Science.gov

Sample records for glycol unrefined polyethylene

  1. Polyethylene Glycol 3350

    MedlinePlus

    Polyethylene glycol 3350 is used to treat occasional constipation. Polyethylene glycol 3350 is in a class of medications ... Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. ...

  2. Polyethylene Glycol Propionaldehydes

    NASA Technical Reports Server (NTRS)

    Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.

    1992-01-01

    New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.

  3. 76 FR 70896 - Polyethylene Glycol; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... AGENCY 40 CFR Part 180 Polyethylene Glycol; Tolerance Exemption AGENCY: Environmental Protection Agency... amu), 17,000; also known as polyethylene glycol, when used as an inert ingredient in a pesticide...(oxyethylene, minimum number average molecular weight (in amu), 17,000; also known as polyethylene...

  4. Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms

    PubMed Central

    Nalawade, Triveni Mohan; Bhat, Kishore; Sogi, Suma H. P.

    2015-01-01

    Aim: The aim of the present study was to evaluate the bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400 (PEG 400), and polyethylene glycol 1000 (PEG 1000) against selected microorganisms in vitro. Materials and Methods: Five vehicles, namely propylene glycol, glycerine, PEG 400, PEG 1000, and combination of propylene glycol with PEG 400, were tested for their bactericidal activity. The minimum bactericidal concentration was noted against four standard strains of organisms, i.e. Streptococcus mutans American Type Culture Collection (ATCC) 25175, Streptococcus mutans ATCC 12598, Enterococcus faecalis ATCC 35550, and Escherichia coli ATCC 25922, using broth dilution assay. Successful endodontic therapy depends upon thorough disinfection of root canals. In some refractory cases, routine endodontic therapy is not sufficient, so intracanal medicaments are used for proper disinfection of canals. Intracanal medicaments are dispensed with vehicles which aid in increased diffusion through the dentinal tubules and improve their efficacy. Among the various vehicles used, glycerine is easily available, whereas others like propylene glycol and polyethylene glycol have to be procured from appropriate sources. Also, these vehicles, being viscous, aid in sustained release of the medicaments and improve their handling properties. The most commonly used intracanal medicaments like calcium hydroxide are ineffective on many microorganisms, while most of the other medicaments like MTAD (Mixture of Tetracycline, an Acid, and a Detergent) and Triple Antibiotic Paste (TAP) consist of antibiotics which can lead to development of antibiotic resistance among microorganisms. Thus, in order to use safer and equally effective intracanal medicaments, newer alternatives like chlorhexidine gluconate, ozonized water, etc., are being explored. Similarly, the five vehicles mentioned above are being tested for their antimicrobial activity in this study. Results: All vehicles

  5. Polyethylene Glycol Camouflaged Earthworm Hemoglobin

    PubMed Central

    Moges, Selamawit; Nacharaju, Parimala; Roche, Camille; Dantsker, David; Palmer, Andre; Friedman, Joel M.

    2017-01-01

    Nearly 21 million components of blood and whole blood and transfused annually in the United States, while on average only 13.6 million units of blood are donated. As the demand for Red Blood Cells (RBCs) continues to increase due to the aging population, this deficit will be more significant. Despite decades of research to develop hemoglobin (Hb) based oxygen (O2) carriers (HBOCs) as RBC substitutes, there are no products approved for clinical use. Lumbricus terrestris erythrocruorin (LtEc) is the large acellular O2 carrying protein complex found in the earthworm Lumbricus terrestris. LtEc is an extremely stable protein complex, resistant to autoxidation, and capable of transporting O2 to tissue when transfused into mammals. These characteristics render LtEc a promising candidate for the development of the next generation HBOCs. LtEc has a short half-life in circulation, limiting its application as a bridge over days, until blood became available. Conjugation with polyethylene glycol (PEG-LtEc) can extend LtEc circulation time. This study explores PEG-LtEc pharmacokinetics and pharmacodynamics. To study PEG-LtEc pharmacokinetics, hamsters instrumented with the dorsal window chamber were subjected to a 40% exchange transfusion with 10 g/dL PEG-LtEc or LtEc and followed for 48 hours. To study the vascular response of PEG-LtEc, hamsters instrumented with the dorsal window chamber received multiple infusions of 10 g/dL PEG-LtEc or LtEc solution to increase plasma LtEc concentration to 0.5, then 1.0, and 1.5 g/dL, while monitoring the animals’ systemic and microcirculatory parameters. Results confirm that PEGylation of LtEc increases its circulation time, extending the half-life to 70 hours, 4 times longer than that of unPEGylated LtEc. However, PEGylation increased the rate of LtEc oxidation in vivo. Vascular analysis verified that PEG-LtEc showed the absence of microvascular vasoconstriction or systemic hypertension. The molecular size of PEG-LtEc did not change the

  6. Polymeric compositions incorporating polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  7. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  8. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  9. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  10. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  11. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  12. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  13. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  14. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (400) monolaurate. 178.3760... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene...

  15. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (400) monolaurate. 178.3760... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene...

  16. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (400) monolaurate. 178.3760 Section 178.3760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400)...

  17. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (400) monolaurate. 178.3760... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene...

  18. 21 CFR 178.3760 - Polyethylene glycol (400) monolaurate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (400) monolaurate. 178.3760... SANITIZERS Certain Adjuvants and Production Aids § 178.3760 Polyethylene glycol (400) monolaurate. Polyethylene glycol (400) monolaurate containing not more than 0.1 percent by weight of ethylene...

  19. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  20. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  1. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  2. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  3. 40 CFR 721.6493 - Amidoamine modified polyethylene glycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amidoamine modified polyethylene... Specific Chemical Substances § 721.6493 Amidoamine modified polyethylene glycol (generic). (a) Chemical... as an amidoamine modified polyethylene glycol (PMN P-99-0645) is subject to reporting under...

  4. Radioprotection by polyethylene glycol-protein complexes in mice

    SciTech Connect

    Gray, B.H.; Stull, R.W.

    1983-03-01

    Polyethylene glycol of about 5000 D was activated with cyanuric chloride, and the activated compound was complexed to each of three proteins. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase were each radioprotectants when administered prophylactically to female B6CBF1 mice before irradiation. The dose reduction factor for these mice was 1.2 when 5000 units of polyethylene glycol-catalase was administered before /sup 60/Co irradiation. Female B6CBF1 mice administered prophylactic intravenous injections of catalase, polyethylene glycol-albumin, or heat-denatured polyethylene glycol-catalase had survival rates similar to phosphate-buffered saline-injected control mice following /sup 60/Co irradiation. Polyethylene glycol-superoxide dismutase and polyethylene glycol-catalase have radioprotective activity in B6CBF1 mice, which appears to depend in part on enzymatic activities of the complex. However, no radioprotective effect was observed in male C57BL/6 mice injected with each polyethylene glycol-protein complex at either 3 or 24 hr before irradiation. The mechanism for radioprotection by these complexes may depend in part on other factors.

  5. Polyethylene glycol as a solid polymer electrolyte

    SciTech Connect

    Cha, D.K.; Park, S.M.

    1997-12-01

    Polymer electrolytes were prepared from polyethylene glycol (PEG)-lithium perchlorate complexes and characterized at a stainless steel electrode using a variety of electrochemical techniques. The charge transfer process was affected by the oxide film on the stainless steel electrode surface in the early stages of redox processes. The polymer electrolytes showed a transference number of 0.2 for Li{sup +}. The conductivity of the PEG-10000 electrolyte has been determined to be 4.7 {times} 10{sup {minus}5} S/cm. This rather high value is attributed to the anionic end groups increasing the polarity of the matrix.

  6. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... AGENCY 40 CFR Part 180 Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride... oil, polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. (CAS Reg. No... residues of tall oil, polymer with polyethylene glycol and succinic anhydride monopolyisobutylene...

  7. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol... polyethylene glycol 400 shall be used to determine the total ethylene and diethylene glycol content...

  8. Polyethylene glycol-grafted polystyrene particles.

    PubMed

    Meng, Fenghua; Engbers, Gerard H M; Feijen, Jan

    2004-07-01

    Densely pegylated particles that can serve as a model system for artificial cells were prepared by covalently grafting amino polyethylene glycol (PEG, molecular weight 3400 or 5000) onto carboxyl polystyrene particles (PS-COOH) using carbodiimide chemistry. PEG-modified particles (PS-PEG) were characterized by determination of the PEG surface concentration, zeta-potential, size, and morphology. Under optimized grafting conditions, a dense "brush-like" PEG layer was formed. A PEG surface concentration of approximately 60 pmol/cm2, corresponding with an average distance between grafted PEG chains of approximately 17 A can be realized. It was shown that grafting of PEG onto PS-COOH reduced the adsorption of proteins from human plasma (85 vol %) in phosphate-buffered saline up to 90%.

  9. Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s.

    PubMed

    Zgoła-Grześkowiak, Agnieszka; Grześkowiak, Tomasz; Zembrzuska, Joanna; Łukaszewski, Zenon

    2006-07-01

    The biodegradation of poly(ethylene glycol)s (PEGs) and poly(propylene glycol)s (PPGs), both being major by-products of non-ionic surfactants biodegradation, was studied under the conditions of the River Water Die-Away Test. PEGs were isolated from a water matrix using solid-phase extraction with graphitized carbon black sorbent, then derivatized with phenyl isocyanate and determined by HPLC with UV detection. PPGs were isolated from a water matrix by liquid-liquid extraction with chloroform, then derivatized with naphthyl isocyanate and determined by HPLC with fluorescence detection. The primary biodegradation of both PEGs and PPGs reached approximately 99% during the test. The tests show different biodegradation pathways of PEG and PPG. During PEG biodegradation, their chains are shortened leading to the formation of ethylene glycol and diethylene glycol. During PPG biodegradation, no short-chained biodegradation products were found.

  10. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  11. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  12. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  13. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  14. 40 CFR 721.7255 - Polyethyleneamine crosslinked with substituted polyethylene glycol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted polyethylene glycol (generic). 721.7255 Section 721.7255 Protection of Environment ENVIRONMENTAL... substituted polyethylene glycol (generic). (a) Chemical substance and significant new uses subject to... substituted polyethylene glycol with substituted polyethylene glycol (PMN P-01-833) is subject to...

  15. Crystallization studies of polyethylene -poly(ethylene glycol) graft copolymers

    NASA Astrophysics Data System (ADS)

    Mark, P. R.; Hovey, G. E.; Murthy, N. S.; Breitenkamp, K.; Kade, M.; Emerick, T.

    2006-03-01

    Structure and crystallization behavior of three copolymers obtained by grafting poly (ethylene glycol) (PEG) chains to polyethylene (PE) main chain was investigated by variable temperature x-ray diffraction and thermal analysis. The results show that PEG side chains and PE main chains crystallize into separate domains. This is especially true when grafted chains are long (50 and 100 repeat units), in which the PEG domains are same as in PEG homopolymer both in structure and in melting behavior. In the copolymer with shorter chains (25 repeat units), the PEG crystals are not distinct and melting is broad. The PEG domains can be dissolved in water or ethanol without altering the mechanical integrity of the film. PE crystallites in both samples are similar to that in PE homopolymer. For instance, the thermal expansion of the basal cell plane (a- and b-axes) of the PE domains agrees well with that of PE homopolymer over the entire temperature range from ambient to melt. However, the chain-axis dimension PE-lattice in the copolymer is shorter by ˜ 0.05 å and the basal dimensions are larger by ˜ 0.05 å. The changes in these dimensions due to the changes in the length of the grafted PEG chains were investigated.

  16. Hydration of polyethylene glycol-grafted liposomes.

    PubMed

    Tirosh, O; Barenholz, Y; Katzhendler, J; Priev, A

    1998-03-01

    This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG2000 binds 136 +/- 4 molecules of water. For PEG2000 covalently attached to the lipid molecules organized in micelles, the water binding increases to 210 +/- 6 water molecules. This demonstrates that the two different structural configurations of the PEG2000, a random coil in the case of the free PEG and a brush in the case of DHP-PEG2000 micelles, differ in their hydration level. Ultrasound absorption changes in liposomes reflect mainly the heterophase fluctuations and packing defects in the lipid bilayer. The PEG-induced excess ultrasound absorption of the lipid bilayer at 7.7 MHz for PEG-lipid concentrations over 5 mol % indicates the increase in the relaxation time of the headgroup rotation due to PEG-PEG interactions. The adiabatic compressibility (calculated from ultrasound velocity and density) of the lipid bilayer of the liposome increases monotonically with PEG-lipid concentration up to approximately 7 mol %, reflecting release of water from the lipid headgroup region. Elimination of this water, induced by grafted PEG, leads to a decrease in bilayer defects and enhanced lateral packing of the phospholipid acyl chains. We assume that the dehydration of the lipid headgroup region in conjunction with the increase of the hydration of the outer layer by grafting PEG in brush configuration are responsible for increasing thermodynamic stability of the liposomes at 5-7 mol % of PEG-lipid. At higher PEG-lipid concentrations, compressibility and partial volume of the lipid phase

  17. Hydration of polyethylene glycol-grafted liposomes.

    PubMed Central

    Tirosh, O; Barenholz, Y; Katzhendler, J; Priev, A

    1998-01-01

    This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG2000 binds 136 +/- 4 molecules of water. For PEG2000 covalently attached to the lipid molecules organized in micelles, the water binding increases to 210 +/- 6 water molecules. This demonstrates that the two different structural configurations of the PEG2000, a random coil in the case of the free PEG and a brush in the case of DHP-PEG2000 micelles, differ in their hydration level. Ultrasound absorption changes in liposomes reflect mainly the heterophase fluctuations and packing defects in the lipid bilayer. The PEG-induced excess ultrasound absorption of the lipid bilayer at 7.7 MHz for PEG-lipid concentrations over 5 mol % indicates the increase in the relaxation time of the headgroup rotation due to PEG-PEG interactions. The adiabatic compressibility (calculated from ultrasound velocity and density) of the lipid bilayer of the liposome increases monotonically with PEG-lipid concentration up to approximately 7 mol %, reflecting release of water from the lipid headgroup region. Elimination of this water, induced by grafted PEG, leads to a decrease in bilayer defects and enhanced lateral packing of the phospholipid acyl chains. We assume that the dehydration of the lipid headgroup region in conjunction with the increase of the hydration of the outer layer by grafting PEG in brush configuration are responsible for increasing thermodynamic stability of the liposomes at 5-7 mol % of PEG-lipid. At higher PEG-lipid concentrations, compressibility and partial volume of the lipid phase

  18. Purification and characterization of polyethylene glycol dehydrogenase involved in the bacterial metabolism of polyethylene glycol.

    PubMed Central

    Kawai, F; Kimura, T; Tani, Y; Yamada, H; Kurachi, M

    1980-01-01

    Polyethylene glycol (PEG) dehydrogenase in crude extracts of a PEG 20,000-utilizing mixed culture was purified 24 times by precipitation with ammonium sulfate, solubilization with laurylbetaine, and chromatography with diethylamino-ethyl-cellulose, hydroxylapatite, and Sephadex G-200. The purified enzyme was confirmed to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme, which appeared to consist of four identical subunits, was 2.4 X 10(5). The enzyme was stable below 35 degrees C and in the pH range of 7.5 to 9.0. The optimum pH and temperature of the activity were around 8.0 and 60 degrees C, respectively. The enzyme did not require any metal ions for activity and oxidized various kinds of PEGs, among which PEG 6,000 was the most active substrate. The apparent Km values for tetraethylene glycol and PEG 6,000 were about 10.0 and 3.0 mM, respectively. Images PMID:6999995

  19. Stabilization of solid dispersions of nimodipine and polyethylene glycol 2000.

    PubMed

    Urbanetz, Nora Anne

    2006-05-01

    Previous investigations revealed that solid dispersions consisting of 20% (m/m) nimodipine and 80% (m/m) polyethylene glycol 2000 prepared by the melting method, represent supersaturated solid solutions of nimodipine recrystallizing upon storage at +25 degrees C. The objective of this study was the improvement of the storage stability by preventing recrystallization. The first approach in order to prevent recrystallization was the development of thermodynamically stable solid solutions by using solvents aiming to enhance the solubility of nimodipine in the carrier material. As potential solubility enhancing additives, polyethylene glycol 300, poly(ethylene/propylene glycol) copolymer, polypropylene glycol 1020, propylene glycol, glycerol and ethyl acetate were evaluated. The second approach enhancing storage stability was the addition of recrystallization inhibitors to supersaturated solid solutions, thereby delaying the transformation of the metastable supersaturated system to the thermodynamically stable state. Macrogol cetostearyl ether, macrogol glycerol monostearate, polysorbate 60, cetostearyl alcohol, glycerol monostearate and sodium lauryl sulphate as well as hydroxypropylcellulose, butylmethacrylat-(2-dimethylaminoethyl)methacrylat-methylmethacrylat-copolymer, polyacrylic acid, polyvinyl alcohol and povidone K17 were included in the study. It could be shown that povidone K17 effectively prevents recrystallization in solid solutions containing 20% (m/m) of nimodipine during storage at +25 degrees C over silica gel thereby ensuring a substantial increase in the dissolution rate and degree of supersaturation in water. On the contrary, stabilization by solubility enhancement was only successful at drug loadings not exceeding 1% (m/m) using polyethylene glycol 300 as solubility enhancing additive.

  20. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  1. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  2. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  3. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  4. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  5. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  6. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  7. 40 CFR 721.10546 - Pentenylated polyethylene glycol sulfate salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Pentenylated polyethylene glycol... New Uses for Specific Chemical Substances § 721.10546 Pentenylated polyethylene glycol sulfate salt... identified generically as pentenylated polyethylene glycol sulfate salt (PMN P-04-340) is subject...

  8. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  9. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  10. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  11. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  12. 40 CFR 721.10546 - Pentenylated polyethylene glycol sulfate salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Pentenylated polyethylene glycol... New Uses for Specific Chemical Substances § 721.10546 Pentenylated polyethylene glycol sulfate salt... identified generically as pentenylated polyethylene glycol sulfate salt (PMN P-04-340) is subject...

  13. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  14. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9... ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.820 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used in food...

  15. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  16. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  17. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  18. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9..., PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene glycol identified in this section may be safely used as...

  19. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  20. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  1. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl polyethylene glycol phosphate... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under...

  2. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  3. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... AGENCY 40 CFR Part 180 Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether... residues of methacrylic acid-methyl methacrylate- polyethylene glycol monomethyl ether methacrylate graft... permissible level for residues of methacrylic acid-methyl methacrylate-polyethylene glycol monomethyl...

  4. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9... Adjuvants and Production Aids § 178.3750 Polyethylene glycol (mean molecular weight 200-9,500). Polyethylene... chapter. (c) The provisions of paragraph (b) of this section are not applicable to polyethylene...

  5. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  6. Polyethylene glycol plus ascorbic acid for bowel preparation in chronic kidney disease

    PubMed Central

    Lee, Jae Min; Keum, Bora; Yoo, In Kyung; Kim, Seung Han; Choi, Hyuk Soon; Kim, Eun Sun; Seo, Yeon Seok; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Kim, Myung Gyu; Jo, Sang Kyung

    2016-01-01

    Abstract The safety of polyethylene glycol plus ascorbic acid has not been fully investigated in patients with renal insufficiency. High-dose ascorbic acid could induce hyperoxaluria, thereby causing tubule-interstitial nephritis and renal failure. This study aims to evaluate the safety and efficacy of polyethylene glycol plus ascorbic acid in patients with chronic kidney disease. We retrospectively reviewed prospectively collected data on colonoscopy in patients with impaired renal function. Patients were divided into 2 groups: 2 L polyethylene glycol plus ascorbic acid (n = 61) and 4 L polyethylene glycol (n = 80). The safety of the 2 groups was compared by assessing the differences in laboratory findings before and after bowel cleansing. The laboratory findings were not significantly different before and after the administration of 2 L polyethylene glycol plus ascorbic acid or 4 L polyethylene glycol. In both groups, the estimated glomerular filtration rate was not influenced by the administration of the bowel-cleansing agent. Patients’ reports on tolerance and acceptability were better in the 2 L polyethylene glycol plus ascorbic acid group than in the 4 L polyethylene glycol group. The 2 L polyethylene glycol plus ascorbic acid solution is a safe choice for bowel preparation before colonoscopy in patients with impaired renal function. PMID:27603372

  7. The effect of glycerol, propylene glycol and polyethylene glycol 400 on the partition coefficient of benzophenone-3 (oxybenzone).

    PubMed

    Mbah, C J

    2007-01-01

    Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin.

  8. Polyethylene glycol enhanced refolding of the recombinant human tissue transglutaminase.

    PubMed

    Ambrus, A; Fésüs, L

    2001-02-01

    Tissue transglutaminase forms cross-links between lysine and glutamine side-chains of polypeptide chains in a Ca2+-dependent reaction; its structural basis is still not clarified. In this study, we demonstrate that the refolding of the human recombinant enzyme molecule to its catalytically active form from inclusion bodies needs the presence of a helper material with higher molecular mass, but only in the initiation phase. Ca2+ and nucleotides are ascribed as affector molecules also in the early phase of structural reconstitution. Two optimal concentrations of polyethylene glycol and a relatively long time scale for the evolution of the final structure were identified. The optimized refolding procedure is reported.

  9. Polyethylene glycol-based homologated ligands for nicotinic acetylcholine receptors☆

    PubMed Central

    Scates, Bradley A.; Lashbrook, Bethany L.; Chastain, Benjamin C.; Tominaga, Kaoru; Elliott, Brandon T.; Theising, Nicholas J.; Baker, Thomas A.; Fitch, Richard W.

    2010-01-01

    A homologous series of polyethylene glycol (PEG) monomethyl ethers were conjugated with three ligand series for nicotinic acetylcholine receptors. Conjugates of acetylaminocholine, the cyclic analog 1-acetyl-4,4-dimethylpiperazinium, and pyridyl ether A-84543 were prepared. Each series was found to retain significant affinity at nicotinic receptors in rat cerebral cortex with tethers of up to six PEG units. Such compounds are hydrophilic ligands which may serve as models for fluorescent/affinity probes and multivalent ligands for nAChR. PMID:19006672

  10. Particle Size Control of Polyethylene Glycol Coated Fe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivasan, B.; Bonder, M. J.; Zhang, Y.; Gallo, D.; Hadjipanayis, G. C.

    2006-03-01

    Recent interest in Fe nanoparticles with high magnetization is driven by their potential use in biomedical applications such as targeted drug delivery, MRI contrast enhancement and hyperthermia treatment of cancer. This study looks at the use of a polyethylene glycol (PEG) solution to mediate the particle size and therefore control the coercivity of the resulting nanoparticles. Iron nanoparticles were synthesized using an aqueous sodium borohydride reduction of ferrous chloride by a simultaneous introduction of reagents in a Y- junction. The resulting product was collected in a vessel containing a 15 mg/ml carboxyl terminated polyethylene glycol (cPEG) in ethyl alcohol solution located under the Y junction. By varying the length of tubing below the Y junction, the particle size was varied from 5-25 nm. X-ray diffraction data indicates the presence of either amorphous Fe-B or crystalline alpha Fe, depending on the molar ratio of reagents. Magnetic measurements indicate the particles are ferromagnetic with values of coercivity ranging from 200-500 Oe and a saturation magnetization in range of 70-110 emu/g. The XRD shows that the particles are not affected by the polymer coating.

  11. Identification of polypropylene glycols and polyethylene glycol carboxylates in flowback and produced water from hydraulic fracturing.

    PubMed

    Thurman, E Michael; Ferrer, Imma; Rosenblum, James; Linden, Karl; Ryan, Joseph N

    2017-02-05

    The purpose of the study was to separate and identify the unknown surfactants present in flowback and produced water from oil and gas wells in the Denver-Julesburg Basin (Niobrara Formation) in Weld County, Colorado, USA. Weld County has been drilled extensively during the last five years for oil and gas between 7000-8000 feet below land-surface. Polypropylene glycols (PPGs) and polyethylene glycols carboxylates (PEG-Cs) were found for the first time in these flowback and produced water samples. These ethoxylated surfactants may be used as friction reducers, clay stabilizers, and surfactants. Ultrahigh-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UHPLC/QTOF-MS) was used to separate and identify the different classes of PPGs, PEG-Cs, and their isomers. The Kendrick mass scale was applied along with mass spectrometry/mass spectrometry (MS-MS) with accurate mass for rapid and unequivocal identification. The PPGs and their isomers occur at the ppm concentration range and may be useful as "fingerprints" of hydraulic-fracturing. Comparing these detections to the compounds used in the fracturing process from FracFocus 3.0 (https://fracfocus.org), it appears that both PPGs and polyethylene glycols (PEGs) are commonly named as additives, but the PEG-Cs have not been reported. The PEG-Cs may be trace impurities or degradation products of PEGs.

  12. Horseradish Peroxidase Inactivation: Heme Destruction and Influence of Polyethylene Glycol

    PubMed Central

    Mao, Liang; Luo, Siqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Horseradish peroxidase (HRP) mediates efficient conversion of many phenolic contaminants and thus has potential applications for pollution control. Such potentially important applications suffer however from the fact that the enzyme becomes quickly inactivated during phenol oxidation and polymerization. The work here provides the first experimental data of heme consumption and iron releases to support the hypothesis that HRP is inactivated by heme destruction. Product of heme destruction is identified using liquid chromatography with mass spectrometry. The heme macrocycle destruction involving deprivation of the heme iron and oxidation of the 4-vinyl group in heme occurs as a result of the reaction. We also demonstrated that heme consumption and iron releases resulting from HRP destruction are largely reduced in the presence of polyethylene glycol (PEG), providing the first evidence to indicate that heme destruction is effectively suppressed by co-dissolved PEG. These findings advance a better understanding of the mechanisms of HRP inactivation. PMID:24185130

  13. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    NASA Astrophysics Data System (ADS)

    Závišová, Vlasta; Koneracká, Martina; Múčková, Marta; Lazová, Jana; Juríková, Alena; Lancz, Gábor; Tomašovičová, Natália; Timko, Milan; Kováč, Jozef; Vávra, Ivo; Fabián, Martin; Feoktystov, Artem V.; Garamus, Vasil M.; Avdeev, Mikhail V.; Kopčanský, Peter

    2011-05-01

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe 3O 4) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe 3O 4 in MFPEG).

  14. Simulation of polyethylene glycol and calcium-mediated membrane fusion

    SciTech Connect

    Pannuzzo, Martina; De Jong, Djurre H.; Marrink, Siewert J.; Raudino, Antonio

    2014-03-28

    We report on the mechanism of membrane fusion mediated by polyethylene glycol (PEG) and Ca{sup 2+} by means of a coarse-grained molecular dynamics simulation approach. Our data provide a detailed view on the role of cations and polymer in modulating the interaction between negatively charged apposed membranes. The PEG chains cause a reduction of the inter-lamellar distance and cause an increase in concentration of divalent cations. When thermally driven fluctuations bring the membranes at close contact, a switch from cis to trans Ca{sup 2+}-lipid complexes stabilizes a focal contact acting as a nucleation site for further expansion of the adhesion region. Flipping of lipid tails induces subsequent stalk formation. Together, our results provide a molecular explanation for the synergistic effect of Ca{sup 2+} and PEG on membrane fusion.

  15. Poly(ethylene glycol) self-assembled monolayer island growth.

    PubMed

    Rundqvist, Jonas; Hoh, Jan H; Haviland, David B

    2005-03-29

    Here, we report a study of the morphology and growth dynamics of a self-assembled monolayer (SAM) of the amide containing poly(ethylene glycol) (PEG) thiol (CH3O(CH2CH2O)17NHCO(CH2)2SH) on atomically flat Au(111) surfaces. SAM growth from a 20 muM ethanolic solution reveals island growth through three distinct steps: island nucleation, island growth, and coalescence. The coalescence-step, filling voids in the SAM, is by far slowest. The fine structure study reveals dendritic island formation, an observation which can be explained by attractive intermolecular interactions and surface diffusion-limited aggregation. We have also observed a change in the island height, which peaks during the island growth phase. This height change can be associated with a molecular conformational transition.

  16. Hansen solubility parameters for polyethylene glycols by inverse gas chromatography.

    PubMed

    Adamska, Katarzyna; Voelkel, Adam

    2006-11-03

    Inverse gas chromatography (IGC) has been applied to determine solubility parameter and its components for nonionic surfactants--polyethylene glycols (PEG) of different molecular weight. Flory-Huggins interaction parameter (chi) and solubility parameter (delta(2)) were calculated according to DiPaola-Baranyi and Guillet method from experimentally collected retention data for the series of carefully selected test solutes. The Hansen's three-dimensional solubility parameters concept was applied to determine components (delta(d), delta(p), delta(h)) of corrected solubility parameter (delta(T)). The molecular weight and temperature of measurement influence the solubility parameter data, estimated from the slope, intercept and total solubility parameter. The solubility parameters calculated from the intercept are lower than those calculated from the slope. Temperature and structural dependences of the entopic factor (chi(S)) are presented and discussed.

  17. Silk fibroin and polyethylene glycol-based biocompatible tissue adhesives

    PubMed Central

    Serban, Monica A.; Panilaitis, Bruce; Kaplan, David L.

    2012-01-01

    Tissue sealants have emerged in recent years as strong candidates for hemostasis. A variety of formulations are currently commercially available and though they satisfy many of the markets’ needs there are still key aspects of each that need improvement. Here we present a new class of blends, based on silk fibroin and chemically active polyethylene glycols (PEGs) with strong adhesive properties. These materials are cytocompatible, crosslink within seconds via chemical reaction between thiols and maleimides present on the constituent PEGs and have the potential to further stabilize through β-sheet formation by silk. Based on the silk concentration in the final formulation, the adhesive properties of these materials are comparable or better than the current leading PEG-based sealant. In addition, the silk-PEG based materials show decreased swelling and longer degradation times. Such properties would make them suitable for applications for which the current sealants are contraindicated. PMID:21681949

  18. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography.

    PubMed

    Revzin, A; Russell, R J; Yadavalli, V K; Koh, W G; Deister, C; Hile, D D; Mellott, M B; Pishko, M V

    2001-09-04

    The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 micrometers by the use of different photomasks, while height varied from 3 to 12 micrometers, depending on the molecular weight of the PEG macromer. In the case of 7 micrometers diameter elements, as many as 400 elements were reproducibly generated in a 1 mm2 square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine.

  19. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography

    NASA Technical Reports Server (NTRS)

    Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W. G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V.

    2001-01-01

    The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 micrometers by the use of different photomasks, while height varied from 3 to 12 micrometers, depending on the molecular weight of the PEG macromer. In the case of 7 micrometers diameter elements, as many as 400 elements were reproducibly generated in a 1 mm2 square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine.

  20. Influence of polyethylene glycol-300 addition on nanostructured lead sulfide thin films properties

    NASA Astrophysics Data System (ADS)

    Kaci, S.; Keffous, A.; Trari, M.; Menari, H.; Manseri, A.; Mahmoudi, B.; Guerbous, L.

    2010-09-01

    The concentration of polyethylene glycol-300 was found to play a crucial role in the formation of nanoparticles in PbS-chemical bath deposition process. We report here an endeavor to set up a relation between the variation of lead sulfide (PbS) nanocrystalline thin film properties, grown by (CBD) process at room temperature on corning glass and Si(100) substrates, with amount fluctuations of polyethylene glycol-300 in the solution. The transmittance of the films, for a fixed reaction time, increased up to ˜ 80% with the increase of % polyethylene glycol-300 in the solution, indicating the formation of very thin films due to the decrease of reaction rate with the increase of the concentration of polyethylene glycol-300. The optical band gaps were found to strongly rely on the composition of the bath deposition and increase with the increase of the polyethylene glycol-300 amount in the solution. Particle sizes between 2.8 and 8.7 nm were obtained by varying the % of polyethylene glycol-300 from 0.2 to 1.5. The concentration of polyethylene glycol-300 not only affects the reaction rate but also the morphology of the obtained films. PbS nanoparticles were found to be oriented preferentially along the < 200> plane. The absorption shifts towards short wavelength indicating a blue-shifting as a consequence of quantum confinement.

  1. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol) polycaprolactone poly(ethylene glycol) block copolymers

    NASA Astrophysics Data System (ADS)

    Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan

    2007-06-01

    A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).

  2. Miscibility studies of Polyethylene Glycol with Polystyrene in Toluene by Various Physical and Advanced Techniques

    NASA Astrophysics Data System (ADS)

    Padmanaban, R.; Venkatramanan, K.

    2016-10-01

    Polyethylene glycol (PEG) is a chemical that has an extensive variety of applications in the world of medicine. It is used as a base to manufacture certain medicines, assist in drug delivery, and is also used as an agent in some medical procedures. It is an osmotic laxative. Polyethylene glycol works by retaining water in the stool, resulting in softer stools and more frequent bowel movements. Polyethylene glycol does not affect glucose and electrolytes in the body. PEG refers to a hydrocarbon molecule that can have a variable size, and different sizes can have different physical properties, giving this compound a great deal of flexibility in its application. In the present study, Polyethylene Glycol (PEG) (Molar mass: 1500) is blended with Polystyrene (PS) (Molar mass: 35000) in Toluene. The miscibility nature of the poly blend is analyzed by Ultrasonic velocity, viscosity, density and refractive index techniques at 303K. The compatibility nature of the blend is confirmed by Differential Scanning Calorimetry (DSC) studies.

  3. Polyethylene glycol on stability of chitosan microparticulate carrier for protein.

    PubMed

    Luangtana-Anan, Manee; Limmatvapirat, Sontaya; Nunthanid, Jurairat; Chalongsuk, Rapeepun; Yamamoto, Keiji

    2010-09-01

    Stability enhancement of protein-loaded chitosan microparticles under storage was investigated. Chitosan glutamate at 35 kDa and bovine serum albumin as model protein drug were used in this study. The chitosan microparticles were prepared by ionotropic gelation, and polyethylene glycol 200 (PEG 200) was applied after the formation of the particles. All chitosan microparticles were kept at 25°C for 28 days. A comparison was made between those preparations with PEG 200 and without PEG 200. The changes in the physicochemical properties of the microparticles such as size, zeta potential, pH, and percent loading capacity were investigated after 0, 3, 7, 14, and 28 days of storage. It was found that the stability decreased upon storage and the aggregation of microparticles could be observed for both preparations. The reduction in the zeta potential and the increase in the pH, size, and loading capacity were observed when they were kept at a longer period. The significant change of those preparations without PEG 200 was evident after 7 days of storage whereas those with PEG 200 underwent smaller changes with enhanced stability after 28 days of storage. Therefore, this investigation gave valuable information on the stability enhancement of the microparticles. Hence, enhanced stability of chitosan glutamate microparticles for the delivery of protein could be achieved by the application of PEG 200.

  4. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use

    PubMed Central

    Shin, Chan Young; Kim, Kyu-Bong

    2015-01-01

    Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient. PMID:26191379

  5. Method for determination of polyethylene glycol molecular weight.

    PubMed

    Pihlasalo, Sari; Hänninen, Pekka; Härmä, Harri

    2015-04-07

    A method utilizing competitive adsorption between polyethylene glycols (PEGs) and labeled protein to nanoparticles was developed for the determination of PEG molecular weight (MW) in a microtiter plate format. Two mix-and-measure systems, time-resolved luminescence resonance energy transfer (TR-LRET) with donor europium(III) polystyrene nanoparticles and acceptor-labeled protein and quenching with quencher gold nanoparticles and fluorescently labeled protein were compared for their performance. MW is estimated from the PEG MW dependent changes in the competitive adsorption properties, which are presented as the luminescence signal vs PEG mass concentration. The curves obtained with the TR-LRET system overlapped for PEGs larger than 400 g/mol providing no information on MW. Distinctly different curves were obtained with the quenching system enabling the assessment of PEG MW within a broad dynamic range. The data was processed with and without prior knowledge of the PEG concentration to measure PEGs over a MW range from 62 to 35,000 g/mol. The demonstration of the measurement independent of the PEG concentration suggests that the estimation of MW is possible with quenching nanoparticle system for neutrally charged and relatively hydrophilic polymeric molecules widening the applicability of the simple and cost-effective nanoparticle-based methods.

  6. The gas phase structure of coulombically stretched polyethylene glycol ions.

    PubMed

    Larriba, Carlos; de la Mora, Juan Fernandez

    2012-01-12

    Prior ion-mobility mass-spectrometry (IMS-MS) studies of polyethylene glycol (PEG) ions have identified only two out of many sharply different observed structures: Linear shapes with several individually solvated singly charged cations at high charge states z (beads on a string), and single multiply charged globules at low z. The present study is devoted to assign all other existing structures of PEG ions, for the first time reaching masses of 100 kDa and charge states up to z = 10. There are at most z different structures at charge state z. All involve a single globule carrying n charges, tied to one or several appendices bearing z - n separate charges in a beads-on-a-string configuration. All sharp shape transitions observed at decreasing ion mass involve ejection of one elementary charge (sometimes two) from the shrinking globule into the growing linear appendage. This picture is supported by molecular dynamics simulations and approximate calculations of electrical mobilities for computed structures.

  7. [Interferon alpha-2b modified with polyethylene glycol].

    PubMed

    Wu, Yingxin; Zhai, Yanqin; Lei, Jiandu; Ma, Guanghui; Su, Zhiguo

    2008-09-01

    In order to obtain a more stable PEGylated interferon alpha-2b, and prolong its half life, interferon alpha-2b (IFN alpha-2b) was modified with monomethoxy polyethylene glycol propionaldehyde (mPEG-ALD) 20000. It was found that the optimized reaction condition for the maximum bioactivity and highest PEGylation degree of the mono PEGylated interferon alpha-2b was as follows: in 20 mmol/L, pH 6.5, citric acid and sodium dihydrogen phosphate buffer, the concentration of IFN alpha-2b was 4 mg/mL, and the molar ratio of PEG/IFN alpha-2b was 8:1, and the reaction time was 20 h at 4 degrees C. Under the optimized reaction condition, the mono PEGylation degree reached to 55%. Ion exchange chromatography was used to separate and purify mono PEGylated interferon alpha-2b from the reaction mixture. The purity of mono PEGylated interferon alpha-2b was higher than 97% characterized by HPLC. The bioactivity of the mono PEGylated interferon alpha-2b was 13.4% of the native IFN alpha-2b, while its half life in SD rat is much longer than the native IFN alpha-2b. The mono PEGylated interferon alpha-2b is also stable in aqueous.

  8. Optical clearing of skin tissue ex vivo with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Tuchina, D. K.; Genin, V. D.; Bashkatov, A. N.; Genina, E. A.; Tuchin, V. V.

    2016-01-01

    Alterations of the optical and structural (weight, thickness, and square) parameters of skin caused by polyethylene glycol (PEG) with molecular weights of 300 and 400 Da were studied experimentally. The objects of the study were ex vivo skin samples of albino laboratory rats. Collimated transmittance of the skin was measured in the wavelength range 500-900 nm. As a result of exposure to the agents, an increase in the collimated transmittance and a decrease in weight, thickness, and square of skin samples were observed. Analysis of the kinetics of parameters alterations allowed us to measure the diffusion coefficient of the agents in the skin as (1.83 ± 2.22) × 10-6 and (1.70 ± 1.47) × 10-6 cm2/s for PEG-300 and PEG-400, respectively, and the rate of alterations of the structural parameters. The results obtained in this study can be used for the improvement of existing and development of new methods of noninvasive diagnostics and therapy of subcutaneous diseases.

  9. Detecting Sonolysis of Polyethylene Glycol Upon Functionalizing Carbon Nanotubes.

    PubMed

    Wang, Ruhung; Murali, Vasanth S; Draper, Rockford

    2017-01-01

    Polyethylene glycol (PEG) and related polymers are often used in the solubilization and noncovalent functionalization of carbon nanomaterials by sonication. For example, carbon nanotubes are frequently sonicated with PEG-containing surfactants of the Pluronic(®) series or phospholipid-PEG polymers to noncovalently functionalize the nanotubes. However, PEG is very sensitive to degradation upon sonication and the degradation products can be toxic to mammalian cells and to organisms such as zebrafish embryos. It is therefore useful to have a simple and inexpensive method to determine the extent of potential PEG sonolysis, as described in this chapter. Intact PEG polymers and degraded fragments are resolved on sodium dodecyl sulfate polyacrylamide gels by electrophoresis and visualized by staining with barium iodine (BaI2). Digitized images of gels are acquired using a flatbed photo scanner and the intensities of BaI2-stained PEG bands are quantified using ImageJ software. Degradation of PEG polymers after sonication is readily detected by the reduction of band intensities in gels compared to those of non-sonicated, intact PEG polymers. In addition, the approach can be used to rapidly screen various sonication conditions to identify those that might minimize PEG degradation to acceptable levels.

  10. Physicochemical characterization of nimodipine-polyethylene glycol solid dispersion systems.

    PubMed

    Barmpalexis, Panagiotis; Kachrimanis, Kyriakos; Georgarakis, Emanouil

    2014-07-01

    This study investigates the solid-solid interactions between nimodipine (NIM) and polyethylene glycol (PEG) of different mean molecular weights (PEG 2000, 4000 and 6000), in solid dispersion systems, applying differential scanning calorimetry (DSC), Fourier-Transform infrared spectroscopy, powder X-ray diffraction (PXRD), hot stage microscopy (HSM) and theoretical modeling by the Flory-Huggins (FH) solution theory. Phase diagrams constructed with the aid of DSC and FH solution theory showed sensitivity on the estimated values of the FH interaction parameter (χ). When χ is considered a constant number (χ = α, α ≠ 0), formation of a eutectic mixture is predicted in the 70-80% w/w PEG concentration region, while when χ was considered as a function of concentration and temperature (χ = f(φ,Τ)), the model predicts the formation of monotectic systems. Construction of more precise phase diagrams by HSM to the aid of Kofler's "contact preparation" method confirmed the monotectic nature of the examined systems. Studies on NIM's re-crystallization process in the solid dispersions revealed a strong dependence of the crystallization rate, as well as the resulting crystal form, on the mean molecular weight and concentration of PEG: NIM crystallization rates decrease as PEG's MW increases, while NIM mod II crystals predominate in dispersions prepared at temperatures above NIM's liquidus and growth of NIM mod I prevailing in PEG-rich samples.

  11. Coarse-grained models for aqueous polyethylene glycol solutions.

    PubMed

    Choi, Eunsong; Mondal, Jagannath; Yethiraj, Arun

    2014-01-09

    A new coarse-grained force field is developed for polyethylene glycol (PEG) in water. The force field is based on the MARTINI model but with the big multipole water (BMW) model for the solvent. The polymer force field is reparameterized using the MARTINI protocol. The new force field removes the ring-like conformations seen in simulations of short chains with the MARTINI force field; these conformations are not observed in atomistic simulations. We also investigate the effect of using parameters for the end-group that are different from those for the repeat units, with the MARTINI and BMW/MARTINI models. We find that the new BMW/MARTINI force field removes the ring-like conformations seen in the MARTINI models and has more accurate predictions for the density of neat PEG. However, solvent-separated-pairs between chain ends and slow dynamics of the PEG reflect its own artifacts. We also carry out fine-grained simulations of PEG with bundled water clusters and show that the water bundling can lead to ring-like conformations of the polymer molecules. The simulations emphasize the pitfalls of coarse-graining several molecules into one site and suggest that polymer-solvent systems might be a stringent test for coarse-grained force fields.

  12. Polyethylene glycol protects primary hepatocytes during supercooling preservation.

    PubMed

    Puts, C F; Berendsen, T A; Bruinsma, B G; Ozer, Sinan; Luitje, Martha; Usta, O Berk; Yarmush, M L; Uygun, K

    2015-08-01

    Cold storage (at 4°C) offers a compromise between the benefits and disadvantages of cooling. It allows storage of organs or cells for later use that would otherwise quickly succumb to warm ischemia, but comprises cold ischemia that, when not controlled properly, can result in severe damage as well by both similar and unique mechanisms. We hypothesized that polyethylene glycol (PEG) 35 kDa would ameliorate these injury pathways and improve cold primary hepatocyte preservation. We show that reduction of the storage temperature to below zero by means of supercooling, or subzero non-freezing, together with PEG supplementation increases the viable storage time of primary rat hepatocytes in University of Wisconsin (UW) solution from 1 day to 4 days. We find that the addition of 5% PEG 35 kDa to the storage medium prevents cold-induced lipid peroxidation and maintains hepatocyte viability and functionality during storage. These results suggest that PEG supplementation in combination with supercooling may enable a more optimized cell and organ preservation.

  13. Mechanistic insights into acyclovir-polyethylene glycol 20000 binary dispersions

    PubMed Central

    Venkateskumar, Krishnamoorthy; Parasuraman, Subramani; Gunasunderi, Raju; Sureshkumar, Krishnan; Nayak, M. Muralidhar; Shah, Syed Adnan Ali; Kassen, Khoo; Kai, Heng Wei

    2016-01-01

    Objective: The objective of this study is to provide a mechanistic insight into solubility enhancement and dissolution of acyclovir (ACY) by polyethylene glycol20000 (PEG20000). Materials and Methods: Solid dispersions with differing ratios of drug (ACY) and carrier (PEG20000) were prepared and evaluated by phase solubility, in vitro release studies, kinetic analysis, in situ perfusion, and in vitro permeation studies. Solid state characterization was also done by Powder X-Ray Diffraction (PXRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared spectroscopy (FT-IR) analysis and surface morphology was assessed by Polarizing Microscopic Image (PMI) analysis, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and Nuclear Magnetic Resonance (NMR) analysis. Results: Thermodynamic parameters proved the solubilization effect of carrier. The aqueous solubility and dissolution of ACY were increased in all samples. Formation of solid solution, crystallinity reduction, and absence of interaction between drug and carrier was proved by XRD, DSC, and FTIR analysis. The particle size reduction and change in surface morphology were confirmed by SEM and AFM and analysis. The permeation coefficient and amount of drug diffused was higher in samples as compared to ACY. The stability was high in dispersions, and it was proved by NMR analysis. Conclusion: The mechanical insights into the enhancement of solubility and dissolution could be used as a platform to improve the aqueous solubility for other poor water soluble drugs. PMID:28123988

  14. Fractionation of dextrin by gradient polyethylene glycol precipitation.

    PubMed

    Hu, Xiuting; Liu, Chengmei; Jin, Zhengyu; Tian, Yaoqi

    2016-02-19

    This work aimed at developing a novel approach, named gradient polyethylene glycol (PEG) precipitation, to fractionate dextrin into fractions with narrower molecular weight distribution. This approach was based on the incompatibility between PEG and dextrin in aqueous solution; this incompatibility is positively correlated with the molecular weight of dextrin. Theoretically, dextrin can be precipitated in descending order of molecular weight by the gradual addition of PEG into the dextrin solution. Specifically, this study investigated the effects of molecular weight and its distribution of PEG on dextrin fractionation with the molecular-weight dispersity (DM) as index. The parent dextrin could be fractionated by PEG into several fractions with different molecular weights and lower DM. The average DM of fractions obtained by PEG2000, PEG4000, PEG6000, PEG10000, and PEG20000 was 1.471, 1.352, 1.286, 1.453, and 2.028, respectively, while the DM of the parent dextrin was 2.052. These data suggest that PEG6000 was the optimal precipitant, while PEG20000 was unsuitable for fractionating dextrin. Furthermore, narrowly-distributed PEG resulted in optimum fractionation results. Therefore, gradient PEG precipitation is an efficient method for fractionating dextrin. Additionally, narrowly-distributed PEG of suitable molecular weight should be selected to obtain superior fractionation results.

  15. Green polymer chemistry VIII: synthesis of halo-ester-functionalized poly(ethylene glycol)s via enzymatic catalysis.

    PubMed

    Castano, Marcela; Seo, Kwang Su; Kim, Eun Hye; Becker, Matthew L; Puskas, Judit E

    2013-09-01

    Halo-ester-functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo-esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo-esters with PEGs are complete in 4 h. (1) H and (13) C NMR spectroscopy with MALDI-ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and "green" process to effectively produce halo-ester PEGs.

  16. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    PubMed

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns.

  17. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering

    NASA Astrophysics Data System (ADS)

    Grover, Gregory N.; Rao, Nikhil; Christman, Karen L.

    2014-01-01

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.

  18. Noncovalent adducts of poly(ethylene glycols) with proteins.

    PubMed

    Topchieva, I N; Sorokina, E M; Efremova, N V; Ksenofontov, A L; Kurganov, B I

    2000-01-01

    A new method of preparation of noncovalent complexes between poly(ethylene glycol) (PEG) and proteins (alpha-chymotrypsin (ChT), lysozyme, bovine serum albumine) under high pressure has been developed. The involvement of polymer in the complexes was proved using (3)H-labeled PEG. The composition of the complexes (the number of polymer chains per one ChT molecule) depends on the molecular mass of PEG and decreases with the increase in molecular mass from 300 to 4000, whereas the portion of the protein (wt %) in complexes does not depend on the molecular mass of incorporated PEG and corresponds to approximately 70 wt %. The kinetic constants for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester and azocasein catalyzed by the PEG-ChT complexes are identical with the corresponding values for the native ChT. According to the data obtained by the method of circular dichroism, the enzyme in the complexes fully retains its secondary structure. The steric availability of PEG polymer chains in the complexes was evaluated by their complexation with alpha-cyclodextrin (CyD) or polymer derivatives of beta-CyD modified with PEG (PEG-beta-CyD). In contrast to free PEG, only part of PEG polymer chains ( approximately 10%) interact with alpha-CyD. Thus, the complexation of PEG with ChT proceeds by means of multipoint interaction with surface groups of the protein globule located far from the active site and results in the sufficient decrease in the availability of polymer chains. The complexes between PEG chains in PEG-protein adducts and PEG-beta-CyD may be considered as a novel type of dendritic structures.

  19. A course-grained model for polyethylene glycol polymer

    SciTech Connect

    Nicholson, Don M; Wang, Qifei; Keffer, David J

    2011-01-01

    A coarse-grained (CG) model of polyethylene glycol (PEG) was developed and implemented in CG molecular dynamics (MD) simulations of PEG chains with degree of polymerization (DP) 20 and 40. In the model, two repeat units of PEG are grouped as one CG bead. Atomistic MD simulation of PEG chains with DP = 20 was first conducted to obtain the bonded structural probability distribution functions (PDFs) and nonbonded pair correlation function (PCF) of the CG beads. The bonded CG potentials are obtained by simple inversion of the corresponding PDFs. The CG nonbonded potential is parameterized to the PCF using both an inversion procedure based on the Ornstein-Zernike equation with the Percus-Yevick approximation (OZPY{sup -1}) and a combination of OZPY{sup -1} with the iterative Boltzmann inversion (IBI) method (OZPY{sup -1}+IBI). As a simple one step method, the OZPY{sup -1} method possesses an advantage in computational efficiency. Using the potential from OZPY{sup -1} as an initial guess, the IBI method shows fast convergence. The coarse-grained molecular dynamics (CGMD) simulations of PEG chains with DP = 20 using potentials from both methods satisfactorily reproduce the structural properties from atomistic MD simulation of the same systems. The OZPY{sup -1}+IBI method yields better agreement than the OZPY{sup -1} method alone. The new CG model and CG potentials from OZPY{sup -1}+IBI method was further tested through CGMD simulation of PEG with DP = 40 system. No significant changes are observed in the comparison of PCFs from CGMD simulations of PEG with DP = 20 and 40 systems indicating that the potential is independent of chain length.

  20. SANS study of highly resilient poly(ethylene glycol) hydrogels.

    PubMed

    Saffer, Erika M; Lackey, Melissa A; Griffin, David M; Kishore, Suhasini; Tew, Gregory N; Bhatia, Surita R

    2014-03-28

    Polymer networks are critically important for numerous applications including soft biomaterials, adhesives, coatings, elastomers, and gel-based materials for energy storage. One long-standing challenge these materials present lies in understanding the role of network defects, such as dangling ends and loops, developed during cross-linking. These defects can negatively impact the physical, mechanical, and transport properties of the gel. Here we report chemically cross-linked poly(ethylene glycol) (PEG) gels formed through a unique cross-linking scheme designed to minimize defects in the network. The highly resilient mechanical properties of these systems (discussed in a previous publication) [J. Cui, M. A. Lackey, A. E. Madkour, E. M. Saffer, D. M. Griffin, S. R. Bhatia, A. J. Crosby and G. N. Tew, Biomacromolecules, 2012, 13, 584-588], suggests that this cross-linking technique yields more homogeneous network structures. Four series of gels were formed based on chains of 35,000 g mol(-1), (35k), 12,000 g mol(-1) (12k) g mol(-1), 8000 g mol(-1) (8k) and 4000 g mol(-1) (4k) PEG. Gels were synthesized at five initial polymer concentrations ranging from 0.077 g mL(-1) to 0.50 g mL(-1). Small-angle neutron scattering (SANS) was utilized to investigate the network structures of gels in both D2O and d-DMF. SANS results show the resulting network structure is dependent on PEG length, transitioning from a more homogeneous network structure at high molecular weight PEG to a two phase structure at the lowest molecular weight PEG. Further investigation of the transport properties inherent to these systems, such as diffusion, will aid to further confirm the network structures.

  1. Acyclovir-Polyethylene Glycol 6000 Binary Dispersions: Mechanistic Insights.

    PubMed

    Venkateskumar, Krishnamoorthy; Parasuraman, Subramani; Gunasunderi, Raju; Sureshkumar, Krishnan; Nayak, M Muralidhar; Shah, Syed Adnan Ali; Khoo, Khassen; Kai, Heng Wei

    2016-12-21

    The dissolution and subsequent oral bioavailability of acyclovir (ACY) is limited by its poor aqueous solubility. An attempt has been made in this work to provide mechanistic insights into the solubility enhancement and dissolution of ACY by using the water-soluble carrier polyethylene glycol 6000 (PEG6000). Solid dispersions with varying ratios of the drug (ACY) and carrier (PEG6000) were prepared and evaluated by phase solubility, in vitro release studies, kinetic analysis, in situ perfusion, and in vitro permeation studies. Solid state characterization was done by powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) analysis, and surface morphology was assessed by polarizing microscopic image analysis, scanning electron microscopy, atomic force microscopy, and nuclear magnetic resonance analysis. Thermodynamic parameters indicated the solubilization effect of the carrier. The aqueous solubility and dissolution of ACY was found to be higher in all samples. The findings of XRD, DSC, FTIR and NMR analysis confirmed the formation of solid solution, crystallinity reduction, and the absence of interaction between the drug and carrier. SEM and AFM analysis reports ratified the particle size reduction and change in the surface morphology in samples. The permeation coefficient and amount of ACY diffused were higher in samples in comparison to pure ACY. Stability was found to be higher in dispersions. The results suggest that the study findings provided clear mechanical insights into the solubility and dissolution enhancement of ACY in PEG6000, and such findings could lay the platform for resolving the poor aqueous solubility issues in formulation development.

  2. Effect of poly(ethylene glycol) on phospholipid hydration and polarity of the external phase.

    PubMed

    Arnold, K; Pratsch, L; Gawrisch, K

    1983-02-09

    The hydration properties of phosphatidylcholine (PC)/water dispersions on the addition of poly(ethylene glycol) were studied by means of 2H-NMR. The quadrupole splittings and their temperature dependences correspond to measurements of PC/water dispersions at low water content. It is concluded that the bound water is partly extracted by poly(ethylene glycol) but the binding properties of the water in the inner hydration shell of about five water molecules are not changed. The ability of some phospholipid/water dispersions to undergo phase transitions to nonlamellar structures upon dehydration is discussed. Dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine do not form nonlamellar structures on addition of purified poly(ethylene glycol), as was demonstrated by means of 31P-NMR. Poly(ethylene glycol) decreases the polarity of the aqueous phase and the partition of hydrophobic molecules between the membrane and the external phase is changed. This was demonstrated using the excimer fluorescence of pyrene in a ghost suspension. It is suggested that the changes in polarity and hydration on the addition of poly(ethylene glycol) can contribute to the alterations in the membrane surface observed under conditions of membrane contact and fusion.

  3. Engineering Poly(ethylene glycol) Materials to Promote Cardiogenesis

    NASA Astrophysics Data System (ADS)

    Smith, Amanda Walker

    Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles. Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture. In the third chapter of the

  4. FTIR studies on the effect of concentration of polyethylene glycol on polimerization of Shellac

    NASA Astrophysics Data System (ADS)

    Khairuddin; Pramono, E.; Utomo, S. B.; Wulandari, V.; Zahrotul W, A.; Clegg, F.

    2016-11-01

    In the present paper, it was reported the FTIR studies on the efect of polyethylene glycol on polimerization of shellac. The shellac was shellac waxfree, and the solvent was ethanol 96%. The shellac films were were prepared by solvent- evaporation method. The concentrations of polyethylene glycol having molecular weight of 400 were 10, 30, 60, and 90 w/w %. Three peak intensity bands of C= O stretching of ester at 1709 cm-1, O-H stretching of hydroxyl group at 3400 cm-1, and C-H stretching vibration at 2942 cm-1 were observed and related to polimerization of shellac. It was found that polymerization of shellac was slowed down by polyethyelene glycol, and the degree of polymerization of shellac decreased with increasing the concentration of polyethyelene glycol.

  5. 40 CFR 721.10472 - 1,3-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1,3-Benzenedimethanamine, polymers...-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products. (a) Chemical substance and..., polymers with epichlorohydrin-polyethylene glycol reaction products (PMN P-03-645; CAS No. 652968-34-8)...

  6. 40 CFR 721.10472 - 1,3-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1,3-Benzenedimethanamine, polymers...-Benzenedimethanamine, polymers with epichlorohydrin-polyethylene glycol reaction products. (a) Chemical substance and..., polymers with epichlorohydrin-polyethylene glycol reaction products (PMN P-03-645; CAS No. 652968-34-8)...

  7. Multidimensional chromatographic techniques for hydrophilic copolymers II. Analysis of poly(ethylene glycol)-poly(vinyl acetate) graft copolymers.

    PubMed

    Knecht, Daniela; Rittig, Frank; Lange, Ronald F M; Pasch, Harald

    2006-10-13

    A large variety of hydrophilic copolymers is applied in different fields of chemical industry including bio, pharma and pharmaceutical applications. For example, poly(ethylene glycol)-poly(vinyl alcohol) graft copolymers that are used as tablet coatings are responsible for the controlled release of the active compounds. These copolymers are produced by grafting of vinyl acetate onto polyethylene glycol (PEG) and subsequent hydrolysis of the poly(ethylene glycol)-poly(vinyl acetate) graft copolymers. The poly(ethylene glycol)-poly(vinyl acetate) copolymers are distributed with regard to molar mass and chemical composition. In addition, they frequently contain the homopolymers polyethylene glycol and polyvinyl acetate. The comprehensive analysis of such complex systems requires hyphenated analytical techniques, including two-dimensional liquid chromatography and combined LC and nuclear magnetic resonance spectroscopy. The development and application of these techniques are discussed in the present paper.

  8. Importance of poly(ethylene glycol) conformation for the synthesis of silver nanoparticles in aqueous solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the formation of silver nanoparticles (NPs) using silver nitrate in a poly(ethylene glycol) (PEG) aqueous solution, which acts as both a reducing and stabilizing agent, the PEG chain structure was found to play a significant role. Even though PEG 100 (100 kg/mol) has limited reducing sites of hyd...

  9. Polyethylene glycol-induced fusion of two-cell mouse embryo blastomeres

    SciTech Connect

    Spindle, A.

    1981-01-01

    Polyethylene glycol (PEG) was found to be an effective fusion-inducing agent for early mouse embryo blastomeres. A brief exposure of zona-intact 2-cell embryos to 40% PEG induced fusion of blastomeres in > 80% of embryos, and the treatment did not interfere with subsequent development of embryos to the blastocyst stage.

  10. MICROWAVE-ACCELERATED SUZUKI CROSS-COUPLING REACTION IN POLYETHYLENE GLYCOL (PEG)

    EPA Science Inventory

    Polyethylene glycol (PEG) is found to be an inexpensive and nontoxic reaction medium for the microwave-assisted Suzuki cross-coupling of arylboronic acids with aryl halides. This environmentally friendly microwave protocol offers the ease of operation and enables the recyclabilit...

  11. Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos

    2015-01-01

    In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…

  12. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl ethers. 721.10505 Section 721... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  13. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl ethers. 721.10505 Section 721... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  14. Purification of papain by metal affinity partitioning in aqueous two-phase polyethylene glycol/sodium sulfate systems.

    PubMed

    Jiang, Zhi-Guo; Zhang, Hai-De; Wang, Wei-Tao

    2015-05-01

    A simple and inexpensive aqueous two-phase affinity partitioning system using metal ligands was introduced to improve the selectivity of commercial papain extraction. Polyethylene glycol 4000 was first activated using epichlorohydrin, then it was covalently linked to iminodiacetic acid. Finally, the specific metal ligand Cu(2+) was attached to the polyethylene glycol-iminodiacetic acid. The chelated Cu(2+) content was measured by atomic absorption spectrometry as 0.88 mol/mol (polyethylene glycol). The effects on the purification at different conditions, including polyethylene glycol molecular weight (2000, 4000, and 6000), concentration of phase-forming components (polyethylene glycol 12-20% w/w and sodium sulfate 12-20%, w/w), metal ligand type, and concentration, system pH and the commercial papain loading on papain extraction, were systematically studied. Under optimum conditions of the system, i.e. 18% w/w sodium sulfate, 18% w/w polyethylene glycol 4000, 1% w/w polyethylene glycol-iminodiacetic acid-Cu(2+) and pH 7, a maximum yield of 90.3% and a degree of purification of 3.6-fold were obtained. Compared to aqueous two phase extraction without ligands, affinity partitioning was found to be an effective technique for the purification of commercial papain with higher extraction efficiency and degree of purification.

  15. Mixed Micelles made of Poly(ethylene glycol)-Phosphatidylethanolamine Conjugate and D-α-tocopheryl Polyethylene Glycol 1000 Succinate as Pharmaceutical Nanocarriers for Camptothecin

    PubMed Central

    Mu, L.; Elbayoumi, T.A.; Torchilin, V.P.

    2006-01-01

    Micelles from the mixture of poly(ethylene glycol)-phosphatidyl ethanolamine conjugate (PEG-PE) and D-α-tocopheryl polyetheyene glycol 1000 succinate (TPGS) were prepared loaded with the poorly soluble anticancer drug camptothecin (CPT). The solubilization of CPT by the mixed micelles was more efficient than with earlier described micelles made of PEG-PE alone. CPT-loaded mixed micelles were stable upon storage and dilution and firmly retained the incorporated drug. The cytotoxicity of the CPT-loaded mixed micelles against various cancer cells in vitro was remarkably higher than that of the free drug. PEG-PE/TPGS mixed micelles may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs. PMID:16242875

  16. Ultrasound responsive block copolymer micelle of poly(ethylene glycol)-poly(propylene glycol) obtained through click reaction.

    PubMed

    Li, Fayong; Xie, Chuan; Cheng, Zhengang; Xia, Hesheng

    2016-05-01

    The well-defined amphiphilic poly(ethylene glycol)-block-poly(propylene glycol) copolymer containing 1, 2, 3-triazole moiety and multiple ester bonds (PEG-click-PPG) was prepared by click reaction strategy. The PEG-click-PPG copolymer can self-assemble into spherical micelles in aqueous solution. It is found that high intensity focused ultrasound (HIFU) can open the copolymer PEG-click-PPG micelles and trigger the release of the payload in the micelle. The multiple ester bonds introduced in the junction point of the copolymer chain through click reactions were cleaved under HIFU, and leads to the disruption of the copolymer micelle and fast release of loaded cargo. The click reaction provides a convenient way to construct ultrasound responsive copolymer micelles with weak bonds.

  17. Pressure and temperature dependence of excess enthalpies of methanol + tetraethylene glycol dimethyl ether and methanol + polyethylene glycol dimethyl ether 250

    SciTech Connect

    Lopez, E.R.; Coxam, J.Y.; Fernandez, J.; Grolier, J.P.E.

    1999-12-01

    The excess molar enthalpies at 323.15 K, 373.15 K, and 423.15 K, at 8 MPa, are reported for the binary mixtures methanol + tetraethylene glycol dimethyl ether (TEGDME) and methanol + poly(ethylene glycol) dimethyl ether 250 (PEGDME 250). Excess molar enthalpies were determined with a Setaram C-80 calorimeter equipped with a flow mixing cell. For both systems, the excess enthalpies are positive over the whole composition range, increasing with temperature. The H{sup E}(x) curves are slightly asymmetrical, and their maxima are skewed toward the methanol-rich region. The excess enthalpies slightly change with the pressure, the sign of this change being composition-dependent. In the case of mixtures with TEGDME, the experimental H{sup E} values have been compared with those predicted with the Gmehling et al. version of UNIFAC (Dortmund) and the Nitta-Chao and DISQUAC group contribution models.

  18. Extraction of actinides into aqueous polyethylene glycol solutions from carbonate media in the presence of alizarin complexone

    SciTech Connect

    Molochnikova, N.P.; Frenkel', V.Ya.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-01-01

    Actinide extraction in a two-phase aqueous system based on polyethylene glycol from carbonate solutions of various compositions in presence of alizarin complexone is studied. It is shown that the nature of the alkali metals affects actinide extraction into the polyethylene glycol phase. Tri- and tetravalent actinides are extracted maximally from sodium carbonate solutions. Separation of actinides in different oxidation states is more effective in potassium carbonate solutions. The behavior of americium in different oxidation states in the system carbonate-polyethylene glycol-complexone is studied. The possibility of extraction separation of microamount of americium(V) from curium in carbonate solutions in presence of alizarin complexone is shown.

  19. Solubility of pioglitazone hydrochloride in binary mixtures of polyethylene glycol 400 with ethanol, propylene glycol, N-methyl-2-pyrrolidone, and water at 25 degrees C.

    PubMed

    Jouyban, Abolghasem; Soltanpour, Shahla

    2010-09-01

    The solubility of pioglitazone hydrochloride in binary mixtures of polyethylene glycol 400 with ethanol, N-methyl-2-pyrrolidone, propylene glycol, and water at 25 degrees C are reported. The generated data are fitted to the Jouyban-Acree model and the mean relative deviations are 2.6%, 1.5%, 5.8%, and 7.4%, respectively for ethanol, N-methyl-2-pyrrolidone, propylene glycol, and water.

  20. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  1. Conformational characteristics of polyethylene glycol macromolecules in aqueous solutions according to refractometry data

    NASA Astrophysics Data System (ADS)

    Abbasov, H. F.

    2014-06-01

    The aqueous solutions of polyethylene glycols with molecular masses of 600, 1000, 1500, 3000, 6000, and 20000 were studied by refractometry. The conformational polarizabilities, mean-square distances between the ends of the macromolecular chain, segment lengths, and the number of Kuhn segments in a macromolecule were determined using the Lorentz-Lorentz equation. The polarizability of a hydrated macro-molecule was represented as the sum of polarizabilities of the nonhydrated macromolecule with retained conformation and polarizabilities of the water molecules involved in hydration of macromolecules. The size of macromolecules stabilized starting from a certain concentration. It was concluded that the initial concentration of stabilization shifts toward low concentrations as the molecular mass of polyethylene glycol increases. The dependence of the mean-square distance between the ends of the macromolecular chain on the number of Kuhn segments was expressed as the exponential function with index 0.3.

  2. Additional of polyethylene glycol on the preparation of LaPO4:Eu3+ phosphor

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Joni, I. Made

    2013-09-01

    Solution phase method was used to synthesis nanocrystal LaPO4:Eu3+. Polyethylene glycol with vary molecular weight (MW) was added to allow an exothermic reaction to get a high crystalinity of LaPO4:Eu3+. The x-ray pattern of as prepared LaPO4 was obtained by using an X'pert PANalytical diffractometer with CuKα radiation (λ = 1.5406 Å) and the photoluminescent measurement spectra is obtained by using Fluorescence Spectrometer LS55, Perkin Elmer. The additional of various MW of polyethylene glycol into the precursor solution of LaPO4:Eu3+ affected the crystal structure and luminescent properties. Higher MW of PEG depressing the luminescent spectra. The emission origin from 5D0-7F4 transition vanished by additional 500,000 and 2,000,000 MW of PEG.

  3. Poly(ethylene glycol)-or silicone-modified hyaluronan for contact lens wetting agent applications.

    PubMed

    Paterson, Stefan M; Liu, Lina; Brook, Michael A; Sheardown, Heather

    2015-08-01

    Hyaluronan (HA) is a hydrophilic biopolymer that has been explored as a wetting agent in contact lens applications. In this study, HA was modified with siloxy or polyethylene glycol moieties using click chemistry to make it more soluble in monomer solutions used to synthesize model contact lens materials; unmodified HA was not soluble in the same monomer solutions. The water contents of the silicone hydrogels were not increased by the presence of modified HA, nor was there a decrease in the surface contact angle. However, modified HA did lead to a reduction in lysozyme adsorption in some cases. The leaching rate of HA modified with polyethylene glycol from a 78:22 DMA:TRIS(OH) hydrogel was significantly slower than for unmodified HA.

  4. Liquid-liquid distribution of B group vitamins in polyethylene glycol-based systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Zykov, A. V.; Mokshina, N. Ya.

    2011-05-01

    General regularities of the liquid-liquid distribution of B1, B2, B6, and B12 vitamins in aqueous polyethylene glycol (PEG-2000, PEG-5000) solution-aqueous salt solution systems are studied. The influence of the salting-out agent, the concentration of the polymer, and its molecular weight on the distribution coefficients and recovery factors of the vitamins are considered. Equations relating the distribution coefficients (log D) to the polymer concentration are derived.

  5. Synthesis of Cu{sub 2}ZnSnS{sub 4} nanoparticles and controlling the morphology with polyethylene glycol

    SciTech Connect

    Rawat, Kusum; Kim, Hee-Joon; Shishodia, P.K.

    2016-05-15

    Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique. • First report on the effect of using polyethylene glycol as a structure directing agent on Cu{sub 2}ZnSnS{sub 4} nanoparticles. • The morphology of Cu{sub 2}ZnSnS{sub 4} nanoparticles changes into nanoflakes and nanorods structures with polyethylene glycol concentration. • Polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle film exhibits optical bandgap of 1.5 eV which is suitable for the application in solar cells. - Abstract: Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique using metal thiourea precursor at 250 °C. The structural and morphological properties of as grown nanoparticles have been characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The influence of different concentration of polyethylene glycol as structure directing agent on the morphologies of Cu{sub 2}ZnSnS{sub 4} nanoparticles are investigated on thin films deposited by spin coating technique. The mean crystallite size of the Cu{sub 2}ZnSnS{sub 4} nanoparticles was found to improve with polyethylene glycol concentration. Scanning electron microscopy images of Cu{sub 2}ZnSnS{sub 4} revealed aggregated spherical shaped nanoparticles whereas the polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle films show nanoflakes and nanorods structures with increasing concentration of polyethylene glycol. Transmission electron microscopy analysis has also been performed to determine the size and structure of nanorods. UV–vis absorption spectroscopy shows the broad band absorption with optical bandgap of 1.50 eV for polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} films.

  6. The Effect of Molecular Size, Concentration in Nutrient Solution, and Exposure Time on the Amount and Distribution of Polyethylene Glycol in Pepper Plants 12

    PubMed Central

    Janes, Byron E.

    1974-01-01

    Pepper plants Capsicum annuum L. var. California Wonder were grown in nutrient solutions of either −3.0 or −5.0 bars osmotic potential, using polyethylene glycol with molecular weights of 400, 600, 1000, 1540, or 4000 as osmotica. Polyethylene glycol with molecular weights of 1000 or 1540 proved most satisfactory as osmotica to decrease the water potential of nutrient solutions. There was no relationship between the small amount of polyethylene glycol accumulated in the plants and the amount of water transpired. The concentration of polyethylene glycol in the expressed sap of the leaves and the total accumulated was inversely related to molecular weight of polyethylene glycol, was greater at lower osmotic potential of nutrient solution, and increased with time in solution. Except for plants grown in polyethylene glycol 4000, there was more polyethylene glycol in leaves than roots. The indications were that, when the concentration of polyethylene glycol reached a value of 1 to 2 mg per ml, any additional quantity absorbed was transferred to the leaves. The major proportion of polyethylene glycol 4000 absorbed was retained in the roots. The results of Sephadex gel chromatographs showed that the passage of polyethylene glycol through the plants did not alter the average molecular weight. This indicated that there was no selective absorption of small molecules that might be present as contaminates in the commercial product. PMID:16658865

  7. Poly(ethylene glycol) analogs grafted with low molecular weight poly(ethylene imine) as non-viral gene vectors.

    PubMed

    Zhang, Zhenfang; Yang, Cuihong; Duan, Yajun; Wang, Yanming; Liu, Jianfeng; Wang, Lianyong; Kong, Deling

    2010-07-01

    A novel class of non-viral gene vectors consisting of low molecular weight poly(ethylene imine) (PEI) (molecular weight 800 Da) grafted onto degradable linear poly(ethylene glycol) (PEG) analogs was synthesized. First, a Michael addition reaction between poly(ethylene glycol) diacrylates (PEGDA) (molecular weight 258 Da) and d,l-dithiothreitol (DTT) was carried out to generate a linear polymer (PEG-DTT) having a terminal thiol, methacrylate and pendant hydroxyl functional groups. Five PEG-DTT analogs were synthesized by varying the molar ratio of diacrylates to thiols from 1.2:1 to 1:1.2. Then PEI (800 Da) was grafted onto the main chain of the PEG-DTTs using 1,1'-carbonyldiimidazole as the linker. The above reaction gave rise to a new class of non-viral gene vectors, (PEG-DTT)-g-PEI copolymers, which can effectively complex DNA to form nanoparticles. The molecular weights and structures of the copolymers were characterized by gel permeation chromatography, (1)H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The size of the nanoparticles was<200 nm and the surface charge of the nanoparticles, expressed as the zeta potential, was between+20 and+40 mV. Cytotoxicity assays showed that the copolymers exhibited much lower cytotoxicities than high molecular weight PEI (25 kDa). Transfection was performed in cultured HeLa, HepG2, MCF-7 and COS-7 cells. The copolymers showed higher transfection efficiencies than PEI (25 kDa) tested in four cell lines. The presence of serum (up to 30%) had no inhibitory effect on the transfection efficiency. These results indicate that this new class of non-viral gene vectors may be a promising gene carrier that is worth further investigation.

  8. 40 CFR 721.4040 - Glycols, polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Glycols, polyethylene-, 3-sulfo-2... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4040 Glycols, polyethylene..., polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetramethyl butyl)phenyl ether, sodium salt (P-90-1565)...

  9. 40 CFR 721.4040 - Glycols, polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Glycols, polyethylene-, 3-sulfo-2... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4040 Glycols, polyethylene..., polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetramethyl butyl)phenyl ether, sodium salt (P-90-1565)...

  10. 40 CFR 721.4040 - Glycols, polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Glycols, polyethylene-, 3-sulfo-2... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4040 Glycols, polyethylene..., polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetramethyl butyl)phenyl ether, sodium salt (P-90-1565)...

  11. 40 CFR 721.4040 - Glycols, polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Glycols, polyethylene-, 3-sulfo-2... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4040 Glycols, polyethylene..., polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetramethyl butyl)phenyl ether, sodium salt (P-90-1565)...

  12. 40 CFR 721.4040 - Glycols, polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetra-methylbutyl)phenyl ether, sodium...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Glycols, polyethylene-, 3-sulfo-2... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4040 Glycols, polyethylene..., polyethylene-, 3-sulfo-2-hydroxypropyl-p-(1,1,3,3-tetramethyl butyl)phenyl ether, sodium salt (P-90-1565)...

  13. Mechanical, rheological, and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite.

    PubMed

    Ahmad, Mazatusziha; Uzir Wahit, Mat; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis.

  14. Preparation of Microstructure Molds of Montmorillonite/Polyethylene Glycol Diacrylate and Multi-Walled Carbon Nanotube/Polyethylene Glycol Diacrylate Nanocomposites for Miniaturized Device Applications.

    PubMed

    Kim, Young Ho; Sohn, Jeong-Woo; Woo, Youngjae; Hong, Joo-Hyun; Kim, Gyu Man; Kang, Bong Keun; Park, Juyoung

    2015-10-01

    Environmentally friendly microstructure molds with montmorillonite (MMT) or multi-walled carbon nanotube (MWCNT) reinforced polyethylene glycol diacrylate (PEGDA) nanocomposites have been prepared for miniaturized device applications. The micropatterning of MMT/PEGDA and MWCNT/PEGDA with 0.5 to 2.0 wt% of MMTs and MWCNTs was achieved through a UV curing process with micro-patterned masks. Hexagonal dot arrays and complex patterns for microstructures of the nanocomposites were produced and characterized with an optical microscope; their thermal properties were studied by thermogravimetric analysis (TGA). The TGA results showed that these nanocomposites were thermally stable up to 350 °C. Polydimethylsiloxane thin replicas with different microstructures were prepared by a casting method using the microstructured nanocomposites as molds. It is considered that these microstructure molds of the nanocomposites can be used as microchip molds to fabricate nanobio-chips and medical diagnostic chip devices.

  15. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications.

    PubMed

    Alexander, Amit; Ajazuddin; Khan, Junaid; Saraf, Swarnlata; Saraf, Shailendra

    2013-12-28

    Stimuli triggered polymers provide a variety of applications related with the biomedical fields. Among various stimuli triggered mechanisms, thermoresponsive mechanisms have been extensively investigated, as they are relatively more convenient and effective stimuli for biomedical applications. In a contemporary approach for achieving the sustained action of proteins, peptides and bioactives, injectable depots and implants have always remained the thrust areas of research. In the same series, Poloxamer based thermogelling copolymers have their own limitations regarding biodegradability. Thus, there is a need to have an alternative biomaterial for the formulation of injectable hydrogel, which must remain biocompatible along with safety and efficacy. In the same context, poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of their biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review stresses on the physicochemical property, stability and composition prospects of smart PEG/poly(lactic-co-glycolic acid) (PLGA) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. The manuscript also highlights the synthesis scheme and stability characteristics of these copolymers, which will surely help the researchers working in the same area. We have also emphasized the applied use of these smart copolymers along with their formulation problems, which could help in understanding the possible modifications related with these, to overcome their inherent associated limitations.

  16. Characterization, molecular dynamics, and encapsulation ability of β-cyclodextrin polymers crosslinked by polyethylene glycol.

    PubMed

    Kono, Hiroyuki; Nakamura, Taichi; Hashimoto, Hisaho; Shimizu, Yuuichi

    2015-09-05

    A series of water-insoluble cyclodextrin polymers (CDP) was prepared by crosslinking β-cyclodextrin (CD) with polyethylene glycol diglycidyl ether (PEGDE). Similarly, a reference CDP was prepared using ethylene glycol diglycidyl ether (EGDE). Increasing the feed ratio of PEGDE to CD in the reaction mixture led to high degrees of crosslinking. Relaxation measurements revealed structural homogeneity among the CDPs, which exhibited mobilities that strongly depended on the chain lengths of the crosslinking agents. In addition, all the CDPs displayed high encapsulation abilities toward bisphenol A (BPA) in aqueous media. In particular, the CDP sample with a low degree of crosslinking by PEGDE showed the highest encapsulation ability toward BPA. In contrast, the CDP crosslinked by EGDE exhibited low encapsulation ability because its highly dense structure, which results from the short chain lengths of the crosslinking agents, hinders the penetration of BPA molecules.

  17. Plasma proteins adsorption mechanism on polyethylene-grafted poly(ethylene glycol) surface by quartz crystal microbalance with dissipation.

    PubMed

    Jin, Jing; Jiang, Wei; Yin, Jinghua; Ji, Xiangling; Stagnaro, Paola

    2013-06-04

    Protein adsorption has a vital role in biomaterial surface science because it is directly related to the hemocompatibility of blood-contacting materials. In this study, monomethoxy poly(ethylene glycol) (mPEG) with two different molecular weights was grafted on polyethylene as a model to elucidate the adsorption mechanisms of plasma protein through quartz crystal microbalance with dissipation (QCM-D). Combined with data from platelet adhesion, whole blood clotting time, and hemolysis rate, the blood compatibility of PE-g-mPEG film was found to have significantly improved. Two adsorption schemes were developed for real-time monitoring of protein adsorption. Results showed that the preadsorbed bovine serum albumin (BSA) on the surfaces of PE-g-mPEG films could effectively inhibit subsequent adsorption of fibrinogen (Fib). Nonspecific protein adsorption of BSA was determined by surface coverage, not by the chain length of PEG. Dense PEG brush could release more trapped water molecules to resist BSA adsorption. Moreover, the preadsorbed Fib could be gradually displaced by high-concentration BSA. However, the adsorption and displacement of Fib was determined by surface hydrophilicity.

  18. Plasma-modified and polyethylene glycol-grafted polymers for potential tissue engineering applications.

    PubMed

    Svorcík, V; Makajová, Z; Kasálková-Slepicková, N; Kolská, Z; Bacáková, L

    2012-08-01

    Modified and grafted polymers may serve as building blocks for creating artificial bioinspired nanostructured surfaces for tissue engineering. Polyethylene (PE) and polystyrene (PS) were modified by Ar plasma and the surface of the plasma activated polymers was grafted with polyethylene glycol (PEG). The changes in the surface wettability (contact angle) of the modified polymers were examined by goniometry. Atomic Force Microscopy (AFM) was used to determine the surface roughness and morphology and electrokinetical analysis (Zeta potential) characterized surface chemistry of the modified polymers. Plasma treatment and subsequent PEG grafting lead to dramatic changes in the polymer surface morphology, roughness and wettability. The plasma treated and PEG grafted polymers were seeded with rat vascular smooth muscle cells (VSMCs) and their adhesion and proliferation were studied. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with PEG increases cell proliferation, especially on PS. The cell proliferation was shown to be an increasing function of PEG molecular weight.

  19. Biofunctionalization of polyelectrolyte microcapsules with biotinylated polyethylene glycol-grafted liposomes.

    PubMed

    Gao, Jie; Reibetanz, Uta; Venkatraman, Subbu; Neu, Björn

    2011-08-11

    Hollow polyelectrolyte microcapsules (PEMC) are prepared using layer-by-layer self-assembly of polyelectrolytes on melamine formaldehyde templates, followed by template dissolution, and subsequent coating with biotinylated polyethylene glycol-grafted liposomes. These potential site-specific carrier systems show a high specificity for NeutrAvidin binding and a strong resistance against unspecific protein binding. It is concluded that this design with NeutrAvidin as the outermost layer of such capsules provides an ideal platform for the biofunctionalization of PEMC as drug delivery systems or as artificial cell-like structures for biomimetic studies.

  20. Patterning protein molecules on poly(ethylene glycol) coated Si(111).

    PubMed

    Jun, Yongseok; Cha, Taewoon; Guo, Athena; Zhu, X-Y

    2004-08-01

    We demonstrate spatially localized immobilization of protein molecules on high-density poly(ethylene glycol) (PEG) coated Si(111). Patterns of HO- and CH3O-terminated PEG regions are formed on silicon surfaces based on soft lithography techniques and an efficient reaction between alcohol functional groups and chlorine-terminated silicon. Activation of the HO-terminated PEG brush is achieved via either partial oxidation to form aldehyde groups or via attachment of efficient leaving groups. Protein molecules are covalently immobilized to these activated regions on the PEG/Si surface.

  1. Preparation of polyion complex micelles from poly(ethylene glycol)-block-polyions.

    PubMed

    Bayó-Puxan, Núria; Dufresne, Marie-Hélène; Felber, Arnaud E; Castagner, Bastien; Leroux, Jean-Christophe

    2011-12-10

    Polyion complex micelles (PICMs) arise from the spontaneous self-assembly of ionic polymers of opposite charges to form a condensate that is dispersed in aqueous media by a hydrophilic segment, usually poly(ethylene glycol) (PEG), present on at least one of the two ionic polymers. PICMs are used for many applications, especially drug delivery. This protocol paper describes the preparation by atom transfer radical polymerization (ATRP) of diblock copolymers of PEG bearing either positive or negative charges, both of which have been shown to form PICMs. Furthermore, methods of preparation and characterization of PICMs loaded with nucleic acid drugs are presented.

  2. Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Popescu, A.; Grigorescu, S.; Mihailescu, I. N.; Mihaiescu, D.; Gittard, S. D.; Narayan, R. J.; Buruiana, T.; Stamatin, I.; Chrisey, D. B.

    2009-09-01

    We report the thin film deposition by matrix-assisted pulsed laser evaporation (MAPLE) of a polymer conjugate with an hydrophilic sequence between metronidazole molecules that was covalently attached to both oligomer ends of carboxylate poly(ethylene glycol) (PEG 1.5-metronidazole). A pulsed KrF* excimer laser was used to deposit the drug-polymer composite films. Fourier transform infrared spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical properties similar to the starting materials. The dependence of the surface morphology on incident laser fluence is given.

  3. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  4. Polyethylene glycol submucosal irrigation: a novel approach to improve visibility during endoscopic submucosal dissection

    PubMed Central

    Arantes, Vitor; Toyonaga, Takashi; Piñeros, Elias Alfonso Forero

    2014-01-01

    In order to expand the availability of endoscopic submucosal dissection (ESD), measures to facilitate the procedure are necessary. When bleeding occurs, the examiner’s field of vision is critically impaired, and ESD becomes less efficient and more hazardous because of the presence of submucosal hematoma and covered blood clot. We propose the use of polyethylene glycol (PEG) irrigation as a simple and effective measure to improve visibility during submucosal dissection, particularly when bleeding occurs. PEG irrigation facilitates further dissection by allowing a better recognition of the submucosal fibers and muscularis propria layer. PMID:26134968

  5. Polyethylene glycol submucosal irrigation: a novel approach to improve visibility during endoscopic submucosal dissection.

    PubMed

    Arantes, Vitor; Toyonaga, Takashi; Piñeros, Elias Alfonso Forero

    2014-09-01

    In order to expand the availability of endoscopic submucosal dissection (ESD), measures to facilitate the procedure are necessary. When bleeding occurs, the examiner's field of vision is critically impaired, and ESD becomes less efficient and more hazardous because of the presence of submucosal hematoma and covered blood clot. We propose the use of polyethylene glycol (PEG) irrigation as a simple and effective measure to improve visibility during submucosal dissection, particularly when bleeding occurs. PEG irrigation facilitates further dissection by allowing a better recognition of the submucosal fibers and muscularis propria layer.

  6. Thermo-reversible gelation of atactic poly(methyl methacrylate) in poly(ethylene glycol) oligomers.

    PubMed

    Gao, Yun; Yu, Chunhong; Chen, Minzhi; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2013-04-01

    The temperature-concentration behavior of physical gel by atactic poly(methyl methacrylate) (aPMMA) in poly(ethylene glycol) oligomer (PEG400) was investigated. A liquid-liquid demixing interferes with a glass transition during cooling. The combination of demixing and T g leads to the formation of amorphous gels at low temperature. We suggest that the gelation of aPMMA/PEG400 is a glassy gel, in which short-range attractive depletion interaction in the polymer/oligomer system was the driving force at molecular level.

  7. Cutaneous toxicity studies with methoxy polyethylene glycol-350 (MPEG-350) in rats and rabbits.

    PubMed

    Hermansky, S J; Leung, H W

    1997-01-01

    The methoxy polyethylene glycols (MPEGs), also referred to as polyethylene glycol methyl ethers, are high molecular weight polymers similar in structure and nomenclature to the polyethylene glycols. Because of the potential for repeated cutaneous exposure of humans to MPEG-350 and the known toxicity of lower alkylene glycol ethers such as ethylene glycol monomethyl ether (EGME), studies were conducted to evaluate the potential toxicity and irritation of MPEG-350 following repeated, cutaneous treatment. New Zealand White rabbits were cutaneously treated with 1.0 ml of either undiluted MPEG-350 or a 50% solution of MPEG-350 in 0.1% methyl cellulose in distilled water for 9 or 90 days. CD(SD)BR rats were cutaneously treated with up to 5 g/kg/day of undiluted MPEG-350 for 14 or 28 days. The treatment area was not occluded but animals were fitted with Elizabethan collars during treatment. Rabbits were treated 6 hr/day 5 days/wk. Rats were treated for at least 19 hr/day (at weekends, the exposure time was approximately 70 hr). None of the animals died. Slight decreases in mean absolute body weight of all dose groups of male rats as compared with the concurrent control group may have been related to minimal toxicity of the test substance but was probably secondary to the dosing procedures. Signs of slight cutaneous irritation were observed in many treated animals of both species but only a few rabbits had confirmatory microscopic diagnoses while none of the rats had microscopic changes in the skin. Slight decreases in the mean absolute weight of the testes, spleen and thymus were observed in rats treated with 5 g undiluted MPEG-350/kg/day for 14 days. Similar changes were not observed in rats following 28 days of treatment. There were no microscopic changes in any of these organs except for one rat that had moderate to high aspermatogenesis and multinucleated spermatids. There were no microscopic changes observed in the testes of any other animals (including rats treated

  8. Metabolism of polyethylene glycol by two anaerobic bacteria, Desulfovibrio desulfuricans and a Bacteroides sp

    SciTech Connect

    Dwyer, D.F.; Tiedje, J.M.

    1986-10-01

    Two anaerobic bacteria were isolated from polyethylene glycol (PEG)-degrading, methanogenic, enrichment cultures obtained from a municipal sludge digester. One isolate, identified as Desulfovibrio desulfuricans (strain DG2), metabolized oligomers ranging from ethylene glycol (EG) to tetraethylene glycol. The other isolate, identified as a Bacteroides sp. (strain PG1), metabolized diethylene glycol and polymers of PEG up to an average molecular mass of 20,000 g/mol (PEG 20000; HO-(CH/sub 2/-CH/sub 2/-O-)/sub n/H). Both strains produced acetaldehyde as an intermediate, with acetate, ethanol, and hydrogen as end products. In coculture with a Methanobacterium sp., the end products were acetate and methane. Polypropylene glycol (HO-(CH/sub 2/-CH/sub 2/-CH/sub 2/-O-)/sub n/H) was not metabolized by either bacterium, and methanogenic enrichments could not be obtained on this substrate. Cell extracts of both bacteria dehydrogenated EG, PEGs up to PEG 400 in size, acetaldehyde, and other mono- and dihydroxylated compounds. Extracts of Bacteroides strain PGI could not dehydrogenate long polymers of PEG (less than or equal to1000 g/mol), but the bacterium grew with PEG 1000 or PEG 20000 as a substrate and therefore possesses a mechanism for PEG depolymerization not present in cell extracts. In contrast, extracts of D. desulfuricans DG2 dehydrogenated long polymers of PEG, but whole cells did not grow with these polymerase substrates. This indicated that the bacterium could not convert PEG to a product suitable for uptake.

  9. Morphology and surface properties of blends of Eudragit RS with different poly(ethylene glycol)s.

    PubMed

    Lovrecich, M; Rubessa, F

    1998-02-01

    The purpose of this study was to investigate the morphology and surface properties of blends of Eudragit RS, a hydrophobic polymer mainly used for film coating, and poly(ethylene glycol)s (PEG), amphiphilic polymers used as softeners for films. Blends of Eudragit RS and PEGs were prepared as films using the casting technique from methylene chloride. The morphology of those films was evaluated by scanning electron microscopy before and after treatment with water. Sessile drop technique was used to measure solid/liquid contact angles in order to calculate surface free-energy parameters and to investigate phase separation using the Cassie-Baxter approach. Films containing 20, 40, 50, and 60% PEG 3400 and PEG 6000 appeared morphologically unchanged after treatment with water; no phase separation was noticed. Films containing PEG 14,000 after treatment with water showed the presence of a solid emulsion in the range 40, 50, and 60% PEG; a multiple solid emulsion was shown for films containing 60% PEG 20,000. The presence of two-phase systems was shown using contact angle measurements and results were in agreement with microscopic analysis. Calculated surface free-energy parameters indicated that PEG 3400 and 20,000 in a critical concentration of 10% can modify surface parameters of Eudragit RS: for PEG 6000 and 14,000 this critical concentration was found to be between 10 and 20%. The surface polarity of PEG 3400, 6000, and 14,000 was found to be drastically reduced upon addition of 5% Eudragit RS; spontaneous surface layering of Eudragit RS could be reasonably hypothesized for PEG 3400. This study revealed that surface parameters of a polymer can be modified in the presence of a relatively small amount of a second material.

  10. The characterization of dendronized poly(ethylene glycol)s and poly(ethylene glycol) multi-arm stars using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Myers, Brittany K; Zhang, Boyu; Lapucha, Joanna E; Grayson, Scott M

    2014-01-15

    The synthesis of branched poly(ethylene glycol) (PEG) derivatives, namely star PEG and dendronized PEG, can be challenging and their purity can be difficult to ascertain using traditional techniques, such as NMR and GPC. Herein, the detailed characterization of these branched PEGs using MALDI-ToF MS was investigated in order to confirm their structural purity. In this light, mass spectrometry offers a number of advantages for polymer characterization, including the ability to get detailed structural data, such as end group masses, from microgram-scale samples. In addition, the ability to rapidly acquire data from crude reaction aliquots makes MALDI-ToF MS ideal for monitoring end group transformations.

  11. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.

    PubMed

    Sun, Xuefei; Li, Dan; Lee, Milton L

    2009-08-01

    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips.

  12. Modification of polysulfone membranes with polyethylene glycol and lignosulfate: electrical characterization by impedance spectroscopy measurements.

    PubMed

    Benavente, J; Zhang, X; Garcia Valls, R

    2005-05-01

    Two sets of composite membranes having an asymmetric sulfonated polysulfone membrane as support layer have been obtained and electrically characterized (membranes SPS-PEG and PA-LIGS). The skin layer of the membrane SPS-PEG contains different percentages of polyethylene glycol in the casting solution (5, 25, 40, and 60 wt%), while lignosulfonate was used for manufacturing PA-LIGS membranes (5, 10, 20, and 40 wt%). Membrane electrical characterization was done by means of impedance spectroscopy (IS) measurements, which were carried out with the membranes in contact with NaCl solutions at different concentrations (10(-3) < or = c(M) < or = 5x10(-2)). Electrical resistance and equivalent capacitance of the different membrane samples were determined from IS plots by using equivalent circuits as models. Results show a clear decrease in the membrane electrical resistance as a result of both polysulfone sulfonation and the increase of the concentration of modifying substances, although a kind of limit concentration was obtained for both polyethylene glycol and lignosulfonate (40 and 20%, respectively). Results also show a decrease of around 90% in electrical resistance due to polysulfone sulfonation, while the value of the dielectric constant (hydrated state) clearly increases.

  13. Polyethylene glycol-grafted bovine pericardium: a novel hybrid tissue resistant to calcification.

    PubMed

    Vasudev, S C; Chandy, T

    1999-02-01

    Calcification is a frequent cause of the clinical failure of bioprosthetic heart valves fabricated from glutaraldehyde pretreated bovine pericardium (GATBP). An investigation was made of the grafting of different molecular weight polyethylene glycol (PEG 600, 1500, 4000 and 6000) via glutaraldehyde (GA) linkages to bovine pericardium (BP) and of their stability and calcification. The process of the calcification profile was studied by in vitro experiments via incubating pericardial samples in a metastable solution of calcium phosphate. Calcification of bovine pericardium grafted with PEG 6000 was significantly decreased compared to low molecular weight PEG grafts or Sodium dodecyl sulphate- (SDS) and GA-treated tissues. The mechanical properties of these modified tissues after enzyme (Trypsin) digestion and calcification were investigated. The biocompatibility aspects of grafted tissues were also established by monitoring the platelet adhesion, octane contact angle and water of hydration. PEG 6000-grafted tissues retained the maximum strength in trypsin buffer and calcium phosphate solutions. Scanning electron micrographs revealed that the PEG-grafted bovine pericardium had substantially inhibited the platelet-surface attachment and their spreading. It is conceivable that high molecular weight polyethylene glycol-grafted pericardium (a hybrid tissue) may be a suitable calcium-resistant material for developing prosthetic valves due to their stability and biocompatibility.

  14. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels

    PubMed Central

    Lin, Chien-Chi

    2015-01-01

    The design and application of biomimetic hydrogels have become an important and integral part of modern tissue engineering and regenerative medicine. Many of these hydrogels are prepared from synthetic macromers (e.g., poly(ethylene glycol) or PEG) as they provide high degrees of tunability for matrix crosslinking, degradation, and modification. For a hydrogel to be considered biomimetic, it has to recapitulate key features that are found in the native extracellular matrix, such as the appropriate matrix mechanics and permeability, the ability to sequester and deliver drugs, proteins, and or nucleic acids, as well as the ability to provide receptor-mediated cell-matrix interactions and protease-mediated matrix cleavage. A variety of chemistries have been employed to impart these biomimetic features into hydrogel crosslinking. These chemistries, such as radical-mediated polymerizations, enzyme-mediated crosslinking, bio-orthogonal click reactions, and supramolecular assembly, may be different in their crosslinking mechanisms but are required to be efficient for gel crosslinking and ligand bioconjugation under aqueous reaction conditions. The prepared biomimetic hydrogels should display a diverse array of functionalities and should also be cytocompatible for in vitro cell culture and/or in situ cell encapsulation. The focus of this article is to review recent progress in the crosslinking chemistries of biomimetic hydrogels with a special emphasis on hydrogels crosslinked from poly(ethylene glycol)-based macromers. PMID:26029357

  15. Permselective properties for aqueous ethanol solutions through copolymer membranes from benzyl methacrylate and polyethylene glycol dimethacrylate

    SciTech Connect

    Okuno, Hiroshi; Okado, Takashi; Matsumoto, Akira; Oiwa, Masayoshi; Uragami, Tadashi )

    1992-10-01

    Copolymer membranes prepared by bulk copolymerization of polyethylene glycol dimethacrylates of three different degrees of polymerization as macromonomer and benzyl methacrylate as comonomer were used for the separation of aqueous ethanol solutions in both pervaporation and evapomeation. The copolymer membranes preferentially permeated water from an aqueous ethanol solutions in both pervaporation and evapomeation. The copolymer membranes preferentially permeated water from an aqueous ethanol solution in evapomeation. In pervaporation, ethanol was predominantly permeated from an aqueous ethanol solution through the copolymer membranes containing a long polyethylene glycol (PEG) chain above about 20 wt% PEG content in a copolymer. This result was attributed to a remarkable swelling of the copolymer membrane containing a long PEG chain by the aqueous ethanol solution in pervaporation. In evapomeation, both the separation factors and the permeation rates through these membranes are not much affected by the ethanol concentration in the feed vapor. In pervaporation, they were significantly dependent on the ethanol concentration in the feed solution. The above results are discussed from the viewpoint of the physical structure of the membrane in evapomeation and pervaporation.

  16. Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer.

    PubMed

    Kim, I S; Jeong, Y I; Kim, S H

    2000-09-15

    Biodegradable hydrogel nanoparticles were prepared from glycidyl methacrylate dextran (GMD) and dimethacrylate poly(ethylene glycol) (DMP). GMD was synthesized by coupling of glycidyl methacrylate to dextran in the presence of 4-(N,N-dimethylamino)pyridine (DMAP) using dimethylsulfoxide (DMSO) as an aprotic solvent. DMP was synthesized from poly(ethylene glycol) (PEG) and methacryloyl chloride. GMD/DMP (abbreviated as DP) hydrogel was prepared by radical polymerization of GMD and DMP using ammonium peroxydisulfate (APS) as an initiator and UV curing. DP hydrogel nanoparticles were obtained by diafiltration method using DMSO solution. The GMD and DMP were characterized by fourier transform infrared spectroscopy. Fluorescence probe technique was used to investigate the self-assembly of DP in water using pyrene as a hydrophobic probe. The critical association concentration (CAC) was determined to be 5.6 x 10(-2) g/l. The shape of DP hydrogel nanoparticles was spherical when observed by transmission electron microscope (TEM). The size range of DP hydrogel nanoparticles was about 20 approximately 50 nm. The hydrodynamic size of DP hydrogel nanoparticles was measured by photon correlation spectroscopy (PCS) and gradually increased with time in PBS (0.1 M, pH 7.4). Drug release study was performed using clonazepam (CNZ) as a hydrophobic model drug. In vitro release rate of CNZ from the DP hydrogel nanoparticles was dependent on the existence of dextranase and the pH of the release medium.

  17. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    PubMed Central

    Nagasaki, Yukio

    2010-01-01

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C60/acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review. PMID:27877362

  18. Cross-linked polystyrene sulfonic acid and polyethylene glycol as a low-fouling material.

    PubMed

    Alghunaim, Abdullah; Zhang Newby, Bi-min

    2016-04-01

    A negatively charged hydrophilic low fouling film was prepared by thermally cross-linking a blend consisting of polystyrene sulfonic acid (PSS) and polyethylene glycol (PEG). The film was found to be stable by dip-washing. The fouling resistance of this material toward bacterial (Escherichia coli) and colloidal (polystyrene particles) attachment, non-specific protein (fibronectin) adsorption and cell (3T3 NIH) adhesion was evaluated and was compared with glass slides modified with polyethylene glycol (PEG) brushes, oxidized 3-mercaptopropyltrimethoxysilane (sulfonic acid, SA), and n-octadecyltrichlorosilane (OTS). The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and thermodynamic models based on surface energy were used to explain the interaction behaviors of E. coli/polystyrene particles-substrate and protein-substrate interactions, respectively. The cross-linked PSS-PEG film was found to be slightly better than SA and PEG toward resisting non-specific protein adsorption, and showed comparable low attachment results as those of PEG toward particle, bacterial and NIH-3T3 cells adhesion. The low-fouling performance of PSS-PEG, a cross-linked film by a simple thermal curing process, could allow this material to be used for applications in aqueous environments, where most low fouling hydrophilic polymers, such as PSS or PEG, could not be easily retained.

  19. Preparation of monodisperse and size-controlled poly(ethylene glycol) hydrogel nanoparticles using liposome templates.

    PubMed

    An, Se Yong; Bui, Minh-Phuong Ngoc; Nam, Yun Jung; Han, Kwi Nam; Li, Cheng Ai; Choo, Jaebum; Lee, Eun Kyu; Katoh, Shigeo; Kumada, Yoichi; Seong, Gi Hun

    2009-03-01

    Liposomes were used as templates to prepare size-controlled and monodisperse poly(ethylene glycol) (PEG) hydrogel nanoparticles. The procedure for the preparation of PEG nanoparticles using liposomes consists of encapsulation of photopolymerizable PEG hydrogel solution into the cavity of the liposomes, extrusion through a membrane with a specific pore size, and photopolymerization of the contents inside the liposomes by UV irradiation. The size distributions of the prepared particles were 1.32+/-0.16 microm (12%), 450+/-62 nm (14%), and 94+/-12 nm (13%) after extrusion through membrane filters with pore sizes of 1 microm, 400 nm, and 100 nm, respectively. With this approach, it is also possible to modify the surface of the hydrogel nanoparticles with various functional groups in a one-step procedure. To functionalize the surface of a PEG nanoparticle, methoxy poly(ethylene glycol)-aldehyde was added as copolymer to the hydrogel-forming components and aldehyde-functionalized PEG nanoparticles could be obtained easily by UV-induced photopolymerization, following conjugation with poly-L-lysine-FITC through amine-aldehyde coupling. The prepared PEG particles showed strong fluorescence from FITC on the edge of the particles using confocal microscopy. The immobilization of biomaterials such as enzymes in hydrogel particles could be performed with loading beta-galactosidases during the hydration step for liposome preparation without additional procedures. The resorufin produced by applying resorufin beta-D-galactopyranoside as the substrate showed the fluorescence under the confocal microscopy.

  20. Acoustic, Thermal and Molecular Interactions of Polyethylene Glycol (2000, 3000, 6000)

    NASA Astrophysics Data System (ADS)

    Venkatramanan, K.; Padmanaban, R.; Arumugam, V.

    Polyethylene Glycol (PEG) is a condensation polymer of ethylene oxide and water. PEG find its application as emulsifying agents, detergents, soaps, plasticizers, ointments, etc. Though the chemical and physical properties of PEG are known, still because of their uses in day to day life, it becomes necessary to study few physical properties like ultrasonic velocity, viscosity and hence adiabatic compressibility, free length, etc. In the present study, an attempt has been made to compute the activation energy and hence to analyse the molecular interactions of aqueous solutions of Polyethylene Glycol of molar mass 2000, 3000 and 6000 at different concentrations (2%, 4%, 6%, 8% and 10%) at different temperatures (303K, 308K, 313K, 318K) by determining relative viscosity, ultrasonic velocity and density. Various parameters like adiabatic compressibility, viscous relaxation time, inter molecular free length, free volume, internal pressure, etc are calculated at 303K and the results are discussed in the light of polymer-solvent interaction. This study helps to understand the behavior of macro-molecules with respect to changing concentration and temperature. Furthermore, viscosity and activation energy results are correlated to understand the increased entanglement of the polymer chains due to the increase in the concentration of a polymer solution that leads to an increase in viscosity and an increase in the activation energy of viscous flow.

  1. Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination.

    PubMed

    Ahmad, Adnan; Jamshed, Fahad; Riaz, Tabinda; Gul, Sabad-E-; Waheed, Sidra; Sabir, Aneela; AlAnezi, Adnan Alhathal; Adrees, Muhammad; Jamil, Tahir

    2016-09-20

    Cellulose acetate/Polyethylene glycol-600 composite membranes were fabricated by two step phase inversion procedure and modified by in-situ reduction of silver nitrate. FTIR spectra demonstrated the existence of functional groups for bonding of silver with oxygen at 370cm(-1), 535cm(-1). The XRD diffractogram indicates characteristic peaks at 2θ values of 38.10°, 44.30°, 64.40°, and 77.30° which confirm the successful incorporation of silver within matrix of composite membranes. The morphology of composite membranes with appearances of spongy voids was exemplified from the scanning electron microscope. The atomic force microscopy was used to determine the increase in the surface roughness of the membranes. The increase in hydrophilicity, measured through contact angle, is rendered to the embedment of silver. The modification of membranes increased the flux from 0.80 to 0.95L/hr.m(2). The resulting membranes have outstanding ability to fight against gram negative Escherichia Coli and Bacillus Sabtilus. The novel cellulose acetate/polyethylene glycol membranes customized with silver have paved the path for evolution of axenic membranes.

  2. 1H-NMR characterization of poly(ethylene glycol) and polydimethylsiloxane copolymer

    NASA Astrophysics Data System (ADS)

    Zainuddin, Ain Athirah; Othaman, Rizafizah; Noor, Wan Syaidatul Aqma Wan Mohd; Anuar, Farah Hannan

    2016-11-01

    This paper describes the synthesis and characterization of poly(ethylene glycol) (PEG) and polydimethylsiloxane (PDMS) copolymers. The copolymers were synthesized by reacting hydroxyl group (-OH) of poly(ethylene glycol) (PEG) and polydimetylsiloxane (PDMS) with isocyanate group (R-N=C=O) of 1,6-hexamethylene diisocyanate (HMDI). The reaction was carried out at room temperature. The copolymers were synthesized in three different compositions which differ in molar ratios of PEG to PDMS. The ratios (PEG:PDMS) used were 2:6. 3:5 and 4:4. The formation of the copolymers was characterized by 1H Nuclear Magnetic Resonance (1H-NMR) for structural determination. The presence of proton signal at 4.80 ppm which belongs to the proton of urethane group indicates the formation of urethane links. The formation of urethane links showed that two homopolymers were linked together by HMDI to form longer copolymer chains. It is worth to note that the sequence of PEG and PDMS along the copolymer chain is random.

  3. Chemical Modification of Recombinant Interleukin 2 by Polyethylene Glycol Increases Its Potency in the Murine Meth A Sarcoma Model

    NASA Astrophysics Data System (ADS)

    Katre, Nandini V.; Knauf, Michael J.; Laird, Walter J.

    1987-03-01

    Recombinant human interleukin 2 purified from Escherichia coli has limited solubility at neutral pH and a short circulatory half-life. This recombinant interleukin 2 was chemically modified by an active ester of polyethylene glycol. The modified interleukin 2 was purified by hydrophobic interaction chromatography and characterized by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and isoelectric focusing. This conjugate was compared to unmodified recombinant interleukin 2 in vitro and in vivo. Covalent attachment of the hydrophilic polymer polyethylene glycol enhanced the solubility of interleukin 2, decreased its plasma clearance, and increased its antitumor potency in the Meth A murine sarcoma model.

  4. Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.

    PubMed

    Odahara, Takayuki; Odahara, Koji

    2016-04-01

    Mixtures of neutral salts and polyethylene glycol are used for various purposes in biological studies. Although the effects of each component of the mixtures are theoretically well investigated, comprehension of their integrated effects remains insufficient. In this work, their roles and effects as a precipitant were clarified by studying dependence of precipitation curves on salt concentration for integral membrane protein/detergent particles of different physicochemical properties. The dependence of precipitation curves was reasonably related to intermolecular interactions among relevant molecules such as protein, detergent and polyethylene glycol by considering their physicochemical properties. The obtained relationships are useful as basic information to learn the early stage of biological macromolecular associations.

  5. Click chemistry grafting of poly(ethylene glycol) brushes to alkyne-functionalized pseudobrushes.

    PubMed

    Ostaci, Roxana-Viorela; Damiron, Denis; Grohens, Yves; Léger, Liliane; Drockenmuller, Eric

    2010-01-19

    A versatile method for the grafting of azide-terminated polymer chains to alkyne-functionalized pseudobrushes by the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition has been developed. First, poly[(propargyl methacrylate)-r-(glycidyl methacrylate)-r-(methyl methacrylate)] random copolymers with monomer ratios of respectively 27/27/46, 41/31/28, and 45/55/0 were synthesized by RAFT polymerization. Then, dense alkyne-functionalized pseudobrushes were grafted in melt by thermal ring-opening of the glycidyl groups by the silanols from the silicon substrate. Finally, the grafting of tailor-made alpha-methoxy-omega-azido-poly(ethylene glycol)s (M(w) approximately 5000, 20,000, and 50,000 g/mol) by Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition was performed in sealed reactors at 60 degrees C for 72 h using a polymer weight fraction of 10% in tetrahydrofuran and Cu(PPh(3))(3)Br/DIPEA as the catalytic system. Alkyne-functionalized pseudobrushes and poly(ethylene glycol) brushes were characterized by ellipsometry, scanning probe microscopy, and water contact angle measurements. This "grafting-to" approach represents a fast and versatile method to provide thick and homogeneous polymer brushes with a high surface coverage. A major benefit of this strategy is the tunable and versatile tethering of alkyne functionalities to silicon substrates using a straightforward spin-coating procedure.

  6. Influence of polyethylene glycol chain length on compatibility and release characteristics of ternary solid dispersions of itraconazole in polyethylene glycol/hydroxypropylmethylcellulose 2910 E5 blends.

    PubMed

    Janssens, Sandrien; Denivelle, Samgar; Rombaut, Patrick; Van den Mooter, Guy

    2008-10-02

    The present study aims to elucidate the influence of the polyethylene glycol chain length on the miscibility of PEG/HPMC 2910 E5 polymer blends, the influence of polymer compatibility on the degree of molecular dispersion of itraconazole, and in vitro dissolution. PEG 2000, 6000, 10,000 and 20,000 were included in the study. Solid dispersions were prepared by spray drying and characterized with MDSC, XRPD and in vitro dissolution testing. The polymer miscibility increased with decreasing chain length due to a decrease in the Gibbs free energy of mixing. Recrystallization of itraconazole occurred as soon as a critical temperature of ca. 75 degrees C was reached for the glass transition that represents the ternary amorphous phase. Due to the lower miscibility degree between the longer PEG types and HPMC 2910 E5, the ternary amorphous phase was further separated, leading to a more rapid decrease of the ternary amorphous phase glass transition as a function of PEG and itraconazole weight percentage and hence, itraconazole recrystallization. In terms of release, an advantage of the shorter chain length PEG types (2000, 6000) over the longer chain length PEG types (10,000, 20,000) was observed for the polymer blends with 5% of PEG with respect to the binary itraconazole/HPMC 2910 E5 solid dispersion. Among the formulations with a 15/85 (w/w) PEG/HPMC 2910 E5 ratio on the other hand, there was no difference in the release profile.

  7. Interrelationship between partition behavior of organic compounds and proteins in aqueous dextran-polyethylene glycol and polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    Ferreira, Luisa A; da Silva, Nuno R; Wlodarczyk, Samarina R; Loureiro, Joana A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2016-04-22

    Partition behavior of adenosine and guanine mononucleotides was examined in aqueous dextran-polyethylene glycol (PEG) and PEG-sodium sulfate two-phase systems. The partition coefficients for each series of mononucleotides were analyzed as a functions of the number of phosphate groups and found to be dependent on the nature of nucleic base and on the type of ATPS utilized. It was concluded that an average contribution of a phosphate group into logarithm of partition coefficient of a mononucleotide cannot be used to estimate the difference between the electrostatic properties of the coexisting phases of ATPS. The data obtained in this study were considered together with those for other organic compounds and proteins reported previously, and the linear interrelationship between logarithms of partition coefficients in dextran-PEG, PEG-Na2SO4 and PEG-Na2SO4-0.215M NaCl (all in 0.01M Na- or K/Na-phosphate buffer, pH 7.4 or 6.8) was established. Similar relationship was found for the previously reported data for proteins in Dex-PEG, PEG-600-Na2SO4, and PEG-8000-Na2SO4 ATPS. It is suggested that the linear relationships of the kind established in ATPS may be observed for biological properties of compounds as well.

  8. Application of poly(ethylene glycol)-b-poly(epsilon-caprolactone) copolymers with different Poly(ethylene glycol) contents for the preparation of PEG-coated nanoparticles.

    PubMed

    Hou, Jingwen; Qian, Changyun; Zhang, Yanting; Guo, Shengrong

    2013-02-01

    This work used one poly(ethylene glycol)-b-poly(epsilon-caprolactone) (PEG-b-PCL) copolymer with low PEG content as matrix material and the copolymers with high PEG content as emulsifier to prepare PEG-coated nanoparticles for controlled release of paclitaxel by solvent evaporation technique. The copolymers were synthesized by ring-opening polymerization and characterized by 1H NMR and gel permeation chromatography (GPC). The effects of the composition and concentration of the copolymers used as emulsifier on the diameters and encapsulation efficiency of nanoparticles were investigated. The mean hydrodynamic diameters of the nanoparticles measured by dynamic light scattering ranged from 70 to 160 nm. The higher PEG content of emulsifier led to bigger diameter of nanoparticles and the emulsifier concentration (0.1%-1.0%) had no obvious influence on the diameters. The paclitaxel-loaded nanoparticles could achieve a sustained drug release for 7 days. When 2%-30% (w/v) of inulin was used as cryoprotectant during freeze drying process, the lyophilized nanoparticles could be well reconstituted into aqueous solution and the hydrodynamic diameter was not obviously changed.

  9. Effect of Polyethylene Glycol on Properties and Drug Encapsulation-Release Performance of Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone Amphiphilic Co-Network Gels.

    PubMed

    Chandel, Arvind K Singh; Kumar, Chinta Uday; Jewrajka, Suresh K

    2016-02-10

    We synthesized agarose-polycaprolactone (Agr-PCL) bicomponent and Agr-polyethylene glycol-PCL (Agr-PEG-PCL) tricomponent amphiphilic co-network (APCN) gels by the sequential nucleophilic substitution reaction between amine-functionalized Agr and activated halide terminated PCL or PCL-b-PEG-b-PCL copolymer for the sustained and localized delivery of hydrophilic and hydrophobic drugs. The biodegradability of the APCNs was confirmed using lipase and by hydrolytic degradation. These APCN gels displayed good cytocompatibility and blood compatibility. Importantly, these APCN gels exhibited remarkably high drug loading capacity coupled with sustained and triggered release of both hydrophilic and hydrophobic drugs. PEG in the APCNs lowered the degree of phase separation and enhanced the mechanical property of the APCN gels. The drug loading capacity and the release kinetics were also strongly influenced by the presence of PEG, the nature of release medium, and the nature of the drug. Particularly, PEG in the APCN gels significantly enhanced the 5-fluorouracil loading capacity and lowered its release rate and burst release. Release kinetics of highly water-soluble gemcitabine hydrochloride and hydrophobic prednisolone acetate depended on the extent of water swelling of the APCN gels. Cytocompatibility/blood compatibility and pH and enzyme-triggered degradation together with sustained release of drugs show great promise for the use of these APCN gels in localized drug delivery and tissue engineering applications.

  10. Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation.

    PubMed

    Hajihashemi, Shokoofeh; Geuns, Jan M C

    2016-09-01

    Stevia rebaudiana is a sweet herb of the Astraceae family, which is cultivated for the natural sweeteners it contains. The aim of this study was to assess the effect of drought, simulated by the application of polyethylene glycol (5%, 10%, and 15% w/v), on the content of steviol glycosides (SVglys) and transcription levels of six genes involved in the biosynthesis of these natural sweeteners. The transcription levels of ent-kaurene synthase, ent-kaurene oxidase, ent-kaurenoic acid hydroxylase, and three UDP-dependent glycosyltransferases, UGT85C2,UGT74G1 and UGT76G1 were downregulated under polyethylene glycol treatment. Polyethylene glycol treatment significantly decreased the amount of stevioside, rebaudioside A, B, C and F, steviolbioside, dulcoside A, rubusoside, and total SVglys. These results strongly suggest a close relationship of SVglys content with the transcription of genes involved in the SVglys biosynthesis pathway. Comparing the observations of the present study with other reports provided the knowledge that the Stevia response to drought stress can be influenced by different environmental and experimental factors, in addition to intensity of drought stress. In conclusion, these results strongly suggest that polyethylene glycol-induced drought stress has a negative effect on the content of SVglys and transcription of SVglys biosynthetic genes and that this should be investigated further. We recommend that sufficient irrigation of Stevia is required to obtain a high content of SVglys.

  11. Comparison of the migration behavior of nanoparticles based on polyethylene glycol and silica using micellar electrokinetic chromatography.

    PubMed

    Kato, Masaru; Sasaki, Minoru; Ueyama, Yukari; Koga, Ayaka; Sano, Akira; Higashi, Tatsuya; Santa, Tomofumi

    2015-02-01

    Nanoparticles, spherical particles with diameters less than 100 nm, are promising theranostic devices for noninvasive diagnosis and therapy. In this study, nanoparticles composed of polyethylene glycol and silica were prepared, and their migration behavior was examined using capillary electrophoresis. The effects of the sodium dodecyl sulfate concentration in the electrolyte, the nanoparticle size, and the encapsulated molecule on the migration were examined. The addition of sodium dodecyl sulfate into the electrolyte had a significant effect on the electrophoretic mobility of polyethylene glycol nanoparticles, but a small effect on that of silica nanoparticles. As for the size effect, the mobility became a little faster for smaller nanoparticle sizes for both polyethylene glycol and silica nanoparticles. The encapsulated molecule affected the mobility of the nanoparticles through interactions between the encapsulated molecules and sodium dodecyl sulfate. We propose that the large effect of sodium dodecyl sulfate on the migration of the polyethylene glycol nanoparticles was due to the large spaces within the nanoparticles. These results indicate that nanoparticle migration is mainly determined by the nanoparticle components.

  12. Fabrication of anti-protein-fouling poly(ethylene glycol) microfluidic chip electrophoresis by sandwich photolithography.

    PubMed

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Liu, Huwei; Yuan, Hua

    2016-07-01

    Microfluidic chip electrophoresis (MCE) is a powerful separation tool for biomacromolecule analysis. However, adsorption of biomacromolecules, particularly proteins onto microfluidic channels severely degrades the separation performance of MCE. In this paper, an anti-protein-fouling MCE was fabricated using a novel sandwich photolithography of poly(ethylene glycol) (PEG) prepolymers. Photopatterned microchannel with a minimum resolution of 10 μm was achieved. After equipped with a conventional online electrochemical detector, the device enabled baseline separation of bovine serum albumin, lysozyme (Lys), and cytochrome c (Cyt-c) in 53 s under a voltage of 200 V. Compared with a traditional polydimethylsiloxane MCE made by soft lithography, the PEG MCE made by the sandwich photolithography not only eliminated the need of a master mold and the additional modification process of the microchannel but also showed excellent anti-protein-fouling properties for protein separation.

  13. Influence of polyethylene glycol on the ligation reaction with calf thymus DNA ligases I and II.

    PubMed

    Teraoka, H; Tsukada, K

    1987-01-01

    High concentrations of the nonspecific macromolecule polyethylene glycol 6000 (PEG 6000) enabled DNA ligases I and II from calf thymus to catalyze intermolecular blunt-end ligation of duplex DNA. Intermolecular cohesive-end ligation with these enzymes was markedly stimulated in the presence of 10-16% (w/v) PEG 6000. The effect of PEG 6000 (4-16%) on the sealing of single-stranded breaks in duplex DNA with DNA ligases I and II was not appreciably stimulatory but rather inhibitory. PEG 6000 (15%) enhanced more twofold the rate of DNA ligase II-AMP complex formation, but moderately suppressed the rate of formation of DNA ligase 1-AMP complex. Polyamines and KCl inhibited blunt-end and cohesive-end ligations with DNA ligases I and II in the presence of PEG 6000.

  14. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors.

    PubMed

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas; Rydtoft, Louise Munk; Lokanathan, Arcot R; Hansen, Line; Østergaard, Leif; Kingshott, Peter; Howard, Kenneth A; Besenbacher, Flemming; Nielsen, Niels Chr; Kjems, Jørgen

    2012-04-07

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20,000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (M(w)) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating M(w) of 10,000 Da.

  15. Preparation and characterization of polyethylene glycol diacrylate microgels using electron beam radiation

    SciTech Connect

    Hamzah, Mohd Yusof; Isa, Naurah Mat; Napia, Liyana M. Ali

    2014-02-12

    The use of microemulsion in the development of nanosized gels based on polyethylene glycol diacrylate (PEGDA) is demonstrated. PEGDA was solubilized in n-heptane with use of sodium docusate (AOT) at 0.15M concentration to form reverse micelles. These micelles were than irradiated at 5, 10, 15, 20 and 25 kGy using electron beam (EB) to crosslink the entrapped polymer in the micelles. Ionizing radiation was imparted to the emulsions to generate crosslinking reaction in the micelles formed. The nanosized gels were evaluated in terms of particle diameter using dynamic light scattering (DLS) and the images of the nanosized gels were studied using transmission electron microscopy (TEM). Results show that the size and shape of the particles are influenced by concentration of PEGDA and radiation dose. This study showed that this method can be utilized to produce nanosized gels.

  16. Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface

    SciTech Connect

    Majewski, J.; Smith, G.S.; Kuhl, T.L.; Israelachvili, J.N.; Gerstenberg, M.C.

    1997-04-17

    The density distribution of a lipid monolayer at the air-water interface mixed with varying amounts of lipid with poly(ethylene glycol)polymer headgroups (polymer-lipid or PEG-lipid) was measured using neutron reflectometry. The structure of the monolayer at the interface was greatly perturbed by the presence of the bulky polymer-lipid headgroups resulting in a large increase in the thickness of the headgroup region normal to the interface and a systematic roughening of the interface with increasing polymer-lipid content. These results show how bulky hydrophilic moieties cause significant deformations and out-of-place protrusions of phospholipid monolayers and presumably bilayers, vesicles and biological membranes. In terms of polymer physics, very short polymer chains tethered to the air-water interface follow scaling behavior with a mushroom to brush transition with increasing polymer grafting density. 34 refs., 9 figs., 1 tab.

  17. Efficiency and biocompatibility of a polyethylene glycol grafted cellulosic membrane during hemodialysis.

    PubMed

    Akizawa, T; Kino, K; Koshikawa, S; Ikada, Y; Kishida, A; Yamashita, M; Imamura, K

    1989-01-01

    Dialytic efficiency and biocompatibility of a new modified cellulose membrane (NMC) were examined in vitro and clinically. NMC was obtained by grafting polyethylene-glycol (PEG) chains to the membrane surface of ordinary cellulose (OC), and it was expected that the random movement of PEG chains would prevent blood cells and large plasma proteins from coming into contact with the membrane surface, resulting in improving the biocompatibility and thrombogenicity of the membrane. Surface characteristics of NMC were rendered anionic and hydrophilic, however, the activations of complement and platelet systems were clearly suppressed in NMC. Minimum heparin requirement for hemodialysis was significantly lower with NMC than with OC dialyzer. No significant difference in solute and water removal was observed between the two dialyzers. These results indicate that NMC can provide increased biocompatibility and antithrombogenic effect while retaining the essential dialysis efficiency of OC.

  18. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier.

    PubMed

    Choi, Y H; Liu, F; Kim, J S; Choi, Y K; Park, J S; Kim, S W

    1998-06-01

    A new series of gene carriers, polyethylene glycol (PEG)-grafted poly-L-lysine (PLL, mol. wt. = 25000) with three different PEG-grafted ratios (5, 10 and 25 mole%, which means 5, 10 and 25% of epsilon-amino group of PLL was modified by PEG), was synthesized. These new gene carriers, named comb-shaped PEG-g-PLL copolymer, showed a 5- to 30-fold increase in transfection efficiency compared to PLL alone on a human carcinoma cell line. It is likely that Hep G2 cells were transfected by plasmid DNA/PEG-g-PLL complexes through an endocytosis mechanism due to the fact that chloroquine increased transfection efficiency. Although Lipofectin, a cationic lipid formulation, showed slightly higher transfection efficiency than PEG-g-PLL in Hep G2 cells, our designed PEG-g-PLL demonstrated lower cytotoxicity, early gene expression and maintenance of gene expression for up to 96 h.

  19. Clinical effects of a polyethylene glycol grafted cellulose membrane on thrombogenicity and biocompatibility during hemodialysis.

    PubMed

    Akizawa, T; Kino, K; Kinugasa, E; Koshikawa, S; Ikada, Y; Kishida, A; Hatanaka, Y; Imamura, K

    1990-01-01

    The biocompatibility and thrombogenicity of polyethylene-glycol (PEG)-grafted cellulose hemodialysis (HD) membranes (PEGC) were investigated in cross-over HD of five HD patients with ordinary cellulose (OC). The PEGC significantly suppressed transient leukocyte and thrombocytopenia, and release of C3a, beta-thromboglobulin and platelet factor 4, in corresponding with the quantity of grafted PEG. HD with PEGC resulted in lower granulocyte elastase production, protein and blood cells adsorption on the membrane surface than those with OC. Minimum heparin in HD with PEGC was three times lower than that with OC, with the thrombin-antithrombin III complex elevation lower than that in HD with OC. The results indicate that the grafted PEG effectively suppresses blood and membrane interaction, thus improving biocompatibility and reducing thrombogenicity in clinical HD.

  20. Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy.

    PubMed

    Shkilnyy, Andriy; Soucé, Martin; Dubois, Pierre; Warmont, Fabienne; Saboungi, Marie-Louise; Chourpa, Igor

    2009-09-01

    The present work depicts the efficient one-step synthesis and detailed evaluation of stable aqueous colloids of silver nanoparticles (NPs) coated with poly(ethylene glycol) (PEG) covalently attached to their surface. Due to steric repulsion between polymer-modified surfaces, the stability of the nanoparticle suspension was preserved even at high ionic strength (0.1 M NaCl). At the same time, the PEG coating remains sufficiently permeable to allow surface-enhanced Raman scattering (SERS) from micromolar concentrations of small molecules such as the anticancer drug mitoxantrone (MTX). The enhancement efficiency of the hot spot-free Ag-PEG was compared to that of citrate-stabilized Ag colloids used after pre-aggregation. The potential of the polymer-stabilized colloids developed in this study is discussed in terms of bioanalytical applications of SERS spectroscopy.

  1. Mixture of cholesterol end-capped polyethylene glycol with DSPC liposomal

    NASA Astrophysics Data System (ADS)

    Sharifi, Soheil

    2015-07-01

    The dynamic of network of self-assembled liposome by end-capped polymer was investigated using dynamic light scattering. The liposome network, physically cross-linked by mixed liposome solutions with three different length scale of cholesterol end-capped polyethylene glycol. The network of liposome is dependent on both the polymer concentration and length scale. In the pure liposome, one motion at low time scale is observed by DLS. In the higher concentration of polymer in liposome, several motion is observed that the fast motion is alpha relaxation and other two slow motion are beta and gamma relaxations. The distance between diffusion coefficient of fast and slow relaxation is increased with increase of length scale of endcapped polymers. The SAXS data is fitted with a Percus-Yevick hard sphere model and it shows that the size of liposome increasing with increase of polymer length scale in the mixture system.

  2. The effect of polyethylene glycol Mw 400 and 600 on stability of Shellac Waxfree

    NASA Astrophysics Data System (ADS)

    Khairuddin; Pramono, E.; Utomo, S. B.; Wulandari, V.; Zahrotul W, A.; Clegg, F.

    2016-11-01

    The effect of polyethylene glycol (PEG) having molecular weight of 400 and 600 on stability of shellac waxfree prepared by solvent-evaporation method was reported in the present paper. The stability of shellac was tested by life under heat at 125 °C for 10,30,90, and 180 minutes. It was found that that stability of shellac decreased with heating time at 125 °C. PEG400 gave the most stable effect of shellac for 30 minutes of heating, whereas at 90 minutes and above PEG600 gave the most effect of shellac stability as shown by insoluble solid test and FTIR. The WVTR showed that water vapour barrier properties of PEG600/shellac was beter than that of PEG400/shellac system.

  3. Improved isolation of Chlamydia trachomatis from a low-prevalence population by using polyethylene glycol.

    PubMed

    Gibson, J P; Egerer, R M; Wiedbrauk, D L

    1993-02-01

    The effect of polyethylene glycol (PEG) on the isolation of Chlamydia trachomatis was evaluated in our laboratory. Initial range-finding experiments demonstrated that the number of chlamydial inclusion bodies increased with increasing PEG concentrations. However, PEG concentrations above 10.5% became progressively more toxic to the McCoy cell monolayers. When 50 frozen clinical Chlamydia isolates were inoculated onto McCoy cell cultures with and without 7% PEG, the PEG-treated cultures produced three- to fivefold more chlamydial inclusions than cultures without PEG. This enhancement was also observed when 1,144 fresh clinical specimens from a low-prevalence population were tested. With fresh clinical specimens, PEG-treated cultures produced two- to sixfold more inclusions than standard cultures. The addition of 7% PEG to the chlamydial overlay medium significantly increased the number of inclusions in each culture, improved the sensitivity of the culture, and decreased the probability of missing a weakly positive specimen.

  4. Formation of protein complex with the aid of polyethylene glycol for deproteinized natural rubber latex

    NASA Astrophysics Data System (ADS)

    Wei, Lim Keuw; Ing, Wong Kwee; Badri, Khairiah Haji; Ban, Wong Chong

    2013-11-01

    The effect of polyethylene glycol (PEG) as a deproteinizing agent in commercial natural rubber latex (NRL) onto the physicochemical properties of the NRL was investigated. Three types of PEG were used namely PEG200, PEG4000 and PEG20000 (molecular weight of 200, 4000 and 20000 g/mol respectively). The optimum amount of PEG in NRL was determined from viscosity changes, protein content and Fourier Transform Infrared spectroscopy. Level of protein reduction was affected by molecular weight of PEG. The addition of PEG in NRL reduced the protein content of NRL (3.30 %) to the lowest (2.01 %) at 0.40 phr of PEG200 due to more attractive hydrophobic interactions between short chains PEG compared to PEG4000 (2.24%) and PEG20000 (2.15%). This was verified through FTIR spectroscopy analysis by observing the primary and secondary amide peak where PEG4000 has lesser absorption at the region compared to with PEG20000.

  5. Size exclusion chromatography with Corona charged aerosol detector for the analysis of polyethylene glycol polymer.

    PubMed

    Kou, Dawen; Manius, Gerald; Zhan, Shangdong; Chokshi, Hitesh P

    2009-07-10

    A technique of using size exclusion chromatography (SEC) with the Corona charged aerosol detector (CAD) was developed and evaluated in comparison with refractive index (RI) and evaporative light scattering detection (ELSD) for fast screening of polyethylene glycol (PEG), a polymer used in preparing pegylated pharmaceutical compounds. These detection techniques were used in the analysis of multiple lots of PEG reagents. CAD was found to provide more accurate impurity and polydispersity profiles of PEG reagents that better differentiate their quality, while RI was not suitable for this application due to its low sensitivity and ELSD led to underestimation of the impurity and polydispersity. The accuracy of polydispersity determination by SEC-CAD was validated against a commercial reference standard of known polydispersity. The SEC-CAD technique and the observed differences between the three detectors can also be applied to polymer analysis in general.

  6. Determination of retinol-binding protein in serum by kinetic immunonephelometry with polyethylene glycol pretreatment.

    PubMed

    Hallworth, M J; Calvin, J; Price, C P

    1984-11-01

    This work describes the use of polyethylene glycol as a pretreatment reagent to remove endogenous light scattering material from serum samples prior to automated immunonephelometric analysis on a centrifugal analyser. An assay system for retinol-binding protein is described, which allows rapid (10 minutes) quantitation of retinol-binding protein in serum samples with a detection limit of 5 mg/L and between-assay coefficients of variation ranging from 2.9% to 4.0%. The assay range is 5-80 mg/L and accuracy comparisons with a Mancini single radial immunodiffusion method yield a regression line y = 0.89 x + 0.52 (r = 0.98, n = 22). The problem of analyte precipitation associated with use of pretreatment regimes is discussed.

  7. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    NASA Astrophysics Data System (ADS)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  8. Effect of ablation parameters on infrared pulsed laser deposition of poly(ethylene glycol) films

    NASA Astrophysics Data System (ADS)

    Bubb, Daniel M.; Papantonakis, M. R.; Toftmann, B.; Horwitz, J. S.; McGill, R. A.; Chrisey, D. B.; Haglund, R. F., Jr.

    2002-06-01

    Polymer thin films were deposited by laser ablation using infrared radiation both resonant (2.90, 3.40, 3.45, and 8.96 mum) and nonresonant (3.30, 3.92, and 4.17 mum) with vibrational modes in the starting material, polyethylene glycol. The chemical structure of the films was characterized by Fourier transform infrared spectroscopy, while the molecular weight distribution was investigated using gel permeation chromatography. The films deposited by resonant irradiation are superior to those deposited with nonresonant radiation with respect to both the chemical structure and the molecular weight distribution of the films. However, the molecular-weight distributions of films deposited at nonresonant infrared wavelengths show marked polymer fragmentation. Fluence and wavelength dependence studies show that the effects may be related to the degree of thermal confinement, and hence to the relative absorption strengths of the targeted vibrational modes.

  9. Characteristics of Precipitation-formed Polyethylene Glycol Microgels Are Controlled by Molecular Weight of Reactants

    PubMed Central

    Thompson, Susan; Stukel, Jessica; AlNiemi, Abrar; Willits, Rebecca Kuntz

    2013-01-01

    This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds. PMID:24378988

  10. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Jazayeri, Seyed Davoud; Sedaghat, Sajjad; Shabanzadeh, Parvaneh; Jahangirian, Hossein; Mahdavi, Mahnaz; Abdollahi, Yadollah

    2012-01-01

    The roles of green chemistry in nanotechnology and nanoscience fields are very significant in the synthesis of diverse nanomaterials. Herein, we report a green chemistry method for synthesized colloidal silver nanoparticles (Ag NPs) in polymeric media. The colloidal Ag NPs were synthesized in an aqueous solution using silver nitrate, polyethylene glycol (PEG), and β-D-glucose as a silver precursor, stabilizer, and reducing agent, respectively. The properties of synthesized colloidal Ag NPs were studied at different reaction times. The ultraviolet-visible spectra were in excellent agreement with the obtained nanostructure studies performed by transmission electron microscopy (TEM) and their size distributions. The Ag NPs were characterized by utilizing X-ray diffraction (XRD), zeta potential measurements and Fourier transform infrared (FT-IR). The use of green chemistry reagents, such as glucose, provides green and economic features to this work. PMID:22837654

  11. [Electrolyte solution with polyethylene glycol to cleanse the colon for colonoscopy or enema].

    PubMed

    Valdovinos, M A; Male, R; Gil, S; Gallo, S; Tielve, M; Ferral, H

    1990-01-01

    The efficacy and safety of an electrolyte-polyethylene glycol solution (SE-PEG) for colonic lavage, was compared with standard bowel preparation (SBP) in a randomized blinded study of volunteers and patients undergoing colonoscopy and barium enema examination. Side effects, biochemical and hematologic changes and quality of examinations were monitored. Colonoscopy and barium enema was scored by colonic segment for type of residual stool and percentage of bowel wall visualized. For colonoscopy and barium enema, preparation with SE-PEG allowed better visualization and produced more optimal exams (8 vs 3; p less than 0.03) and (6 vs 4; p = NS) respectively. We conclude that colonic lavage with SE-PEG is an alternative bowel preparation method and is cheaper, more safe and effective than SBP procedure.

  12. Purification of antibodies by precipitating impurities using Polyethylene Glycol to enable a two chromatography step process.

    PubMed

    Giese, Glen; Myrold, Adam; Gorrell, Jeffrey; Persson, Josefine

    2013-11-01

    The purification of antibodies by precipitating impurities using Polyethylene Glycol (PEG) was assessed with the objective of developing a two chromatography column purification process. A PEG precipitation method was evaluated for use in the industrial purification of recombinant monoclonal antibodies (MAbs). Effective and robust precipitation conditions including PEG concentration, pH, temperature, time, and protein concentration were identified for several different MAbs. A recovery process using two chromatography steps in combination with PEG precipitation gave acceptable yield and purity levels for IgG1 and IgG4 antibodies with a broad range of isoelectric points (pI). PEG precipitation removed host cell proteins (HCPs), high molecular weight species (HMWS), leached Protein A ligand, and host cell DNA to acceptable levels when run under appropriate conditions, and some endogenous virus removal was achieved.

  13. Dissolution of biomacromolecules in organic solvents by nano-complexing with poly(ethylene glycol).

    PubMed

    Mok, Hyejung; Kim, Ho Jeong; Park, Tae Gwan

    2008-05-22

    Various biomacromolecules (BMs) such as proteins, DNA, and carbohydrates are extremely difficult to be dissolved in a single organic solvent phase for sustained release or targeted delivery formulation. In this study, three different BMs could be solubilized in selected organic solvents by forming poly(ethylene glycol) (PEG)-assisted nano-complexes while maintaining their structural integrity. Dynamic light scattering (DLS) and atomic force microscopy (AFM) analysis revealed that proteins, DNA, and carbohydrate polymers could be nano-complexed with PEG in various organic solvents. The diameter of nano-complexes decreased roughly from approximately 600 nm to approximately 100 nm with increasing weight ratio of PEG/BM. The present solubilization technique could be potentially applied for sustained release formulations of various therapeutic biological drugs.

  14. Interaction of CuCl2 with poly(ethylene glycol) under microwave radiation

    NASA Astrophysics Data System (ADS)

    Tverjanovich, A.; Grevtsev, A.; Bereznev, S.

    2017-01-01

    CuCl2 solutions various concentration in poly(ethylene glycol) (PEG) are treated with microwave (MW) radiation. Optical absorption and FT-IR spectra of the solutions before treatment and after treatment are discussed. It is proposed that before treatment Cu2+ ions have rhombic distorted octahedral coordination in solution with four oxygen atoms of PEG and two Cl‑ ions. These oxygen atoms can be from hydroxyl or ether groups of PEG, depending on the relative ration OH‑ groups and Cu2+ ions. MW treatment of the solution results in a two-step reaction divided in time. The first stage of MW treatment leads to the reduction of Cu2+ ions to Cu+ ions. At the second stage Cu+ ions are reduced to Cu0 forming high-purity copper nanoparticles. In the same time PEG transforms with a formation of carbonyl groups. The shape of the obtained nanoparticles depends on the molecular weight of the used PEG.

  15. Anaphylactic reaction to polyethylene-glycol conjugated-asparaginase: premedication and desensitization may not be sufficient.

    PubMed

    Sahiner, Umit M; Yavuz, S Tolga; Gökce, Muge; Buyuktiryaki, Betul; Altan, Ilhan; Aytac, Selin; Tuncer, Murat; Tuncer, Ayfer; Sackesen, Cansin

    2013-08-01

    In hypersensitive reactions to native L-asparaginase, either premedication and desensitization or substitution with polyethylene glycol conjugated asparaginase (PEG-ASP) is preferred. Anaphylaxis with PEG-ASP is rare. An 8-year-old girl and a 2.5-year-old boy, both diagnosed as having acute lymphoblastic leukemia, presented with native L-asparaginase hypersensitivity and substitution with PEG-ASP was preferred. They received a premedication (methylprednisolone, hydroxyzine and ranitidine) followed by desensitization with PEG-ASP infusion. Both patients developed anaphylaxis with peg-asparaginase. These are the first reported cases of anaphylactic reaction to PEG-ASP, despite the application of both premedication and desensitization. Anaphylaxis with PEG-ASP is very rare and premedication and desensitization protocols may not prevent these hypersensitive reactions.

  16. Poly(lactic acid) / Poly(ethylene glycol) blends: Mechanical, thermal and morphological properties

    NASA Astrophysics Data System (ADS)

    Bijarimi, M.; Ahmad, S.; Rasid, R.; Khushairi, M. A.; Zakir, M.

    2016-04-01

    The poly(lactic acid) (PLA) was melt blended with linear polyethylene glycol (PEG) in an effort to increase the toughness of PLA. Melt blending was carried out in an internal mixer at 180 °C mixing temperature with 50 rpm for 15 minutes. The blends were characterized in terms of mechanical, thermal and morphological properties. It was found that tensile and flexural strength, stiffness and notched Izod impact strength decreased significantly when the PEG was added to the PLA matrix at 2.5-10% of PEG concentrations. Both glass transition and melting temperatures (Tg and Tm) lowered as the concentration of PEG was increased. Moreover, it was noted that the PLA/PEG blends showed a lower onset and peak degradation temperatures but with lower final degradation temperature as compared to the neat PLA. The morphological analysis revealed that the PEG was dispersed as droplets in the PLA matrix with a clear boundary between PLA matrix and PEG phases.

  17. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Kiani, Shirin; Mousavi, Seyed Mahmoud; Shahtahmassebi, Nasser; Saljoughi, Ehsan

    2015-12-01

    Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m2h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  18. Optimizing the surface density of polyethylene glycol chains by grafting from binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Arcot, Lokanathan; Ogaki, Ryosuke; Zhang, Shuai; Meyer, Rikke L.; Kingshott, Peter

    2015-06-01

    Polyethylene glycol (PEG) brushes are very effective at controlling non-specific deposition of biological material onto surfaces, which is of paramount importance to obtaining successful outcomes in biomaterials, tissue engineered scaffolds, biosensors, filtration membranes and drug delivery devices. We report on a simple 'grafting to' approach involving binary solvent mixtures that are chosen based on Hansen's solubility parameters to optimize the solubility of PEG thereby enabling control over the graft density. The PEG thiol-gold model system enabled a thorough characterization of PEG films formed, while studies on a PEG silane-silicon system examined the versatility to be applied to any substrate-head group system by choosing an appropriate solvent pair. The ability of PEG films to resist non-specific adsorption of proteins was quantitatively assessed by full serum exposure studies and the binary solvent strategy was found to produce PEG films with optimal graft density to efficiently resist protein adsorption.

  19. Solubility of Naproxen in Polyethylene Glycol 200 + Water Mixtures at Various Temperatures

    PubMed Central

    Panahi-Azar, Vahid; Soltanpour, Shahla; Martinez, Fleming; Jouyban, Abolghasem

    2015-01-01

    The solubility of naproxen in binary mixtures of polyethylene glycol 200 (PEG 200) + water at the temperature range from 298.0 K to 318.0 K were reported. The combinations of Jouyban-Acree model + van’t Hoff and Jouyban-Acree model + partial solubility parameters were used to predict the solubility of naproxen in PEG 200 + water mixtures at different temperatures. Combination of Jouyban-Acree model with van’t Hoff equation can be used to predict solubility in PEG 200 + water with only four solubility data in mono-solvents. The obtained solubility calculation errors vary from ~ 17 % up to 35 % depend on the number of required input data. Non-linear enthalpy-entropy compensation was found for naproxen in the investigated solvent system and the Jouyban−Acree model provides reasonably accurate mathematical descriptions of the thermodynamic data of naproxen in the investigated binary solvent systems. PMID:26664370

  20. Characteristics of precipitation-formed polyethylene glycol microgels are controlled by molecular weight of reactants.

    PubMed

    Thompson, Susan; Stukel, Jessica; AlNiemi, Abrar; Willits, Rebecca Kuntz

    2013-12-23

    This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.

  1. Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow cytometry: Techniques & optimization.

    PubMed

    Hoffman, Ashley N; Bamba, Ravinder; Pollins, Alonda C; Thayer, Wesley P

    2017-02-01

    Polyethylene glycol (PEG) has long been used as a membrane fusogen, but recently it has been adopted as a technique for peripheral nerve repair. Vertebrate models using PEG fusion have shown improved outcomes when PEG is applied during repair of severed peripheral nerves. The cellular mechanism of PEG fusion in the peripheral nerve repair model has not previously been assessed via flow cytometry. PEG fusion was assessed in this experiment by dying B35 rat neuroblastoma cells with different color fluorescent labels. The different color cells were combined and PEG was applied in concentrations of 50%, 75% and 100%. The amount of cell fusion was assessed via flow cytometry as the percentage of double positive cells. Results showed increasing fusion and decreasing viability with increasing concentrations of PEG.

  2. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion

    NASA Astrophysics Data System (ADS)

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.

  3. Polyethylene glycol versus sodium picosulfalte bowel preparation in the setting of a colorectal cancer screening program

    PubMed Central

    Kherad, Omar; Restellini, Sophie; Martel, Myriam; Barkun, Alan N

    2015-01-01

    BACKGROUND: Adequate bowel preparation for colonoscopy is an important predictor of colonoscopy quality. OBJECTIVE: To determine the difference in terms of effectiveness between different existing colon cleansing products in the setting of a colorectal cancer screening program. METHODS: The records of consecutive patients who underwent colonoscopy at the Montreal General Hospital (Montreal, Quebec) between April 2013 and April 2014 were retrospectively extracted from a dedicated electronic digestive endoscopic institutional database. RESULTS: Overall, 2867 charts of patients undergoing colonoscopy were assessed, of which 1130 colonoscopies were performed in a screening setting; patients had adequate bowel preparation in 90%. Quality of preparation was documented in only 61%. Bowel preparation was worse in patients receiving sodium picosulfate (PICO) alone compared with polyethylene glycol, in a screening setting (OR 0.3 [95% CI 0.2 to 0.6]). Regardless of the preparation type, the odds of achieving adequate quality cleansing was 6.6 for patients receiving a split-dose regimen (OR 6.6 [95% CI 2.1 to 21.1]). In multivariable analyses, clinical variables associated with inadequate bowel preparation in combined population were use of PICO, a nonsplit regimen and inpatient status. The polyp detection rate was very high (45.6%) and was correlated with withdrawal time. CONCLUSION: Preparation quality needs to be more consistently included in the colonoscopy report. Split-dose regimens increased the quality of colon cleansing across all types of preparations and should be the preferred method of administration. Polyethylene glycol alone provided better bowel cleansing efficacy than PICO in a screening setting but PICO remains an alternative in association with an adjuvant. PMID:26301330

  4. Hydrophilic polysulfone film prepared from polyethylene glycol monomethylether via coupling graft

    NASA Astrophysics Data System (ADS)

    Du, Ruikui; Gao, Baojiao; Li, Yanbin

    2013-06-01

    In the presence of acid-acceptor Na2CO3, the nucleophilic substitution between chloromethylated polysulfone (CMPSF) and polyethylene glycol monomethylether (PEGME) was conducted. Polyethylene glycol (PEG) was coupling-grafted onto the side chains of polysulfone (PSF) so that the graft copolymer PSF-g-PEG was prepared and the hydrophilic modification of polysulfone membrane material was realized. The chemical structure of PSF-g-PEG was characterized by FTIR and 1H NMR. The influence of the main factors on the coupling graft reaction was investigated. The water static contact angle of PSF-g-PEG membrane was determined and its property of resisting protein pollution was examined by using bovine serum albumin (BSA) as a model protein. The experimental results show that the coupling graft reaction between CMPSF and PEGME can proceed successfully, and the reaction of chloromethyl groups of CMPSF with the hydroxyl end groups of PEGME is a typical SN1 nucleophilic substitution reaction. The polarity of the solvents and the reaction temperature greatly influence the reaction. The suitable solvent is dimethyl acetamide with stronger polarity and 70 °C is a suitable reaction temperature. After reaction of 36 h, the grafting degree of PEG can reach 48 g/100 g and the product yield is about 73.6%. The contact angle of PSF-g-PEG membrane declines rapidly with the increase of PEG grafting degree, displaying the obvious enhancement of the hydrophilicity. The adsorption capacity of BSA on PSF-g-PEG membrane decreases remarkably with the increase of PEG grafting degree, showing excellent antifouling ability of PSF-g-PEG membrane for proteins.

  5. Swelling, sealing, and hemostatic ability of a novel biomaterial: A polyethylene glycol-coated collagen pad.

    PubMed

    Lewis, Kevin M; Spazierer, Daniel; Slezak, Paul; Baumgartner, Bernhard; Regenbogen, Johannes; Gulle, Heinz

    2014-11-01

    Trends in the development of hemostatic agents are towards self-adhering pads. This study investigates a novel biomaterial made of a polyethylene glycol-coated collagen pad (PCC). The swelling and adherence of PCC were investigated in vitro, and the hemostatic and sealing ability was investigated in vivo. In vitro, the maximum swell of PCC submerged in human plasma for 24 h is 65%. The greatest swell was in thickness, averaging 24% to a mean thickness of 2.5 ± 0.19 mm (mean±SD) (N = 20). PCC withstood clinically relevant pressures when applied to a collagen casing washed with bile, lymph, urine, saline, and cerebrospinal fluid mixed at 33% and 67% with blood. In vivo, PCC provided complete hemostasis when applied to severe, arterial bleeds of actively ventilated pulmonary parenchyma at 3, 5, 8, and 10 min after application in a heparinized porcine pulmonary segmentectomy model. The mean rate of bleeding was 17.7 ± 8.6 ml/min. The lungs were ventilated at 15 ± 4 breaths per min and an airway pressure of 19 ± 2 cm H2O. PCC had no incidence of hematoma and an 11% incidence of intraoperative air leak (N = 36). These data are promising for future clinical application of a new versatile, self-adhering hemostatic sealing pad consisting of a polyethylene glycol-coated collagen.

  6. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins

    PubMed Central

    Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d’Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean

    2017-01-01

    The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures. PMID:28179944

  7. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins.

    PubMed

    Mascitti, Andrea; Lupacchini, Massimiliano; Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d'Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean; Colacino, Evelina

    2017-01-01

    The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures.

  8. Mechanics of semiflexible chains formed by poly(ethylene glycol)-linked paramagnetic particles.

    PubMed

    Biswal, Sibani Lisa; Gast, Alice P

    2003-08-01

    Magnetorheological particles, permanently linked into chains, provide a magnetically actuated means to manipulate microscopic fluid flow. Paramagnetic colloidal particles form reversible chains by acquiring dipole moments in the presence of an external magnetic field. By chemically connecting paramagnetic colloidal particles, flexible magnetoresponsive chains can be created. We link the paramagnetic microspheres using streptavidin-biotin binding. Streptavidin coated microspheres are placed in a flow cell and a magnetic field is applied, causing the particles to form chains. Then a solution of polymeric linkers of bis-biotin-poly(ethylene glycol) molecules is added in the presence of the field. These linked chains remain responsive to a magnetic field; however, in the absence of an external magnetic field these chains bend and flex due to thermal motion. The chain flexibility is determined by the length of the spacer molecule between particles and is quantified by the flexural rigidity or bending stiffness. To understand the mechanical properties of the chains, we use a variety of optical trapping experiments to measure the flexural rigidity. Increasing the length of the poly(ethylene glycol) chain in the linker increases the flexibility of the chains.

  9. Electrochemical oxidation of polyethylene glycol in electroplating solution using paraffin composite copper hexacyanoferrate modified (PCCHM) anode.

    PubMed

    Bejankiwar, Rajesh S; Basu, Abir; Cementi, Max

    2004-01-01

    Electrochemical oxidation of polyethylene glycol (PEG) in an acidic (pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified (PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon (TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model.

  10. Effects of polyethylene glycol on bovine intestine alkaline phosphatase activity and stability.

    PubMed

    Sekiguchi, Satoshi; Yasukawa, Kiyoshi; Inouye, Kuniyo

    2011-01-01

    In this study, we evaluated the effects of polyethylene glycol (PEG) on bovine intestine alkaline phosphatase (BIALP) activity and stability. In the hydrolysis of p-nitrophenylphosphate (pNPP) at pH 9.8 at 20 °C, the k(cat)/K(m) values of BIALP plus 5-15% w/v free PEG with molecular masses of 1, 2, 6, and 20 kDa (PEG1000, PEG2000, PEG6000, and PEG20000 respectively) were 120-140%, 180-300%, 130-170%, and 110-140% respectively of that of BIALP without free PEG (1.8 µM(-1) s(-1)), indicating that activation by PEG2000 was the highest. Unmodified BIALP plus 5% PEG2000 and BIALP pegylated with 2,4-bis(O-methoxypolyethylene glycol)-6-chloro-s-triazine exhibited 1.3-fold higher activity on average than that of BIALP without free PEG under various conditions, including pH 7.0-10.0 and 20-65 °C. The temperatures reducing initial activity by 50% in 30-min incubation of unmodified BIALP plus 5% PEG2000 and pegylated BIALP were 51 and 47 °C respectively, similar to that of BIALP without free PEG (49 °C). These results indicate that the addition of PEG2000 and pegylation increase BIALP activity without affecting its stability, suggesting that they can be used in enzyme immunoassay with BIALP to increase sensitivity and rapidity.

  11. Synthesis and photophysicochemical studies of poly(ethylene glycol) conjugated symmetrical and asymmetrical zinc phthalocyanines

    NASA Astrophysics Data System (ADS)

    Dinçer, Hatice; Mert, Humeyra; Çalışkan, Emel; Atmaca, Göknur Yaşa; Erdoğmuş, Ali

    2015-12-01

    Synthesis and characterization of poly(ethylene glycol) conjugated symmetrical and asymmetrical zinc phthalocyanines (ZnPcs) is described. Copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) click reaction between azide functional methoxypoly(ethylene glycol) (mPEG-N3) and tetra terminal alkynyl substituted ZnPc yields star polymer with ZnPc core. Furthermore, CuAAC click reaction between asymmetrically terminal alkynyl substituted zinc phthalocyanine (aZnPc) and mPEG-N3 yields aZnPc end functionalized PEG. Spectral, photophysical (fluorescence quantum yield), photochemical (singlet oxygen (ΦΔ), and photodegradation quantum yield (Φd) properties of the symmetrically, and asymmetrically PEGylated ZnPcs are investigated to be used as sensitizers in photodynamic therapy (PDT). The quantum yield values of fluorescence (ΦF) and singlet oxygen generation (ΦΔ) for water soluble symmetrically PEGylated ZnPc in aqueous solution are calculated as 0.01 and 0.14 respectively, suggesting its potential as photosensitizer in PDT treatment.

  12. Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces.

    PubMed

    Xu, F J; Li, H Z; Li, J; Teo, Y H Eric; Zhu, C X; Kang, E T; Neoh, K G

    2008-12-01

    We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micropatterned Si(100) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored.

  13. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    NASA Astrophysics Data System (ADS)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation

  14. Physical and structural characteristics of acrylated poly(ethylene glycol)-alginate conjugates.

    PubMed

    Davidovich-Pinhas, Maya; Bianco-Peled, Havazelet

    2011-07-01

    Transmucosal delivery of therapeutic agents is a non-invasive approach that utilizes human entry paths such as the nasal, buccal, rectal and vaginal routes. Mucoadhesive polymers have the ability to adhere to the mucus layer covering those surfaces and by that promote drug release, targeting and absorption. We have recently demonstrated that acrylated polymers display enhanced mucoadhesive properties due to their ability to covalently attach to mucus type glycoproteins. We have synthesized an acrylated poly(ethylene glycol)-alginate conjugate (alginate-PEGAc), a molecule which combines the gelation ability of alginate with the mucoadhesion properties arising from both the characteristics of poly(ethylene glycol) and the acrylate functionality. In the current investigation we introduce an in-depth characterization of the thermal, mechanical and structural properties of alginate-PEGAc aimed at gaining a better knowledge of its structure-function relations. The thermal stability, evaluated by thermal gravimetric analysis and differential scanning calorimetry, was compared with that of alginate and the intermediate product thiolated alginate. Dehydration at temperatures up to 200 °C was detected for all samples, followed by distinctive decomposition steps arising from the decomposition of the polymer backbone and side-chains. The nanostructure of the solutions and gels was evaluated from small angle X-ray scattering patterns, to which the "broken rod linked by flexible chain" model was fitted, and from rheology measurements. The maxima arising from electrostatic repulsion between the highly charged alginate chains was diminished for both modified alginate samples, suggesting that modification led to electrostatic screening. Alginate, thiolated alginate and alginate-PEGAc cross-linked with calcium ions demonstrated similar scattering patterns. However, different scattering intensities, gel strengths, and gelation kinetics were observed, suggesting a decrease in the

  15. Evaluation of a chitosan-polyethylene glycol paste as a local antibiotic delivery device

    PubMed Central

    Rhodes, Cheyenne S; Alexander, Christopher M; Berretta, Joel M; Courtney, Harry S; Beenken, Karen E; Smeltzer, Mark S; Bumgardner, Joel D; Haggard, Warren O; Jennings, J Amber

    2017-01-01

    AIM To investigate the efficacy of a chitosan/polyethylene glycol blended paste as a local antibiotic delivery device, particularly in musculoskeletal wounds. METHODS Acidic (A) chitosan sponges and neutralized (N) chitosan/polyethylene glycol (PEG) blended sponges were combined in ratios of 3A:2N, 1A:1N, and 2A:3N; then hydrated with phosphate buffered saline to form a chitosan/PEG paste (CPP). Both in vitro and in vivo studies were conducted to determine the potential CPP has as a local antibiotic delivery device. In vitro biocompatibility was assessed by the cytotoxic response of fibroblast cells exposed to the experimental groups. Degradation rate was measured as the change in dry mass due to lysozyme based degradation over a 10-d period. The antibiotic elution profiles and eluate activity of CPP were evaluated over a 72-h period. To assess the in vivo antimicrobial efficacy of the CPP, antibiotic-loaded paste samples were exposed to subcutaneously implanted murine catheters inoculated with Staphylococcus aureus. Material properties of the experimental paste groups were evaluated by testing the ejection force from a syringe, as well as the adhesion to representative musculoskeletal tissue samples. RESULTS The highly acidic CPP group, 3A:2N, displayed significantly lower cell viability than the control sponge group. The equally distributed group, 1A:1N, and the highly neutral group, 2A:3N, displayed similar cell viability to the control sponge group and are deemed biocompatible. The degradation studies revealed CPP is more readily degradable than the chitosan sponge control group. The antibiotic activity studies indicated the CPP groups released antibiotics at a constant rate and remained above the minimum inhibitory concentrations of the respective test bacteria for a longer time period than the control chitosan sponges, as well as displaying a minimized burst release. The in vivo functional model resulted in complete bacterial infection prevention in all

  16. Insulin Particle Formation in Supersaturated Aqueous Solutions of Poly(Ethylene Glycol)

    PubMed Central

    Bromberg, Lev; Rashba-Step, Julia; Scott, Terrence

    2005-01-01

    Protein microspheres are of particular utility in the field of drug delivery. A novel, completely aqueous, process of microsphere fabrication has been devised based on controlled phase separation of protein from water-soluble polymers such as polyethylene glycols. The fabrication process results in the formation of spherical microparticles with narrow particle size distributions. Cooling of preheated human insulin-poly(ethylene glycol)-water solutions results in the facile formation of insulin particles. To map out the supersaturation conditions conducive to particle nucleation and growth, we determined the temperature- and concentration-dependent boundaries of an equilibrium liquid-solid phase separation. The kinetics of formation of microspheres were followed by dynamic and continuous-angle static light scattering techniques. The presence of PEG at a pH that was close to the protein's isoelectric point resulted in rapid nucleation and growth. The time elapsed from the moment of creation of a supersaturated solution and the detection of a solid phase in the system (the induction period, tind) ranged from tens to several hundreds of seconds. The dependence of tind on supersaturation could be described within the framework of classical nucleation theory, with the time needed for the formation of a critical nucleus (size <10 nm) being much longer than the time of the onset of particle growth. The growth was limited by cluster diffusion kinetics. The interfacial energies of the insulin particles were determined to be 3.2–3.4 and 2.2 mJ/m2 at equilibrium temperatures of 25 and 37°C, respectively. The insulin particles formed as a result of the process were monodisperse and uniformly spherical, in clear distinction to previously reported processes of microcrystalline insulin particle formation. PMID:16254391

  17. Polyethylene glycol, unique among laxatives, suppresses aberrant crypt foci, by elimination of cells

    PubMed Central

    Taché, Sylviane; Parnaud, Géraldine; Van Beek, Erik; Corpet, Denis E.

    2006-01-01

    Background Polyethylene glycol (PEG), an osmotic laxative, is a very potent inhibitor of colon cancer in rats. In a search for mechanisms, we tested the hypothesis that fecal bulking and moisture decreases colon carcinogenesis. We also looked for PEG effects on crypt cells in vivo. Methods Fischer 344 rats (N=272) were given an injection of the colon carcinogen azoxymethane. They were then randomized to a standard AIN76 diet containing one of 19 laxative agents (5% w/w in most cases): PEG 8000 and other PEG-like compounds, carboxymethylcellulose, polyvinylpyrrolidone, sodium polyacrylate, calcium polycarbophil, karaya gum, psyllium, mannitol, sorbitol, lactulose, propylene glycol, magnesium hydroxide, sodium phosphate, bisacodyl, docusate, and paraffin oil. Aberrant crypt foci (ACF) and fecal values were measured blindly after a 30-day treatment. Proliferation, apoptosis, and the removal of cells from crypts were studied in control and PEG-fed rats by various methods, including TUNEL and fluorescein dextran labeling. Results PEG 8000 reduced nine-fold the number of ACF in rats (p<0.001). The other PEGs and magnesium-hydroxide modestly suppressed ACF, but not the other laxatives. ACF number did not correlate with fecal weight or moisture. PEG doubled the apoptotic bodies per crypt (p<0.05), increased proliferation by 25–50% (p<0.05) and strikingly increased (>40-fold) a fecal marker of epitheliolysis in the gut (p<0.001). PEG normalized the percentage of fluorescein dextran labeled cells on the top of ACF (p<0.001). Conclusions Among laxatives, only PEG afforded potent chemoprevention. PEG protection was not due to increased fecal bulking, but likely to the elimination of cells from precancerous lesions. PMID:16716974

  18. Design and synthesis of multifunctional poly(ethylene glycol)s using enzymatic catalysis for multivalent cancer drug delivery

    NASA Astrophysics Data System (ADS)

    Seo, Kwang Su

    The objective of this research was to design and synthesize multifunctional poly(ethylene glycol)s (PEG)s using enzyme-catalyzed reactions for multivalent targeted drug delivery. Based on computer simulation for optimum folate binding, a four-arm PEG star topology with Mn = 1000 g/mol was proposed. First, a four-functional core based on tetraethylene glycol (TEG) was designed and synthesized using transesterification and Michael addition reactions in the presence of Candida antarctica lipase B (CALB) as a biocatalyst. The four-functional core (HO)2-TEG-(OH)2 core was successfully prepared by the CALB-catalyzed transesterification of vinyl acrylate (VA) with TEG and then Michael addition of diethanolamine to the resulting TEG diacrylate with/without the use of solvent. The functional PEG arms with fluorescein isothiocyanate (FITC) and folic acid (FA) were prepared using both traditional organic chemistry and enzyme-catalyzed reactions. FITC was reacted with the amine group of H2N-PEG-OH in the presence of triethylamine via nucleophilic addition onto the isothiocyanate group. Then, divinyl adipate (DVA) was transesterified with the FITC-PEG-OH product in the presence of CALB to produce the FITC-PEG vinyl ester that will be attached to the four-functional core via CALC-catalyzed transesterification. For the synthesis of FA-PEG vinyl ester arm, DVA was first reacted with PEG-monobenzyl ether (BzPEG-OH) in bulk in the presence of CALB. The BzPEG vinyl ester was then transesterified with 12-bromo-1-dodecanol in the presence of CALB. Finally, BzPEG-Br was attached to FA exclusively in the gamma position using a new method. The thesis also discusses fundamental studies that were carried out in order to get better understanding of enzyme catalyzed transesterification and Michael addition reactions. First, in an effort to investigate the effects of reagent and enzyme concentrations in transesterification, vinyl methacrylate (VMA) was reacted with 2-(hydroxyethyl) acrylate (2

  19. Extraction of americium in different oxidation states in a two-phase aqueous system based on poly(ethylene glycol)

    SciTech Connect

    Molochnikova, N.P.; Frenkel', B.F.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-09-01

    The extraction of americium in different states of oxidation was studied in a two-phase aqueous system based on poly(ethylene glycol). Conditions were found for the quantitative extraction of americium (III) and americium (V) from solutions of ammonium sulfate in the pH range of 3-5 and in the presence of arsenazo III. The composition of the complexes of americium with the reagent was determined; americium (III) reacts with arsenazo III in solutions of ammonium sulfate to form complexes with the composition of MeR and Me/sub 2/R. Characteristics of the absorption spectra of complexes of americium (III) and (V) with arsenazo III in ammonium sulfate solutions and in extracts based on aqueous solutions of poly(ethylene glycol) were found. The molar extinction coefficients of complexes of americium with arsenazo III were determined in these solutions.

  20. Synthesis and characterization of injectable, water-soluble copolymers of tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates.

    PubMed

    Anderson, Brian C; Mallapragada, Surya K

    2002-11-01

    Several homopolymers and copolymers of 2-(diethylamino)ethyl methacrylate (DEAEM) and poly(ethylene glycol) methyl ether methacrylate (PEGMEM) were synthesized using anionic polymerization initiated by potassium t-butoxide. The polymers were characterized by average molecular weight, polydispersity and monomeric unit composition. A very narrow molecular weight distribution was achieved with a well-controlled composition. The glass transition temperatures and compositions of the copolymers followed a Gordon-Taylor relationship. The water solubility and biocompatibility of the copolymers was compared to their parent homopolymers to determine if the addition of a poly(ethylene glycol) group was sufficient to solubilize the polymers in aqueous buffer solutions and to increase the biocompatibility of the polymers. These water-soluble, injectable cationic copolymers have potential applications in gene delivery as well as other biomaterial applications.

  1. Polyethylene glycol gold-nanoparticles: Facile nanostructuration of doxorubicin and its complex with DNA molecules for SERS detection

    NASA Astrophysics Data System (ADS)

    Spadavecchia, Jolanda; Perumal, Ramesh; Casale, Sandra; Krafft, Jean-Marc; Methivier, Christophe; Pradier, Claire-Marie

    2016-03-01

    We report the synthesis of dicarboxylic acid-terminated polyethylene-glycol (PEG)-gold nanoparticles by a simple one-step method, and their further use to form nanostructured surfaces for biomolecule immobilization. The synthesized nano-scale particles were conjugated with probe/target oligonucleotides in order to evaluate intercalation phenomenon in the presence of doxorubicin drug via surface enhanced Raman spectroscopy (SERS) analysis.

  2. Aqueous Biphasic Systems Based on Salting-Out Polyethylene Glycol or Ionic Solutions: Strategies for Actinide or Fission Product Separations

    SciTech Connect

    Rogers, Robin D.; Gutowski, Keith E.; Griffin, Scott T.; Holbrey, John D.

    2004-03-29

    Aqueous biphasic systems can be formed by salting-out (with kosmotropic, waterstructuring salts) water soluble polymers (e.g., polyethylene glycol) or aqueous solutions of a wide range of hydrophilic ionic liquids based on imidazolium, pyridinium, phosphonium and ammonium cations. The use of these novel liquid/liquid biphases for separation of actinides or other fission products associated with nuclear wastes (e.g., pertechnetate salts) has been demonstrated and will be described in this presentation.

  3. A new synthesis of lamellar-mesostructured silica by using poly(ethylene glycol) distearate as template

    SciTech Connect

    Zhang Huanzhi; Jin Zhengwei; Wang Xiaodong

    2008-11-03

    A lamellar-mesostructured silica has been synthesized by using poly(ethylene glycol) distearate as template in ethanol solution. Highly ordered lamellar mesostructure was confirmed by X-ray diffraction pattern, transmission electronic microscopy, and nitrogen adsorption-desorption isotherm. The material obtained in this work has a large interlayer distance, and good thermal and mechanical stabilities, which can favor the preparation of the in situ polymerized nanocomposites based on intercalation of polymers in the lamellar-mesostructured silica.

  4. Partitioning of alcohol ethoxylates and polyethylene glycols in the marine environment: field samplings vs laboratory experiments.

    PubMed

    Traverso-Soto, Juan M; Brownawell, Bruce J; González-Mazo, Eduardo; Lara-Martín, Pablo A

    2014-08-15

    Nowadays, alcohol ethoxylates (AEOs) constitute the most important group of non-ionic surfactants, used in a wide range of applications such as household cleaners and detergents. Significant amounts of these compounds and their degradation products (polyethylene glycols, PEGs, which are also used for many other applications) reach aquatic environments, and are eliminated from the water column by degradation and sorption processes. This work deals with the environmental distribution of AEOs and PEGs in the Long Island Sound Estuary, a setting impacted by sewage discharges from New York City (NYC). The distribution of target compounds in seawater was influenced by tides, consistent with salinity differences, and concentrations in suspended solid samples ranged from 1.5 to 20.5 μg/g. The more hydrophobic AEOs were mostly attached to the particulate matter whereas the more polar PEGs were predominant in the dissolved form. Later, the sorption of these chemicals was characterized in the laboratory. Experimental and environmental sorption coefficients for AEOs and PEGs showed average values from 3607 to 164,994 L/kg and from 74 to 32,862 L/kg, respectively. The sorption data were fitted to a Freundlich isotherm model with parameters n and log KF between 0.8-1.2 and 1.46-4.39 L/kg, respectively. AEO and PEG sorptions on marine sediment were also found to be mostly not affected by changes in salinity.

  5. Mass spectrometric behaviour of carboxylated polyethylene glycols and carboxylated octylphenol ethoxylates.

    PubMed

    Frańska, Magdalena; Zgoła, Agnieszka; Rychłowska, Joanna; Szymański, Andrzej; Łukaszewski, Zenon; Frański, Rafał

    2003-01-01

    Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra.

  6. Anaphylaxis to Polyethylene Glycol (Colyte®) in a Patient with Diverticulitis

    PubMed Central

    2016-01-01

    Polyethylene glycols (PEGs) are believed to be chemically inert agents, but larger PEG polymers could have immunogenicity. A 39-year-old man was referred to emergency room for loss of consciousness and dyspnea after taking of PEG-3350 (Colyte®). In laboratory findings, the initial serum tryptase level was increased to 91.9 mg/L (normal range: 0.00-11.40 mg/L) without any other laboratory abnormalities. The intradermal test with 10 mg/mL Colyte® showed a 5 × 5 mm wheal, but basophil activation and histamine releasability tests were negative. PEG-3350 is widely used as an osmotic laxative due to its lack of absorption from the gastrointestinal tract. However, the loss of mucosal integrity at gastrointestinal membrane such as diverticulitis may be a predisposing factor for anaphylaxis to Colyte®. We report a case of anaphylaxis induced by the ingestion of PEG-3350 in a patient with diverticulitis which might be a risk factor of anaphylaxis. PMID:27550498

  7. Polyethylene Glycol Preconditioning: An Effective Strategy to Prevent Liver Ischemia Reperfusion Injury

    PubMed Central

    Pantazi, Eirini; Calvo, Maria; Folch-Puy, Emma; Serafín, Anna; Panisello, Arnau; Adam, René; Roselló-Catafau, Joan

    2016-01-01

    Hepatic ischemia reperfusion injury (IRI) is an inevitable clinical problem for liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proven their effectiveness in various in vivo and in vitro models of tissue injury. The present study aims to investigate whether the intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) could be an effective strategy for rat liver preconditioning against IRI. PEG 35 was intravenously administered at 2 and 10 mg/kg to male Sprague Dawley rats. Then, rats were subjected to one hour of partial ischemia (70%) followed by two hours of reperfusion. The results demonstrated that PEG 35 injected intravenously at 10 mg/kg protected efficiently rat liver against the deleterious effects of IRI. This was evidenced by the significant decrease in transaminases levels and the better preservation of mitochondrial membrane polarization. Also, PEG 35 preserved hepatocyte morphology as reflected by an increased F-actin/G-actin ratio and confocal microscopy findings. In addition, PEG 35 protective mechanisms were correlated with the activation of the prosurvival kinase Akt and the cytoprotective factor AMPK and the inhibition of apoptosis. Thus, PEG may become a suitable agent to attempt pharmacological preconditioning against hepatic IRI. PMID:26981166

  8. In vivo degradation of polyurethane foam with 55 wt % polyethylene glycol.

    PubMed

    Broekema, Ferdinand I; Van Leeuwen, M Barbara M; Van Minnen, Baucke; Bos, Rudolf R M

    2015-11-01

    Most topical hemostatic agents are based on animal-derived products like collagen and gelatin. They carry the potential risk of pathogen transmission while adjustments in the production process of these materials are limited. A synthetic hemostatic agent based on polyurethane (PU) and polyethylene glycol (PEG) was developed to overcome these disadvantages. The goal of this study was to compare the degradation process of this biomaterial to collagen and gelatin hemostatic agents. Samples of the test materials were implanted subcutaneously in both rats and rabbits. The animals were sacrificed at certain time intervals up to three years and the explanted samples were microscopically assessed. The histological examination showed a comparable pattern of degradation for the different test materials. Remnants of gelatin and collagen were seen up to 26 and 39 weeks, respectively. For PU, it took up to three years before micro-particles of the material were no longer detected. All biomaterials showed a good biocompatibility and no severe foreign body reactions occurred. The good biocompatibility and predictable pattern of resorption indicate that PU can be used as a topical hemostatic agent. However, a degradation time comparable to collagen and gelatin would be favorable.

  9. Preparation of poly(ethylene glycol) protected nanoparticles with variable bioconjugate ligand density.

    PubMed

    Gindy, Marian E; Ji, Shengxiang; Hoye, Thomas R; Panagiotopoulos, Athanassios Z; Prud'homme, Robert K

    2008-10-01

    Maleimide-functional poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles (NPs) were prepared via the Flash NanoPrecipitation technique. Subsequent reaction with a model ligand, bovine serum albumin (BSA), was conducted using thiol-maleimide conjugation. Reaction of up to 22% of NP surface maleimide-PEG tethers was obtained, with the percent conversion being essentially independent of the ratio of maleimide-PEG to methyl-PEG over the range 30-100%, respectively. At the highest surface coverage, BSA is calculated to essentially cover the NP surface area. Reaction parameters (reaction order and docking constant) describing the extent of ligand conjugation were determined. The reaction order is applicable to the conjugation of ligands presenting free thiol functionalities, while the value of the docking constant is ligand-dependent and accounts for physical and dynamic properties of the ligand-PEG interaction. Jointly, the particle formation process, using block copolymer-directed kinetically controlled assembly and surface functionalization represent a versatile new platform for the preparation of bioconjugated NPs with accurate control of ligand density and minimal processing steps.

  10. Polyethylene Glycol-Fused Allografts Produce Rapid Behavioral Recovery After Ablation of Sciatic Nerve Segments

    PubMed Central

    Riley, D.C.; Bittner, G.D.; Mikesh, M.A.; Cardwell, N.L.; Pollins, A.C.; Ghergherehchi, C.L.; Sunkesula, S.R. Bhupanapadu; Ha, T.N.; Hall, B.T.D.; Poon, A.D.; Pyarali, M.; Boyer, R.B.; Mazal, A.T.; Munoz, N.; Trevino, R.C.; Schallert, T.; Thayer, W.P.

    2014-01-01

    Restoration of neuronal functions by outgrowths regenerating at ~1mm/d from the proximal stumps of severed peripheral nerves takes many weeks or months, if it occurs at all, especially after ablation of nerve segments. Distal segments of severed axons typically degenerate in 1–3 days. The purpose of this study was to show that Wallerian degeneration could be prevented or retarded and lost behavioral function restored following ablation of 0.5 – 1 cm segments of rat sciatic nerves in host animals. This is achieved using 0.8 – 1.1cm microsutured donor allografts treated with bioengineered solutions varying in ionic and polyethylene glycol (PEG) concentrations (modified PEG-fusion procedure), being careful not to stretch any portion of donor or host sciatic nerves. Our data show that PEG-fusion permanently restores axonal continuity within minutes as initially assessed by action potential conduction and intracellular diffusion of dye. Behavioral functions mediated by the sciatic nerve are largely restored within 2 – 4 wk as measured by the Sciatic Functional Index (SFI). Increased restoration of sciatic behavioral functions after ablating 0.5 – 1 cm segments is associated with greater numbers of viable myelinated axons within, and distal to, PEG-fused allografts. Many such viable myelinated axons are almost-certainly spared from Wallerian degeneration by PEG-fusion. PEG-fusion of donor allografts may produce a paradigm-shift in the treatment of peripheral nerve injuries. PMID:25425242

  11. Highly efficient SO₂ absorption and its subsequent utilization by weak base/polyethylene glycol binary system.

    PubMed

    Yang, Zhen-Zhen; He, Liang-Nian; Zhao, Ya-Nan; Yu, Bing

    2013-02-05

    A binary system consisting of polyethylene glycol (PEG, proton donor)/PEG-functionalized base with suitable basicity was developed for efficient gas desulfurization (GDS) and can be regarded as an alternative approach to circumvent the energy penalty problem in the GDS process. High capacity for SO(2) capture up to 4.88 mol of SO(2)/mol of base was achieved even under low partial pressure of SO(2). Furthermore, SO(2) desorption runs smoothly under mild conditions (N(2), 25 °C) and no significant drop in SO(2) absorption was observed after five-successive absorption-desorption cycles. On the other hand, the absorbed SO(2) by PEG(150)MeIm/PEG(150), being considered as the activated form of SO(2), can be directly transformed into value-added chemicals under mild conditions, thus eliminating the energy penalty for SO(2) desorption and simultaneously realizing recycle of the absorbents. Thus, this SO(2) capture and utilization (SCU) process offers an alternative way for GDS and potentially enables the SO(2) conversion from flue gas to useful chemicals as a value-added process.

  12. Efficiency of SPIONs functionalized with polyethylene glycol bis(amine) for heavy metal removal

    NASA Astrophysics Data System (ADS)

    Wanna, Yongyuth; Chindaduang, Anon; Tumcharern, Gamolwan; Phromyothin, Darinee; Porntheerapat, Supanit; Nukeaw, Jiti; Hofmann, Heirich; Pratontep, Sirapat

    2016-09-01

    Hybrid magnetic nanoparticles based on poly(methylmethacrylate) (PMMA) and super-paramagnetic iron oxide nanopaticles (SPIONs) with selective surface modification has been developed for heavy metal removal by applying external magnetic fields. The nanoparticles were prepared by the emulsion polymerization technique in an aqueous suspension of SPIONs. The hydrolysis of carboxyl functional group was then applied for grafting polyethylene glycol bis(amine)(PEG-bis(amine)) onto the PMMA-coated SPIONs. The morphology, the chemical structure and the magnetic properties of the grafted nanoparticles were investigated. The efficiency of the hybrid nanoparticles for heavy metal removal were conducted on Pb(II), Hg(II), Cu(II) and Co(II) in aqueous solutions.The metal concentration in the solutions after separation by the hybrid nanoparticles was determined by inductively coupled plasma optical emission spectrometer (ICP-OES). The results show the heavy metal uptake ratios of 0.08, 0.04, 0.03, and 0.01 mM per gramme of the grafted SPIONs for Pb(II), Hg(II), Cu(II), and Co(II), respectively. A competitive removal of Cu(II), Pb(II), Co(II) and Hg(II) ions in mixed metal salt solutions has also been studied.The heavy metal removal efficiency of the hybrid nanoparitcles was found to depend on the cation radius, in accordance with capture of metal ions by the amine group.

  13. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels.

    PubMed

    Bryant, Stephanie J; Chowdhury, Tina T; Lee, David A; Bader, Dan L; Anseth, Kristi S

    2004-03-01

    In approaches to tissue engineer articular cartilage, an important consideration for in situ forming cell carriers is the impact of mechanical loading on the cell composite structure and function. Photopolymerized hydrogel scaffolds based on poly(ethylene glycol) (PEG) may be synthesized with a range of crosslinking densities and corresponding macroscopic properties. This study tests the hypothesis that changes in the hydrogel crosslinking density influences the metabolic response of encapsulated chondrocytes to an applied load. PEG hydrogels were formulated with two crosslinking densities that resulted in gel compressive moduli ranging from 60 to 670 kPa. When chondrocytes were encapsulated in these PEG gels, an increase in crosslinking density resulted in an inhibition in cell proliferation and proteoglycan synthesis. Moreover, when the gels were dynamically loaded for 48 h in unconfined compression with compressive strains oscillating from 0 to 15% at a frequency of 1 Hz, cell proliferation and proteoglycan synthesis were affected in a crosslinking-density-dependent manner. Cell proliferation was inhibited in both crosslinked gels, but was greater in the highly crosslinked gel. In contrast, dynamic loading did not influence proteoglycan synthesis in the loosely crosslinked gel, but a marked decrease in proteoglycan production was observed in the highly crosslinked gel. In summary, changes in PEG hydrogel properties greatly affect how chondrocytes respond to an applied dynamic load.

  14. Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri.

    PubMed Central

    Obradors, N; Aguilar, J

    1991-01-01

    Biodegradation of polyethylene glycols (PEGs) of up to 13,000 to 14,000 molecular weight has been shown to be performed by a river water bacterial isolate (strain JA1001) identified as Pseudomonas stutzeri. A pure culture of strain JA1001 grew on PEG 1000 or PEG 10000 at 0.2% (wt/vol) as a sole source of carbon and energy with a doubling time of 135 or 150 min, respectively. Cultures metabolized 2 g of polymer per liter in less than 24 h and 10 g/liter in less than 72 h. The limit of 13,500 molecular weight in the size of the PEG sustaining growth and the presence of a PEG-oxidative activity in the periplasmic space indicated that PEGs cross the outer membrane and are subsequently metabolized in the periplasm. PEG oxidation was found to be catalyzed by PEG dehydrogenase, an enzyme that has been shown to be a single polypeptide. Characterization of PEG dehydrogenase revealed glyoxylic acid as the product of the PEG-oxidative cleavage. Glyoxylate supported growth by entering the cell and introducing its carbons in the general metabolism via the dicarboxylic acid cycle, as indicated by the ability of strain JA1001 to grow on this compound and the presence of malate synthase, the first enzyme in the pathway, in extracts of PEG-grown cells. Images PMID:1768106

  15. Patterned Array of Poly(ethylene glycol) Silane Monolayer for Label-Free Detection of Dengue

    PubMed Central

    Rosly, Nor Zida; Ahmad, Shahrul Ainliah Alang; Abdullah, Jaafar; Yusof, Nor Azah

    2016-01-01

    In the present study, the construction of arrays on silicon for naked-eye detection of DNA dengue was demonstrated. The array was created by exposing a polyethylene glycol (PEG) silane monolayer to 254 nm ultraviolet (UV) light through a photomask. Formation of the PEG silane monolayer and photomodifed surface properties was thoroughly characterized by using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results of XPS confirmed that irradiation of ultraviolet (UV) light generates an aldehyde functional group that offers conjugation sites of amino DNA probe for detection of a specific dengue virus target DNA. Employing a gold enhancement process after inducing the electrostatic interaction between positively charged gold nanoparticles and the negatively charged target DNA hybridized to the DNA capture probe allowed to visualize the array with naked eye. The developed arrays demonstrated excellent performance in diagnosis of dengue with a detection limit as low as 10 pM. The selectivity of DNA arrays was also examined using a single base mismatch and noncomplementary target DNA. PMID:27571080

  16. Time Dependence of Material Properties of Polyethylene Glycol Hydrogels Chain Extended with Short Hydroxy Acid Segments

    PubMed Central

    Barati, Danial; Moeinzadeh, Seyedsina; Karaman, Ozan; Jabbari, Esmaiel

    2014-01-01

    The objective of this work was to investigate the effect of chemical composition and segment number (n) on gelation, stiffness, and degradation of hydroxy acid-chain-extended star polyethylene glycol acrylate (SPEXA) gels. The hydroxy acids included glycolide (G,), L-lactide (L), p-dioxanone (D) and -caprolactone (C). Chain-extension generated water soluble macromers with faster gelation rates, lower sol fractions, higher compressive moduli, and a wide-ranging degradation times when crosslinked into a hydrogel. SPEGA gels with the highest fraction of inter-molecular crosslinks had the most increase in compressive modulus with n whereas SPELA and SPECA had the lowest increase in modulus. SPEXA gels exhibited a wide range of degradation times from a few days for SPEGA to a few weeks for SPELA, a few months for SPEDA, and many months for SPECA. Marrow stromal cells and endothelial progenitor cells had the highest expression of vasculogenic markers when co-encapsulated in the faster degrading SPELA gel. PMID:25267858

  17. Nanocomposites of Molybdenum Disulfide/Methoxy Polyethylene Glycol-co-Polypyrrole for Amplified Photoacoustic Signal.

    PubMed

    Lee, Hohyeon; Kim, Haemin; Nguyen, Thang Phan; Chang, Jin Ho; Kim, Soo Young; Kim, Hyuncheol; Kang, Eunah

    2016-11-02

    Photoacoustic activity is the generation of an ultrasonic signal via thermal expansion or bubble formation, stimulated by laser irradiation. Photoacoustic nanoplatforms have recently gained focus for application in bioelectric interfaces. Various photoacoustic material types have been evaluated, including gold nanoparticles, semiconductive π-conjugating polymers (SP), etc. In this study, surfactant-free methoxy-polyethylene glycol-co-polypyrrole copolymer (mPEG-co-PPyr) nanoparticles (NPs) and mPEG-co-PPyr NP/molybdenum disulfide (mPEG-co-PPyr/MoS2) nanocomposites (NCs) were prepared and their photoacoustic activity was demonstrated. The mPEG-co-PPyr NPs and mPEG-co-PPyr/MoS2 NCs both showed photoacoustic signal activity. The mPEG-co-PPyr/MoS2 NCs presented a higher photoacoustic signal amplitude at 700 nm than the mPEG-co-PPyr NPs. The enhanced photoacoustic activity of the mPEG-co-PPyr/MoS2 NCs might be attributed to heterogeneous interfacial contact between mPEG-co-PPyr and the MoS2 nanosheets due to complex formation. Laser ablation of MoS2 might elevate the local temperature and facilitate the thermal conductive transfer in the mPEG-co-PPyr/MoS2 NCs, amplifying PA signal. Our study, for the first time, demonstrates enhanced PA activity in SP/transition metal disulfide (TMD) composites as photoacoustic nanoplatforms.

  18. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery.

    PubMed

    Kar, Mrityunjoy; Vernon Shih, Yu-Ru; Velez, Daniel Ortiz; Cabrales, Pedro; Varghese, Shyni

    2016-01-01

    Cell-responsive hydrogels hold tremendous potential as cell delivery devices in regenerative medicine. In this study, we developed a hydrogel-based cell delivery vehicle, in which the encapsulated cell cargo control its own release from the vehicle in a protease-independent manner. Specifically, we have synthesized a modified poly(ethylene glycol) (PEG) hydrogel that undergoes degradation responding to cell-secreted molecules by incorporating disulfide moieties onto the backbone of the hydrogel precursor. Our results show the disulfide-modified PEG hydrogels disintegrate seamlessly into solution in presence of cells without any external stimuli. The rate of hydrogel degradation, which ranges from hours to months, is found to be dependent upon the type of encapsulated cells, cell number, and fraction of disulfide moieties present in the hydrogel backbone. The differentiation potential of human mesenchymal stem cells released from the hydrogels is maintained in vitro. The in vivo analysis of these cell-laden hydrogels, through a dorsal window chamber and intramuscular implantation, demonstrated autonomous release of cells to the host environment. The hydrogel-mediated implantation of cells resulted in higher cell retention within the host tissue when compared to that without a biomaterial support. Biomaterials that function as a shield to protect cell cargos and assist their delivery in response to signals from the encapsulated cells could have a wide utility in cell transplantation and could improve the therapeutic outcomes of cell-based therapies.

  19. Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance

    SciTech Connect

    Beckman, J.S.; Minor, R.L. Jr.; White, C.W.; Repine, J.E.; Rosen, G.M.; Freeman, B.A.

    1988-05-15

    Covalent conjugation of superoxide dismutase and catalase with polyethylene glycol (PEG) increases the circulatory half-lives of these enzymes from <10 min to 40 h, reduced immunogenicity, and decreases sensitivity to proteolysis. Because PEG has surface active properties and can induce cell fusion, the authors hypothesized that PEG conjugation could enhance cell binding and association of normally membrane-impermeable enzymes. Incubation of cultured porcine aortic endothelial cells with /sup 125/I-PEG-catalase or /sup 125/I-PEG-superoxide dismutase produced a linear, concentration-dependent increase in cellular enzyme activity and radioactivity. Fluorescently labeled PEG-superoxide dismutase incubated with endothelial cells showed a vesicular localization. Mechanical injury to cell monolayers, which is known to stimulate endocytosis, further increased the uptake of fluorescent PEG-superoxide dismutase. Addition of PEG and PEG-conjugated enzymes perturbed the spin-label binding environment, indicative of producing an increase in plasma membrane fluidity. Thus, PEG conjugation to superoxide dismutase and catalase enhances cell association of these enzymes in a manner which increases cellular enzyme activities and provides prolonged protection from partially reduced oxygen species.

  20. Surface modification of PDMS microchips with poly(ethylene glycol) derivatives for μTAS applications.

    PubMed

    de Campos, Richard Piffer Soares; Yoshida, Inez Valeria Pagotto; da Silva, José Alberto Fracassi

    2014-08-01

    In this work is presented a method for the modification of native PDMS surface in order to improve its applicability as a substrate for microfluidic devices, especially in the analysis of nonpolar analytes. Therefore, poly(ethylene glycol) divinyl ether modified PDMS substrate was obtained by surface modification of native PDMS. The modified substrate was characterized by attenuated total reflectance infrared spectroscopy, water contact angle measurements, and by evaluating the adsorption of rhodamine B and the magnitude of the EOF mobility. The reaction was confirmed by the spectroscopic evaluation. The formation of a well-spread water film over the surface immediately after the modification was an indicative of the modified surface hydrophilicity. This characteristic was maintained for approximately ten days, with a gradual return to a hydrophobic state. Fluorescence assays showed that the nonpolar adsorption property of PDMS was significantly decreased. The EOF mobility obtained was 3.6 × 10(-4) cm(2) V(-1) s(-1) , higher than the typical values found for native PDMS. Due to the better wettability promoted by the modification, the filling of the microchannels with aqueous solutions was facilitated and trapping of air bubbles was not observed.

  1. In situ formation of leak-free polyethylene glycol (PEG) membranes in microfluidic fuel cells.

    PubMed

    Ho, W F; Lim, K M; Yang, K-L

    2016-11-29

    Membraneless microfluidic fuel cells operated under two co-laminar flows often face serious fuel cross-over problems, especially when flow rates are close to zero. In this study, we show that polyethylene glycol (PEG) monomers can be cross-linked inside microfluidic channels to form leak-free PEG membranes, which prevent mixing of two incompatible electrolyte solutions while allowing diffusion of certain molecules (e.g. glucose) and ions. By using PEG monomers of different molecular weights and cross-linking conditions, we are able to tailor selectivity of the membrane to allow passage of glucose while blocking larger molecules such as trypan blue. As a proof of principle, a microfluidic fuel cell with a PEG membrane and two incompatible electrolytes (acid and base) is demonstrated. Thanks to the leak-free nature of the PEG membrane, these two electrolytes do not mix together even at very slow flow rates. This microfluidic fuel cell is able to generate a voltage up to ∼450 mV from 10 mM of glucose with a flow rate of 20 μL min(-1). This microfluidic fuel cell is potentially useful as a miniature power source for many applications.

  2. Biomechanical Performances of Networked Polyethylene Glycol Diacrylate: Effect of Photoinitiator Concentration, Temperature, and Incubation Time

    PubMed Central

    Khandaker, Morshed; Orock, Albert; Tarantini, Stefano; White, Jeremiah; Yasar, Ozlem

    2016-01-01

    Nutrient conduit networks can be introduced within the Polyethylene Glycol Diacrylate (PEGDA) tissue construct to enable cells to survive in the scaffold. Nutrient conduit networks can be created on PEGDA by macrochannel to nanochannel fabrication techniques. Such networks can influence the mechanical and cell activities of PEGDA scaffold. There is no study conducted to evaluate the effect of nutrient conduit networks on the maximum tensile stress and cell activities of the tissue scaffold. The study aimed to explore the influence of the network architecture on the maximum tensile stress of PEGDA scaffold and compared with the nonnetworked PEGDA scaffold. Our study found that there are 1.78 and 2.23 times decrease of maximum tensile stress due to the introduction of nutrient conduit networks to the PEGDA scaffold at 23°C and 37°C temperature conditions, respectively. This study also found statistically significant effect of network architecture, PI concentration, temperature, and wait time on the maximum failure stress of PEGDA samples (P value < 0.05). Cell viability results demonstrated that networked PEGDA hydrogels possessed increased viability compared to nonnetworked and decreased viability with increased photoinitiator concentrations. The results of this study can be used for the design of PEGDA scaffold with macrosize nutrient conduit network channels. PMID:26925104

  3. Evaluation of diclofenac sodium sustained release matrix pellets: impact of polyethylene glycols molecular weight.

    PubMed

    Ibrahim, A; Shazly, A

    2014-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000, were mixed with avicel PH 101 in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheometer was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 μm to 1085 μm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  4. EVALUATION OF DICLOFENAC SODIUM SUSTAINED RELEASE MATRIX PELLETS: IMPACT OF POLYETHYLENE GLYCOLS MOLECULAR WEIGHT.

    PubMed

    Ibrahim, Mohamed A; Shazly, Gamal A

    2015-01-01

    Sustained release matrix pellets loaded with 5% w/w diclofenac sodium (DS) were prepared using extrusion/spheronization technique. Different polyethylene glycols (PEGs) of different molecular weight, namely PEG 2000, PEG 4000 and PEG 6000 were mixed with avicel PH 101® in different weight ratios to manufacture the pellet formulations and water was used as a binder. Mix torque rheomter was used to characterize the pellets' wet mass. Also, the prepared pellets were characterized for their particle sizes, DS content, shape and morphology as well as the in vitro drug release. The results showed that increasing PEG weight ratio resulted in a reduction of wet mass torque as well as binder ratio, especially at PEG high weight ratios (30% and 50%) and the extent of lowering wet mass peak torque was inversely proportional to PEG molecular weight. The manufactured pellets exhibited size range of 993 to 1085 µm with small span values. The drug release from pellets was governed by the molecular weight of PEG used, since increasing PEG molecular weight resulted in slowing the drug release rate from pellets, but increasing its level resulted in enhancing release rate. This was attributed to increasing pellet wet mass peak torque by increasing PEG molecular weight and lowering it by increasing PEG level. The prepared pellets showed non-Fickian or anomalous drug release or the coupled diffusion/polymer relaxation.

  5. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol.

    PubMed

    Li, Ying; Kröger, Martin; Liu, Wing Kam

    2014-10-01

    Nanoparticles (NPs) are in use to efficiently deliver drug molecules into diseased cells. The surfaces of NPs are usually grafted with polyethylene glycol (PEG) polymers, during so-called PEGylation, to improve water solubility, avoid aggregation, and prevent opsonization during blood circulation. The interplay between grafting density σp and grafted PEG polymerization degree N makes cellular uptake of PEGylated NPs distinct from that of bare NPs. To understand the role played by grafted PEG polymers, we study the endocytosis of 8 nm sized PEGylated NPs with different σp and N through large scale dissipative particle dynamics (DPD) simulations. The free energy change Fpolymer of grafted PEG polymers, before and after endocytosis, is identified to have an effect which is comparable to, or even larger than, the bending energy of the membrane during endocytosis. Based on self-consistent field theory Fpolymer is found to be dependent on both σp and N. By incorporating Fpolymer, the critical ligand-receptor binding strength for PEGylated NPs to be internalized can be correctly predicted by a simple analytical equation. Without considering Fpolymer, it turns out impossible to predict whether the PEGylated NPs will be delivered into the diseased cells. These simulation results and theoretical analysis not only provide new insights into the endocytosis process of PEGylated NPs, but also shed light on the underlying physical mechanisms, which can be utilized for designing efficient PEGylated NP-based therapeutic carriers with improved cellular targeting and uptake.

  6. Polyethylene glycol-polyvinyl alcohol grafted copolymer: study of the bioavailability after oral administration to rats.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Fabian, Eric; Leibold, Edgar; van Ravenzwaay, Bennard

    2013-07-01

    The absorption, urinary excretion, and the biliary excretion of a single oral dose of 10 or 1000 mg/kg bw of (14)C-polyethylene glycol-polyvinyl alcohol (PEG-PVA) grafted copolymer were studied in adult male and female rats. In a balance/excretion experiment, the total excretion of ingested radioactivity was determined over a period of 168 h and residual radioactivity was detected in selected tissues and the carcass. In a biliary excretion experiment, excretion of radioactivity via the bile duct was determined over a period of 48 h after administration of the substance to cannulated rats. Most, if not all, of the radioactivity (>100%) was excreted within 48 h via the feces regardless of sex or dose. Urinary excretion was very limited: 0.45-0.50% of dose at the low dose and 0.22-0.27% of dose at the high dose. At both dose levels, residual radioactivity in the carcass and all organs and tissues after 168 h was ≤ 0.02% of dose. Biliary excretion was 0.01-0.02% of dose. Based on these findings, the bioavailability of PEG-PVA grafted copolymer was determined to be <1% demonstrating that absorption was virtually negligible following a single oral administration to male and female rats.

  7. [Effect of polyethylene glycol-lipid derivatives on the stability of grafted liposomes].

    PubMed

    Xu, Yang; Shi, Li; Deng, Yi-hui

    2011-10-01

    It is reported that polyethylene glycol-lipid (PEG-lipid) derivatives increase liposomes stability, prolong the blood circulation of liposomes, enhance their tumor-targeting efficiency, and improve drug efficacy. Therefore, it is of great importance to investigate the influence of modified PEG-lipid derivatives on the physical, chemical, and biological characteristics of liposomes for the promotion of dealing with the existed problems, such as the accelerated blood clearance (ABC) phenomenon when repeated intravous injection at a certain time-interval, and developing novel targeted pharmaceutical preparations. In this review, the effects of modified PEG-lipid derivatives were summarized in many aspects. It indicats that the chemical bonds (amide, ether, ester, and disulfide) between PEG and lipid, as well as the species of lipids, such as the commonly used phosphatidylethanolamine, cholesterol, and diacylglycerol have substantial effects on the grafted liposomes stability in vitro and in vivo. Besides, the properties of lipids (the fatty acid chain length and saturation) and the groups (methoxy, carboxylic and amino) at the distal ends of the PEG chains were also considered to be important factors. In the end, the influence of the average molecular weight of PEG and the molar ratio of PEG-lipid derivatives in the total lipid were further focused.

  8. Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles.

    PubMed

    Nicholas, A R; Scott, M J; Kennedy, N I; Jones, M N

    2000-01-15

    Liposomes have been prepared by the vesicle extrusion method (VETs) from mixtures of dipalmitoylphosphatidylcholine (DPPC), phosphatidylinositol (PI) and dipalmitoylphosphatidylethanolamine with covalently linked poly(ethylene glycol) molecular mass 5000 and 2000 (DPPE-PEG 5000 and DPPE-PEG 2000) covering a range of 0-7.5 mole%. The encapsulation of D-glucose has been studied and found to be markedly dependent on the mole% DPPE-PEG. The permeability of the liposomes to D-glucose has been measured both as a function of temperature and liposome composition. The permeability coefficients for D-glucose increase with mole% DPPE-PEG 5000 and with temperature over the range 25-50 degrees C. The activation energies for glucose permeability range from 90 to 23 kJ mol(-1). The decrease in activation energy with increasing temperature is attributed to an increasing number of bilayer defects as the liposome content of PEG-grafted lipid is increased. The dependence of D-glucose encapsulation as a function of PEG-grafted lipid content is discussed in terms of the conformation of the PEG molecules on the inner surface of the bilayer. For liposomes containing DPPE-PEG 5000 the relative percentage encapsulation of glucose, assuming that the PEG surface layer excludes glucose, is comparable to that predicted from the mushroom and brush conformational models.

  9. The antithrombotic versus calcium antagonistic effects of polyethylene glycol grafted bovine pericardium.

    PubMed

    Vasudev, S C; Chandy, T; Sharma, C P

    1999-07-01

    Cardiovascular calcification, the formation of calcium phosphate deposits in cardiovascular tissue, is a common end stage phenomenon affecting a wide variety of bioprosthesis. This study proposes a novel approach of reducing pericardial calcification and thrombosis via coupling polyethylene glycols (PEG) to glutaraldehyde treated bovine pericardium via acetal linkages. The calcification of the PEG modified tissue and the control pericardium (extracted and glutaraldehyde treated) was investigated by in vivo rat subcutaneous implantation models and by in vitro meta stable calcium phosphate solutions. Scanning electron microscopy showed that calcification primarily involved the surface of collagen fibrils and the intrafibrillar spaces. However, the grafting of pericardium with PEG-20,000 had dramatically modified the surface and subsequently inhibited the deposits of calcium. Further, the modified tissue had also reduced the platelet surface attachment. Such a reduced calcification of PEG modified tissues can be explained by decrease of free aldehyde groups, a space filling effect and therefore improved biostability and synergistic blood compatible effects of PEG after coupling to the tissues. This simple method can be a useful anticalcification treatment for implantable tissue valves.

  10. Developmental toxicity of polyethylene glycol-g-polyvinyl alcohol grafted copolymer in rats and rabbits.

    PubMed

    Heuschmid, Franziska F; Schneider, Steffen; Schuster, Paul; Lauer, Birthe; van Ravenzwaay, Bennard

    2013-07-01

    Polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was evaluated in developmental toxicity studies with Wistar rats and Himalayan rabbits. Pregnant Wistar rats were gavaged with 0 (vehicle control), 100, 300, or 1000 mg PEG-PVA grafted copolymer/kg bw/day from gestation day (GD) 6-15. Pregnant Himalayan rabbits received the same treatment from GD 6 to 19. On GD 20 and 29 for rats and rabbits, respectively, the animals were euthanized and were examined grossly. For each dam, corpora lutea were counted and number and distribution of implantation sites were determined. The fetuses were removed, sexed, weighed, and evaluated for any external, soft tissue, and skeletal findings. No significant findings were found that could be attributed to administration of PEG-PVA grafted copolymer. Under the conditions of these studies, the no-observed-adverse-effect level (NOAEL) for maternal and developmental toxicity in both species was the highest dose tested of 1000 mg/kg bw/day.

  11. Polyethylene glycol-g-polyvinyl alcohol grafted copolymer: reproductive toxicity study in Wistar rats.

    PubMed

    Heuschmid, Franziska F; Schneider, Steffen; Schuster, Paul; Lauer, Birthe; van Ravenzwaay, Bennard

    2013-07-01

    Polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was administered by gavage to groups of 25 male and 25 female young Wistar rats at doses of 0 (vehicle control), 100, 300, or 1000 mg/kg bw/day for one generation (F0). The study followed the treated F0 generation through mating, gestation, lactation, and weaning of the F1 generation. F1 animals were mated and followed to gestation day (GD) 15-17 at which time F2 implants were evaluated. There were no indications from the various clinical and gross pathological examinations that the oral administration of PEG-PVA grafted copolymer to the F0-parental rats produced any signs of general, reproductive, or developmental toxicity in the F0 or F1 animals or F2 implants. Based on the lack of any dose-related or biologically relevant effects on fertility, reproduction, development, and overall health of rats gavaged with PEG-PVA grafted copolymer and their progeny, the no-observed-adverse effect level (NOAEL) was determined to be the highest dose tested of 1000 mg/kg bw/day.

  12. Effect of polyethylene glycol grafted onto islet capsules on prevention of splenocyte and cytokine attacks.

    PubMed

    Lee, Dong Yun; Nam, Jong Hee; Byun, Youngro

    2004-01-01

    In the graft rejection of transplanted islets, the host's immune cells recognize the islets as antigens, which then stimulate the immune cells to begin the cytokine secretion and also the proliferation of immune cells. To prevent the recognition of islets by the immune cells, we grafted biocompatible polyethylene glycol (PEG) onto the collagen capsule of islets without incurring any changes in the morphology and function of islets. To evaluate the efficiency of PEG grafting, PEG-grafted islets were cultured with splenocytes consisting mainly of lymphocytes and macrophages. A splenocyte proliferation assessment using a BrdU incorporation assay showed that the PEG-grafted islets did not stimulate the splenocytes. In addition, the viability and microorganisms in islet cells of co-cultured PEG-grafted islets were not altered. However, in the co-culture of free islets (control) splenocytes were stimulated; they mainly secreted TNF-alpha and strongly affected the viability and structure of free islets. Furthermore, when islets were treated with the rat recombinant TNF-alpha for 7 days, the viabilities of PEG-grafted and free islets were significantly damaged, although the viability of PEG-grafted islets was higher than that of free islets by nearly three times. These results demonstrate that PEG grafted on the surface of islets could prevent the recognition of islets by splenocytes, but could not completely protect islets from cytokines.

  13. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-14

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices.

  14. Polyethylene glycol-grafted polyethylenimine used to enhance adenovirus gene delivery.

    PubMed

    Singarapu, Kumar; Pal, Ivy; Ramsey, Joshua D

    2013-07-01

    An improved adenoviral-based gene delivery vector was developed by complexing adenovirus (Ad) with a biocompatible, grafted copolymer PEG-g-PEI composed of polyethylene glycol (PEG) and polyethylenimine (PEI). Although an Ad-based gene vector is considered relatively safe, its native tropism, tendency to elicit an immune response, and susceptibility to inactivating antibodies makes the virus less than ideal. The goal of the current study was to determine whether Ad could be complexed with a PEG-g-PEI copolymer that would enable the virus to transduce cells lacking the Ad receptor, while avoiding the issues commonly associated with PEI. A copolymer library was synthesized using 2 kDa PEG and either linear or branched PEI (25 kDa) with a PEG to PEI grafting ratio of 10, 20, or 30. The results of the study indicate that PEG-g-PEI/Ad complexes are indeed able to transduce CAR-negative NIH 3T3 cells. The results also demonstrate that the PEG-g-PEI/Ad complexes are less toxic, less hemolytic, and more appropriately sized than PEI/Ad complexes.

  15. Subchronic toxicity of polyethylene glycol-g-polyvinyl alcohol grafted copolymer.

    PubMed

    Heuschmid, Franziska F; Schuster, Paul; Lauer, Birthe; Buesen, Roland; Mellert, Werner; Groeters, Sibylle; van Ravenzwaay, Bennard

    2013-07-01

    The safety of polyethylene glycol-g-polyvinyl alcohol (PEG-PVA) grafted copolymer was evaluated in a 13-week oral toxicity study in rats and in a 9-month oral toxicity study in dogs. Wistar rats were administered 600, 3000, or 15,000 ppm PEG-PVA grafted copolymer in their drinking water whereas beagle dogs were fed 3000, 10,000, or 30,000 ppm PEG-PVA grafted copolymer in the diet. There were no mortalities, no adverse clinical signs, no toxicologically adverse effects on body weight or body weight gain, feed consumption, hematological, clinical chemistry or urinary parameters, or histopathology in either species. In rats, no treatment-related effects were observed in the functional observational battery (FOB) or related measurements of motor activity. Increased water consumption observed in rats at the highest dose was the only test substance-induced effect noted. The no-observed-adverse-effect level (NOAEL) was the highest concentration tested in both species: 15,000 ppm in rats (corresponding to a daily intake of 1611 mg/kg bw for males and 2191 mg/kg bw for females) and 30,000 ppm in dogs (corresponding to a mean daily intake of 783 mg/kg bw for males and 811 mg/kg bw for females).

  16. Two surface gradients of polyethylene glycol for a reduction in protein adsorption

    PubMed Central

    Gooch, Nathan W.; Hlady, Vladimir

    2016-01-01

    Polyethylene glycol (PEG) coatings have been commonly used in reducing protein adsorption with the intent of improving a biomaterial’s biocompatibility. To elucidate the role of PEG surface density in reducing protein adsorption, two types of grafted PEG surface density gradients were evaluated for the adsorption and desorption of albumin and fibrinogen, two blood proteins. PEG density gradients were characterized using contact angle measurements and X-ray photoelectron spectroscopy. Total internal reflection fluorescence was used to measure protein adsorption kinetics and adsorption profiles on the two types of PEG gradients. The PEG gradient generated by the flow method decreased adsorption of both proteins in proportion to the PEG surface density; however, their desorption by buffer solution from the grafted PEG layer was not complete. In contrast, desorption of two proteins from the grafted PEG layer generated by a UV oxidation method resulted in near-zero adsorbed amount. The difference between the two types of gradients might have originated from counter-diffusion of PEG and water molecules occurring during the flow method procedure.

  17. Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery After Spinal Cord Injury

    PubMed Central

    Papastefanaki, Florentia; Jakovcevski, Igor; Poulia, Nafsika; Djogo, Nevena; Schulz, Florian; Martinovic, Tamara; Ciric, Darko; Loers, Gabrielle; Vossmeyer, Tobias; Weller, Horst; Schachner, Melitta; Matsas, Rebecca

    2015-01-01

    Failure of the mammalian central nervous system (CNS) to regenerate effectively after injury leads to mostly irreversible functional impairment. Gold nanoparticles (AuNPs) are promising candidates for drug delivery in combination with tissue-compatible reagents, such as polyethylene glycol (PEG). PEG administration in CNS injury models has received interest for potential therapy, but toxicity and low bioavailability prevents clinical application. Here we show that intraspinal delivery of PEG-functionalized 40-nm-AuNPs at early stages after mouse spinal cord injury is beneficial for recovery. Positive outcome of hind limb motor function was accompanied by attenuated inflammatory response, enhanced motor neuron survival, and increased myelination of spared or regrown/sprouted axons. No adverse effects, such as body weight loss, ill health, or increased mortality were observed. We propose that PEG-AuNPs represent a favorable drug-delivery platform with therapeutic potential that could be further enhanced if PEG-AuNPs are used as carriers of regeneration-promoting molecules. PMID:25807288

  18. Immobilization of oriented protein molecules on poly(ethylene glycol)-coated Si(111).

    PubMed

    Cha, Taewoon; Guo, Athena; Jun, Yongseok; Pei, Duanqing; Pei, Duanquing; Zhu, Xiao-Yang

    2004-07-01

    A high-density poly(ethylene glycol) (PEG)-coated Si(111) surface is used for the immobilization of polyhistidine-tagged protein molecules. This process features a number of properties that are highly desirable for protein microarray technology: (i) minimal nonspecific protein adsorption; (ii) highly uniform surface functionality; (iii) controlled protein orientation; and (iv) highly specific immobilization reaction without the need of protein purification. The high-density PEG-coated silicon surface is obtained from the reaction of a multi-arm PEG (mPEG) molecule with a chlorine terminated Si(111) surface to give a mPEG film with thickness of 5.2 nm. Four out of the eight arms on each immobilized mPEG molecule are accessible for linking to the chelating iminodiacetic acid (IDA) groups for the binding of Cu(2+) ions. The resulting Cu(2+)-IDA-mPEG-Si(111) surface is shown to specifically bind 6x histidine-tagged protein molecules, including green fluorescent protein (GFP) and sulfotransferase (ST), but otherwise retains its inertness towards nonspecific protein adsorption. We demonstrate a particular advantage of this strategy: the possibility of protein immobilization without the need of prepurification. Surface concentrations of relevant chemical species are quantitatively characterized at each reaction step by X-ray photoelectron spectroscopy (XPS). This kind of quantitative analysis is essential in tuning surface concentration and chemical environment for optimal sensitivity in probe-target interaction.

  19. Preparation and characterization of organic-inorganic poly(ethylene glycol)/WS{sub 2} nanocomposite

    SciTech Connect

    Xu Baihuan; Lin Bizhou . E-mail: bzlin@hqu.edu.cn; Sun Dongya; Ding Cong; Liu Xuezhong; Xiao Zijing

    2007-09-04

    Layered nanocomposite PEG/WS{sub 2}, intercalating oligomeric poly(ethylene glycol) (PEG6000) into the tungsten disulfide host galleries, was synthesized using the exfoliation-adsorption technique. X-ray diffraction revealed that the intercalated oligomer within the host galleries is in a double-layer arrangement with an interlayer expansion of about 8.8 A. The optimum conditions were explored to prepare the single-phase product with a composition of Li{sub 0.12}(PEG){sub 1.51}WS{sub 2}. Thermal analyses suggested that the resulting material shows good thermal stability, with the decomposition of the interacted oligomeric chains within the disulfide galleries occurring at around 258 deg. C. Despite high conductivity of the host material, those of the PEG/WS{sub 2} nanocomposite were found to be high in the order of 1 x 10{sup -2} S cm{sup -1} at ambient temperature, resulted from the host guest-host charge transfers.

  20. Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications.

    PubMed

    Thomas, Anja; Müller, Sophie S; Frey, Holger

    2014-06-09

    Polyglycerols (sometimes also called "polyglycidols") represent a class of highly biocompatible and multihydroxy-functional polymers that may be considered as a multifunctional analogue of poly(ethylene glycol) (PEG). Various architectures based on a polyglycerol scaffold are feasible depending on the monomer employed. While polymerization of glycidol leads to hyperbranched polyglycerols, the precisely defined linear analogue is obtained by using suitably protected glycidol as a monomer, followed by removal of the protective group in a postpolymerization step. This review summarizes the properties and synthetic approaches toward linear polyglycerols (linPG), which are at present mainly based on the application of ethoxyethyl glycidyl ether (EEGE) as an acetal-protected glycidol derivative. Particular emphasis is placed on the manifold functionalization strategies including, e.g., the synthesis of end-functional linPGs or multiheterofunctional modifications at the polyether backbone. Potential applications like bioconjugation and utilization as a component in degradable biomaterials or for diagnostics, in which polyglycerol acts as a promising PEG substitute are discussed. In the last section, the important role of linear polyglycerol as a macroinitiator or as a highly hydrophilic segment in block co- or terpolymers is highlighted.

  1. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery

    PubMed Central

    Kar, Mrityunjoy; Shih, Yu-Ru Vernon; Velez, Daniel Ortiz; Cabrales, Pedro; Varghese, Shyni

    2015-01-01

    Cell-responsive hydrogels hold tremendous potential as cell delivery devices in regenerative medicine. In this study, we developed a hydrogel-based cell delivery vehicle, in which the encapsulated cell cargo control its own release from the vehicle in a protease-independent manner. Specifically, we have synthesized a modified poly(ethylene glycol) (PEG) hydrogel that undergoes degradation responding to cell-secreted molecules by incorporating disulfide moieties onto the backbone of the hydrogel precursor. Our results show the disulfide-modified PEG hydrogels disintegrate seamlessly into solution in presence of cells without any external stimuli. The rate of hydrogel degradation, which ranges from hours to months, is found to be dependent upon the type of encapsulated cells, cell number, and fraction of disulfide moieties present in the hydrogel backbone. The differentiation potential of human mesenchymal stem cells released from the hydrogels is maintained in vitro. The in vivo analysis of these cell-laden hydrogels, through a dorsal window chamber and intramuscular implantation, demonstrated autonomous release of cells to the host environment. The hydrogel-mediated implantation of cells resulted in higher cell retention within the host tissue when compared to that without a biomaterial support. Biomaterials that function as a shield to protect cell cargos and assist their delivery in response to signals from the encapsulated cells could have a wide utility in cell transplantation and could improve the therapeutic outcomes of cell-based therapies. PMID:26606444

  2. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells.

    PubMed

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml(-1)) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses.

  3. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles

    PubMed Central

    Rider, Mark A.; Hurwitz, Stephanie N.; Meckes, David G.

    2016-01-01

    Initially thought to be a means for cells to eliminate waste, secreted extracellular vesicles, known as exosomes, are now understood to mediate numerous healthy and pathological processes. Though abundant in biological fluids, purifying exosomes has been challenging because their biophysical properties overlap with other secreted cell products. Easy-to-use commercial kits for harvesting exosomes are now widely used, but the relative low-purity and high-cost of the preparations restricts their utility. Here we describe a method for purifying exosomes and other extracellular vesicles by adapting methods for isolating viruses using polyethylene glycol. This technique, called ExtraPEG, enriches exosomes from large volumes of media rapidly and inexpensively using low-speed centrifugation, followed by a single small-volume ultracentrifugation purification step. Total protein and RNA harvested from vesicles is sufficient in quantity and quality for proteomics and sequencing analyses, demonstrating the utility of this method for biomarker discovery and diagnostics. Additionally, confocal microscopy studies suggest that the biological activity of vesicles is not impaired. The ExtraPEG method can be easily adapted to enrich for different vesicle populations, or as an efficient precursor to subsequent purification techniques, providing a means to harvest exosomes from many different biological fluids and for a wide variety of purposes. PMID:27068479

  4. Doxycycline loaded poly(ethylene glycol) hydrogels for healing vesicant-induced ocular wounds

    PubMed Central

    Anumolu, SivaNaga S; DeSantis, Andrea S; Menjoge, Anupa R; Hahn, Rita A; Beloni, John A; Gordon, Marion K; Sinko, Patrick J

    2015-01-01

    Half mustard (CEES) and nitrogen mustard (NM) are commonly used surrogates and vesicant analogs of the chemical warfare agent sulfur mustard. In the current study, in situ forming poly(ethylene glycol) (PEG)-based doxycycline hydrogels are developed and evaluated for their wound healing efficacy in CEES and NM exposed rabbit corneas in organ culture. The hydrogels, characterized by UV-Vis spectrophotometry, rheometry, and swelling kinetics, showed that the hydrogels are optically transparent, have good mechanical strength and a relatively low degree of swelling (<7%). In vitro doxycycline release from the hydrogel disks (0.25% w/v) was found to be biphasic with release half times of ~12 and 72 h, respectively, with 80–100% released over a 7-day period. Permeation of doxycycline through vesicant wounded corneas was found to be 2.5 to 3.4 fold higher than non-wounded corneas. Histology and immunofluorescence studies showed a significant reduction of matrix metalloproteinase-9 (MMP-9) and improved healing of vesicant exposed corneas by doxycycline hydrogels compared to a similar dose of doxycycline delivered in phosphate buffered saline (PBS, pH 7.4). In conclusion, the current studies demonstrate that the doxycycline-PEG hydrogels accelerate corneal wound healing after vesicant injury offering a therapeutic option for ocular mustard injuries. PMID:19853296

  5. Adsorption of hydrophobically end-capped poly(ethylene glycol) on cellulose.

    PubMed

    Holappa, Susanna; Kontturi, Katri S; Salminen, Arto; Seppälä, Jukka; Laine, Janne

    2013-11-12

    Adsorption of poly(ethylene glycol), hydrophobically end-capped with octadecenylsuccinic anhydride (OSA-PEG-OSA), on an ultrathin film of cellulose has been studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). Normally, PEG does not adsorb on cellulosic surfaces, but the use of the telechelic hydrophobic modification was found to promote adsorption. The influence of the conformation of the polymer in solution prior to adsorption and the subsequent properties of the adsorbed layer were investigated. The adsorption experiments were done at concentrations below and above the critical association concentration. The adsorption of OSA-PEG-OSA on cellulose was observed to occur in four distinct stages. Because of the amphiphilic nature of cellulose, further adsorption experiments were performed on hydrophobic (polystyrene) and hydrophilic (silica) model substrates to illuminate the contribution of hydrophobic and hydrophilic factors in the adsorption phenomenon. As expected, the kinetics and the mechanism of adsorption were strongly dependent on the chemical composition of the substrate.

  6. Electrospun polyamide-polyethylene glycol nanofibers for headspace solid-phase microextration.

    PubMed

    Bagheri, Habib; Najarzadekan, Hamid; Roostaie, Ali

    2014-07-01

    A solution of polyamide (PA) containing polyethylene glycol (PEG) as a side low-molecular-weight polymer was electrospun. After synthesizing the PA-PEG nanofibers, the constituent was subsequently removed (modified PA) and confirmed by Fourier transform infrared spectroscopy. The scanning electron microscopy images showed an average diameter of 640 and 148 nm for PA and PA-PEG coatings, respectively, while the latter coating structure was more homogeneous and porous. The extraction efficiencies of PA, PA-PEG, and the modified PA fiber coatings were assayed by headspace solid-phase microextraction of a number of chlorophenols from real water samples followed by their determination by gas chromatography with mass spectrometry. To prepare the most appropriate coatings, the amounts and the flow rate of the electrospinning solution were investigated. Various extraction parameters, such as the salt content, desorption condition, extraction temperature, and time were optimized. The limits of detection of the method were in the range of 0.8-25 ng/L, while the RSDs at two concentration levels of 200 and 80 ng/L were between 2.1 and 12.2%. The analysis of real water samples led to relative recoveries between 85 and 98% with a linearity of 8-1500 ng/L.

  7. Doxycycline loaded poly(ethylene glycol) hydrogels for healing vesicant-induced ocular wounds.

    PubMed

    Anumolu, SivaNaga S; DeSantis, Andrea S; Menjoge, Anupa R; Hahn, Rita A; Beloni, John A; Gordon, Marion K; Sinko, Patrick J

    2010-02-01

    Half mustard (CEES) and nitrogen mustard (NM) are commonly used surrogates and vesicant analogs of the chemical warfare agent sulfur mustard. In the current study, in situ forming poly(ethylene glycol) (PEG)-based doxycycline hydrogels are developed and evaluated for their wound healing efficacy in CEES and NM-exposed rabbit corneas in organ culture. The hydrogels, characterized by UV-Vis spectrophotometry, rheometry, and swelling kinetics, showed that the hydrogels are optically transparent, have good mechanical strength and a relatively low degree of swelling (<7%). In vitro doxycycline release from the hydrogel disks (0.25% w/v) was found to be biphasic with release half times of approximately 12 and 72h, respectively, with 80-100% released over a 7-day period. Permeation of doxycycline through vesicant wounded corneas was found to be 2.5 to 3.4 fold higher than non-wounded corneas. Histology and immunofluorescence studies showed a significant reduction of matrix metalloproteinase-9 (MMP-9) and improved healing of vesicant-exposed corneas by doxycycline hydrogels compared to a similar dose of doxycycline delivered in phosphate buffered saline (PBS, pH 7.4). In conclusion, the current studies demonstrate that the doxycycline-PEG hydrogels accelerate corneal wound healing after vesicant injury offering a therapeutic option for ocular mustard injuries.

  8. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties.

    PubMed

    Hashemi Doulabi, Azadehsadat; Mirzadeh, Hamid; Imani, Mohammad; Samadi, Nasrin

    2013-01-30

    The objective of this work was to prepare chitosan/polyethylene glycol fumarate (chitosan/PEGF) blend films as wound dressings and to evaluate the influence of composition ratio on the blending properties of the films. Blending chitosan with PEGF obviated the brittleness of neat chitosan film. Film topography performed by atomic force microscopy illustrated that blending could increase and control the surface roughness of the neat film. Their water vapor transmission rates were close to the range of 904-1447 g(-2)day(-1) found to be proper candidates for dressing the wounds with moderate exudates. Controlled water solubility, swelling, wettability and surface tension of the blend films were also evaluated. The blend films showed a powerful antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus (Kill%>99.76 ± 0.16%). Physical properties as well as antibacterial activity assessments showed that among different compositions, the film comprising 80 wt% chitosan and 20 wt% PEGF is a suitable candidate for biomedical applications as a wound dressing material.

  9. Polyethylene glycol enhances axolemmal resealing following transection in cultured cells and in ex vivo spinal cord.

    PubMed

    Nehrt, Ashley; Hamann, Kristin; Ouyang, Hui; Shi, Riyi

    2010-01-01

    The integrity of the neuronal membrane is critical for its function as well as survival, and ineffective repair of damaged membranes may be one of the key factors underlying the neuronal degeneration and overall functional loss that occurs after spinal cord injury and traumatic brain injury. Previously, we showed that polyethylene glycol (PEG) can reseal axonal membranes following compression in isolated guinea pig spinal cord white matter. We now report that 10 mM PEG can also significantly enhance membrane resealing following transection in the clinically relevant conditions of low extracellular Ca(2+) and low temperature. Such beneficial effects were demonstrated both functionally, through membrane potential measured by double sucrose gap apparatus, and anatomically, through horseradish peroxidase and tetramethyl rhodamine dextran dye exclusion assays. We further noted that axons with small diameters preferentially benefited from PEG-mediated axolemmal resealing. Using atomic force microscopy, we further showed that PEG can effectively reduce neuronal membrane surface tension. We hypothesize that PEG may promote axolemmal resealing by increasing membrane line tension and reducing membrane tension, thus creating conditions more favorable to membrane resealing. In summary, these studies suggest that PEG is effective under the clinically relevant conditions of low Ca(2+) and temperature, and thus has the potential to be used in combination with other more established interventions in spinal cord and traumatic brain injury.

  10. Increased absorption of polyethylene glycol 600 deposited in the colon in active ulcerative colitis.

    PubMed Central

    Almer, S; Franzén, L; Olaison, G; Smedh, K; Ström, M

    1993-01-01

    A defect in the barrier function of the intestinal mucosa has been proposed as important in both the pathogenesis and systemic manifestations of inflammatory bowel disease. After colonoscopy, polymers of polyethylene glycol (PEG) with molecular weights of 414-810 (mean 600), were instilled in the descending colon of patients with ulcerative colitis (n = 17) and in controls without intestinal inflammation (n = 8). The patients with active ulcerative colitis (n = 6) had a significantly increased uptake of PEGs in the molecular weight range 458-810, measured as urinary excretion over the first 6 hours after instillation. The median values for their excretion were 2.85-3.80% of PEGs instilled compared with 0.32-0.94% for patients in remission (n = 11) (p < 0.05-0.01) and 0.17-0.60% for the controls (p < 0.05-0.01). The differences in absorption of PEG 414 did not reach the present level of statistical significance. There was a positive correlation between PEG absorption and the endoscopic and histological grading of inflammatory activity in the sigmoid colon (p < 0.01-0.001). These findings support a correlation between the presence of active inflammation and PEG absorption. There was little evidence to support the presence of a primary defect in the colonic barrier in patients with ulcerative colitis. PMID:8491399

  11. pH-Responsive globular poly(ethylene glycol) for photodynamic tumor therapy.

    PubMed

    Ku, Eun Bi; Lee, Dong Jin; Na, Kun; Choi, Sung-Wook; Youn, Yu Seok; Bae, Soo Kyung; Oh, Kyung Taek; Lee, Eun Seong

    2016-12-01

    In this study, we report the development of extremely small-sized globular poly(ethylene glycol) (gPEG) that can specifically recognize tumor acidic pH. gPEG coupled with chlorin e6 (Ce6, a photosensitizing drug) and 2,3-dimethylmaleic acid (DMA, as a pH-responsive moiety) (gPEG-Ce6-DMA, particle size: 3-4nm in diameter) was easily dispersed in phosphate buffered saline (PBS) without any of the nanoparticle fabrication steps. We observed that gPEG-Ce6-DMA displayed pH-dependent zeta-potential changes due to coupling (at pH 7.4) or decoupling (at pH 6.8-6.0) of DMA. As a result, the uptake of gPEG-Ce6-DMA was significantly increased in tumors at acidic pH, likely due to the decoupling of DMA (backing cationic primary amines). As a result, the preferential cellular uptake of gPEG-Ce6-DMA at acidic pH allowed for a significant enhancement of in vitro/in vivo photodynamic tumor cell ablation under light illumination.

  12. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling.

    PubMed

    Ito, Yoshihiro; Hasuda, Hirokazu; Sakuragi, Makoto; Tsuzuki, Saki

    2007-11-01

    Photoreactive poly(ethylene glycol) (PEG) was prepared and the polymer was photoimmobilized on organic, inorganic and metal surfaces to reduce their interaction with proteins and cells. The photoreactive PEG was synthesized by co-polymerization of methacrylate-PEG and acryloyl 4-azidobenzene. Surface modification was carried in the presence and the absence of a micropatterned photomask. It was then straightforward to confirm the immobilization using the micropatterning. Using the micropatterning method, immobilization of the photoreactive PEG on plastic (Thermanox), glass and titanium was confirmed by time-of-flight secondary ion mass spectroscopy and atomic force microscopy observations. The contact angle on an unpatterned surface was measured. Although the original surfaces have different contact angles, the contact angle on PEG-immobilized surfaces was the same on all surfaces. This result demonstrated that the surface was completely covered with PEG by the photoimmobilization. To assess non-specific protein adsorption on the micropatterned surface, horseradish peroxidase (HRP)-conjugated proteins were adsorbed. Reduced protein adsorption was confirmed by vanishingly small staining of HRP substrates on the immobilized regions. COS-7 cells were cultured on the micropatterned surface. The cells did not adhere to the PEG-coated regions. In conclusion, photoreactive PEG was immobilized on various surfaces and tended to reduce interactions with proteins and cells.

  13. Effect of poly(ethylene glycol) length on the in vivo behavior of coated quantum dots.

    PubMed

    Daou, T Jean; Li, Liang; Reiss, Peter; Josserand, Véronique; Texier, Isabelle

    2009-03-03

    The use of nanoparticles, either for the delivery of drugs or for imaging contrast agents, or a combination of both (theranostics), is very appealing in biological and biomedical research. The design of high-quality NIR-emitting quantum dots (QDs), with outstanding optical properties in comparison to that of organic dyes, should lead to novel contrast agents with improved performance for optical and multimodal imaging. Moreover, these nanocrystals could also be used for exploring therapeutic applications, such as drug delivery or phototherapy. In this article, we report the coating of commercial ITK705-amino QDs with methoxy-terminated poly(ethylene glycol) (PEG) of different chain lengths. Homogeneous QD solutions that are stable over extended periods of time were prepared. The impact of the particle coating on their in vivo fate after tail i.v. injection was studied by fluorescence imaging. The speed of the first pass extraction of the coated QDs toward the liver decreased with the PEG length, whereas the hydrodynamic diameter of the particles was increased.

  14. Reduction of Streptococcus mutans adherence and dental biofilm formation by surface treatment with phosphorylated polyethylene glycol.

    PubMed

    Shimotoyodome, Akira; Koudate, Takashi; Kobayashi, Hisataka; Nakamura, Junji; Tokimitsu, Ichiro; Hase, Tadashi; Inoue, Takashi; Matsukubo, Takashi; Takaesu, Yoshinori

    2007-10-01

    Initial attachment of the cariogenic Streptococcus mutans onto dental enamel is largely promoted by the adsorption of specific salivary proteins on enamel surface. Some phosphorylated salivary proteins were found to reduce S. mutans adhesion by competitively inhibiting the adsorption of S. mutans-binding salivary glycoproteins to hydroxyapatite (HA). The aim of this study was to develop antiadherence compounds for preventing dental biofilm development. We synthesized phosphorylated polyethylene glycol (PEG) derivatives and examined the possibility of surface pretreatment with them for preventing S. mutans adhesion in vitro and dental biofilm formation in vivo. Pretreatment of the HA surface with methacryloyloxydecyl phosphate (MDP)-PEG prior to saliva incubation hydrophilized the surface and thereby reduced salivary protein adsorption and saliva-promoted bacterial attachment to HA. However, when MDP-PEG was added to the saliva-pretreated HA (S-HA) surface, its inhibitory effect on bacterial binding was completely diminished. S. mutans adhesion onto S-HA was successfully reduced by treatment of the surface with pyrophosphate (PP), which desorbs salivary components from S-HA. Treatment of S-HA surfaces with MDP-PEG plus PP completely inhibited saliva-promoted S. mutans adhesion even when followed by additional saliva treatment. Finally, mouthwash with MDP-PEG plus PP prevented de novo biofilm development after thorough teeth cleaning in humans compared to either water or PP alone. We conclude that MDP-PEG plus PP has the potential for use as an antiadherence agent that prevents dental biofilm development.

  15. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2016-07-20

    Poly(propylene fumarate) (PPF)-based nanocomposites incorporating different amounts of polyethylene glycol-functionalized graphene oxide (PEG-GO) have been prepared via sonication and thermal curing, and their surface morphology, structure, thermal stability, hydrophilicity, water absorption, biodegradation, cytotoxicity, mechanical, viscoelastic and antibacterial properties have been investigated. SEM and TEM images corroborated that the noncovalent functionalization with PEG caused the exfoliation of GO into thinner flakes. IR spectra suggested the presence of strong hydrogen-bonding interactions between the nanocomposite components. A gradual rise in the level of hydrophilicity, water uptake, biodegradation rate, surface roughness, protein absorption capability and thermal stability was found upon increasing GO concentration in the composites. Tensile tests revealed improved stiffness, strength and toughness for the composites compared to unfilled PPF, ascribed to a homogeneous GO dispersion within the matrix along with a strong PPF/PEG-GO interfacial adhesion via polar and hydrogen bonding interactions. Further, the nanocomposites retained enough stiffness and strength under a biological state to provide effective support for bone tissue formation. The antibacterial activity was investigated against Gram-positive Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative Pseudomonas aeruginosa and Escherichia coli microorganisms, and it rose sharply upon increasing GO concentration; systematically, the biocide effect was stronger versus Gram-positive bacteria. Cell viability data demonstrated that PPF/PEG-GO composites do not induce toxicity over human dermal fibroblasts. These novel materials show great potential to be applied in the bone tissue engineering field.

  16. Polyethylene glycol modification of adenovirus reduces platelet activation, endothelial cell activation, and thrombocytopenia.

    PubMed

    Hofherr, Sean E; Mok, Hoyin; Gushiken, Francisca C; Lopez, Jose A; Barry, Michael A

    2007-09-01

    Thrombocytopenia is one of the complications for in vivo administration of adenovirus serotype 5 (Ad5) vectors after intravenous injection. In this paper, we investigated the mechanism of Ad5-induced thrombocytopenia and how these effects are attenuated by polyethylene glycol (PEG) modification of Ad5 (Ad-PEG). After intravenous injection, accelerated platelet loss was observed in Ad-injected mice but not in their Ad-PEG-injected counterparts. This platelet loss induced by Ad5 corresponded with increases in coagulation D-dimer levels, splenomegaly, and, later, production of megakaryocytes in the bone marrow. In contrast, these responses were blunted or ablated after injection of Ad-PEG. Ad5 activated both platelets and endothelial cells directly in vitro as evidenced by induction of P-selectin and the formation of von Willebrand factor-platelet strings and in vivo as evidenced by the induction of E-selectin messenger RNA. PEGylation blunted these observed activations. These data suggest that Ad5 may induce thrombocytopenia by direct activation of endothelial cells in addition to its direct effects on platelets. This link provides an important clue for the understanding of the mechanisms of thrombocytopenia associated with Ad5. Given that PEGylation blunted interactions of Ad with platelets and endothelial cells, reduced D-dimer formation, reduced thrombocytopenia, and reduced splenomegaly, these data suggest that this simple vector modification may have utility to improve the safety of Ad vectors for human gene therapy.

  17. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms.

    PubMed

    Du, Ju; Bandara, H M H N; Du, Ping; Huang, Hui; Hoang, Khang; Nguyen, Dang; Mogarala, Sri Vasudha; Smyth, Hugh D C

    2015-05-04

    The objective of this study was to develop a functionally enhanced antibiotic that would improve the therapeutic activity against bacterial biofilms. Tobramycin was chemically conjugated with polyethylene glycol (PEG) via site-specific conjugation to form PEGylated-tobramycin (Tob-PEG). The antibacterial efficacy of Tob-PEG, as compared to tobramycin, was assessed on the planktonic phase and biofilms phase of Pseudomonas aeruginosa. The minimum inhibitory concentration (MIC80) of Tob-PEG was higher (13.9 μmol/L) than that of tobramycin (1.4 μmol/L) in the planktonic phases. In contrast, the Tob-PEG was approximately 3.2-fold more effective in eliminating bacterial biofilms than tobramycin. Specifically, Tob-PEG had a MIC80 lower than those exhibited by tobramycin (27.8 μmol/L vs 89.8 μmol/L). Both confocal laser scanning microscopy and scanning electron microscopy further confirmed these data. Thus, modification of antimicrobials by PEGylation appears to be a promising approach for overcoming the bacterial resistance in the established biofilms of Pseudomonas aeruginosa.

  18. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol.

    PubMed

    Ruiz, A; Hernández, Y; Cabal, C; González, E; Veintemillas-Verdaguer, S; Martínez, E; Morales, M P

    2013-12-07

    The influence of polyethylene glycol (PEG) grafting on the pharmacokinetics, biodistribution and elimination of iron oxide nanoparticles is studied in this work. Magnetite nanoparticles (12 nm) were obtained via thermal decomposition of an iron coordination complex as a precursor. Particles were coated with meso-2,3-dimercaptosuccinic acid (DMSA) and conjugated to PEG-derived molecules by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) chemistry. Using a rat model, we explored the nanoparticle biodistribution pattern in blood and in different organs (liver, spleen and lungs) after intravenous administration of the product. The time of residence in blood was measured from the evolution of water proton relaxivities with time and Fe analysis in blood samples. The results showed that the residence time was doubled for PEG coated nanoparticles and consequently particle accumulation in liver and spleen was reduced. Post-mortem histological analyses showed no alterations in the liver and confirm heterogeneous distribution of NPs in the organ, in agreement with magnetic measurements and iron analysis. Finally, by successive magnetic resonance images we studied the evolution of contrast in the liver and measured the absorption, time of residence and excretion of nanoparticles in the liver during a one month period. On the basis of these results we propose different metabolic routes that determine the fate of magnetic nanoparticles.

  19. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems.

  20. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    SciTech Connect

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K.

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  1. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.

    PubMed

    Sannino, A; Netti, P A; Madaghiele, M; Coccoli, V; Luciani, A; Maffezzoli, A; Nicolais, L

    2006-11-01

    Peptide activated poly(ethylene glycol) (PEG)-based hydrogels have received wide attention as material for tissue engineering application. However, the close structure of these materials may pose severe barriers to tissue invasion and nutrient transport. The aim of this work was to synthesize highly interconnected macroporous PEG hydrogels, suitable for use as tissue engineering scaffolds, by combining the photocrosslinking reaction with a foaming process. In particular, various porous samples, differing for both the polymer molecular weight and concentration in the starting precursor solution, have been prepared and characterized by means of scanning electron microscopy and mercury porosimetry. Moreover, water swelling properties have been evaluated and compared with those of the conventional nonporous ones, by performing both equilibrium and kinetic swelling measurements in distilled water. Results indicated that foamed hydrogels display a well-interconnected porous network, suitable for tissue invasion and free molecular trafficking within them. Pores dimension as well as swelling rate can be modulated by polymer concentrations and bubbling agent composition in the precursor solution.

  2. Synthesis and Thermal Responses of Polygonal Poly(ethylene glycol) Analogues.

    PubMed

    Kawasaki, Shunichi; Muraoka, Takahiro; Hamada, Tsutomu; Shigyou, Kazuki; Nagatsugi, Fumi; Kinbara, Kazushi

    2016-04-05

    As a new type of topological poly(ethylene glycol) (PEG) analogue, a series of polygonal PEGs with digonal to hexagonal structures were developed. Polygonal PEGs with structures between the digonal and tetragonal types showed molecular-level dispersion in water at 20 °C, whereas the pentagonal and hexagonal PEGs aggregated, which is suggestive of enhanced hydrophobicity by ring expansion. Heating induced conformational changes in the polygonal PEGs and increased their hydrophobicity. Among the polygonal PEGs, only the trigonal and hexagonal PEGs showed a distinct thermal response to form and increase the size of the aggregates, respectively. Given that tetragonal and pentagonal PEGs only marginally responded to heat treatment, the thermal responses are likely due to a topological effect. At low temperatures, the larger polygonal PEGs are more restricted despite the expanded rings. The trigonal PEG showed the largest change in mobility, whereas the tetragonal PEG exhibited the smallest change. Hence, the topology of the polygonal PEGs influences the intramolecular packing and the local dynamics.

  3. Unexpected Temperature Behavior of Polyethylene Glycol Spacers in Copolymer Dendrimers in Chloroform

    PubMed Central

    Markelov, Denis A.; Matveev, Vladimir V.; Ingman, Petri; Nikolaeva, Marianna N.; Penkova, Anastasia V.; Lahderanta, Erkki; Boiko, Natalia I.; Chizhik, Vladimir I.

    2016-01-01

    We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by 1H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is “frozen” at high temperatures (above 260 K), but it unexpectedly becomes “unfrozen” at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors. PMID:27052599

  4. Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity.

    PubMed

    Luong, P T; Browning, M B; Bixler, R S; Cosgriff-Hernandez, E

    2014-09-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications because of their ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions on hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying), and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage.

  5. Polyethylene glycol-modified arachidyl chitosan-based nanoparticles for prolonged blood circulation of doxorubicin.

    PubMed

    Termsarasab, Ubonvan; Yoon, In-Soo; Park, Ju-Hwan; Moon, Hyun Tae; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-04-10

    Doxorubicin (DOX)-loaded nanoparticles based on polyethylene glycol-conjugated chitosan oligosaccharide-arachidic acid (CSOAA-PEG) were explored for potential application to leukemia therapy. PEG was conjugated with CSOAA backbone via amide bond formation and the final product was verified by (1)H NMR analysis. Using the synthesized CSOAA-PEG, nanoparticles having characteristics of a 166-nm mean diameter, positive zeta potential, and spherical shape were produced for the delivery of DOX. The mean diameter of CSOAA-PEG nanoparticles in the serum solution (50% fetal bovine serum) remained relatively constant over 72 h as compared with CSOAA nanoparticles (changes of 20.92% and 223.16%, respectively). The sustained release pattern of DOX from CSOAA-PEG nanoparticles was displayed at physiological pH, and the release rate increased under the acidic pH conditions. The cytotoxicity of the CSOAA-PEG conjugate was negligible in human leukemia cells (K562) at the concentrations tested (∼ 100 μg/ml). The uptake rate of DOX from the nanoparticles by K562 cells was higher than that from the solution. Judging from the results of pharmacokinetic studies in rats, in vivo clearance rate of DOX from the CSOAA-PEG nanoparticle group was slower than other groups, subsequently extending the circulation period. The PEGylated CSOAA-based nanoparticles could represent an effective nano-sized delivery system for DOX which has been used for the treatment of blood malignancies.

  6. Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer

    PubMed Central

    Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.

    2014-01-01

    Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653

  7. Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation.

    PubMed

    Vasylieva, Natalia; Barnych, Bogdan; Meiller, Anne; Maucler, Caroline; Pollegioni, Loredano; Lin, Jian-Sheng; Barbier, Daniel; Marinesco, Stéphane

    2011-06-15

    Poly(ethylene glycol) diglycidyl ether (PEGDE) is widely used as an additive for cross-linking polymers bearing amine, hydroxyl, or carboxyl groups. However, the idea of using PEGDE alone for immobilizing proteins on biosensors has never been thoroughly explored. We report the successful fabrication of microelectrode biosensors based on glucose oxidase, d-amino acid oxidase, and glutamate oxidase immobilized using PEGDE. We found that biosensors made with PEGDE exhibited high sensitivity and a response time on the order of seconds, which is sufficient for observing biological processes in vivo. The enzymatic activity on these biosensors was highly stable over several months when they were stored at 4 °C, and over at least 3d at 37 °C. Glucose microelectrode biosensors implanted in the central nervous system of anesthetized rats reliably monitored changes in brain glucose levels induced by sequential administration of insulin and glucose. PEGDE provides a simple, low cost, non-toxic alternative for the preparation of in vivo microelectrode biosensors.

  8. Drying and Storage Effects on Poly(ethylene glycol) Hydrogel Mechanical Properties and Bioactivity

    PubMed Central

    Luong, P.T.; Browning, M.B.; Bixler, R.S.; Cosgriff-Hernandez, E.

    2014-01-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications due to the ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions and hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying) and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. PMID:24123725

  9. Ab Initio Investigation of Polyethylene Glycol Coating of TiO2 Surfaces

    PubMed Central

    2016-01-01

    In biomedical applications, TiO2 nanoparticles are generally coated with polymers to prevent agglomeration, improve biocompatibility, and reduce cytotoxicity. Although the synthesis processes of such composite compounds are well established, there is still a substantial lack of information on the nature of the interaction between the titania surface and the organic macromolecules. In this work, the adsorption of polyethylene glycol (PEG) on the TiO2 (101) anatase surface is modeled by means of dispersion-corrected density functional theory (DFT-D2) calculations. The two extreme limits of an infinite PEG polymer [−(OCH2CH2)n], on one side, and of a short PEG dimer molecule [H(OCH2CH2)2OH], on the other, are analyzed. Many different molecular configurations and modes of adsorption are compared at increasing surface coverage densities. At low and medium coverage, PEG prefers to lay down on the surface, while at full coverage, the adsorption is maximized when PEG molecules bind perpendicularly to the surface and interact with each other through lateral dispersions, following a mushroom to brush transition. Finally, we also consider the adsorption of competing water molecules at different coverage densities, assessing whether PEG would remain bonded to the surface or desorb in the presence of the aqueous solvent. PMID:28058086

  10. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties.

    PubMed

    Holtsberg, Frederick W; Ensor, Charles Mark; Steiner, Marion R; Bomalaski, John S; Clark, Mike A

    2002-04-23

    Some tumors, such as melanomas and hepatocellular carcinomas, have a unique nutritional requirement for arginine. Thus, enzymatic degradation of extracellular arginine is one possible means for inhibiting these tumors. Arginine deiminase is an arginine degrading enzyme (ADI) that has been studied as an anti-cancer enzyme. However, ADI has a short serum half-life and, as a microbial enzyme, is highly immunogenic. Formulation of other therapeutic proteins with poly(ethylene glycol) (PEG) has overcome these problems. Here, ADI-PEGs were synthesized using PEGs of varying size, structure (linear or branched chain) and linker chemistries. All ADI-PEGs retained approximately 50% of enzyme activity when PEG was covalently attached to approximately 40% of the primary amines irrespective of the PEG molecular weight or attachment chemistry used. However, it was observed that, as the PEG size increases to 20 kDa, there was a corresponding increase in the pharmacokinetic (pK) and pharmacodynamic (pD) properties of the formulation. Variation in PEG linker or structure, or the use of PEGs >20,000 mw, did not affect the pK or pD. As has been shown with other therapeutic proteins, repeated injection of ADI-PEG into experimental animals resulted in significantly lower titers of antibodies against this protein than unmodified ADI. These data suggest that formulation of ADI with PEG of 20,000 mw results is the optimal method for formulating this promising therapeutic agent.

  11. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol

    PubMed Central

    Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M.; Marchal, Juan A.; Madeddu, Roberto; Delogu, Lucia G.

    2016-01-01

    Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications. PMID:26728491

  12. Photosensitive diazotized poly(ethylene glycol) covalent capillary coatings for analysis of proteins by capillary electrophoresis.

    PubMed

    Yu, Bing; Chen, Xin; Cong, Hailin; Shu, Xi; Peng, Qiaohong

    2016-09-01

    A new method for the fabrication of covalently cross-linked capillary coatings of poly(ethylene glycol) (PEG) is described using diazotized PEG (diazo-PEG) as a new photosensitive coating agent. The film of diazo-PEG depends on ionic bonding and was first prepared on the inner surface of capillary by self-assembly, and ionic bonding was converted into covalent bonding after reaction of ultraviolet light with diazo groups through unique photochemical reaction. The covalently bonded coating impedance adsorption of protein on the central surface of capillary and hence the four proteins ribonuclease A, cytochrome c, bovine serum albumin, and lysosome can be baseline separated by using capillary electrophoresis (CE). The covalently cross-linked diazo-PEG capillary column coatings not only improved the CE separation performance for proteins compared to non-covalently cross-linked coatings or bare capillary but also showed a remarkable chemical solidity and repeatability. Because photosensitive diazo-PEG took the place of the highly noxious and silane moisture-sensitive coating reagents in the fabrication of covalent coating, this technique shows the advantage of being environment-friendly and having a high efficiency for CE to make the covalently bonded capillaries.

  13. Biomimetic myocardial patches fabricated with poly(ɛ-caprolactone) and polyethylene glycol-based polyurethanes.

    PubMed

    Silvestri, Antonella; Sartori, Susanna; Boffito, Monica; Mattu, Clara; Di Rienzo, Anna M; Boccafoschi, Francesca; Ciardelli, Gianluca

    2014-07-01

    The production of efficient heart patches for myocardium repair requires the use of biomaterials with high elastomeric properties and controllable biodegradability. To fulfil these design criteria we propose biodegradable poly(ester urethanes) and poly(ether ester urethanes) from poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) as macrodiols, 1,4-diisocyanatobutane as diisocyanate, l-Lysine Ethyl Ester and Alanine-Alanine-Lysine (AAK) as chain extenders. This peptide was used to tune biodegradability properties, since the Alanine-Alanine sequence is a target for the elastase enzyme. Enzymatic degradation tests demonstrated the feasibility of tuning biodegradability properties due to the introduction of AAK peptide in polyurethane backbone. Two formulations have been processed into porous scaffolds by Thermally-Induced Phase Separation (TIPS). Scanning Electron Microscopy micrographs revealed promising microstructures, which were characterized by stretched and unidirectional pores and mimicked the striated muscle tissue. Tensile tests showed that, although scaffolds are characterized by lower mechanical properties than films, these substrates have suitable elastomeric behaviors and elastic moduli for contractile and soft tissue regeneration. Viability tests on cardiomyocytes revealed the best cell response for dense film and porous scaffold obtained from PCL and Lysine Ethyl Ester-based polyurethane, with an increased viability for the porous substrate, which is ascribable to the morphological features of its microstructure. Future works will be addressed to study the in vivo behavior of these constructs and to confirm their applicability for myocardial tissue engineering.

  14. Nanomolar CFTR inhibition by pore-occluding divalent polyethylene glycol-malonic acid hydrazides.

    PubMed

    Sonawane, N D; Zhao, Dan; Zegarra-Moran, Olga; Galietta, Luis J V; Verkman, A S

    2008-07-21

    Inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have potential application as antisecretory therapy in cholera. We synthesized mono- and divalent CFTR inhibitors consisting of a malonic acid hydrazide (MalH) coupled via a disulfonic stilbene linker to polyethylene glycols (PEGs; 0.2-100 kDa). IC50 values for CFTR inhibition were 10-15 microM for the monovalent MalH-PEGs, but substantially lower for divalent MalH-PEG-MalH compounds, decreasing from 1.5 to 0.3 microM with increasing PEG size and showing positive cooperativity. Whole-cell patch-clamp showed voltage-dependent CFTR block with inward rectification. Outside-out patch-clamp showed shortened single-channel openings, indicating CFTR pore block from the extracellular side. Luminally added MalH-PEG-MalH blocked by >90% cholera toxin-induced fluid secretion in mouse intestinal loops (IC50 approximately 10 pmol/loop), and greatly reduced mortality in a suckling mouse cholera model. These conjugates may provide safe, inexpensive antisecretory therapy.

  15. Pervaporation separation of n-heptane/thiophene mixtures by polyethylene glycol membranes: Modeling and experimental.

    PubMed

    Lin, Ligang; Zhang, Yuzhong; Kong, Ying

    2009-11-01

    Gasoline desulfurization by membrane processes is a newly emerged technology, which has provided an efficient new approach for sulfur removal and gained increasing attention of the membrane and petrochemical field. A deep understanding of the solution/diffusion of gasoline molecules on/in the membrane can provide helpful information in improving or optimizing membrane performance. In this study, a desulfurization mechanism of polyethylene glycol (PEG) membranes has been investigated by the study of sorption and diffusion behavior of typical sulfur and hydrocarbon species through PEG membranes. A solution-diffusion model based on UNIFAC and free volume theory has been established. Pervaporation (PV) and sorption experiments were conducted to compare with the model calculation results and to analyze the mass transport behavior. The dynamic sorption curves for pure components and the sorption experiments for binary mixtures showed that thiophene, which had a higher solubility coefficient than n-heptane, was the preferential sorption component, which is key in the separation of thiophene/hydrocarbon mixtures. In all cases, the model calculation results fit well the experimental data. The UNIFAC model was a sound way to predict the solubility of solvents in membranes. The established model can predict the removal of thiophene species from hydrocarbon compounds by PEG membranes effectively.

  16. Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy.

    PubMed

    Sun, Chun-Yang; Dou, Shuang; Du, Jin-Zhi; Yang, Xian-Zhu; Li, Ya-Ping; Wang, Jun

    2014-02-01

    Polyphosphoesters with repeating phosphoester linkages in the backbone can be easily functionalized, are biodegradable and potentially biocompatible, and may be potential candidates as polymer carriers of drug conjugates. Here, the efficacy of a polyphosphoester drug conjugate as an anticancer agent in vivo is assessed for the first time. With controlled synthesis, doxorubicin conjugated to poly(ethylene glycol)-block-polyphosphoester (PPEH-DOX) via labile hydrazone bonds form spherical nanoparticles in aqueous solution with an average diameter of ≈60 nm. These nanoparticles are effectively internalized by MDA-MB-231 breast cancer cells and release the conjugated doxorubicin in response to the intracellular pH of endosomes and lysosomes, resulting in significant antiproliferative activity in cancer cells. Compared with free doxorubicin injection, PPEH-DOX injection exhibits much longer circulation behavior in the plasma of mice and leads to enhanced drug accumulation in tumor cells. In an MDA-MB-231 xenograft murine model, inhibition of tumor growth with systemic delivery of PPEH-DOX nanoparticles is more pronounced compared with free doxorubicin injection, suggesting the potential of polyphosphoesters as carriers of drug conjugates in cancer therapy.

  17. Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend

    NASA Astrophysics Data System (ADS)

    Yuniarto, Kurniawan; Purwanto, Yohanes Aris; Purwanto, Setyo; Welt, Bruce A.; Purwadaria, Hadi Karia; Sunarti, Titi Candra

    2016-04-01

    As a biodegradableplastic, polylactideacid (PLA) can be blended with polyethylene glycol (PEG) to form a polymer blend because PEG has a good miscibility with PLA. Furthermore, this paper study the functional groups of PLA-PEG400 blend using direct casting to produce matrix film. Fourier Transform Infrared (FTIR) and Raman spectroscopy was used to identify alteration of functional group PLA-PEG400 blend. Absorbance and frequency wavenumber were used to observe any changing among functional group. In general, PLA-PEG blend did not produce a new configuration or chemical properties although some functional groups tended to decrease. PLA-PEG400 film spectra showed a similaritycompared to those of neat PLA because of each pristine polymer. However, FTIR and Raman investigated reducing carbonyl group of PLA with PEG400 addition and followed improving CH-COC bonding. Methyl group represented CH3symmetricchanged both the shift and absorbance.FTIR and Raman spectroscopy observed increasing hydrogen bonding with increasing PEG400 addition where a largest was found at PEG 10% and appeared at frequency range from 3400 cm-1 to 3600 cm-1. According to PEG400 addition, a FTIR measuredenhancing crystalline region.

  18. Injectable and Photopolymerizable Tissue-Engineered Auricular Cartilage Using Poly(Ethylene Glycol) Dimethacrylate Copolymer Hydrogels

    PubMed Central

    Papadopoulos, Anestis; Bichara, David A.; Zhao, Xing; Ibusuki, Shinichi; Anseth, Kristi S.; Yaremchuk, Michael J.

    2011-01-01

    In this study we investigated the histological, biochemical, and integrative features of the neocartilage using swine auricular chondrocytes photoencapsulated into two poly(ethylene glycol) dimethacrylate (PEGDM) copolymer hydrogels of a different degradation profile: degradable (PEG-4,5LA-DM) and nondegradable (PEGDM) macromers in molar ratios of 60:40 and 70:30. Integration of the engineered tissue with existing native cartilage was examined using an articular cartilaginous ring model. Experimental group samples (total n = 96) were implanted subcutaneously into nude mice and harvested at 6, 12, and 18 weeks. Nonimplanted constructs (total n = 16) were used as controls for quantification of DNA, glycosaminoglycan, and hydroxyproline. Histologically, neocartilage resembled both the cellular population and composition of the extracellular matrix of the native swine auricular cartilage. DNA content demonstrated that the photoencapsulated chondrocytes were capable of survival and proliferation over time. Both glycosaminoglycan and hydroxyproline contents appeared higher in the neotissue, which was supported by less degradable PEGDM hydrogel. Integration of neocartilage with surrounding native cartilage improved with time, resulting in the development of tight integration interface. PEGDM copolymer hydrogels can support in vivo chondrogenesis by photoencapsulating auricular chondrocytes. PMID:20695772

  19. Bone resorptive activity of human peripheral blood mononuclear cells after fusion with polyethylene glycol.

    PubMed

    Manrique, Edwin; Castillo, Luz M; Lazala, Oswaldo; Guerrero, Carlos A; Acosta, Orlando

    2017-03-01

    The bone remodeling process occurs through bone formation by osteoblasts and bone resorption by osteoclasts, a process involving the contribution of endocrine and nervous systems. The mechanisms associated to differentiation and proliferation of osteoclasts and osteoblasts are considered a potential therapeutic target for treating some erosive bone diseases. The aim of the present study is to explore the feasibility of generating active osteoclast-like cells from peripheral blood mononuclear cells (PBMCs) following polyethylene glycol (PEG)-induced fusion. PEG-fused PBMCs showed TRAP(+)-multinucleated cells and bone resorption activity, and were also positive for osteoclast markers such as carbonic anhydrase II, calcitonin receptor, vacuolar ATPase, and cathepsin K, when examined by reverse transcription-polymerase chain reaction, immunochemistry and Western blotting. TRAP expression and bone resorptive activity were higher in whole PEG-fused PBMCs than in separated T lymphocytes, B lymphocytes or monocytes. Both TRAP expression and bone resorptive activity were also higher in osteogenesis imperfecta patients compared to PEG-fused PBMCs from healthy individuals. PEG-induced fusion was more efficient in inducing TRAP and bone resorptive activities than macrophage colony-stimulating factor or dexamethasone treatment. Bone resorptive activity of PEG-fused PMBCs was inhibited by bisphosphonates. Evidence is provided that the use of PEG-based cell fusion is a straightforward and amenable method for studying human osteoclast differentiation and testing new therapeutic strategies.

  20. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes.

    PubMed

    Sacchetti, Cristiano; Liu-Bryan, Ru; Magrini, Andrea; Rosato, Nicola; Bottini, Nunzio; Bottini, Massimo

    2014-12-23

    Osteoarthritis (OA) is a common and debilitating degenerative disease of articular joints for which no disease-modifying medical therapy is currently available. Inefficient delivery of pharmacologic agents into cartilage-resident chondrocytes after systemic administration has been a limitation to the development of anti-OA medications. Direct intra-articular injection enables delivery of high concentrations of agents in close proximity to chondrocytes; however, the efficacy of this approach is limited by the fast clearance of small molecules and biomacromolecules after injection into the synovial cavity. Coupling of pharmacologic agents with drug delivery systems able to enhance their residence time and cartilage penetration can enhance the effectiveness of intra-articularly injected anti-OA medications. Herein we describe an efficient intra-articular delivery nanosystem based on single-walled carbon nanotubes (SWCNTs) modified with polyethylene glycol (PEG) chains (PEG-SWCNTs). We show that PEG-SWCNTs are capable to persist in the joint cavity for a prolonged time, enter the cartilage matrix, and deliver gene inhibitors into chondrocytes of both healthy and OA mice. PEG-SWCNT nanoparticles did not elicit systemic or local side effects. Our data suggest that PEG-SWCNTs represent a biocompatible and effective nanocarrier for intra-articular delivery of agents to chondrocytes.

  1. Entrapping quercetin in silica/polyethylene glycol hybrid materials: Chemical characterization and biocompatibility.

    PubMed

    Catauro, Michelina; Bollino, Flavia; Nocera, Paola; Piccolella, Simona; Pacifico, Severina

    2016-11-01

    Sol-gel synthesis was exploited to entrap quercetin, a natural occurring antioxidant polyphenol, in silica-based hybrid materials, which differed in their polyethylene glycol (PEG) content (6, 12, 24 and 50wt%). The materials obtained, whose nano-composite nature was ascertained by Scanning Electron Microscopy (SEM), were chemically characterized by Fourier Transform InfraRed (FT-IR) and UV-Vis spectroscopies. The results prove that a reaction between the polymer and the drug occurred. Bioactivity tests showed their ability to induce hydroxyapatite nucleation on the sample surfaces. The direct contact method was applied to screen the cytotoxicity of the synthetized materials towards fibroblast NIH 3T3 cells, commonly used for in vitro biocompatibility studies, and three nervous system cell lines (neuroblastoma SH-SY5Y, glioma U251, and pheochromocytoma PC12 cell lines), adopted as models in oxidative stress related studies. Using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay NIH 3T3 proliferation was assessed and the morphology was not compromised by direct exposure to the materials. Analogously, PC-12, and U-251 cell lines were not affected by new materials. SH-SY5Y appeared to be the most sensitive cell line with cytotoxic effects of 20-35%.

  2. A Polyethylene Glycol-Mediated Protoplast Transformation System for Production of Fertile Transgenic Rice Plants 1

    PubMed Central

    Hayashimoto, Akio; Li, Zhijian; Murai, Norimoto

    1990-01-01

    We have established an efficient procedure for protoplast transformation and regeneration of fertile transgenic plants of rice (Oryza sativa L.) cultivars Nipponbare and Taipei 309. Protoplasts were mixed with a plant-expressible hygromycin resistance gene and treated with 25% (w/v) polyethylene glycol. Stringent selection of transformed colonies was applied to 14-day-old regenerated protoplasts in the presence of 95 micromolar of hygromycin B for 12 days. After selection, 450 and 200 resistant colonies were recovered per million treated Taipei 309 and Nipponbare protoplasts, respectively. Southern hybridization analysis of hygromycin-resistant cell lines and regenerated plants indicated that 1 to 10 copies of transferred DNA were integrated at 1 to 4 loci of the rice genome. Southern DNA analysis suggests that the introduced plasmid DNA may form concatemers by intermolecular recombination prior to integration. Four Taipei 309 and 39 Nipponbare transgenic rice plants were regenerated and grown to maturity in the greenhouse. Two Taipei 309 and 35 Nipponbare plants set viable seeds. Agronomic traits of Taipei 309 transgenic plants and inheritance of the hygromycin resistance trait by progeny of the selfed transgenic plants were analyzed. Images Figure 5 Figure 6 PMID:16667593

  3. Chemical dechlorination of hexachlorobenzene with polyethylene glycol and hydroxide: Dominant effect of temperature and ionic potential

    NASA Astrophysics Data System (ADS)

    Xiao, Ye; Jiang, Jianguo; Huang, Hai

    2014-09-01

    Persistent organic pollutants (POPs) originating from POP waste are playing an increasingly important role in the elevation of regional POP levels. In this study we realized the complete dechlorination of high concentration hexachlorobenzene (HCB) waste in the presence of polyethylene glycol and hydroxide, rather than using conventional high temperature incineration. Here, we demonstrate the dominant effect of temperature and hydroxide on HCB dechlorination in this process. Complete dechlorination of HCB was only observed at temperature about 200°C or above within 4 h reaction, and the apparent activation energy of this process was 43.1 kJ/mol. The alkalinity of hydroxides had notable effects on HCB dechlorination, and there was a considerable linear relationship between the natural logarithm of the HCB dechlorination rate constant and square root of the ionic potential of metal cation (R2 = 0.9997, p = 0.0081, n = 3). This study highlights a promising technology to realize complete dechlorination of POP waste, especially at high concentrations, in the presence of PEG in conjunction with hydroxide.

  4. Single-Monomer Formulation of Polymerized Polyethylene Glycol Diacrylate as a Nonadsorptive Material for Microfluidics

    PubMed Central

    Rogers, Chad I.; Pagaduan, Jayson V.; Nordin, Gregory P.; Woolley, Adam T.

    2011-01-01

    Nonspecific adsorption in microfluidic systems can deplete target molecules in solution and prevent analytes, especially those at low concentrations, from reaching the detector. Polydimethylsiloxane (PDMS) is a widely used material for microfluidics, but is prone to nonspecific adsorption, necessitating complex chemical modification processes to address this issue. An alternative material to PDMS that does not require subsequent chemical modification is presented here. Poly(ethylene glycol) diacrylate (PEGDA) mixed with photoinitiator forms on exposure to UV radiation a polymer with inherent resistance to nonspecific adsorption. Optimization of the polymerized PEGDA (poly-PEGDA) formula imbues this material with some of the same properties, including optical clarity, water stability, and low background fluorescence, that make PDMS so popular. Poly-PEGDA demonstrates less nonspecific adsorption than PDMS over a range of concentrations of flowing fluorescently tagged bovine serum albumin solutions, and poly-PEGDA has greater resistance to permeation by small hydrophobic molecules than PDMS. Poly-PEGDA also exhibits long-term (hour scale) resistance to nonspecific adsorption compared to PDMS when exposed to a low (1 µg/mL) concentration of a model adsorptive protein. Electrophoretic separations of amino acids and proteins resulted in symmetrical peaks and theoretical plate counts as high as 4 × 105/m. Poly-PEGDA, which displays resistance to nonspecific adsorption, could have broad use in small volume analysis and biomedical research. PMID:21728310

  5. Formulation and evaluation of controlled release ethylcellulose and polyethylene glycol microspheres containing metoprolol tartrate

    PubMed Central

    Malipeddi, Venkata Ramana; Awasthi, Rajendra; Dua, Kamal

    2016-01-01

    Metoprolol tartrate is rapidly absorbed from both gastric and intestinal regions, after oral administration. To retard the release rate of the metoprolol tartrate, microspheres were prepared with varying concentrations of a mixture containing ethylcellulose and polyethylene glycol-6000. The prepared microspheres were evaluated for various physicochemical characteristics and in vitro drug release. The percent yield of microspheres was in the range of 75.2–87.3%. The particle size of microspheres was found to be in the range of 73.2–85.5 μm. Fourier transform-infrared spectral analysis and differential scanning calorimetry concluded the absence of any interaction between the drug and the carriers. The release time profile of metoprolol tartrate from microspheres in 0.1 N hydrochloric acid solution was to the extent of 33.4–60.2%. The complete release of metoprolol tartrate occurred from MPT-3 and MPT-4 in phosphate buffer solution (pH 7.4) within 8 and 7 h, respectively, whereas the incomplete release (72.3%) occurred from MPT-1. Nearly, the complete release (98.5%) of metoprolol occurred from MPT-2 in 10 h. Formulation MPT-2 would be a preferred formulation. The release of metoprolol involves diffusion rate limited (R2 = 0.9865) as a mechanism from drug release. The prepared microspheres of metoprolol tartrate eliminate the need for multiple dosing and provide patient compliance. PMID:28386461

  6. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  7. Effects of the poly(ethylene glycol) hydrogel crosslinking mechanism on protein release†

    PubMed Central

    Lee, Soah; Tong, Xinming

    2016-01-01

    Poly(ethylene glycol) (PEG) hydrogels are widely used to deliver therapeutic biomolecules, due to high hydrophilicity, tunable physicochemical properties, and anti-fouling properties. Although different hydrogel crosslinking mechanisms are known to result in distinct network structures, it is still unknown how these various mechanisms influence biomolecule release. Here we compared the effects of chain-growth and step-growth polymerization for hydrogel crosslinking on the efficiency of protein release and diffusivity. For chain-growth-polymerized PEG hydrogels, while decreasing PEG concentration increased both the protein release efficiency and diffusivity, it was unexpected to find out that increasing PEG molecular weight did not significantly change either parameter. In contrast, for step-growth-polymerized PEG hydrogels, both decreasing PEG concentration and increasing PEG molecular weight resulted in an increase in the protein release efficiency and diffusivity. For step-growth-polymerized hydrogels, the protein release efficiency and diffusivity were further decreased by increasing crosslink functionality (4-arm to 8-arm) of the chosen monomer. Altogether, our results demonstrate that the crosslinking mechanism has a differential effect on controlling protein release, and this study provides valuable information for the rational design of hydrogels for sophisticated drug delivery. PMID:26539660

  8. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.

    PubMed

    Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil

    2017-03-29

    In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (Tg) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility.

  9. Effect of Polyethylene Glycol on the Formation of Magnetic Nanoparticles Synthesized by Magnetospirillum magnetotacticum MS-1

    PubMed Central

    Shimoshige, Hirokazu; Kobayashi, Hideki; Mizuki, Toru; Nagaoka, Yutaka; Inoue, Akira; Maekawa, Toru

    2015-01-01

    Magnetotactic bacteria (MTB) synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4) or greigite (Fe3S4) and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG) added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %. PMID:25993286

  10. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation

    PubMed Central

    Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Panisello, Arnau; Calvo, María; Pasut, Gianfranco; Rimola, Antoni; Navasa, Miquel; Adam, René; Roselló-Catafau, Joan

    2015-01-01

    Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI. PMID:26543868

  11. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation.

    PubMed

    Bejaoui, Mohamed; Pantazi, Eirini; Folch-Puy, Emma; Panisello, Arnau; Calvo, María; Pasut, Gianfranco; Rimola, Antoni; Navasa, Miquel; Adam, René; Roselló-Catafau, Joan

    2015-01-01

    Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.

  12. Polyethylene glycol rinse solution: An effective way to prevent ischemia-reperfusion injury

    PubMed Central

    Zaouali, Mohamed Amine; Bejaoui, Mohamed; Calvo, Maria; Folch-Puy, Emma; Pantazi, Eirini; Pasut, Gianfranco; Rimola, Antoni; Ben Abdennebi, Hassen; Adam, René; Roselló-Catafau, Joan

    2014-01-01

    AIM: To test whether a new rinse solution containing polyethylene glycol 35 (PEG-35) could prevent ischemia-reperfusion injury (IRI) in liver grafts. METHODS: Sprague-Dawley rat livers were stored in University of Wisconsin preservation solution and then washed with different rinse solutions (Ringer’s lactate solution and a new rinse solution enriched with PEG-35 at either 1 or 5 g/L) before ex vivo perfusion with Krebs-Heinseleit buffer solution. We assessed the following: liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity), liver function (bile output and vascular resistance), oxidative stress (malondialdehyde), nitric oxide, liver autophagy (Beclin-1 and LCB3) and cytoskeleton integrity (filament and globular actin fraction); as well as levels of metalloproteinases (MMP2 and MMP9), adenosine monophosphate-activated protein kinase (AMPK), heat shock protein 70 (HSP70) and heme oxygenase 1 (HO-1). RESULTS: When we used the PEG-35 rinse solution, reduced hepatic injury and improved liver function were noted after reperfusion. The PEG-35 rinse solution prevented oxidative stress, mitochondrial damage, and liver autophagy. Further, it increased the expression of cytoprotective heat shock proteins such as HO-1 and HSP70, activated AMPK, and contributed to the restoration of cytoskeleton integrity after IRI. CONCLUSION: Using the rinse solution containing PEG-35 was effective for decreasing liver graft vulnerability to IRI. PMID:25473175

  13. Investigation and prediction of protein precipitation by polyethylene glycol using quantitative structure-activity relationship models.

    PubMed

    Hämmerling, Frank; Ladd Effio, Christopher; Andris, Sebastian; Kittelmann, Jörg; Hubbuch, Jürgen

    2017-01-10

    Precipitation of proteins is considered to be an effective purification method for proteins and has proven its potential to replace costly chromatography processes. Besides salts and polyelectrolytes, polymers, such as polyethylene glycol (PEG), are commonly used for precipitation applications under mild conditions. Process development, however, for protein precipitation steps still is based mainly on heuristic approaches and high-throughput experimentation due to a lack of understanding of the underlying mechanisms. In this work we apply quantitative structure-activity relationships (QSARs) to model two parameters, the discontinuity point m* and the β-value, that describe the complete precipitation curve of a protein under defined conditions. The generated QSAR models are sensitive to the protein type, pH, and ionic strength. It was found that the discontinuity point m* is mainly dependent on protein molecular structure properties and electrostatic surface properties, whereas the β-value is influenced by the variance in electrostatics and hydrophobicity on the protein surface. The models for m* and the β-value exhibit a good correlation between observed and predicted data with a coefficient of determination of R(2)≥0.90 and, hence, are able to accurately predict precipitation curves for proteins. The predictive capabilities were demonstrated for a set of combinations of protein type, pH, and ionic strength not included in the generation of the models and good agreement between predicted and experimental data was achieved.

  14. Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

    PubMed Central

    Sun, Qingqing; Kanehira, Koki; Taniguchi, Akiyoshi

    2016-01-01

    Abstract This paper describes the effect of low concentrations of 100 nm polyethylene glycol-modified TiO2 nanoparticles (TiO2-PEG NPs) on HepG2 hepatocellular carcinoma cells. Proliferation of HepG2 cells increased significantly when the cells were exposed to low doses (<100 μg ml–1) of TiO2-PEG NPs. These results were further confirmed by cell counting experiments and cell cycle assays. Cellular uptake assays were performed to determine why HepG2 cells proliferate with low-dose exposure to TiO2-PEG NPs. The results showed that exposure to lower doses of NPs led to less cellular uptake, which in turn decreased cytotoxicity. We therefore hypothesized that TiO2-PEG NPs could affect the activity of hepatocyte growth factor receptors (HGFRs), which bind to hepatocyte growth factor and stimulate cell proliferation. The localization of HGFRs on the surface of the cell membrane was detected via immunofluorescence staining and confocal microscopy. The results showed that HGFRs aggregate after exposure to TiO2-PEG NPs. In conclusion, our results indicate that TiO2-PEG NPs have the potential to promote proliferation of HepG2 cells through HGFR aggregation and suggest that NPs not only exhibit cytotoxicity but also affect cellular responses. PMID:27877913

  15. Amphiphilic copolymers reduce aggregation of unfolded lysozyme more effectively than polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Chin, Jaemin; Mustafi, Devkumar; Poellmann, Michael J.; Lee, Raphael C.

    2017-02-01

    Certain amphiphilic block copolymers are known to prevent aggregation of unfolded proteins. To better understand the mechanism of this effect, the optical properties of heat-denatured and dithiothreitol reduced lysozyme were evaluated with respect to controls using UV–Vis spectroscopy, transmission electron microscopy (TEM) and circular dichroism (CD) measurements. Then, the effects of adding Polyethylene Glycol (8000 Da), the triblock surfactant Poloxamer 188 (P188), and the tetrablock copolymer Tetronic 1107 (T1107) to the lysozyme solution were compared. Overall, T1107 was found to be more effective than P188 in inhibiting aggregation, while PEG exhibited no efficacy. TEM imaging of heat-denatured and reduced lysozymes revealed spherical aggregates with on average 250–450 nm diameter. Using CD, more soluble lysozyme was recovered with T1107 than P188 with β-sheet secondary structure. The greater effectiveness of the larger T1107 in preventing aggregation of unfolded lysozyme than the smaller P188 and PEG points to steric hindrance at play; signifying the importance of size match between the hydrophobic region of denatured protein and that of amphiphilic copolymers. Thus, our results corroborate that certain multi-block copolymers are effective in preventing heat-induced aggregation of reduced lysozymes and future studies warrant more detailed focus on specific applications of these copolymers.

  16. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Hernández, Y.; Cabal, C.; González, E.; Veintemillas-Verdaguer, S.; Martínez, E.; Morales, M. P.

    2013-11-01

    The influence of polyethylene glycol (PEG) grafting on the pharmacokinetics, biodistribution and elimination of iron oxide nanoparticles is studied in this work. Magnetite nanoparticles (12 nm) were obtained via thermal decomposition of an iron coordination complex as a precursor. Particles were coated with meso-2,3-dimercaptosuccinic acid (DMSA) and conjugated to PEG-derived molecules by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) chemistry. Using a rat model, we explored the nanoparticle biodistribution pattern in blood and in different organs (liver, spleen and lungs) after intravenous administration of the product. The time of residence in blood was measured from the evolution of water proton relaxivities with time and Fe analysis in blood samples. The results showed that the residence time was doubled for PEG coated nanoparticles and consequently particle accumulation in liver and spleen was reduced. Post-mortem histological analyses showed no alterations in the liver and confirm heterogeneous distribution of NPs in the organ, in agreement with magnetic measurements and iron analysis. Finally, by successive magnetic resonance images we studied the evolution of contrast in the liver and measured the absorption, time of residence and excretion of nanoparticles in the liver during a one month period. On the basis of these results we propose different metabolic routes that determine the fate of magnetic nanoparticles.

  17. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛ

  18. Bistable random laser that uses a phase transition of polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Nishimura, Yoshihiro

    2016-03-01

    Polyethylene glycol (PEG) is transparent in the liquid phase and turns to a translucent solid through a phase transition at around room temperature. A PEG solution of rhodamine 6G was excited by a laser pulse (527 nm wavelength, 10 ns duration, 190 μJ) to measure fluorescence spectra during the phase transition process. Whereas the fluorescence peak was weak and broad at 60 °C (spontaneous emission), a strong, narrow peak appeared in the temperature range below 50 °C, since a stimulated emission (amplified spontaneous emission) took place due to the scattering in the solid PEG. This laser emission control was repeatable by reversing an electric voltage (-12 or +12 V) that drove a Peltier element. Interestingly, the sample exhibited a strong stimulated emission at 52 °C during the heating process, although no strong emission was visible at the same temperature during the cooling process (bistability). The fluorescence peak wavelength was tunable between 566 and 572 nm by changing the cooling rate.

  19. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    PubMed Central

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul

    2016-01-01

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738

  20. Effect of sodium chloride on solute-solvent interactions in aqueous polyethylene glycol-sodium sulfate two-phase systems.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-12-18

    Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215M NaCl and 0.5M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215M NaCl system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive.

  1. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    PubMed

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  2. Aggregation behavior of poly(ethylene glycol-bl-propylene sulfide) di- and triblock copolymers in aqueous solution.

    PubMed

    Cerritelli, Simona; O'Neil, Conlin P; Velluto, Diana; Fontana, Antonella; Adrian, Marc; Dubochet, Jacques; Hubbell, Jeffrey A

    2009-10-06

    Block copolymers of poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-PPS) have recently emerged as a new macromolecular amphiphile capable of forming a wide range of morphologies when dispersed in water. To understand better the relationship between stability and morphology in terms of the relative and absolute block compositions, we have synthesized a collection of PEG-PPS block copolymers and quantified their critical aggregation concentration and observed their morphology using cryogenic transmission electron microscopy after thin film hydration with extrusion and after solvent dispersion from tetrahydrofuran, a solvent for both blocks. By understanding the relationship between aggregate character and block copolymer architecture, we have observed that whereas the relative block lengths control morphology, the stability of the aggregates upon dilution is determined by the absolute block length of the hydrophobic PPS block. We have compared results obtained with PEG-PPS to those obtained with poly(ethylene glycol)-bl-poly(propylene oxide)-bl-poly(ethylene glycol) block copolymers (Pluronics). The results reveal that the PEG-PPS aggregates are substantially more stable than Pluronic aggregates, by more than an order of magnitude. PEG-PPS can form a wide variety of stable or metastable morphologies in dilute solution within normal time and temperature ranges, whereas Pluronics can generally form only spherical micelles under the same conditions. On the basis of these results, block copolymers of PEG with poly(propylene sulfide) may present distinct advantages over those with poly(propylene glycol) for a number of applications.

  3. A colorimetric method for the molecular weight determination of polyethylene glycol using gold nanoparticles

    PubMed Central

    2013-01-01

    A gold nanoparticle (AuNP)-based colorimetric method was developed for the molecular weight (MW) determination of polyethylene glycol (PEG), a commonly used hydrophilic polymer. Addition of a salt solution to PEG-coated AuNP solutions helps in screening the electrostatic repulsion between nanoparticles and generating a color change of the solutions from wine red to blue in 10 min in accordance with the MW of PEG, which illustrates the different stability degrees (SDs) of the AuNPs. The SDs are calculated by the absorbance ratios of the stable to the aggregated AuNPs in the solution. The root mean square end-to-end length (〈h2〉1/2) of PEG molecules shows a linear fit to the SDs of the PEG-coated AuNPs in a range of 1.938 ± 0.156 to 10.151 ± 0.176 nm. According to the Derjaguin-Landau-Verwey-Overbeek theory, the reason for this linear relationship is that the thickness of the PEG adlayer is roughly equivalent to the 〈h2〉1/2 of the PEG molecules in solution, which determines the SDs of the AuNPs. Subsequently, the MW of the PEG can be obtained from its 〈h2〉1/2 using a mathematical relationship between 〈h2〉1/2 and MW of PEG molecule. Applying this approach, we determined the 〈h2〉1/2 and the MW of four PEG samples according to their absorbance values from the ordinary ultraviolet–visible spectrophotometric measurements. Therefore, the MW of PEG can be distinguished straightforwardly by visual inspection and determined by spectrophotometry. This novel approach is simple, rapid, and sensitive. PMID:24359120

  4. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue

    PubMed Central

    Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin

    2013-01-01

    Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224

  5. Multidimensional analysis of poly(ethylene glycols) by size exclusion chromatography and dynamic surface tension detection

    PubMed

    Miller; Bramanti; Prazen; Prezhdo; Skogerboe; Synovec

    2000-09-15

    analyses of complex poly(ethylene glycol) (PEG) samples. Using partial least squares for data analysis, polydispersity of complex PEG samples is determined at a relative precision of approximately 1%.

  6. A colorimetric method for the molecular weight determination of polyethylene glycol using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ling, Kai; Jiang, Hongyan; Zhang, Qiqing

    2013-12-01

    A gold nanoparticle (AuNP)-based colorimetric method was developed for the molecular weight (MW) determination of polyethylene glycol (PEG), a commonly used hydrophilic polymer. Addition of a salt solution to PEG-coated AuNP solutions helps in screening the electrostatic repulsion between nanoparticles and generating a color change of the solutions from wine red to blue in 10 min in accordance with the MW of PEG, which illustrates the different stability degrees (SDs) of the AuNPs. The SDs are calculated by the absorbance ratios of the stable to the aggregated AuNPs in the solution. The root mean square end-to-end length (< h 2>1/2) of PEG molecules shows a linear fit to the SDs of the PEG-coated AuNPs in a range of 1.938 ± 0.156 to 10.151 ± 0.176 nm. According to the Derjaguin-Landau-Verwey-Overbeek theory, the reason for this linear relationship is that the thickness of the PEG adlayer is roughly equivalent to the < h 2>1/2 of the PEG molecules in solution, which determines the SDs of the AuNPs. Subsequently, the MW of the PEG can be obtained from its < h 2>1/2 using a mathematical relationship between < h 2>1/2 and MW of PEG molecule. Applying this approach, we determined the < h 2>1/2 and the MW of four PEG samples according to their absorbance values from the ordinary ultraviolet-visible spectrophotometric measurements. Therefore, the MW of PEG can be distinguished straightforwardly by visual inspection and determined by spectrophotometry. This novel approach is simple, rapid, and sensitive.

  7. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava

    PubMed Central

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-01-01

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment. PMID:26927071

  8. Phase formation study of magnesium titanate nanomaterial with polyethylene glycol template

    NASA Astrophysics Data System (ADS)

    Hariyani, Y.; Pratapa, S.

    2014-09-01

    The formation of geikielite (MgTiO3, abbreviated as MT) nanomaterial with an addition of polyethylene glycol (PEG)-1000 during synthesis is reported. The synthesis of MT was carried out by means of the dissolved-metal mixing route with PEG-1000 as a template. Prior to the synthesis, Mg and Ti powders, as the raw materials, were independently dissolved in 37% HCl to form MgCl2 and TiCl4 solutions, respectively. Meanwhile, PEG gels with various weights, namely 0.5; 1.0; 1.5; 2.0; 2.5g, were prepared by heating at around 30-40 °C. The solutions and PEG gels were then mixed for 5 hours and dried to temperatures of about 105-110 °C to produce powders with five different PEG compositions. Each of the dried powder was calcined at 600 °C for 1 hour. A sample with no PEG was also prepared following a similar procedure for comparison. The calcined powder was characterized by XRD and to which the data was then quantitatively analyzed by appliying Rietveld method using Rietica software. Results showed that introducing PEG-1000 leads to the formation of MgTi2O5. Further quantitative analysis showed that in general addition of PEG increased the MT weight fraction. Addition of 2.5g PEG increased MT content by more than 12%. The role of PEG on the templation is discussed. TEM micrographs are presented to support the discussion.

  9. Coatings of polyethylene glycol for suppressing adhesion between solid microspheres and flat surfaces.

    PubMed

    Upadhyayula, Srigokul; Quinata, Timothy; Bishop, Stephen; Gupta, Sharad; Johnson, Noah Ray; Bahmani, Baharak; Bozhilov, Kliment; Stubbs, Jeremy; Jreij, Pamela; Nallagatla, Pratima; Vullev, Valentine I

    2012-03-20

    This article describes the development and the examination of surface coatings that suppress the adhesion between glass surfaces and polymer microspheres. Superparamagnetic doping allowed for exerting magnetic forces on the microbeads. The carboxyl functionalization of the polymer provided the means for coating the beads with polyethylene glycol (PEG) with different molecular weight. Under gravitational force, the microbeads settled on glass surfaces with similar polymer coatings. We examined the efficacy of removing the beads from the glass surfaces by applying a pulling force of ~1.2 pN. The percent beads remaining on the surface after applying the pulling force for approximately 5 s served as an indication of the adhesion propensity. Coating of PEG with molecular weight ranging between 3 and 10 kDa was essential for suppressing the adhesion. For the particular substrates, surface chemistry and aqueous media we used, coatings of 5 kDa manifested optimal suppression of adhesion: that is, only 3% of the microbeads remained on the surface after applying the pulling magnetic force. When either the glass or the beads were not PEGylated, the adhesion between them was substantial. Addition of a noncharged surfactant, TWEEN, above its critical micelle concentrations (CMCs) suppressed the adhesion between noncoated substrates. The extent of this surfactant-induced improvement of the adhesion suppression, however, did not exceed the quality of preventing the adhesion that we attained by PEGylating both substrates. In addition, the use of surfactants did not significantly improve the suppression of bead-surface adhesion when both substrates were PEGylated. These findings suggest that such surfactant additives tend to be redundant and that covalently grafted coatings of PEGs with selected chain lengths provide sufficient suppression of nonspecific interfacial interactions.

  10. Phosphate-Containing Polyethylene Glycol Polymers Prevent Lethal Sepsis by Multidrug-Resistant Pathogens

    PubMed Central

    Zaborin, Alexander; Defazio, Jennifer R.; Kade, Matthew; Kaiser, Brooke L. Deatherage; Belogortseva, Natalia; Camp, David G.; Smith, Richard D.; Adkins, Joshua N.; Kim, Sangman M.; Alverdy, Alexandria; Goldfeld, David; Firestone, Millicent A.; Collier, Joel H.; Jabri, Bana; Tirrell, Matthew

    2014-01-01

    Antibiotic resistance among highly pathogenic strains of bacteria and fungi is a growing concern in the face of the ability to sustain life during critical illness with advancing medical interventions. The longer patients remain critically ill, the more likely they are to become colonized by multidrug-resistant (MDR) pathogens. The human gastrointestinal tract is the primary site of colonization of many MDR pathogens and is a major source of life-threatening infections due to these microorganisms. Eradication measures to sterilize the gut are difficult if not impossible and carry the risk of further antibiotic resistance. Here, we present a strategy to contain rather than eliminate MDR pathogens by using an agent that interferes with the ability of colonizing pathogens to express virulence in response to host-derived and local environmental factors. The antivirulence agent is a phosphorylated triblock high-molecular-weight polymer (here termed Pi-PEG 15–20) that exploits the known properties of phosphate (Pi) and polyethylene glycol 15-20 (PEG 15-20) to suppress microbial virulence and protect the integrity of the intestinal epithelium. The compound is nonmicrobiocidal and appears to be highly effective when tested both in vitro and in vivo. Structure functional analyses suggest that the hydrophobic bis-aromatic moiety at the polymer center is of particular importance to the biological function of Pi-PEG 15-20, beyond its phosphate content. Animal studies demonstrate that Pi-PEG prevents mortality in mice inoculated with multiple highly virulent pathogenic organisms from hospitalized patients in association with preservation of the core microbiome. PMID:24277029

  11. Enhanced detection of infectious hematopoietic necrosis virus by pretreatment of cell monolayers with polyethylene glycol

    USGS Publications Warehouse

    Batts, W.N.; Winton, J.R.

    1989-01-01

    To improve quantification of very low levels of infectious hematopoietic necrosis virus (IHNV) in samples of tissue, ovarian fluid, or natural water supplies, we tested the ability of polyethylene glycol (PEG) to enhance the sensitivity and speed of the plaque assay system. We compared 4, 7, and 10% solutions of PEG of molecular weight 6,000, 8,000, or 20,000 applied at selected volumes and for various durations. When cell monolayers of epithelioma papulosum cyprini (EPC), fathead minnow (FHM), chinook salmon embryo (CHSE-214), and bluegill fry (BF2) were pretreated with 7% PEG-20,000, they produced 4-17-fold increases in plaque assay titers of IHNV. The plaque assay titers of viral hemorrhagic septicemia virus, chum salmon reovirus, and chinook salmon paramyxovirus were also enhanced by exposure of CHSE-214 cells to PEG, but the titers of infectious pancreatic necrosis virus and Oncorhynchus masou virus were not substantially changed. Plaques formed by IHNV on PEG-treated EPC cells incubated at 15°C had a larger mean diameter at 6 d than those on control cells at 8 d; this suggests the assay could be shortened by use of PEG. Pretreatment of EPC cell monolayers with PEG enabled detection of IHNV in some samples that appeared negative with untreated cells. For example, when ovarian fluid samples from chinook salmon Oncorhynchus tshawytscha were inoculated onto untreated monolayers of EPC cells, IHNV was detected in only 11 of 51 samples; 17 of the samples were positive when PEG-treated EPC cells were used.PDF

  12. Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos.

    PubMed

    Girardi, Felipe A; Bruch, Gisele E; Peixoto, Carolina S; Dal Bosco, Lidiane; Sahoo, Sangram K; Gonçalves, Carla O F; Santos, Adelina P; Furtado, Clascídia A; Fantini, Cristiano; Barros, Daniela M

    2017-02-01

    Single-wall carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) are promising materials for biomedical applications such as diagnostic devices and controlled drug-release systems. However, several questions about their toxicological profile remain unanswered. Thus, the aim of this study was to investigate the action of SWCNT-PEG in Danio rerio zebrafish embryos at the molecular, physiological and morphological levels. The SWCNT used in this study were synthesized by the high-pressure carbon monoxide process, purified and then functionalized with distearoyl phosphatidylethanolamine block copolymer-PEG (molecular weight 2 kDa). The characterization process was carried out with low-resolution transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy. Individual zebrafish embryos were exposed to the SWCNT-PEG. Toxic effects occurred only at the highest concentration tested (1 ppm) and included high mortality rates, delayed hatching and decreased total larval length. For all the concentrations tested, the alkaline comet assay revealed no genotoxicity, and Raman spectroscopy measurements on the histological slices revealed no intracellular nanotubes. The results shown here demonstrate that SWCNT-PEG has low toxicity in zebrafish embryos, but more studies are needed to understand what mechanisms are involved. However, the presence of residual metals is possibly among the primary mechanisms responsible for the toxic effects observed, because the purification process was not able to remove all metal contamination, as demonstrated by the thermogravimetric analysis. More attention must be given to the toxicity of these nanomaterials before they are used in biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Structural and Functional Consequences of Poly(ethylene glycol) Inclusion on DNA Condensation For Gene Delivery

    PubMed Central

    Millili, Peter G.; Selekman, Joshua A.; Blocker, Kory M.; Johnson, David A.; Naik, Ulhas P.; Sullivan, Millicent O.

    2010-01-01

    Polycationic polymers have been used to condense therapeutic DNA into sub-micron particles, offering protection from shear-induced or enzymatic degradation. However, the spontaneous nature of this self-assembly process gives rise to the formation of multimolecular aggregates, resulting in significant polyplex heterogeneity. Additionally, cytotoxicity issues and serum instability have limited the in vivo efficacy of such systems. One way these issues can be addressed is through the inclusion of poly(ethylene glycol) (PEG). PEG has known steric effects that inhibit polyplex self-aggregation. A variety of PEGylated gene delivery formulations have been previously pursued in an effort to take advantage of this material’s benefits. Due to such interest, our aim was to further explore the consequences of PEG inclusion on the structure and activity of gene delivery vehicle formulations. We explored the complexation of plasmid DNA with varying ratios of a PEGylated tri-lysine peptide (PEG-K3) and 25 kDa polyethylenimine (PEI). Atomic force and scanning electron microscopy were utilized to assess the polyplex size and shape, and revealed that a critical threshold of PEG was necessary to promote the formation of homogeneous polyplexes. Flow cytometry and fluorescence microscopy analyses suggested that the presence of PEG inhibited transfection efficiency as a consequence of changes in intracellular trafficking, and promoted an increased reliance on energy-independent mechanisms of cellular uptake. These studies provide new information on the role of PEG in delivery vehicle design and lay the foundation for future work aimed at elucidating the details of the intracellular transport of PEGylated polyplexes. PMID:20232467

  14. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.

    PubMed

    DeKosky, Brandon J; Dormer, Nathan H; Ingavle, Ganesh C; Roatch, Christopher H; Lomakin, Joseph; Detamore, Michael S; Gehrke, Stevin H

    2010-12-01

    A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials-agarose and poly(ethylene glycol) (PEG) diacrylate-were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance.

  15. Low thrombogenicity of polyethylene glycol-grafted cellulose membranes does not influence heparin requirements in hemodialysis.

    PubMed

    Wright, M J; Woodrow, G; Umpleby, S; Hull, S; Brownjohn, A M; Turney, J H

    1999-07-01

    Heparin is the most commonly used anticoagulant for hemodialysis despite potentially serious side effects. Polyethylene glycol-grafted cellulose (PGC) membranes produce less activation of the coagulation cascade than cuprophane membranes. Anecdotally, we found some patients required a surprisingly low level of anticoagulation using these membranes. We compared the anticoagulant requirement of the PGC membrane with that of the cuprophane membrane in this randomized, prospective, crossover study. Sixty-three patients were randomized to treatment using either membrane, and heparin administration was progressively reduced to the lowest dose that prevented visible clotting in excess of that normally encountered. Patients underwent dialysis at this dose for 1 month, after which the heparin requirement and Kt/Vurea (1.162 x ln [urea pre/urea post]) were assessed. This process was then repeated for each patient using the other membrane, and the results were compared. Heparin administration during dialysis was reduced from a mean loading dose of 29.0 +/- 9.4 to 1.5 +/- 3.2 IU/kg for both membranes and a mean maintenance infusion of 14.0 +/- 6.7 to 0.77 +/- 1.6 IU/kg/h for both membranes (both P < 0.0001 v full anticoagulation; no difference between membranes). The Kt/Vurea was not significantly altered. Forty-six patients with PGC and 45 patients with cuprophane membranes underwent dialysis successfully without heparin during dialysis, and the other patients were using considerably reduced doses. Aspirin and warfarin had no effect on the heparin requirement. These results do not support the theory that PGC membranes have a lower anticoagulant requirement than cuprophane membranes; however, they suggest that dialysis can be performed successfully with much smaller anticoagulant doses than are currently in common use.

  16. Need and utility of a polyethylene glycol marker to ensure against urine falsification among heroin users

    PubMed Central

    Jones, Jermaine D.; Atchison, Jared J.; Madera, Gabriela; Metz, Verena E.; Comer, Sandra D.

    2015-01-01

    Background Deceptive methods of falsifying urine samples are of concern for anyone who relies on accurate urine toxicology results. A novel method to combat these efforts utilizes polyethylene glycol (PEG) markers administered orally prior to providing a urine sample. By using various PEG combinations to create a tracer capsule of unique composition, each urine sample can be matched to that individual. The goal of this study was to determine the effectiveness of using the PEG marker system among active heroin users screening for research studies. Methods Upon each screening visit, participants (N=55) were randomized to provide an unobserved urine sample, or the PEG tracer procedure was used. LCMS analysis was used to distinguish the PEG combinations, and allowed us to provide a unique qualitative analysis of patterns of drug use (N=168, total urine specimens). Results The unique composition of the tracer capsules was accurately detected in 83.5% of the urine specimens. Analyses of inconsistencies implicated a number of possible attempts at fraudulence (11.4%) and investigator/lab error (5.1%). Among this sample, the concurrent use of multiple classes of psychoactive drugs was more common than not, though concomitant drug use was often underreported. Conclusion Urine drug testing should be the minimum standard for obtaining information about drug use as self-report was unreliable even in a situation where there were no perceived adverse consequences for full disclosure. In cases where there are significant pressures for individuals to falsify these data, more protective collection methods such as the PEG marker system should be considered. PMID:26051158

  17. Pharmacokinetic and thrombolytic properties of cysteine-linked polyethylene glycol derivatives of staphylokinase.

    PubMed

    Vanwetswinkel, S; Plaisance, S; Zhi-Yong, Z; Vanlinthout, I; Brepoels, K; Lasters, I; Collen, D; Jespers, L

    2000-02-01

    Recombinant staphylokinase (SakSTAR) variants obtained by site-directed substitution with cysteine, in the core (lysine 96 [Lys96], Lys102, Lys109, and/or Lys135) or the NH(2)-terminal region that is released during activation of SakSTAR (serine 2 [Ser2] and/or Ser3), were derivatized with thiol-specific (ortho-pyridyl-disulfide or maleimide) polyethylene glycol (PEG) molecules with molecular weights of 5,000 (P5), 10,000 (P10), or 20,000 (P20). The specific activities and thrombolytic potencies in human plasma were unaltered for most variants derivatized with PEG (PEGylates), but maleimide PEG derivatives had a better temperature stability profile. In hamsters, SakSTAR was cleared at 2.2 mL/min; variants with 1 P5 molecule were cleared 2-to 5-fold; variants with 2 P5 or 1 P10 molecules were cleared 10-to 30-fold; and variants with 1 P20 molecule were cleared 35-fold slower. A bolus injection induced dose-related lysis of a plasma clot, fibrin labeled with 125 iodine ((125)I-fibrin plasma clot), and injected into the jugular vein. A 50% clot lysis at 90 minutes required 110 microg/kg SakSTAR; 50 to 110 microg/kg of core-substitution derivatives with 1 P5; 25 microg/kg for NH(2)-terminal derivatives with 1 P5; 5 to 25 microg/kg with derivatives with 2 P5 or 1 P10; and 7 microg/kg with P20 derivatives. Core substitution with 1 or 2 P5 molecules did not significantly reduce the immunogenicity of SakSTAR in rabbits. Derivatization of staphylokinase with a single PEG molecule allows controllable reduction of the clearance while maintaining thrombolytic potency at a reduced dose. This indicates that mono-PEGylated staphylokinase variants may be used for single intravenous bolus injection.

  18. Intercalation behavior of poly(ethylene glycol) in organically modified montmorillonite

    NASA Astrophysics Data System (ADS)

    Zhu, Shipeng; Peng, Hongmei; Chen, Jinyao; Li, Huilin; Cao, Ya; Yang, Yunhua; Feng, Zhihai

    2013-07-01

    In this paper, two kinds of organically modified montmorillonite (OMMT) were prepared using alkylammonium surfactants with different alkyl chain numbers. XRD results showed the interlayer spacing of OMMT increased with low concentration surfactants. With further increasing the surfactants concentration, the interlayer spacing of OMMT was unchanged. Meanwhile, FTIR was used to characterize the local environments of surfactants in the interlayer space of OMMT. The results suggested that the double chain surfactant D-18 preferred to adopt highly ordered conformation compared with single chain surfactant S-18 in interlayer space of OMMT. It indicated that the surface property of the OMMT is affected by the concentration and configuration of the intercalated surfactants. Moreover, the effect of the OMMT type, or more particularly the chemical nature of the organic modifier in the interlayer spacing and the poly(ethylene glycol) (PEG) concentration onintercalation behavior of PEG chains in OMMT were investigated with XRD and DSC.The results indicated that PEG chains could not intercalate into Na-MMT when the surfactants were saturated in interlayer space of Na-MMT. PEG chains could intercalate into the interlayer space of SM when the S-18 concentration was lower than 2.00CEC, implying that the low surfactant concentration modified SM provided a better environment (presumably through the balanced hydrophobic and hydrophilic surfaces) for the PEG intercalation as well. However, PEG did not intercalate into the interlayer space of DM when the D-18 concentration was higher than 1.00CEC. It could be attributed to the hydrophobic double alkyl chains of DM increased with D-18. The increased hydrophobic properties in the interlayer space of 1.50DM hybrids can prevent the intercalation of hydrophilic PEG.

  19. Chain-length-dependent autocatalytic hydrolysis of fatty acid anhydrides in polyethylene glycol.

    PubMed

    Cao, Cao; Wang, Qing-Biao; Tang, Lin-Jun; Ge, Bing-Qiang; Chen, Zhong-Xiu; Deng, Shao-Ping

    2014-03-27

    Autocatalytic hydrolysis of fatty acid anhydrides induced by the spontaneously formed vesicles has been studied for years. However, whether the reaction autocatalyzed by vesicles formed in diluted solutions applies also to macromolecular crowded conditions remains unknown. The aim of this study is to characterize hydrolysis behavior of fatty acid anhydrides and formation of vesicles in crowded media. Inert macromolecular crowding agents such as polyethylene glycol (PEG) and Dextran were used to probe the impact of external crowding on the autocatalytic hydrolysis of fatty acid anhydrides with varied hydrophobic chain length. Under stringent conditions of crowding, hydrolysis rates of octanoic anhydride, nonanoic anhydride, and decanoic anhydride were found to decrease, but the rates of lauric anhydride and oleic anhydride increased. These results suggest that the effect of the crowding agent on the hydrolysis of fatty acid anhydrides was chain-length-dependent. Characterization of the size and polydispersity of vesicles formed from hydrolyzed fatty acid anhydrides in crowding revealed that long-chain fatty acids formed monodisperse vesicles easier at lower concentrations of PEG. Measurement of the critical aggregation concentration of ionized fatty acid in the presence of PEG showed that crowding media promoted vesicle formation from long-chain fatty acids but inhibited those from fatty acids with fewer carbon atoms. Further investigation of the diffusion property of ionized fatty acids in crowding agents suggested that PEG might create more hydrophobic areas for long-chain fatty acids anhydrides, which subsequently promoted the unreacted anhydride in the aqueous phase to be solubilized in the formed vesicles. This research provides information for understanding the autocatalytic reaction accompanied by self-producing aggregates and the behavior of fatty acids in crowding media.

  20. The Effect of Melatonin Adsorbed to Polyethylene Glycol Microspheres on the Survival of MCF-7 Cells.

    PubMed

    França, Eduardo Luzía; Honorio-França, Adenilda Cristina; Fernandes, Rubian Trindade da Silva; Marins, Camila Moreira Ferreira; Pereira, Claudia Cristina de Souza; Varotti, Fernando de Pilla

    2016-01-01

    Although melatonin exhibits oncostatic properties such as antiproliferative effects, the oral bioavailability of this hormone is less than 20%. Modified drug release systems have been used to improve the pharmacological efficiency of drugs. These systems can change the pharmacokinetics and biodistribution of the associated drugs. Thus, this study investigated the effect of melatonin adsorbed to polyethylene glycol (PEG) microspheres on MCF-7 human breast cancer cells. The MCF-7 cells were obtained from the American Type Culture Collection. MCF-7 cells were preincubated for 24 h with or without melatonin (100 ng/ml), PEG microspheres or melatonin adsorbed to PEG microspheres (100 ng/ml). Viability, intracellular calcium release and apoptosis in MCF-7 cells were determined by flow cytometry. MCF-7 cells incubated with melatonin adsorbed to PEG microspheres showed a lower viability rate (40.0 ± 8.3 with melatonin adsorbed to PEG microspheres compared to 54.1 ± 7.3 with melatonin; 81.8 ± 12.5 with PEG microsphere and 92.7 ± 4.1 with medium), increased spontaneous intracellular Ca2+ release (27.0 ± 8.6 with melatonin adsorbed to PEG microspheres compared to 21.5 ± 13.4 with melatonin; 10.1 ± 5.4 with PEG microsphere and 9.1 ± 5.6 with medium) and increased apoptosis index (51.2 ± 2.7 with melatonin adsorbed to PEG microspheres compared to 36.0 ± 2.1 with melatonin; 4.9 ± 0.5 with PEG microsphere and 3.1 ± 0.6 with medium). The results indicate that melatonin adsorbed to PEG microspheres exerts antitumor effects on human MCF-7 breast cancer cells. However, clinical tests must be performed to confirm the use of melatonin adsorbed to PEG microspheres as an alternative therapy against cancer.

  1. Blood compatibility evaluations of poly(ethylene glycol)-poly(lactic acid) copolymers.

    PubMed

    Li, Chenghua; Ma, Chengyan; Zhang, Yi; Liu, Zonghua; Xue, Wei

    2016-05-01

    Poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) copolymers have been widely used for various biomedical applications. However, their hemocompatibility has not been clarified, which would lag their developments and clinical applications. In this work, we studied the effect of PEG-PLA copolymers on key human blood components in terms of their structure and bio-functions, including morphology and lysis of red blood cells, fibrinogen structure and conformation, and plasma and blood coagulation. To elucidate a structure-activity relationship, we used diblock PEG-PLA copolymers with different molecular weight, PEG(5 kDa)-PLA(25 kDa) and PEG(2 kDa)-PLA(2 kDa), abbreviated as PEG5k-PLA25k and PEG2k-PLA2k, respectively. The results show that the PEG-PLA copolymers at the concentration range studied in this work neither caused morphological alteration and lysis of red blood cells nor affected the oxygen delivery function and fibrinogen conformation. PEG5k-PLA25k from 10 to 100 mg/mL and PEG2k-PLA2k from 1.5 to 5 mg/mL disturbed the local microenvironments of fibrinogen molecules. PEG5k-PLA25k at up to 0.1 mg/mL did not interfere in the coagulation process of plasma or whole blood, while PEG2k-PLA2k from 0.1 mg/mL significantly interfered in the intrinsic plasma coagulation pathway and impaired whole blood coagulation. The results provide important information for the molecular design and clinical applications of PEG-PLA copolymers.

  2. Safety of polyethylene glycol 3350 solution in chronic constipation: randomized, placebo-controlled trial

    PubMed Central

    McGraw, Thomas

    2016-01-01

    Purpose To evaluate the safety and tolerability of aqueous solution concentrate (ASC) of polyethylene glycol (PEG) 3350 in patients with functional constipation. Patients and methods The patients who met Rome III diagnostic criteria for functional constipation were randomized in this multicenter, randomized, placebo-controlled, single-blind study to receive once daily dose of PEG 3350 (17 g) ASC or placebo solution for 14 days. The study comprised a screening period (visit 1), endoscopy procedure (visits 2 and 3), and followup telephone calls 30 days post-treatment. Safety end points included adverse events (AEs), clinical laboratory evaluations, vital signs, and others. The primary end points were the proportion of patients with abnormalities of the oral and esophageal mucosa, detected by visual and endoscopic examination of the oral cavity and esophagus, respectively, compared with placebo. A secondary objective was to compare the safety and tolerability of ASC by evaluating AEs or adverse drug reactions. Results A total of 65 patients were enrolled in this study, 31 were randomized to PEG 3350 ASC and 34 were randomized to placebo, of which 62 patients completed the study. No patients in either group showed abnormalities in inflammation of the oral mucosa during visit 2 (before treatment) or visit 3 (after treatment). Fewer abnormalities of the esophageal mucosa were observed in the PEG 3350 ASC group than in the placebo group on visit 3, with no significant difference in the proportion of abnormalities between the treatment groups. Overall, 40 treatment-emergent AEs were observed in 48.4% of patients treated with PEG 3350 ASC, and 41 treatment-emergent AEs were observed in 55.9% of patients treated with placebo – nonsignificant difference of −7.5% (95% CI: −21.3, 6.3) between treatment groups. No serious AEs or deaths were reported, and no patient discontinued because of an AE. Conclusion PEG 3350 ASC is safe and well tolerated in patients with functional

  3. Dehydration of corneal anterior donor tissue with polyethylene glycol (PEG)-enriched media.

    PubMed

    Lie, Jessica T; Monnereau, Claire; Groeneveld-van Beek, Esther A; van der Wees, Jacqueline; Frank, Johannes; Bruinsma, Marieke; Melles, Gerrit R J

    2015-09-01

    Anterior donor grafts (including scleral rim, without Descemet membrane) increase in thickness and become hazy upon storage in organ culture (OC) medium. Transfer of these grafts to standard dehydration media just before transplantation does not reduce their thickness to normal. Therefore, we assessed the efficacy of different media enriched with polyethylene glycol (PEG) as dehydrating agents for organ-cultured anterior donor grafts. Grafts were harvested and stored in the commercial OC medium 'Max' (without dextran) for 1 week, and subsequently dehydrated in the standard commercial dehydration medium 'Jet' (with dextran) supplemented with 4-20% PEG3350, or 'Max' supplemented with 20% PEG6000 and PEG20.000, or 5-20% PEG35.000. Central corneal thickness (CCT), as assessed by anterior segment-optical coherence tomography, and transparency were evaluated before, and at 1, 4 and 7 days of dehydration. Transfer of grafts after 1 week of OC (average 1,200 µm) to 'Jet' supplemented with PEG3350 revealed a concentration-dependent effect of dehydration; CCT was restored to normal (500-600 µm) when 10% PEG3350 was added. However, transparency was only temporarily restored; after 1 day, the grafts turned hazy. In contrast, grafts transferred to 'Max' supplemented with 20% PEG35.000 were transparent throughout the evaluation period, but were dehydrated to beyond normal levels (average 300 µm). 'Max' supplemented with 5% PEG35.000 dehydrated grafts to normal values and restored transparency throughout. Thus, dehydration of anterior donor grafts prior to surgery in dextran-free OC medium supplemented with 5% PEG35.000 reduces graft thickness to normal and may facilitate anterior keratoplasty procedures.

  4. Cellular mechanisms of plasmalemmal sealing and axonal repair by polyethylene glycol and methylene blue.

    PubMed

    Spaeth, C S; Robison, T; Fan, J D; Bittner, G D

    2012-05-01

    Mammalian neurons and all other eukaryotic cells endogenously repair traumatic injury within minutes by a Ca²⁺-induced accumulation of vesicles that interact and fuse with each other and the plasmalemma to seal any openings. We have used uptake or exclusion of extracellular fluorescent dye to measure the ability of rat hippocampal B104 cells or rat sciatic nerves to repair (seal) transected neurites in vitro or transected axons ex vivo. We report that endogenous sealing in both preparations is enhanced by Ca²⁺-containing solutions and is decreased by Ca²⁺-free solutions containing antioxidants such as dithiothreitol (DTT), melatonin (MEL), methylene blue (MB), and various toxins that decrease vesicular interactions. In contrast, the fusogen polyethylene glycol (PEG) at 10-50 mM artificially seals the cut ends of B104 cells and rat sciatic axons within seconds and is not affected by Ca²⁺ or any of the substances that affect endogenous sealing. At higher concentrations, PEG decreases sealing of transected axons and disrupts the plasmalemma of intact cells. These PEG-sealing data are consistent with the hypothesis that lower concentrations of PEG directly seal a damaged plasmalemma. We have considered these and other data to devise a protocol using a well-specified series of solutions that vary in tonicity, Ca²⁺, MB, and PEG content. These protocols rapidly and consistently repair (PEG-fuse) rat sciatic axons in completely cut sciatic nerves in vivo rapidly and dramatically to restore long-lasting morphological continuity, action potential conduction, and behavioral functions.

  5. Two-step recrystallization of water in concentrated aqueous solution of poly(ethylene glycol).

    PubMed

    Gemmei-Ide, Makoto; Motonaga, Tetsuya; Kasai, Ryosuke; Kitano, Hiromi

    2013-02-21

    Crystallization behavior of water in a concentrated aqueous solution of poly(ethylene glycol) (PEG) with a water content of 37.5 wt % was investigated by temperature variable mid-infrared (mid-IR) spectroscopy in a temperature range of 298-170 K. The mid-IR spectrum of water at 298 K showed that a large water cluster was not formed and that most of the water molecules were associated with the PEG chain. Ice formation, however, occurred as found in previous studies by differential scanning calorimetory. Ice formations were grouped into three types: crystallization at 231 K during cooling, that at 198 K during heating, and that at 210 K during heating. The latter two were just recrystallization. These ice formations were the direct transition from hydration species to ice without condensation regardless of crystallization or recrystallization. This means that the recrystallized water in the present system was not generated from low-density amorphous solid water. At a low cooling rate, nearly complete crystallization at 231 K during cooling and no recrystallization were observed. At a high cooling rate, no crystallization and two-step recrystallization at 198 and 210 K were observed. The former and latter recrystallizations were found to be generated from water associated with the PEG chains with ttg (the sequence -O-CH(2)-CH(2)-O- having a trans (t) conformation about the -C-O- bond and a gauche (g) conformation about the -C-C- bond) and random conformations, respectively. These results indicate that recrystallizable water does not have a single specific water structure.

  6. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres

    PubMed Central

    2014-01-01

    Objective Gold nanoparticles have attracted enormous interest as potential theranostic agents. However, little is known about the long-term elimination and systemic toxicity of gold nanoparticles in the literature. Hollow gold nanospheres (HAuNS) is a class of photothermal conducting agent that have shown promises in photoacoustic imaging, photothermal ablation therapy, and drug delivery. It’s very necessary to make clear the biosafety of HAuNS for its further application. Methods We investigated the cytotoxicity, complement activation, and platelet aggregation of polyethylene glycol (PEG)-coated HAuNS (PEG-HAuNS, average diameter of 63 nm) in vitro and their pharmacokinetics, biodistribution, organ elimination, hematology, clinical chemistry, acute toxicity, and chronic toxicity in mice. Results PEG-HAuNS did not induce detectable activation of the complement system and did not induce detectable platelet aggregation. The blood half-life of PEG-HAuNS in mice was 8.19 ± 1.4 hr. The single effective dose of PEG-HAuNS in photothermal ablation therapy was determined to be 12.5 mg/kg. PEG-HAuNS caused no adverse effects after 10 daily intravenous injections over a 2-week period at a dose of 12.5 mg/kg per injection (accumulated dose: 125 mg/kg). Quantitative analysis of the muscle, liver, spleen, and kidney revealed that the levels of Au decreased 45.2%, 28.6%, 41.7%, and 40.8%, respectively, from day 14 to day 90 after the first intravenous injection, indicating that PEG-HAuNS was slowly cleared from these organs in mice. Conclusion Our data support the use of PEG-HAuNS as a promising photothermal conducting agent. PMID:24886070

  7. Effect of polyethylene glycols on the trans-ungual delivery of terbinafine.

    PubMed

    Nair, Anroop B; Chakraborty, Bireswar; Murthy, S Narasimha

    2010-12-01

    Topical nail drug delivery could be improved by identifying potent chemical penetration enhancers. The purpose of this study was to assess the effect of polyethylene glycols (PEGs) on the trans-ungual delivery of terbinafine. In vitro permeation studies were carried out by passive and iontophoresis (0.5 mA/cm2) processes for a period of 1 h using gel formulations containing different molecular weight PEGs (30%w/w). The release of drug from the loaded nail plates and the possible mechanisms for the enhanced delivery was studied. Passive delivery using formulation with low molecular weight PEGs (200 and 400 MW) indicated moderate enhancement in the permeation and drug load in the nail plate, compared to the control formulation. However, the effect of low molecular weight PEGs was predominant during iontophoresis process with greater amount of terbinafine being permeated (≈35 µg/cm2) and loaded into the nail plate (≈2.7 µg/mg). However, little or no effect on drug delivery was observed with high molecular weight PEGs (1000- 3350 MW) in passive and iontophoresis processes. Release of drug from the nail plates loaded by iontophoresis using low molecular weight PEG (400 MW) exhibited sustain effect which continued over a period of 72 days. The enhancement in drug permeation by low molecular weight PEGs is likely due to their ability to lead to greater water uptake and swelling of nail. This study concluded that the low molecular weight PEGs are indeed a promising trans-ungual permeation enhancer.

  8. Liposomal Cu-64 labeling method using bifunctional chelators: poly(ethylene glycol) spacer and chelator effects.

    PubMed

    Seo, Jai Woong; Mahakian, Lisa M; Kheirolomoom, Azadeh; Zhang, Hua; Meares, Claude F; Ferdani, Riccardo; Anderson, Carolyn J; Ferrara, Katherine W

    2010-07-21

    Two bifunctional Cu-64 chelators (BFCs), (6-(6-(3-(2-pyridyldithio)propionamido)hexanamido)benzyl)-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA-PDP) and 4-(2-(2-pyridyldithioethyl)ethanamido)-11-carboxymethyl-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane (CB-TE2A-PDEA), were synthesized and conjugated to long-circulating liposomes (LCLs) via attachment to a maleimide lipid. An in vitro stability assay of (64)Cu-TETA, (64)Cu-TETA-PEG2k, and (64)Cu-CB-TE2A-PEG2k liposomes showed that more than 86% of the radioactivity remains associated with the liposomal fraction after 48 h of incubation with mouse serum. The in vivo time activity curves (TAC) for the three liposomal formulations showed that approximately 50% of the radioactivity cleared from the blood pool in 16-18 h. As expected, the in vivo biodistribution and TAC data obtained at 48 h demonstrate that the clearance of radioactivity from the liver slows with the incorporation of a poly(ethylene glycol)-2k (PEG2k) brush. Our data suggest that (64)Cu-TETA and (64)Cu-CB-TE2A are similarly stable in the blood pool and accumulation of radioactivity in the liver and spleen is not related to the stability of Cu-64 chelator complex; however, clearance of Cu-64 from the liver and spleen are faster when injected as (64)Cu-TETA-chelated liposomes rather than (64)Cu-CB-TE2A-chelated liposomes.

  9. Liposomal Cu-64 labeling method using bifunctional chelators: polyethylene glycol spacer and chelator effects

    PubMed Central

    Seo, Jai Woong; Mahakian, Lisa M.; Kheirolomoom, Azadeh; Zhang, Hua; Meares, Claude F.; Ferdani, Riccardo; Anderson, Carolyn J.; Ferrara, Katherine W.

    2010-01-01

    Two bifunctional Cu-64 chelators (BFCs), (6-(6-(3-(2-pyridyldithio)propionamido)hexanamido)benzyl)-1,4,8,11-tetraazacyclotetradecane- 1,4,8,11-tetraacetic acid (TETA-PDP) and 4-(2-(2-pyridyldithioethyl)ethanamido)-11-carboxymethyl-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane (CB-TE2A-PDEA), were synthesized and conjugated to long circulating liposomes (LCLs) via attachment to a maleimide lipid. An in vitro stability assay of 64Cu-TETA, 64Cu-TETA-PEG2k, and 64Cu-CB-TE2A-PEG2k liposomes showed that more than 86% of the radioactivity remains associated with the liposomal fraction after 48 hours of incubation with mouse serum. The in vivo time activity curves (TAC) for the three liposomal formulations showed that ~50% of the radioactivity cleared from the blood pool in 16 - 18 hours. As expected, the in vivo biodistribution and TAC data obtained at 48 hours demonstrate that the clearance of radioactivity from the liver slows with the incorporation of a polyethylene glycol-2k (PEG2k) brush. Our data suggest that 64Cu-TETA and 64Cu-CB-TE2A are similarly stable in the blood pool and accumulation of radioactivity in the liver and spleen is not related to the stability of Cu-64 chelator complex; however clearance of Cu-64 from the liver and spleen are faster when injected as 64Cu-TETA-chelated liposomes rather than 64Cu-CB-TE2A-chelated liposomes. PMID:20568726

  10. Online Aerosol Mass Spectrometry of Single Micrometer-Sized Particles Containing Poly(ethylene glycol)

    SciTech Connect

    Bogan, M J; Patton, E; Srivastava, A; Martin, S; Fergenson, D; Steele, P; Tobias, H; Gard, E; Frank, M

    2006-10-25

    Analysis of poly(ethylene glycol)(PEG)-containing particles by online single particle aerosol mass spectrometers equipped with laser desorption ionization (LDI) is reported. We demonstrate that PEG-containing particles are useful in the development of aerosol mass spectrometers because of their ease of preparation, low cost, and inherently recognizable mass spectra. Solutions containing millimolar quantities of PEGs were nebulized and, after drying, the resultant micrometer-sized PEG containing particles were sampled. LDI (266 nm) of particles containing NaCl and PEG molecules of average molecular weight <500 generated mass spectra reminiscent of mass spectra of PEG collected by other MS schemes including the characteristic distribution of positive ions (Na{sup +} adducts) separated by the 44 Da of the ethylene oxide units separating each degree of polymerization. PEGs of average molecular weight >500 were detected from particles that also contained t the tripeptide tyrosine-tyrosine-tyrosine or 2,5-dihydroxybenzoic acid, which were added to nebulized solutions to act as matrices to assist LDI using pulsed 266 nm and 355 nm lasers, respectively. Experiments were performed on two aerosol mass spectrometers, one reflectron and one linear, that each utilize two time-of-flight mass analyzers to detect positive and negative ions created from a single particle. PEG-containing particles are currently being employed in the optimization of our bioaerosol mass spectrometers for the application of measurements of complex biological samples, including human effluents, and we recommend that the same strategies will be of great utility to the development of any online aerosol LDI mass spectrometer platform.

  11. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique.

    PubMed

    Ji, Chengdong; Annabi, Nasim; Hosseinkhani, Maryam; Sivaloganathan, Sobana; Dehghani, Fariba

    2012-02-01

    The aim of this study was to prepare poly-DL-lactide/polyethylene glycol (PDLLA/PEG) blends to improve medium absorption and cell proliferation in the three-dimensional (3-D) structure of their scaffolds. Carbon dioxide (CO2) was used as a foaming agent to create porosity in these blends. The results of Fourier transform infrared (FTIR) spectroscopy demonstrated that the blends were homogeneous mixtures of PDLLA and PEG. The peak shifts at 1092 and 1744 cm(-1) confirmed the presence of molecular interactions between these two compounds. Increasing the PEG weight ratio enhanced the relative crystallinity and hydrophilicity. The PDLLA/PEG blends (especially 80/20 and 70/30 weight ratios) exhibited linear degradation profiles over an incubation time of 8 weeks. The mechanical properties of PDLLA/PEG blends having less than 30 wt.% PEG were suitable for the fabrication of porous scaffolds. Increasing the concentration of PEG to above 50% resulted in blends that were brittle and had low mechanical integrity. Highly porous scaffolds with controllable pore size were produced for 30 wt.% PEG samples using the gas foaming technique at temperatures between 25 and 55 °C and pressures between 60 and 160 bar. The average pore diameters achieved by gas foaming process were between 15 and 150 μm, and had an average porosity of 84%. The medium uptake and degradation rate of fabricated PDLLA/PEG scaffolds were increased compared with neat PDLLA film due to the presence of PEG and porosity. The porous scaffolds also demonstrated a lower modulus of elasticity and a higher elongation at break compared to the non-porous film. The fabricated PDLLA/PEG scaffolds have high potential for various tissue-engineering applications.

  12. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose.

    PubMed Central

    Hammer, H F; Santa Ana, C A; Schiller, L R; Fordtran, J S

    1989-01-01

    The purpose of these studies was to gain insight into the pathophysiology of pure osmotic diarrhea and the osmotic diarrhea caused by carbohydrate malabsorption. Diarrhea was induced in normal volunteers by ingestion of polyethylene glycol (PEG), which is nonabsorbable, not metabolized by colonic bacteria, and carries no electrical charge. In PEG-induced diarrhea, (a) stool weight was directly correlated with the total mass of PEG ingested; (b) PEG contributed 40-60% of the osmolality of the fecal fluid, the remainder being contributed by other solutes either of dietary, endogenous, or bacterial origin; and (c) fecal sodium, potassium, and chloride were avidly conserved by the intestine, in spite of stool water losses exceeding 1,200 g/d. Diarrhea was also induced in normal subjects by ingestion of lactulose, a disaccharide that is not absorbed by the small intestine but is metabolized by colonic bacteria. In lactulose-induced diarrhea, (a) a maximum of approximate 80 g/d of lactulose was metabolized by colonic bacteria to noncarbohydrate moieties such as organic acids; (b) the organic acids were partially absorbed in the colon; (c) unabsorbed organic acids obligated the accumulation of inorganic cations (Na greater than Ca greater than K greater than Mg) in the diarrheal fluid; (d) diarrhea associated with low doses of lactulose was mainly due to unabsorbed organic acids and associated cations, whereas with larger doses of lactulose unmetabolized carbohydrates also played a major role; and (e) the net effect of bacterial metabolism of lactulose and partial absorption of organic acids on stool water output was done dependent. With low or moderate doses of lactulose, stool water losses were reduced by as much as 600 g/d (compared with equimolar osmotic loads of PEG); with large dose, the increment in osmotically active solutes within the lumen exceeded the increment of the ingested osmotic load, and the severity of diarrhea was augmented. PMID:2794043

  13. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.

    PubMed

    Ni, PeiYan; Fu, ShaoZhi; Fan, Min; Guo, Gang; Shi, Shuai; Peng, JinRong; Luo, Feng; Qian, ZhiYong

    2011-01-01

    Polylactide (PLA) electrospun fibers have been reported as a scaffold for bone tissue engineering application, however, the great hydrophobicity limits its broad application. In this study, the hybrid amphiphilic poly(ethylene glycol) (PEG)/hydrophobic PLA fibrous scaffolds exhibited improved morphology with regular and continuous fibers compared to corresponding blank PLA fiber mats. The prepared PEG/PLA fibrous scaffolds favored mesenchymal stem cell (MSC) attachment and proliferation by providing an interconnected porous extracellular environment. Meanwhile, MSCs can penetrate into the fibrous scaffold through the interstitial pores and integrate well with the surrounding fibers, which is very important for favorable application in tissue engineering. More importantly, the electrospun hybrid PEG/PLA fibrous scaffolds can enhance MSCs to differentiate into bone-associated cells by comprehensively evaluating the representative markers of the osteogenic procedure with messenger ribonucleic acid quantitation and protein analysis. MSCs on the PEG/PLA fibrous scaffolds presented better differentiation potential with higher messenger ribonucleic acid expression of the earliest osteogenic marker Cbfa-1 and mid-stage osteogenic marker Col I. The significantly higher alkaline phosphatase activity of the PEG/PLA fibrous scaffolds indicated that these can enhance the differentiation of MSCs into osteoblast-like cells. Furthermore, the higher messenger ribonucleic acid level of the late osteogenic differentiation markers OCN (osteocalcin) and OPN (osteopontin), accompanied by the positive Alizarin red S staining, showed better maturation of osteogenic induction on the PEG/PLA fibrous scaffolds at the mineralization stage of differentiation. After transplantation into the thigh muscle pouches of rats, and evaluating the inflammatory cells surrounding the scaffolds and the physiological characteristics of the surrounding tissues, the PEG/PLA scaffolds presented good

  14. Antioxidant response of Stevia rebaudiana B. to polyethylene glycol and paclobutrazol treatments under in vitro culture.

    PubMed

    Hajihashemi, Shokoofeh; Ehsanpour, Ali Akbar

    2014-04-01

    This investigation was carried out with the aim of determining the effect of paclobutrazol (PBZ) (0 and 2 mg l(-1)) and polyethylene glycol (PEG) (0, 2, 4 and 6 % w/v of PEG 6000) treatments on antioxidant system of Stevia rebaudiana Bertoni under in vitro condition. Analysis of data showed that PEG treatment significantly increased hydrogen peroxide (H2O2) and phenolic contents, while PBZ treatment limited the effect of PEG on them. Our data revealed that PEG treatment significantly increased total antioxidant capacity, catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and peroxidase (POD) activity, while it inversely decreased glutathione reductase (GR) activity. The superoxide dismutase (SOD) activity was not affected by PEG treatment. PBZ treatment induced significantly higher levels of CAT and GR activity and lower levels of SOD activity in PEG-treated plants. PBZ in combination with PEG resulted in no significant difference on APX activity with PEG treatment alone. PBZ treatment prevented the effect of PEG on the PPO activity. PEG (with or without PBZ) treatment increased the ascorbate pool, whereas total glutathione level was not affected by PEG. Our finding indicated that PBZ reduced the negative effect of PEG treatment by quenching H2O2 accumulation and increasing the CAT activity. Collectively, the antioxidant capacity of S. rebaudiana in PEG treatment condition was associated with active enzymatic and non-enzymatic defence systems which partly could be improved by the PBZ treatment. In addition, a higher accumulation of phenolic compounds leads to a more potent reactive oxygen species scavenging activity in S. rebaudiana.

  15. The Use of Polyethylene Glycol in Mammalian Herbivore Diet Studies: What Are We Measuring?

    PubMed

    Windley, Hannah R; Wigley, Hannah J; Ruscoe, Wendy A; Foley, William J; Marsh, Karen J

    2016-06-01

    Polyethylene glycol (PEG) has been used to study the intake and digestion of tannin-rich plants by mammalian herbivores because it preferentially binds to tannins. However, it is not clear whether the responses of herbivores to dietary PEG is due to increased protein availability from the release of tannin-bound protein, amelioration of tannin effects, or whether PEG also may bind to other compounds and change their activity in the gut. We used three native New Zealand tree species to measure the effect of PEG on the amount of foliage eaten by invasive common brushtail possums (Trichosurus vulpecula) and on in vitro digestible nitrogen (available N). The addition of PEG increased the in vitro available N content of Weinmannia racemosa foliage, and possums ate significantly more PEG-treated foliage than untreated foliage. However, possums also ate more PEG-treated Fuchsia excorticata foliage, even though PEG did not increase in vitro available N in this species. Possums ate very little Melicytus ramiflorus, regardless of PEG treatment, even though M. ramiflorus contained the highest concentration of in vitro available N. These results prompted us to use PEG and a protein supplement, casein, to manipulate the available N concentration of diets containing ground eucalypt foliage, a well-studied food species for possums. Again, the response of possums to PEG was independent of changes in in vitro available N. In addition, altering the protein content of the diet via the addition of casein did not affect how much food the possums consumed. We conclude that the effects of PEG on dry matter intake by mammalian herbivores are not due solely to the release of tannin-bound protein. There is need for a better understanding of PEG-tannin interactions in order to ensure that the use of PEG in nutritional studies does not outstrip an understanding of its mechanisms of action.

  16. Polyethylene glycol reduces early and long-term cold ischemia-reperfusion and renal medulla injury.

    PubMed

    Faure, Jean Pierre; Hauet, Thierry; Han, Zeqiu; Goujon, Jean Michel; Petit, Isabelle; Mauco, Gerard; Eugene, Michel; Carretier, Michel; Papadopoulos, Vassilios

    2002-09-01

    Ischemia-reperfusion injury (IRI) after transplantation is a major cause of delayed graft function, which has a negative impact on early and late graft function and improve acute rejection. We have previously shown that polyethylene glycol (PEG) and particularly PEG 20M has a protective effect against cold ischemia and reperfusion injury in an isolated perfused pig and rat kidney model. We extended those observations to investigate the role of PEG using different doses (30g or 50g/l) added (ICPEG30 or ICPEG50) or not (IC) to a simplified preservation solution to reduce IRI after prolonged cold storage (48-h) of pig kidneys when compared with Euro-Collins and University of Wisconsin solutions. The study of renal function and medulla injury was performed with biochemical methods and proton NMR spectroscopy. Histological and inflammatory cell studies were performed after reperfusion (30-40 min) and on days 7 and 14 and weeks 4, 8, and 12. Peripheral-type benzodiazepine receptor (PBR), a mitochondrial protein involved in cholesterol homeostasis, was also studied. The results demonstrated that ICPEG30 improved renal function and reduced medulla injury. ICPEG30 also improved tubular function and strongly protect mitochondrial integrity. Post-IRI inflammation was strongly reduced in this group, particularly lymphocytes TCD4(+), PBR expression was influenced by IRI in the early period and during the development of chronic dysfunction. This study clearly shows that PEG has a beneficial effect in renal preservation and suggests a role of PBR as a marker IRI and repair processes.

  17. Modification and patterning of nanometer-thin poly(ethylene glycol) films by electron irradiation.

    PubMed

    Meyerbröker, Nikolaus; Zharnikov, Michael

    2013-06-12

    In this study, we analyzed the effect of electron irradiation on highly cross-linked and nanometer-thin poly(ethylene glycol) (PEG) films and, in combination with electron beam lithography (EBL), tested the possibility to prepare different patterns on their basis. Using several complementary spectroscopic techniques, we demonstrated that electron irradiation results in significant chemical modification and partial desorption of the PEG material. The initially well-defined films were progressively transformed in carbon-enriched and oxygen-depleted aliphatic layers with, presumably, still a high percentage of intermolecular cross-linking bonds. The modification of the films occurred very rapidly at low doses, slowed down at moderate doses, and exhibited a leveling off behavior at higher doses. On the basis of these results, we demonstrated the fabrication of wettability patterns and sculpturing complex 3D microstructures on the PEG basis. The swelling behavior of such morphological patterns was studied in detail, and it was shown that, in contrast to the pristine material, irradiated areas of the PEG films reveal an almost complete absence of the hydrogel-typical swelling behavior. The associated sealing of the irradiated areas allows a controlled deposition of objects dissolved in water, such as metal nanoparticles or fluorophores, into the surrounding, pristine areas, resulting in the formation of nanocomposite patterns. In contrast, due to the distinct protein-repelling properties of the PEG films, proteins are exclusively adsorbed onto the irradiated areas. This makes such films a suitable platform to prepare protein-affinity patterns in a protein-repelling background.

  18. Solute retention and the states of water in polyethylene glycol and poly(vinyl alcohol) gels.

    PubMed

    Baba, Takayuki; Sakamoto, Ryosaku; Shibukawa, Masami; Oguma, Koichi

    2004-06-18

    The states of water sorbed in a cross-linked polyethylene glycol (PEG) gel, TSKgel Ether-250, and cross-linked poly(vinyl alcohol) (PVA) gels of different pore sizes, TSKgel Toyopearl HW-40S, 50S, 55S and 75S, were investigated by means of differential scanning calorimetry (DSC). It was found that there were three types of water in these hydrogels, non-freezing water, freezable bound water and free water. The amount of water that functions as the stationary phase in the column packed with the each gel was also estimated by a liquid chromatographic method. The estimated amount of the stationary phase water is in good agreement with the sum of the amount of non-freezing water and that of freezable bound water for HW-40S, 50S and 55S, while it agrees with the amount of only non-freezing water for HW-75S and Ether-250. This means that the stationary phase water consists of non-freezing water and freezable bound water for HW-40S, 50S and 55S, while only non-freezing water functions as the stationary phase in HW-75S and Ether-250 gels. This result can be attributed to the difference in the structure of the gels; the PVA gels containing PVA at relatively high concentrations, HW-40S, 50S and 55S, have a homogeneous gel phase, whereas HW-75S and Ether-250 have a heterogeneous gel phase consisting hydrated polymer domains and macropores with relatively hydrophobic surface. The freezable bound water in Toyopearl HW-40S, 50S and 55S can be regarded as a component of a homogeneous PVA solution phase, while that in HW-75S and Ether-250 may be water isolated in small pores of the hydrophobic domains. The results obtained by the investigation on the retention selectivity of these hydrogels in aqueous solutions supported our postulated view on the structures of the hydrogels.

  19. New technetium-99m generator technologies utilizing polyethylene glycol-based aqueous biphasic systems

    SciTech Connect

    Rogers, R.D.; Bond, A.H.; Zhang, Jianhua; Horwitz, P.

    1995-12-31

    Two new schemes for TcO{sub 4}{sup {minus}}/MoO{sub 4}{sup 2{minus}} separations from OH{sup {minus}} and MoO{sub 4}{sup 2{minus}} media using polyethylene glycol (PEG)-based aqueous biphasic systems (ABS) have been developed. The two most important salt solutions in current {sup 99m}Tc-generator technologies, OH{sup {minus}} and MoO{sub 4}{sup 2{minus}}, also salt out PEG to form ABS. In liquid/liquid PEG- ABS, pertechnetate can be separated from molybdate with separation factors as high as 10,000. Stripping is accomplished by reduction of the TcO{sub 4}{sup {minus}} and back extraction into a salt solution. the strip solution can be the salt of an imaging agent (e.g., Na{sub 4}HEDPA) and thus may, under the appropriate conditions, be injected directly into the human body. {sup 99m}TcO{sub 4}{sup {minus}} can also be concentrated from a dilute load solution of {sup 99}MoO{sub 4}{sup 2{minus}} in NaOH using an aqueous biphasic extraction chromatographic technique (ABEC). A rinse with K{sub 2}CO{sub 3} assures that all {sup 99}MoO{sub 4}{sup 2{minus}} is removed from the column and this is confirmed by a rapid drop in {sup 99}Mo activity by the fourth free column volume (fcv) of rinse. The {sup 99m}TcO{sub 4}{sup {minus}} is then eluted with water. This chromatographic separation affords 94% of the {sup 99m}TcO{sub 4}{sup {minus}} activity in 5 fcv, with the y spectrum showing less than 2 {times} 10{sup {minus}4} of the original {sup 99}Mo activity.

  20. Physiological Investigation and Transcriptome Analysis of Polyethylene Glycol (PEG)-Induced Dehydration Stress in Cassava.

    PubMed

    Fu, Lili; Ding, Zehong; Han, Bingying; Hu, Wei; Li, Yajun; Zhang, Jiaming

    2016-02-25

    Cassava is an important tropical and sub-tropical root crop that is adapted to drought environment. However, severe drought stress significantly influences biomass accumulation and starchy root production. The mechanism underlying drought-tolerance remains obscure in cassava. In this study, changes of physiological characters and gene transcriptome profiles were investigated under dehydration stress simulated by polyethylene glycol (PEG) treatments. Five traits, including peroxidase (POD) activity, proline content, malondialdehyde (MDA), soluble sugar and soluble protein, were all dramatically induced in response to PEG treatment. RNA-seq analysis revealed a gradient decrease of differentially expressed (DE) gene number in tissues from bottom to top of a plant, suggesting that cassava root has a quicker response and more induced/depressed DE genes than leaves in response to drought. Overall, dynamic changes of gene expression profiles in cassava root and leaves were uncovered: genes related to glycolysis, abscisic acid and ethylene biosynthesis, lipid metabolism, protein degradation, and second metabolism of flavonoids were significantly induced, while genes associated with cell cycle/organization, cell wall synthesis and degradation, DNA synthesis and chromatin structure, protein synthesis, light reaction of photosynthesis, gibberelin pathways and abiotic stress were greatly depressed. Finally, novel pathways in ABA-dependent and ABA-independent regulatory networks underlying PEG-induced dehydration response in cassava were detected, and the RNA-Seq results of a subset of fifteen genes were confirmed by real-time PCR. The findings will improve our understanding of the mechanism related to dehydration stress-tolerance in cassava and will provide useful candidate genes for breeding of cassava varieties better adapted to drought environment.

  1. CT enterography with polyethylene glycol solution vs CT enteroclysis in small bowel disease

    PubMed Central

    Minordi, L M; Vecchioli, A; Mirk, P; Bonomo, L

    2011-01-01

    Objective The aim of the study is to compare CT enterography with polyethylene glycol solution (PEG-CT) with CT enteroclysis (CT-E) in patients with suspected small bowel disease. Methods 145 patients underwent abdominal contrast-enhanced 16-row multidetector CT after administration of 2000 ml of PEG by mouth (n = 75) or after administration of 2000 ml of methylcellulose by nasojejunal tube (n = 70). Small bowel distension, luminal and extraluminal findings were evaluated and compared with small bowel follow-through examination in 60 patients, double contrast enema in 50, surgery in 25 and endoscopy in 35. Statistical evaluation was carried out by χ2 testing. For both techniques we have also calculated the effective dose and the equivalent dose in a standard patient. Results Crohn's disease was diagnosed in 64 patients, neoplasms in 16, adhesions in 6. Distension of the jejunum was better with CT-E than PEG-CT (p<0.05: statistically significant difference). No significant difference was present for others sites (p>0.05). Evaluation of pathological ileal loops was good with both techniques. The values of sensitivity, specificity and diagnostic accuracy were respectively 94%, 100% and 96% with CT-E, and 93%, 94% and 93% with PEG-CT. The effective dose for PEG-CT was less than the dose for the CT-E (34.7 mSv vs 39.91 mSv). Conclusion PEG-CT shows findings of Crohn's disease as well as CT-E does, although CT-E gives better bowel distension, especially in the jejunum, and has higher specificity than PEG-CT. PMID:20959377

  2. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery

    PubMed Central

    Gao, Dawei; Tang, Shengnan; Tong, Qi

    2012-01-01

    Background Oleanolic acid is a pentacyclic triterpene present in many fruits and vegetables, and has received much attention on account of its biological properties. However, its poor solubility and low bioavailability limit its use. The objective of this study was to encapsulate oleanolic acid into nanoliposomes using the modified ethanol injection method. Methods The liposomes contain a hydrophobic oleanolic acid core, an amphiphilic soybean lecithin monolayer, and a protective hydrophilic polyethylene glycol (PEG) coating. During the preparation process, the formulations described were investigated by designing 34 orthogonal experiments as well as considering the effects of different physical characteristics. The four factors were the ratios of drug to soybean phosphatidylcholine (w/w), cholesterol (w/w), PEG-2000 (w/w), and temperature of phosphate-buffered saline at three different levels. We identified the optimized formulation which showed the most satisfactory lipid stability and particle formation. The morphology of the liposomes obtained was determined by transmission electron microscopy and atomic force microscopy. The existence of PEG in the liposome component was validated by Fourier transform infrared spectrum analysis. Results The PEGylated liposomes dispersed individually and had diameters of around 110–200 nm. Encapsulation efficiency was more than 85%, as calculated by high-performance liquid chromatography and Sephadex® gel filtration. Furthermore, when compared with native oleanolic acid, the liposomal formulations showed better stability in vitro. Finally, the cytotoxicity of the oleanolic acid liposomes was evaluated using a microtiter tetrazolium assay. Conclusion These results suggest that PEGylated liposomes would serve as a potent delivery vehicle for oleanolic acid in future cancer therapy. PMID:22848175

  3. Osteogenic Potential of Poly(Ethylene Glycol)–Poly(Dimethylsiloxane) Hybrid Hydrogels

    PubMed Central

    Munoz-Pinto, Dany J.; Jimenez-Vergara, Andrea Carolina; Hou, Yaping; Hayenga, Heather N.; Rivas, Alejandra; Grunlan, Melissa

    2012-01-01

    Growth factors have been shown to be potent mediators of osteogenesis. However, their use in tissue-engineered scaffolds not only can be costly but also can induce undesired responses in surrounding tissues. Thus, the ability to specifically induce osteogenic differentiation in the absence of exogenous growth factors through manipulation of scaffold material properties would be desirable for bone regeneration. Previous research indicates that addition of inorganic or hydrophobic components to organic, hydrophilic scaffolds can enhance multipotent stem cell (MSC) osteogenesis. However, the combined impact of scaffold inorganic content and hydrophobicity on MSC behavior has not been systematically explored, particularly in three-dimensional (3D) culture systems. The aim of the present study was therefore to examine the effects of simultaneous increases in scaffold hydrophobicity and inorganic content on MSC osteogenic fate decisions in a 3D culture environment toward the development of intrinsically osteoinductive scaffolds. Mouse 10T½ MSCs were encapsulated in a series of novel scaffolds composed of varying levels of hydrophobic, inorganic poly(dimethylsiloxane) (PDMS) and hydrophilic, organic poly(ethylene glycol) (PEG). After 21 days of culture, increased levels of osteoblast markers, runx2 and osteocalcin, were observed in scaffolds with increased PDMS content. Bone extracellular matrix (ECM) molecules, collagen I and calcium phosphate, were also elevated in formulations with higher PDMS:PEG ratios. Importantly, this osteogenic response appeared to be specific in that markers for chondrocytic, smooth muscle cell, and adipocytic lineages were not similarly affected by variations in scaffold PDMS content. As anticipated, the increase in scaffold hydrophobicity accompanying increasing PDMS levels was associated with elevated scaffold serum protein adsorption. Thus, scaffold inorganic content combined with alterations in adsorbed serum proteins may underlie the

  4. Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury

    PubMed Central

    Pasut, Gianfranco; Panisello, Arnau; Folch-Puy, Emma; Lopez, Alexandre; Castro-Benítez, Carlos; Calvo, Maria; Carbonell, Teresa; García-Gil, Agustín; Adam, René; Roselló-Catafau, Joan

    2016-01-01

    Liver ischemia-reperfusion injury (IRI) is an inherent feature of liver surgery and liver transplantation in which damage to a hypoxic organ (ischemia) is exacerbated following the return of oxygen delivery (reperfusion). IRI is a major cause of primary non-function after transplantation and may lead to graft rejection, regardless of immunological considerations. The immediate response involves the disruption of cellular mitochondrial oxidative phosphorylation and the accumulation of metabolic intermediates during the ischemic period, and oxidative stress during blood flow restoration. Moreover, a complex cascade of inflammatory mediators is generated during reperfusion, contributing to the extension of the damage and finally to organ failure. A variety of pharmacological interventions (antioxidants, anti-cytokines, etc.) have been proposed to alleviate graft injury but their usefulness is limited by the local and specific action of the drugs and by their potential undesirable toxic effects. Polyethylene glycols (PEGs), which are non-toxic water-soluble compounds approved by the FDA, have been widely used as a vehicle or a base in food, cosmetics and pharmaceuticals, and also as adjuvants for ameliorating drug pharmacokinetics. Some PEGs are also currently used as additives in organ preservation solutions prior to transplantation in order to limit the damage associated with cold ischemia reperfusion. More recently, the administration of PEGs of different molecular weights by intravenous injection has emerged as a new therapeutic tool to protect liver grafts from IRI. In this review, we summarize the current knowledge concerning the use of PEGs as a useful target for limiting liver IRI. PMID:27605884

  5. Detection of poly(ethylene glycol) residues from nonionic surfactants in surface water by1h and13c nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.

    1991-01-01

    ??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.

  6. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    PubMed

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric (Curcuma longa) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly(ε-caprolactone) and methoxy poly(ethylene glycol) poly(ε-caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly(ε-caprolactone) and poly(ethylene glycol) poly(ε-caprolactone) nanoparticles ranged between 200-240 nm for poly(ε-caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly(ε-caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly(ε-caprolactone) and poly(ethylene glycol) poly(ε-caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly(ε-caprolactone) nanoparticles was higher in comparison to poly(ε-caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly(ε-caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly(ε-caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to free curcumin and curcumin

  7. Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/Laponite RD dispersions.

    PubMed

    Morariu, Simona; Bercea, Maria

    2012-01-12

    The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.

  8. Poly(ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis.

    PubMed

    Cecchini, Martina Maya; Charnay, Clarence; De Angelis, Francesco; Lamaty, Frédéric; Martinez, Jean; Colacino, Evelina

    2014-01-01

    PEG-based ionic liquids are a new appealing group of solvents making the link between two distinct but very similar fluids: ionic liquids and poly(ethylene glycol)s. They find applications across a range of innumerable disciplines in science, technology, and engineering. In the last years, the possibility to use these as alternative solvents for organic synthesis and catalysis has been increasingly explored. This Review highlights strategies for their synthesis, their physical properties (critical point, glass transition temperature, density, rheological properties), and their application in reactions catalyzed by metals (such as Pd, Cu, W, or Rh) or as organic solvent (for example for multicomponent reactions, organocatalysis, CO2 transformation) with special emphasis on their toxicity, environmental impact, and biodegradability. These aspects, very often neglected, need to be considered in addition to the green criteria usually considered to establish ecofriendly processes.

  9. Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethylene glycol) diacrylate (PEGDA) hydrogel.

    PubMed

    Terakawa, Mitsuhiro; Torres-Mapa, Maria Leilani; Takami, Akihiro; Heinemann, Dag; Nedyalkov, Nikolay N; Nakajima, Yasutaka; Hördt, Anton; Ripken, Tammo; Heisterkamp, Alexander

    2016-04-01

    The fabrication of three-dimensional (3D) metal microstructures in a synthetic polymer-based hydrogel is demonstrated by femtosecond laser-induced photoreduction. The linear-shaped silver structure of approximately 2 micrometers in diameter is fabricated inside a biocompatible poly(ethylene glycol) diacrylate (PEGDA) hydrogel. The silver structure is observed and confirmed by scanning electron microscopy (SEM) and elemental analysis using energy-dispersive X-ray spectroscopy (EDX). Shrinking and swelling of the fabricated structure is also demonstrated experimentally, which shows the potential of the present method for realizing 3D flexible electronic and optical devices, as well as for fabricating highly integrated devices at submicron scales.

  10. Plasma graft of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on RGP lens surface for reducing protein adsorption

    NASA Astrophysics Data System (ADS)

    Shiheng, Yin; Li, Ren; Yingjun, Wang

    2017-01-01

    Poly(ethylene glycol) methyl ether methacrylate (PEGMA) was grafted on fluorosilicone acrylate rigid gas permissible contact lens surface by means of argon plasma induced polymerization to improve surface hydrophilicity and reduce protein adsorption. The surface properties were characterized by contact angle measurement, x-ray photoelectron spectroscopy (XPS) and atomic force microscopy respectively. The surface protein adsorption was evaluated by lysozyme solution immersion and XPS analysis. The results indicated that a thin layer of PEGMA was successfully grafted. The surface hydrophilicity was bettered and surface free energy increased. The lysozyme adsorption on the lens surface was reduced greatly. The study was supported by National Natural Science Foundation of China (No. 51273072).

  11. Permeabilization of ultraviolet-irradiated chinese hamster cells with polyethylene glycol and introduction of ultraviolet endonuclease from Micrococcus luteus

    SciTech Connect

    Yarosh, D.B.; Setlow, R.B.

    1981-03-01

    Chinese hamster V-79 cells were made permeable by treatment with polyethylene glycol and then incubated with a Micrococcus luteus extract containing ultraviolet-specific endonuclease activity. This treatment introduced nicks in irradiated, but not in unirradiated, deoxyribonucleic acid. The nicks remained open for at least 3 h; there was no loss of endonuclease-sensitive sites, and no excision of dimers as measured by chromatography was detected. In addition, there was no increase in ultraviolet resistance in treated cells. This suggests that the absence of a significant amount of excision repair in rodent cells is due to the lack of both incision and excision capacity.

  12. Interfacial Properties of Polyethylene Glycol/Vinyltriethoxysilane (PEG/VTES) Copolymers and their Application to Stain Resistance.

    PubMed

    Chao, Yin-Chun; Su, Shuenn-Kung; Lin, Ya-Wun; Hsu, Wan-Ting; Huang, Kuo-Shien

    2012-05-01

    In this study, polyethylene glycol (PEG) and vinyltriethoxysilane (VTES) were used in different proportions to produce a series of PEG-VTES copolymers. The copolymer molecular structures were confirmed by FTIR spectroscopy. In addition, their surface activities were evaluated by evaluating the surface tension, contact angle, and foaming properties. The results showed that these surfactants exhibited excellent surface activities and wetting power, as well as low foaming. Consequently, the application of a series of PEG/VTES copolymers can make cotton fabrics stain resistant.

  13. Experimental analysis of stabilizing effects of carbon nanotubes (CNTs) on thermal oxidation of poly(ethylene glycol)-CNT composites

    NASA Astrophysics Data System (ADS)

    Yamane, Shogo; Ata, Seisuke; Chen, Liang; Sato, Hiroaki; Yamada, Takeo; Hata, Kenji; Mizukado, Junji

    2017-02-01

    In this work, the thermal stabilization of poly(ethylene glycol) (PEG) by super-growth carbon nanotubes (SGCNTs) is studied by analyzing degraded compounds via high-resolution matrix-assisted laser diffusion ionization time-of-flight mass spectroscopy and IR techniques. SGCNTs successfully suppress the thermal oxidation of PEG, and the components of the degraded compounds change upon addition of SGCNTs to PEG. The SGCNTs quench mainly the RO radical generated by the initial chain scission of the Csbnd O bond of PEG, resulting in the suppression of the intermolecular proton abstraction.

  14. Corrosion Protection of Electro-Galvanized Steel by Ceria-Based Coatings: Effect of Polyethylene Glycol (PEG) Addition

    NASA Astrophysics Data System (ADS)

    Hamlaoui, Y.; Tifouti, L.; Pedraza, F.

    2013-09-01

    A cerium oxide thin layer was deposited onto galvanized steel by cathodic electrodeposition from 0.1 M concentrated cerium nitrate solution. In this work, the influence of polyethylene glycol (PEG) addition on the composition and morphology of the deposits is examined. The results showed that the addition of PEG to the cerium nitrate solutions leads to a decrease in the cracks in the deposits by decreasing the hydrogen reduction reaction and by decreasing the film thickness which provided enhanced corrosion protection. Moreover, the substrate dissolution reaction is inhibited.

  15. In Vivo Anti-Tumor Activity of Polypeptide HM-3 Modified by Different Polyethylene Glycols (PEG)

    PubMed Central

    Liu, Zhendong; Ren, Yinling; Pan, Li; Xu, Han-Mei

    2011-01-01

    HM-3, designed by our laboratory, is a polypeptide composed of 18 amino acids. Pharmacodynamic studies in vivo and in vitro indicated that HM-3 could inhibit endothelial cell migration and angiogenesis, thereby inhibiting tumor growth. However, the half-life of HM-3 is short. In this study, we modified HM-3 with different polyethylene glycols (PEG) in order to reduce the plasma clearance rate, extend the half-life in the body, maintain a high concentration of HM-3 in the blood and increase the therapeutic efficiency. HM-3 was modified with four different types of PEG with different molecular weights (ALD-mPEG5k, ALD-mPEG10k, SC-mPEG10k and SC-mPEG20k), resulting in four modified products (ALD-mPEG5k-HM-3, ALD-mPEG10k-HM-3, SC-mPEG10k-HM-3 and SC-mPEG20k-HM-3, respectively). Anti-tumor activity of these four modified HM-3 was determined in BALB/c mice with Taxol as a positive control and normal saline as a negative control. Tumor weight inhibition rates of mice treated with Taxol, HM-3, ALD-mPEG5k-HM-3, ALD-mPEG10k-HM-3, SC-mPEG10k-HM-3 and SC-mPEG20k-HM-3 were 44.50%, 43.92%, 37.95%, 31.64%, 20.27% and 50.23%, respectively. Tumor inhibition rates in the Taxol, HM-3 and SC-mPEG20k-HM-3 groups were significantly higher than that in the negative control group. The efficiency of tumor inhibition in the SC-mPEG20k-HM-3 group (drug treatment frequency: once per two days) was better than that in the HM-3 group (drug treatment frequency: twice per day). In addition, tumor inhibition rate in the SC-mPEG20k-HM-3 group was higher than that in the taxol group. We conclude that SC-mPEG20k-HM-3 had a low plasma clearance rate and long half-life, resulting in high anti-tumor therapeutic efficacy in vivo. Therefore, SC-mPEG20k-HM-3 could be potentially developed as new anti-tumor drugs. PMID:21731464

  16. Biocompatibility and functional performance of a polyethylene glycol acid-grafted cellulosic membrane for hemodialysis.

    PubMed

    Sirolli, V; Di Stante, S; Stuard, S; Di Liberato, L; Amoroso, L; Cappelli, P; Bonomini, M

    2000-06-01

    In order to improve the biochemical reactivity of the cellulose polymer, which is mainly attributed to the presence of surface hydroxyl groups, derivatized cellulosic membranes have been engineered replacing or masking some or all of the hydroxyl groups in the manufacturing process of the membrane. The present study was set up to analyze both biocompatibility and functional performance of two different derivatized cellulosic membranes (cellulose diacetate; polyethylene glycol, PEG, acid-grafted cellulose) as compared to a synthetic membrane (polymethylmethacrylate, PMMA). Cellulose diacetate is prepared by substituting hydroxyl groups with acetyl groups; PEG cellulose is obtained by grafting PEG chains onto the cellulosic polymer with a smaller amount of substitution than cellulose diacetate. While the three dialyzers provided similar urea and creatinine removal, the dialyzer containing cellulose diacetate showed a reduced ability to remove 32-microglobulin compared to that containing PEG cellulose or PMMA. A transient reduction in leukocyte count was observed for both derivatized cellulosic membranes. The neutrophil and monocyte counts throughout the entire dialysis session showed a closer parallelism with the cellular expression of the adhesive receptor CD 15s (sialyl-Lewis x molecule) than with CD11b/CD18 expression. Platelet activation, as indicated by the percentage of cells expressing the activation markers CD62P (P-selectin) and CD63 (gp53), occurred with all membranes at 15 min of dialysis and also with PMMA at 30 min. An increased formation of platelet-neutrophil and platelet-monocyte coaggregates was found at 15 and 30 min during dialysis with cellulose diacetate and PMMA but not with PEG cellulose. Generally in concomitance with the increase in platelet-neutrophil coaggregates, an increased hydrogen peroxide production by neutrophils occurred. Our results indicate that derivatizing cellulose may represent a useful approach to improve the biocompatibility

  17. Mechanical properties of polyurethane film exposed to solutions of nonoxynol-9 surfactant and polyethylene glycol

    NASA Astrophysics Data System (ADS)

    McDermott, Martin Kendrick

    Changes in physical properties (tensile strength, strain to failure, elastic modulus, diffusion kinetics and soft segment glass transition temperature (Tg)) were examined for polyetherurethane block copolymers Estane and Tecoflex. These polymer chains consist of 2 mutually incompatible blocks or segments which form microphases consisting of rigid/hard segments in an elastomeric matrix of soft segments. The polyurethanes were exposed to mixtures of nonoxynol 9 (N9) surfactant in polyethylene glycol 400 (PEG) at various concentrations and for various times. The purpose was to estimate the effect of exposure to mixtures of N9 spermicide and PEG lubricant on breakage of condoms made from films of these elastomers. Mechanical properties of Estane varied with direction because of molecular orientation induced during manufacturing, suggesting that condoms should be cut from the film in a way that optimizes this property-orientation relationship. Large amounts of N9 were absorbed from N9/PEG solutions. The polymer fraction of the swollen Estane film versus soak solution composition did not follow a linear rule of mixtures. As the percentage of N9 in the PEG/N9 soak solution increased, Estane absorbed more liquid and its properties decreased more than did Tecoflex. This may not matter for low concentrations of N9 where the mechanical properties of Estane were superior to those of Tecoflex. The loss of mechanical properties with increased N9 concentration was likely due to plasticization of the soft segment domains. Hard segment domain disruption was probably not occurring because the relationship between the elastic modulus and polymer volume fraction followed the Flory-Rehner relationship for swollen elastic rubber networks and diffusion of neat N9 and neat PEG followed a Fickian behavior. This is expected because hard domains are much more difficult to disrupt due to strong hydrogen bonding and/or crystallization. Most of the absorption and decrease in mechanical

  18. Insertion stability of poly(ethylene glycol)-cholesteryl-based lipid anchors in liposome membranes.

    PubMed

    Molnar, Daniel; Linders, Jürgen; Mayer, Christian; Schubert, Rolf

    2016-06-01

    Liposomes consist of a hydrophilic core surrounded by a phospholipid (PL) bilayer. In human blood, the half-life of such artificial vesicles is limited. To prolong their stability in the circulation, liposomal bilayers can be modified by inserting poly(ethylene glycol) (PEG) molecules using either PL or sterols as membrane anchors. This establishes a hydrophilic steric barrier, reducing the adsorption of serum proteins, recognition and elimination by cells of the immune system. In addition, targeting ligands (such as antibodies) are frequently coupled to the distal end of the PEG chains to direct the vesicles (then called 'immuno-liposomes') to specific cell types, such as tumor cells. To our knowledge, experiments on the stability of ligand anchoring have so far only been conducted with PL-based PEGs and not with sterol-based PEGs after insertion via the sterol-based post-insertion technique (SPIT). Therefore, our study examines the insertion stability of PEG-cholesteryl ester (Chol-PEG) molecules with PEG chains of 1000, 1500 and 2000Da molecular mass which have been inserted into the membranes of liposomes using SPIT. For this study we used different acceptor media and multiple analytical techniques, including pulsed-field-gradient nuclear magnetic resonance (PFG-NMR), free-flow electrophoresis, size exclusion chromatography and ultracentrifugation. The obtained data consistently showed that a higher molar mass of PEG chains positively correlates with higher release from the liposome membranes. Furthermore, we could detect and quantify the migration of Chol-PEG molecules from radioactively double-labeled surface-modified liposomes to negatively charged acceptor liposomes via free-flow electrophoresis. Insertion of Chol-PEG molecules into the membrane of preformed liposomes using SPIT is an essential step for the functionalization of liposomes with the aim of specific targeting. For the first time, we present a kinetic analysis of this insertion process using PFG

  19. Small volume isosmotic polyethylene glycol electrolyte balanced solution (PMF-100) in treatment of chronic nonorganic constipation.

    PubMed

    Corazziari, E; Badiali, D; Habib, F I; Reboa, G; Pitto, G; Mazzacca, G; Sabbatini, F; Galeazzi, R; Cilluffo, T; Vantini, I; Bardelli, E; Baldi, F

    1996-08-01

    The present multicenter double-blind placebo-controlled trial evaluates the therapeutic effectiveness of small-volume daily doses of an isosmotic polyethylene glycol (PEG) electrolyte solution in the treatment of chronic nonorganic constipation. After a complete diagnostic investigation, patients still constipated at the end of a four-week placebo-treatment run-in period were enrolled and randomized to receive either placebo or PEG solution 250 ml twice a day for the following eight weeks. Patients were assessed at four and eight weeks of treatment, and they reported frequency and modality of evacuation, use of laxatives, and relevant symptoms daily on a diary card. Oroanal and segmental large-bowel transit times were assessed with radiopaque markers during the fourth week of the run-in period and the last week of the treatment period. During the study period, dietary fiber and liquids were standardized and laxatives were allowed only after five consecutive days without a bowel movement. Of the 55 patients enrolled, five dropped out, three because of adverse events and two for reasons unrelated to therapy; another two were excluded from the efficacy analysis because of protocol violation. Of the remaining 48 patients (37 women, age 42 +/- 15 years, mean +/- SD), 23 were assigned to placebo and 25 to PEG treatment. In comparison to placebo, PEG solution induced a statistically significant increase in weekly bowel frequency at four weeks and at the end of the study (PEG: 4.8 +/- 2.3 vs placebo: 2.8 +/- 1.6; P < 0.002) and a significant decrease in straining at defecation (P < 0.01), stool consistency (P < 0.02), and use of laxatives (P < 0.03). Oroanal, left colon, and rectal transit times were significantly shortened by PEG treatment. There was no difference between controls and PEG-treated patients as far as abdominal symptoms and side effects were concerned. In conclusion, PEG solution at 250 ml twice a day is effective in increasing bowel frequency, accelerating

  20. Electron-beam-initiated polymerization of poly(ethylene glycol)-based wood impregnants.

    PubMed

    Trey, Stacy M; Netrval, Julia; Berglund, Lars; Johansson, Mats

    2010-11-01

    The current study demonstrates that methacrylate and acrylate poly(ethylene glycol) (PEG) functional oligomers can be effectively impregnated into wood blocks, and cured efficiently to high conversions without catalyst by e-beam radiation, allowing for less susceptibility to leaching, and favorable properties including higher Brinell hardness values. PEG based monomers were chosen because there is a long history of this water-soluble monomer being able to penetrate the cell wall, thus bulking it and decreasing the uptake of water which further protects the wood from fungal attack. Diacrylate, dimethacrylate, and dihydroxyl functional PEG of M(w) 550-575, of concentrations 0, 30, 60, and 100 wt % in water, were vacuum pressure impregnated into Scots Pine blocks of 15 × 25 × 50 mm in an effort to bulk the cell wall. The samples were then irradiated and compared with nonirradiated samples. It was shown by IR, DSC that the acrylate polymers were fully cured to much higher conversions than can be reached with conventional methods. Leaching studies indicated a much lower amount of oligomer loss from the cured vinyl functional PEG chains in comparison to hydroxyl functional PEG indicating a high degree of fastening of the polymer in the wood. The Brinell hardness indicated a significant increase in hardness to hardwood levels in the modified samples compared to the samples of hydroxyl functional PEG and uncured vinyl PEG samples, which actually became softer than the untreated Scots Pine. By monitoring the dimensions of the sample it was found by weight percent gain calculations (WPG %) that water helps to swell the wood structure and allow better access of the oligomers into the cell wall. Further, the cure shrinkage of the wood samples demonstrated infiltration of the oligomers into the cell wall as this was not observed for methyl methacrylate which is well-documented to remain in the lumen. However, dimensional stability of the vinyl polymer modified blocks when

  1. Physical properties and stability mechanisms of poly(ethylene glycol) conjugated liposome encapsulated hemoglobin dispersions.

    PubMed

    Arifin, Dian R; Palmer, Andre F

    2005-01-01

    Liposomes encapsulating hemoglobin (LEHs) surface-conjugated with 2000 and 550 Da poly(ethylene glycol) (PEG) were produced via extrusion through 400, 200 and 100 nm pore diameter membranes in two types of phosphate buffer with different ionic strengths. The lipid bilayers were composed of dimyristoyl-phosphatidylcholine (DMPC), cholesterol, dimyristoyl-phosphoethanolamine-PEG (DMPE-PEG), dimyristoyl-phosphatidylglycerol (DMPG), and alpha-tocopherol (in a 43:40:10:5:2 mole ratio). N-acetyl-L-cysteine was coencapsulated in order to suppress hemoglobin (Hb) oxidation. Various physical properties of PEG-LEH dispersions were determined: size distribution, encapsulation efficiency, P50 (partial pressure of O2 where half of the oxygen binding sites are saturated with O2), cooperativity coefficient, and encapsulated methemoglobin (MetHb) level. In order to study the stabilization mechanism of these dispersions, the effective bending constant (KB) and the spontaneous radius of curvature (R0) of PEG-LEHs were extracted by fitting a mathematical model describing the size distribution of a liposome dispersion to the experimentally measured size distributions. We observed that liposome dispersions extruded in phosphate buffer (PB) were more monodisperse than liposomes extruded in phosphate buffered saline (PBS), and higher molecular weight PEG promoted the formation of narrower size distributions. Moreover, extrusion in PB and lipid conjugation with higher molecular weight PEG imparted higher bilayer rigidity (high KB), and stabilized the liposome dispersions by the spontaneous curvature mechanism, whereas the other liposome dispersions were stabilized by thermal undulations (low KB). The P50 and cooperativity coefficient of PEG-LEHs extruded in PBS and PB was comparable to that of human blood, and the encapsulated MetHb levels were less than 5%. The highest encapsulation efficiencies obtained were 27%-36% (82-109 mg Hb/mL) for LEH dispersions extruded in PBS and grafted with

  2. Improved dissolution and anti-inflammatory activity of ibuprofen-polyethylene glycol 8000 solid dispersion systems

    PubMed Central

    Ofokansi, Kenneth C.; Kenechukwu, Franklin C.; Ezugwu, Richard O.; Attama, Anthony A.

    2016-01-01

    Background: The purpose of this study was to develop ibuprofen (IB)-polyethylene glycol (PEG) 8000 solid dispersions (SDs) and investigate them for in vitro dissolution and in vivo anti-inflammatory activity. Materials and Methods: IB-PEG 8000 SDs were prepared by fusion method using varying combination ratios of IB and PEG 8000. Characterization based on surface morphology, particle size, absolute drug content, and Fourier transform infrared (FT-IR) spectroscopy was carried out on the SDs. The in vitro release of IB from the SDs was performed in simulated gastric fluid (SGF, pH 1.2) and simulated intestinal fluid (SIF, pH 7.4) without enzymes, whereas the anti-inflammatory activity was evaluated using egg albumin-induced rat paw edema model. Results: Greenish brown, discrete, and irregularly shaped SDs of mean particle size range 113.5 ± 2.5-252.5 ± 1.9 μm, which were stable over 3 months, were obtained. The drug content of the SDs ranged from 73.4 ± 2.9 % to 83.5 ± 2.7%. Although the drug content increased with increased concentration of PEG 8000 in the SDs, the mean particle size decreased with increased concentration of PEG 8000 in the SDs. The FT-IR results indicate no strong chemical interaction of IB and PEG 8000 in the SDs. There was marked increase in the dissolution rate of IB from the SDs (P < 0.05) as compared to pure IB and physical mixture. The dissolution was better in SIF than in SGF. The increased dissolution rate of IB may be due to the formation of microcrystals, increased wettability and dispersibility in PEG 8000. The SDs showed good anti-inflammatory properties achieving up to 90% edema inhibition at 6 h while the pure sample of IB had 77% edema inhibition at 6 h. Conclusion: SDs based on IB-PEG 8000 is a good approach to enhance the dissolution rate and anti-inflammatory activity of IB, thus, encouraging further development of the SDs. PMID:27606257

  3. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products.

    PubMed

    Fruijtier-Pölloth, Claudia

    2005-10-15

    This assessment focusses on polyethylene glycols (PEGs) and on anionic or nonionic PEG derivatives, which are currently used in cosmetics in Europe. These compounds are used in a great variety of cosmetic applications because of their solubility and viscosity properties, and because of their low toxicity. The PEGs, their ethers, and their fatty acid esters produce little or no ocular or dermal irritation and have extremely low acute and chronic toxicities. They do not readily penetrate intact skin, and in view of the wide use of preparations containing PEG and PEG derivatives, only few case reports on sensitisation reactions have been published, mainly involving patients with exposure to PEGs in medicines or following exposure to injured or chronically inflamed skin. On healthy skin, the sensitising potential of these compounds appears to be negligible. For some representative substances of this class, information was available on reproductive and developmental toxicity, on genotoxicty and carcinogenic properties. Taking into consideration all available information from related compounds, as well as the mode and mechanism of action, no safety concern with regard to these endpoints could be identified. Based on the available data it is therefore concluded that PEGs of a wide molecular weight range (200 to over 10,000), their ethers (laureths. ceteths, ceteareths, steareths, and oleths), and fatty acid esters (laurates, dilaurates, stearates, distearates) are safe for use in cosmetics. Limited data were available for PEG sorbitan/sorbitol fatty acid esters, PEG sorbitan beeswax and PEG soy sterols. Taking into account all the information available for closely related compounds, it can be assumed that these compounds as presently used in cosmetic preparations will not present a risk for human health. PEG castor oils and PEG hydrogenated castor oils have caused anaphylactic reactions when used in intravenous medicinal products. Their topical use in cosmetics is

  4. Radiation-induced graft copolymerization of poly(ethylene glycol) monomethacrylate onto deoxycholate-chitosan nanoparticles as a drug carrier

    NASA Astrophysics Data System (ADS)

    Pasanphan, Wanvimol; Rattanawongwiboon, Thitirat; Rimdusit, Pakjira; Piroonpan, Thananchai

    2014-01-01

    Poly(ethylene glycol) monomethacrylate-grafted-deoxycholate chitosan nanoparticles (PEGMA-g-DCCSNPs) were successfully prepared by radiation-induced graft copolymerization. The hydrophilic poly(ethylene glycol) monomethacrylate was grafted onto deoxycholate-chitosan in an aqueous system. The radiation-absorbed dose is an important parameter on degree of grafting, shell thickness and particle size of PEGMA-g-DCCSNPs. Owing to their amphiphilic architecture, PEGMA-g-DCCSNPs self-assembled into spherical core-shell nanoparticles in aqueous media. The particle size of PEGMA-g-DCCSNPs measured by TEM varied in the range of 70-130 nm depending on the degree of grafting as well as the irradiation dose. Berberine (BBR) as a model drug was encapsulated into the PEGMA-g-DCCSNPs. Drug release study revealed that the BBR drug was slowly released from PEGMA-g-DCCSNPs at a mostly constant rate of 10-20% in PBS buffer (pH 7.4) at 37 °C over a period of 23 days.

  5. The effect of two different polyethylene glycol (PEG) derivatives on the immunological response of PEG grafted pancreatic islets.

    PubMed

    Aghajani-Lazarjani, Hamideh; Vasheghani-Farahani, Ebrahim; Shojaosadati, Seyed Abbas; Hashemi-Najafabadi, Sameereh; Zahediasl, Saleh; Tiraihi, Taki; Atyabi, Fatemeh

    2010-12-01

    Islet transplantation is one of the promising ways to treat diabetes. To reduce the immune system response, several methods have been developed, a novel one being the grafting of methoxy polyethylene glycol (mPEG) derivatives onto collagen capsules of islets. In this study, the effects of the first and second generations of activated mPEG on the immunological response of polyethylene glycol (PEG) grafted pancreatic islets were studied. mPEG-Succinimidyl carbonate (mPEG-SC) and mPEG-succinimidyl propionic acid (mPEG-SPA) (with nominal molecular weight 5 kDa), typical of the first and second generations of activated mPEG, were selected, respectively. Both activated mPEGs did not affect the morphology, viability, or functionality of PEGylated islets compared to free islets (naked islets). The amount of IL-2 secreted from lymphocytes co-cultured with mPEG-SPA grafted islets (131.83 ± 15.28 pg/ml) was not significantly different from that with mPEG-SC grafted islets (156.09 ± 27.94 pg/ml). These results indicated that both mPEG-SC and mPEG-SPA had the same effect for camouflaging Langerhans islets, but the former is more suitable due to its easier synthesis process.

  6. In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition.

    PubMed

    Fu, Yao; Kao, Weiyuan John

    2011-08-01

    The incorporation of cells and sensitive compounds can be better facilitated without the presence of UV or other energy sources that are common in the formation of biomedical hydrogels such as poly(ethylene glycol) hydrogels. The formation of hydrogels by the step-growth polymerization of maleimide- and thiol-terminated poly(ethylene glycol) macromers via Michael-type addition is described. The effects of macromer concentration, pH, temperature, and the presence of biomolecule gelatin on gel formation were investigated. Reaction kinetics between maleimide and thiol functional groups were found to be rapid. Molecular weight increase over time was characterized via gel permeation chromatography during step-growth polymerization. Swelling and degradation results showed incorporating gelatin enhanced swelling and accelerated degradation. Increasing gelatin content resulted in the decreased storage modulus (G'). The in vitro release kinetics of fluorescein isothiocyanate (FITC)-labeled dextran from the resulting matrices demonstrated the potential in the development of novel in situ gel-forming drug delivery systems. Moreover, the resulting networks were minimally adhesive to primary human monocytes, fibroblasts, and keratinocytes thus providing an ideal platform for further biofunctionalizations to direct specific biological response.

  7. Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Ma, Yuandong; Zheng, Yi; Liu, Kexin; Tian, Ge; Tian, Yan; Xu, Lei; Yan, Fei; Huang, Laiqiang; Mei, Lin

    2010-07-01

    Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization using stannous octoate as catalyst. The obtained random copolymers were characterized by 1H NMR, FTIR, GPC and TGA. The docetaxel-loaded nanoparticles made of PLGA-TPGS copolymer were prepared by a modified solvent extraction/evaporation method. The nanoparticles were then characterized by various state-of-the-art techniques. The results revealed that the size of PLGA-TPGS nanoparticles was around 250 nm. The docetaxel-loaded PLGA-TPGS nanoparticles could achieve much faster drug release in comparison with PLGA nanoparticles. In vitro cellular uptakes of such nanoparticles were investigated by CLSM, demonstrating the fluorescence PLGA-TPGS nanoparticles could be internalized by human cervix carcinoma cells (HeLa). The results also indicated that PLGA-TPGS-based nanoparticles were biocompatible, and the docetaxel-loaded PLGA-TPGS nanoparticles had significant cytotoxicity against Hela cells. The cytotoxicity against HeLa cells for PLGA-TPGS nanoparticles was in time- and concentration-dependent manner. In conclusion, PLGA-TPGS random copolymer could be acted as a novel and promising biocompatible polymeric matrix material applicable to nanoparticle-based drug delivery system for cancer chemotherapy.

  8. Preparation and characterization of neutral poly(ethylene glycol) methacrylate-based monolith for normal phase liquid chromatography.

    PubMed

    Li, Yun; Lee, Milton L; Jin, Jing; Chen, Jiping

    2012-09-15

    A novel porous poly(ethylene glycol) methacrylate-based monolithic column for normal phase liquid chromatography was prepared by thermally initiated polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) and ethylene dimethacrylate (EDMA) in the presence of selected porogens. The monolith was macroscopically homogeneous, had low flow resistance, and did not swell or shrink significantly in solvents of different polarities. Inverse size-exclusion data indicate that the monolith had a total porosity of 79.2%, including an external porosity of 69.3% and an internal porosity of 9.9%. Due to its mild polarity (hydrophilicity), the PEG-functionalized monolith could perform traditional normal phase chromatography using non-polar solvents The van Deemter plot demonstrated that the column efficiency of 33,600-34,320 theoretical plates/m could be achieved at a linear flow velocity of 0.9-1.5mm/s. The dual retention capability (both weak hydrophilic and hydrophobic interactions) investigated in this paper explains well why the PEG-functionalized monolith could operate in various chromatographic modes.

  9. Preliminary evaluation of local drug delivery of amphotericin B and in vivo degradation of chitosan and polyethylene glycol blended sponges.

    PubMed

    Parker, Ashley Cox; Rhodes, Cheyenne; Jennings, Jessica Amber; Hittle, Lauren; Shirtliff, Mark; Bumgardner, Joel D; Haggard, Warren O

    2016-01-01

    This research investigated the combination of polyethylene glycol with chitosan in point-of-care loaded sponges made by one or two lyophilizations for adjunctive local antifungal delivery in musculoskeletal wounds. Blended and control chitosan sponges were evaluated in vitro for antifungal release and activity, degradation, cytocompatibility, and characterized for spectroscopic, crystallinity, thermal, and morphologic material properties. In vivo biocompatibility and degradation of sponges were also evaluated in a rat intramuscular pouch model 4 and 10 days after implantation. Blended sponges released amphotericin B active against Candida albicans (>0.25 µg/mL) over 72 h and did not elicit cytotoxicity response of fibroblasts. Blended sponges exhibited decreases in surface roughness, decreased thermal decomposition temperatures, as well as small Fourier transform infrared spectroscopy and crystallinity differences, compared with chitosan-only sponges. Three of the four blended sponge formulations exhibited 31%-94% increases in in vitro degradation from the chitosan sponges after 10 days, but did not demonstrate the same increase in in vivo degradation. Low inflammatory in vivo tissue response to blended and chitosan-only sponges was similar over 10 days. These results demonstrated that adding polyethylene glycol to chitosan sponges does improve local antifungal release, cytocompatibility, and in vitro degradation, but does not increase in vivo degradation.

  10. Novel Multiarm Polyethylene glycol-Dihydroartemisinin Conjugates Enhancing Therapeutic Efficacy in Non-Small-Cell Lung Cancer

    PubMed Central

    Dai, Lin; Wang, Luying; Deng, Lihong; Liu, Jing; Lei, Jiandu; Li, Dan; He, Jing

    2014-01-01

    The clinical application of dihydroartemisinin (DHA) has been hampered due to its poor water-solubility. To overcome this hurdle, we devised a novel polymer-drug conjugate, multiarm polyethylene glycol-dihydroartemisinin (PEG-DHA), made by linking DHA with multiarm polyethylene glycol. Herein, we investigated PEG-DHA on chemical structure, hydrolysis, solubility, hemolysis, cell cytotoxicity in vitro, and efficacy in vivo. The PEG-DHA conjugates have showed moderate drug loadings (2.82 ~ 8.14 wt%), significantly good water-solubilities (82- ~ 163-fold of DHA), excellent in vitro anticancer activities (at concentrations ≥8 μg/ml, showed only 15–20% cell viability) with potency similar to that of native DHA, and long blood circulation half-time (5.75- ~ 16.75-fold of DHA). Subsequent tumor xenograft assays demonstrated a superior therapeutic effect of PEG-DHA on inhibition of tumor growth compared with native DHA. The novel PEG-DHA conjugates can not only improve the solubility and efficacy of DHA but also show the potential of scale-up production and clinical application. PMID:25070490

  11. Novel Multiarm Polyethylene glycol-Dihydroartemisinin Conjugates Enhancing Therapeutic Efficacy in Non-Small-Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Dai, Lin; Wang, Luying; Deng, Lihong; Liu, Jing; Lei, Jiandu; Li, Dan; He, Jing

    2014-07-01

    The clinical application of dihydroartemisinin (DHA) has been hampered due to its poor water-solubility. To overcome this hurdle, we devised a novel polymer-drug conjugate, multiarm polyethylene glycol-dihydroartemisinin (PEG-DHA), made by linking DHA with multiarm polyethylene glycol. Herein, we investigated PEG-DHA on chemical structure, hydrolysis, solubility, hemolysis, cell cytotoxicity in vitro, and efficacy in vivo. The PEG-DHA conjugates have showed moderate drug loadings (2.82 ~ 8.14 wt%), significantly good water-solubilities (82- ~ 163-fold of DHA), excellent in vitro anticancer activities (at concentrations >=8 μg/ml, showed only 15-20% cell viability) with potency similar to that of native DHA, and long blood circulation half-time (5.75- ~ 16.75-fold of DHA). Subsequent tumor xenograft assays demonstrated a superior therapeutic effect of PEG-DHA on inhibition of tumor growth compared with native DHA. The novel PEG-DHA conjugates can not only improve the solubility and efficacy of DHA but also show the potential of scale-up production and clinical application.

  12. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene.

    PubMed

    Sungkaew, Sakchaibordee; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2010-04-01

    A new polyethylene glycol fiber was developed for solid-phase microextraction (SPME) of styrene by electrodepositing porous Zn film on Ag wire substrate followed by coating with polyethylene glycol sol-gel (Ag/Zn/PEG sol-gel fiber). The scanning electron micrographs of fibers surface revealed a highly porous structure. The extraction property of the developed fiber-to-styrene residue from polystyrene packaged food was investigated by headspace solid-phase microextraction (HS-SPME) and analyzed with a gas chromatograph coupled with flame ionization detection (GC-FID). The new Ag/Zn/PEG sol-gel fiber is simple to prepare, low cost, robust, has high thermal stability and long lifetime, up to 359 extractions. Repeatability of one fiber (n=6) was in the range of 4.7-7.5% and fiber-to-fiber reproducibility (n=4) for five concentration values were in the range 3.4-10%. This Ag/Zn/PEG sol-gel fiber was compared to two commercial SPME fibers, 75 microm carboxen/polydimethylsiloxane (CAR/PDMS) and 100 microm polydimethylsiloxane (PDMS). Under their optimum conditions, Ag/Zn/PEG sol-gel fiber showed the highest sensitivity and the lowest detection limit at 0.28+/-0.01 ng mL(-1).

  13. Biodegradable Poly (Lactic-co-Glycolic Acid)-Polyethylene Glycol Nanocapsules: An Efficient Carrier for Improved Solubility, Bioavailability, and Anticancer Property of Lutein.

    PubMed

    Arunkumar, Ranganathan; Prashanth, Keelara Veerappa Harish; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya; Dharmesh, Shylaja Mallaiah; Baskaran, Vallikannan

    2015-06-01

    Lutein bioavailability is limited because of its poor aqueous solubility. In this study, lutein-poly (lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanocapsules were prepared to improve the solubility, bioavailability, and anticancer property of lutein. The scanning electron microscopy and dynamic light scattering examination revealed that the nanocapsules are smooth and spherical with size ranging from 80 to 500 nm (mean = 200 nm). In vitro lutein release profile from nanocapsules showed controlled sustainable release (66%) up to 72 h. Aqueous solubility of lutein nanocapsules was much higher by 735-fold than the lutein. Fourier transform infrared spectroscopy analyses showed no chemical interaction among PLGA, PEG, and lutein, indicating possible weak intermolecular forces like hydrogen bonds. X-ray diffraction revealed lutein is distributed in a disordered amorphous state in nanocapsules. Postprandial plasma kinetics (area under the curve) of an oral dose of lutein from nanocapsules was higher by 5.4-fold compared with that of micellar lutein (control). The antiproliferative effect of lutein from nanocapsules (IC50 value, 10.9 μM) was higher (43.6%) than the lutein (IC50 value, 25 μM). Results suggest that PLGA-PEG nanocapsule is an efficient carrier for enhancing hydrophilicity, bioavailability, and anticancer property of lipophilic molecules such as lutein.

  14. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) core-shell microspheres with enhanced controllability of drug encapsulation and release rate.

    PubMed

    Cha, Chaenyung; Jeong, Jae Hyun; Kong, Hyunjoon

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core-shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core-shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.

  15. Maintenance treatment of renal anaemia in haemodialysis patients with methoxy polyethylene glycol-epoetin beta versus darbepoetin alfa administered monthly: a randomized comparative trial

    PubMed Central

    Carrera, Fernando; Lok, Charmaine E.; de Francisco, Angel; Locatelli, Francesco; Mann, Johannes F.E.; Canaud, Bernard; Kerr, Peter G.; Macdougall, Iain C.; Besarab, Anatole; Villa, Giuseppe; Kazes, Isabelle; Van Vlem, Bruno; Jolly, Shivinder; Beyer, Ulrich; Dougherty, Frank C.

    2010-01-01

    Background. Several studies with erythropoiesis-stimulating agents claim that maintenance therapy of renal anaemia may be possible at extended dosing intervals; however, few studies were randomized, results varied, and comparisons between agents were absent. We report results of a multi-national, randomized, prospective trial comparing haemoglobin maintenance with methoxy polyethylene glycol-epoetin beta and darbepoetin alfa administered once monthly. Methods. Haemodialysis patients (n = 490) on stable once-weekly intravenous darbepoetin alfa were randomized to methoxy polyethylene glycol-epoetin beta once monthly or darbepoetin alfa every 2 weeks for 26 weeks, with dose adjustment for individual haemoglobin target (11–13 g/dL; maximum decrease from baseline 1 g/dL). Subsequently, patients entered a second 26-week period of once-monthly methoxy polyethylene glycol-epoetin beta and darbepoetin alfa. The primary endpoint was the proportion of patients who maintained average haemoglobin ≥10.5 g/dL, with a decrease from baseline ≤1 g/dL, in Weeks 50–53; the secondary endpoint was dose change over time. The trial is registered at www.ClinicalTrials.gov, number NCT00394953. Results. Baseline characteristics were similar between groups. One hundred and fifty-seven of 245 patients treated with methoxy polyethylene glycol-epoetin beta and 99 of 245 patients with darbepoetin alfa met the response definition (64.1% and 40.4%; P < 0.0001). Doses increased by 6.8% with methoxy polyethylene glycol-epoetin beta and 58.8% with darbepoetin alfa during once-monthly treatment. Death rates were equal between treatments (5.7%). Most common adverse events included hypertension, procedural hypotension, nasopharyngitis and muscle spasms, with no differences between groups. Conclusions. Methoxy polyethylene glycol-epoetin beta maintained target haemoglobin more successfully than darbepoetin alfa at once-monthly dosing intervals despite dose increases with darbepoetin alfa

  16. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

    PubMed Central

    Chu, Qiuchen; Xu, Hong; Gao, Meng; Guan, Xin; Liu, Hongyan; Deng, Sa; Huo, Xiaokui; Liu, Kexin; Tian, Yan; Ma, Xiaochi

    2016-01-01

    Liver cancer remains a major problem around the world. Resibufogenin (RBG) is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison), which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical use. The aim of this study was to formulate RBG-loaded poly(lactic-co-glycolic acid) (PLGA)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RPTN) to enhance the treatment of liver cancer. RPTN, RBG-loaded PLGA nanoparticle (RPN), and RBG/coumarin-6-loaded PLGA-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RCPTN) were prepared. The cellular uptake of RCPTN by HepG2 and HCa-F cells was analyzed using confocal laser scanning microscopy. Apoptosis was induced in HepG2 cells by RPTN, RBG solution (RS), and 5-fluorouracil solution (used as the negative controls), as assayed using flow cytometry. LD50 (median lethal dose) values were determined for RS and RPTN, and the liver-targeting properties were determined for RCPTN in intravenously injected mice. A pharmacokinetic study was conducted in rats, and the in vivo therapeutic effects of RPTN, RPN, and RS were examined in a mouse tumor model. The results showed that RCPTN simultaneously delivered both coumarin-6 and RBG into HepG2 and HCa-F cells. The ratio of apoptotic cells was increased in the RPTN group. The LD50 for RPTN was 2.02-fold higher than the value for RS. Compared to RS, RPTN and RPN both showed a significant difference in vivo not only in the pharmacodynamic study but also in anticancer efficacy, and RPTN performed much better than RPN. The detection indexes for drug concentration and fluorescence inversion microscopy images both demonstrated that RCPTN was much better at targeting the liver than RS. The liver-targeting RPTN, which displayed enhanced pharmacological effects and

  17. Affinity partitioning of albumin and alpha-fetoprotein in an aqueous two-phase system using poly(ethylene glycol)-bound triazine dyes.

    PubMed

    Birkenmeier, G; Usbeck, E; Kopperschläger, G

    1984-01-01

    Human albumin and alpha-fetoprotein are partitioned in an aqueous two-phase system composed of 10% (w/w) Dextran and 7.5% (w/w) poly(ethylene glycol). When a small amount of poly(ethylene glycol) is replaced by Cibacron Blue F3G-A-liganded poly(ethylene glycol) the partition coefficient, K, of albumin increases by the factor of about 4000 whereas the K value of alpha-fetoprotein undergoes only a small change. The change of the partition coefficient in a logarithmic scale induced by increasing dye-polymer concentrations turned out as a useful measure for the affinity of albumin and alpha-fetoprotein to the dyes. The effect of pH and salt concentration on the affinity partition of albumin and alpha-fetoprotein is demonstrated. The partition of the two proteins in presence of Cibacron Blue F3G-A-liganded poly(ethylene glycol) is compared with seven other triazine dye-poly(ethylene glycol) derivatives.

  18. Star poly(ethylene glycol) as a tunable scaffold for neural tissue engineering

    NASA Astrophysics Data System (ADS)

    Zustiak, Silviya Petrova

    The primary focus of this work was to develop a novel synthetic hydrogel scaffold as an in vitro model to enable future detailed studies of how neurons grow in environments with controllable diffusion profiles of soluble cues and tunable neuronmatrix interactions. The development of in vitro models that enable elucidation of the mechanisms of system performance is a recently emerging goal of tissue engineering. The design of three-dimensional (3D) scaffolds in particular, is motivated by the need to develop model systems that better mimic native tissue as compared to conventional two-dimensional (2D) cell culture substrates. An ideal scaffold is degradable, porous, biocompatible, with mechanical properties to match those of the tissues of interest and with a suitable surface chemistry for cell attachment, proliferation, and differentiation. Although naturally derived materials are more versatile in providing complex biological cues, synthetic polymers are preferable for the design of in vitro models as they provide wider range of properties, controllable degradation rates, and easier processing. Most importantly, their mechanical properties can be decoupled from their biological properties, a crucial issue in interpreting cell responses. The synthetic material provides the structural backbone of the scaffold while biochemical function is added via incorporation of ligands or proteins aimed at triggering specific cell behaviors. As presented in this dissertation, we have developed and characterized a new synthetic 3D hydrogel scaffold from cross-linked poly(ethylene glycol) (PEG). PEG was selected because it is hydrophilic, non-toxic, biocompatible, and inert to protein adhesion. The chosen cross-linking chemistry was a highly specific reaction that occurred under physiological conditions so that cells could be embedded within the gel prior to cross-linking. Controllable degradability was imparted via series of hydrolytically degradable PEG cross-linkers. Thorough

  19. Tribological characteristics of polyethylene glycol (PEG) as a lubricant for wear resistance of ultra-high-molecular-weight polyethylene (UHMWPE ) in artificial knee join.

    PubMed

    Kobayashi, Masanori; Koide, Takayuki; Hyon, Suong-Hyu

    2014-10-01

    For the longevity of total knee joint prostheses, we have developed an artificial lubricant using polyethylene glycol (PEG) for the prevention of wear of ultra-high-molecular-weight polyethylene (UHMWPE). In the present study, the lubricative function of this PEG lubricant was evaluated by a wear test using Co-Cr alloy and UHMWPE counter surface samples. As a result, human synovial fluid including the PEG lubricant showed good result regarding the wear volume and a worn surface of UHMWPE. Considering its lubrication mechanism, it is suspected that interaction between the PEG molecules and the proteins in synovial fluid was involved. Since PE molecules are also organic compounds having a hydroxyl group at one or both ends, the albumin and PEG molecule complex would have bound more strongly to the metal oxide surface and UHMWPE surfaces might enhance and stabilize the lubricating film between the contact surfaces under the boundary lubrication. This study suggests that PEG lubricant as an intra-articular viscous supplement has the potential to prevent wear of UHMWPE by mixing with synovial fluid and to contribute to the longevity of knee joint prostheses.

  20. Fabrication and anti-fouling properties of photochemically and thermally immobilized poly(ethylene oxide) and low molecular weight poly(ethylene glycol) thin films.

    PubMed

    Wang, Hui; Ren, Jin; Hlaing, Aye; Yan, Mingdi

    2011-02-01

    Poly(ethylene oxide) (PEO) and low molecular weight poly(ethylene glycol) (PEG) were covalently immobilized on silicon wafers and gold films by way of the CH insertion reaction of perfluorophenyl azides (PFPAs) by either photolysis or thermolysis. The immobilization does not require chemical derivatization of PEO or PEG, and polymers of different molecular weights were successfully attached to the substrate to give uniform films. Microarrays were also generated by printing polymer solutions on PFPA-functionalized wafer or Au slides followed by light activation. For low molecular weight PEG, the immobilization was highly dependent on the quality of the film deposited on the substrate. While the spin-coated and printed PEG showed poor immobilization efficiency, thermal treatment of the PEG melt on PFPA-functionalized surfaces resulted in excellent film quality, giving, for example, a grafting density of 9.2×10(-4)Å(-2) and an average distance between grafted chains of 33Å for PEG 20,000. The anti-fouling property of the films was evaluated by fluorescence microscopy and surface plasmon resonance imaging (SPRi). Low protein adsorption was observed on thermally-immobilized PEG whereas the photoimmobilized PEG showed increased protein adsorption. In addition, protein arrays were created using polystyrene (PS) and PEG based on the differential protein adsorption of the two polymers.

  1. Effects of one-seed juniper and polyethylene glycol on intake, rumen fermentation, and plasma amino acids in sheep and goats fed supplemental protein and tannins.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the effect of polyethylene glycol (PEG) on juniper and total intake, rumen fermentation, and plasma amino acids (AA) of 12 does and 12 ewes fed sudangrass and basal diets containing 10% quebracho tannins with no protein supplement (Control; 5% CP) or high rumen degradable (RDP 15% CP) or u...

  2. Analysis of partitioning of organic compounds and proteins in aqueous polyethylene glycol-sodium sulfate aqueous two-phase systems in terms of solute-solvent interactions.

    PubMed

    da Silva, Nuno R; Ferreira, Luisa A; Madeira, Pedro P; Teixeira, José A; Uversky, Vladimir N; Zaslavsky, Boris Y

    2015-10-09

    Partition behavior of nine small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.5M osmolyte (sorbitol, sucrose, trehalose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. It was found out that the partition coefficient of all compounds examined (including proteins) may be described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system differ from those in polyethylene glycol-dextran system.

  3. Application of porcine gastric mucin-conjugated magnetic beads and polyethylene glycol goncentration and detection of human noroviruses from green onion and grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To set up detection methods for norovirus in fruits and vegetables by using porcine gastric mucin-conjugated magnetic beads (PGM-MB) and polyethylene glycol 8000 (PEG8000) concentrating and detecting the norovirus in green onion and grape. Methods: The highest virus dilution given a posit...

  4. Ultra-fast RAFT polymerisation of poly(ethylene glycol) acrylate in aqueous media under mild visible light radiation at 25 degrees C.

    PubMed

    Shi, Yi; Gao, Huan; Lu, Lican; Cai, Yuanli

    2009-03-21

    Mild visible light was sufficient to activate RAFT polymerisation of poly(ethylene glycol) methyl ether acrylate in 50 wt% water at 25 degrees C, leading to an ultra-fast and well-controlled living RAFT polymerisation with more than 80% monomer conversion; this is the first example of an ultra-fast RAFT polymerisation under such environmentally friendly mild aqueous conditions.

  5. Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wohl, Adam Richard

    Fine control of the physical and chemical properties of customized materials is a field that is rapidly advancing. This is especially critical in pursuits to develop and optimize novel nanoparticle drug delivery. Specifically, I aim to apply chemistry concepts to test the hypothesis "Silicate ester prodrugs of paclitaxel, customized to have the proper hydrophobicity and hydrolytic lability, can be formulated with well-defined, biocompatible, amphiphilic block copolymers into nanoparticles that are effective drugs." Chapter 1 briefly describes the context and motivation of the scientific pursuits described in this thesis. In Chapter 2, a family of model silicate esters is synthesized, the hydrolysis rate of each compound is benchmarked, and trends are established based upon the steric bulk and leaving group ability of the silicate substituents. These trends are then applied to the synthesis of labile silicate ester prodrugs in Chapter 3. The bulk of this chapter focuses on the synthesis, hydrolysis, and cytotoxicity of prodrugs based on paclitaxel, a widely used chemotherapeutic agent. In Chapter 4, a new methodology for the synthesis of narrowly dispersed, "random" poly(lactic-co-glycolic acid) polymers by a constant infusion of the glycolide monomer is detailed. Using poly(ethylene glycol) as a macroinitiator, amphiphilic block copolymers were synthesized. Co-formulating a paclitaxel silicate and an amphiphilic block copolymer via flash nanoprecipitation led to highly prodrug-loaded, kinetically trapped nanoparticles. Studies to determine the structure, morphology, behavior, and efficacy of these nanoparticles are described in Chapter 5. Efforts to develop a general strategy for the selective end-functionalization of the polyether block of these amphiphilic block copolymers are discussed in Chapter 6. Examples of this strategy include functionalization of the polyether with an azide or a maleimide. Finally, Chapter 7 provides an outlook for future development of

  6. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    NASA Astrophysics Data System (ADS)

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  7. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery.

    PubMed

    Vasconcelos, Aimee; Vega, Estefania; Pérez, Yolanda; Gómara, María J; García, María Luisa; Haro, Isabel

    2015-01-01

    In this work, a peptide for ocular delivery (POD) and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)-polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation in vitro (hen's egg test-chorioallantoic membrane assay) or in vivo (Draize test) was detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising vehicles for ocular drug delivery.

  8. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery

    PubMed Central

    Vasconcelos, Aimee; Vega, Estefania; Pérez, Yolanda; Gómara, María J; García, María Luisa; Haro, Isabel

    2015-01-01

    In this work, a peptide for ocular delivery (POD) and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)–polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation in vitro (hen’s egg test–chorioallantoic membrane assay) or in vivo (Draize test) was detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising vehicles for ocular drug delivery. PMID:25670897

  9. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering.

    PubMed

    Temenoff, Johnna S; Athanasiou, Kyriacos A; LeBaron, Richard G; Mikos, Antonios G

    2002-03-05

    This study was designed to determine the effect of changes in poly(ethylene glycol) (PEG) molecular weight on swelling and mechanical properties of hydrogels made from a novel polymer, oligo(poly(ethylene glycol) fumarate) (OPF), recently developed in our laboratory. Properties of hydrogels made from OPF with initial PEG molecular weights of 860, 3900, and 9300 were examined. The PEG 3900 formulation had a tensile modulus of 23.1 +/- 12.4 kPa and percent elongation at fracture of 53.2 +/- 13.7%; the PEG 9300 formulation had similar tensile properties (modulus: 16.5 +/- 4.6 kPa, elongation: 76.0 +/- 26.4%). However, the PEG 860 gels had a significantly higher modulus (89.5 +/- 50.7 kPa) and a significantly smaller percent elongation at fracture (30.1 +/- 6.4%), when compared with other formulations. Additionally, there were significant differences in percent swelling between each of the formulations. Molecular weight between crosslinks (M(c)) and mesh size were calculated for each OPF formulation. M(c) increased from 2010 +/- 116 g/mol with PEG 860 to 6250 +/- 280 g/mol with PEG 9300. Mesh size calculations showed a similar trend (76 +/- 2 A for PEG 860 to 160 +/- 6 A for PEG 9300). It was also found that these hydrogels could be laminated if a second layer was added before the first had completely crosslinked. Mechanical testing of these laminated gels revealed that the presence of an interfacial area did not significantly alter their tensile properties. These results suggest that the material properties of OPF-based hydrogels can be altered by changing the molecular weight of PEG used in synthesis and that multilayered OPF hydrogel constructs can be produced, with each layer having distinct mechanical properties.

  10. Precise measurement of the self-diffusion coefficient for poly(ethylene glycol) in aqueous solution using uniform oligomers

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Kato, Haruhisa; Saito, Takeshi; Matsuyama, Shigetomo; Kinugasa, Shinichi

    2005-06-01

    Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n =1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D2O) at 30 ° C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H2O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.

  11. Evaluation of the Water Potentials of Solutions of Polyethylene Glycol 8000 Both in the Absence and Presence of Other Solutes

    PubMed Central

    Michel, Burlyn E.

    1983-01-01

    Published and additional data for polyethylene glycol 8000 (PEG), formerly PEG 6000, solution water potentials (Ψ) are compared. Actual bars Ψ over the concentration range of 0 to 0.8 gram PEG per gram H2O and temperature (T) range of 5 to 40°C are best predicted (probably within ± 5%) by this equation: Ψ = 1.29[PEG]2T − 140[PEG]2 − 4.0[PEG]. Although transformable through division by [PEG] to virial equation form, results indicate that the coefficients are not virial. Mannitol (MAN) interacts with PEG to produce Ψ significantly lower than additive. Vapor pressure osmometer (VPO) data for MAN-PEG synergism compared favorably with those from thermocouple hygrometry; and VPO data showing the interactions between PEG and four salts are presented. The synergism of MAN-PEG and of NaCl-PEG are related linearly to the concentration of solute added with PEG. PMID:16662983

  12. The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating

    NASA Astrophysics Data System (ADS)

    Pourjavadi, Ali; Tehrani, Zahra Mazaheri; Mahmoudi, Negar

    2015-04-01

    In the present work, biocompatible superparamagnetic iron oxide nanoparticles coated by mesoporous silica were used as drug nanocarriers for doxorubicin (Dox; an anticancer drug) delivery. In biological media, the interaction of protein corona layer with the surface of nanoparticles is inevitable. For this reason, we studied the effect of protein corona on drug release from magnetic mesoporous silica nanoparticles (MMSNs) in human plasma medium. Besides, we used hydrophilic and biocompatible polymer, polyethylene glycol (PEG), to decrease protein corona effects. The results showed the increased Dox release from PEGylated MMSNs compared with bare MMSNs. This result indicated that the coating of PEG reduced the wrapping of the protein corona around the nanoparticles. This phenomenon caused increase in Dox release.

  13. Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin.

    PubMed

    Veerapandian, Murugan; Seo, Yeong-Tai; Yun, Kyusik; Lee, Min-Ho

    2014-08-15

    A direct electrochemical detection of quercetin based on functionalized graphene oxide modified on gold-printed circuit board chip was demonstrated in this study. Functionalized graphene oxide materials are prepared by the covalent reaction of graphene oxide with silver@silica-polyethylene glycol nanoparticles (~12.35nm). Functionalized graphene oxide electrode shows a well-defined voltammetric response in phosphate buffered saline and catalyzes the oxidation of quercetin to quinone without the need of an enzyme. Significantly, the functionalized graphene oxide modified electrode exhibited a higher sensitivity than pristine gold-printed circuit board and graphene oxide electrodes, a wide concentration range of 7.5 to 1040nM and detection limit of 3.57nM. Developed biosensor platform is selective toward quercetin in the presence of an interferent molecule.

  14. Preparation of meloxicam-β-cyclodextrin-polyethylene glycol 6000 ternary system: characterization, in vitro and in vivo bioavailability.

    PubMed

    Radia, Ourezki; Rogalska, Ewa; Moulay-Hassane, Guermouche

    2012-01-01

    Ternary complexes of meloxicam (ML), a poorly water-soluble anti-inflammatory drug, with β-cyclodextrin (βCD) and polyethylene glycol (PEG) 6000 were prepared from an equimolar (ML-βCD) and 10% of PEG. Characterization of the ternary complex was carried out by differential scanning calorimetry and X-ray diffractometry. The solubility of ML increased as a function of increasing the concentration of βCD and PEG 6000. Ternary system increased significantly ML solubility in water. Ternary complexes improved drug release compared with ML and ML-βCD. The oral bioavailability of ML-βCD-PEG was investigated by administration to rat and compared with ML and ML-βCD. The results confirmed that the oral bioavailability of ML was significantly improved by complexation with βCD in the presence of PEG.

  15. Capillary isoelectric focusing and fluorometric detection of proteins and microorganisms dynamically modified by poly(ethylene glycol) pyrenebutanoate.

    PubMed

    Horka, Marie; Ruzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel

    2006-12-15

    The nonionogenic pyrene-based tenside, poly(ethylene glycol) pyrenebutanoate, was prepared and applied in capillary isoelectric focusing with fluorometric detection. This dye was used here as a buffer additive in capillary isoelectric focusing for a dynamic modification of the sample of proteins and microorganisms. The values of the isoelectric points of the labeled bioanalytes were calculated with use of the fluorescent pI markers and were found comparable with pI of the native compounds. The mixed cultures of proteins and microorganisms, Escherichia coli CCM 3954, Staphylococcus epidermidis CCM 4418, Proteus vulgaris, Enterococcus faecalis CCM 4224, and Stenotrophomonas maltophilia, the strains of the yeast cells, Candida albicans CCM 8180, Candida krusei, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae were reproducibly focused and separated by the suggested technique. Using UV excitation for the on-column fluorometric detection, the minimum detectable amount was down to 10 cells injected on the separation capillary.

  16. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  17. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes.

    PubMed

    Zalipsky, S

    1993-01-01

    Synthesis of a distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) conjugate, bearing a hydrazide group at the unattached end of the polymer chain, was achieved using a new heterobifunctional polymeric reagent. The heterobifunctional PEG derivative carrying on one end a reactive succinimidyl carbonate (SC) group and at the other terminal a tert-butyloxycarbonyl (Boc) protected hydrazide group was prepared by an efficient four step process from readily available PEG-2000. The SC-end group of the polymer reacted readily with the amino group of DSPE forming a stable urethane attachment between lipid and PEG. Acidolytic removal of the Boc group yielded a hydrazide-PEG-lipid conjugate suitable for preparation of polymer-grafted liposomes. Taking advantage of the well-documented chemical versatility of hydrazide groups, various biologically relevant ligands can be linked to this type of functionalized liposomes.

  18. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.

    PubMed

    Yu, Lan; Xue, Weihua; Cui, Lei; Xing, Wen; Cao, Xinli; Li, Hongyu

    2014-03-01

    Fe3O4 nanoparticles were modified with Hydroxypropyl-β-cyclodextrin (HP-β-CD) and Polyethylene glycol 400 (PEG400) by a facile one-pot homogeneous precipitation method, and were used as a novel nano-adsorbent for the removal of congo red (CR) from aqueous solutions. The polymer-modified composites were characterized by FTIR, TEM, TGA, XRD and VSM, and showed excellent adsorption efficiency for CR. The value of the maximum adsorption capacity calculated according to the Langmuir isotherm model were 1.895g/g, which are much high and about 19 times that of Fe3O4 nanoparticles. Desorption study further indicates the good regeneration ability of the nanocomposites. The results suggest that the HP-β-CD/PEG400-modified Fe3O4 nanoparticles is a promising adsorbent for CR removal from aqueous solutions, and it is easily recycled owing to its large specific surface area and unique magnetic responsiveness.

  19. Poly(ethylene glycol)-graft-poly(vinyl acetate) single-chain nanoparticles for the encapsulation of small molecules.

    PubMed

    Bartolini, Arianna; Tempesti, Paolo; Resta, Claudio; Berti, Debora; Smets, Johan; Aouad, Yousef G; Baglioni, Piero

    2017-02-08

    Amphiphilic poly(ethylene glycol)-graft-poly(vinyl acetate) copolymers with a low degree of grafting undergo self-folding in water driven by hydrophobic interactions, resulting in single-chain nanoparticles (SCNPs) possessing a hydrodynamic radius of about 10 nm. A temperature scan revealed a lower critical solution temperature (LCST)-type phase behavior. In addition, SAXS data collected close to the LCST showed that these SCNPs aggregate into one-dimensional elongated objects, preferentially. With respect to the typical linear complex-structured polymer chains, this material is ideally suited for industrial and/or biomedical applications because of its simple molecular architecture and persistence of SCNPs up to 100 mg mL(-1). The so-obtained single-chain globular particles are able to swell upon loading with small hydrophobic molecules therefore promoting solubilization of flavors or drugs, which could be of interest in the food and pharmaceutical industry.

  20. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing.

    PubMed

    Kweon, Haeyong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-09-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing.

  1. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    NASA Astrophysics Data System (ADS)

    Park, Sung-Eun; Nho, Young-Chang; Kim, Hyung-Il

    2004-02-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2.

  2. High-Resolution Imaging of Polyethylene Glycol Coated Dendrimers via Combined Atomic Force and Scanning Tunneling Microscopy.

    PubMed

    Riechers, Shawn; Zhong, Qian; Yin, Nai-Ning; Karsai, Arpad; da Rocha, Sandro R P; Liu, Gang-Yu

    2015-01-01

    Dendrimers have shown great promise as drug delivery vehicles in recent years because they can be synthesized with designed size and functionalities for optimal transportation, targeting, and biocompatibility. One of the most well-known termini used for biocompatibility is polyethylene glycol (PEG), whose performance is affected by its actual conformation. However, the conformation of individual PEG bound to soft materials such as dendrimers has not been directly observed. Using atomic force microscopy (AFM) and scanning tunneling microscopy (STM), this work characterizes the structure adopted by PEGylated dendrimers with the highest resolution reported to date. AFM imaging enables visualization of the individual dendrimers, as well as the differentiation and characterization of the dendrimer core and PEG shell. STM provides direct imaging of the PEG extensions with high-resolution. Collectively, this investigation provides important insight into the structure of coated dendrimers, which is crucial for the design and development of better drug delivery vehicles.

  3. Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions.

    PubMed

    Tang, Qunwei; Sun, Xiaoming; Li, Qinghua; Wu, Jihuai; Lin, Jianming

    2009-02-01

    A simple two-step aqueous polymerization method was introduced to synthesize a polyacrylate/polyethylene glycol (PAC/PEG) interpenetrating network (IPN) hydrogel. On the basis of the effects of the ratio of PAC to PEG, neutralization degree, heavy-metal ion concentration, and temperature on the adsorption behavior of PAC/PEG IPN hydrogel toward Ni(2 +), Cr(3 +) and Cd(2 +), the preparation conditions were optimized. In our system, the greatest amount of Ni(2 +), Cr(3 +) and Cd(2 +) adsorbed were 102.34, 49.38 and 33.41 mg g(- 1), respectively. The adsorption abilities of a dried PAC/PEG composite and a swollen PAC/PEG IPN hydrogel were compared. It was found that the efficiency of removing metal ions using the swollen hydrogel was greater than that using the dried composite. The adsorption mechanism and model are also discussed.

  4. Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): Preparation, molecular dynamics, and adsorption of anionic dyes.

    PubMed

    Kono, Hiroyuki; Ogasawara, Kota; Kusumoto, Ryo; Oshima, Kazuhiro; Hashimoto, Hisaho; Shimizu, Yuuichi

    2016-11-05

    Cationic cellulose hydrogels (CCGs) were prepared from quaternized celluloses with degrees of substitution (DS) of 0.56, 0.84, and 1.33, by the cross-linking reaction with poly(ethylene glycol) diglycidyl ether as a cross-linker. The CCGs exhibited swelling behavior in aqueous solutions, which was not affected by pH and temperature of the solution because of the presence of quaternary ammonium groups in their structures. The CCGs showed adsorption ability toward anionic dyes in aqueous solution, which increased with increasing DS. The dye adsorption was found to follow the pseudo-second order kinetic model and the equilibrium isotherm data can be described by the Langmuir adsorption model. In addition, the CCGs could be regenerated and proved to be recyclable adsorbents for wastewater treatment.

  5. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine a.

    PubMed

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-03-27

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  6. Polymerized and polyethylene glycol-conjugated hemoglobins: a globin-based calibration curve for dynamic light scattering analysis.

    PubMed

    Faggiano, Serena; Ronda, Luca; Bruno, Stefano; Jankevics, Hanna; Mozzarelli, Andrea

    2010-06-15

    Dynamic light scattering (DLS) is a technique capable of determining the hydrodynamic radius of proteins. From this parameter, a molecular weight can be assessed provided that an appropriate calibration curve is available. To this goal, a globin-based calibration curve was used to determine the polymerization state of a recombinant hemoglobin-based oxygen carrier and to assess the equivalent molecular weight of hemoglobins conjugated with polyethylene glycol molecules. The good agreement between DLS values and those obtained from gel filtration chromatography is a consequence of the high similarity in structure, shape, and density within the globin superfamily. Moreover, globins and heme proteins in general share similar spectroscopic properties, thereby reducing possible systematic errors associated with the absorption of the probe radiation by the chromophore.

  7. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells.

    PubMed

    Wei, Yu; Zhang, Jingxun; Li, Haolie; Zhang, Li; Bi, Hong

    2015-01-01

    Multifunctional polymer coatings have potential applications in biomaterials. These coatings possess reactive functional groups for the immobilization of specific biological factors that can influence cellular behavior. These coatings also display low nonspecific protein adsorption. In this study, we prepared a multifunctional polymer coating through the deposition of random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and glycidyl methacrylate (GMA) to prevent nonspecific attachment and enable the covalence of Arg-Glu-Asp-Val (REDV) peptide with endothelial cells (ECs) selectivity. Coatings were characterized by X-ray photoelectron spectroscopy (XPS). The adhesion and proliferation of ECs and smooth muscle cells (SMCs) onto the REDV-modified surface were investigated to understand the synergistic action of antifouling PEG and EC selective REDV peptide conjugated GMA. The copolymers containing GMA and PEG groups are very useful as a multifunctional coating material with anti-fouling and ECs specific adhesion for implant materials surface modification.

  8. Photodynamic therapy of tumors with pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles

    PubMed Central

    Liu, Hui; Zhao, Mei; Wang, Jin; Pang, Mingpei; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan; Hong, Zhangyong

    2016-01-01

    Photodynamic therapy (PDT) has many advantages in treating cancers, but the lack of ideal photosensitizers continues to be a major limitation restricting the clinical utility of PDT. This study aimed to overcome this obstacle by generating pyropheophorbide-a-loaded polyethylene glycol–poly(lactic-co-glycolic acid) nanoparticles (NPs) for efficient tumor-targeted PDT. The fabricated NPs were efficiently internalized in the mitochondrion by cancer cells, and they efficiently killed cancer cells in a dose-dependent manner when activated with light. Systemically delivered NPs were highly enriched in tumor sites, and completely ablated the tumors in a xenograft KB tumor mouse model when illuminated with 680 nm light (156 mW/cm2, 10 minutes). The results suggested that this tumor-specific NP-delivery system for pyropheophorbide-a has the potential to be used in tumor-targeted PDT. PMID:27729788

  9. BULK SYNTHESIS OF SILVER NANORODS IN POLY(ETHYLENE GLYCOL) USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-assisted (MW), surfactantless, greener approach to bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) is described. An aqueous solution of silver nitrate (AgNO-3,- 0.1 M, 4 mL) and 4 mL of PEG (molecular weight 300) were mixed at room temperature t...

  10. Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors

    SciTech Connect

    Tsuboi, Masaki; Hibino, Mitsuhiro; Mizuno, Noritaka; Uchida, Sayaka

    2016-02-15

    Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors were synthesized and characterized by single crystal and powder XRD, solid state MASNMR, and TG-DTA measurements. Among the POM–PEG composites, Cs{sub 2.7}H{sub 0.3}[PW{sub 12}O{sub 40}]·1.2PEG1000 (CsHPW-PEG1000) possessed one-dimensional channels with diameters of ca. 6 and 8 Å, where PEG probably resided, and showed the best performance as a proton conductor (1.2×10{sup −5} S cm{sup −1} at 443 K). Proton conductivities of POM–PEG composites decreased by the increase in molecular weights of PEG (CsHPW-PEG12,000) or anion charges (CsHSiW-PEG1000). Variable contact time {sup 13}C-CP (cross polarization) MASNMR revealed that local mobility (i.e., segmental motion) of PEG is related to the trends in proton conductivities. These results show that amount of acidic protons (H{sup +}) is not the primary factor in proton conduction and that segmental motion of PEG assists the proton hopping among POMs in the crystal lattice of POM–PEG composites. - Graphical abstract: Non-humidified intermediate-temperature proton conduction in crystalline polyoxometalate (POM)–polyethylene (PEG) composites are assisted by the segmental motion of PEG. - Highlights: • Crystalline polyoxometalate–polyethlene glycol (PEG) composites were synthesized. • CsHPW-PEG1000 possessed one-dimensional channels and showed the highest proton conductivity. • {sup 13}C CPMASNMR revealed that segmental motion of PEG is related to the proton conduction.

  11. Effect of water stress by Polyethylene Glycol 8000 and Sodium Chloride on germination of Ephedra alata Decne seeds.

    PubMed

    Al-Taisan, Wafa'a A; Al-Qarawi, Abdulaziz A; Alsubiee, Moodi S

    2010-07-01

    Ephedra alata Decne is a perennial shrub and it is a very effective sand-binder. In Saudi Arabia, the species is associated with sand dunes formation, especially the mobile, non-saline and low moisture content ones. Its geographical distribution in Saudi Arabia includes the Northern, Eastern and Central regions. The aims of this study were to determine the effects of temperature, water potential and Sodium Chloride on germination of E. alata. Seeds were collected from King Khalid Centre of Wildlife Research and Development at Thumama (80 km north east of Riyadh), Saudi Arabia. Seeds were germinated at four alternating temperature regimes (8/22; 9/23; 13/27 and 18/35 °C). Seeds were also germinated under stress of aqueous Polyethylene Glycol (PEG) solutions mixed to create water potentials of 0; -0.3; -0.6; -1.2 and -1.5 MPa. Seed were also germinated in Sodium Chloride solutions of 0, 0.05, 0.1, 0.2 and 0.3 mol l(-1). Optimum germination was attained at 13/28 °C that corresponds to temperatures prevailing during spring time. Seeds germinated in Polyethylene Glycol solutions exhibited significantly lower germination than control especially when water potential fell below -0.3 MPa. Germination was also negatively affected by 0.1 mol l(-1) Sodium Chloride solution or above. Results indicated that the germination temperature responses of the nondormant seeds synchronize the event of germination with the season when environmental conditions are more favorable for subsequent growth and seedling establishment. Germination was also sensitive to both water potential and salinity.

  12. D-α-tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery

    PubMed Central

    Wu, Yupei; Chu, Qian; Tan, Songwei; Zhuang, Xiangting; Bao, Yuling; Wu, Tingting; Zhang, Zhiping

    2015-01-01

    Paclitaxel (PTX) is one of the most effective antineoplastic drugs. Its current clinical administration Taxol® is formulated in Cremophor EL, which causes serious side effects. Nanoparticles (NP) with lower systemic toxicity and enhanced therapeutic efficiency may be an alternative formulation of the Cremophor EL-based vehicle for PTX delivery. In this study, novel amphipathic 4-arm-PEG-TPGS derivatives, the conjugation of D-α-tocopherol polyethylene glycol succinate (TPGS) and 4-arm-polyethylene glycol (4-arm-PEG) with different molecular weights, have been successfully synthesized and used as carriers for the delivery of PTX. These 4-arm-PEG-TPGS derivatives were able to self-assemble to form uniform NP with PTX encapsulation. Among them, 4-arm-PEG5K-TPGS NP exhibited the smallest particle size, highest drug-loading efficiency, negligible hemolysis rate, and high physiologic stability. Therefore, it was chosen for further in vitro and in vivo investigations. Facilitated by the effective uptake of the NP, the PTX-loaded 4-arm-PEG5K-TPGS NP showed greater cytotoxicity compared with free PTX against human ovarian cancer (A2780), non-small cell lung cancer (A549), and breast adenocarcinoma cancer (MCF-7) cells, as well as a higher apoptotic rate and a more significant cell cycle arrest effect at the G2/M phase in A2780 cells. More importantly, PTX-loaded 4-arm-PEG5K-TPGS NP resulted in a significantly improved tumor growth inhibitory effect in comparison to Taxol® in S180 sarcoma-bearing mice models. This study suggested that 4-arm-PEG5K-TPGS NP may have the potential as an anticancer drug delivery system. PMID:26316751

  13. Biomass Yield and Steviol Glycoside Production in Callus and Suspension Culture of Stevia rebaudiana Treated with Proline and Polyethylene Glycol.

    PubMed

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2015-06-01

    Enhanced production of steviol glycosides (SGs) was observed in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol (PEG). To study their effect, yellow-green and compact calli obtained from in vitro raised Stevia leaves were sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of proline (2.5-10 mM) and PEG (2.5-10 %) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension culture biomass (i.e. both fresh and dry weight content) was increased with 5 mM proline and 5 % PEG, while at further higher concentrations, they got reduced. Further, quantification of SGs content in callus (collected at 15th day) and suspension culture (collected at 10th and 15th day) treated with and without elicitors was analysed by HPLC. It was observed that chemical stress enhanced the production of SGs significantly. In callus, the content of SGs increased from 0.27 (control) to 1.09 and 1.83 % with 7.5 mM proline and 5 % PEG, respectively, which was about 4.0 and 7.0 times higher than control. However, in the case of suspension culture, the same concentrations of proline and polyethylene glycol enhanced the SG content from 1.36 (control) to 5.03 and 6.38 %, respectively, on 10th day which were 3.7 times and 4.7 times higher than control.

  14. Oxidation-Responsive and "Clickable" Poly(ethylene glycol) via Copolymerization of 2-(Methylthio)ethyl Glycidyl Ether.

    PubMed

    Herzberger, Jana; Fischer, Karl; Leibig, Daniel; Bros, Matthias; Thiermann, Raphael; Frey, Holger

    2016-07-27

    Poly(ethylene glycol) (PEG) is a widely used biocompatible polymer. We describe a novel epoxide monomer with methyl-thioether moiety, 2-(methylthio)ethyl glycidyl ether (MTEGE), which enables the synthesis of well-defined thioether-functional poly(ethylene glycol). Random and block mPEG-b-PMTEGE copolymers (Mw/Mn = 1.05-1.17) were obtained via anionic ring opening polymerization (AROP) with molecular weights ranging from 5 600 to 12 000 g·mol(-1). The statistical copolymerization of MTEGE with ethylene oxide results in a random microstructure (rEO = 0.92 ± 0.02 and rMTEG E = 1.06 ± 0.02), which was confirmed by in situ (1)H NMR kinetic studies. The random copolymers are thermoresponsive in aqueous solution, with a wide range of tunable transition temperatures of 88 to 28 °C. In contrast, mPEG-b-PMTEGE block copolymers formed well-defined micelles (Rh ≈ 9-15 nm) in water, studied by detailed light scattering (DLS and SLS). Intriguingly, the thioether moieties of MTEGE can be selectively oxidized into sulfoxide units, leading to full disassembly of the micelles, as confirmed by detection of pure unimers (DLS and SLS). Oxidation-responsive release of encapsulated Nile Red demonstrates the potential of these micelles as redox-responsive nanocarriers. MTT assays showed only minor effects of the thioethers and their oxidized derivatives on the cellular metabolism of WEHI-164 and HEK-293T cell lines (1-1000 μg·mL(-1)). Further, sulfonium PEG polyelectrolytes can be obtained via alkylation or alkoxylation of MTEGE, providing access to a large variety of functional groups at the charged sulfur atom.

  15. Schedule dependency of the antitumor activity and toxicity of polyethylene glycol-modified interleukin 2 in murine tumor models.

    PubMed

    Zimmerman, R J; Aukerman, S L; Katre, N V; Winkelhake, J L; Young, J D

    1989-12-01

    Modification of recombinant human interleukin 2 (rhIL-2) with monomethoxy polyethylene glycol has been shown to alter its pharmacokinetic properties. Therefore, we investigated the pharmacological parameters of schedule and dose in order to assess the impact on the in vivo antitumor activity of this modification. The antitumor efficacy, as well as the toxicity, of polyethylene glycol-interleukin 2 (PEG-IL-2) was compared to that of rhIL-2 in three transplantable syngeneic murine tumor models, Meth A fibrosarcoma, B16 melanoma, and Pan-02 pancreatic carcinoma. At equitoxic dose levels, the antitumor activity of PEG-IL-2 was far superior to that of rhIL-2 in all three tumor models. This efficacy of PEG-IL-2 was dose dependent and was greatest on a Q7D x 2 schedule in Meth A and B16. When the same total doses were further divided and delivered on any of several alternative schedules, either the efficacy was reduced or the toxicity of the treatments was increased. In Pan-02, a rhIL-2-resistant tumor, PEG-IL-2 treatment on either the Q7D x 2, Q4D x 3, or Q3D x 4 schedule resulted in approximately a 200% increase in lifespan; however, the toxicity of the treatment increased as the interval between doses was shortened. Simulations of the pharmacokinetic profiles of these various regimens suggested that the toxicity of PEG-IL-2 and rhIL-2 was related to the minimum plasma concentration that was obtained and the time interval between peak levels. The efficacy of the treatment was associated with the interleukin 2 plasma peak height, since a dose response was observed; however, peak plasma concentration did not appear to be the only parameter which determined efficacy. We hypothesize that this observed schedule dependence is also affected by the kinetics of the host's biological response to rhIL-2.

  16. Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels.

    PubMed

    Pollock, Jacob F; Healy, Kevin E

    2010-04-01

    The dimensional stability and rheological properties of a series of comb-like copolymers of N-isopropyl acrylamide (NIPAAm) and methoxy poly(ethylene glycol) methacrylate (mPEGMA), poly(NIPAAm-co-mPEGMA), with varying poly(ethylene glycol) (PEG) graft densities and molecular weights were studied. The thermoresponsive character of the copolymer solutions was investigated by kinetic and equilibrium swelling, as well as by static and dynamic mechanical analysis. Surface response mapping was employed to target particular compositions and concentrations with excellent dimensional stability and a relatively large change in dynamic mechanical properties upon thermoreversible gelation. The mechanical characteristics of the gels depended strongly upon concentration of total polymer and less so upon copolymer ratio. Increased PEG graft density was shown to slow the deswelling rate and increase the equilibrium water content of the gels. Upon gelation at sol concentrations of 1-20 wt.% the materials underwent no deswelling or syneresis and maintained stable gels with a large elastic regime and high yield strain (i.e. elastic and soft but tough), even within the Pascal range of complex shear moduli. These materials are unique in that they maintained a physiologically useful lower critical solution temperature (approximately 33 degrees C), despite having a high PEG content. Copolymers with a high PEG content and low polymer fraction were conveniently transparent in the gel phase, allowing visualization of cellular activity without disrupting the microenvironment. Mesenchymal stem cells showed good viability and proliferation in three-dimensional culture within the gels, despite the lack of ligand incorporation to promote cellular interaction. Multi-component matrices can be created through simple mixing of copolymer solutions and peptide-conjugated linear polymers and proteins to produce combinatorial microenvironments with the potential for use in cell biology, tissue

  17. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Wang, Yao; Huang, Xiao-Dan; Xu, Zhi-Kang; Yao, Ke

    2010-10-01

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  18. Polyethylene glycol coated CoFe{sub 2}O{sub 4} nanoparticles: A potential spinel ferrite for biomedical applications

    SciTech Connect

    Humbe, Ashok V.; Birajdar, Shankar D.; Jadhav, K. M.; Bhandari, J. M.; Waghule, N. N.; Bhagwat, V. R.

    2015-06-24

    The structural and magnetic properties of the polyethylene glycol (PEG) coated cobalt spinel ferrite (CoFe{sub 2}O{sub 4}) nanoparticles have been reported in the present study. CoFe{sub 2}O{sub 4} nanoparticles were prepared by sol-gel auto-combustion method using citric acid + ethylene glycol as a fuel. The prepared powder of cobalt ferrite nanoparticles was annealed at 600°C for 6h and used for further study. The structural characterization of CoFe{sub 2}O{sub 4} nanoparticles were carried out by X-ray diffraction technique. The X-ray analysis confirmed the formation of single phase cubic spinel structure. The crystallite size, Lattice constant and X-ray density of the PEG coated CoFe{sub 2}O{sub 4} nanoparticles were calculated by using XRD data. The presence of PEG on CoFe{sub 2}O{sub 4} nanoparticles and reduced agglomeration in the CoFe{sub 2}O{sub 4} nanoparticles were revealed by SEM studies. The magnetic properties were studied by pulse field hysteresis loop tracer technique at a room temperature. The magnetic parameters such as saturation magnetization, remanence magnetization, coercivity etc have been obtained. These magnetic parameters were get decreased by PEG coating.

  19. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guo, Miao; Lu, Yu; Ding, Li-Ying; Ron, Wen-Ting; Liu, Ya-Qing; Song, Fei-Fei; Yu, Shu-Qin

    2012-12-01

    Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work

  20. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.

    PubMed

    Li, Zibiao; Zhang, Zhongxing; Liu, Kerh Li; Ni, Xiping; Li, Jun

    2012-12-10

    This paper reports the synthesis and characterization of new hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), and polycaprolactone (PCL) segments as in situ thermogels. The hyperbranched poly(PPG/PEG/PCL urethane)s, termed as HBPEC copolymers, were synthesized from PPG-diol, PEG-diol, and PCL-triol by using 1,6-hexamethylene diisocyanate (HMDI) as a coupling agent. The compositions and structures of HBPEC copolymers were determined by GPC and 1H NMR spectroscopy. We carried out comparative studies of the new hyperbranched copolymers with their linear counterparts, the linear poly(PPG/PEG/PCL urethane) (LPEC) copolymer and Pluronic F127 PEG-PPG-PEG block copolymer, in terms of their self-assembly and aggregation behaviors and thermoresponsive properties. HBPEC copolymers were found to show thermoresponsive micelle formation and aggregation behaviors. Particularly, the lower critical solution temperature (LCST) of the copolymers was significantly affected by the copolymer architecture. HBPEC copolymers showed much lower LCST than LPEC, the linear counterpart. Our studies revealed that the effect of hyperbranch architecture was more prominent in the gelation of the copolymers. The aqueous solutions of HBPEC copolymers exhibited thermogelling behaviors at critical gelation concentrations (CGCs) ranging from 4.3 to 7.4 wt %. These values are much lower than those reported on other PCL-contained linear thermogelling copolymers and Pluronic F127 copolymer. In addition, the CGC of HBPEC copolymers is much lower than the control LPEC copolymer. More interestingly, at high temperatures, while LPEC and other linear thermogelling copolymers formed turbid sol, HBPEC formed a dehydrated gel. Our data suggest that these phenomena are caused by the hyperbranched structure of HBPEC copolymers, which could increase the interaction of copolymer branches and enhance the chain association through

  1. The dermal carcinogenic potential of unrefined and hydrotreated lubricating oils.

    PubMed

    McKee, R H; Daughtrey, W C; Freeman, J J; Federici, T M; Phillips, R D; Plutnick, R T

    1989-08-01

    Unrefined lubricating oils contain relatively high levels of polycyclic aromatic hydrocarbons (PAH) and have been shown to induce tumors in mouse skin. Exxon has developed a new method of refining these materials, a severe hydrotreatment process that is optimized for PAH removal. The specific objectives of the current study were to assess PAH reduction and then to evaluate directly the dermal carcinogenic potential of the materials that spanned the range of products produced by this method. The test samples included unrefined light and heavy vacuum distillates from a naphthenic crude oil, as well as the corresponding severely hydrotreated products. Two sets of samples were prepared to assess the effects of various operating parameters in the reactor. Additionally, positive (benzo[a]pyrene), negative (white mineral oil) and vehicle (toluene) control groups were included to assess the sensitivity and specificity of the bioassay. Each sample was applied in twice-weekly aliquots to the backs of 40 male C3H mice. In the analytical studies, significant reductions in the levels of several specific PAH were demonstrated. In the dermal carcinogenesis studies, the unrefined oils and the positive control induced tumors and also significantly reduced survival. None of the mice treated with severely hydrotreated oils or with the negative or vehicle controls developed skin tumors, and survival of these mice was not significantly different from the control. Thus, the data demonstrated that this new, severe hydrotreatment process was an effective means of converting carcinogenic feedstocks to non-carcinogenic products.

  2. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

    PubMed

    Cole, Adam J; David, Allan E; Wang, Jianxin; Galbán, Craig J; Hill, Hannah L; Yang, Victor C

    2011-03-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, potentially enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140-190 nm) and relative PEG labeling (1.5% of surface amines - A5/D5, 0.4% - A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37 °C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 h) and D20 (11.75 h) showing much longer half-lives than D (0.12 h). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC(0-∞). Sustained tumor exposure over 24 h was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that a polyethylene glycol modified, cross-linked starch-coated MNP is a promising platform for enhanced magnetic tumor targeting, warranting further study in tumor models.

  3. Preparation and characterization of pure and mixed monolayers of poly(ethylene glycol) brushes chemically adsorbed to silica surfaces.

    PubMed

    McNamee, Cathy E; Yamamoto, Shinpei; Higashitani, Ko

    2007-04-10

    We prepared pure and mixed monolayers of methoxy-terminated poly(ethylene glycol)s (m-PEG's) chemically attached to silica surfaces by using m-PEG silane coupling agents of three different molecular weights. These films were subsequently characterized in water by atomic force microscopy (AFM). Images of pure m-PEG monolayers showed the formation of polymer brushes on silica. Force curves between two modified surfaces suggested that an increase in the number of oxyethylene (OE) groups from 6 (PEG6 surface) to 43 (PEG43 surface) to 113 (PEG113 surface) decreased the flexibility of the m-PEG chains in the m-PEG brushes. Frictional force measurements also showed that the friction increased in the order PEG6 < PEG43

  4. Chemical Interactions of Polyethylene Glycols (PEG) and Glycerol with Protein Functional Groups: Applications to PEG, Glycerol Effects on Protein Processes

    PubMed Central

    Knowles, DB; Shkel, Irina A; Phan, Noel M; Sternke, Matt; Lingeman, Emily; Cheng, Xian; Cheng, Lixue; O’Connor, Kevin; Record, M. Thomas

    2015-01-01

    Here we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds, and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α-values) quantifying interactions of glycerol, tetraEG and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence tetraEG and PEG 300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD) while glycerol, di- and mono-ethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α-values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA), and separated from excluded volume effects. PMID:25962980

  5. MS-Monitored Conjugation of Poly(ethylene glycol) Monomethacrylate to RGD Peptides

    PubMed Central

    Bol’shakov, Oleg I.; Akala, Emmanuel O.

    2014-01-01

    Development of biologically active polymers is an active area of research due to their applications in varied and diverse fields of biomedical research: cell adhesion, tissue proliferation, and drug delivery. Recent advances in chemical modification allow fine-tuning of the properties of biomedical polymers to improve their applications: blood circulation half-life, stimuli-responsive degradation, site-specific targeting, drug loading, etc. In this article, convergent synthesis of polymerizable macromonomers bearing a site-specific ligand (RGD peptide) using a low molecular weight MA-poly(ethylene glycols) (PEGs) is presented. The method affords macromonomers useful as the starting materials to produce biomedical polymers. We found matrix assisted laser desorption/ionization mass spectromerty convenient in monitoring the conjugation process via step-by-step following of PEG modification. PMID:24976670

  6. Design and formulation of nanoemulsions using 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene in combination with linear perfluoro(polyethylene glycol dimethyl ether)

    PubMed Central

    Mountain, Gregory A.; Jelier, Benson J.; Bagia, Christina; Friesen, Chadron M.; Janjic, Jelena M.

    2014-01-01

    This is the first report where PFPAE aromatic conjugates and perfluoro(polyethylene glycol dimethyl ether) are combined and formulated as nanoemulsions with droplet size below 100 nm. A perfluoropolyalkylether (PFPAE) aromatic conjugate, 2-(poly(hexafluoropropylene oxide)) perfluoropropyl benzene, was used as fluorophilic-hydrophilic diblock (FLD) aimed at stabilizing perfluoro(polyethylene glycol dimethyl ether) nanoemulsions. Its effects on colloidal behaviors in triphasic (organic/fluorous/aqueous) nanoemulsions were studied. The addition of FLD construct to fluorous phase led to decrease in PFPAE nanoemulsion droplet size to as low as 85 nm. Prepared nanoemulsions showed high colloidal stability. Our results suggest that these materials represent viable novel approach to fluorous colloid systems design with potential for biomedical and synthetic applications. PMID:24976645

  7. Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering.

    PubMed

    Fan, Min; Guo, QingFa; Luo, JingCong; Luo, Feng; Xie, Ping; Tang, XiaoHai; Qian, ZhiYong

    2013-08-01

    The corium is decreased to about half of its thickness in skin defects and wrinkles due to gravity and environment. In this study, dexamethasone/poly(d,l-lactic acid) (Mn = 160,000) microspheres were incorporated into poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (Mn = 3300) hydrogel to prepare an injectable hydrogel composite. The composite was designed to increase the thickness of the corium. Dexamethasone/poly(d,l-lactic acid) microspheres were prepared by oil-in-water emulsion/solvent evaporation technique. The properties of microspheres were investigated by size distribution measurement, scanning electron microscope and x-ray diffraction. Drug loading, encapsulation efficiency, and drug delivery behavior of microspheres were also studied in detail. Cell adhesion of microspheres was investigated by NIH3T3 cell in vitro. The properties of hydrogel composite were investigated by scanning electron microscope, rheological measurements and methyl thiazolyl tetrazolium assay. Drug release from composite was determined by HPLC-UV analysis. These results suggested that poly(d,l-lactic acid) microspheres encapsulating dexamethasone embedded in poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel might have prospective application in orthopedic tissue engineering field.

  8. Thermodynamics of the sorption of organic compounds on polyethylene glycol 400-permethylated β-cyclodextrin stationary phase and its enantioselectivity in gas chromatography

    NASA Astrophysics Data System (ADS)

    Kuraeva, Yu. G.; Onuchak, L. A.; Evdokimova, M. A.

    2016-08-01

    The thermodynamic characteristics of sorption of 24 organic compounds of various classes from the gas phase on the binary stationary phase based on polyethylene glycol 400 and permethylated β-cyclodextrin were determined. The influence of geometrical structure and optical activity of organic compounds on the possibility of forming sorbate-macrocycle complexes was examined. It was found that the studied stationary phase shows the enantioselectivity towards low-polar terpenes under the conditions of gas chromatography.

  9. Heparin-chitosan nanoparticle functionalization of porous poly(ethylene glycol) hydrogels for localized lentivirus delivery of angiogenic factors

    PubMed Central

    Thomas, Aline M.; Gomez, Andrew J.; Palma, Jaime L.; Yap, Woon Teck

    2014-01-01

    Hydrogels have been extensively used for regenerative medicine strategies given their tailorable mechanical and chemical properties. Gene delivery represents a promising strategy by which to enhance the bioactivity of the hydrogels, though the efficiency and localization of gene transfer have been challenging. Here, we functionalized porous poly(ethylene glycol) hydrogels with heparin-chitosan nanoparticles to retain the vectors locally and enhance lentivirus delivery while minimizing changes to hydrogel architecture and mechanical properties. The immobilization of nanoparticles, as compared to homogeneous heparin and/or chitosan, is essential to lentivirus immobilization and retention of activity. Using this gene-delivering platform, we over-expressed the angiogenic factors sonic hedgehog (Shh) and vascular endothelial growth factor (Vegf) to promote blood vessel recruitment to the implant site. Shh enhanced endothelial recruitment and blood vessel formation around the hydrogel compared to both Vegf-delivering and control hydrogels. The nanoparticle-modified porous hydrogels for delivering gene therapy vectors can provide a platform for numerous regenerative medicine applications. PMID:25023395

  10. Quantitative analysis of polyethylene glycol (PEG) in PEG-modified proteins/cytokines by aqueous two-phase systems.

    PubMed

    Delgado, C; Malik, F; Selisko, B; Fisher, D; Francis, G E

    1994-12-01

    Covalent attachment of poly(ethylene glycol) (PEG) to proteins produces conjugates with altered/improved physicochemical and biological properties which depend upon the number of PEG chains linked. Quantification of the attached PEG is however not a trivial issue. The partition coefficient, K, of the PEG-protein conjugate in PEG/dextran two-phase systems provides a quantitative measure for the degree of modification. A linear relationship between log K and the number of PEG chains was observed in fractionated PEG-modified-granulocyte-macrophage colony stimulating factor conjugates having 1 to 3 substitutions. Furthermore, in mixtures of PEG-bovine-serum-albumin conjugates with increasing degrees of modification, a linear relationship was found between log K and n, the average substitution. The increment in log K per PEG chain added is protein specific and this suggests that the interactions between the PEG-protein conjugate and the polymers in the phase system are more complex than just a simple affinity of the PEG for the PEG-rich top phase. Increasing the polymer concentration in the phase system produces larger increments in log K per PEG molecule attached and the proportionality between log K and number of PEG molecules is only compromised for conjugates with high degree of substitution when partitioned in biphasic systems of high concentration of polymers.

  11. Steric exclusion chromatography for purification of cell culture-derived influenza A virus using regenerated cellulose membranes and polyethylene glycol.

    PubMed

    Marichal-Gallardo, Pavel; Pieler, Michael M; Wolff, Michael W; Reichl, Udo

    2017-02-03

    Steric exclusion chromatography has been used for the purification of proteins and bacteriophages using monoliths. The operation is carried out by mixing a crude sample containing the target species with a predetermined concentration and molecular weight of polyethylene glycol (PEG) and loading it onto a non-reactive hydrophilic surface. Product capture occurs by the mutual steric exclusion of PEG between the product and the matrix. Selectivity is significantly influenced by target product size. Product elution is achieved by decreasing the PEG concentration. In this study, a 75cm(2) cellulose membrane adsorber was used for the purification of a clarified and inactivated influenza A virus broth produced in a 5L bioreactor using suspension Madin Darby canine kidney cells. Product recovery was above 95% based on hemagglutination activity and single radial immunodiffusion assays. Maximum depletion of double stranded host cell DNA and total protein was 99.7% and 92.4%, respectively. Purified virus particles showed no aggregation with a monodisperse peak around 84nm. 250mL of the clarified inactivated virus broth was purified within 40min. The surface area productivity based on the recovery of the viral hemagglutinin antigen was 28-50mgm(-2)h(-1) depending on the feed and loading conditions.

  12. Enhanced tumour specificity of an anti-carcinoembrionic antigen Fab' fragment by poly(ethylene glycol) (PEG) modification.

    PubMed

    Delgado, C; Pedley, R B; Herraez, A; Boden, R; Boden, J A; Keep, P A; Chester, K A; Fisher, D; Begent, R H; Francis, G E

    1996-01-01

    Polyethylene glycol (PEG) modification of a chimeric Fab' fragment (F9) of A5B7 (alpha-CEA), using an improved coupling method, increases its specificity for subcutaneous LS174T tumours. PEGylation increased the area under the concentration-time curve (AUC0-144) in all tissues but there were significant differences (variance ratio test, F = 27.95, P < 0.001) between the proportional increases in AUC0-144, with the tumour showing the greatest increase. The increase in AUCtumour from F9 to PEG-F9 was similar to the reported increase from Fab' to F(ab')2 while the increase in AUCblood by PEGylation of F9 was only 21% of the reported increase from Fab' to whole IgG. A two sample t-test showed no significant differences between maximal tumour/tissue ratios for PEG-F9 and F9 while the tumour/tissue ratios for PEG-F9 remained high over a longer period, with tumour levels at least double those for F9. PEG-F9 emerges as a new generation antibody with potential advantages for both radioimmunotherapy and tumour imaging. Since there was a reduction in antigen binding, optimisation of PEGylation might further improve tumour specificity. The latter resulted from complex effects on both the entry into and exit rates from tumour and normal tissues in a tissue-specific fashion.

  13. Enhanced tumour specificity of an anti-carcinoembrionic antigen Fab' fragment by poly(ethylene glycol) (PEG) modification.

    PubMed Central

    Delgado, C.; Pedley, R. B.; Herraez, A.; Boden, R.; Boden, J. A.; Keep, P. A.; Chester, K. A.; Fisher, D.; Begent, R. H.; Francis, G. E.

    1996-01-01

    Polyethylene glycol (PEG) modification of a chimeric Fab' fragment (F9) of A5B7 (alpha-CEA), using an improved coupling method, increases its specificity for subcutaneous LS174T tumours. PEGylation increased the area under the concentration-time curve (AUC0-144) in all tissues but there were significant differences (variance ratio test, F = 27.95, P < 0.001) between the proportional increases in AUC0-144, with the tumour showing the greatest increase. The increase in AUCtumour from F9 to PEG-F9 was similar to the reported increase from Fab' to F(ab')2 while the increase in AUCblood by PEGylation of F9 was only 21% of the reported increase from Fab' to whole IgG. A two sample t-test showed no significant differences between maximal tumour/tissue ratios for PEG-F9 and F9 while the tumour/tissue ratios for PEG-F9 remained high over a longer period, with tumour levels at least double those for F9. PEG-F9 emerges as a new generation antibody with potential advantages for both radioimmunotherapy and tumour imaging. Since there was a reduction in antigen binding, optimisation of PEGylation might further improve tumour specificity. The latter resulted from complex effects on both the entry into and exit rates from tumour and normal tissues in a tissue-specific fashion. PMID:8546903

  14. A polyethylene glycol-assisted carbothermal reduction method to synthesize LiFePO4 using industrial raw materials

    NASA Astrophysics Data System (ADS)

    Fey, George Ting-Kuo; Huang, Kai-Pin; Kao, Hsien-Ming; Li, Wen-Hsien

    2011-03-01

    Olivine LiFePO4 is synthesized by a carbothermal reduction method (CTR) using industrial raw materials with polyethylene glycol (PEG) as a reductive agent and carbon source. A required amount of acetone is added to the starting materials for the ball milling process and the precursor is sintered at 973 K for 8 h to form crystalline phase LiFePO4. The structure and morphology of the LiFePO4/C composite samples have been characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, differential scanning calorimetry and magnetic susceptibility. Electrochemical measurements show that the LiFePO4/C composite cathode delivers an initial discharge capacity of 150 mAh g-1 at a 0.2C-rate between 4.0 and 2.8 V, and almost no capacity loss is observed for up to 50 cycles. Remarkably, the cell can sustain a 30C-rate between 4.6 and 2.0 V, and this rate capability is equivalent to charge or discharge in 2 min. The simple technique, low-cost starting materials, and excellent electrochemical performance make this process easier to commercialize than other synthesized methods.

  15. An aptasensor for ochratoxin A based on grafting of polyethylene glycol on a boron-doped diamond microcell.

    PubMed

    Chrouda, A; Sbartai, A; Baraket, A; Renaud, L; Maaref, A; Jaffrezic-Renault, N

    2015-11-01

    A novel strategy for the fabrication of an electrochemical label-free aptasensor for small-size molecules is proposed and demonstrated as an aptasensor for ochratoxin A (OTA). A long spacer chain of polyethylene glycol (PEG) was immobilized on a boron-doped diamond (BDD) microcell via electrochemical oxidation of its terminal amino groups. The amino-aptamer was then covalently linked to the carboxyl end of the immobilized PEG as a two-piece macromolecule, autoassembled at the BDD surface, forming a dense layer. Due to a change in conformation of the aptamer on the target analyte binding, a decrease of the electron transfer rate of the redox [Fe(CN)6](4-/3-) probe was observed. To quantify the amount of OTA, the decrease of the square wave voltammetry (SWV) peak maximum of this probe was monitored. The plot of the peak maximum against the logarithm of OTA concentration was linear along the range from 0.01 to 13.2 ng/L, with a detection limit of 0.01 ng/L. This concept was validated on spiked real samples of rice.

  16. Polyethylene glycol addition does not improve exogenous surfactant function in an experimental model of meconium aspiration syndrome.

    PubMed

    Lyra, Joao Cesar; Mascaretti, Renata Suman; Precioso, Alexander Roberto; Haddad, Luciana Branco; Mauad, Thais; Vaz, Flavio A Costa; Rebello, Celso Moura

    2009-02-01

    Meconium (MEC) is a potent inactivator of pulmonary surfactant. The authors studied the effects of polyethylene glycol addition to the exogenous surfactant over the lung mechanics and volumes. Human meconium was administrated to newborn rabbits. Animals were ventilated for 20 minutes and dynamic compliance, ventilatory pressure, and tidal volume were recorded. Animals were randomized into 3 study groups: MEC group (without surfactant therapy); S100 group (100 mg/kg surfactant); and PEG group (100 mg/kg porcine surfactant plus 5% PEG). After ventilation, a pulmonary pressure-volume curve was built. Histological analysis was carried out to calculate the mean alveolar size (Lm) and the distortion index (DI). Both groups treated with surfactant showed higher values of dynamic pulmonary compliance and lower ventilatory pressure, compared with the MEC group (P < .05). S100 group had a larger maximum lung volume, V(30), compared with the MEC group (P < .05). Lm and DI values were smaller in the groups treated with surfactant than in the MEC group (P < .05). No differences were observed between the S100 and PEG groups. Animals treated with surfactant showed significant improvement in pulmonary function as compared to nontreated animals. PEG added to exogenous surfactant did not improve lung mechanics or volumes.

  17. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles

    PubMed Central

    Mert, Olcay; Lai, Samuel K.; Ensign, Laura; Yang, Ming; Wang, Ying-Ying; Wood, Joseph; Hanes, Justin

    2011-01-01

    Mucosal surfaces are protected by a highly viscoelastic and adhesive mucus layer that traps most foreign particles, including conventional drug and gene carriers. Trapped particles are eliminated on the order of seconds to hours by mucus clearance mechanisms, precluding sustained and targeted drug and nucleic acid delivery to mucosal tissues. We have previously shown that polymeric coatings that minimize adhesive interactions with mucus constituents lead to particles that rapidly penetrate human mucus secretions. Nevertheless, a particular challenge in formulating drug-loaded mucus penetrating particles (MPP) is that many commonly used surfactants are either mucoadhesive, or do not facilitate efficient drug encapsulation. We tested a novel surfactant molecule for particle formulation composed of Vitamin E conjugated to 5 kDa polyethylene glycol (VP5k). We show that VP5k-coated poly(lactide-co-glycolide) (PLGA) nanoparticles rapidly penetrate human cervicovaginal mucus, whereas PLGA nanoparticles coated with polyvinyl alcohol or Vitamin E conjugated to 1 kDa PEG were trapped. Importantly, VP5k facilitated high loading of paclitaxel, a frontline chemo drug, into PLGA MPP, with controlled release for at least 4 days and negligible burst release. Our results offer a promising new method for engineering biodegradable, drug-loaded MPP for sustained and targeted delivery of therapeutics at mucosal surfaces. PMID:21911015

  18. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles.

    PubMed

    Mert, Olcay; Lai, Samuel K; Ensign, Laura; Yang, Ming; Wang, Ying-Ying; Wood, Joseph; Hanes, Justin

    2012-02-10

    Mucosal surfaces are protected by a highly viscoelastic and adhesive mucus layer that traps most foreign particles, including conventional drug and gene carriers. Trapped particles are eliminated on the order of seconds to hours by mucus clearance mechanisms, precluding sustained and targeted drug and nucleic acid delivery to mucosal tissues. We have previously shown that polymeric coatings that minimize adhesive interactions with mucus constituents lead to particles that rapidly penetrate human mucus secretions. Nevertheless, a particular challenge in formulating drug-loaded mucus penetrating particles (MPP) is that many commonly used surfactants are either mucoadhesive, or do not facilitate efficient drug encapsulation. We tested a novel surfactant molecule for particle formulation composed of Vitamin E conjugated to 5 kDa poly(ethylene glycol) (VP5k). We show that VP5k-coated poly(lactide-co-glycolide) (PLGA) nanoparticles rapidly penetrate human cervicovaginal mucus, whereas PLGA nanoparticles coated with polyvinyl alcohol or Vitamin E conjugated to 1 kDa PEG were trapped. Importantly, VP5k facilitated high loading of paclitaxel, a frontline chemo drug, into PLGA MPP, with controlled release for at least 4 days and negligible burst release. Our results offer a promising new method for engineering biodegradable, drug-loaded MPP for sustained and targeted delivery of therapeutics at mucosal surfaces.

  19. Proteomic Analysis of Lonicera japonica Thunb. Immature Flower Buds Using Combinatorial Peptide Ligand Libraries and Polyethylene Glycol Fractionation.

    PubMed

    Zhu, Wei; Xu, Xiaobao; Tian, Jingkui; Zhang, Lin; Komatsu, Setsuko

    2016-01-04

    Lonicera japonica Thunb. flower is a well-known medicinal plant that has been widely used for the treatment of human disease. To explore the molecular mechanisms underlying the biological activities of L. japonica immature flower buds, a gel-free/label-free proteomic technique was used in combination with combinatorial peptide ligand libraries (CPLL) and polyethylene glycol (PEG) fractionation for the enrichment of low-abundance proteins and removal of high-abundance proteins, respectively. A total of 177, 614, and 529 proteins were identified in crude protein extraction, CPLL fractions, and PEG fractions, respectively. Among the identified proteins, 283 and 239 proteins were specifically identified by the CPLL and PEG methods, respectively. In particular, proteins related to the oxidative pentose phosphate pathway, signaling, hormone metabolism, and transport were highly enriched by CPLL and PEG fractionation compared to crude protein extraction. A total of 28 secondary metabolism-related proteins and 25 metabolites were identified in L. japonica immature flower buds. To determine the specificity of the identified proteins and metabolites for L. japonica immature flower buds, Cerasus flower buds were used, which resulted in the abundance of hydroxymethylbutenyl 4-diphosphate synthase in L. japonica immature flower buds being 10-fold higher than that in Cerasus flower buds. These results suggest that proteins related to secondary metabolism might be responsible for the biological activities of L. japonica immature flower buds.

  20. Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering.

    PubMed

    Kim, Peter; Yuan, Alex; Nam, Ki-Hwan; Jiao, Alex; Kim, Deok-Ho

    2014-06-01

    Although synthetic polymers are desirable in tissue engineering applications for the reproducibility and tunability of their properties, synthetic small diameter vascular grafts lack the capability to endothelialize in vivo. Thus, synthetically fabricated biodegradable tissue scaffolds that reproduce important aspects of the extracellular environment are required to meet the urgent need for improved vascular grafting materials. In this study, we have successfully fabricated well-defined nanopatterned cell culture substrates made of a biodegradable composite hydrogel consisting of poly(ethylene glycol) dimethacrylate (PEGDMA) and gelatin methacrylate (GelMA) by using UV-assisted capillary force lithography. The elasticity and degradation rate of the composite PEG-GelMA nanostructures were tuned by varying the ratios of PEGDMA and GelMA. Human umbilical vein endothelial cells (HUVECs) cultured on nanopatterned PEG-GelMA substrates exhibited enhanced cell attachment compared with those cultured on unpatterned PEG-GelMA substrates. Additionally, HUVECs cultured on nanopatterned PEG-GelM substrates displayed well-aligned, elongated morphology similar to that of native vascular endothelial cells and demonstrated rapid and directionally persistent migration. The ability to alter both substrate stiffness and degradation rate and culture endothelial cells with increased elongation and alignment is a promising next step in recapitulating the properties of native human vascular tissue for tissue engineering applications.

  1. Formation of globules and aggregates of DNA chains in DNA/polyethylene glycol/monovalent salt aqueous solutions.

    PubMed

    Kawakita, H; Uneyama, T; Kojima, M; Morishima, K; Masubuchi, Y; Watanabe, H

    2009-09-07

    It has been known that giant DNA shows structural transitions in aqueous solutions under the existence of counterions and other polymers. However, the mechanism of these transitions has not been fully understood. In this study, we directly observed structures of probed (dye-labeled), dilute DNA chains in unprobed DNA/polyethylene glycol (PEG)/monovalent salt (NaCl) aqueous solutions with fluorescent microscopy to examine this mechanism. Specifically, we varied the PEG molecular weight and salt concentration to investigate the effect of competition between the depletion and electrostatic interactions on the coil-globule transition and the aggregate formation. It was found that the globules coexist with the aggregates when the unprobed DNA chains have a concentration higher than their overlap concentration. We discuss the stability of the observed structures on the basis of a free energy model incorporating the attractive depletion energy, the repulsive electrostatic energy, and the chain bending energy. This model suggested that both of the globules and aggregates are more stable than the random coil at high salt concentrations/under existence of PEG and the transition occurs when the depletion interaction overwhelms the electrostatic interaction. However, the coexistence of the globule and aggregate was not deduced from the thermodynamic model, suggesting a nonequilibrium aspect of the DNA solution and metastabilities of these structures. Thus, the population ratio of globules and aggregates was also analyzed on the basis of a kinetic model. The analysis suggested that the depletion interaction dominates this ratio, rationalizing the coexistence of globules and aggregates.

  2. Properties of Poly(ethylene glycol) Hydrogels Cross-Linked via Strain-Promoted Alkyne-Azide Cycloaddition (SPAAC).

    PubMed

    Hodgson, Sabrina M; Bakaic, Emilia; Stewart, S Alison; Hoare, Todd; Adronov, Alex

    2016-03-14

    A series of poly(ethylene glycol) (PEG) hydrogels was synthesized using strain-promoted alkyne-azide cycloaddition (SPAAC) between PEG chains terminated with either aza-dibenzocyclooctynes or azide functionalities. The gelation process was found to occur rapidly upon mixing the two components in aqueous solution without the need for external stimuli or catalysts, making the system a candidate for use as an injectable hydrogel. The mechanical and rheological properties of these hydrogels were found to be tunable by varying the polymer molecular weight and the number of cross-linking groups per chain. The gelation times of these hydrogels ranged from 10 to 60 s at room temperature. The mass-based swelling ratios varied from 45 to 76 at maximum swelling (relative to the dry state), while the weight percent of polymer in these hydrogels ranged from 1.31 to 2.05%, demonstrating the variations in amount of polymer required to maintain the structural integrity of the gel. Each hydrogel degraded at a different rate in PBS at pH = 7.4, with degradation times ranging from 1 to 35 days. By changing the composition of the two starting components, it was found that the Young's modulus of each hydrogel could be varied from 1 to 18 kPa. Hydrogel incubation with bovine serum albumin showed minimal protein adsorption. Finally, a cell cytotoxicity study of the precursor polymers with 3T3 fibroblasts demonstrated that the azide- and strained alkyne-functionalized PEGs are noncytotoxic.

  3. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo.

    PubMed

    Van Hove, Amy H; Burke, Kathleen; Antonienko, Erin; Brown, Edward; Benoit, Danielle S W

    2015-11-10

    Therapeutic angiogenesis holds great potential for a myriad of tissue engineering and regenerative medicine approaches. While a number of peptides have been identified with pro-angiogenic behaviors, therapeutic efficacy is limited by poor tissue localization and persistence. Therefore, poly(ethylene glycol) hydrogels providing sustained, enzymatically-responsive peptide release were exploited for peptide delivery. Two pro-angiogenic peptide drugs, SPARC113 and SPARC118, from the Secreted Protein Acidic and Rich in Cysteine, were incorporated into hydrogels as crosslinking peptides flanked by matrix metalloproteinase (MMP) degradable substrates. In vitro testing confirmed peptide drug bioactivity requires sustained delivery. Furthermore, peptides retain bioactivity with residual MMP substrates present after hydrogel release. Incorporation into hydrogels achieved enzymatically-responsive bulk degradation, with peptide release in close agreement with hydrogel mass loss and released peptides retaining bioactivity. Interestingly, SPARC113 and SPARC118-releasing hydrogels had significantly different degradation time constants in vitro (1.16 and 8.77×10(-2) h(-1), respectively), despite identical MMP degradable substrates. However, upon subcutaneous implantation, both SPARC113 and SPARC118 hydrogels exhibited similar degradation constants of ~1.45×10(-2) h(-1), and resulted in significant ~1.65-fold increases in angiogenesis in vivo compared to controls. Thus, these hydrogels represent a promising pro-angiogenic approach for applications such as tissue engineering and ischemic tissue disorders.

  4. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong; Khil, Myung-Seob; Lee, Deok-Won; Ahn, Sung-Jun

    2015-01-01

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  5. Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol.

    PubMed

    Llorens, E; Ibañez, H; Del Valle, L J; Puiggalí, J

    2015-04-01

    Scaffolds constituted by electrospun microfibers of poly(ethylene glycol) (PEG) and poly(butylene succinate) (PBS) were studied. Specifically, coaxial microfibers having different core-shell distributions and compositions were considered as well as uniaxial micro/nanofibers prepared from mixtures of both polymers. Processing conditions were optimized for all geometries and compositions and resulting morphologies (i.e. diameter and surface texture) characterized by scanning electron microscopy. Chemical composition, molecular interactions and thermal properties were evaluated by FTIR, NMR, XPS and differential scanning calorimetry. The PEG component of electrospun fibers could be solubilized by immersion of scaffolds in aqueous medium, giving rise to high porosity and hydrophobic samples. Nevertheless, a small amount of PEG was retained in the PBS matrix, suggesting some degree of mixing. Solubilization was slightly dependent on fiber structure; specifically, the distribution of PEG in the core or shell of coaxial fibers led to higher or lower retention levels, respectively. Scaffolds could be effectively loaded with hydrophobic drugs having antibacterial and anticarcinogenic activities like triclosan and curcumin, respectively. Their release was highly dependent on their chemical structure and medium composition. Thus, low and high release rates were observed in phosphate buffer saline (SS) and SS/ethanol (30:70 v/v), respectively. Slight differences in the release of triclosan were found depending on fiber distribution and composition. Antibacterial activity and biocompatibility were evaluated for both loaded and unloaded scaffolds.

  6. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells.

    PubMed

    Yang, Fan; Williams, Christopher G; Wang, Dong-An; Lee, Hyukjin; Manson, Paul N; Elisseeff, Jennifer

    2005-10-01

    Advances in tissue engineering require biofunctional scaffolds that can not only provide cells with structural support, but also interact with cells in a biological manner. To achieve this goal, a frequently used cell adhesion peptide Arg-Gly-Asp (RGD) was covalently incorporated into poly(ethylene glycol) diacrylate (PEODA) hydrogel and its dosage effect (0.025, 1.25 and 2.5 mm) on osteogenesis of marrow stromal cells in a three-dimensional environment was examined. Expression of bone-related markers, osteocalcin (OCN) and Alkaline phosphatase (ALP), increased significantly as the RGD concentration increased. Compared with no RGD, 2.5 mm RGD group showed a 1344% increase in ALP production and a 277% increase in OCN accumulation in the medium. RGD helped MSCs maintain cbfa-1 expression when shifted from a two-dimensional environment to a three-dimensional environment. Soluble RGD was found to completely block the mineralization of marrow stromal cells, as manifested by quantitative calcium assay, phosphorus elemental analysis and Von Kossa staining. In conclusion, we have demonstrated that RGD-conjugated PEODA hydrogel promotes the osteogenesis of MSCs in a dosage-dependent manner, with 2.5 mm being optimal concentration.

  7. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  8. Concanavalin A immobilized poly(ethylene glycol dimethacrylate) based affinity cryogel matrix and usability of invertase immobilization.

    PubMed

    Uygun, Murat; Uygun, Deniz Aktaş; Ozçalışkan, Emir; Akgöl, Sinan; Denizli, Adil

    2012-03-01

    Concanavalin A (Con A) immobilized supermacroporous poly(ethylene glycol dimethacrylate) [poly(EGDMA)] monolithic cryogel column was prepared by radical cryocopolymerization of EGDMA as a monomer and N,N'-methylene-bisacrylamide as a crosslinker. Bioligand Con A was then immobilized by covalent binding onto poly(EGDMA) cryogel via glutaraldehyde activation [Con A-poly(EGDMA)]. Con A-poly(EGDMA) cryogel was characterized by swelling studies and scanning electron microscopy. The monolithic cryogel contained a continuous polymeric matrix having interconnected pores of 10-50 μm size. The equilibrium swelling degree of the cryogel was 15.01 g H₂O/g dry cryogel. Con A-poly(EGDMA) cryogel was used in the adsorption/desorption of invertase from aqueous solutions. The maximum amount of invertase adsorption from aqueous solution in acetate buffer was 55.45 mg/g polymer at pH 5.0. Con A-poly(EGDMA) cryogels were used for repetitive adsorption/desorption of invertase without noticeable loss in invertase adsorption capacity after 10 cycles.

  9. Concentration of infectious hematopoietic necrosis virus from water samples by tangential flow filtration and polyethylene glycol precipitation

    USGS Publications Warehouse

    Batts, W.N.; Winton, J.R.

    1989-01-01

    Infectious hematopoietic necrosis virus (IHNV) was concentrated from water samples by polyethylene glycol (PEG) precipitation, tangential flow filtration (TFF), and by a combination of TFF followed by PEG precipitation of the retentate. Used alone, PEG increased virus titers more than 200-fold, and the efficiency of recovery was as great as 100%. Used alone, TFF concentrated IHNV more than 20-fold, and average recovery was 70%. When the two techniques were combined, 10-L water samples were reduced to about 300 mL by TFF and the virus was precipitated with PEG into a 1 to 2 g pellet; total recovery was as great as 100%. The combined techniques were used to isolate IHNV from water samples taken from a river containing adult sockeye salmon (Oncorhynchus nerka) and from a hatchery pond containing adult spring chinook salmon (O. tshawytscha). The combination of these methods was effective in concentrating and detecting IHNV from water containing only three infectious particles per 10-L sample.

  10. Effect of temperature on the synthesis of silver nanoparticles with polyethylene glycol: new insights into the reduction mechanism

    NASA Astrophysics Data System (ADS)

    Fleitas-Salazar, Noralvis; Silva-Campa, Erika; Pedroso-Santana, Seidy; Tanori, Judith; Pedroza-Montero, Martín R.; Riera, Raúl

    2017-03-01

    Polyethylene glycol (PEG) molecules act as a reducing and stabilizing agent in the formation of silver nanoparticles. PEG undergoes thermal oxidative degradation at temperatures over 70 °C in the presence of oxygen. Here, we studied how the temperature and an oxidizing atmosphere could affect the synthesis of silver nanoparticles with PEG. We tested different AgNO3 concentrations for nanoparticles syntheses using PEG of low molecular weight, at 60 and 100 °C. At the higher temperature, the reducing action of PEG increased and the effect of PEG/Ag+ ratio on nanoparticles aggregation changed. These results suggest that different synthesis mechanisms operate at 60 and 100 °C. Thus, at 60 °C the reduction of silver ions can occur through the oxidation of the hydroxyl groups of PEG, as has been previously reported. We propose that the thermal oxidative degradation of PEG at 100 °C increases the number of both, functional groups and molecules that can reduce silver ions and stabilize silver nanoparticles. This degradation process could explain the enhancement of PEG reducing action observed by other authors when they increase the reaction temperature or use a PEG of higher molecular weight

  11. Liquid-Liquid Equilibrium of Poly(Ethylene Glycol) 6000 + Sodium Succinate + Water System at Different Temperatures

    PubMed Central

    Raja, Selvaraj; Murty, Vytla Ramachandra

    2013-01-01

    Phase diagrams and the compositions of coexisting phases of poly(ethylene glycol) (PEG) 6000 + sodium succinate + water system have been determined experimentally at 298.15, 308.15, and 318.15 K. The effects of temperature on the binodal curve and tie lines have been studied. The binodal curves were successfully fitted to a nonlinear equation relating the concentrations of PEG 6000 and sodium succinate, and the coefficients were estimated for the formentioned systems (low AARD, high R2, and low SD). Tie-line compositions were estimated and correlated using Othmer-Tobias and Bancroft equations, and the parameters were reported. The effect of temperature on the phase-forming ability has been studied by fitting the binodal data to a Setschenow-type equation for each temperature. The effective excluded volume (EEV) values were also calculated from the binodal data, and it was found out that the values increased with an increase in the temperature. Furthermore, the effect of MW of PEG on the phase diagram has been studied and verified. PMID:23864835

  12. Solution and film properties of sodium caseinate/glycerol and sodium caseinate/polyethylene glycol edible coating systems.

    PubMed

    Siew, D C; Heilmann, C; Easteal, A J; Cooney, R P

    1999-08-01

    The aim of this study is to determine the effects of plasticizer hydrogen bonding capability and chain length on the molecular structure of sodium caseinate (NaCAS), in NaCAS/glycerol and NaCAS/polyethylene glycol 400 (PEG) systems. Both solution and film phases were investigated. Glycerol and PEG reduced the viscosity of aqueous NaCAS, with the latter having a greater effect. This was explained in terms of protein/plasticizer aggregate size and changes to the conformation of the caseinate chain. In the film phase, glycerol caused more pronounced changes to the film tensile strength compared with PEG. However, the effect of glycerol on film water vapor permeability was smaller. These observations are attributed to the differences in plasticizer size and hydrogen bonding strength that controls the protein-plasticizer and protein-protein interactions in the films. Glass transition calculations from the tensile strength data indicate that the distribution of bonding interactions is more homogeneous in NaCAS/PEG films than in NaCAS/glycerol films.

  13. Hemocompatibility and oxygenation performance of polysulfone membranes grafted with polyethylene glycol and heparin by plasma-induced surface modification.

    PubMed

    Wang, Weiping; Zheng, Zhi; Huang, Xin; Fan, Wenling; Yu, Wenkui; Zhang, Zhibing; Li, Lei; Mao, Chun

    2016-05-14

    Polyethylene glycol (PEG) and heparin (Hep) were grafted onto polysulfone (PSF) membrane by plasma-induced surface modification to prepare PSF-PEG-Hep membranes used for artificial lung. The effects of plasma treatment parameters, including power, gas type, gas flow rate, and treatment time, were investigated, and different PEG chains were bonded covalently onto the surface in the postplasma grafting process. Membrane surfaces were characterized by water contact angle, PEG grafting degree, attenuated total reflectance-Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, X-ray photoelectron spectroscopy, critical water permeability pressure, and scanning electron microscopy. Protein adsorption, platelet adhesion, and coagulation tests showed significant improvement in the hemocompatibility of PSF-PEG-Hep membranes compared to pristine PSF membrane. Gas exchange tests through PSF-PEG6000-Hep membrane showed that when the flow rate of porcine blood reached 5.0 L/min, the permeation fluxes of O2 and CO2 reached 192.6 and 166.9 mL/min, respectively, which were close to the gas exchange capacity of a commercial membrane oxygenator. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  14. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane.

    PubMed

    Lin, Y S; Wang, S S; Chung, T W; Wang, Y H; Chiou, S H; Hsu, J J; Chou, N K; Hsieh, K H; Chu, S H

    2001-08-01

    To improve endothelial cell adhesion and growth on the surface of polyethylene glycol modified polyurethane (PU-PEG), cell adhesive peptide Gly-Arg-Gly-Asp (GRGD) was photochemically grafted to the surface. The surface grafted GRGD-N-Succinimidyl-6-[4'-azido-2'-nitrophenylamino]hexanoate (SANPAH) on a PU-PEG surface was performed by adsorption and subsequent ultraviolet irradiation. Fourier transform infrared spectra (FTIR) and electron spectroscopy for chemical analysis (ESCA) confirmed the GRGD grafted to form a PU-PEG-GRGD surface. The composition fraction of nitrogen calculated from ESCA analysis for the PU-PEG-GRGD surface was well correlated with the concentration of GRGD to be immobilized. Human umbilical vein endothelial cells (ECs) were well adhered and growing on the PU-PEG-GRGD surface. Moreover, the viability of ECs growing on PU-PEG-GRGD surfaces, analyzed by MTT test, was also well correlated with the GRGD concentrations immobilized on the surface. With photochemical techniques, we could manipulate different contents of GRGD to form multiple regions of PU-PEG-GRGD surface that could enhance the growth of ECs on the surface, and the enhancement efficiency was well correlated with GRGD contents.

  15. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture.

    PubMed

    Branch, D W; Wheeler, B C; Brewer, G J; Leckband, D E

    2001-05-01

    Crucial to long-term stability of neuronal micropatterns is functional retention of the underlying substratum while exposed to cell culture conditions. We report on the ability of covalently bound PEG films in long-term cell culture to continually retard protein adhesion and cell growth. PDMS microstamps were used to create poly-d-lysine (PDL) substrates permissive to cell attachment and growth, and polyethylene glycol (PEG) substrates were used to minimize protein and cell adhesion. Film thickness was measured using null ellipsometry and atomic force microscopy (AFM). Organosilane film structure was examined using Fourier transform infrared (FT-IR) spectroscopy. Long-term film stability in cell culture conditions was tested by immersion in 0.1 M sodium phosphate buffer pH 7.4 for up to one month. Null ellipsometry and water contact measurements indicated that organosilane films were stable up to one month, whereas the PEG film thickness declined rapidly after day 25. Hippocampal cells plated at 200 cells/mm2 on uniform PEG substrates gave a steady increase in biofilm thickness on PEG films throughout the culture, possibly from proteins of neuronal origin. We found that all the layers in the cross-linking procedure were stable in cell culture conditions, with the exception of PEG, which degraded after day 25.

  16. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Zhiqiang; Loe, David T.; Awino, Joseph K.; Kröger, Martin; Rouge, Jessica L.; Li, Ying

    2016-08-01

    Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and

  17. Self-assembly of silanated poly(ethylene glycol) on silicon and glass surfaces for improved haemocompatibility

    NASA Astrophysics Data System (ADS)

    Guo, Zhang; Meng, Sheng; Zhong, Wei; Du, Qiangguo; Chou, Laisheng L.

    2009-05-01

    Surface immobilization of poly(ethylene glycol) (PEG) is an effective method to produce a material surface with protein repulsive property. This property could be made permanent by using covalent grafting of the PEG molecules onto material surfaces. In this study, self-assembled monolayers (SAMs) of PEG on silicon-containing materials (silicon chip and glassplate) were obtained through a one-step coating procedure of one kind of silanated PEG molecules made through the reaction between monomethoxy PEG and 3-isocyanatopropyltriethoxysilane. Atomic force microscopy (AFM) and water static contact angle measurement were employed to investigate the surface topography and wettability of the PEGylated material surfaces. The changes in the topography and the water contact angle of the surfaces with time of incubation in PBS solution were also measured. The results revealed that stable and uniform self-assembled monolayers of PEG could be formed on silicon or glass surfaces by simply soaking the substrates in the solution of silanated PEGs. The covalent coupling of PEGs to the substrates was also confirmed. In order to evaluate the stability of the SAMs, blood compatibility of the modified glassplate surface was evaluated by measuring full blood activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT), as well as by scanning electron microscopy (SEM) analysis of the appearance of adherence and denaturation of blood platelets onto the glassplate. The silanated PEGs were shown to have good effect on the protein-repulsion as well as haemocompatibility of the substrates.

  18. Kinetics of the esterification of active pharmaceutical ingredients containing carboxylic acid functionality in polyethylene glycol: formulation implications.

    PubMed

    Schou-Pedersen, Anne Marie V; Hansen, Steen Honoré; Moesgaard, Birthe; Østergaard, Jesper

    2014-08-01

    Polyethylene glycols (PEGs) are attractive as excipients in the manufacture of drug products because they are water soluble and poorly immunogenic. They are used in various pharmaceutical preparations. However, because of their terminal hydroxyl groups, PEGs can participate in esterification reactions. In this study, kinetics of two active pharmaceutical ingredients, cetirizine and indomethacin possessing carboxylic acid functionality, has been studied in PEG 400 and PEG 1000 at 50 °C, 60 °C, 70 °C, and 80 °C. HPLC-UV was applied for the determination of concentrations in the kinetic studies, whereas HPLC-MS was used to identify reaction products. The esterification reactions were observed to be reversible. A second-order reversible kinetic model was applied and rate constants were determined. The rate constants demonstrated that cetirizine was esterified about 240 times faster than indomethacin at 80 °C. The shelf-life for cetirizine in a PEG 400 formulation at 25 °C expressed as t(95%) was predicted to be only 30 h. Further, rate constants for esterification of cetirizine in PEG 1000 in relation to PEG 400 decreased by a factor of 10, probably related to increased viscosity. However, it is important to be aware of this drug-excipient interaction, as it can reduce the shelf-life of a low-average molecular weight PEG formulation considerably.

  19. Toxicology studies with recombinant staphylokinase and with SY 161-P5, a polyethylene glycol-derivatized cysteine-substitution mutant.

    PubMed

    Moons, L; Vanlinthout, I; Roelants, I; Moreadith, R; Collen, D; Rapold, H J

    2001-01-01

    SY 161-P5, a polyethylene glycol derivatized (PEGylated) mutant of the recombinant Staphylokinase (rSak) variant SakSTAR, exhibiting reduced antigenicity is in clinical development for treatment of acute myocardial infarction as a single bolus injection. A series of safety studies were performed in vivo as a routine toxicology program with SY 161-P5 (PEG-rSakSTAR) and with the recombinant Staphylokinase variant Sak42D (rSak42D). For both compounds, intravenous single bolus injections of up to 100-fold therapeutic equivalent, as well as repeated injections during 7 to 28 days revealed no significant pathological findings in mice, rats or hamsters. However, New Zealand white rabbits developed clinically silent, multifocal myocarditis following single or repeat doses of SY 161-P5 or of Sak42D. These findings were dose-independent and reversible. A similar species-specific cardiotoxic effect has previously been described for other proteolytic proteins, including the approved drugs Streptokinase and Acetylated Plasminogen Streptokinase Complex (APSAC). The large experience with these drugs, as well as the clinical data accumulated both with PEGylated and non-PEGylated rSak variants to date, do not indicate cardiotoxic hazards associated with the use of these drugs in humans.

  20. Nanoparticles of deoxycholic acid, polyethylene glycol and folic acid-modified chitosan for targeted delivery of doxorubicin.

    PubMed

    Shi, Zhonggen; Guo, Rui; Li, Weichang; Zhang, Yi; Xue, Wei; Tang, Yu; Zhang, Yuanming

    2014-03-01

    Chitosan (CS) was first modified hydrophobically with deoxycholic acid (DCA) and then with polyethylene glycol (PEG) to obtain a novel amphiphilic polymer (CS-DCA-PEG). This was covalently bound to folic acid (FA) to develop nanoparticles (CS-DCA-PEG-FA) with tumor cell targeting property. The structure of the conjugates was characterised using Fourier transform infrared and (1)H nuclear magnetic resonance spectroscopy and X-ray diffraction. Based on self-aggregation, the conjugates formed nanoparticles with a low critical aggregation concentration of 0.035 mg/ml. The anti-cancer drug doxorubicin (DOX) was encapsulated into the nanoparticles with a drug-loading capacity of 30.2 wt%. The mean diameter of the DOX-loaded nanoparticles was about 200 nm, with a narrow size distribution. Transmission electron microscopy images showed that the DOX-loaded nanoparticles were spherical. The drug release was studied under different conditions. Furthermore, the cytotoxic activities of DOX in CS-DCA-PEG-FA nanoparticles against folate receptor (FR)-positive HeLa cells and FR-negative fibroblast 3T3 cells were evaluated. These results suggested that the CS-DCA-PEG-FA nanoparticles may be a promising vehicle for the targeting anticancer drug to tumor cells.

  1. Capacity fading mechanism in lithium sulfur cells using poly(ethylene glycol)-borate ester as plasticizer for polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Jin, Zhaoqing; Xie, Kai; Hong, Xiaobin; Hu, Zongqian

    2013-11-01

    Plasticizers of poly(ethylene glycol)-borate (PEG-B) esters are added into lithium-conducting gel polymer electrolyte (GPE) in Li-S cells in order to inhibit the unrestrained migration of polysulfide anions. An improvement of the electrochemical properties of the Li-S cell using GPE is observed upon addition of the plasticizers at room temperature. However, a slow decrease of discharge capacities follows after stable cycles. To understand the origin of the capacity fading, electrochemical impedance spectroscopies (EIS), scanning electron microscopy (SEM), X-ray Diffraction (XRD) and X-ray photoelectron spectra (XPS) are adopted. EIS measurements indicate that the decrease of capacity in the Li-S cell using GPE is related to the increase of interfacial resistance between GPE and anode. SEM studies combined with XRD and XPS measurements reveal the increase of interfacial resistance between GPE and anode is results from Li2S corrosion products. Accordingly, the polysulfide anions precipitate on the anode surface, which leads to a reduction of the cycle life of the Li-S cell using GPE. Li-ion transference number measurement shows an increase of transference number before 20th cycles, and then decreased, which suggests that the GPE using PEG-B esters as plasticizers could inhibit the unrestrained migration of polysulfide anions at some time but not permanently.

  2. On the influence of the architecture of poly(ethylene glycol)-based thermoresponsive polymers on cell adhesion

    PubMed Central

    Uhlig, Katja; Boysen, Björn; Lankenau, Andreas; Jaeger, Magnus; Wischerhoff, Erik; Lutz, Jean-François; Laschewsky, André; Duschl, Claus

    2012-01-01

    Thermoresponsive polymer surface coatings are a promising tool for cell culture applications. They allow for a mild way of cell detachment that preserves the activity of membrane proteins—a prerequisite for reliable cell analysis. To enlarge the application range of these coatings to cells with different adhesion properties, we synthesized various novel poly(ethylene glycol)-based thermoresponsive polymers and describe how (i) their chemical structure and (ii) their surface density affect their efficiency. In order to quantify the influence of both factors, the time for cell spreading and rounding efficiency were observed. As a result, efficiency of cell rounding, which is closely correlated to cell detachment, is less affected by both factors than the time needed for cell spreading. This time can effectively be adjusted by the molecular architecture which includes the length of the polymer backbone and the side chains. Based on this work, recommendations are given for future optimization of functionality of thermoresponsive polymer coatings for cell culture applications. PMID:23761842

  3. A simulation study of poly(ethylene glycol) in ionic liquids using a physically motivated ab initio force-field

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong; McDaniel, Jesse G.; Schmidt, J. R.; Yethiraj, Arun

    2014-03-01

    The behavior of poly(ethylene glycol) (PEG) in imidazolium-based ionic liquids (ILs) is studied from molecular dynamics simulations using a new physically motivated force-field. The new force-field accounts for various fundamental intermolecular interactions such as electrostatics, induction, exchange, and dispersion in separate terms where the parameters are derived from ab initio, symmetry adapted perturbation theory (SAPT). The crucial point about the new force-field when compared to other existing force-fields is that it is developed free from empirical parameterization; this is a great advantage particularly for the systems like polymer/IL solutions where experimental data are scarce. We first validate the force-field for neat ILs and neat PEG. Then the force-field is applied to the mixture of the two and the final results are compared with available experiments and simulation results using the OPLS-AA force-field. This work is supported by the National Science Foundation under Grant No. CHE-1111835.

  4. Development and in vitro assessment of enzymatically-responsive poly(ethylene glycol) hydrogels for the delivery of therapeutic peptides

    PubMed Central

    Van Hove, Amy H.; Beltejar, Michael-John; Benoit, Danielle S. W.

    2015-01-01

    Despite the recent expansion of peptide drugs, delivery remains a challenge due to poor localization and rapid clearance. Therefore, a hydrogel-based platform technology was developed to control and sustain peptide drug release via matrix metalloproteinase (MMP) activity. Specifically, hydrogels were composed of poly(ethylene glycol) and peptide drugs flanked by MMP substrates and terminal cysteine residues as crosslinkers. First, peptide drug bioactivity was investigated in expected released forms (e.g., with MMP substrate residues) in vitro prior to incorporation into hydrogels. Three peptides (Qk (from Vascular Endothelial Growth Factor), SPARC113, and SPARC118 (from Secreted Protein Acidic and Rich in Cysteine)) retained bioactivity and were used as hydrogel crosslinkers in full MMP degradable forms. Upon treatment with MMP2, hydrogels containing Qk, SPARC113, and SPARC118 degraded in 6.7, 6 and 1 days, and released 5, 8 and, 19% of peptide, respectively. Further investigation revealed peptide drug size controlled hydrogel swelling and degradation rate, while hydrophobicity impacted peptide release. Additionally, degraded Qk, SPARC113, and SPARC118 releasing hydrogels increased endothelial cell tube formation 3.1, 1.7, and 2.8-fold, respectively. While pro-angiogenic peptides were the focus of this study, the design parameters detailed allow for adaptation of hydrogels to control peptide release for a variety of therapeutic applications. PMID:25178558

  5. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    NASA Astrophysics Data System (ADS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-12-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  6. Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis.

    PubMed

    Sabir, Aneela; Shafiq, Muhammad; Islam, Atif; Sarwar, Afsheen; Dilshad, Muhammad Rizwan; Shafeeq, Amir; Zahid Butt, Muhammad Taqi; Jamil, Tahir

    2015-11-05

    In this study pristine multi-walled carbon nanotubes (MWCNTs) were surface engineered (SE) in strong acidic medium by oxidation purification method to form SE-MWCNT. Five different amount of SE-MWCNT ranging from 0.1 to 0.5 wt% were thoroughly and uniformly dispersed in cellulose acetate/polyethylene glycol (CA/PEG400) polymer matrix during synthesis of membrane by dissolution casting method. The structural analysis, surface morphology and roughness was carried out by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively, which showed that the dispersed SE-MWCNT was substantially tethered in CA/PEG400 polymer matrix membrane. The thermogravimetric analysis (TGA) of membranes also suggested some improvement in thermal properties with the addition of SE-MWCNT. Finally, the performance of these membranes was assessed for suitability in drinking water treatment. The permeation flux and salt rejection were determined by using indigenously fabricated reverse osmosis pilot plant with 1000 ppm NaCl feed solution. The results showed that the tethered SE-MWCNT/CA/PEG400 polymer matrix membrane, with strong SE-MWCNTs/polymer matrix interaction, improved the salt rejection performance of the membrane with the salt rejection of 99.8% for the highest content of SE-MWCNT.

  7. Influence of the molecular design on the antifouling performance of poly(ethylene glycol) monolayers grafted on (111) Si.

    PubMed

    Perez, Emmanuel; Lahlil, Khalid; Rougeau, Cyrille; Moraillon, Anne; Chazalviel, Jean-Noël; Ozanam, François; Gouget-Laemmel, Anne Chantal

    2012-10-16

    Various poly(ethylene glycol) monomethyl ether moieties were grafted onto hydrogenated silicon surfaces in order to investigate the influence of the molecular design on the antifouling performance of such coatings. The grafted chains were either oligo(ethylene oxide) chains (EG)(n)OMe bound to silicon via Si-O-C covalent bonds, or hybrid alkyl/oligo(ethylene oxide) chains C(p)(EG)(n)OMe bound via Si-C covalent bonds (from home-synthesized precursors). Quantitative IR spectroscopy gave the molecular coverage of the grafted layers, and AFM imaging demonstrated that a proper surfactinated rinse yields C(p)(EG)(n)OMe layers free of unwanted residues. The protein-repellent character of these grafted layers (here, toward BSA) was studied by IR and AFM imaging. C(p)(EG)(n)OMe layers exhibit a lower surface concentration than (EG)(n)OMe layers, because of the presence of a solvent in the grafting solution; they however demonstrate high resistance against BSA adsorption for high values of the n/p ratio and a higher stability than (EG)(n)OMe. This behavior is consistently explained by the poor ordering capability of the alkyl part of the layer, contrary to what is observed for similar layers on Au, and the key role of an entangled arrangement of the ethylene oxide chains which forms when these chains are long enough.

  8. Noncovalent interaction of polyethylene glycol with copper complex of ethylenediaminetetraacetic acid and its application in constructing inorganic nanomaterials.

    PubMed

    Pan, Shu Zhen; Song, Le Xin; Chen, Jie; Du, Fang Yun; Yang, Jing; Xia, Juan

    2011-10-21

    In this study, we try to answer a fundamental question: what is the consequence of the noncovalent interaction between a polymer and a coordination compound? Here, polyethylene glycol (PEG-4000, PEG-b) and copper complex of ethylenediaminetetraacetic acid (H(2)CuY) were employed to solve this problem. A novel adduct (CEP) between H(2)CuY and PEG-b was prepared. Our results indicated several interesting findings. First, the introduction of H(2)CuY had no effect on the stacking structure of PEG-b but led to a large change in surface structure of the polymer. Second, there was a significant difference (117 K) in the maximum degradation temperature between the PEG and the CEP, suggesting that the noncovalent interaction can drastically improve the thermal stability of the PEG. Third, sintering experiments showed that H(2)CuY and CEP produced completely different decomposition products. The former formed Cu crystals in nitrogen and CuO in air, but the latter generated Cu and CuCl crystals with good crystallinity, respectively. Finally, three independent measurements: viscosity, conductivity and nuclear magnetic resonance in solution, provided useful information and insights from both sides of the noncovalent interaction. Probable interaction mechanisms and interaction sites were proposed. We consider that the current research could create the foundation for a new understanding of how the noncovalent adduct interaction between a metallic complex and a polymer relates to the change in physical and chemical properties of the adducted components.

  9. Preparation of poly(ethylene glycol)-introduced cationized gelatin as a non-viral gene carrier.

    PubMed

    Kushibiki, Toshihiro; Tabata, Yasuhiko

    2005-01-01

    The objective of this study was to prepare cationized gelatins grafted with poly(ethylene glycol) (PEG) (PEG-cationized gelatin) and evaluate the in vivo efficiency as a non-viral gene carrier. Cationized gelatin was prepared by chemical introduction of ethylenediamine to the carboxyl groups of gelatin. PEG with one terminal of active ester group was coupled to the amino groups of cationized gelatin to prepare PEG-cationized gelatins. Electrophoretic experiments revealed that the PEG-cationized gelatin with low PEGylation degrees was complexed with a plasmid DNA of luciferase, in remarked contrast to that with high PEGylation degrees. When the plasmid DNA complexed with the cationized gelatin or PEG-cationized gelatin was mixed with deoxyribonuclease I (DNase I) in solution to evaluate the resistance to enzymatic degradation, stronger protection effect of the PEG-cationized gelatin was observed than that of the cationized gelatin. The complex of plasmid DNA and PEG-cationized gelatin had an apparent molecular size of about 300 nm and almost zero surface charge. These findings indicate that the PEG-cationized gelatin-plasmid DNA complex has a nano-order structure where the plasmid DNA is covered with PEG molecules. When the PEG-cationized gelatin-plasmid DNA complex was intramuscularly injected, the level of gene expression was significantly increased compared with the injection of plasmid DNA solution. It is concluded that the PEG-cationized gelatin was a promising non-viral gene carrier to enhance gene expression in vivo.

  10. Capture of Magnetic Nanoparticles in Simulated Blood Vessels: Effects of Proteins and Coating with Poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Robertson, Jaimee; Brazel, Christopher

    2012-11-01

    Magnetic nanoparticles (MNPs) have applications in cancer treatment as they can be captured and localized to a diseased site by use of an external magnetic field. After localization, cancer treatments such as magnetically targeted chemotherapy and localized hyperthermia can be applied. Previously, our lab has shown that the percent capture of MNPs is significantly reduced when MNPs are dispersed in protein solutions compared to water or aqueous polymer solutions. The purpose of this study was to determine the effects of proteins on capture efficiency and to investigate the ability of poly(ethylene glycol), PEG, coatings to reduce aggregation of MNPs with proteins, allowing for a greater capture of MNPs in flow. Using Tygon® tubing to simulate blood vessels, a maghemite nanoparticle solution was pumped through a capture zone, where a magnetic field was applied. After passing through the capture zone, the fluid flowed to a spectrophotometer, which measured the absorbance of the solution. The introduction of proteins into the nanoparticle solution reduced the percent capture of MNPs. However, coating the MNPs with PEG aided in preventing aggregation and led to higher capture efficiencies in protein solutions. Additionally, the effects of capture length and protein exposure time were examined. It was found that a higher percent capture is attainable with a longer capture length. Furthermore, on a scale of hours, the percent capture is not affected by the protein exposure time. Funded by NSF REU Grant 1062611 and NIH NCI R21CA 141388.

  11. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel.

    PubMed

    Li, Xianfeng; Murthy, N Sanjeeva; Becker, Matthew L; Latour, Robert A

    2016-06-24

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications.

  12. Gene transfection mediated by polyethyleneimine-polyethylene glycol nanocarrier prevents cisplatin-induced spiral ganglion cell damage

    PubMed Central

    Chen, Guan-gui; Mao, Min; Qiu, Li-zi; Liu, Qi-ming

    2015-01-01

    Polyethyleneimine-polyethylene glycol (PEI-PEG), a novel nanocarrier, has been used for transfection and gene therapy in a variety of cells. In our previous study, we successfully carried out PEI-PEG-mediated gene transfer in spiral ganglion cells. It remains unclear whether PEI-PEG could be used for gene therapy with X-linked inhibitor of apoptosis protein (XIAP) in the inner ear. In the present study, we performed PEI-PEG-mediated XIAP gene transfection in the cochlea of Sprague-Dawley rats, via scala tympani fenestration, before daily cisplatin injections. Auditory brainstem reflex tests demonstrated the protective effects of XIAP gene therapy on auditory function. Immunohistochemical staining revealed XIAP protein expression in the cytoplasm of cells in the spiral ganglion, the organ of Corti and the stria vascularis. Reverse transcription-PCR detected high levels of XIAP mRNA expression in the cochlea. The present findings suggest that PEI-PEG nanocarrier-mediated XIAP gene transfection results in XIAP expression in the cochlea, prevents damage to cochlear spiral ganglion cells, and protects hearing. PMID:25878591

  13. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer sized polyethylene glycol fibers

    PubMed Central

    Skotak, Maciej; Ragusa, Jorge; Gonzalez, Daniela; Subramanian, Anuradha

    2011-01-01

    Gelatin-based nanofibrous scaffolds with a mean fiber diameter of 300 nm were prepared with and without micrometer-sized polyethylene glycol (PEG) fibers that served as sacrificial templates. Upon fabrication of the scaffolds via electrospinning, the gelatin fibers were crosslinked with glutaraldehyde, and the PEG templates were removed using tert-butanol to yield nanofibrous scaffolds with pore diameters ranging from 10 to 100 µm, as estimated with mercury intrusion porosimetry. Non-templated gelatin-based nanofibrous matrices had an average pore size of 1 µm. Fibroblasts were seeded onto both types of the gelatin-based nanfibrous surfaces and cultured for 14 days. For comparative purposes, chitosan-based and polyurethane (PU)-based macroporous scaffolds with pore sizes of 100 µm and 170 µm, respectively, also were included. The number of cells as a function of the depth into the scaffold was judged and quantitatively assessed using nuclei staining. Cell penetration up to a depth of 250 µm and 90 µm was noted in gelatin scaffolds prepared with sacrificial templates and gelatin-only nanofibrous scaffolds. Noticeably, scaffold preparation protocol presented here allowed the structural integrity to be maintained even with high template content (95 %) and can be easily extended towards other classes of electrospun polymer matrices for tissue engineering. PMID:21931195

  14. End-to-end and side-by-side assemblies of gold nanorods induced by dithiol poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Liu, Jinsheng; Kan, Caixia; Li, Yuling; Xu, Haiying; Ni, Yuan; Shi, Daning

    2014-06-01

    The assemblies of gold nanorods (Au NRs) exhibit unique properties distinct from the isolated Au NR. We report an effective and simple method for the end-to-end (E-E) and side-by-side (S-S) assemblies of Au NRs with a molecularly defined nanogap (1-2 nm) only in the presence of dithiol poly(ethylene glycol) (HS-PEG-SH). The assembled methods need neither the pH value adjustments nor the addition of other organic solvent. With increasing amount of dithiol molecules, assembled modes of Au NRs experience an interesting procedure, changing from E-E to S-S orientation. The experimental results indicate that when the concentration of HS-PEG-SH is less than 0.25 μM, electrostatic repulsion of positive-charged CTA+ is stronger than the affinity of the Au-S binding, resulting in the E-E oriented assembly. Otherwise, the S-S oriented mode is predominated. The current assembled method will be potentially useful for the optoelectronics and biomedical engineering.

  15. Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing.

    PubMed

    Song, Airong; Rane, Aboli A; Christman, Karen L

    2012-01-01

    The ideal wound-healing scaffold should provide the appropriate physical and mechanical properties to prevent secondary infection, as well as an excellent physiological environment to facilitate cell adhesion, proliferation and/or differentiation. Therefore, we developed a synthetic cell-adhesive polypeptide hydrogel with inherent antibacterial activity. A series of polypeptides, poly(Lys)(x)(Ala)(y) (x+y=100), with varied hydrophobicity via metal-free ring-opening polymerization of NCA-Lys(Boc) and NCA-Ala monomers (NCA=N-carboxylic anhydride) mediated by hexamethyldisilazane (HMDS) were synthesized. These polypeptides were cross-linked with 6-arm polyethylene glycol (PEG)-amide succinimidyl glutarate (ASG) (M(w)=10K) to form hydrogels with a gelation time of five minutes and a storage modulus (G') of 1400-3000 Pa as characterized by rheometry. The hydrogel formed by cross-linking of poly(Lys)(60)(Ala)(40) (5 wt.%) and 6-arm PEG-ASG (16 wt.%) (Gel-III) exhibited cell adhesion and cell proliferation activities superior to other polypeptide hydrogels. In addition, Gel-III displays significant antibacterial activity against Escherichia coli JM109 and Staphylococcus aureus ATCC25923. Thus, we have developed a novel, cell-adhesive hydrogel with inherent antibacterial activity as a potential scaffold for cutaneous wound healing.

  16. Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel.

    PubMed

    Yun, Eun Jung; Yon, Bora; Joo, Min Kyung; Jeong, Byeongmoon

    2012-04-09

    As a new application of a thermogel, a poly(ethylene glycol)-b-poly(L-alanine) (PEG-L-PA) gel encapsulating fibroblasts was investigated for wound healing. The fibroblasts were encapsulated by the temperature sensitive sol-to-gel transition of the polymer aqueous solution. Under the in vitro three-dimensional (3D) cell culture condition, the PEG-L-PA thermogel was comparable with Matrigel for cell proliferation and was significantly better than Matrigel for collagen types I and III formation. After confirming the excellent 3D microenvironment of the PEG-L-PA thermogel for fibroblasts, in vivo wound healing was investigated by injecting the cell-suspended polymer aqueous solution on incisions of rat skin, where the cell-encapsulated gel was formed in situ. Compared with the phosphate buffered saline treated system and the cell-free PEG-L-PA thermogel, the cell-encapsulated PEG-L-PA thermogel not only accelerated the wound closure but also improved epithelialization and the formation of skin appendages such as keratinocyte layer (epidermis), hair follicles, and sebaceous glands. The results demonstrate the potential of thermogels for cell therapy as an injectable tissue-engineering scaffold.

  17. Realizing Highly Efficient Inverted Photovoltaic Cells by Combination of Nonconjugated Small-Molecule Zwitterions with Polyethylene Glycol.

    PubMed

    Zhang, Wenjun; Song, Changjian; Liu, Xiaohui; Fang, Junfeng

    2016-07-20

    Organic ionic materials have been reported to be efficient cathode interlayer (CIL) materials in polymer solar cells (PSCs); however, most of them are employed in conventional PSCs. For an inverted structural device which has better stability, the efficiency is still far from expectation and the report is also limited. In this study, by using nonconjugated zwitterions as the CIL and inverted structure, the power conversion efficiency (PCE) is ∼6%, though the PCE can reach 9.14% in the conventional device. By introducing polyethylene glycol (PEG) into the zwitterions, the PCE of the inverted PSCs was improved ∼33% and reached ∼8% mainly because of the enhancement of the open-circuit voltage (Voc) and fill factor (FF). Further research on the device parameters, work functions, morphology of indium tin oxide (ITO) with various CILs, and recombination resistance of the devices indicated that PEG + zwitterion induced not only a lower work function of ITO but also a more uniform morphology of CILs with less contact of the photoactive layer with ITO, which induced suppressed charge recombination and a higher Voc and FF. Enhanced ability in interface modification of PEG + zwitterion CILs displayed a simple and feasible approach to elevate the performance of inverted PSCs with ionic CILs.

  18. Polyethylene glycol-modified interleukin-2 and thymosin alpha 1 in human immunodeficiency virus type 1 infection.

    PubMed

    Ramachandran, R; Katzenstein, D A; Winters, M A; Kundu, S K; Merigan, T C

    1996-04-01

    The safety and antiviral effects of polyethylene glycolated interleukin-2 (PEG-IL-2) and thymosin alpha 1 in addition to zidovudine were studied in 12 human immunodeficiency virus (HIV)-infected subjects with 50-250 CD4 T cells/mm3. PEG-IL-2 was administered by intravenous infusions every 2 weeks at 10(6) IU/m2 for 20 weeks. Thymosin alpha 1 was administered subcutaneously at 400 microgram/m2 after four doses of PEG-IL-2, escalating to 1600 microgram/m2 weekly for an additional 2 months. Significant elevations of CD4 T cell numbers of 30%-40% were seen after PEG-IL-2 infusions, but no additional increase in CD4 cell count was observed with thymosin alpha 1. Virologic monitoring by polymerase chain reaction quantitation of proviral DNA and plasma RNA and p24 antigen assays showed no evidence of increased HIV activation during PEG-IL-2 or thymosin alpha 1 therapy. Patients tolerated both PEG-IL-2 and thymosin alpha 1 without significant toxicities.

  19. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.

    PubMed

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J; Hartmann, Laura; Cochran, Jennifer R; Frank, Curtis W; Yu, Charles Q; Ta, Christopher N

    2015-10-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications.

  20. Ion-induced nucleation of dibutyl phthalate vapors on spherical and nonspherical singly and multiply charged polyethylene glycol ions.

    PubMed

    Nasibulin, Albert G; de la Mora, Juan Fernandez; Kauppinen, Esko I

    2008-02-14

    Dibutyl phthalate vapor nucleation induced by positive polyethylene glycol (PEG) ions with controlled sizes and charges was experimentally studied. The ions were produced by electrospray ionization, classified in a high-resolution differential mobility analyzer, and studied in a nano condensation nucleus counter of the mixing type. Ionic radii of PEG varied from 0.52 to 1.56 nm, including from singly to quadruply charged ions. Some of these ions are fully stretched chains, other are spherical, and others have intermediate forms, all of them having been previously characterized by mobility and mass spectrometry studies. Activation of PEG1080(+2) requires a supersaturation almost as high as that required for small singly charged ions and higher than for PEG1080(+). This anomaly is explained by the Coulombic stretching of the ion into a long chain, where the two charged centers appear to be relatively decoupled from each other. The critical supersaturation for singly charged spherical ions falls below Thomson's (capillary) theory and even below the already low values seen previously for tetraheptyl ammonium bromide clusters. Spherical PEG4120(+2) falls close to the Thomson curve. The trends observed for slightly nonspherical PEG4120(+3) and highly nonspherical (but not quite linear) PEG4120(+4) are intermediate between those of multiply charged spheres and small singly charged ions.