)
Wang, Junxin; Hsu, Su-Wen; Tao, Andrea R.; Jokerst, Jesse V.
2017-03-01
Ultrasound is broadly used in the clinics yet is limited in early cancer detection because of its poor contrast between healthy and diseased tissues. Photoacoustic imaging can improve this limitation and has been extensively studied in pre-clinical models. Contrast agents can help improve the accuracy of diagnosis. We recently reported a novel copper sulfide (CuS) nanodisk with strong directionally-localized surface plasmon resonance in the near infrared region. This plasmonic resonance of nanodisks is tunable by changing the size and aspect ratio of CuS nanodisk. Here, we demonstrate this CuS nanodisk is a strong photoacoustic contrast agent. We prepared CuS nanodisks via a solvent-based synthesis followed by surface modification of poly(ethylene glycol) methyl ether thiol for in vivo applications. These CuS nanodisks can be detected at a concentration as low as 26 pM at 920 nm. Their nanosize and strong photoacoustic response make this novel CuS nanodisk a strong candidate for photoacoustic cancer imaging.
Chang, Teddy; Trench, David; Putnam, Joshua; Stenzel, Martina H; Lord, Megan S
2016-03-07
Polymeric micelles were formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(styrene) (P(PEGMEMA)-b-PS) block copolymer of two different chain lengths. The micelles formed were approximately 16 and 46 nm in diameter and used to encapsulate curcumin. Upon loading of the curcumin into the micelles, their size increased to approximately 34 and 80 nm in diameter, respectively, with a loading efficiency of 58%. The unloaded micelles were not cytotoxic to human colon carcinoma cells, whereas only the smaller loaded micelles were cytotoxic after 72 h of exposure. The micelles were rapidly internalized by the cells within minutes of exposure, with the loaded micelles internalized to a greater extent owing to their enhanced stability compared to that of the unloaded micelles. The larger micelles were more rapidly internalized and exocytosed than the smaller micelles, demonstrating the effect of micelle size and drug loading on drug delivery and cytotoxicity.
NASA Astrophysics Data System (ADS)
Muthukumar, Palanisamy; Kim, Hak-Soo; Jeong, Jong Woo; Son, Young-A.
2016-09-01
This study addresses the synthesis and characterization of new tetra phenoxy-substituted halogen-rich metallophthalocyanine derivatives (MPcs) 4-7 (M = Co, Ni, Cu and Zn). The synthesized new compounds were characterized using UV-Vis, FT-IR, MALDI-TOF, 1H NMR and elemental analyses. In addition, the basic requirements such as aggregation behavior, thermal stability, transmittance and solubility in propylene glycol monomethyl ether acetate (PGMEA) of MPcs 4-7 were investigated for their usage as a green color filter in Liquid Crystal Displays (LCDs). All of the MPcs showed thermal stability and sufficient solubility in PGMEA. However, the addition of binder into PGMEA solution of MPcs 5 and 6 leads to precipitation. Among the four MPcs, zinc phthalocyanine (7) showed higher transmittance. The higher transmittance of zinc phthalocyanine (7) along with its thermal stability and sufficient solubility in PGMEA are promising for its application as a green color filter in LCDs.
Tetany: quantitative interrelationships between calcium and alkalosis.
Edmondson, J W; Brashear, R E; Li, T K
1975-04-01
Tetany occurs with hypocalcemia and alkalosis or both. The interrelationship of calcium and acid-base balance necessary for inducing tetany, the role of the central nervous system, and the rate of development of hypocalcemia have been investigated. Tetany occurred in less than 50 percent of one group of dogs made alkalotic by hyperventilation or made hypocalcemic by infusion of ethylene glycol-bis(beta-amino ethyl ether) N, N'-tetraacetate. In contrast, hypocalcemia combined with hypocapnic alkalosis always produced tetany. Slowly evolving hypocalcemia was achieved inanother group of dogs by thyroparathyroidectomy, and tetany was induced postoperatively by hypocapnic alkalosis. An identical relationship between serum calcium ion concentration and arterial pH or CO2 tension was found in both groups. Tetany could not be related to the cerebrospinal fluid (CSF) calcium ion content in either group. Hypocalcemia and alkalosis are therefore coparticipants in the development of tetany and are independent of the rate of development of hypocalcemia and of CSF calcium ion concentration. The importance of alkalosis in tetany with hypoparathyroidism is emphasized.
Solution blowing of chitosan/PVA hydrogel nanofiber mats.
Liu, Ruifang; Xu, Xianlin; Zhuang, Xupin; Cheng, Bowen
2014-01-30
Both nanofiber mats and hydrogel have their own advantages in wound healing. In this study, a novel hydrogel nanofiber mats were fabricated via solution blowing of chitosan and PVA solution, with various content of ethylene glycol diglycidyl ether (EGDE) as cross-linker. SEM observation showed that the fibers were several hundred nanometers in diameter with smooth surface and distributed randomly forming three-dimensional mats. The structure of the chitosan/PVA nanofibers was examined by FTIR and XPS, and the results showed that the cross-linking reaction occurred between EGDE and the hydroxyl groups. The mats could quickly hydrate in an aqueous environment to form hydrogel. Their value of equilibrate water absorption varied from 680 to 459% various content of EGDE. The nanofiber mats showed good bactericidal activity against Escherichia coli. The chitosan/PVA hydrogel nanofiber mats showed the combination advantages of nanofibrous mats and hydrogel dressing, and were suggested as potential application in wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro
2004-02-06
The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.
Airway exchange of highly soluble gases.
Hlastala, Michael P; Powell, Frank L; Anderson, Joseph C
2013-03-01
Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol.
Supercritical CO2/Co-solvents Extraction of Porogen and Surfactant to Obtain
NASA Astrophysics Data System (ADS)
Lubguban, Jorge
2005-03-01
A method of pore generation by supercritical CO2 (SCCO2)/co-solvents extraction for the preparation of nanoporous organosilicate thin films for ultralow dielectric constant materials is investigated. A nanohybrid film was prepared from poly (propylene glycol) (PPG) and poly(methylsilsesquioxane) (PMSSQ) whereby the PPG porogen are entrapped within the crosslinked PMSSQ matrix. Another set of thin films was produced by liquid crystal templating whereby non-ionic (polyoxyethylene 10 stearyl ether) (Brij76) and ionic (cetyltrimethylammonium bromide) (CTAB) surfactant were used as sacrificial templates in a tetraethoxy silane (TEOS) and methyltrimethoxy silane (MTMS) based matrix. These two types of films were treated with SCCO2/co-solvents to remove porogen and surfactant templates. As a comparison, porous structures generated by thermal decomposition were also evaluated. It is found that SCCO2/co-solvents treatment produced closely comparable results with thermal decomposition. The results were evident from Fourier Transform Infrared (FT- IR) spectroscopy and optical constants data obtained from variable angle spectroscopic ellipsometry (VASE).
Mucorales species activation of a serum leukotactic factor.
Marx, R S; Forsyth, K R; Hentz, S K
1982-01-01
Previous studies have suggested that the focal accumulation of phagocytic leukocytes is an important feature of the host response in mucormycosis. To ascertain the basis for this influx of inflammatory cells, we evaluated the effect of members of the order Mucorales, including species from the genera Rhizopus, Absidia, and Mucor, on the chemotactic activity of normal human serum for neutrophils and monocytes. Both hyphae and spores produced concentration-dependent chemotaxigenesis in serum to a maximum level equivalent to that produced by zymosan activation of serum. Chemotactic activity was similar for live and heat-killed hyphae. No leukotactic activity was demonstrated in the absence of serum. The pretreatment of serum with anti-C3 antibody, heating at 56 degrees C, or 0.01 M EDTA abolished the activity. The pretreatment of serum with 0.01 M ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid did not abolish the activity. These data provide evidence that the leukotactic activity of Mucorales species is generated through the alternative complement pathway. PMID:6759409
Airway exchange of highly soluble gases
Powell, Frank L.; Anderson, Joseph C.
2013-01-01
Highly blood soluble gases exchange with the bronchial circulation in the airways. On inhalation, air absorbs highly soluble gases from the airway mucosa and equilibrates with the blood before reaching the alveoli. Highly soluble gas partial pressure is identical throughout all alveoli. At the end of exhalation the partial pressure of a highly soluble gas decreases from the alveolar level in the terminal bronchioles to the end-exhaled partial pressure at the mouth. A mathematical model simulated the airway exchange of four gases (methyl isobutyl ketone, acetone, ethanol, and propylene glycol monomethyl ether) that have high water and blood solubility. The impact of solubility on the relative distribution of airway exchange was studied. We conclude that an increase in water solubility shifts the distribution of gas exchange toward the mouth. Of the four gases studied, ethanol had the greatest decrease in partial pressure from the alveolus to the mouth at end exhalation. Single exhalation breath tests are inappropriate for estimating alveolar levels of highly soluble gases, particularly for ethanol. PMID:23305981
Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors
Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.; ...
2017-06-21
We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less
NASA Astrophysics Data System (ADS)
Shi, Hui; Liu, Congcong; Jiang, Qinglin; Xu, Jingkun; Lu, Baoyang; Jiang, Fengxing; Zhu, Zhengyou
2015-06-01
Single-walled carbon nanotubes (SWCNTs), PEDOT:PSS/SWCNTs, and SWCNTs/PEDOT:PSS nanofilms were used as working electrodes to electrodeposit polyaniline (PANI) in a mixed alcohol solution of isopropyl alcohol (IPA), boron trifluoride ethyl ether (BFEE), and polyethylene glycol (PEG). The thermoelectric (TE) performances of the resulting nanofilms were systematically investigated. SWCNTs/PEDOT:PSS/PANI nanofilms showed a relatively high electrical conductivity value of 232.0 S cm-1. The Seebeck coefficient was enhanced and exhibited the values of 33.8, 25.6, and 23.0 μV K-1 for the SWCNTs/PANI, PEDOT:PSS/SWCNTs/PANI, and SWCNTs/PEDOT:PSS/PANI films, respectively. The maximum power factor achieved was 12.3 μW m-1 K-2. This technique offers a facile and versatile approach to a class of layered nanostructures, and it may provide a general strategy for fabricating a new generation of conducting polymer/SWCNTs materials for further practical applications.
Bhatnagar, Divya; Dube, Koustubh; Damodaran, Vinod B; Subramanian, Ganesan; Aston, Kenneth; Halperin, Frederick; Mao, Meiyu; Pricer, Kurt; Murthy, N Sanjeeva; Kohn, Joachim
2016-10-01
The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight ( M w ) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.
Zhang, Bo; Liu, Wei; Zhang, Zhiwei; Qu, Yanping; Chen, Zhen; Albert, Paul S
2017-08-01
Joint modeling and within-cluster resampling are two approaches that are used for analyzing correlated data with informative cluster sizes. Motivated by a developmental toxicity study, we examined the performances and validity of these two approaches in testing covariate effects in generalized linear mixed-effects models. We show that the joint modeling approach is robust to the misspecification of cluster size models in terms of Type I and Type II errors when the corresponding covariates are not included in the random effects structure; otherwise, statistical tests may be affected. We also evaluate the performance of the within-cluster resampling procedure and thoroughly investigate the validity of it in modeling correlated data with informative cluster sizes. We show that within-cluster resampling is a valid alternative to joint modeling for cluster-specific covariates, but it is invalid for time-dependent covariates. The two methods are applied to a developmental toxicity study that investigated the effect of exposure to diethylene glycol dimethyl ether.
SO2 absorption in EmimCl-TEG deep eutectic solvents.
Yang, Dezhong; Zhang, Shaoze; Jiang, De-En; Dai, Sheng
2018-06-06
Deep eutectic solvents (DESs) based on 1-ethyl-3-methylimidazolium chloride (EmimCl) and triethylene glycol (TEG) with different molar ratios (from 6 : 1 to 1 : 1) were prepared. FTIR and theoretical calculation indicated that the C2-H on the imidazolium ring form hydrogen bonds with the hydroxyl group rather than the ether O atom of the TEG. The EmimCl-TEG DESs can efficiently capture SO2; in particular, EmimCl-TEG (6 : 1) can capture 0.54 g SO2 per gram of solvent at 0.10 atm and 20 °C, the highest absorption amount for DESs under the same conditions. Theoretical calculation showed that the high SO2 absorption capacity was mainly due to the strong charge-transfer interaction between SO2 and the anion Cl-. Moreover, SO2 desorption in the DESs can be controlled by tuning the interaction between EmimCl and TEG, and the DESs can be cycled many times.
NASA Astrophysics Data System (ADS)
Krotkus, Simonas; Nehm, Frederik; Janneck, Robby; Kalkura, Shrujan; Zakhidov, Alex A.; Schober, Matthias; Hild, Olaf R.; Kasemann, Daniel; Hofmann, Simone; Leo, Karl; Reineke, Sebastian
2015-03-01
Recently, bilayer resist processing combined with development in hydrofluoroether (HFE) solvents has been shown to enable single color structuring of vacuum-deposited state-of-the-art organic light-emitting diodes (OLED). In this work, we focus on further steps required to achieve multicolor structuring of p-i-n OLEDs using a bilayer resist approach. We show that the green phosphorescent OLED stack is undamaged after lift-off in HFEs, which is a necessary step in order to achieve RGB pixel array structured by means of photolithography. Furthermore, we investigate the influence of both, double resist processing on red OLEDs and exposure of the devices to ambient conditions, on the basis of the electrical, optical and lifetime parameters of the devices. Additionally, water vapor transmission rates of single and bilayer system are evaluated with thin Ca film conductance test. We conclude that diffusion of propylene glycol methyl ether acetate (PGMEA) through the fluoropolymer film is the main mechanism behind OLED degradation observed after bilayer processing.
NASA Astrophysics Data System (ADS)
Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing
2008-10-01
We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.
Comparison of polymer induced and solvent induced trypsin denaturation: the role of hydrophobicity.
Jasti, Lakshmi S; Fadnavis, Nitin W; Addepally, Uma; Daniels, Siona; Deokar, Sarika; Ponrathnam, Surendra
2014-04-01
Trypsin adsorption from aqueous buffer by various copolymers of allyl glycidyl ether-ethylene glycol dimethacrylate (AGE-EGDM) copolymer with varying crosslink density increases with increasing crosslink density and the effect slowly wears off after reaching a plateau at 50% crosslink density. The copolymer with 25% crosslink density was reacted with different amines with alkyl/aryl side chains to obtain a series of copolymers with 1,2-amino alcohol functional groups and varying hydrophobicity. Trypsin binding capacity again increases with hydrophobicity of the reacting amine and a good correlation between logPoctanol of the amine and protein binding is observed. The bound trypsin is denatured to the extent of 90% in spite of the presence of hydrophilic hydroxyl and amino groups. The behavior was comparable to that in mixtures of aqueous buffer and water-miscible organic co-solvents where the solvent concentration required to deactivate 50% of the enzyme (C50) is dependent on logPoctanol of the co-solvent. Copyright © 2014 Elsevier B.V. All rights reserved.
A PEG/copper(i) halide cluster as an eco-friendly catalytic system for C-N bond formation.
Li, Cheng-An; Ji, Wei; Qu, Jian; Jing, Su; Gao, Fei; Zhu, Dun-Ru
2018-05-22
The catalytic activities of eight copper(i) halide clusters assembled from copper(i) halide and ferrocenyltelluroethers, 1-8, were investigated in C-N formation under various conditions. A catalytic procedure using poly(ethylene glycol) (PEG-400) as a greener alternative organic solvent has been developed. The PEG-400/5 system can achieve 99% targeted yield with a mild reaction temperature and short reaction time. After the isolation of the products by extraction with diethyl ether, this PEG-400/cluster system could be easily recycled. Spectroscopic studies elucidate a stepwise mechanism: firstly, proton-coupled electron transfer (PCET) involving the transfer of an electron from Cu+ and a proton from imidazole results in the formation of a labile penta-coordinated Cu2+ and aryl radical; the following effective electron transfer from the ferrocene unit reduces Cu2+ and forms the target product; finally, the ferrocenium unit is reduced by the I- anion. The merits of this eco-friendly synthesis are the efficient utilization of reagents and easy recyclability.
In-Situ Immobilization of Ni Complex on Amine-Grafted SiO₂ for Ethylene Polymerization.
Lee, Sang Yun; Ko, Young Soo
2018-02-01
The results on the In-Situ synthesis of Ni complex on amine-grafted SiO2 and its ethylene polymerization were explained. SiO2/2NS/(DME)NiBr2 and SiO2/3NS/(DME)NiBr2(Ni(II) bromide ethylene glycol dimethyl ether) catalysts were active for ethylene polymerization. The highest activity was shown at the polymerization temperature of 25 °C, and SiO2/2NS/(DME)NiBr2 exhibited higher activity than SiO2/3NS/(DME)NiBr2. The PDI values of SiO2/2NS/(DME)NiBr2 were in the range of 8~18. The aminosilane compounds and Ni were evenly grafted and distributed in the silica. It was proposed that DME ligand was mostly removed during the supporting process, and only NiBr2 was complexed with the amine group of 2NS based on the results of FT-IR and ethylene polymerization.
Kuzu, Mutlu; Niefind, Karsten; Hummel, Werner; Schomburg, Dietmar
2005-01-01
NADH oxidase (NOX) from Lactobacillus brevis is a homotetrameric flavoenzyme composed of 450 amino acids per subunit. The molecular weight of each monomer is 48.8 kDa. The enzyme catalyzes the oxidation of two equivalents of NADH and reduces one equivalent of oxygen to yield two equivalents of water, without releasing hydrogen peroxide after the reduction of the first equivalent of NADH. Crystals of this protein were grown in the presence of 34% polyethylene glycol monomethyl ether 2000, 0.1 M sodium acetate and 0.2 M ammonium sulfate at pH 5.4. They belong to the tetragonal space group P43212, with unit-cell parameters a = 74.8, b = 95.7, c = 116.9 Å, α = γ = 90, β = 103.8°. The current diffraction limit is 4.0 Å. The self-rotation function of the native data set is consistent with a NOX tetramer in the asymmetric unit. PMID:16511087
Absorption degree analysis on biogas separation with ionic liquid systems.
Zhang, Xin; Zhang, Suojiang; Bao, Di; Huang, Ying; Zhang, Xiangping
2015-01-01
For biogas upgrading, present work mainly focuses on either thermodynamics or mass transfer properties. A systematical study on these two aspects is important for developing a new biogas separation process. In this work, a new criterion "absorption degree", which combines both thermodynamics and mass transfer properties, was proposed for the first time to comprehensively evaluate the absorption performance. Henry's law constants of CO2 and CH4 in ionic liquids-polyethylene glycol dimethyl ethers mixtures were investigated. The liquid-side mass transfer coefficients (kL) were determined. The results indicate that IL-NHD mixtures exhibit not only a high CO2/CH4 selectivity, but also a fast kL for CO2 absorption. The [bmim][NO3]+NHD mixtures present a high absorption degree value for CO2 but a low value for CH4. For presenting a highest relative absorption degree value, the 50wt% [bmim][NO3]+50wt% NHD mixture is recommended for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lapienis, Grzegorz; Penczek, Stanislaw
2005-01-01
Synthesis of fully hydrophilic star-shaped macromolecules with different kinds of arms (A(x)B(y)C(z)) based on polyglycidol (PGL, A(x)) and poly(ethylene oxide) (PEO, C(z)) arms and diepoxy compounds (diglycidyl ethers of ethylene glycol (DGEG) or neopentyl glycol (DGNG) in the core, B(y)) forming the core is described. Precursors of arms were prepared by polymerization of glycidol with protected -OH groups. The first-generation stars were formed in the series of consecutive-parallel reactions of arms A(x) with diepoxy compounds (B). These first-generation stars (A(x)B(y)), having approximately O-, Mt+ groups on the cores, were used as multianionic initiators for the second generation of arms (C(z)) built by polymerization of ethylene oxide. The products with M(n) up to 10(5) and having up to approximately 40 arms were obtained. The number of arms (f) was determined by direct measurements of M(n) of the first-generation stars (M(n) of arms A(x) is known), compared with f calculated from the branching index g, determined from R(g) measured with size-exclusion chromatography (SEC) triple detection with TriSEC software. The progress of the star formation was monitored by 1H NMR and SEC. These novel water-soluble stars, having a large number of hydroxyl groups, both at the ends of PEO arms as well as within the PGL arms, can be functionalized and further used for attaching compounds of interest. This approach opens, therefore, a new way of "multiPEGylation".
Di, Yan; Li, Ting; Zhu, Zhihong; Chen, Fen; Jia, Lianqun; Liu, Wenbing; Gai, Xiumei; Wang, Yingying; Pan, Weisan; Yang, Xinggang
2017-01-01
The aim of this study was to simultaneously introduce pH sensitivity and folic acid (FA) targeting into a micelle system to achieve quick drug release and to enhance its accumulation in tumor cells. Paclitaxel-(+)-α-tocopherol (PTX-VE)-loaded mixed micelles (PHIS/FA/PM) fabricated by poly(ethylene glycol) methyl ether-poly(histidine) (MPEG-PHIS) and folic acid-poly(ethylene glycol)-(+)-α-tocopherol (FA-PEG-VE) were characterized by dynamic light scattering and transmission electron microscopy (TEM). The mixed micelles had a spherical morphology with an average diameter of 137.0±6.70 nm and a zeta potential of −48.7±4.25 mV. The drug encapsulation and loading efficiencies were 91.06%±2.45% and 5.28%±0.30%, respectively. The pH sensitivity was confirmed by changes in particle size, critical micelle concentration, and transmittance as a function of pH. MTT assay showed that PHIS/FA/PM had higher cytotoxicity at pH 6.0 than at pH 7.4, and lower cytotoxicity in the presence of free FA. Confocal laser scanning microscope images demonstrated a time-dependent and FA-inhibited cellular uptake. In vivo imaging confirmed that the mixed micelles targeted accumulation at tumor sites and the tumor inhibition rate was 85.97%. The results proved that the mixed micelle system fabricated by MPEG-PHIS and FA-PEG-VE is a promising approach to improve antitumor efficacy. PMID:28860753
Hirata, Yoshihiko; Ryu, Mizuyuki; Oda, Yuka; Igarashi, Keisuke; Nagatsuka, Asami; Furuta, Taro; Sugiura, Masaki
2009-08-01
Sophorolipids (SLs) are a family of glycolipid type biosurfactants, which are largely produced by the non-pathogenic yeast, Candida bombicola. In order to investigate the possibility of SLs for industrial use, here we examined the interfacial activities, cytotoxicity and biodegradability of SLs, and compared these properties with those of two lipopeptide type biosurfactants (surfactin and arthrofactin), sodium laurate (soap, SP) and four kinds of chemically synthesized surfactants including two block-copolymer nonionic surfactants (BPs), polyoxyethylene lauryl ether (AE) and sodium dodecyl sulfate (SDS). It was indicated that SLs had extremely low-foaming properties and high detergency comparable with commercially available low-foaming BPs. These interfacial activities of SLs were maintained under 100 ppm water hardness. Cytotoxicity of SLs on human keratinocytes was the same as surfactin, which has already been commercialized as cosmetic material, but higher than BPs. Moreover, biodegradability of SLs using the OECD Guidelines for Testing of Chemicals (301C, Modified MITI Test) displayed that SLs can be classified as "readily" biodegradable chemicals, which are defined as chemicals that are degraded 60% within 28 days under specified test methods. We observed 61% degradation of SLs on the eighth day of cultivation. Our results indicate that SLs are low-foaming surfactants with high detergency, which also exhibit both low cytotoxicity and readily biodegradable properties.
Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions.
Choi, Seung Jun; Decker, Eric Andrew; Henson, Lulu; Popplewell, L Michael; McClements, David Julian
2010-08-01
The chemical stability of citral, a flavor component widely used in beverage, food, and fragrance products, in oil-in-water emulsions stabilized by surfactants with different charge characteristics was investigated. Emulsions were prepared using cationic (lauryl alginate, LAE), non-ionic (polyoxyethylene (23) lauryl ether, Brij 35), and anionic (sodium dodecyl sulfate, SDS) surfactants at pH 3.5. The citral concentration decreased over time in all the emulsions, but the rate of decrease depended on surfactant type. After 7 d storage, the citral concentrations remaining in the emulsions were around 60% for LAE- or Brij 35-stabilized emulsions and 10% for SDS-stabilized emulsions. An increase in the local proton (H(+)) concentration around negatively charged droplet surfaces may account for the more rapid citral degradation observed in SDS-stabilized emulsions. A strong metal ion chelator (EDTA), which has previously been shown to be effective at increasing the oxidative stability of labile components, had no effect on citral stability in LAE- or Brij 35-stabilized emulsions, but it slightly decreased the initial rate of citral degradation in SDS-stabilized emulsions. These results suggest the surfactant type used to prepare emulsions should be controlled to improve the chemical stability of citral in emulsion systems.
NASA Astrophysics Data System (ADS)
Yang, Pengfei; Wang, Yongqing; Lu, Ling; Yu, Xi; Liu, Lian
2018-03-01
Dodecyl diaryl diazomethane was firstly synthesized from 4,4-dihydroxybenzophenone and 1-bromododecane by a series of reaction steps. Then water-borne polyurethane films with different amount of DMPA were prepared, as well as a type of solvent-borne polyurethane film for comparison. Finally, all these polyurethane films were modified by dodecyl diaryl diazomethane. The dodecyl diaryl carbene was generated from dodecyl diaryl diazomethane by strong solar light, which was very convenient to insert into the Xsbnd H bonds (X = C, N) on the surface of polyurethane films. The contact angle test was used to characterize these films and depict the surface property. DSC analysis and tensile test were used to investigate the physical properties of polyurethane films before and after modification. It was suggested that the hydrophobic modification protocol with carbene insertion was very useful and convenient to prepare water-proof coatings outdoors under direct solar-light exposure.
Hofmann, Michael A.
2006-11-14
The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.
Glove permeation by semiconductor processing mixtures containing glycol-ether derivatives.
Zellers, E T; Ke, H Q; Smigiel, D; Sulewski, R; Patrash, S J; Han, M W; Zhang, G Z
1992-02-01
Results of permeation tests of several glove materials challenged with semiconductor processing formulations containing glycolether derivatives are described. Commercial glove samples of nitrile rubber (Edmont), natural rubber (Edmont and Baxter), butyl rubber (North), PVC Baxter), a natural rubber/neoprene/nitrile blend (Pioneer), and a natural rubber/neoprene blend (Playtex) were tested according to the ASTM F739-85 permeation test method (open-loop configuration). The liquid formulations examined included a positive photoresist thinner containing 2-ethoxyethyl acetate (2-EEA), n-butyl acetate, and xylene; a positive photoresist containing 2-EEA, n-butyl acetate, xylene, polymer resins, and photoactive compounds; a negative photoresist containing 2-methoxyethanol (2-ME), xylene, and cyclized poly(isoprene); and pure 2-methoxyethyl acetate (2-MEA), which is the solvent used in a commercial electron-beam resist. With the exception of the negative photoresist, butyl rubber provided the highest level of protection against the solvent mixtures tested, with no breakthrough observed after 4 hr of continuous exposure at 25 degrees C. Nitrile rubber provided the highest level of protection against the negative photoresist and reasonably good protection against initial exposure to the other solvent mixtures. Gloves consisting of natural rubber or natural rubber blends provided less protection against the mixtures than either nitrile or butyl rubber. For most of the glove samples, permeation of the glycol-ether derivatives contained in the mixtures was faster than that predicted from the permeation of the pure solvents. Increasing the exposure temperature from 25 to 37 degrees C did not significantly affect the performance of the butyl rubber glove. For the other gloves, however, exposures at 37 degrees C resulted in decreases in breakthrough times of 25-75% and increases in steady-state permeation rates of 80-457% relative to values obtained at 25 degrees C. Repeated exposure of nitrile rubber samples resulted in shorter breakthrough times for all mixture components. In fact, exposure for as little as one-half of the nominal breakthrough time followed by air drying overnight resulted in measurable quantities of one or more of the component solvents at the inner surface of the gloves at the beginning of the next exposure. This effect was not observed with the butyl rubber samples. With the exception of the negative photoresist, heating previously exposed nitrile rubber samples at 70 degrees C for 20 hr prior to retesting reduced or eliminated the effects of residual solvents, permitting reuse of the gloves. The use of thin PVC or natural rubber gloves adjacent to the nitrile gloves provided moderate increases in permeation resistance.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Chen, Bizheng; Li, Xiaojun; Zhang, Lifen; Xu, Yujie; Liu, Zhuang; Cheng, Zhenping; Zhu, Xiulin
2015-10-01
Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY)), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (~7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells.Responsive block copolymer micelles emerging as promising imaging and drug delivery systems show high stability and on-demand drug release activities. Herein, we developed self-assembled pH-responsive NIR emission micelles entrapped with doxorubicin (DOX) within the cores by the electrostatic interactions for fluorescence imaging and chemotherapy applications. The block copolymer, poly(methacrylic acid)-block-poly[(poly(ethylene glycol) methyl ether methacrylate)-co-boron dipyrromethene derivatives] (PMAA-b-P(PEGMA-co-BODIPY)), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the molecular weight distribution of this copolymer was narrow (Mw/Mn = 1.31). The NIR fluorescence enhancement induced by the phenol/phenolate interconversion equilibrium works as a switch in response to the intracellular pH fluctuations. DOX-loaded PMAA-b-P(PEGMA-co-BODIPY) micelles can detect the physiological pH fluctuations with a pKa near physiological conditions (~7.52), and showed pH-responsive collapse and an obvious acid promoted anticancer drug release behavior (over 58.8-62.8% in 10 h). Real-time imaging of intracellular pH variations was performed and a significant chemotherapy effect was demonstrated against HeLa cells. Electronic supplementary information (ESI) available: GPC, UV/vis, fluorescence, and MTT data of the as-prepared polymers; 1H NMR, 13C NMR, HRMS and FT-IR of organic molecules and polymers. See DOI: 10.1039/c5nr04655f
1982-04-23
monolayer A + -t -10 2 where B = 4.01 x 10 cm A = 0.128 and = o/s The data of Rehfeld (17) for the adsorption of sodium dodecyl sulfate has also been...estimates of Aerosol OT and sodium dodecyl sulfate saturation adsorption at the inter- face can be made when the ¢ of the oil-water system and the i of the...Aerosol OT. For sodium dodecyl sulfate , a value of 37.6A2 would be obtained, slightly lower than the value of 43.9A2 obtained at the air surfactant
Yang, Zhi; Hu, Xueqian; Wu, Shihua
2016-02-01
In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Prakoso, S. P.; Taufik, A.; Saleh, R.
2017-04-01
This study reports the characterization and catalytic activities of silver-oxide/silver nanoparticles (Ag2O/Ag NPs) synthesized by microwave-assisted colloidal method in the presence of anionic sodium dodecyl sulfate (SDS) surfactant. To promote different contents of silver in silver oxide, the volume ratio (VR) of ethylene glycol (EG) was varied (VR: 10% to 14%) in relation to the total volume of distilled water solvent. The plasmonic resonance of Ag2O/Ag NPs could be detected around a wavelength of 350 nm, and it is suggested that Ag2O/Ag NPs were successfully formed in the colloid solution following exposure to microwaves. Additionally, the growth rate for each crystal phase within Ag2O and Ag was influenced by an increase of EG as revealed by x-ray diffraction patterns. The morphology, average diameter, and uniformity of Ag2O/Ag NPs were studied simultaneously by transmission electron microscopy. Infrared absorption measurement of Ag2O/Ag NPs confirmed the existence of SDS surfactant as a protective agent. Based on the characterization data, Ag2O/Ag NPs synthesized using this technique exhibited good properties, with high-yield production of NPs. The photocatalytic experiments demonstrate the key role of the crystal phase of Ag2O/Ag NPs in photocatalytic efficiency.
Preparation and characterization of bee venom-loaded PLGA particles for sustained release.
Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon
2016-12-14
Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.
Effect of Detergents on Galactoside Binding by Melibiose Permeases.
Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan
2015-09-29
The effect of various detergents on the stability and function of the melibiose permeases of Escherichia coli (MelBEc) and Salmonella typhimurium (MelBSt) was studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141 → Cys, Arg295 → Cys, or Arg363 → Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIA(Glc) is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all of the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from the relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent.
Effect of detergents on galactoside binding by melibiose permeases
Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan
2015-01-01
The effect of various detergents on the stability and function of melibiose permeases of Escherichia coli (MelBEc) or Salmonella typhimurium (MelBSt) were studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141→Cys, Arg295→Cys or Arg363→Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIAGlc is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent. PMID:26352464
The rhodopsin-transducin complex houses two distinct rhodopsin molecules.
Jastrzebska, Beata; Ringler, Philippe; Palczewski, Krzysztof; Engel, Andreas
2013-05-01
Upon illumination the visual receptor rhodopsin (Rho) transitions to the activated form Rho(∗), which binds the heterotrimeric G protein, transducin (Gt) causing GDP to GTP exchange and Gt dissociation. Using succinylated concanavalin A (sConA) as a probe, we visualized native Rho dimers solubilized in 1mM n-dodecyl-β-d-maltoside (DDM) and Rho monomers in 5mM DDM. By nucleotide depletion and affinity chromatography together with crosslinking and size exclusion chromatography, we trapped and purified nucleotide-free Rho(∗)·Gt and sConA-Rho(∗)·Gt complexes kept in solution by either DDM or lauryl-maltose-neopentyl-glycol (LMNG). The 3 D envelope calculated from projections of negatively stained Rho(∗)·Gt-LMNG complexes accommodated two Rho molecules, one Gt heterotrimer and a detergent belt. Visualization of triple sConA-Rho(∗)·Gt complexes unequivocally demonstrated a pentameric assembly of the Rho(∗)·Gt complex in which the photoactivated Rho(∗) dimer serves as a platform for binding the Gt heterotrimer. Importantly, individual monomers of the Rho(∗) dimer in the heteropentameric complex exhibited different capabilities for regeneration with either 11-cis or 9-cis-retinal. Copyright © 2013 Elsevier Inc. All rights reserved.
Xie, ShuYu; Wang, SiLiang; Zhao, BaoKai; Han, Chao; Wang, Ming; Zhou, WenZhong
2008-12-01
Most proteins are hydrophilic and poorly encapsulated into the hydrophobic matrix of solid lipid nanoparticles (SLN). To solve this problem, poly (lactic-co-glycolic acid) (PLGA) was utilized as a lipophilic polymeric emulsifier to prepare hydrophilic protein-loaded SLN by w/o/w double emulsion and solvent evaporation techniques. Hydrogenated castor oil (HCO) was used as a lipid matrix and bovine serum albumin (BSA), lysozyme and insulin were used as model proteins to investigate the effect of PLGA on the formulation of the SLN. The results showed that PLGA was essential for the primary w/o emulsification. In addition, the stability of the w/o emulsion, the encapsulation efficiency and loading capacity of the nanoparticles were enhanced with the increase of PLGA concentration. Furthermore, increasing PLGA concentration decreased zeta potential significantly but had no influence on particle size of the SLN. In vitro release study showed that PLGA significantly affected the initial burst release, i.e. the higher the content of PLGA, the lower the burst release. The released proteins maintained their integrity and bioactivity as confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and biological assay. These results demonstrated that PLGA was an effective emulsifier for the preparation of hydrophilic protein-loaded SLN.
Rajagopalu, Devamalini; Show, Pau Loke; Tan, Yee Shin; Muniandy, Sekaran; Sabaratnam, Vikineswary; Ling, Tau Chuan
2016-09-01
The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Barrera, Javier A; Dalmasso, Pablo R; Taccone, Raúl A; Lane, Silvia I
2017-11-01
Rate coefficients for the gas-phase reactions of OH radicals and Cl atoms with 1-methoxy-2-propanone (1-M-2-PONE), 1-methoxy-2-propanol (1-M-2-POL), and 1-methoxy-2-butanol (1-M-2-BOL) were determined at room temperature and atmospheric pressure using a conventional relative-rate technique. The following absolute rate coefficients were derived: k 1 (OH + 1-M-2-PONE) = (0.64 ± 0.13) × 10 -11 , k 2 (OH + 1-M-2-BOL) = (2.19 ± 0.23) × 10 -11 , k 3 (Cl + 1-M-2-PONE = (1.07 ± 0.24) × 10 -10 , k 4 (Cl + 1-M-2-POL) = (2.28 ± 0.21) × 10 -10 , and k 5 (Cl + 1-M-2-BOL) = (2.79 ± 0.23) × 10 -10 , in units of cm 3 molecule -1 s -1 . This is the first experimental determination of k 2 -k 5 . These rate coefficients were used to discuss the influence of the structure on the reactivity of the studied polyfunctional organic compounds. The atmospheric implications for 1-M-2-PONE, 1-M-2-POL, and 1-M-2-BOL and their reactions were investigated estimating atmospheric parameters such as lifetimes, global warming potentials, and average photochemical ozone production. The approximate nature of these values was stressed considering that the studied oxygenated volatile organic compounds are short-lived compounds for which the calculated parameters may vary depending on chemical composition, location, and season at the emission points.
Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?
NASA Astrophysics Data System (ADS)
Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan
2016-07-01
There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.
Uchino, Tomonobu; Murata, Akiko; Miyazaki, Yasunori; Oka, Toshihiko; Kagawa, Yoshiyuki
2015-01-01
Liquid crystalline nanoparticles (LCNs) were prepared using glyceryl monooleyl ether (GME) by the modified film rehydration method. Hydrogenated lecithin (HL), 1,3-butylene glycol (1,3-BG), and Poloxamer 407 were used as additives. The prepared LCN formulations were evaluated based on particle size, small-angle X-ray diffraction (SAXS) analysis, (1)H- and (19)F-NMR spectra, and in vitro skin permeation across Yucatan micropig skin. The composition (weight percent) of the LCN formulations were GME-HL-1,3-BG (4 : 1 : 15), 4% GME-based LCN and GME-HL-1,3-BG (8 : 1 : 15), 8% GME-based LCN and their mean particle sizes were 130-175 nm. Flurbiprofen 5 and 10 mg was loaded into 4% GME-based LCN and 8% GME-based LCN systems, respectively. The results of SAXS and NMR suggested that both flurbiprofen-loaded formulations consist of particles with reverse type hexagonal phase (formation of hexosome) and flurbiprofen molecules were localized in the lipid domain through interaction of flurbiprofen with the lipid components. Flurbiprofen transport from the LCN systems across the Yucatan micropig skin was increased compared to flurbiprofen in citric buffer (pH=3.0). The 8% GME-based LCN systems was superior to the 4% GME-based LCN for flurbiprofen transport. Since the internal hexagonal phase in the 8% GME-based LCN systems had a higher degree of order compared to the 4% GME-based LCN in SAXS patterns, the 8% GME-based LCN system had a larger surface area, which might influence flurbiprofen permeation. These results indicated that the GME-based LCN system is effective in improving the skin permeation of flurbiprofen across the skin.
Catalytic Deoxygenation of 1,2-Propanediol to Give n-Propanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlaf, Marcel; Ghosh, Prasenjit; Fagan, Paul J.
2009-03-01
Catalytic deoxygenation of 1,2-propanediol has been studied as a model the for deoxygenation of polyols and other biomass-derived compounds. Deoxygenation of 1,2-propanediol (1.0 M in sulfolane) catalyzed by {[Cp*Ru(CO)2]2(μ-H)}+OTf – (0.5 mol %) at 110 °C under H2 (750 psi) in the presence of HOTf (60 mM) gives n-propanol (54 %) as the major product, indicating a high selectivity for deoxygenation of the internal OH over the terminal OH of the diol. Di-n propyl ether forms through condensation of n-propanol with itself, and propylene glycol propyl ether arises from condensation of n-propanol with the starting material diol, giving a totalmore » of up to 80 % yield for deoxygenation / hydrogenation products under these conditions. The deoxygenation of 1,2-propanediol is strongly influenced by the concentration of acid, giving faster rates and proceeding to higher conversions as the concentration of HOTf is increased. There is little or no dependence of the rate on the pressure of H2. Propionaldehyde was observed as an intermediate, being formed through acid-catalyzed dehydration of 1,2-propanediol. This aldehyde is hydrogenated to n-propanol through an ionic pathway involving protonation of the aldehyde, followed by hydride transfer from the neutral hydride, Cp*Ru(CO)2H. The proposed mechanism for the deoxygenation/hydrogenation reaction involves formation of a highly acidic dihydrogen complex, [Cp*Ru(CO)2(η2-H2)]+OTf-. Regeneration of the dihydrogen complex occurs through reaction of Cp*Ru(CO)2OTf with H2. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Alkan, Arda; Wald, Sarah; Louage, Benoit; De Geest, Bruno G; Landfester, Katharina; Wurm, Frederik R
2017-01-10
An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (M n ) between 3600 and 8600 g mol -1 and narrow molecular weight distributions (M w /M n = 1.04-1.10) were investigated via 1 H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of coatings and the recovery of surfactants.
Poly(arylene ether)s containing pendent ethynyl groups
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)
1996-01-01
Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350.degree. C. to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.
Poly(arylene ether)s containing pendent ethynyl groups
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)
1994-01-01
Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350 C to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.
Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use.
Manual Kollareth, Denny Joseph; Chang, Chuchun L; Hansen, Inge H; Deckelbaum, Richard J
2018-03-01
Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [ 3 H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [ 3 H]cholesteryl oleoyl ether and [ 3 H]cholesteryl hexadecyl ether from different suppliers, employing in vitro , in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro , in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.
NASA Astrophysics Data System (ADS)
Charles, Laurence; Cavallo, Gianni; Monnier, Valérie; Oswald, Laurence; Szweda, Roza; Lutz, Jean-François
2017-06-01
In order to improve their MS/MS sequencing, structure of sequence-controlled synthetic polymers can be optimized based on considerations regarding their fragmentation behavior in collision-induced dissociation conditions, as demonstrated here for two digitally encoded polymer families. In poly(triazole amide)s, the main dissociation route proceeded via cleavage of the amide bond in each monomer, hence allowing the chains to be safely sequenced. However, a competitive cleavage of an ether bond in a tri(ethylene glycol) spacer placed between each coding moiety complicated MS/MS spectra while not bringing new structural information. Changing the tri(ethylene glycol) spacer to an alkyl group of the same size allowed this unwanted fragmentation pathway to be avoided, hence greatly simplifying the MS/MS reading step for such undecyl-based poly(triazole amide)s. In poly(alkoxyamine phosphodiester)s, a single dissociation pathway was achieved with repeating units containing an alkoxyamine linkage, which, by very low dissociation energy, made any other chemical bonds MS/MS-silent. Structure of these polymers was further tailored to enhance the stability of those precursor ions with a negatively charged phosphate group per monomer in order to improve their MS/MS readability. Increasing the size of both the alkyl coding moiety and the nitroxide spacer allowed sufficient distance between phosphate groups for all of them to be deprotonated simultaneously. Because the charge state of product ions increased with their polymerization degree, MS/MS spectra typically exhibited groups of fragments at one or the other side of the precursor ion depending on the original α or ω end-group they contain, allowing sequence reconstruction in a straightforward manner. [Figure not available: see fulltext.
Yu, Ling; Shi, ZhuanZhuan; Gao, LiXia; Li, ChangMing
2015-09-01
In vitro cell-based analysis is strongly affected by material's surface chemical properties. The cell spreading, migration, and proliferation on a substrate surface are initiated and controlled by successful adhesion, particularly for anchor-dependent cells. Unfortunately, polydimethylsiloxane (PDMS), one of the most used polymeric materials for construction of microfluidic and miniaturized biomedical analytic devices, is not a cell-friendly surface because of its inherent hydrophobic property. Herein, a poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] (poly(GMA-co-pEGMA)) polymer brush was synthesized on a PDMS surface through a surface-initiated atom-transfer radical polymerization method. Contact angle and Fourier transform infrared characterization show that the poly (GMA-co-pEGMA) polymer brush functionalization can increase wettability of PDMS and introduce epoxy, hydroxyl, and ether groups into PDMS surface. In vitro cell growth assay demonstrates that cell adhesion and proliferation on poly(GMA-co-pEGMA) polymer brush-functionalized PDMS (poly(GMA-co-pEGMA)@PDMS) are better than on pristine PDMS. Additionally, immobilization of collagen type I (CI) and fibronectin (FN) on poly(GMA-co-pEGMA)@PDMS is better than direct coating of CI and FN on pristine PDMS to promote cell adhesion. Furthermore, increased intracellular reactive oxygen species and cell mitochondrial membrane depolarization, two indicators of cell oxidative stress, are observed from cells growing on pristine PDMS, but not from those on poly(GMA-co-pEGMA)@PDMS. Collectively, we demonstrate that poly(GMA-co-pEGMA) functionalization can enhance cell adhesion and proliferation on PDMS, and thus can be potentially used for microfluidic cell assay devices for cellular physiology study or drug screening. © 2015 Wiley Periodicals, Inc.
Ma, Shujuan; Zhang, Haiyang; Li, Ya; Li, Yanan; Zhang, Na; Ou, Junjie; Ye, Mingliang; Wei, Yinmao
2018-02-23
Although several approaches have been developed to fabricate hybrid monoliths, it would still take a few hours to finish the formation of monoliths. Herein, photo-initiated thiol-yne polymerization was first adopted to in situ fabricate hybrid monoliths within the confines of UV-transparent fused-silica capillary. A silicon-containing diyne (1,3-diethynyltetramethyl-disiloxane, DYDS) was copolymerized with three multithiols, 1,6-hexanedithiol, trimethylolpropane tris(3-mercaptopropionate) and pentaerythriol tetrakis(3-mercaptopropionate), by using a binary porogenic system of diethylene glycol diethyl ether (DEGDE)/poly(ethylene glycol) (PEG200) within 10 min. Several characterizations of three hybrid monoliths (assigned as I, II and III, respectively) were performed. The results showed that these hybrid monoliths possessed bicontinuous porous structure, which was remarkably different from that via typical free-radical polymerization. The highest column efficiency of 76,000 plates per meter for butylbenzene was obtained on the column I in reversed-phase liquid chromatography (RPLC). It was observed that the efficiencies for strong-retained butylbenzene were almost close to those of weak-retained benzene, indicating a retention-independent efficient performance of small molecules on hybrid column I. The surface area of this hybrid monolith was very small in the dry state (less than 10.0 m 2 /g), and the chromatographic behavior of hybrid monolithic columns would be possibly explained by radical-mediated step-growth process of thiol-yne polymerization. Finally, the column I was applied for separation of BSA tryptic digest by cLC-MS/MS, indicating satisfactory separation ability for complicated samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Dynamics of aqueous binary glass-formers confined in MCM-41.
Elamin, Khalid; Jansson, Helén; Swenson, Jan
2015-05-21
Dielectric permittivity measurements were performed on water solutions of propylene glycol (PG) and propylene glycol monomethyl ether (PGME) confined in 21 Å pores of the silica matrix MCM-41 C10 in wide frequency (10(-2)-10(6) Hz) and temperature (130-250 K) ranges. The aim was to elucidate how the formation of large hydrogen bonded structural entities, found in bulk solutions of PGME, was affected by the confined geometry, and to make comparisons with the dynamic behavior of the PG-water system. For all solutions the measurements revealed four almost concentration independent relaxation processes. The intensity of the fastest process is low compared to the other relaxation processes and might be caused by both hydroxyl groups of the pore surfaces and by local motions of water and solute molecules. The second fastest process contains contributions from both the main water relaxation as well as the intrinsic β-relaxation of the solute molecules. The third fastest process is the viscosity related α-relaxation. Its concentration independency is very different compared to the findings for the corresponding bulk systems, particularly for the PGME-water system. The experimental data suggests that the surface interactions induce a micro-phase separation of the two liquids, resulting in a full molecular layer of water molecules coordinating to the hydrophilic hydroxyl groups on the surfaces of the silica pores. This, in turn, increases the geometrical confinement effect for the remaining solution even more and prevents the building up of the same type of larger structural entities in the PGME-water system as in the corresponding bulk solutions. The slowest process is mainly hidden in the high conductivity contribution at low frequencies, but its temperature dependence can be extracted for the PGME-water system. However, its origin is not fully clear, as will be discussed.
Tumor necrosis factor interaction with gold nanoparticles
NASA Astrophysics Data System (ADS)
Tsai, De-Hao; Elzey, Sherrie; Delrio, Frank W.; Keene, Athena M.; Tyner, Katherine M.; Clogston, Jeffrey D.; Maccuspie, Robert I.; Guha, Suvajyoti; Zachariah, Michael R.; Hackley, Vincent A.
2012-05-01
We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 +/- 0.02) nm-2 with a binding constant of 3 × 106 (mol L-1)-1. Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity. Electronic supplementary information (ESI) available: Experimental procedures, instrumentation, materials and calculations. See DOI: 10.1039/c2nr30415e
NASA Astrophysics Data System (ADS)
Guha Thakurta, Soma
Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed significantly to the anhydrous state proton conductivity. Third, a new category of single lithium ion conducting SPEs was developed by crosslinking a polyether epoxy, poly(ethylene glycol)diglicidyl ether (PEGDGE) (lithium ion solvent), in sulfonated polysulfone (SPSU) matrix. The effects of degree of sulfonation and electrolyte composition on ionic conductivity, thermal, and tensile properties of SPEs were investigated. It was found that ion-dipole interactions between lithium sulfonate (SO3Li) and PEGDGE were responsible for the reduction in size of the dispersed epoxy phase and increased thermal stability. Lithium sulfonate promoted compatibilization and also caused improvement in elongation at break. A low molecular weight electrolyte salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was further dissolved in PEGDGE phase prior to its crosslinking in SPSU matrix, and the ionic conductivity and thermal properties were evaluated as a function of doping level. The ionic conductivity showed remarkable improvement compared to the undoped system.
Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment
ERIC Educational Resources Information Center
Marcolongo, Juan P.; Mirenda, Martin
2011-01-01
An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…
Henderson, B W; Bellnier, D A; Greco, W R; Sharma, A; Pandey, R K; Vaughan, L A; Weishaupt, K R; Dougherty, T J
1997-09-15
An in vivo quantitative structure-activity relationship (QSAR) study was carried out on a congeneric series of pyropheophorbide photosensitizers to identify structural features critical for their antitumor activity in photodynamic therapy (PDT). The structural elements evaluated in this study include the length and shape (alkyl, alkenyl, cyclic, and secondary analogs) of the ether side chain. C3H mice, harboring the radiation-induced fibrosarcoma tumor model, were used to study three biological response endpoints: tumor growth delay, tumor cell lethality, and vascular perfusion. All three endpoints revealed highly similar QSAR patterns that constituted a function of the alkyl ether chain length and drug lipophilicity, which is defined as the log of the octanol:water partition coefficient (log P). When the illumination of tumor, tumor cells, or cutaneous vasculature occurred 24 h after sensitizer administration, activities were minimal with analogs of log P < or = 5, increased dramatically between log P of 5-6, and peaked between log P of 5.6-6.6. Activities declined gradually with higher log P. The lack of activity of the least-lipophilic analogs was explained in large part by their poor biodistribution characteristics, which yielded negligible tumor and plasma drug levels at the time of treatment with light. The progressively lower potencies of the most lipophilic analogs cannot be explained through the overall tumor and plasma pharmacokinetics of photosensitizer because tumor and plasma concentrations progressively increased with lipophilicity. When compensated for differences in tumor photosensitizer concentration, the 1-hexyl derivative (optimal lipophilicity) was 5-fold more potent than the 1-dodecyl derivative (more lipophilic) and 3-fold more potent than the 1-pentyl analog (less lipophilic), indicating that, in addition to the overall tumor pharmacokinetics, pharmacodynamic factors may influence PDT activity. Drug lipophilicity was highly predictive for photodynamic activity. QSAR modeling revealed that direct antitumor effects and vascular PDT effects may be governed by common mechanisms, and that the mere association of high levels of photosensitizer in the tumor tissue is not sufficient for optimal PDT efficiency.
Cevallos, M A; Navarro-Duque, C; Varela-Julia, M; Alagon, A C
1992-08-01
We describe a procedure for molecular mass determination of hyaluronidases present in animal venoms from different families. Hyaluronidases can be revealed, following their electrophoretic separation in sodium dodecyl sulfate-polyacrylamide gel containing hyaluronic acid, by incubating the gel in Triton X-100 to remove sodium dodecyl sulfate and restore in situ enzyme activity. This method allows the detection of as little as 0.025 turbidity-reducing units after 2 hr incubation. All the hyaluronidases from the analyzed invertebrate venoms had a mass below 50,000 and showed only one component, while those from vertebrate venoms were more than 60,000 and in many instances contained more than one form.
Effect of ethyleneoxide groups of anionic surfactants on lipase activity.
Magalhães, Solange S; Alves, Luís; Sebastião, Marco; Medronho, Bruno; Almeida, Zaida L; Faria, Tiago Q; Brito, Rui M M; Moreno, Maria J; Antunes, Filipe E
2016-09-01
The use of enzymes in laundry and dish detergent products is growing. Such tendency implies dedicated studies to understand surfactant-enzyme interactions. The interactions between surfactants and enzymes and their impact on the catalytic efficiency represent a central problem and were here evaluated using circular dichroism, dynamic light scattering, and enzyme activity determinations. This work focuses on this key issue by evaluating the role of the ethyleneoxide (EO) groups of anionic surfactants on the structure and activity of a commercial lipase, and by focusing on the protein/surfactant interactions at a molecular level. The conformational changes and enzymatic activity of the protein were evaluated in the presence of sodium dodecyl sulfate (SDS also denoted as SLE 0 S) and of sodium lauryl ether sulfate with two EO units (SLE 2 S). The results strongly suggest that the presence of EO units in the surfactant polar headgroup determines the stability and the activity of the enzyme. While SDS promotes enzyme denaturation and consequent loss of activity, SLE 2 S preserves the enzyme structure and activity. The data further highlights that the electrostatic interactions among the protein groups are changed by the presence of the adsorbed anionic surfactants being such absorption mainly driven by hydrophobic interactions. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1276-1282, 2016. © 2016 American Institute of Chemical Engineers.
Shi, Zhihong; Zhu, Xiaomin; Zhang, Hongyi
2007-08-15
In this paper, a micelle-mediated extraction and cloud point preconcentration method was developed for the determination of less hydrophobic compounds aesculin and aesculetin in Cortex fraxini by HPLC. Non-ionic surfactant oligoethylene glycol monoalkyl ether (Genapol X-080) was employed as the extraction solvent. Various experimental conditions were investigated to optimize the extraction process. Under optimum conditions, i.e. 5% Genapol X-080 (w/v), pH 1.0, liquid/solid ratio of 400:1 (ml/g), ultrasonic-assisted extraction for 30 min, the extraction yield reached the highest value. For the preconcentration of aesculin and aesculetin by cloud point extraction (CPE), the solution was incubated in a thermostatic water bath at 55 degrees C for 30 min, and 20% NaCl (w/v) was added to the solution to facilitate the phase separation and increase the preconcentration factor during the CPE process. Compared with methanol, which was used in Chinese Pharmacopoeia (2005 edition) for the extraction of C. fraxini, the extraction efficiency of 5% Genapol X-080 reached higher value.
Zhang, Yingyue; Li, Qi; Welsh, William J.; Moghe, Prabhas V.; Uhrich, Kathryn E.
2016-01-01
Atherosclerosis, a leading cause of mortality in developed countries, is characterized by the buildup of oxidized low-density lipoprotein (oxLDL) within the vascular intima, unregulated oxLDL uptake by macrophages, and ensuing formation of arterial plaque. Amphiphilic polymers (AMPs) comprised of a branched hydrophobic domain and a hydrophilic poly(ethylene glycol) (PEG) tail have shown promising anti-atherogenic effects through direct inhibition of oxLDL uptake by macrophages. In this study, five AMPs with controlled variations were evaluated for their micellar and structural stability in the presence of serum and lipase, respectively, to develop underlying structure-atheroprotective activity relations. In parallel, molecular dynamics simulations were performed to explore the AMP conformational preferences within an aqueous environment. Notably, AMPs with ether linkages between the hydrophobic arms and sugar backbones demonstrated enhanced degradation stability and storage stability, and also elicited enhanced anti-atherogenic bioactivity. Additionally, AMPs with increased hydrophobicity elicited increased atheroprotective bioactivity in the presence of serum. These studies provide key insights for designing more serum-stable polymeric micelles as prospective cardiovascular nanotherapies. PMID:26828687