Science.gov

Sample records for glycolipid biosurfactants mannosylerythritol

  1. Application of yeast glycolipid biosurfactant, mannosylerythritol lipid, as agrospreaders.

    PubMed

    Fukuoka, Tokuma; Yoshida, Shigenobu; Nakamura, Junichi; Koitabashi, Motoo; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai; Kitamoto, Hiroko

    2015-01-01

    The spreading property of mannosylerythritol lipids (MELs) was investigated in connection with our search for new application in agriculture. The wetting ability of MEL solutions for hydrophobic surfaces was evaluated based on contact angle measurements for several surfactant solutions on abiotic and biotic surfaces. The contact angle of MEL-A solution on a hydrophobic plastic surface at 100 s after placement decreased to 8.4°, and those of other MEL solutions decreased more significantly compared to those of commonly-used nonionic surfactants. In addition, the contact angle of MEL solutions also dropped down to around 10° on various plant leaf surfaces. MEL solutions, in particular, efficiently spread even on poorly wettable Gramineae plant surfaces on which general nonionic surfactant solutions could not. Moreover, the wetting ability of MEL solutions was found to be greatly affected by the structural difference in their carbohydrate configuration. Furthermore, surface pretreatment with MEL solution led to more efficient spreading and fixing of microbial cells onto plant leaf surface compared to several conventional surfactants used in this study. These results suggested that MELs have a potential to use as a natural bio-based spreading agent, particularly as agrochemical spreader for biopesticides.

  2. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    PubMed

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products.

  3. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048(T).

    PubMed

    Faria, Nuno Torres; Marques, Susana; Fonseca, César; Ferreira, Frederico Castelo

    2015-04-01

    Mannosylerythritol lipids (MEL) are glycolipid biosurfactants, produced by Pseudozyma spp., with increasing commercial interest. While MEL can be produced from d-glucose and d-xylose, the direct conversion of the respective lignocellulosic polysaccharides, cellulose and xylan, was not reported yet. The ability of Pseudozyma antarctica PYCC 5048(T) and Pseudozyma aphidis PYCC 5535(T) to use cellulose (Avicel(®)) and xylan (beechwood) as carbon and energy source has been assessed along with their capacity of producing cellulolytic and hemicellulolytic enzymes, toward a consolidated bioprocess (CBP) for MEL production. The yeasts assessed were neither able to grow in medium containing Avicel(®) nor produce cellulolytic enzymes under the conditions tested. On contrary, both yeasts were able to efficiently grow in xylan, but MEL production was only detected in P. antarctica PYCC 5048(T) cultures. MEL titers reached 1.3g/l after 10 days in batch cultures with 40g/l xylan, and 2.0g/l in fed-batch cultures with xylan feeding (additional 40g/l) at day 4. High levels of xylanase activities were detected in xylan cultures, reaching 47-62U/ml (31-32U/mg) at 50°C, and still exhibiting more than 10U/ml under physiological temperature (28°C). Total β-xylosidase activities, displayed mainly as wall-bounded and extracellular activity, accounted for 0.154 and 0.176U/ml in P. antarctica PYCC 5048(T) and P. aphidis PYCC 5535(T) cultures, respectively. The present results demonstrate the potential of Pseudozyma spp. for using directly a fraction of lignocellulosic biomass, xylan, and combining in the same bioprocess the production of xylanolytic enzymes with MEL production.

  4. Production of microbial glycolipid biosurfactants and their antimicrobial activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycolipids produced by bacteria or yeast as secondary metabolites, such as sophorolipids (SLs), rhamnolipids (RLs) and mannosylerythritol lipids (MELs) are “green” biosurfactants desirable in a bioeconomy. High cost of production is a major hurdle toward widespread commercial use of bios...

  5. Current status in biotechnological production and applications of glycolipid biosurfactants.

    PubMed

    Paulino, Bruno Nicolau; Pessôa, Marina Gabriel; Mano, Mario Cezar Rodrigues; Molina, Gustavo; Neri-Numa, Iramaia Angélica; Pastore, Glaucia Maria

    2016-12-01

    Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.

  6. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Suzuki, Michiko; Yamamoto, Shuhei; Sogabe, Atsushi; Yanagidani, Shusaku; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2009-01-01

    Mannosylerythritol lipids (MELs) are produced in large amounts from renewable vegetable oils by Pseudozyma antarctica, and are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics and pharmaceuticals, the skin care property of MEL-A, the major component of MELs, was investigated using a three-dimensional cultured human skin model. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS) solution of 1 wt%, and the effects of different lipids on the SDS-damaged cells were then evaluated on the basis of the cell viability. The viability of the damaged cells was markedly recovered by the addition of MEL-A in a dose-dependent manner. Compared to the control, MEL-A solutions of 5 wt% and 10 wt% gave the recovery rate of 73% and 91%, respectively, while ceramide solution of 1 wt% gave the rate of over 100%. This revealed that MEL-A shows a ceramide-like moisturizing activity toward the skin cells. Considering the drawbacks of natural ceramides, namely limited amount and high production cost, the yeast biosurfactants should have a great potential as a novel moisturizer for treating the damaged skin.

  7. Production and antimicrobial property of glycolipid biosurfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycolipids such as rhamnolipid (RL) and sophorolipid (SL) are an important class of biosurfactants with excellent surface tension-lowering activity. Besides their surfactant- and environment-friendly properties, however, additional value-added property such as bacteriocidal activity is n...

  8. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry.

    PubMed

    Mnif, Inès; Ghribi, Dhouha

    2016-10-01

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Rhamnolipids, trehalolipids, mannosylerythritol lipids and cellobiose lipids are among the most popular glycolipids. They have received much practical attention as biopesticides for controlling plant diseases and protecting stored products. As a result of their antifungal activity towards phytopathogenic fungi and larvicidal and mosquitocidal potencies, glycolipid biosurfactants permit the preservation of plants and plant crops from pest invasion. Also, as a result of their emulsifying and antibacterial activities, glycolipids have great potential as food additives and food preservatives. Furthermore, the valorization of food byproducts via the production of glycolipid biosurfactant has received much attention because it permits the bioconversion of byproducts on valuable compounds and decreases the cost of production. Generally, the use of glycolipids in many fields requires their retention from fermentation media. Accordingly, different strategies have been developed to extract and purify glycolipids. © 2016 Society of Chemical Industry.

  9. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    PubMed

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  10. Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Koike, Hideaki; Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials.

  11. Glycolipids produced by Rouxiella sp. DSM 100043 and isolation of the biosurfactants via foam-fractionation.

    PubMed

    Kügler, Johannes H; Muhle-Goll, Claudia; Hansen, Silla H; Völp, Annika R; Kirschhöfer, Frank; Kühl, Boris; Brenner-Weiss, Gerald; Luy, Burkhard; Syldatk, Christoph; Hausmann, Rudolf

    2015-12-01

    Microorganisms produce a great variety of secondary metabolites that feature surface active and bioactive properties. Those possessing an amphiphilc molecular structure are also termed biosurfactant and are of great interest due to their often unique properties. Rouxiella sp. DSM 100043 is a gram negative enterobacter isolated from peat-bog soil and described as a new biosurfactant producing species in this study. Rouxiella sp. produces glycolipids, biosurfactants with a carbohydrate moiety in its structure. This study characterizes the composition of glycolipids with different hydrophobicities that have been produced during cultivation in a bioreactor and been extracted and purified from separated foam. Using two dimensional nuclear magnetic resonance spectroscopy, the hydrophilic moieties are elucidated as glucose with various acylation sites and as talose within the most polar glycolipids. The presence of 3' hydroxy lauroleic acid as well as myristic and myristoleic acid has been detected.

  12. Antimicrobial activities of a promising glycolipid biosurfactant from a novel marine Staphylococcus saprophyticus SBPS 15.

    PubMed

    Mani, P; Dineshkumar, G; Jayaseelan, T; Deepalakshmi, K; Ganesh Kumar, C; Senthil Balan, S

    2016-12-01

    Biosurfactants have gained a renewed interest in the recent years for their commercial application in diverse research areas. Recent evidences suggest that the antimicrobial activities exhibited by biosurfactants make them promising molecules for the application in the field of therapeutics. Marine microbes are well known for their unique metabolic and functional properties; however, few reports are available till date regarding their biosurfactant production and antimicrobial potential. In an ongoing survey for bioactive microbial metabolites from microbes isolated from diverse ecological niches, a marine Staphylococcus saprophyticus SBPS 15 isolated from the petroleum hydrocarbon contaminated coastal site, Puducherry, India, was identified as a promising biosurfactant producer based on multiple screening methods. This bacterium exhibited growth-dependent biosurfactant production and the recorded yield was 1.345 ± 0.056 g/L (on dry weight basis). The biosurfactant was purified and chemically characterized as a glycolipid with a molecular mass of 606.7 Da, based on TLC, biochemical estimation methods, FT-IR spectrum and MALDI-TOF-MS analysis. Further, the estimated molecular mass was different from the earlier reports on biosurfactants. This new glycolipid biosurfactant exhibited a board range of pH and temperature stability. Furthermore, it revealed a promising antimicrobial activity against many tested human pathogenic bacterial and fungal clinical isolates. Based on these observations, the isolated biosurfactant from the marine S. saprophyticus revealed board physicochemical stabilities and possess excellent antimicrobial activities which proves its significance for possible use in various therapeutic and biomedical applications. To the best of our knowledge, this is the first report of a biosurfactant from the bacterium, S. saprophyticus.

  13. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    PubMed

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  14. Microbial biosurfactants: challenges and opportunities for future exploitation.

    PubMed

    Marchant, Roger; Banat, Ibrahim M

    2012-11-01

    The drive for industrial sustainability has pushed biosurfactants to the top of the agenda of many companies. Biosurfactants offer the possibility of replacing chemical surfactants, produced from nonrenewable resources, with alternatives produced from cheap renewable feedstocks. Biosurfactants are also attractive because they are less damaging to the environment yet are robust enough for industrial use. The most promising biosurfactants at the present time are the glycolipids, sophorolipids produced by Candida yeasts, mannosylerythritol lipids (MELs) produced by Pseudozyma yeasts, and rhamnolipids produced by Pseudomonas. Despite the current enthusiasm for these compounds several residual problems remain. This review highlights remaining problems and indicates the prospects for imminent commercial exploitation of a new generation of microbial biosurfactants.

  15. A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Smith, Derek D. N.; Nickzad, Arvin

    2016-01-01

    ABSTRACT Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections. PMID

  16. Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants.

    PubMed

    Hirata, Yoshihiko; Ryu, Mizuyuki; Oda, Yuka; Igarashi, Keisuke; Nagatsuka, Asami; Furuta, Taro; Sugiura, Masaki

    2009-08-01

    Sophorolipids (SLs) are a family of glycolipid type biosurfactants, which are largely produced by the non-pathogenic yeast, Candida bombicola. In order to investigate the possibility of SLs for industrial use, here we examined the interfacial activities, cytotoxicity and biodegradability of SLs, and compared these properties with those of two lipopeptide type biosurfactants (surfactin and arthrofactin), sodium laurate (soap, SP) and four kinds of chemically synthesized surfactants including two block-copolymer nonionic surfactants (BPs), polyoxyethylene lauryl ether (AE) and sodium dodecyl sulfate (SDS). It was indicated that SLs had extremely low-foaming properties and high detergency comparable with commercially available low-foaming BPs. These interfacial activities of SLs were maintained under 100 ppm water hardness. Cytotoxicity of SLs on human keratinocytes was the same as surfactin, which has already been commercialized as cosmetic material, but higher than BPs. Moreover, biodegradability of SLs using the OECD Guidelines for Testing of Chemicals (301C, Modified MITI Test) displayed that SLs can be classified as "readily" biodegradable chemicals, which are defined as chemicals that are degraded 60% within 28 days under specified test methods. We observed 61% degradation of SLs on the eighth day of cultivation. Our results indicate that SLs are low-foaming surfactants with high detergency, which also exhibit both low cytotoxicity and readily biodegradable properties.

  17. Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudozyma tsukubaensis.

    PubMed

    Yamamoto, Shuhei; Fukuoka, Tokuma; Imura, Tomohiro; Morita, Tomotake; Yanagidani, Shusaku; Kitamoto, Dai; Kitagawa, Masaru

    2013-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by various yeasts belonging to the genus Pseudozyma, which exhibit excellent surface activities as well as versatile biochemical activities. A study on P. tsukubaensis NBRC1940 as a mono-acetylated MEL (MEL-B) producer revealed that the yeast accumulated a novel glycolipid from castor oil at a yield of 22 g/L. Its main chemical structure was identified as 1-O-β-(2'-O-alka(e)noyl-3'-O-hydroxyalka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol designated as "new MEL-B." The new MEL-B, comprising a hydroxy fatty acid had a reduced surface tension of 28.5 mN/m at a critical micelle concentration (CMC) of 2.2×10⁻⁵ M in water. The observed CMC was 5-fold higher than that of conventional MEL-B. When conventional MEL-B was dispersed in water, it self-assembled to form the lamellar (L(α)) phase at a wide range of concentrations. In contrast, new MEL-B formed spherical oily droplets similar to the sponge (L₃) phase, which is observed in aqueous solutions of di-acetylated MEL (MEL-A). The data suggest that the newly identified MEL-B is likely to have a different structure and interfacial properties compared to the conventional MELs, and could facilitate an increase in the application of glycolipid biosurfactants.

  18. Draft Genome Sequence of the Yeast Starmerella bombicola NBRC10243, a Producer of Sophorolipids, Glycolipid Biosurfactants

    PubMed Central

    Matsuzawa, Tomohiko; Koike, Hideaki; Saika, Azusa; Fukuoka, Tokuma; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2015-01-01

    The yeast Starmerella bombicola NBRC10243 is an excellent producer of sophorolipids (SLs) from various feedstocks. Here, we report the draft genome sequence of S. bombicola NBRC10243. Analysis of the sequence may provide insight into the properties of this yeast that make it superior for use in the production of functional glycolipids and biomolecules, leading to the further development of S. bombicola NBRC10243 for industrial applications. PMID:25814600

  19. Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A

    PubMed Central

    2014-01-01

    Background Iron is an essential element in several pathways of microbial metabolism, and therefore low iron toxicity is expected on the usage of Fe nanoparticles (NPs). This study aims to determine the effect of Fe NPs on biosurfactant production by marine actinobacterium Nocardiopsis sp. MSA13A under solid state culture. Foam method was used in the production of Fe NPs which were long and fiber shaped in nature. Results The SEM observation showed non toxic nature of Fe NPs as no change in the morphology of the filamentous structure of Nocardiopsis MSA13A. The production of biosurfactant by Nocardiopsis MSA13A under solid state culture supplemented with Fe NPs increased to 80% over control. The biosurfactant produced by Nocardiopsis MSA13A was characterized as glycolipid derivative which effectively disrupted the pre-formed biofilm of Vibrio pathogen. Conclusion The use of metal NPs as supplement would reduce the impact of non-metallic ions of the metal salts in a fermentation process. This would ultimately useful to achieve greener production process for biosurfactants. The present results are first report on the optimization of biosurfactant production under SSC using Fe NPs. PMID:24885470

  20. Biosurfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosurfactants are surfactants whose common feature is biodegradability, which provides them with a major advantage over the majority of surfactants currently in the market. Biosurfactants are produced from a wide range of raw materials, and manufactured using chemical, enzymatic, microbial, and a c...

  1. Biosynthesis and skin health applications of antimicrobial glycolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial-produced glycolipids (MGLs) such as sophorolipids (SLs), rhamnolipids (RLs), and mannosylerythritol lipids (MELs) are amphiphilic molecules, and thus have been widely explored for use as surfactants/detergents, emulsifiers, and lubricants. One major hindrance to their widespread commercia...

  2. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis

    PubMed Central

    Fan, Linlin; Li, Hongji; Niu, Yongwu; Chen, Qihe

    2016-01-01

    Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS). PMID:26828792

  3. Chemical characterization of carbohydrate-based biosurfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-yield, glycolipid-based biosurfactants are of increasing interest for use in environmentally benign cleaning or emulsifying agents. We have developed a MALDI-TOF/MS screen for the rapid analysis of several types of biosurfactants, including various acylated rhamnolipids in Pseudomonas extracts...

  4. Carbohydrate-based renewable biosurfactants: Rhamnolipids, sophorolipids, and novel liamocins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-yield, glycolipid-based biosurfactants are of increasing interest for use in environmentally benign cleaning or emulsifying agents. We have developed a MALDI-TOF/MS screen for the rapid analysis of several types of biosurfactants, including various acylated rhamnolipids in Pseudomonas extracts...

  5. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis

    PubMed Central

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  6. Potential therapeutic applications of biosurfactants.

    PubMed

    Gudiña, Eduardo J; Rangarajan, Vivek; Sen, Ramkrishna; Rodrigues, Lígia R

    2013-12-01

    Biosurfactants have recently emerged as promising molecules for their structural novelty, versatility, and diverse properties that are potentially useful for many therapeutic applications. Mainly due to their surface activity, these molecules interact with cell membranes of several organisms and/or with the surrounding environments, and thus can be viewed as potential cancer therapeutics or as constituents of drug delivery systems. Some types of microbial surfactants, such as lipopeptides and glycolipids, have been shown to selectively inhibit the proliferation of cancer cells and to disrupt cell membranes causing their lysis through apoptosis pathways. Moreover, biosurfactants as drug delivery vehicles offer commercially attractive and scientifically novel applications. This review covers the current state-of-the-art in biosurfactant research for therapeutic purposes, providing new directions towards the discovery and development of molecules with novel structures and diverse functions for advanced applications.

  7. Microbial biosurfactant - physiology, biochemistry, and applications

    SciTech Connect

    Finnerty, W.R.; Singer, M.E.

    1984-01-01

    A bacterial soil isolate H-13A was isolated which produces a cellular and extra-cellular glycolipid surfactant. Glycolipid is synthesized only during growth on n-alkanes (C12 ..-->.. C20). The glycolipid contains disaccharide, glycerol, amino sugar, N-acylated, and O-acylated fatty acids. Cellular glycolipid is characterized by saturated fatty acids and unsaturated fatty acids; whereas extracellular glycolipid contains saturated fatty acids and 2-hydroxy fatty acids. The hexadecane-derived glycolipid exhibits an interfacial-tension value of 2.0 x 10/sup -2/ dynes/cm at an effective alkane carbon number equivalent to decane. Addition of pentanol as a cosurfactant reduces the interfacial tension to 6.0 x 10/sup -5/ dynes/cm with an effective alkane carbon number equivalent to undecane. The glycolipid is effective in the reduction of heavy crude-oil viscosity by formation of stable oil-in-water emulsions with improved rheological properties. Growth of H-13A on Monagas crude ion results in a 95% reduction in oil viscosity. This glycolipid biosurfactant exhibits applicability to the transport, pipelining, processing, and recovery of heavy crude oils. 18 references, 1 figure, 4 tables.

  8. Biosurfactants in cosmetics and biopharmaceuticals.

    PubMed

    Varvaresou, A; Iakovou, K

    2015-09-01

    Biosurfactants are surface-active biomolecules that are produced by various micro-organisms. They show unique properties i.e. lower toxicity, higher biodegradability and environmental compatibility compared to their chemical counterparts. Glycolipids and lipopeptides have prompted application in biotechnology and cosmetics due to their multi-functional profile i.e. detergency, emulsifying, foaming and skin hydrating properties. Additionally, some of them can be served as antimicrobials. In this study the current status of research and development on rhamnolipids, sophorolipids, mannosyloerythritol lipids, trehalipids, xylolipids and lipopeptides particularly their commercial application in cosmetics and biopharmaceuticals, is described.

  9. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    PubMed

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties.

  10. Synthesis of biosurfactants and their advantages to microorganisms and mankind.

    PubMed

    Cameotra, Swaranjit Singh; Makkar, Randhir S; Kaur, Jasminder; Mehta, S K

    2010-01-01

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures--lipopeptides, glycolipids, neutral lipids and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. The low water solubility of these hydrophobic compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential applications in bioremediation. Not only are the biosurfactants useful in a variety of industrial processes, they are also of vital importance to the microbes in adhesion, emulsification, bioavailability, desorption and defense strategy. These interesting facts are discussed in this chapter.

  11. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    PubMed Central

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  12. Production of a Biosurfactant from Torulopsis bombicola

    PubMed Central

    Cooper, D. G.; Paddock, D. A.

    1984-01-01

    Two types of carbon sources—carbohydrate and vegetable oil—are necessary to obtain large yields of biosurfactant from Torulopsis bombicola ATCC 22214. Most of the surfactant is produced in the late exponential phase of growth. It is possible to grow the yeast on a single carbon source and then add the other type of substrate, after the exponential growth phase, and cause a burst of surfactant production. This product is a mixture of glycolipids. The maximum yield is 70 g liter−1, or 35% of the weight of the substrate used. An economic comparison demonstrated that this biosurfactant could be produced significantly more cheaply than any of the previously reported microbial surfactants. PMID:16346455

  13. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant.

    PubMed

    Abbasi, Habib; Hamedi, Mir Manochehr; Lotfabad, Tayebe Bagheri; Zahiri, Hossein Shahbani; Sharafi, Hakimeh; Masoomi, Fatemeh; Moosavi-Movahedi, Ali Akbar; Ortiz, Antonio; Amanlou, Massoud; Noghabi, Kambiz Akbari

    2012-02-01

    An extensive investigation was conducted to isolate indigenous bacterial strains with outstanding performance for biosurfactant production from different types of spoiled fruits, food-related products and food processing industries. An isolate was selected from 800 by the highest biosurfactant yield in soybean oil medium and it was identified by 16S rRNA and the two most relevant hypervariable regions of this gene; V3 and V6 as Pseudomonas aeruginosa MA01. The isolate was able to produce 12 g/l of a glycolipid-type biosurfactant and generally less efficient to emulsify vegetable oils compared to hydrocarbons and could emulsify corn and coconut oils more than 50%. However, emulsification index (E(24)) of different hydrocarbons including hexane, toluene, xylene, brake oil, kerosene and hexadecane was between 55.8% and 100%. The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mNm(-1) with critical micelle concentration (CMC) value of 10.1mg/l. Among all carbon substrates examined, vegetable oils were the most effective on biosurfactant production. Two glycolipid fractions were purified from the biosurfactant crude extracts, and FTIR and ES-MS were used to determine the structure of these compounds. The analysis indicated the presence of three major monorhamnolipid species: R(1)C(10)C(10), R(1)C(10)C(12:1), and R(1)C(10)C(12); as well as another three major dirhamnolipid species: R(2)C(10)C(10), R(2)C(10)C(12:1), and R(2)C(10)C(12). The strain sweep experiment for measuring the linear viscoelastic of biosurfactant showed that typical behavior characteristics of a weak viscoelastic gel, with storage modulus greater than loss modulus at all frequencies examined, both showing some frequency dependence.

  14. [Biomedical activity of biosurfactants].

    PubMed

    Krasowska, Anna

    2010-07-23

    Biosurfactants, amphiphilic compounds, synthesized by microorganisms have surface, antimicrobial and antitumor properties. Biosurfactants prevent adhesion and biofilms formation by bacteria and fungi on various surfaces. For many years microbial surfactants are used as antibiotics with board spectrum of activity against microorganisms. Biosurfactants act as antiviral compounds and their antitumor activities are mediated through induction of apoptosis. This work presents the current state of knowledge related to biomedical activity of biosurfactants.

  15. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    SciTech Connect

    Suryanti, Venty Hastuti, Sri; Pujiastuti, Dwi

    2016-02-08

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  16. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  17. Biosurfactant Production by a Soil Pseudomonas Strain Growing on Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Deziel, E.; Paquette, G.; Villemur, R.; Lepine, F.; Bisaillon, J.

    1996-01-01

    The capacity of polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria to produce biosurfactants was investigated. Twenty-three bacteria isolated from a soil contaminated with petroleum wastes were able to form clearing zones on mineral salt agar plates sprayed with solutions of PAHs. Naphthalene and phenanthrene were utilized as sole substrates. Biosurfactant production was detected by surface tension lowering and emulsifying activities from 10 of these strains grown in an iron-limited salt medium supplemented with high concentrations of dextrose or mannitol, as well as with naphthalene or phenanthrene. Glycolipid determinations showed that in cultures of Pseudomonas aeruginosa 19SJ on naphthalene, the maximal productivity of biosurfactants was delayed compared with that in cultures grown on mannitol. However, when small amounts of biosurfactants and naphthalene degradation intermediates were present at the onset of the cultivation, the delay was markedly shortened. Production of biosurfactants was accompanied by an increase in the aqueous concentration of naphthalene, indicating that the microorganism was promoting the solubility of its substrate. Detectable amounts of glycolipids were also produced on phenanthrene. This is the first report of biosurfactant production resulting from PAH metabolism. PMID:16535330

  18. Biosurfactants in agriculture.

    PubMed

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.

  19. Surface properties of lipoplexes modified with mannosylerythritol lipid-a and tween 80 and their cellular association.

    PubMed

    Ding, Wuxiao; Hattori, Yoshiyuki; Qi, Xianrong; Kitamoto, Dai; Maitani, Yoshie

    2009-02-01

    The surface properties of cationic liposomes and lipoplexes largely determine the cellular association and gene transfection efficiency. In this study, we measured the surface properties, such as zeta potentials, surface pH and hydration levels of MHAPC- and OH-Chol-lipoplexes and their cellular association, without and with the modification of biosurfactant mannosylerythritol lipid-A (MEL-A) or Tween 80 (MHAPC=N,N-methyl hydroxyethyl aminopropane carbamoyl cholesterol; OH-Chol=cholesteryl-3beta-carboxyamindoethylene-N-hydroxyethylamine). Compared to OH-Chol-lipoplexes, the higher cellular association of MHAPC-lipoplexes correlated with the significantly higher zeta potentials, lower surface pH levels and "drier" surface, as evaluated by the generalized polarization of laurdan. Both MEL-A and Tween 80 modification of MHAPC-lipoplexes did not significantly change zeta potentials and surface pH levels, while MEL-A modification of OH-Chol-lipoplexes seriously decreased them. MEL-A hydrated the liposomal surface of MHAPC-lipoplexes but dehydrated that of OH-Chol-lipoplexes, while Tween 80 hydrated those of MHAPC- and OH-Chol-lipoplexes. In all, cationic liposomes composed of lipids with secondary and tertiary amine exhibited different surface properties and cellular associations of lipoplexes, and modification with surfactants further enlarged their difference. The strong hydration ability of Tween 80 may relate to the low cellular association of lipoplexes, while the dehydration of MEL-A-modified OH-Chol-lipoplexes seemed to compensate the negative zeta potential for the cellular association of lipoplexes.

  20. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  1. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations.

  2. Screening of biosurfactants from cloud microorganisms

    NASA Astrophysics Data System (ADS)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  3. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.

    PubMed

    Priji, Prakasan; Sajith, Sreedharan; Unni, Kizhakkepowathial Nair; Anderson, Robin C; Benjamin, Sailas

    2017-01-01

    This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L(-1) ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L(-1) critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries.

  4. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    PubMed

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  5. Glycolipids: Occurrence, Significance, and Properties

    NASA Astrophysics Data System (ADS)

    Holst, Otto

    This chapter focuses on the occurrence and the physicochemical properties of glycolipids in Nature. Owing to space limitations, the presented overview must be incomplete, and, thus, mainly publications of the past 15 years are included. However, all review articles cited herein inform the interested reader about earlier work. Although lipopolysaccharides (LPS), lipoarabinomannan (LAM), lipomannan, lipoglycans, and lipoteichoic acids are not understood as glycolipids per definition, their occurrence and properties are also described in this chapter. GPI-anchored lipids is a main topic of Chap. 7.4.

  6. Solubilization of Polycyclic Aromatic Hydrocarbons by Single and Binary Mixed Rhamnolipid-Sophorolipid Biosurfactants.

    PubMed

    Song, Dandan; Liang, Shengkang; Yan, Lele; Shang, Yujun; Wang, Xiuli

    2016-07-01

    Biosurfactants are promising additives for surfactant enhanced remediation (SER) technologies due to their low toxicity and high biodegradability. To develop green and efficient additives for SER, the aqueous solubility enhancements of polycyclic aromatic hydrocarbons (PAHs; naphthalene, phenanthrene, and pyrene) by rhamnolipid (RL) and sophorolipid (SL) biosurfactants were investigated in single and binary mixed systems. The solubilization capacities were quantified in terms of the solubility enhancement factor, molar solubilization ratio (MSR), and micelle-water partition coefficient (). Rughbin's model was applied to evaluate the interaction parameters (β) in the mixed RL-SL micelles. The solubility of the PAHs increased linearly with the glycolipid concentration above the critical micelle concentration (CMC) in both single and mixed systems. Binary RL-SL mixtures exhibited greater solubilization than individual glycolipids. At a SL molar fraction of 0.7 to 0.8, the solubilization capacity was the greatest, and the MSR and reached their maximum values, and β values became positive. These results suggest that the two biosurfactants act synergistically to increase the solubility of the PAHs. The solubilization capacity of the RL-SL mixtures increased with increasing temperature and decreased with increasing salinity. The aqueous solubility of phenanthrene reached a maximum value at pH of 5.5. Moreover, the mixed RL-SL systems exhibited a strong ability to solubilize PAHs, even in the presence of heavy metal ions. These mixed biosurfactant systems have the potential to improve the performance of SER technologies using biosurfactants to solubilize hydrophobic organic contaminants by decreasing the applied biosurfactant concentration, which reduces the costs of remediation.

  7. Cytotoxic effect of microbial biosurfactants against human embryonic kidney cancerous cell: HEK-293 and their possible role in apoptosis.

    PubMed

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mohapatra, Purusottam; Kundu, Chanakya Nath; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2014-11-01

    Two different microbial biosurfactants S9BS and CHBS were isolated from Lysinibacillus fusiformis S9 and Bacillus tequilensis CH. Cytotoxicity effect of these biosurfactants on human embryonic kidney cancerous cell (HEK-293) were studied with the help of 3-(4,5-dimethylthiazol-2yl-)-2, 5-diphenyl tetrazolium bromide (MTT) assay and morphological changes were observed under inverted microscope. The biosurfactants exhibited positive cytotoxic effect on HEK-293 cell line. It was found that LC50 of S9BS and CHBS were 75 and 100 μg ml(-1), respectively. Further cell cycle and apoptosis analysis of biosurfactant-treated HEK-293 cell line were done by FACS. In this study, cytotoxic effect of glycolipid biosurfactant against HEK-293 cell lines is reported for the first time. Mechanism towards increased membrane permeability of biosurfactant-treated cancer cell may be the incorporation of its lipid moiety into the plasma membrane leading to formation of pores and membrane disruption. Hence, these microbial biosurfactants can prove to be significant biomolecule for cancer treatment.

  8. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant.

    PubMed

    Konishi, Masaaki; Nishi, Shinro; Fukuoka, Tokuma; Kitamoto, Dai; Watsuji, Tomo-O; Nagano, Yuriko; Yabuki, Akinori; Nakagawa, Satoshi; Hatada, Yuji; Horiuchi, Jun-Ichi

    2014-08-01

    Glycolipid biosurfactant-producing bacteria were isolated from deep-sea sediment collected from the Okinawa Trough. Isolate BS15 produced the largest amount of the glycolipid, generating up to 6.31 ± 1.15 g l(-1) after 4 days at 20 °C. Glucose was identified in the hydrolysate of the purified major component of the biosurfactant glycolipid. According to gas chromatography/mass spectrometry analysis, the hydrophobic moieties in the major component were hexadecanoate, octadecanoate, 3-hydroxyhexadecanoate, 2-hydroxyoctanoate, and succinate. The molecular weight of the purified major glycolipid was calculated to be 1,211, while (1)H and (13)C nuclear magnetic resonance spectra confirmed that the major component consisted of 2 mol of α-glucoside and 1 mol of β-glucoside. The molecular structure was assigned as novel trisaccharide-type glycolipid biosurfactant, glucotriose lipids. The critical micelle concentration of the purified major glycolipid was 2.3 × 10(-6) M, with a surface tension of 29.5 mN m(-1). Phylogenetic analysis showed isolate BS15 was closely related to a Rhodococcus strains isolated from Antarctica, and to Rhodococcus fascians, a phytopathogen. PCR analysis showed that the fasA, fasB, fasC, fasD, fasE, and fasF genes, which are involved in phytohormone-like cytokinin production, were not present in the genome of BS15; however, analysis of a draft genome sequence of BS15 (5.5 Mb) identified regions with 31 %, 53 %, 46 %, 30 %, and 31 % DNA sequence identity to the fasA, fasB, fasC, and fasD genes, respectively.

  9. Microbial biosurfactants and biodegradation.

    PubMed

    Ward, Owen P

    2010-01-01

    Microbial biosurfactants are amphipathic molecules having typical molecular weights of 500-1500 Da, made up of peptides, saccharides or lipids or their combinations. In biodegradation processes they mediate solubilisation, mobilization and/or accession of hydrophobic substrates to microbes. They may be located on the cell surface or be secreted into the extracellular medium and they facilitate uptake of hydrophobic molecules through direct cellular contact with hydrophobic solids or droplets or through micellarisation. They are also involved in cell physiological processes such as biofilm formation and detachment, and in diverse biofilm associated processes such as wastewater treatment and microbial pathogenesis. The protection of contaminants in biosurfactants micelles may also inhibit uptake of contaminants by microbes. In bioremediation processes biosurfactants may facilitate release of contaminants from soil, but soils also tend to bind surfactants strongly which makes their role in contaminant desorption more complex. A greater understanding of the underlying roles played by biosurfactants in microbial physiology and in biodegradative processes is developing through advances in cell and molecular biology.

  10. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3.

    PubMed

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-03-01

    A biosurfactant-producing bacterium, isolate 2/3, was isolated from mangrove sediment in the south of Thailand. It was evaluated as a potential biosurfactant producer. The highest biosurfactant production (4.52 g/l) was obtained when the cells were grown on a minimal salt medium containing 25 % (v/v) palm oil decanter cake and 1 % (w/v) commercial monosodium glutamate as carbon and nitrogen sources, respectively. After microbial cultivation at 30 °C in an optimized medium for 96 h, the biosurfactant produced was found to reduce the surface tension of pure water to 25.0 mN/m with critical micelle concentrations of 8.0 mg/l. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity was investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pH and salt concentrations. The biosurfactant obtained was confirmed as a glycolipid type biosurfactant by using a biochemical test, fourier-transform infrared spectroscopy, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance polyaromatic hydrocarbons solubility.

  11. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber.

    PubMed

    Busscher, H J; van Hoogmoed, C G; Geertsema-Doornbusch, G I; van der Kuijl-Booij, M; van der Mei, H C

    1997-10-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the presence of a conditioning film. Mechanistically, this interference in yeast adhesion by S. thermophilus B was not due to direct physical effects but to biosurfactant release by the adhering bacteria, because experiments with S. thermophilus B cells that had released their biosurfactants prior to adhesion to silicone rubber and competition with yeasts did not show interference with initial yeast adhesion. The amounts of biosurfactants released were highest for mid-exponential- and early-stationary-phase bacteria (37 mg.g of cells-1 [dry weight]), but biosurfactants released by stationary-phase bacteria (14 mg.g of cells-1 [dry weight]) were the most surface active. The crude biosurfactants released were mixtures of various components, with a glycolipid-like component being the most surface active. A lipid-enriched biosurfactant fraction reduced the surface tension of an aqueous solution to about 35 mJ.m-2 at a concentration of only 0.5 mg.ml-1. The amount of biosurfactant released per S. thermophilus B cell was estimated to be sufficient to cover approximately 12 times the area of the cross section of the bacterium, making biosurfactant release a powerful defense weapon in the postadhesion competition of the bacterium with microorganisms such as yeasts. Preadsorption of biosurfactants to the silicone rubber prior to allowing yeasts to adhere was as effective against C. albicans GB 1/2 adhesion as covering 1 to 2% of the silicone rubber surface with adhering S. thermophilus B, but a

  12. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber.

    PubMed Central

    Busscher, H J; van Hoogmoed, C G; Geertsema-Doornbusch, G I; van der Kuijl-Booij, M; van der Mei, H C

    1997-01-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the presence of a conditioning film. Mechanistically, this interference in yeast adhesion by S. thermophilus B was not due to direct physical effects but to biosurfactant release by the adhering bacteria, because experiments with S. thermophilus B cells that had released their biosurfactants prior to adhesion to silicone rubber and competition with yeasts did not show interference with initial yeast adhesion. The amounts of biosurfactants released were highest for mid-exponential- and early-stationary-phase bacteria (37 mg.g of cells-1 [dry weight]), but biosurfactants released by stationary-phase bacteria (14 mg.g of cells-1 [dry weight]) were the most surface active. The crude biosurfactants released were mixtures of various components, with a glycolipid-like component being the most surface active. A lipid-enriched biosurfactant fraction reduced the surface tension of an aqueous solution to about 35 mJ.m-2 at a concentration of only 0.5 mg.ml-1. The amount of biosurfactant released per S. thermophilus B cell was estimated to be sufficient to cover approximately 12 times the area of the cross section of the bacterium, making biosurfactant release a powerful defense weapon in the postadhesion competition of the bacterium with microorganisms such as yeasts. Preadsorption of biosurfactants to the silicone rubber prior to allowing yeasts to adhere was as effective against C. albicans GB 1/2 adhesion as covering 1 to 2% of the silicone rubber surface with adhering S. thermophilus B, but a

  13. Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents.

    PubMed

    Monteiro, Andrea S; Coutinho, Joana O P A; Júnior, Ary C; Rosa, Carlos A; Siqueira, Ezequias P; Santos, Vera L

    2009-12-01

    The yeast strain CLOA 72 isolated from the effluent of a dairy industry in Brazil and identified as Trichosporon montevideense, was able to grow and produce a glycolipid biosurfactant when cultured on a mineral medium (MM) with sunflower oil as the carbon source. Biosurfactant production was partially growth-associated and maximal emulsification activity was observed at 144 h of cultivation (78.92%). The biosurfactant purified by precipitation with ethanol showed 78.66% emulsifying activity when used in concentrations above 4.5 mg/ml and was able to reduce the surface tension of water to values below 44.9 mN/m. The critical micellar concentration (CMC) was found to be 2.2 mg/ml. The highest emulsifying activity (E(24)) has been observed with vegetable oils, toluene, kerosene, isooctane, cyclohexane, hexane, diesel oil and hexadecane as compared to mineral oil and oleic acid. The biosurfactant also showed good stability during exposure to 100 degrees C for different periods of time (10 to 60 min), to high salinity (30% of NaCl, KCl and NaHCO(3)), and to a wide range of pH values (1-10). The biosurfactant purified by gel filtration chromatography is a glycolipid, with lipid portion containing 16.03% (9Z)-octadec-9-enoic acid, 14.92% hexadecanoic acid, and 9.63% (E) octadec-9-enoic acid and the carbohydrate portion containing mannose (35.29%), xylose (41.99%), arabinose (17.47%), and glucose (5.25%).

  14. Biosurfactants for microbubble preparation and application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes the type of biosurfactants based on their origin. Some of the widely used biosurfactants are introduced. The current statues and future trends in the production of biosurfactants are discus...

  15. Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18.

    PubMed

    Saimmai, Atipan; Rukadee, Onkamon; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2012-10-01

    Biosurfactant-producing bacteria were isolated from mangrove sediment in southern Thailand. Isolates were screened for biosurfactant production by using the surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Oleomonas sagaranensis AT18. It has also been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the culture supernatant to 25 mN/m. In all 5.30 g of biosurfactant yield was obtained after 54 h of cultivation by using molasses and NaNO₃ as carbon and nitrogen sources, respectively. The biosurfactant recovery by chloroform:methanol extraction showed a small critical micelle concentration value (8 mg/l), thermal and pH stability with respect to surface tension reduction. It also showed emulsification activity and a high level of salt concentration. The biosurfactant obtained was confirmed as a glycolipid by using a biochemical test, FT-IR and mass spectra. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  16. Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2.

    PubMed

    Zaragoza, Ana; Teruel, José A; Aranda, Francisco J; Ortiz, Antonio

    2013-10-15

    Trehalose-containing glycolipid biosurfactants form an emerging group of interesting compounds, which alter the structure and properties of phospholipid membranes, and interact with enzymatic and non-enzymatic proteins. Phospholipases A2 constitute a class of enzymes that hydrolyze the sn-2 ester of glycerophospholipids, and are classified into secreted phospholipases A2 (sPLA2) and intracellular phospholipases A2. In this work, pancreatic sPLA2 was chosen as a model enzyme to study the effect of the trehalose lipid biosurfactant on enzymes acting on interfaces. By using this enzyme, it is possible to study the modulation of enzyme activity, either by direct interaction of the biosurfactant with the protein, or as a result of the incorporation of the glycolipid on the phospholipid target membrane. It is shown that the succinoyl trehalose lipid isolated from Rhodococcus erythropolis 51T7 interacts with porcine pancreatic sPLA2 and inhibits its catalytic activity. Two modes of inhibition are observed, which are clearly differentiated by its timescale. First, a slow inhibition of sPLA2 activity upon preincubation of the enzyme with trehalose lipid in the absence of substrate is described. Second, incorporation of trehalose lipid into the phospholipid target membrane gives rise to a fast enzyme inhibition. These results are discussed in the light of previous data on sPLA2 inhibitors and extend the list of interesting biological activities reported for this R. erythropolis trehalose lipid biosurfactant.

  17. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry.

    PubMed

    Luna, Juliana M; Rufino, Raquel D; Sarubbo, Leonie A; Campos-Takaki, Galba Maria

    2013-02-01

    The development of less toxic, biodegradable, surfactants, such as biosurfactants, is a key strategy for acquiring environmentally friendly compounds. The aim of the present study was to employ an optimised medium containing 9% ground nut oil refinery residue and 9% corn steep liquor for the production of a biosurfactant by Candida sphaerica. Fermentation was carried out at 28 °C and 200 rpm for 144 h. Biosurfactant yield was 9 g/l. The biosurfactant reduced the surface tension of the medium to 25 mN/m, with a critical micelle concentration of 0.025%. The product demonstrated stability with regard to surface tension reduction and emulsification in a range of temperatures (5-120 °C) and pH values (2-12) as well as tolerance to high concentrations of NaCl (2-10%). Hydrophobicity tests indicate two possible insoluble substrate uptake mechanisms: direct interfacial uptake and biosurfactant-mediated transfer (cell contact with emulsified or solubilised hydrocarbons). The biosurfactant was characterised as an anionic glycolipid consisting of 70% lipids and 15% carbohydrates and demonstrated no toxicity to the microcrustacean Artemia salina or the vegetables Brassica oleracea, Solanum gilo, Lactuca sativa L. and Brassica oleracea L. The biosurfactant recovered 95% of motor oil adsorbed to a sand sample, demonstrating considerable potential for use in bioremediation processes, especially in the petroleum industry.

  18. Dehydration resistance of liposomes containing trehalose glycolipids

    NASA Astrophysics Data System (ADS)

    Nyberg, Kendra; Goulding, Morgan; Parthasarathy, Raghuveer

    2010-03-01

    The pathogen, Mycobacterium tuberculosis, has an unusual outer membrane containing trehalose glycolipids that may contribute to its ability to survive freezing and dehydration. Based on our recent discovery that trehalose glycolipids confer dehydration resistance to supported lipid monolayers (Biophys. J. 94: 4718-4724 (2008); Langmuir 25: 5193-5198, (2009)), we hypothesized that liposomes containing synthetic trehalose glycolipids may be dehydration-resistant as well. To test this, we measured the leakage of encapsulated fluorophores and larger macromolecular cargo from such liposomes subject to freeze drying. Both leakage assays and size measurements show that the liposomes are dehydration-resistant. In addition to demonstrating a possibly technologically useful encapsulation platform, our results corroborate the view that encapsulation in a trehalose-glycolipid-rich membrane is a biophysically viable route to protection of mycobacteria from environmental stresses.

  19. Production and Biomedical Applications of Probiotic Biosurfactants.

    PubMed

    Fariq, Anila; Saeed, Ayesha

    2016-04-01

    Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants.

  20. Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72.

    PubMed

    Monteiro, Andrea S; Miranda, Tatiana T; Lula, Ivana; Denadai, Ângelo M L; Sinisterra, Rubén D; Santoro, Marcelo M; Santos, Vera L

    2011-06-01

    This study evaluated the effects of glycolipid-type biosurfactant produced by Trichosporon montevideense CLOA72 in the formation of biofilms in polystyrene plate surfaces by Candida albicans CC isolated from the apical tooth canal. Biofilm formation was reduced up to 87.4% with use of biosurfactant at 16 mg/ml concentration. It has been suggested that the interaction with the cell or polystyrene plate surface could ultimately be responsible for these actions. Therefore, the interaction of C. albicans CC cells with the biosurfactant, as well as the corresponding thermodynamic parameters, have been determined by isothermal titration calorimetry and zeta potential measurements. This process is endothermic (((int)H°=+1284±5 cal/mg OD(600)) occurring with a high increase of entropy (T((int)S°=+10635 cal/mg OD(600)). The caloric energy rate data released during the titulation indicates saturation of the cell-biosurfactant at 1.28 mg/ml OD(600). Also, the zeta potential of the cell surface was monitored as a function of the biosurfactant concentration added to cell suspension showing partial neutralization of net surface charge, since the value of zeta potential ranged from -16 mV to -6 mV during the titration. The changes of cell surface characteristics can contribute to the inhibition of initial adherence of cells of C. albicans in surface. The CMC of the purified biosurfactant produced from T. montevideense CLOA72 is 2.2 mg/ml, as determined both by ITC dilution experiments and by surface tension measurements. This biomolecule did not presented any cytotoxic effect in HEK 293A cell line at concentrations of 0.25-1 mg/ml. This study suggests a possible application of the referred biosurfactant in inhibiting the formation of biofilms on plastic surfaces by C. albicans.

  1. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  2. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    NASA Astrophysics Data System (ADS)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  3. Environmental Applications of Biosurfactants: Recent Advances

    PubMed Central

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A.; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-01

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies. PMID:21340005

  4. Biosurfactants for Microbubble Preparation and Application

    PubMed Central

    Xu, Qingyi; Nakajima, Mitsutoshi; Liu, Zengshe; Shiina, Takeo

    2011-01-01

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular imaging, wastewater treatment, and aerobic fermentation are presented. Several studies on the preparation, characterization and applications of biosurfactant-based microbubbles are reviewed. PMID:21339998

  5. Biosurfactants for microbubble preparation and application.

    PubMed

    Xu, Qingyi; Nakajima, Mitsutoshi; Liu, Zengshe; Shiina, Takeo

    2011-01-17

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular imaging, wastewater treatment, and aerobic fermentation are presented. Several studies on the preparation, characterization and applications of biosurfactant-based microbubbles are reviewed.

  6. Environmental applications of biosurfactants: recent advances.

    PubMed

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-18

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  7. Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea.

    PubMed

    Konishi, Masaaki; Fukuoka, Tokuma; Nagahama, Takahiko; Morita, Tomotake; Imura, Tomohiro; Kitamoto, Dai; Hatada, Yuji

    2010-08-01

    We describe a detailed structure determination of biosurfactant produced by Pseudozyma hubeiensis SY62, which was newly isolated from Calyptogena soyoae (deep-sea cold-seep clam, Shirouri-gai) at 1156 m in Sagami bay. P. hubeiensis SY62 was taxonomically slightly different from the P. hubeiensis type strain, which produces biosurfactants. Glycolipid production by the strain was also slightly different from those of previously reported strains. BS productivity was estimated to be around 30 g/l from the weight of the crude extract. At least five different spots of glycolipid biosurfactants (BSs) were detected by TLC. Results of nuclear magnetic resonance spectroscopies indicated the major product, namely MEL-C (4-O-[4'-O-acetyl-2',3'-di-O-alka(e)noil-beta-d-mannopyranosyl]-d-erythritol), as a promising BS. By further structural determination, the major fatty acids of MEL-C were estimated to be saturated C(6), C(10), and C(12) acids, which were shorter than those of previously reported MEL-C. Furthermore, (1)H-NMR spectra implied the presence of C(2) acids as acyl groups. According to surface tension determination, the novel MEL-C showed larger critical micelle concentration (1.1x10(-5) M) than conventional MEL-C which bound C(10) and C(12) acids (9.1x10(-6) M). From these results, shorter fatty acids would confer hydrophilicity onto the novel MEL-C.

  8. Antibodies to single glycolipids and glycolipid complexes in Guillain-Barré syndrome subtypes

    PubMed Central

    Shahrizaila, Nortina; Kokubun, Norito; Sawai, Setsu; Umapathi, Thirugnanam; Chan, Yee-Cheun; Kuwabara, Satoshi; Hirata, Koichi

    2014-01-01

    Objective: To comprehensively investigate the relationship between antibodies to single glycolipids and their complexes and Guillain-Barré syndrome subtypes and clinical features. Methods: In acute sera from 199 patients with Guillain-Barré syndrome, immunoglobulin G (IgG) antibodies to glycolipids and ganglioside complexes were tested using ELISA against individual antigens from single glycolipids including gangliosides (LM1, GM1, GM1b, GD1a, GalNAc-GD1a, GD1b, GT1a, GT1b, GQ1b) and a neutral glycolipid, asialo-GM1 (GA1), and antigens from the combination of 2 different glycolipids. Based on serial nerve conduction studies, the electrodiagnoses were as follows: 69 demyelinating subtype, 85 axonal subtypes, and 45 unclassified. Results: Significant associations were detected between acute motor axonal neuropathy subtype and IgG antibodies to GM1, GalNAc-GD1a, GA1, or LM1/GA1 complex. Reversible conduction failure was significantly associated with IgG antibodies to GM1, GalNAc-GD1a, GD1b, or complex of LM1/GA1. No significant association was demonstrated between acute inflammatory demyelinating polyneuropathy and any of the glycolipids or ganglioside complexes. Anti-ganglioside complex antibodies alone were detected in 7 patients (5 axonal subtype). Conclusions: The current study demonstrates that antibodies to single glycolipids and ganglioside complexes are associated with acute motor axonal neuropathy or acute motor conduction block neuropathy but not acute inflammatory demyelinating polyneuropathy. Classification of evidence: This study provides Class II evidence that antibodies to glycolipids are increased in patients with acute motor axonal neuropathy and acute motor conduction block neuropathy but not acute inflammatory demyelinating polyneuropathy. PMID:24920848

  9. EFFECT OF HYDROCARBON PHASE ON INTERFACIAL AND THERMODYNAMIC PROPERTIES OF TWO ANIONIC GLYCOLIPID BIOSURFACTANTS. (R827132)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Biochemical, Molecular, and Transcriptional Highlights of the Biosynthesis of an Effective Biosurfactant Produced by Bacillus safensis PHA3, a Petroleum-Dwelling Bacteria

    PubMed Central

    Hanano, Abdulsamie; Shaban, Mouhnad; Almousally, Ibrahem

    2017-01-01

    Petroleum crude oil (PCO)-dwelling microorganisms have exceptional biological capabilities to tolerate the toxicity of petroleum contaminants and are therefore promising emulsifier and/or degraders of PCO. This study describes a set of PCO-inhabiting bacterial species, one of which, identified as Bacillus safensis PHA3, produces an efficient biosurfactant which was characterized as a glycolipid. Fourier transform infrared spectrometer, nuclear magnetic resonance, Thin layer chromatography, HPLC, and GC-MS analysis of the purified biosurfactant revealed that the extracted molecule under investigation is likely a mannolipid molecule with a hydrophilic part as mannose and a hydrophobic part as hexadecanoic acid (C16:0). The data reveal that: (i) PHA3 is a potential producer of biosurfactant (9.8 ± 0.5 mg mL-1); (ii) pre-adding 0.15% of the purified glycolipid enhanced the degradation of PCO by approximately 2.5-fold; (iii) the highest emulsifying activity of biosurfactant was found against the PCO and the lowest was against the naphthalene; (iv) the optimal PCO-emulsifying activity was found at 30–60°C, pH 8 and a high salinity. An orthologous gene encodes a putative β-diglucosyldiacylglycerol synthase (β-DGS) was identified in PHA3 and its transcripts were significantly up-regulated by exogenous PAHs, i.e., pyrene and benzo(e)pyrene but much less by mid-chain n-alkanes (ALKs) and fatty acids. Subsequently, the accumulation of β-DGS transcripts coincided with an optimal growth of bacteria and a maximal accumulation of the biosurfactant. Of particular interest, we found that PHA3 actively catalyzed the degradation of PAHs notably the pyrene and benzo(e)pyrene but was much less effective in the mono-terminal oxidation of ALKs. Such characteristics make Bacillus safensis PHA3 a promising model for enhanced microbial oil recovery and environmental remediation. PMID:28179901

  11. Biosurfactant-enhanced soil bioremediation

    SciTech Connect

    Kosaric, N.; Lu, G.; Velikonja, J.

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  12. Future perspectives for glycolipid research in medicine.

    PubMed Central

    Cox, Timothy M

    2003-01-01

    Medical interest in glycolipids has been mainly directed to the rare and complex glycosphingolipid storage disorders that are principally caused by unitary deficiencies of lysosomal acid hydrolases. However, glycolipids are critical components of cell membranes and occur within newly described membrane domains known as lipid rafts. Glycolipids are components of important antigen systems and membrane receptors; they participate in intracellular signalling mechanisms and may be presented to the immune system in the context of the novel CD1 molecules present on T lymphocytes. A knowledge of their mechanism of action in the control of cell growth and survival as well as developmental pathways is likely to shed light on the pathogenesis of the glycosphingolipid storage disorders as well as the role of lipid second messengers in controlling cell mobility and in the mobilization of intracellular calcium stores (a biological role widely postulated particularly for the lysosphingolipid metabolite sphingosine 1-phosphate). Other sphingolipid metabolites such as ceramide 1-phosphate may be involved in apoptotic responses and in phagocytosis and synaptic vesicle formation. The extraordinary pharmaceutical success of enzymatic complementation for Gaucher's disease using macrophage-targeted human glucocerebrosidase has focused further commercial interest in other glycolipid storage diseases: the cost of targeted enzyme therapy and its failure to restore lysosomal enzymatic deficiencies in the brain has also stimulated interest in the concept of substrate reduction therapy using diffusible inhibitory molecules. Successful clinical trials of the iminosugar N-butyldeoxynojirimycin in type 1 Gaucher's disease prove the principle of substrate reduction therapy and have attracted attention to this therapeutic method. They will also foster important further experiments into the use of glycolipid synthesis inhibitors for the severe neuronopathic glycosphingolipidoses, for which no

  13. Analysis of glycolipids by fast atom bombardment mass spectrometry.

    PubMed

    Bosch, M P; Parra, J L; Manresa, M A; Ventura, F; Rivera, J

    1989-12-01

    The positive and negative ion fast atom bombardment (FAB) mass spectra of four glycolipids obtained from microbial cultures are reported. The spectra of the glycolipids in the positive ion mode are characterized by abundant [M + Na]+, [M + Na + matrix]+ and [M + 2Na - H]+ species. In negative FAB conditions the molecules yield [M - H]-. Our understanding of the FAB behaviour of glycolipids in both positive and negative modes has been considerably aided in the structure elucidation, without any derivatization or degradation reaction of the compounds studied. The technique allows unambiguous molecular weight determination of low-microgram amounts of these glycolipids purified from biological sources and provides useful fragmentation information.

  14. Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate.

    PubMed

    Priji, Prakasan; Unni, K N; Sajith, S; Benjamin, Sailas

    2013-03-01

    This unique study reports a new strain (BPU1) of Candida tropicalis isolated from the rumen of the Malabari goat, showing dual production of biosurfactant and polyhydroxybutyrate. C. tropicalis strain BPU1, a facultative anaerobe, was tuned to become an aerobe in specially designed flask, the Benjamin flask. The puffy circular colonies were smooth, white-to-cream in colour, with pseudo-filaments. The strain fermented glucose, sucrose, maltose and dextrose, but not lactose and cellulose. It assimilated (NH4 )2 SO4 , peptone, glycine and arginine, but not NaNO3 , as the nitrogen source. Interestingly, it utilized groundnut oil (up to 0.3%) in a specially designed basal mineral salt medium (BSM). Its capability for dual production of a biosurfactant and a polyhydroxybutyarate (PHB) was explored by various methods from the BSM-oil medium. Extracted biosurfactant from 6 day-old culture was biochemically characterized as a complex of lipid and carbohydrate with an Rf value of 0.88 by thin layer chromatography. Its PHB production was confirmed by specific staining methods with Nile blue sulphate, Sudan black B and Sudan 3. Briefly, this first-ever report gives ample physical evidence for the dual production of a glycolipid (biosurfactant) and PHB by C. tropicalis strain BPU1 on a specially designed medium, which would open up elaborate research on this yeast.

  15. Nitrogen and hydrophosphate affects glycolipids composition in microalgae

    PubMed Central

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L−1 hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L−1 d−1. Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  16. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.

    PubMed

    Bai, Long; McClements, David Julian

    2016-10-01

    Nanoemulsions are used in the food, cosmetics, personal care and pharmaceutical industries to provide desirable optical, textural, stability, and delivery characteristics. In many industrial applications, it is desirable to formulate nanoemulsions using natural ingredients so as to develop label-friendly products. Rhamnolipids are biosurfactants isolated from certain microorganisms using fermentation processes. They are glycolipids that have a polar head consisting of rhamnose units and a non-polar tail consisting of a hydrocarbon chain. In this study, the interfacial characteristics of this natural surfactant at medium chain triglyceride (MCT) oil-water interfaces were characterized, and its ability to form nanoemulsions was compared to that of another natural surfactant (quillaja saponins). The influence of rhamnolipid concentration, homogenization pressure, and oil type on the mean droplet diameter of emulsions produced by microfluidization was determined. Rhamnolipids were highly effective at forming small droplets (d32<0.15μm) at low surfactant-to-oil ratios (SOR<1:10) for MCT oil. Rhamnolipids could also be used to form small droplets using long chain triglyceride oils, such as corn and fish oil. Rhamnolipid-coated droplets were stable to aggregation over a range of pH values (5-9), salt concentrations (<100mM NaCl) and temperatures (20-90°C). However, droplet aggregation was observed at highly acidic (pH 2-4) and high ionic strength (200-500mM NaCl) conditions. These effects were attributed to a reduction in electrostatic repulsion at low pH and high salt levels. Rhamnolipid-coated droplets had a high negative charge at neutral pH that decreased in magnitude with decreasing pH. These results indicate that rhamnolipids are effective natural surfactants that may be able to replace synthetic surfactants in certain commercial applications.

  17. Biosurfactant production by Azotobacter chroococcum isolated from the marine environment.

    PubMed

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2009-01-01

    Preliminary characterization of a biosurfactant-producing Azotobacter chroococcum isolated from marine environment showed maximum biomass and biosurfactant production at 120 and 132 h, respectively, at pH 8.0, 38 degrees C, and 30 per thousand salinity utilizing a 2% carbon substrate. It grew and produced biosurfactant on crude oil, waste motor lubricant oil, and peanut oil cake. Peanut oil cake gave the highest biosurfactant production (4.6 mg/mL) under fermentation conditions. The biosurfactant product emulsified waste motor lubricant oil, crude oil, diesel, kerosene, naphthalene, anthracene, and xylene. Preliminary characterization of the biosurfactant using biochemical, Fourier transform infrared spectroscopy, and mass spectral analysis indicated that the biosurfactant was a lipopeptide with percentage lipid and protein proportion of 31.3:68.7.

  18. Microbial biofilms: biosurfactants as antibiofilm agents.

    PubMed

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  19. One-pot syntheses of immunostimulatory glycolipids.

    PubMed

    Schombs, Matthew; Park, Francine E; Du, Wenjun; Kulkarni, Suvarn S; Gervay-Hague, Jacquelyn

    2010-08-06

    Glycolipids containing alpha-linked galactosyl and glucosyl moieties have been shown to possess unique immunostimulatory activity creating a need for access to diverse and anomerically pure sources of these compounds for immunological studies. To meet this demand, glycosyl iodides were enlisted in the synthesis of these biologically relevant glycoconjugates. In the first-generation protocol, per-O-benzyl galactosyl iodide was efficiently coupled with activated sphingosine acceptors, but fully functionalized ceramides were found to be unreactive. To overcome this obstacle, per-O-trimethylsilyl glycosyl iodides were investigated and shown to undergo highly efficient coupling with ceramide and glycerol ester acceptors. Contrary to what has been observed with other donors, we detected little difference between the reactivity of glucosyl and galactosyl iodides. The trimethylsilyl protecting groups play a dual role in activating the donor toward nucleophilic attack while at the same time providing transient protection: the silyl groups are readily removed upon methanolysis. All reactions proceeded with complete acceptor regioselectivity, eliminating the need for additional protecting group manipulations, and the desired alpha-anomers were formed exclusively. This three-step, one-pot synthetic platform provides rapid access to an important class of immunostimulatory molecules including the first reported synthesis of the glucosyl analogue of the bacterial antigen BbGL-II.

  20. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes

    SciTech Connect

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We use MEL-A-containing cationic liposomes for siRNA delivery. Black-Right-Pointing-Pointer MEL-A-containing cationic liposomes can efficiently and rapidly deliver siRNA into the cytoplasm. Black-Right-Pointing-Pointer Rapid delivery of siRNA is due to the membrane fusion between liposomes and plasma membrane. -- Abstract: The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine Trade-Mark-Sign RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic

  1. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    PubMed Central

    De Almeida, Darne G.; Soares Da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries. PMID:27843439

  2. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    PubMed

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  3. A mouse B16 melanoma mutant deficient in glycolipids.

    PubMed Central

    Ichikawa, S; Nakajo, N; Sakiyama, H; Hirabayashi, Y

    1994-01-01

    Mouse B16 melanoma cell line, GM-95 (formerly designated as MEC-4), deficient in sialyllactosylceramide was examined for its primary defect. Glycolipids from the mutant cells were analyzed by high-performance TLC. No glycolipid was detected in GM-95 cells, even when total lipid from 10(7) cells was analyzed. In contrast, the content of ceramide, a precursor lipid molecule of glycolipids, was normal. Thus, the deficiency of glycolipids was attributed to the first glucosylation step of ceramide. The ceramide glucosyltransferase (EC 2.4.1.80) activity was not detected in GM-95 cells. There was no significant difference of sialyllactosylceramide synthase activity, however, between GM-95 and the parental cells. The deficiency of glycolipids in GM-95 cells was associated with changes of the cellular morphology and growth rate. The parental cells showed irregular shapes and tended to overlap each other. On the other hand, GM-95 cells exhibited an elongated fibroblastic morphology and parallel arrangement. The population-doubling times of GM-95 and the parental cells in serum-free medium were 28 hr and 19 hr, respectively. Images PMID:8146177

  4. Contributions of biosurfactants to natural or induced bioremediation.

    PubMed

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes.

  5. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization.

    PubMed

    Kundu, Debasree; Hazra, Chinmay; Dandi, Navin; Chaudhari, Ambalal

    2013-11-01

    A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l(-1)) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m(-1) and produced glycolipidic biosurfactants (45 mg l(-1)). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0-10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 (+)) and negligible amount of nitrite ion (NO2 (-)). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate > protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites.

  6. CD1 mediated T cell recognition of glycolipids.

    PubMed

    Zajonc, Dirk M; Kronenberg, Mitchell

    2007-10-01

    Specialized subsets of T lymphocytes can distinguish the carbohydrate portions of microbial and self-glycolipids when they are presented by proteins in the CD1 family of antigen presenting molecules. Recent immunochemical and structural analyses indicate that the chemical composition of the presented carbohydrate, together with its precise orientation above the CD1 binding groove, determines if a particular T cell is activated. More recently, however, it has been shown that the lipid backbone of the glycolipid, buried inside the CD1 protein, also can have an impact on T cell activation. While glycolipid recognition is a relatively new category of T cell specificity, the powerful combination of microbial antigen discovery and structural biochemistry has provided great insight into the mechanism of carbohydrate recognition.

  7. Endotoxic Glycolipid from a Heptoseless Mutant of Salmonella minnesota

    PubMed Central

    Kasai, N.; Nowotny, A.

    1967-01-01

    The endotoxin of a heptoseless mutant of Salmonella minnesota R595 was extracted with phenol-water. Most of this material was found distributed in the insoluble fraction of the extract. The results showed that the R595 endotoxin behaved as a lipid rather than as a lipopolysaccharide (LPS). The preparation, although it does not contain O-specific polysaccharides, does contain 2-keto-3-deoxyoctonic acid (KDO), hexosamine, and several other unidentified compounds. Therefore, the term “glycolipid” is used in this paper instead of lipopolysaccharide. The crude glycolipid fraction, which was soluble in a mixture of chloroform-methanol (8:2), was purified by a procedure including fractionation with organic solvents and by different-column chromatographic methods. Although a chromatographic fraction of the glycolipid showed homogeneity in most systems investigated, the presence of contaminants could not be excluded. Chemical analysis of the glycolipids showed the absence of hexoses and heptoses. Constituents which were found were hexosamine, KDO, fatty acids, and phosphorus, which showed a relatively simple chemical composition. Partial acidic hydrolysis of the glycolipid yielded hexosamine-phosphates, as described in “Lipid A” fractions of smooth LPS preparations. Thin-layer chromatography of the partially hydrolyzed glycolipid showed a pattern similar to “Lipid A” fractions of other strains. The biological activity of the glycolipid was at the same level as that of other gram-negative endotoxins. Pyrogenicity, Shwartzman reactivity, and chick embryo ld50 values were as high or higher than those of purified Serratia marcescens endotoxin preparations, but mouse ld50 measurements gave significantly lower results. Images PMID:4965363

  8. Antibodies to heteromeric glycolipid complexes in multifocal motor neuropathy

    PubMed Central

    Galban-Horcajo F, Francesc; Fitzpatrick, Amanda M.; Hutton, Andrew J.; Dunn, Siobhan M.; Kalna, Gabriela; Brennan, Kathryn M.; Rinaldi, Simon; Yu, Robert K.; Goodyear, Carl; Willison, Hugh J.

    2013-01-01

    Background Measurement of anti-GM1 IgM antibodies in multifocal motor neuropathy (MMN) sera is confounded by relatively low sensitivity that limits clinical usefulness. Combinatorial assay methods, in which antibodies reactive to heteromeric complexes of 2 or more glycolipids are being increasingly applied to this area of diagnostic testing. Methods A newly developed combinatorial glycoarray able to identify antibodies to 45 different heteromeric glycolipid complexes and their 10 individual glycolipid components was applied to a randomly selected population of 33 MMN cases and 57 normal or disease controls. Comparison with an enzyme-linked immunosorbent assay (ELISA) was conducted for selected single glycolipids and their complexes. Results By ELISA, 22/33 MMN cases had detectable anti-GM1 IgM antibodies, whereas 19/33 MMN samples were positive for anti-GM1 antibodies by glycoarray. Analysis of variance (ANOVA) revealed that of the 55 possible single glycolipids and their 1:1 complexes, antibodies to the GM1:galactocerebroside (GM1:GalC) complex were most significantly associated with MMN, returning 33/33 MMN samples as positive by glycoarray and 29/33 positive by ELISA. Regression analysis revealed a high correlation in absolute values between ELISA and glycocarray. Receiver operator characteristic (ROC) analysis revealed insignificantly different diagnostic performance between the two methods, although at the lower end of sensitivity, the glycoarray appeared slightly advantageous by identifying antibodies in 4 ELISA-negative samples. Conclusions The use of combinatorial glycoarray or ELISA increased the diagnostic sensitivity of anti-glycolipid antibody testing in this cohort of MMN cases, without significantly affecting specificity, and may be a useful assay modification for routine clinical screening. PMID:22727042

  9. Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces.

    PubMed

    Yoshida, Shigenobu; Morita, Tomotake; Shinozaki, Yukiko; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Koitabashi, Motoo; Kitamoto, Dai; Kitamoto, Hiroko

    2014-01-01

    The biological function of mannosylerythritol lipids (MELs) towards their producer, Pseudozyma antarctica, on plant surfaces was investigated. MEL-producing wild-type strain and its MEL production-defective mutant strain (ΔPaEMT1) were compared in terms of their phenotypic traits on the surface of plastic plates, onion peels, and fresh leaves of rice and wheat. While wild-type cells adhering on plastic surfaces and onion peels changed morphologically from single cells to elongated ones for a short period of about 4 h and 1 day, respectively, ΔPaEMT1 cells did not. Microscopic observation of both strains grown on plant leaf surfaces verified that the wild type colonized a significantly bigger area than that of ΔPaEMT1. However, when MELs were exogenously added to the mutant cells on plant surfaces, their colonized area became enlarged. High-performance liquid chromatography analysis revealed a secretion of higher amount of MELs in the cell suspension incubated with wheat leaf cuttings compared to that in the suspension without cuttings. Transcriptional analysis by real-time reverse transcriptase PCR verified that the expression of erythritol/mannose transferase gene and MELs transporter gene of P. antarctica increased in the cells inoculated onto wheat leaves at 4, 6, and 8 days of incubation, indicating a potential of P. antarctica to produce MELs on the leaves. These findings demonstrate that MELs produced by P. antarctica on plant surfaces could be expected to play a significant role in fungal morphological development and propagation on plant surfaces.

  10. Human Lysozyme Peptidase Resistance Is Perturbed by the Anionic Glycolipid Biosurfactant Rhamnolipid Produced by the Opportunistic Pathogen Pseudomonas aeruginosa.

    PubMed

    Andersen, Kell K; Vad, Brian S; Scavenius, Carsten; Enghild, Jan J; Otzen, Daniel E

    2017-01-10

    Infection by the opportunistic pathogen Pseudomonas aeruginosa (PA) is accompanied by the secretion of virulence factors such as the secondary metabolite rhamnolipid (RL) as well as an array of bacterial enzymes, including the peptidase elastase. The human immune system tries to counter this via defensive proteins such as lysozyme (HLZ). HLZ targets the bacterial cell wall but may also have other antimicrobial activities. The enzyme contains four disulfide bonds and shows high thermodynamic stability and resistance to proteolytic attack. Here we show that RL promotes HLZ degradation by several unrelated peptidases, including the PA elastase and human peptidases. This occurs although RL does not by itself denature HLZ. Nevertheless, RL binds in a sufficiently high stoichiometry (8:1 RL:HLZ) to neutralize the highly cationic surface of HLZ. The initial cleavage sites agree well with the domain boundaries of HLZ. Thus, binding of RL to native HLZ may be sufficient to allow proteolytic attack at slightly exposed sites on the protein, leading to subsequent degradation. Furthermore, biofilms of RL-producing strains of PA are protected better against high concentrations of HLZ than RL-free PA strains are. We conclude that pathogen-produced RL may weaken host defenses by facilitating degradation of key host proteins.

  11. Microbial biosurfactants as additives for food industries.

    PubMed

    Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M

    2013-01-01

    Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed.

  12. Bioactivity of a Novel Glycolipid Produced by a Halophilic Buttiauxella sp. and Improving Submerged Fermentation Using a Response Surface Method.

    PubMed

    Marzban, Abdolrazagh; Ebrahimipour, Gholamhossein; Danesh, Abolghasem

    2016-09-22

    An antimicrobial glycolipid biosurfactant (GBS), extracted and identified from a marine bacterium, was studied to inhibit pathogenic microorganisms. Production of the GBS was optimized using a statistical method, a response surface method (RSM) with a central composite design (CCD) for obtaining maximum yields on a cost-effective substrate, molasses. The GBS-producing bacterium was identified as Buttiauxella Species in terms of biochemical and molecular characteristics. This compound showed a desirable antimicrobial activity against some pathogens such as E. coli, Bacillus subtilis, Bacillus cereus, Candida albicans, Aspergilus niger, Salmonella enterica. The rheological studies described the stability of the GBS at high values in a range of pH (7-8), temperature (20-60) and salinity (0%-3%). The statistical optimization of GBS fermentation was found to be pH 7, temperature 33 °C, Peptone 1%, NaCl 1% and molasses 1%. The potency of the GBS as an effective antimicrobial agent provides evidence for its use against food and human pathogens. Moreover, favorable production of the GBS in the presence of molasses as a cheap substrate and the feasibility of pilot scale fermentation using an RSM method could expand its uses in food, pharmaceutical products and oil industries.

  13. Marine biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea.

    PubMed

    Schulz, D; Passeri, A; Schmidt, M; Lang, S; Wagner, F; Wray, V; Gunkel, W

    1991-01-01

    Three bacterial strains of marine origin were isolated during a screening for biosurfactants among n-alkane degrading microorganisms. One strain-identified as Alcaligenes sp. MM1-produced a novel glucose lipid. In the case of Arthrobacter sp. EK 1 the well-known trehalose tetraester was found as major component. From another pure culture classified as Arthrobacter sp. SI 1, extracellular emulsifying agents with properties indicating high molecular weight substances were detected. Furthermore trehalose corynomycolates were found at up to 2 g/l. The isolated biosurfactants showed good interfacial and emulsifying properties.

  14. Biosurfactants in cosmetic formulations: trends and challenges.

    PubMed

    Vecino, X; Cruz, J M; Moldes, A B; Rodrigues, L R

    2017-01-12

    Cosmetic products play an essential role in everyone's life. People everyday use a large variety of cosmetic products such as soap, shampoo, toothpaste, deodorant, skin care, perfume, make-up, among others. The cosmetic industry encompasses several environmental, social and economic impacts that are being addressed through the search for more efficient manufacturing techniques, the reduction of waste and emissions and the promotion of personal hygiene, contributing to an improvement of public health and at the same time providing employment opportunities. The current trend among consumers is the pursuit for natural ingredients in cosmetic products, as many of these products exhibit equal, better or additional benefits in comparison with the chemical-based products. In this sense, biosurfactants are natural compounds with great potential in the formulation of cosmetic products given by their biodegradability and impact in health. Indeed, many of these biosurfactants could exhibit a "prebiotic" character. This review covers the current state-of-the-art of biosurfactant research for cosmetic purposes and further discusses the future challenges for cosmetic applications.

  15. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles.

    PubMed

    Kiran, G Seghal; Selvin, Joseph; Manilal, Aseer; Sujith, S

    2011-12-01

    Taking into consideration the needs of greener bioprocesses and novel enhancers for synthesis using microbial processes, biosurfactants, and/or biosurfactant producing microbes are emerging as an alternate source for the rapid synthesis of nanoparticles. A microemulsion technique using an oil-water-surfactant mixture was shown to be a promising approach for nanoparticle synthesis. Biosurfactants are natural surfactants derived from microbial origin composed mostly of sugar and fatty acid moieties, they have higher biodegradability, lower toxicity, and excellent biological activities. The biosurfactant mediated process and microbial synthesis of nanoparticles are now emerging as clean, nontoxic, and environmentally acceptable "green chemistry" procedures. The biosurfactant-mediated synthesis is superior to the methods of bacterial- or fungal-mediated nanoparticle synthesis, since biosurfactants reduce the formation of aggregates due to the electrostatic forces of attraction and facilitate a uniform morphology of the nanoparticles. In this review, we highlight the biosurfactant mediated synthesis of nanoparticles with relevant details including a greener bioprocess, sources of biosurfactants, and biological synthesized nanoparticles based on the available literature and laboratory findings.

  16. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    PubMed

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature.

  17. Biosurfactants: promising bioactive molecules for oral-related health applications.

    PubMed

    Elshikh, Mohamed; Marchant, Roger; Banat, Ibrahim M

    2016-09-01

    Biosurfactants are naturally produced molecules that demonstrate potentially useful properties such as the ability to reduce surface tensions between different phases. Besides having similar properties to their artificial chemical counterparts, they are regarded as environmental friendly, biodegradable and less toxic, which make them desirable candidates for downstream applications. The structure-activity-related properties of the biosurfactants which are directly correlated with potency of the biosurfactants as antimicrobial agents, the ability of the biosurfactants to alter surface energies and their ability to increase bioavailability are particularly what attract researchers to exploit their potential use in the oral-related health applications. Current research into biosurfactant indicates significant future potential for use in cosmetic and therapeutic oral hygiene product formulations and related medical device treatments.

  18. Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica.

    PubMed

    Gesheva, Victoria; Stackebrandt, Erko; Vasileva-Tonkova, Evgenia

    2010-08-01

    Isolate A-3 from Antarctic soil in Casey Station, Wilkes Land, was characterized for growth on hydrocarbons. Use of glucose or kerosene as a sole carbon source in the culture medium favoured biosynthesis of surfactant which, by thin-layer chromatography, indicated the formation of a rhamnose-containing glycolipid. This compound lowered the surface tension at the air/water interface to 27 mN/m as well as inhibited the growth of B. subtilis ATCC 6633 and exhibited hemolytic activity. A highly hydrophobic surface of the cells suggests that uptake occurs via a direct cell-hydrocarbon substrate contact. Strain A-3 is Gram-positive, halotolerant, catalase positive, urease negative and has rod-coccus shape. Its cell walls contained meso-diaminopimelic acid. Phylogenetic analysis based on comparative analysis of 16S rRNA gene sequences revealed that strain A-3 is closely related to Rhodococcus fascians with which it shares 100% sequence similarity. This is the first report on rhamnose-containing biosurfactant production by Rhodococcus fascians isolated from Antarctic soil.

  19. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion

    NASA Astrophysics Data System (ADS)

    Schmieg, John; Yang, Guangli; Franck, Richard W.; van Rooijen, Nico; Tsuji, Moriya

    2005-01-01

    It has been shown that dendritic cells (DCs) are able to present glycolipids to natural killer (NK) T cells in vivo. However, the essential role of DCs, as well as the role of other cells in glycolipid presentation, is unknown. Here, we show that DCs are the crucial antigen-presenting cells (APCs) for splenic NK T cells, whereas Kupffer cells are the key APCs for hepatic NK T cells. Both cell types stimulate cytokine production by NK T cells within 2 h of glycolipid administration, but only DCs are involved in the systemic, downstream responses to glycolipid administration. More specifically, CD8+ DCs produce IL-12 in response to glycolipid presentation, which stimulates secondary IFN- production by NK cells in different organs. Different APCs participate in glycolipid presentation to NK T cells in vivo but differ in their involvement in the overall glycolipid response. dendritic cell | Kupffer cell

  20. Functional role of antibody against "core" glycolipid of Enterobacteriaceae.

    PubMed Central

    Young, L S; Stevens, P; Ingram, J

    1975-01-01

    Antibodies against the "core" glycolipid of Enterobacteriaceae (2-keto, 3-deoxyoctonate-Lipid A) have been associated with protection against the sequelae of gram-negative rod bacteremia. To investigate the nature of this protection, dogs and rabbits were immunized with purified glycolipid prepared by phenol-chloroform-petroleum ether extraction of the "Re" mutant of Salmonella minnesota 595 and opsonophagocytic and bactericidal tests were carried out using lapine peritoneal granulocytes and serum factors. Whereas 1-4 mug/kg of glycolipid i.v. produced hypotension in dogs and 8 mug/kg i.v. was lethal, a rising dosage schedule of immunization with an average total dose of 1 mg/kg produced striking protection against shock and death against challenge with heterologous organisms. 20 control dogs, given approximately 10(10) live, serum-resistant Escherichia coli 0.85:H9 or Serratia marcescens 03 during a continuous intra-arterial pressure transducer recording, showed a drop in mean systolic pressure from 186 (+/- 6 SE) to 101 (+/- 12 SE) MM Hg and a fall in mean diastolic pressure from 118 (+/- 3 SE) to 64 (+/- 8 SE) mm Hg within 60-120 min. Minor pressure changes (average less than 12% of prechallenge levels) were seen in the same number of immunized dogs. In contrast, no significant difference was noted in the bloodstream clearance of these serum-resistant organisms over a period of 4-6 h between immunized and control dogs. Intravascular clearance was greater in animals immunized with the challenged strain or in glycolipid-immunized animals challenged with highly serum-sensitive E. coli 0.14:K7. Antibody against core glycolipid protected against the hemodynamic sequelae of bacillemia, augmented intravascular clearance of serum-sensitive organisms, and abrogated the pyrogenic response to enteric bacilli, but did not enhance clearance of serum-resistant organisms. Although canine and lapine antiserum against core glycolipid passively protected mice against a

  1. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  2. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at

  3. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources.

    PubMed

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2011-01-01

    This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.

  4. Substrate dependent production of extracellular biosurfactant by a marine bacterium.

    PubMed

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2009-01-01

    The potential of a marine microorganism to utilize different carbon substrates for the production of an extracellular biosurfactant was evaluated. Among the several carbon substrates tested for this purpose, production of the crude biosurfactant was found to be highest with glycerol (2.9+/-0.11 g L(-1)) followed by starch (2.5+/-0.11 g L(-1)), glucose (1.16+/-0.11 g L(-1)) and sucrose (0.94+/-0.07 g L(-1)). The crude biosurfactant obtained from glycerol, starch and sucrose media had significantly higher antimicrobial action than those obtained from glucose containing medium. RP-HPLC resolved the crude biosurfactants into several fractions one of which had significant antimicrobial action. The antimicrobial fraction was found in higher concentrations in biosurfactant obtained using glycerol, starch and sucrose as compared to the biosurfactants from glucose medium, thereby explaining higher antimicrobial activity. The carbon substrate was thus found to affect biosurfactant production both in a qualitative and quantitative manner.

  5. Heavy metal removal from sediments by biosurfactants.

    PubMed

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Batch washing experiments were used to evaluate the feasibility of using biosurfactants for the removal of heavy metals from sediments. Surfactin from Bacillus subtilis, rhamnolipids from Pseudomonas aeruginosa and sophorolipid from Torulopsis bombicola were evaluated using a metal-contaminated sediment (110mg/kg copper and 3300mg/kg zinc). A single washing with 0.5% rhamnolipid removed 65% of the copper and 18% of the zinc, whereas 4% sophorolipid removed 25% of the copper and 60% of the zinc. Surfactin was less effective, removing 15% of the copper and 6% of the zinc. The technique of ultrafiltration and zeta potential measurements were used to determine the mechanism of metal removal by the surfactants. It was then postulated that metal removal by the biosurfactants occurs through sorption of the surfactant on to the soil surface and complexation with the metal, detachment of the metal from the soil into the soil solution and hence association with surfactant micelles. Sequential extraction procedures were used on the sediment to determine the speciation of the heavy metals before and after surfactant washing. The carbonate and oxide fractions accounted for over 90% of the zinc present in the sediments. The organic fraction constituted over 70% of the copper. Sequential extraction of the sediments after washing with the various surfactants indicated that the biosurfactants, rhamnolipid and surfactin could remove the organically-bound copper and that the sophorolipid could remove the carbonate and oxide-bound zinc. Therefore, heavy metal removal from sediments is feasible and further research will be conducted.

  6. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  7. Phospholipids and Glycolipids of Sterol-requiring Mycoplasma

    PubMed Central

    Smith, Paul F.; Koostra, Walter L.

    1967-01-01

    The phospholipids of Mycoplasma hominis type 2 strain 07 are composed almost entirely of phosphatidyl glycerol. Traces of other glycerophospholipids may exist. No glycolipids are found. The phospholipids of Mycoplasma sp. avian strain J are composed of diphosphatidyl glycerol, which predominates in older cultures, a monoacyl glycerophosphoryl glycerophosphate, which may serve as a precursor of diphosphatidyl glycerol, and phosphatidyl glycerophosphate. This organism also contains cholesteryl glucoside and an unidentified glycolipid which appears to be similar to a monoglucosyl diglyceride. No turnover or radioisotope labeling of the phospholipids occurs during metabolism. This lack of turnover during growth is indicative of a structural role for these glycerophospholipids. A concomitant decrease of monoacyl glycerophosphoryl glycerophosphate and increase of diphosphatidyl glycerol occurs during growth. PMID:6025304

  8. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  9. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed.

  10. Quorum sensing: implications on rhamnolipid biosurfactant production.

    PubMed

    Dusane, Devendra H; Zinjarde, Smita S; Venugopalan, Vayalam P; McLean, Robert J C; Weber, Mary M; Rahman, Pattanathu K S M

    2010-01-01

    Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that are characteristics of Pseudomonas biofilms. Rhamnolipids have biotechnological applications in the uptake of hydrophobic substrates, bioremediation of contaminated soils and polluted waters. Rhamnolipid biosurfactants are biodegradable as compared to chemical surfactants and hence are more preferred in environmental applications. In this review, we examine the biochemical and genetic mechanism of rhamnolipid production by P. aeruginosa and propose the application of QS signal molecules in enhancing the rhamnolipid production.

  11. Production of biosurfactant by indigenous isolated bacteria in fermentation system

    NASA Astrophysics Data System (ADS)

    Fooladi, Tayebeh; Hamid, Aidil Bin Abd; Yusoff, Wan Mohtar Wan; Moazami, Nasrin; Shafiee, Zahra

    2013-11-01

    Bacillus pumilus 2IR is a soil isolate bacterium from an Iranian oil field that produces promising yield of biosurfactant in medium E. The production of biosurfactant by strain 2IR has been investigated using different carbon and nitrogen sources. The strain was able to grow and to produce surfactant, reducing the surface tension of the medium from 60mN/m to 31mN/m on glucose after 72 h of cultivation. The strain was able to produce the maximum amount of biosurfactant (0.72 g/l) when potassium nitrate and glucose used as a nitrogen and carbon sources respectively. Production of biosurfactant reaches to highest amount at a C/N ratio of 12.

  12. Gordonia (nocardia) amarae foaming due to biosurfactant production.

    PubMed

    Pagilla, K R; Sood, A; Kim, H

    2002-01-01

    Gordonia amarae, a filamentous actinomycete, commonly found in foaming activated sludge wastewater treatment plants was investigated for its biosurfactant production capability. Soluble acetate and paringly soluble hexadecane were used as carbon sources for G. amarae growth and biosurfactant production in laboratory scale batch reactors. The lowest surface tension (critical micelle concentration, CMC) of the cell-free culture broth was 55 dynes/cm when 1,900 mg/L acetate was used as the sole carbon source. The lowest surface tension was less than 40 dynes/cm when either 1% (v/v) hexadecane or a mixture of 1% (v/v) hexadecane and 0.5% (w/v) acetate was used as the carbon source. The maximum biomass concentration (the stationary phase) was achieved after 4 days when acetate was used along with hexadecane, whereas it took about 8 days to achieve the stationary phase with hexadecane alone. The maximum biosurfactant production was 3 x CMC with hexadecane as the sole carbon source, and it was 5 x CMC with the mixture of hexadecane and acetate. Longer term growth studies (approximately 35 days of culture growth) indicated that G. amarae produces biosurfactant in order to solubilize hexadecane, and that adding acetate improves its biosurfactant production by providing readily degradable substrate for initial biomass growth. This research confirms that the foaming problems in activated sludge containing G. amarae in the activated sludge are due to the biosurfactant production by G. amarae when hydrophobic substrates such as hexadecane are present.

  13. Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons.

    PubMed

    Bordoloi, N K; Konwar, B K

    2009-10-15

    Biosurfactant can make hydrocarbon complexes more mobile with the potential use in oil recovery, pumping of crude oil and in bioremediation of crude oil contaminant. In the investigation, bacterial isolates capable of utilizing poly-cyclic aromatic hydrocarbons like phenanthrene, pyrene and fluorene were used. A gradual decrease of the supplemented hydrocarbons in the culture medium was observed with corresponding increase in bacterial biomass and protein. The medium having the combined application of fluorine and phenanthrene caused better biosurfactant production (0.45 g l(-1)) and (0.38 g l(-1)) by Pseudomonas aeruginosa strains MTCC7815 and MTCC7814. The biosurfactant from MTCC7815 (41.0 microg ml(-1)) and MTCC7812 (26 microg ml(-1)) exhibited higher solubilization of pyrene; whereas, MTCC8165 caused higher solubilization of phenanthrene; and that of MTCC7812 (24.45 microg ml(-1)) and MTCC8163 (24.49 microg ml(-1)) caused more solubilzation of fluorene. Higher solubilization of pyrene and fluorene by the biosurfactant of MTCC7815 and MTCC7812, respectively enhanced their metabolism causing sustained growth. Biosurfactants were found to be lipopeptide and protein-starch-lipid complex in nature and they could reduce the surface tension of pure water (72 m Nm(-1)) to 35 m Nm(-1). The critical micelle concentration (CMC) was also lower than the chemical surfactant sodium dodecyl sulphate (SDS). They differed in quantity and structure. The predominant rhamnolipids present in biosurfactants were Rha-C(8)-C(10) and Rha-C(10)-C(8).

  14. Molecular structure and baking performance of individual glycolipid classes from lecithins.

    PubMed

    Selmair, Patrick L; Koehler, Peter

    2009-06-24

    The potential of individual glycolipid classes from lecithins (soybean, rapeseed, and sunflower) in breadmaking was determined in comparison to classical surfactants such as diacetyltartaric acid esters of mono- and diacylglycerides (DATEM), monoacylglycerides, sodium stearoyl-2-lactylate (SSL), and two synthetic glycolipids by means of rheological and baking tests on a microscale. A highly glycolipid-enriched sample containing the entire glycolipid moiety of the lecithin was obtained using an optimized batch procedure with silica gel. This sample was subsequently used to gain individual glycolipid classes through column chromatography on silica gel. The major glycolipid classes in the lecithins, digalactosyl diacylglycerides (1), sterol glucosides (2), acylated sterol glucosides (3), and cerebrosides (4), were identified and characterized. All isolated glycolipid classes displayed excellent baking performance. A better baking activity than that of the classical surfactants was displayed by 1, 3, and 4 and an equivalent baking activity by 2. The same glycolipid classes, except 3, of different lecithin origin showed only slight differences in their baking activities, due to different fatty acid compositions. Furthermore, the glycolipid classes influenced the crumb structure significantly by improving the crumb softness and grain. Interestingly, none of the glycolipid classes showed significant antistaling effect. A direct effect on the overall rheological behavior of the dough was only found for the commercial surfactants. However, the rheological effect seen on gluten isolated from surfactant-containing dough revealed that the surfactants could be divided into two main groups, one of them directly forming and stabilizing liquid film lamellae through adsorption to interfaces and the other indirectly increasing the surface activity of the endogenous lipids in the flour. The results suggest that in wheat dough, glycolipids seem to have an impact on the dough liquor

  15. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    PubMed

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  16. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  17. Multiple Roles of Biosurfactants in Biofilms.

    PubMed

    Satputea, Surekha K; Banpurkar, Arun G; Banat, Ibrahim M; Sangshetti, Jaiprakash N; Patil, Rajendra H; Gade, Wasudev N

    2016-01-01

    Microbial growth and biofilms formation are a continuous source of contamination on most surfaces with biological, inanimate, natural or man-made. The use of chemical surfactants in daily practice to control growth, presence or adhesion of microorganisms and ultimately the formation of biofilms and biofouling is therefore becoming essential. Synthetic surfactants are, however, not preferred or ideal and biologically derived surface active biosurfactants (BSs) molecules produced mainly by microorganisms are therefore becoming attractive and sought by many industries. The search for innovative and interesting BS molecules that have effective antimicrobial activities and to use as innovative alternatives to chemical surfactants with added antimicrobial value among many other advantages has been ongoing for some time. This review discusses the various roles of BS molecules in association with biofilm formation. Recent updates on several mechanisms involved in biofilm development and control are presented vide this article.

  18. Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems.

    PubMed

    Jackson, Stephen A; Borchert, Erik; O'Gara, Fergal; Dobson, Alan D W

    2015-06-01

    Research focused on the search for new biosurfactants aims to replace chemical surfactants, which while being cost-effective are ecologically undesirable. Metagenomics can lead to discovery of novel biosurfactants, tackling issues of low production yields. Recent successes include the heterologous production of biosurfactants. The dearth of biosurfactants discovered to date through metagenomics is puzzling given that good screening systems and heterologous host systems are available.

  19. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids

    PubMed Central

    Daffé, Mamadou; Crick, Dean C.; Jackson, Mary

    2014-01-01

    This chapter summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity and biogenesis of a variety of non-covalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this chapter include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, non-carotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides. PMID:25485178

  20. Biosurfactants and surfactants interacting with membranes and proteins: Same but different?

    PubMed

    Otzen, Daniel E

    2017-04-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. For several decades they have attracted interest as promising alternatives to current petroleum-based surfactants. Aside from their green profile, they have remarkably low critical micelle concentrations, reduce the air/water surface tension to very low levels and are excellent emulsifiers, all of which make them comparable or superior to their synthetic counterparts. These remarkable physical properties derive from their more complex chemical structures in which hydrophilic and hydrophobic regions are not as clearly separated as chemical surfactants but have a more mosaic distribution of polarity as well as branched or circular structures. This allows the lipopeptide surfactin to adopt spherical structures to facilitate dense packing at interfaces. They are also more complex. Glycolipid BS, e.g. rhamnolipids (RL) and sophorolipids, are produced biologically as mixtures which vary in the size and saturation of the hydrophobic region as well as modifications in the hydrophilic headgroup, such as the number of sugar groups and different levels of acetylation, leading to variable surface-active properties. Their amphiphilicity allows RL to insert easily into membranes at sub-cmc concentrations to modulate membrane structure and extract lipopolysaccharides, leading to extensive biofilm remodeling in vivo, sometimes in collaboration with hydrophobic RL precursors. Thanks to their mosaicity, even anionic BS like RL only bind weakly to proteins and show much lower denaturing potency, even supporting membrane protein refolding. Nevertheless, they can promote protein degradation by proteases e.g. by neutralizing positive charges, which together with their biofilm-combating properties makes them very promising detergent surfactants. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  1. Myristate exchange in glycolipid A and VSG of African trypanosomes.

    PubMed

    Buxbaum, L U

    1994-02-01

    The variant surface glycoprotein (VSG) of T. brucei is anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor which is unique in that its fatty acids are exclusively myristate (a fourteen carbon saturated fatty acid). We showed that the myristate is added to the GPI precursor in a remodeling reaction involving deacylation and reacylation. We now demonstrate that trypanosomes have a second pathway of myristoylation for GPI anchors that we call "myristate exchange" which is distinct from the fatty acid remodeling pathway. We propose that this is an exchange of [3H]myristate into both sn-1 and sn-2 positions of glycolipid A, which already contains myristate, and have demonstrated this using inhibitors and a variety of other methods. We have partially characterized myristate exchange with respect to specificity and susceptibility to some inhibitors. The apparent Km for myristoyl CoA is 7 nM. This myristate-specific process may represent a proof-reading system to ensure that the fatty acids on VSG are exclusively myristate. Although myristate exchange was first discovered for glycolipid A, we now believe that VSG is the true substrate of this reaction. VSG is efficiently labeled by exchange in the presence of cycloheximide, which prevents anchoring of newly synthesized protein. Although its location is not yet known, we have evidence that exchange does not localize to either the endoplasmic reticulum or the plasma membrane. We will present data indicating that surface VSG may be internalized and undergo myristate exchange.

  2. Possibilities and challenges for biosurfactants use in petroleum industry.

    PubMed

    Perfumo, Amedea; Rancich, Ivo; Banat, Ibrahim M

    2010-01-01

    Biosurfactants are a group of microbial molecules identified by their unique capabilities to interact with hydrocarbons. Emulsification and de-emulsification, dispersion, foaming, wetting and coating are some of the numerous surface activities that biosurfactants can achieve when applied within systems such as immiscible liquid/liquid (e.g., oil/water), solid/ liquid (e.g., rock/oil and rock/water) and gas/liquid. Therefore, the possibilities of exploiting these bioproducts in oil-related sciences are vast and made petroleum industry their largest possible market at present. The role of biosurfactants in enhancing oil recovery from reservoirs is certainly the best known; however they can be effectively applied in many other fields from transportation of crude oil in pipeline to the clean-up of oil storage tanks and even manufacturing of fine petrochemicals. When properly used, biosurfactants are comparable to traditional chemical analogues in terms of performances and offer advantages with regard to environment protection/conservation. This chapter aims at providing an up-to-date overview of biosurfactant roles, applications and possible future uses related to petroleum industry.

  3. Biosurfactants: Multifunctional Biomolecules of the 21st Century

    PubMed Central

    Santos, Danyelle Khadydja F.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2016-01-01

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and “green” products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries. PMID:26999123

  4. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications

    PubMed Central

    Gudiña, Eduardo J.; Teixeira, José A.; Rodrigues, Lígia R.

    2016-01-01

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments. PMID:26901207

  5. Biosurfactants: Multifunctional Biomolecules of the 21st Century.

    PubMed

    Santos, Danyelle Khadydja F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2016-03-18

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and "green" products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.

  6. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    PubMed

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  7. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth.

    PubMed

    Sajna, Kuttuvan Valappil; Sukumaran, Rajeev Kumar; Gottumukkala, Lalitha Devi; Pandey, Ashok

    2015-09-01

    The aim of this work was to evaluate the biosurfactants produced by the yeast Pseudozyma sp. NII 08165 for enhancing the degradation of crude oil by a model hydrocarbon degrading strain, Pseudomonas putida MTCC 1194. Pseudozyma biosurfactants were supplemented at various concentrations to the P. putida culture medium containing crude oil as sole carbon source. Supplementation of the biosurfactants enhanced the degradation of crude oil by P. putida; the maximum degradation of hydrocarbons was observed with a 2.5 mg L(-1) supplementation of biosurfactants. Growth inhibition constant of the Pseudozyma biosurfactants was 11.07 mg L(-1). It was interesting to note that Pseudozyma sp. NII 08165 alone could also degrade diesel and kerosene. Culture broth of Pseudozyma containing biosurfactants resulted up to ∼46% improvement in degradation of C10-C24 alkanes by P. putida. The enhancement in degradation efficiency of the bacterium with the culture broth supplementation was even more pronounced than that with relatively purer biosurfactants.

  8. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells.

    PubMed Central

    Leffler, H; Svanborg-Edén, C

    1981-01-01

    A specific family of glycolipids, the globoseries, was shown to act as receptors on human uroepithelial cells and erythrocytes for the majority of uropathogenic Escherichia coli strains attaching to or hemagglutinating those cells. This was demonstrated in three different ways: (i) correlation between the natural presence of glycolipid in the target cell (erythrocytes of different species) and binding of bacteria; (ii) inhibition of attachment to human uroepithelial cells by preincubation of bacteria and glycolipid; and (iii) induction of binding to unreactive cells by coating of these cells with glycolipid. Strains reacting with the receptor agglutinated guinea pig erythrocytes in a mannose-resistant way after, but not before, coating of the cells with globotetraosylceramide. Unrelated glycolipids were not recognized. The reaction was made independent of simultaneous occurrence of mannose-sensitive adhesions on the strains by addition of D-mannose. The receptor-coated cells were used as a tool to screen for prevalence of receptor recognition in a collection of 453 E. coli strains isolated from patients with urinary tract infection or from the stools of healthy children. Of 150 strains attaching to human uroepithelial cells and agglutinating human erythrocytes, 121 bound to globotetraosylceramide (81%). Globoside recognition was especially frequent among pyelonephritis strains (74/81). The glycolipid composition of the urogenital epithelium and kidney tissue and the ability of uropathogenic E. coli to bind to these glycolipids may be a determinant in host-parasite interaction leading to urinary tract infection. PMID:7037645

  9. Adaptation of marine plankton to environmental stress by glycolipid accumulation.

    PubMed

    Gašparović, Blaženka; Godrijan, Jelena; Frka, Sanja; Tomažić, Igor; Penezić, Abra; Marić, Daniela; Djakovac, Tamara; Ivančić, Ingrid; Paliaga, Paolo; Lyons, Daniel; Precali, Robert; Tepić, Nataša

    2013-12-01

    A systematic investigation of non-phosphorus containing glycolipids (GL) was conducted in the northern Adriatic Sea during two years at two stations with different nutrient loads. GL concentration varied both spatially and temporally, with values of 1.1-21.5 μg/L and 0.4-44.7 μg/L in the particulate and the dissolved fraction, respectively. The highest concentrations were measured during summer in surface waters and at the more oligotrophic station, where GL yields (% of total lipids) were often higher than 20% and 50% in the particulate and dissolved fractions, respectively. To obtain more insight into factors governing GL accumulation autotrophic plankton community structure (pico-, nano- and microplankton fractions), chlorophyll a, heterotrophic bacteria and nutrient concentrations were measured together with hydrographic parameters and sunlight intensity. During the investigated period smaller autotrophic plankton cells (pico- and followed by nanoplankton) prevailed in abundance over larger cells (microplankton), which were found in large numbers in freshened surface samples. Several major findings resulted from the study. Firstly, during PO4 limitation, particularly at the oligotrophic station, enhanced glycolipid instead of phospholipid accumulation takes place, representing an effective phosphate-conserving mechanism. Secondly, results suggest that at seawater temperatures >19 °C autotrophic plankton considerably accumulate GL, probably to achieve thermal stability. Thirdly, high sunlight intensities seem to influence increased GL accumulation; GL possibly plays a role in cell mechanisms that prevent/mitigate photooxidation. And finally, substantial accumulation of GL detected in the dissolved fraction could be related to the fact that GL do not contain biologically relevant elements, like phosphorus, which makes them an unattractive substrate for enzyme activity. Therefore, substantial portion of CO2 could be removed from the atmosphere in P

  10. Isolation and characterization of halophilic Archaea able to produce biosurfactants.

    PubMed

    Kebbouche-Gana, S; Gana, M L; Khemili, S; Fazouane-Naimi, F; Bouanane, N A; Penninckx, M; Hacene, H

    2009-05-01

    Halotolerant microorganisms able to live in saline environments offer a multitude of actual or potential applications in various fields of biotechnology. This is why some strains of Halobacteria from an Algerian culture collection were screened for biosurfactant production in a standard medium using the qualitative drop-collapse test and emulsification activity assay. Five of the Halobacteria strains reduced the growth medium surface tension below 40 mN m(-1), and two of them exhibited high emulsion-stabilizing capacity. Diesel oil-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 35% sodium chloride or up to 25% ethanol in the aqueous phase. Emulsions were stable to three cycles of freezing and thawing. The components of the biosurfactant were determined; it contained sugar, protein and lipid. The two Halobacteria strains with enhanced biosurfactant producers, designated strain A21 and strain D21, were selected to identify by phenotypic, biochemical characteristics and by partial 16S rRNA gene sequencing. The strains have Mg(2+), and salt growth requirements are always above 15% (w/v) salts with an optimal concentration of 15-25%. Analyses of partial 16S rRNA gene sequences of the two strains suggested that they were halophiles belonging to genera of the family Halobacteriaceae, Halovivax (strain A21) and Haloarcula (strain D21). To our knowledge, this is the first report of biosurfactant production at such a high salt concentration.

  11. Utilization of sophorolipids as biosurfactants for postemergence herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sophorolipids are carbohydrate-based, amphiphilic biosurfactants produced by several species of the Starmerella yeast clade. Most sophorolipids are partially acetylated sophorose sugars O-ß-glycosidically linked to 17-L-hydroxy-delta9-octadecenoic acid, where typically the acyl carboxyl group forms...

  12. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene.

    PubMed

    Shin, Kyung-Hee; Ahn, Yeonghee; Kim, Kyoung-Woong

    2005-11-01

    The effect of the biosurfactant rhamnolipid on phenanthrene biodegradation and cell growth of phenanthrene degraders was investigated. To compare the effect of rhamnolipid addition, two bacterial strains, 3Y and 4-3, which were isolated from a diesel-contaminated site in Korea, were selected. Without the biosurfactant, large amounts of phenanthrene were degraded with both strains at neutral pH, with higher rates of phenanthrene degradation when the cell growth was higher. Upon the addition of 240 mg/L rhamnolipid, the phenanthrene degradation and optical density were reduced, with this inhibitory effect similar for both 3Y and 4-3. To explain this inhibition, the cell growths of both strains were monitored with various concentrations of rhamnolipid, which showed significant toxic effects toward strain 3Y, but was nontoxic toward 4-3. Combining the inhibitory and toxicity results with regard to the biodegradation, different mechanisms can be suggested for each strain. In the biodegradation experiments, the toxicity of rhamnolipid itself mainly was responsible for the inhibitory effect in the case of 3Y, whereas the toxicity of solubilized phenanthrene or the increased toxicity of rhamnolipid in the presence of solubilized phenanthrene could have resulted in the inhibitory effect in the case of 4-3. This study demonstrated that the effectiveness of biosurfactant-enhanced biodegradation can be significantly different depending on the strain, and the toxicity of the biosurfactant should be considered as an important factor.

  13. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy.

    PubMed

    Durrant, L G; Noble, P; Spendlove, I

    2012-02-01

    Research into aberrant glycosylation and over-expression of glycolipids on the surface of the majority of cancers, coupled with a knowledge of glycolipids as functional molecules involved in a number of cellular physiological pathways, has provided a novel area of targets for cancer immunotherapy. This has resulted in the development of a number of vaccines and monoclonal antibodies that are showing promising results in recent clinical trials.

  14. Application of oil refinery waste in the biosynthesis of glycolipids by yeast.

    PubMed

    Bednarski, Włodzimierz; Adamczak, Marek; Tomasik, Jan; Płaszczyk, Mariusz

    2004-10-01

    Candida antarctica or Candida apicola synthesized surfactants (glycolipids) in the cultivation medium supplemented with oil refinery waste, either with soapstock (from 5.0% to 12.0% v/v) or post-refinery fatty acids (from 2.0% to 5.0% v/v). The efficiency of glycolipids synthesis was determined by the amount of waste supplemented to the medium and was from 7.3 to 13.4 g/l and from 6.6 to 10.5 g/l in the medium supplemented with soapstock and post-refinery fatty acids, respectively. The studied yeast also synthesized glycolipids in the non-supplemented medium however, by the enrichment of medium with the oil refinery waste, a 7.5-8.5-fold greater concentration of glycolipids was obtained in the post-culture liquid then in the medium without addition of oil refinery waste. The yeast synthesized from 6.6 to 10.3 g dry biomass/l and the intra-cellular fat content was from 16.8% to 30.2%. The efficiency of glycolipids synthesis was determined by yeast species, medium acidity and culture period. The surface tension of the post-culture liquid separated from yeast biomass was reduced to 35.6 mN/m, which corresponded to the surface tension obtained at the critical micelle concentration of glycolipids.

  15. Glycosylation of Glycolipids in Cancer: Basis for Development of Novel Therapeutic Approaches

    PubMed Central

    Daniotti, Jose L.; Vilcaes, Aldo A.; Torres Demichelis, Vanina; Ruggiero, Fernando M.; Rodriguez-Walker, Macarena

    2013-01-01

    Altered networks of gene regulation underlie many pathologies, including cancer. There are several proteins in cancer cells that are turned either on or off, which dramatically alters the metabolism and the overall activity of the cell, with the complex machinery of enzymes involved in the metabolism of glycolipids not being an exception. The aberrant glycosylation of glycolipids on the surface of the majority of cancer cells, associated with increasing evidence about the functional role of these molecules in a number of cellular physiological pathways, has received considerable attention as a convenient immunotherapeutic target for cancer treatment. This has resulted in the development of a substantial number of passive and active immunotherapies, which have shown promising results in clinical trials. More recently, antibodies to glycolipids have also emerged as an attractive tool for the targeted delivery of cytotoxic agents, thereby providing a rationale for future therapeutic interventions in cancer. This review first summarizes the cellular and molecular bases involved in the metabolic pathway and expression of glycolipids, both in normal and tumor cells, paying particular attention to sialosylated glycolipids (gangliosides). The current strategies in the battle against cancer in which glycolipids are key players are then described. PMID:24392350

  16. Physicochemical Properties of Biosurfactant Produced by Pseudomonas fluorescens Grown on Whey Tofu

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Handayani, D. S.; Marliyana, S. D.; Suratmi, S.

    2017-02-01

    The research aims to examine the physicochemical properties of biosurfactant produced by Pseudomonas fluorescens. Biosurfactant was produced in whey tofu media containing 8 g/L nutrient broth and 5 g/L NaCl which was fermented for 2 days at room temperature. Biosurfactant was identified as rhamnolipids which had critical micelle concentration (CMC) value of 638 mg/L and surface tension of 54 mN/m. The biosurfactant had water in oil (w/o) emulsion type. The biosurfactant was able to decrease the interfacial tension more than 40% for emulsion of water with hexane, pentane, benzene, lubricants or kerosene. The stable emulsions were reached up to 30 days with the E24 value of about 50% when paraffin, toluene, lubricants or palm oil was used as an immiscible compound. Commercial surfactants, such as Triton X-100 and Tween-80 were investigated to compare their emulsification activities and emulsion stabilities with the produced biosurfactant.

  17. Utilization of oleo-chemical industry by-products for biosurfactant production

    PubMed Central

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  18. Characterization of biosurfactant-producing strains of fluorescent pseudomonads in a soilless cultivation system.

    PubMed

    Hultberg, Malin; Bergstrand, Karl-Johan; Khalil, Sammar; Alsanius, Beatrix

    2008-08-01

    The use of biosurfactants is a promising alternative in biological control of zoospore-producing plant pathogens. In the present study, biosurfactant production by the indigenous population of fluorescent pseudomonads in a soilless plant cultivation system was studied during the growing season. A total of 600 strains was screened and of these 18.5% were observed to produce biosurfactants. Production of both antibiotics and biosurfactant was uncommon among the isolated strains. A selective effect of the cultivation system filter was observed on the biosurfactant-producing strains and these strains were only occasionally observed after the filter, despite having a significantly higher motility than the nonbiosurfactant-producing strains. The majority of biosurfactant-producing strains were isolated from the filter skin, which suggests that this is a suitable surface for inoculation with biocontrol strains.

  19. Spray drying as a strategy for biosurfactant recovery, concentration and storage.

    PubMed

    Barcelos, Gisely S; Dias, Lívia C; Fernandes, Péricles L; Fernandes, Rita de Cássi R; Borges, Arnaldo C; Kalks, Karlos Hm; Tótola, Marcos R

    2014-01-01

    The objective of this study was to analyze the use of Spray Drying for concentration and preservation of biosurfactants produced by Bacillus subtilis LBBMA RI4914 isolated from a heavy oil reservoir. Kaolinite and maltodextrin 10DE or 20DE were tested as drying adjuvants. Surface activity of the biosurfactant was analyzed by preparing dilution x surface activity curves of crude biosurfactant, crude biosurfactant plus adjuvants and of the dried products, after their reconstitution in water. The shelf life of the dried products was also evaluated. Spray drying was effective in the recovery and concentration of biosurfactant, while keeping its surface activity. Drying adjuvants were required to obtain a solid product with the desired characteristics. These compounds did not interfere with tensoactive properties of the biosurfactant molecules. The dehydrated product maintained its surfactant properties during storage at room temperature during the evaluation period (120 days), with no detectable loss of activity.

  20. Neurobiology and cellular pathogenesis of glycolipid storage diseases.

    PubMed Central

    Walkley, Steven U

    2003-01-01

    Disorders of lysosomal metabolism often involve the accumulation of specific types of glycolipid, particularly gangliosides, because of either degradative failure or other currently unknown mechanisms. Although the precise role of gangliosides in cells remains enigmatic, the presence of specific abnormalities secondary to ganglioside accumulation in lysosomal diseases has suggested important biological functions. Chief among these is the growth of new dendrites on particular classes of mature neurons secondary to an increase in GM2 ganglioside. That GM2 has also been shown to be elevated in normal immature neurons coincident with dendritic sprouting provides a compelling argument that this ganglioside plays a role in dendritic initiation. This discovery has led to the search for other regulators of dendritic differentiation that may in some way be linked to the expression and/or function of GM2 ganglioside. Principal candidates that have emerged include tyrosine kinase receptors, small GTPases and calcium/calmodulin-dependent protein kinase II. Understanding the mechanism underlying ectopic dendritogenesis in lysosomal diseases can be expected to generate significant insight into the control of dendritic plasticity in normal brain. The detrimental aspects of ganglioside accumulation in storage diseases as well as the potential link between gangliosides and dendritogenesis also provide a strong rationale for developing pharmacological means to manipulate ganglioside expression in neurons. PMID:12803923

  1. Formation of gold nanoparticles by glycolipids of Lactobacillus casei

    PubMed Central

    Kikuchi, Fumiya; Kato, Yugo; Furihata, Kazuo; Kogure, Toshihiro; Imura, Yuki; Yoshimura, Etsuro; Suzuki, Michio

    2016-01-01

    Gold nanoparticles have particular properties distinct from those of bulk gold crystals, and such nanoparticles are used in various applications in optics, catalysis, and drug delivery. Many reports on microbial synthesis of gold nanoparticles have appeared. However, the molecular details (reduction and dispersion) of such synthesis remain unclear. In the present study, we studied gold nanoparticle synthesis by Lactobacillus casei. A comparison of L. casei components before and after addition of an auric acid solution showed that the level of unsaturated lipids decreased significantly after addition. NMR and mass spectrum analysis showed that the levels of diglycosyldiacylglycerol (DGDG) and triglycosyldiacylglycerol (TGDG) bearing unsaturated fatty acids were much reduced after formation of gold nanoparticles. DGDG purified from L. casei induced the synthesis of gold nanoparticles in vitro. These results suggested that glycolipids, such as DGDG, play important roles in reducing Au(III) to Au(0) and in ensuring that the nanoparticles synthesized remain small in size. Our work will lead to the development of novel, efficient methods by which gold nanoparticles may be produced by, and accumulated within, microorganisms. PMID:27725710

  2. Baking performance of synthetic glycolipids in comparison to commercial surfactants.

    PubMed

    Selmair, Patrick L; Koehler, Peter

    2008-08-13

    To gain insight into structure-activity relationships of glycolipids in breadmaking monogalactosyl dilinoleylglycerol ( 8) and monogalactosyl monolinoleylglycerol ( 6) were synthesized. Then their functional properties in dough and breadmaking were compared to those of commercial surfactants such as lecithins (from soybean, rapeseed, and sunflower), diacetyltartaric acid esters of monoglycerides (DATEM), monoglycerides, and sodium stearoyl-2-lactylate. Chemical synthesis of the galactolipids consisted of a four-step reaction pathway, yielding amounts of 1-1.5 g suitable for the determination of the functional properties. Variation of the acylation time in the third step provided either the monoacyl ( 6) or the diacyl compound ( 8). The functional properties were determined by means of rheological and baking tests on a microscale (10 g of flour). The synthetic galactolipids both displayed an excellent baking performance, with 6 having by far the best baking activity of all examined surfactants. The baking activities of 8, DATEM, and the monoglycerides were in the same range, whereas sodium stearoyl-2-lactylate was less active. Although the lecithins gained similar maxima in bread volume increases as the synthetic surfactants did, considerably higher concentrations were required to do so. An antistaling effect was found for only 6 and not for 8. However, this effect was weaker than for sodium stearoyl-2-lactylate and the monoglycerides.

  3. Erylusamides: Novel Atypical Glycolipids from Erylus cf. deficiens.

    PubMed

    Gaspar, Helena; Cutignano, Adele; Grauso, Laura; Neng, Nuno; Cachatra, Vasco; Fontana, Angelo; Xavier, Joana; Cerejo, Marta; Vieira, Helena; Santos, Susana

    2016-10-11

    Among marine organisms, sponges are the richest sources of pharmacologically-active compounds. Stemming from a previous lead discovery program that gathered a comprehensive library of organic extracts of marine sponges from the off-shore region of Portugal, crude extracts of Erylus cf. deficiens collected in the Gorringe Bank (Atlantic Ocean) were tested in the innovative high throughput screening (HTS) assay for inhibitors of indoleamine 2,3-dioxygenase (IDO) and showed activity. Bioassay guided fractionation of the dichloromethane extract led to the isolation of four new glycolipids, named erylusamide A-D. The structures of the isolated compounds were established by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and chemical derivatization. The metabolites shared a pentasaccharide moiety constituted by unusual highly acetylated ᴅ-glucose moieties as well as ᴅ-xylose and ᴅ-galactose. The aglycones were unprecedented long chain dihydroxyketo amides. Erylusamides A, B and D differ in the length of the hydrocarbon chain, while erylusamide C is a structural isomer of erylusamide B.

  4. Erylusamides: Novel Atypical Glycolipids from Erylus cf. deficiens

    PubMed Central

    Gaspar, Helena; Cutignano, Adele; Grauso, Laura; Neng, Nuno; Cachatra, Vasco; Fontana, Angelo; Xavier, Joana; Cerejo, Marta; Vieira, Helena; Santos, Susana

    2016-01-01

    Among marine organisms, sponges are the richest sources of pharmacologically-active compounds. Stemming from a previous lead discovery program that gathered a comprehensive library of organic extracts of marine sponges from the off-shore region of Portugal, crude extracts of Erylus cf. deficiens collected in the Gorringe Bank (Atlantic Ocean) were tested in the innovative high throughput screening (HTS) assay for inhibitors of indoleamine 2,3-dioxygenase (IDO) and showed activity. Bioassay guided fractionation of the dichloromethane extract led to the isolation of four new glycolipids, named erylusamide A–D. The structures of the isolated compounds were established by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and chemical derivatization. The metabolites shared a pentasaccharide moiety constituted by unusual highly acetylated d-glucose moieties as well as d-xylose and d-galactose. The aglycones were unprecedented long chain dihydroxyketo amides. Erylusamides A, B and D differ in the length of the hydrocarbon chain, while erylusamide C is a structural isomer of erylusamide B. PMID:27727161

  5. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery

    PubMed Central

    Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bahry, Saif N.; Elshafie, Abdulkadir E.; Al-Bemani, Ali S.; Al-Bahri, Asma; Al-Mandhari, Musallam S.

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m−1 and 2.47 ± 0.32 mN m−1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24–26% over residual oil saturation (Sor). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes. PMID:27933041

  6. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.

    PubMed

    Bezza, Fisseha Andualem; Chirwa, Evans M Nkhalambayausi

    2016-02-01

    The potential for biological treatment of an environment contaminated by complex petrochemical contaminants was evaluated using creosote contaminated soil in ex situ bio-slurry reactors. The efficacy of biosurfactant application and stimulation of in situ biosurfactant production was investigated. The biosurfactant produced was purified and characterised using Fourier transform infrared (FTIR) spectroscopy. Biosurfactant enhanced degradation of PAHs was 86.5% (with addition of biosurfactant) and 57% in controls with no biosurfactant and nutrient amendments after incubation for 45 days. A slight decrease in degradation rate observed in the simultaneous biosurfactant and nutrient, NH4NO3 and KH2PO4, supplemented microcosm can be attributed to preferential microbial consumption of the biosurfactant supplemented. The overall removal of PAHs was determined to be mass transport limited since the dissolution rate caused by the biosurfactant enhanced the bioavailability of the PAHs to the microorganisms. The consortium culture was predominated by the aromatic ring-cleaving species Bacillus stratosphericus, Bacillus subtilis, Bacillus megaterium, and Pseudomonas aeruginosa.

  7. Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

    PubMed Central

    Nguyen, Thu T.; Sabatini, David A.

    2011-01-01

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications. PMID:21541055

  8. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    PubMed

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m(-1) and 2.47 ± 0.32 mN m(-1) respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (Sor). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  9. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    PubMed

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media.

  10. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications.

    PubMed

    Nguyen, Thu T; Sabatini, David A

    2011-02-18

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications.

  11. Mapping fucosylated epitopes on glycoproteins and glycolipids of Schistosoma mansoni cercariae, adult worms and eggs.

    PubMed

    Robijn, M L M; Wuhrer, M; Kornelis, D; Deelder, A M; Geyer, R; Hokke, C H

    2005-01-01

    The developmental expression of the antigenic fucosylated glycan motifs Fucalpha1-3GalNAcbeta1-4GlcNAc (F-LDN), Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc (F-LDN-F), GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LDN-F), Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis X), and GalNAcbeta1-4(Fucalpha1-2Fucalpha1-3)GlcNAc (LDN-DF) in Schistosoma mansoni cercariae, adult worms and eggs, was surveyed using previously defined anti-carbohydrate monoclonal antibodies (mAbs). Lewis X was found both on glycolipids and glycoproteins, yet with completely different expression patterns during the life-cycle: on glycolipids, Lewis X was mainly found in the cercarial stage, while protein-conjugated Lewis X was mainly present in the egg stage. Also protein-conjugated LDN-F and LDN-DF were most highly expressed in the egg-stage. On glycolipids LDN-DF was found in all three examined stages, whereas LDN-F containing glycolipids were restricted to adult worms and eggs. The motifs F-LDN and F-LDN-F were found both on glycoproteins and glycolipids of the cercarial and egg stage, while in the adult stage, they appeared to occur predominantly on glycolipids. Immunofluorescence assays (IFA) showed that these F-LDN and F-LDN-F containing glycolipids were localized in a yet undefined duct or excretory system of adult worms. Murine infection serum showed major reactivity with this adult worm duct-system, which could be fully inhibited by pre-incubation with keyhole limpet haemocyanin (KLH). Clearly, the use of defined mAbs provides a quick and convenient way to map expression profiles of carbohydrate epitopes.

  12. Characterization of glycolipids synthesized in an identified neuron of Aplysia californica.

    PubMed

    Sherbany, A A; Ambron, R T; Schwartz, J H

    1984-07-01

    Because radioactive precursors can be injected directly into the cell body or axon of R2, a giant, identified neuron of the Aplysia abdominal ganglion, it was possible to show that glycolipid is synthesized in the cell body, inserted into membranes along with glycoprotein, and then exported into the axon within organelles that are moved by fast axonal transport. After intrasomatic injection of N-[3H]-acetyl-D-galactosamine, five major 3H-glycolipids were identified using thin layer polysilicic acid glass fiber chromatography. At least two of the lipids are negatively charged. Analysis of 32P-labeled lipid from the abdominal ganglion revealed the presence of 2-aminoethylphosphonate, indicating that these polar substances are sphingophosphonoglycolipids. The major 3H-glycolipids synthesized in R2 are similar to a family of phospholipids isolated from the skin of A. kurodai, previously characterized by Araki et al. (Araki, S., Y. Komai, and M. Satake (1980) Biochem J. 87: 503-510). Since sialic acid is absent in Aplysia as in other invertebrates, these polar glycolipids may function like gangliosides in vertebrates. The polar 3H-glycolipids are synthesized and incorporated into intracytoplasmic membranes solely in the cell body. Direct injection of the labeled sugar into the axon revealed no local synthesis or exchange of glycolipid. Moreover, there was no indication for transfer from glial cells into axoplasm. Although the incorporation of N-[3H]-acetyl-D-galactosamine into glycolipid is not affected by anisomycin, an effective inhibitor of protein synthesis, the export into the axon of membranes containing the newly synthesized lipid is completely blocked by the drug.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Characterization of glycolipids synthesized in an identified neuron of Aplysia californica

    SciTech Connect

    Sherbany, A.A.; Ambron, R.T.; Schwartz, J.H.

    1984-07-01

    Because radioactive precursors can be injected directly into the cell body or axon of R2, a giant, identified neuron of the Aplysia abdominal ganglion, it was possible to show that glycolipid is synthesized in the cell body, inserted into membranes along with glycoprotein, and then exported into the axon within organelles that are moved by fast axonal transport. After intrasomatic injection of N-(/sup 3/H)-acetyl-D-galactosamine, five major /sup 3/H-glycolipids were identified using thin layer polysilicic acid glass fiber chromatography. At least two of the lipids are negatively charged. Analysis of /sup 32/P-labeled lipid from the abdominal ganglion revealed the presence of 2-aminoethylphosphonate, indicating that these polar substances are sphingophosphonoglycolipids. The major /sup 3/H-glycolipids synthesized in R2 are similar to a family of phospholipids isolated from the skin of A. kurodai. Since sialic acid is absent in Aplysia as in other invertebrates, these polar glycolipids may function like gangliosides in vertebrates. The polar /sup 3/H-glycolipids are synthesized and incorporated into intracytoplasmic membranes solely in the cell body. Direct injection of the labeled sugar into the axon revealed no local synthesis or exchange of glycolipid. Moreover, there was no indication for transfer from glial cells into axoplasm. Although the incorporation of N-(/sup 3/H)-acetyl-D-galactosamine into glycolipid is not affected by anisomycin, an effective inhibitor of protein synthesis, the export into the axon of membranes containing the newly synthesized lipid is completely blocked by the drug.

  14. Microarray screening of Guillain-Barré syndrome sera for antibodies to glycolipid complexes

    PubMed Central

    Halstead, Susan K.; Kalna, Gabriela; Islam, Mohammad B.; Jahan, Israt; Mohammad, Quazi D.; Jacobs, Bart C.; Endtz, Hubert P.; Islam, Zhahirul

    2016-01-01

    Objective: To characterize the patterns of autoantibodies to glycolipid complexes in a large cohort of Guillain-Barré syndrome (GBS) and control samples collected in Bangladesh using a newly developed microarray technique. Methods: Twelve commonly studied glycolipids and lipids, plus their 66 possible heteromeric complexes, totaling 78 antigens, were applied to polyvinylidene fluoride–coated slides using a microarray printer. Arrays were probed with 266 GBS and 579 control sera (2 μL per serum, diluted 1/50) and bound immunoglobulin G detected with secondary antibody. Scanned arrays were subjected to statistical analyses. Results: Measuring antibodies to single targets was 9% less sensitive than to heteromeric complex targets (49.2% vs 58.3%) without significantly affecting specificity (83.9%–85.0%). The optimal screening protocol for GBS sera comprised a panel of 10 glycolipids (4 single glycolipids GM1, GA1, GD1a, GQ1b, and their 6 heteromeric complexes), resulting in an overall assay sensitivity of 64.3% and specificity of 77.1%. Notable heteromeric targets were GM1:GD1a, GM1:GQ1b, and GA1:GD1a, in which exclusive binding to the complex was observed. Conclusions: Rationalizing the screening protocol to capture the enormous diversity of glycolipid complexes can be achieved by miniaturizing the screening platform to a microarray platform, and applying simple bioinformatics to determine optimal sensitivity and specificity of the targets. Glycolipid complexes are an important category of glycolipid antigens in autoimmune neuropathy cases that require specific analytical and bioinformatics methods for optimal detection. PMID:27790627

  15. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid.

    PubMed

    Kang, Seok-Whan; Kim, Young-Bum; Shin, Jae-Dong; Kim, Eun-Ki

    2010-03-01

    Effectiveness of a microbial biosurfactant, sophorolipid, was evaluated in washing and biodegradation of model hydrocarbons and crude oil in soil. Thirty percent of 2-methylnaphthalene was effectively washed and solubilized with 10 g/L of sophorolipid with similar or higher efficiency than that of commercial surfactants. Addition of sophorolipid in soil increased biodegradation of model compounds: 2-methylnaphthalene (95% degradation in 2 days), hexadecane (97%, 6 days), and pristane (85%, 6 days). Also, effective biodegradation method of crude oil in soil was observed by the addition of sophorolipid, resulting in 80% biodegradation of saturates and 72% aromatics in 8 weeks. These results showed the potentials of the microbial biosurfactant, sophorolipid, as an effective surfactant for soil washing and as an in situ biodegradation enhancer.

  16. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent.

    PubMed

    Díaz De Rienzo, Mayri A; Banat, Ibrahim M; Dolman, Ben; Winterburn, James; Martin, Peter J

    2015-12-25

    Biosurfactants are amphipathic, surface-active molecules of microbial origin which accumulate at interfaces reducing interfacial tension and leading to the formation of aggregated micellular structures in solution. Some biosurfactants have been reported to have antimicrobial properties, the ability to prevent adhesion and to disrupt biofilm formation. We investigated antimicrobial properties and biofilm disruption using sophorolipids at different concentrations. Growth of Gram negative Cupriavidus necator ATCC 17699 and Gram positive Bacillus subtilis BBK006 were inhibited by sophorolipids at concentrations of 5% v/v with a bactericidal effect. Sophorolipids (5% v/v) were also able to disrupt biofilms formed by single and mixed cultures of B. subtilis BBK006 and Staphylococcus aureus ATCC 9144 under static and flow conditions, as was observed by scanning electron microscopy. The results indicated that sophorolipids may be promising compounds for use in biomedical application as adjuvants to other antimicrobial against some pathogens through inhibition of growth and/or biofilm disruption.

  17. Interview: glycolipid antigen presentation by CD1d and the therapeutic potential of NKT cell activation.

    PubMed

    Kronenberg, Mitchell

    2007-01-01

    Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d--the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.

  18. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents.

    PubMed

    Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A

    2016-04-01

    Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.

  19. Enterogenous bacterial glycolipids are required for the generation of natural killer T cells mediated liver injury

    PubMed Central

    Wei, Yingfeng; Zeng, Benhua; Chen, Jianing; Cui, Guangying; Lu, Chong; Wu, Wei; Yang, Jiezuan; Wei, Hong; Xue, Rufeng; Bai, Li; Chen, Zhi; Li, Lanjuan; Iwabuchi, Kazuya; Uede, Toshimitsu; Van Kaer, Luc; Diao, Hongyan

    2016-01-01

    Glycolipids are potent activator of natural killer T (NKT) cells. The relationship between NKT cells and intestinal bacterial glycolipids in liver disorders remained unclear. We found that, in sharp contrast to specific pathogen-free (SPF) mice, germ-free (GF) mice are resistant to Concanavalin A (ConA)-induced liver injury. ConA treatment failed to trigger the activation of hepatic NKT cells in GF mice. These defects correlated with the sharply reduced levels of CD1d-presented glycolipid antigens in ConA-treated GF mice compared with SPF counterparts. Nevertheless, CD1d expression was similar between these two kinds of mice. The absence of intestinal bacteria did not affect the incidence of αGalCer-induced liver injury in GF mice. Importantly, we found the intestinal bacteria contain glycolipids which can be presented by CD1d and recognized by NKT cells. Furthermore, supplement of killed intestinal bacteria was able to restore ConA-mediated NKT cell activation and liver injury in GF mice. Our results suggest that glycolipid antigens derived from intestinal commensal bacteria are important hepatic NKT cell agonist and these antigens are required for the activation of NKT cells during ConA-induced liver injury. These finding provide a mechanistic explanation for the capacity of intestinal microflora to control liver inflammation. PMID:27821872

  20. Neutral glycolipid and ganglioside composition of type-1 and type-2 astrocytes from rat cerebral hemisphere.

    PubMed

    Murakami, K; Asou, H; Adachi, T; Takagi, T; Kunimoto, M; Saito, H; Uyemura, K

    1999-02-01

    We reported previously that the major gangliosides in primary mixed-type astrocyte cultures are GM3 and GD3. To obtain more information regarding the exact distribution of glycosphingolipids in different types of astrocytes, we established a line of type-1 astrocytes that are characterized by a Ran-2 positive, broad flat morphology, and by the absence of binding to A2B5 antibodies. We also purified O-2A progenitor cells by immunopanning and cultured them in the presence of 10% newborn calf serum. They differentiated into type-2 astrocytes that were identified by immunostaining for each of GD3, A2B5, and GFAP. Using these cell cultures, we demonstrate that the major gangliosides were GM3 in type-1 astrocytes and GM3 and GD3 in type-2 astrocytes. In addition, a set of neutral glycolipids was identified based on the HP-TLC migration properties of CMH, CDH, CTH, and Glob, but the component distribution of these glycolipids is related to that of glycolipids of astrocytes. A marked increase in the expression of CTH and Glob was shown in type-2 astrocytes. The amount of neutral glycolipid-sugar was higher in the type-2 astrocytes than in the type-1 astrocytes. These results suggest that the increase in the total glycosphingolipid content and the change in the neutral glycolipid composition produced by type-2 astrocytes may be related to their biological functions and the cellular compositions.

  1. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  2. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  3. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates.

    PubMed

    Almeida, Darne G; Soares da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Sarubbo, Leonie A

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R(2) = 0.99833) and biosurfactant yield (R(2) = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = -0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm(-1) and 4.19 gL(-1), respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL(-1), respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry.

  4. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  5. Optimization of liquid-liquid extraction of biosurfactants from corn steep liquor.

    PubMed

    Vecino, X; Barbosa-Pereira, L; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-09-01

    In this work, the optimization of the operational conditions for the chloroform-based extraction of surface-active compounds from corn steep liquor (CSL) was carried out and the nutritional properties of the remnant aqueous phase (CSL-less biosurfactant) was evaluated as microbial fermentation medium. The optimal conditions to obtain biosurfactants from CSL were as follows: chloroform/CSL ratio 2 (v/v), 56 °C at extraction times >30 min. At the optima conditions, 100 % of biosurfactant extract can be obtained from CSL, obtaining 12.0 ± 0.5 g of biosurfactant extract/Kg of CSL. The critical micelle concentration (CMC) of the biosurfactant extract was 399.4 mg L(-1). This value is similar to the CMC of cetrimonium bromide (CTAB), a cationic surfactant used in the formulation of nanoparticles. The extraction of biosurfactant can be also carried out at room temperature although in this case, the extraction yield decreased about 15 %. The extraction of surface-active compounds from agroindustrial streams can suppose important advances for the bio-based surfactants industry. Biosurfactants obtained in this work are not only more eco-friendly than chemical detergents but also can be cost competitive with its chemical counterparts. Furthermore, after the extraction of surface-active compounds, CSL-less biosurfactant was found to be suitable as nutritional supplement for lactic acid bacteria, maintaining its nutritional properties in comparison with regular CSL.

  6. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.

    PubMed

    Zhao, Zhenyong; Wong, Jonathan W C

    2009-03-01

    A thermophilic bacterial strain, Acinetobacter calcoaceticus BU03, with a biosurfactant-producing capability, was isolated from petroleum-contaminated soil with an improved procedure which employed the solubilization of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene in agar plate, as a selection criterion. Crude biosurfactant was recovered from the culture of BU03 by extraction with n-hexane, and its properties were investigated. Biosurfactants from A. calcoaceticus BU03 constitute a thermo-stable mixture, composed of different agents with surface activities. At their critical micelle concentration (CMC) of 152.4 mg L(-1), the crude biosurfactants produced from A. calcoaceticus BU03 decreased the air-water surface tension to 38.4 mN m(-1). In thermophilic conditions, the emulsifying activity is 2.8 times that of Tween 80. The effects of the biosurfactants produced by A. calcoaceticus on the solubility and biodegradation of PAHs were investigated in batch systems. Biosurfactants produced by A. calcoaceticus BU03 at 25 times their CMC significantly increased the apparent aqueous solubility of phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (B[a]P) to 54.3, 6.33 and 2.08 mg L(-1), respectively. In aqueous system, the biosurfactants at concentrations of 0.5 CMC and 1 CMC slightly enhanced the biodegradation of PHE by a consortium of PAH-degrading microrganisms. Results indicate that biosurfactants from A. calcoaceticus BU03 have potential to enhance the removal of PAHs from contaminated sites.

  7. Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosurfactants are diverse molecules with numerous biological functions and industrial applications. A variety of environments were examined for biosurfactant-producing bacteria using a versatile new screening method. The utility of an atomized oil assay was assessed for a large number of bacteria...

  8. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    PubMed

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  9. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations

    SciTech Connect

    Wojcik, Roza; Webb, Ian; Deng, Liulin; Garimella, Sandilya; Prost, Spencer; Ibrahim, Yehia; Baker, Erin; Smith, Richard

    2017-01-01

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. The multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.

  10. Phenolic glycolipids of Mycobacterium bovis: new structures and synthesis of a corresponding seroreactive neoglycoprotein.

    PubMed Central

    Chatterjee, D; Bozic, C M; Knisley, C; Cho, S N; Brennan, P J

    1989-01-01

    The glycolipid that characterizes the majority of isolates of Mycobacterium bovis and that has come to be known as M. bovis-identifying lipid is the phenolic glycolipid mycoside B described in the literature by others. However, when mycoside B obtained from M. bovis BCG, field isolates, and infected tissues was examined in detail, it was shown to be different from that described in the literature in some important respects. In particular, the glycosyl substituent is 2-O-methyl-alpha-L-rhamnopyranose rather than 2-O-methyl-beta-D-rhamnopyranose. With this information, a seroreactive neoglycoprotein (neoantigen) containing the 2-O-methyl-alpha-L-rhamnopyranosyl substituent suitable for the serodiagnosis of bovine tuberculosis was synthesized. M. bovis also contains other minor seroreactive phenolic glycolipids, one of which is a deacylated form of mycoside B and another of which contains an alpha-L-rhamnopyranosyl unit rather than 2-O-methyl-alpha-L-rhamnopyranose. Images PMID:2643563

  11. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource.

    PubMed

    Kiran, George Seghal; Ninawe, Arun Shivanth; Lipton, Anuj Nishanth; Pandian, Vijayalakshmi; Selvin, Joseph

    2016-01-01

    Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review.

  12. Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India

    PubMed Central

    Sarafin, Yesurethinam; Donio, Mariathasan Birdilla Selva; Velmurugan, Subramanian; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2014-01-01

    Biosurfactant screening was made among the eight halophilic bacterial genera isolated from Kovalam solar salt works in Kanyakumari of India. After initial screening, Kocuria sp. (Km), Kurthia sp. (Ku) and Halococcus sp. (Hc) were found to have positive biosurfactant activity. Biosurfactant derived from Kocuria sp. emulsified more than 50% of the crude oil, coconut oil, sunflower oil, olive oil and kerosene when compared to the other strains. Further, Kocuria marina BS-15 derived biosurfactant was purified and characterized by TLC, FTIR and GC–MS analysis. The TLC analysis revealed that, the purified biosurfactants belong to the lipopeptide group. The IR spectrum results revealed that functional groups are R2C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 NN, alkenes and N–H. The GC–MS analysis confirmed the compound as Nonanoic acid and Cyclopropane with the retention time of 12.78 and 24.65, respectively. PMID:25473358

  13. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation

    PubMed Central

    Dadrasnia, Arezoo; Ismail, Salmah

    2015-01-01

    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes. PMID:26295402

  14. Molecular engineering aspects for the production of new and modified biosurfactants.

    PubMed

    Koglin, Alexander; Doetsch, Volker; Bernhard, Frank

    2010-01-01

    Biosurfactants are of considerable industrial value as their high tenside activity in combination with their biocompatibility makes them attractive for many applications. In particular members of the lipopeptide family of biosurfactants contain significant potentials for the pharmaceutical industry due to their intrinsic antibiotic characteristics. The high frequency of lipopeptide (LP) production in common soil microorganisms in combination with the enormous structural diversity of the synthesized biosurfactants has created an abundant natural pool of compounds with potentially interesting properties. Unfortunately, the bioactivity of lipopetides against pathogenic microorganisms is often associated with problematic side effects that restrict or even prevent medically relevant applications. The accumulated knowledge of lipopetide biosynthesis and their frequent structural variations caused by natural genetic rearrangements has therefore motivated numerous approaches in order to manipulate biosurfactant composition and production mechanisms. This chapter will give an overview on current engineering strategies that aim to obtain lipopeptide biosurfactants with redesigned structures and optimized properties.

  15. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications

    PubMed Central

    Garidel, Patrick; Kaconis, Yani; Heinbockel, Lena; Wulf, Matthias; Gerber, Sven; Munk, Ariane; Vill, Volkmar; Brandenburg, Klaus

    2015-01-01

    Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance. PMID:26464591

  16. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents.

    PubMed

    Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S

    2016-01-01

    The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products.

  17. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents

    PubMed Central

    Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N.; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S.

    2016-01-01

    The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products. PMID:26903957

  18. Structural Determination and Tryptophan Fluorescence of Heterokaryon Incompatibility C2 Protein (HET-C2), a Fungal Glycolipid Transfer Protein (GLTP), Provide Novel Insights into Glycolipid Specificity and Membrane Interaction by the GLTP Fold

    SciTech Connect

    Kenoth, Roopa; Simanshu, Dhirendra K.; Kamlekar, Ravi Kanth; Pike, Helen M.; Molotkovsky, Julian G.; Benson, Linda M.; Bergen, III, H. Robert; Prendergast, Franklyn G.; Malinina, Lucy; Venyaminov, Sergei Y.; Patel, Dinshaw J.; Brown, Rhoderick E.

    2010-06-21

    HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 {angstrom}) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp{sup 66}, Asn{sup 70}, Lys{sup 73}, Trp{sup 109}, and His{sup 147}) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by {alpha}-helices and a cooperative thermal unfolding transition of 49 C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at {approx}355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum ({approx}6 nm) permitting determination of binding affinities. The unique positioning of Trp{sup 208} at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi.

  19. Structural variation of glycolipids from Meiothermus taiwanensis ATCC BAA-400 under different growth temperatures.

    PubMed

    Yang, Yu-Liang; Yang, Feng-Ling; Huang, Zih-You; Tsai, Yu-Hsuan; Zou, Wei; Wu, Shih-Hsiung

    2010-10-07

    A major glycolipid, alpha-Galf(1-3)-alpha-Galp(1-6)-beta-GlcpNAcyl(1-2)-alpha-Glcp(1-1)-2-acylalkyldiol, is obtained from Meiothermus taiwanensis. This novel glycolipid is found only when the bacterium grows above 62 degrees C, which is significantly different from those from the same bacteria incubated at 55 degrees C. Terminal galactofuranoside and 1,2-alkyldiol lipids replaced galactopyranoside and glycerol lipids, respectively, under increased growth temperature. This variation is likely necessary for bacteria for keeping the stable outer membrane and surviving under extreme environments.

  20. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    NASA Astrophysics Data System (ADS)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  1. Clinical and electron microscopic studies of a case of glycolipid lipoidosis (Fabry's disease)

    PubMed Central

    Rae, Angus I.; Lee, John C.; Hopper, James

    1967-01-01

    A case of glycolipid lipoidosis (Fabry's disease) in a 27-year-old man is recorded. The case is unusual in that despite extensive disease evidenced by widespread skin lesions, ocular abnormalities, and proteinuria, renal function was only minimally impaired. Electron microscope studies of kidney and skin showed that most cells contained the characteristic lipid described in this condition. Images PMID:6016885

  2. Biosynthesis and derivatization of microbial glycolipids and their potential application in tribology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial-produced glycolipids are biobased products with immense potential for commercial applications. Advances in the production process have led to the lowering of production cost and the appearance of commercial products in niche markets. The ability to manipulate the molecular structure by f...

  3. Specific surface modification of the acetylene-linked glycolipid vesicle by click chemistry.

    PubMed

    Ito, Hidehiro; Kamachi, Toshiaki; Yashima, Eiji

    2012-06-07

    A novel glycolipid with a terminal acetylene was synthesized and used to prepare unilamellar vesicles. Using these vesicles, a convenient method was developed for the specific modification of the vesicle surface using the photoresponsive copper complex [Cu(OH(2))(cage)] as the catalyst for a click reaction.

  4. A study on partially biodegradable microparticles as carriers of active glycolipids.

    PubMed

    López-Donaire, M L; Fernández-Gutiérrez, M; Parra-Cáceres, J; Vázquez-Lasa, B; García-Alvarez, I; Fernández-Mayoralas, A; Román, J San

    2010-04-01

    This paper describes a study on the preparation and characterisation of partially biodegradable microparticles of poly(epsilon-caprolactone)/poly(ethyl methacrylate) (PCL/PEMA) as carriers of synthetic glycolipids with antimitotic activity against brain tumour cells. Microparticles prepared by suspension polymerisation of methacrylate in the presence of already polymerised PCL showed a predominantly spherical but complex morphology, with segregation of PCL micro/nano-domains towards the surface. Small diameter discs were prepared by compression moulding of blends of microparticles and the active principle under mild conditions. The in vitro behaviour of the discs and release of the glycolipid were studied in different simulated fluid models. Ingress of fluids increased with increasing hydrophobicity of the medium. Release of the glycolipid was sustained in all fluids, the most prolonged profile being in human synovial fluid and phosphate-buffered saline modified with 20 vol.% dioxane. Slow disintegration of the discs and partial degradation of the microparticles was evident in accelerated studies. The antimitotic activity of glycolipid released from the discs was proved against a human glioblastoma line. This activity, along with selectivity against human fibroblasts, could be controlled by the amount of drug charged in the disc.

  5. Identification of a variant surface glycoprotein (VSG) glycolipid precursor in Trypanosoma brucei

    SciTech Connect

    Krakow, J.; Hereld, D.; Hart, G.; Englund, P.

    1986-05-01

    The VSG coat protein of T. brucei has a glycolipid covalently attached to its C terminus which anchors it to the cell membrane. Compositional analyses of VSG, reported by several laboratories, indicate that the glycolipid contains myristic acid, glycerol, phosphate, inositol, several sugars, and ethanolamine. This glycolipid is found on the VSG polypeptide within 1 minute after translation, suggesting that prior to incorporation, it may exist in the cell as a preformed precursor. The authors have isolated a molecule which has properties consistent with being a VSG lipid precursor: it is highly polar and can be labelled by (/sup 3/H)myristate but not by (/sup 3/H)palmitate. It reaches steady-state during continuous labelling and shows rapid turnover in pulse-chase experiments, suggesting that it is a metabolic intermediate rather than an end product. When treated with HNO/sub 2/ it liberates phophatidylinositol, as does VSG, and, like VSG, releases dimyristylglycerol when treated with purified endogenous phospholipase C from trypanosomes. These data provide strong evidence that the glycolipid is a preformed precursor which is transferred to the VSG polypeptide en bloc.

  6. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations

    PubMed Central

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin; Garimella, Sandilya V. B.; Prost, Spencer A.; Ibrahim, Yehia M.; Baker, Erin S.; Smith, Richard D.

    2017-01-01

    Understanding the biological roles and mechanisms of lipids and glycolipids is challenging due to the vast number of possible isomers that may exist. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid presence and changes. However, difficulties in distinguishing the many structural isomers, due to the distinct lipid acyl chain positions, double bond locations or specific glycan types, inhibit the delineation and assignment of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations by applying traveling waves in a serpentine multi-pass Structures for Lossless Ion Manipulations (SLIM) platform to enhance the separation of selected lipid and glycolipid isomers. The multi-pass arrangement allowed the investigation of paths ranging from ~16 m (one pass) to ~60 m (four passes) for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer-specific biological activities and disease processes. PMID:28106768

  7. Structure of a New Glycolipid from the Mycobacterium avium-Mycobacterium intracellulare Complex

    PubMed Central

    Watanabe, Motoko; Ohta, Akihiro; Sasaki, Shun-ichi; Minnikin, David E.

    1999-01-01

    From the lipid fraction of a freeze-dried cell mass of a strain of the Mycobacterium avium-Mycobacterium intracellulare complex, a new glycolipid was isolated and was characterized as 5-mycoloyl-α-arabinofuranosyl (1→1′)-glycerol, mainly on the basis of nuclear magnetic resonance spectroscopy studies. PMID:10094713

  8. Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium

    PubMed Central

    Gudiña, Eduardo J.; Fernandes, Elisabete C.; Rodrigues, Ana I.; Teixeira, José A.; Rodrigues, Lígia R.

    2015-01-01

    In this work, biosurfactant production by Bacillus subtilis #573 was evaluated using corn steep liquor (CSL) as culture medium. The best results were obtained in a culture medium consisting of 10% (v/v) of CSL, with a biosurfactant production of about 1.3 g/l. To the best of our knowledge, this is the first report describing biosurfactant production by B. subtilis using CSL as culture medium. Subsequently, the effect of different metals (iron, manganese, and magnesium) on biosurfactant production was evaluated using the medium CSL 10%. It was found that for all the metals tested, the biosurfactant production was increased (up to 4.1, 4.4, and 3.5 g/l for iron, manganese, and magnesium, respectively). When the culture medium was supplemented with the optimum concentration of the three metals simultaneously, the biosurfactant production was increased up to 4.8 g/l. Furthermore, the biosurfactant exhibited a good performance in oil recovery assays when compared with chemical surfactants, which suggests its possible application in microbial enhanced oil recovery or bioremediation. PMID:25705209

  9. Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65.

    PubMed

    Chooklin, Chanika Saenge; Maneerat, Suppasil; Saimmai, Atipan

    2014-05-01

    In this study, biosurfactant-producing bacteria was evaluated for biosurfactant production by using banana peel as a sole carbon source. From the 71 strains screened, Halobacteriaceae archaeon AS65 produced the highest biosurfactant activity. The highest biosurfactant production (5.30 g/l) was obtained when the cells were grown on a minimal salt medium containing 35 % (w/v) banana peel and 1 g/l commercial monosodium glutamate at 30 °C and 200 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small critical micelle concentration value (10 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test FT-IR, NMR, and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and had the ability to emulsify oil, enhance PAHs solubility, and oil bioremediation.

  10. Utilization of sludge palm oil as a novel substrate for biosurfactant production.

    PubMed

    Wan Nawawi, Wan Mohd Fazli; Jamal, Parveen; Alam, Md Zahangir

    2010-12-01

    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.

  11. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei.

    PubMed

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2010-03-01

    In this study, the crude biosurfactant produced by a Lactobacillus paracasei strain isolated in a Portuguese dairy industry was characterized. The minimum surface tension (41.8mN/m) and the critical micelle concentration (2.5mg/ml) obtained were found to be similar to the values previously reported for biosurfactants isolated from other lactobacilli. The biosurfactant was found to be stable to pH changes over a range from 6 to 10, being more effective at pH 7, and showed no loss of surface activity after incubation at 60 degrees C for 120h. Although the biosurfactant chemical composition has not been determined yet, a fraction was isolated through acidic precipitation, which exhibited higher surface activity as compared with the crude biosurfactant. Furthermore, this isolated biosurfactant showed antimicrobial and anti-adhesive activities against several pathogenic microorganisms. In addition, L. paracasei exhibited a strong autoaggregating phenotype, which was maintained after washing and resuspending the cells in PBS, meaning that this attribute must be related to cell surface components and not to excreted factors. The autoaggregation ability exhibited by this strain, together with the antimicrobial and anti-adhesive properties observed for this biosurfactant opens the possibility for its use as an effective probiotic strain.

  12. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    PubMed

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted.

  13. Preliminary characterization of biosurfactants produced by microorganisms isolated from refinery wastewaters.

    PubMed

    Yalçin, Emine; Ergene, Aysun

    2010-02-01

    Some bacterial strains isolated from refinery wastewaters were identified as Pseudomonas aeruginosa RWI, Pseudomonas putida RWII, Pseudomonas fluorescens RWIII and Burkholderia cepacia RWIV, and the biosurfactants produced by these strains were coded as BS-I, BS-II, BS-III and BS-IV, respectively. The bacterial strains were characterized by the following biochemical methods: Gram stain, oxidase activity, indol, lactose and growth at 42 degrees C. Biosurfactant production was evaluated by: emulsification activity, surface tension measurement and critical micelle concentration. Chemical characterization of the biosurfactants was done by: FTIR and analysis of carbohydrate, protein and lipid content. The biosurfactants showed good emulsification activity against different hydrocarbon sources. The initial surface tension of culture broth was determined as 67.3 mN/m, and production of BS-I, BS-II, BS-III and BS-IV lowered this value to 35.9, 49.2, 51.6 and 45.7 mN/m, respectively. The critical micelle concentration of the biosurfactants was found to be in the range 10-50 mg/L. From the results of this study it was observed that the refinery wastewaters are a suitable source for isolation of biosurfactant-producing bacteria, but are not a substrate for biosurfactant production.

  14. Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol.

    PubMed

    D'aes, Jolien; De Maeyer, Katrien; Pauwelyn, Ellen; Höfte, Monica

    2010-06-01

    Production of biosurfactants is a common feature in bacteria, and in particular in plant-associated species. These bacteria include many plant beneficial and plant pathogenic Pseudomonas spp., which produce primarily cyclic lipopeptide and rhamnolipid type biosurfactants. Pseudomonas-derived biosurfactants are involved in many important bacterial functions. By modifying surface properties, biosurfactants can influence common traits such as surface motility, biofilm formation and colonization. Biosurfactants can alter the bio-availability of exogenous compounds, such as nutrients, to promote their uptake, and of endogenous metabolites, including phenazine antibiotics, resulting in an enhanced biological activity. Antibiotic activity of biosurfactants towards microbes could play a role in intraspecific competition, self-defence and pathogenesis. In addition, bacterial surfactants can affect plants in different ways, either protecting them from disease, or acting as a toxin in a plant-pathogen interaction. Biosurfactants are involved in the biocontrol activity of an increasing number of Pseudomonas strains. Consequently, further insight into the roles and activities of surfactants produced by bacteria could provide means to optimize the use of biological control as an alternative crop protection strategy.

  15. Effect of biosurfactants on the aqueous solubility of PCE and TCE.

    PubMed

    Albino, John D; Nambi, Indumathi M

    2009-12-01

    The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency of the biosurfactants in solubilizing the chlorinated solvents was compared to that of synthetic surfactants. The Weight Solubilization Ratio (WSR) values for solubilization of PCE and TCE by biosurfactants were very high compared to the values obtained for synthetic surfactants. Surfactin proved to be a better surfactant over rhamnolipid. The WSR of surfactin on solubilization of PCE and TCE were 3.83 and 12.5, respectively, whereas the values obtained for rhamnolipid were 2.06 and 8.36. The solubility of the chlorinated solvents by biosurfactants was considerably affected by the changes in pH. The aqueous solubility of PCE and TCE increased tremendously with decrease in pH. The solubility of biosurfactants was observed to decrease with the pH, favoring partitioning of surfactants into the chlorinated solvents in significant amounts at lower pH. The excessive accumulation of biosurfactants at the interface facilitated interfacial tension reductions resulting in higher solubility of the chlorinated solvents at pH less than 7.

  16. Rapid screening of surfactant and biosurfactant surface cleaning performance.

    PubMed

    Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J

    2009-08-01

    Surface Plasmon Resonance (SPR) and rubisco protein stain were used as tools to screen the effectiveness of detergent formulations in cleaning a protein stain from solid surfaces. Surfactant and biosurfactant-based formulations, with and without added protease, were screened for cleaning performance. Enzyme-free detergent formulations at 1500 ppm total surfactant were insufficient to cause complete surface cleaning, despite the high concentration of surfactant. The cleaning performance of a "home-made" formulation containing 2 ppm subtilisin A (SA) and 2 ppm sodium dodecyl benzyl sulphonate (SDOBS) was as efficient as the best amongst the three enzyme-free 1500 ppm formulations. The cleaning performance of 2 ppm SA in the absence of SDOBS was less effective than the combined formulation, even though 2 ppm SDOBS alone did not cause any protein removal. The observed synergistic performance was attributed to the cooperative mechanisms (chemical and physical attack) by which these two agents act on a rubisco stain. Replacing SDOBS in the enzyme-surfactant formulation with the same amount of surfactin biosurfactant (2 ppm) gave the best rubisco removal of all formulations examined in this study, irrespective of the surface chemistry underlying the protein film. It was found that 75% and 80% of immobilised rubisco stain could be removed from hydrophobic and hydrophilic surfaces, respectively, by the biosurfactant-SA formulation (compared with 60% and 65%, respectively, using the SDOBS-SA formulation). Our results suggest that it may be possible to generate fully renewable biochemical-based cleaning formulations that have superior cleaning performance to existing technologies. In developing optimised formulations, there is a pressing need for chip-based tools similar to that developed in this research.

  17. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    SciTech Connect

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  18. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals.

  19. Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80

    PubMed Central

    Wang, Cindy; Mahrous, Engy A.; Lee, Richard E.; Vestling, Martha M.; Takayama, Kuni

    2011-01-01

    The addition of polyoxyethylene sorbitan monooleate (Tween 80) to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria) converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, 1H-NMR, and 13C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C36:2-corynomycolate-6′-polyoxyethylenate and series-2B glycolipid is trehalose 6-C36:2-corynomycolate-6′-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity. PMID:21490808

  20. Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80.

    PubMed

    Wang, Cindy; Mahrous, Engy A; Lee, Richard E; Vestling, Martha M; Takayama, Kuni

    2011-01-01

    The addition of polyoxyethylene sorbitan monooleate (Tween 80) to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria) converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, (1)H-NMR, and (13)C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C(36:2)-corynomycolate-6'-polyoxyethylenate and series-2B glycolipid is trehalose 6-C(36:2)-corynomycolate-6'-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity.

  1. Iminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases—Not Glycolipid Processing Enzymes

    PubMed Central

    Sayce, Andrew C.; Alonzi, Dominic S.; Killingbeck, Sarah S.; Tyrrell, Beatrice E.; Hill, Michelle L.; Caputo, Alessandro T.; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J. L.; Beatty, P. Robert; Kato, Atsushi; Harris, Eva; Dwek, Raymond A.; Miller, Joanna L.; Zitzmann, Nicole

    2016-01-01

    It has long been thought that iminosugar antiviral activity is a function of inhibition of endoplasmic reticulum-resident α-glucosidases, and on this basis, many iminosugars have been investigated as therapeutic agents for treatment of infection by a diverse spectrum of viruses, including dengue virus (DENV). However, iminosugars are glycomimetics possessing a nitrogen atom in place of the endocyclic oxygen atom, and the ubiquity of glycans in host metabolism suggests that multiple pathways can be targeted via iminosugar treatment. Successful treatment of patients with glycolipid processing defects using iminosugars highlights the clinical exploitation of iminosugar inhibition of enzymes other than ER α-glucosidases. Evidence correlating antiviral activity with successful inhibition of ER glucosidases together with the exclusion of alternative mechanisms of action of iminosugars in the context of DENV infection is limited. Celgosivir, a bicyclic iminosugar evaluated in phase Ib clinical trials as a therapeutic for the treatment of DENV infection, was confirmed to be antiviral in a lethal mouse model of antibody-enhanced DENV infection. In this study we provide the first evidence of the antiviral activity of celgosivir in primary human macrophages in vitro, in which it inhibits DENV secretion with an EC50 of 5 μM. We further demonstrate that monocyclic glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. By comparison to bicyclic glucose-mimicking iminosugars which inhibit glycoprotein processing but do not inhibit glycolipid processing and galactose-mimicking iminosugars which do not inhibit glycoprotein processing but do inhibit glycolipid processing, we demonstrate that inhibition of endoplasmic reticulum-resident α-glucosidases, not glycolipid processing, is responsible for iminosugar antiviral activity against DENV. Our data suggest that

  2. Purification and some properties of the glycolipid transfer protein from pig brain.

    PubMed

    Abe, A; Sasaki, T

    1985-09-15

    A glycolipid-specific lipid transfer protein has been purified to apparent homogeneity from pig brain post-mitochondrial supernatant. The purified protein was obtained after about 6,000-fold purification at a yield of 19%. Evidence for the homogeneity of the purified protein includes the following: (i) a single band in acidic gel electrophoresis, in sodium dodecyl sulfate-gel electrophoresis, (ii) a single band in analytical gel isoelectric focusing, (iii) exact correspondence between the glycolipid transfer activity and stained protein absorbance in the acidic gel electrophoresis, and (iv) coincidence between the transfer activity and protein absorption at 280 nm in gel filtration through Ultrogel AcA 54. The protein has an isoelectric point of about 8.3 and a molecular weight of 22,000, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecular weight of 15,000 was calculated from AcA 54 gel filtration. The amino acid composition has been determined. The protein binds [3H]galactosylceramide but not [3H]phosphatidylcholine. Under the conditions used, 1 mol of the transfer protein bound about 0.13 mol of [3H]galactosylceramide. The glycolipid transfer protein-[3H]galactosylceramide complex was isolated by a Sephadex G-75 chromatography. An incubation of the complex with liposomes resulted in the transfer of [3H]galactosylceramide from the complex to the acceptor liposomes. The result indicates that the complex functions as an intermediate in the glycolipid transfer reaction. The protein facilitates the transfer of [3H]galactosylceramide from donor liposomes to acceptor liposomes lacking in glycolipid as well as to acceptor liposomes containing galactosylceramide.

  3. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    PubMed

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  4. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  5. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    SciTech Connect

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K.; Jackson, B.E.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  6. Dissolution Coupled Biodegradation of Pce by Inducing In-Situ Biosurfactant Production Under Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Dominic, J.; Nambi, I. M.

    2013-12-01

    Biosurfactants have proven to enhance the bioavailability and thereby elevate the rate of degradation of Light Non Aqueous Phase Liquids (LNAPLs) such as crude oil and petroleum derivatives. In spite of their superior characteristics, use of these biomolecules for remediation of Dense Non Aqueous Phase Liquids (DNAPLs) such as chlorinated solvents is still not clearly understood. In this present study, we have investigated the fate of tetrachloroethylene (PCE) by inducing in-situ biosurfactants production, a sustainable option which hypothesizes increase in bioavailability of LNAPLs. In order to understand the effect of biosurfactants on dissolution and biodegradation under the inducement of in-situ biosurfactant production, batch experiments were conducted in pure liquid media. The individual influence of each process such as biosurfactant production, dissolution of PCE and biodegradation of PCE were studied separately for getting insights on the synergistic effect of each process on the fate of PCE. Finally the dissolution coupled biodegradation of non aqueous phase PCE was studied in conditions where biosurfactant production was induced by nitrate limitation. The effect of biosurfactants was differentiated by repeating the same experiments were the biosurfactant production was retarded. The overall effect of in-situ biosurfactant production process was evaluated by use of a mathematical model. The process of microbial growth, biosurfactant production, dissolution and biodegradation of PCE were translated as ordinary differential equations. The modelling exercise was mainly performed to get insight on the combined effects of various processes that determine the concentration of PCE in its aqueous and non-aqueous phases. Model simulated profiles of PCE with the kinetic coefficients evaluated earlier from individual experiments were compared with parameters fitted for observations in experiments with dissolution coupled biodegradation process using optimization

  7. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  8. Methods for investigating biosurfactants and bioemulsifiers: a review.

    PubMed

    Satpute, Surekha K; Banpurkar, Arun G; Dhakephalkar, Prashant K; Banat, Ibrahim M; Chopade, Balu A

    2010-06-01

    Microorganisms produce biosurfactant (BS)/bioemulsifier (BE) with wide structural and functional diversity which consequently results in the adoption of different techniques to investigate these diverse amphiphilic molecules. This review aims to compile information on different microbial screening methods, surface active products extraction procedures, and analytical terminologies used in this field. Different methods for screening microbial culture broth or cell biomass for surface active compounds production are also presented and their possible advantages and disadvantages highlighted. In addition, the most common methods for purification, detection, and structure determination for a wide range of BS and BE are introduced. Simple techniques such as precipitation using acetone, ammonium sulphate, solvent extraction, ultrafiltration, ion exchange, dialysis, ultrafiltration, lyophilization, isoelectric focusing (IEF), and thin layer chromatography (TLC) are described. Other more elaborate techniques including high pressure liquid chromatography (HPLC), infra red (IR), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and fast atom bombardment mass spectroscopy (FAB-MS), protein digestion and amino acid sequencing are also elucidated. Various experimental strategies including static light scattering and hydrodynamic characterization for micelles have been discussed. A combination of various analytical methods are often essential in this area of research and a numbers of trials and errors to isolate, purify and characterize various surface active agents are required. This review introduces the various methodologies that are indispensable for studying biosurfactants and bioemulsifiers.

  9. Oxygen-controlled biosurfactant production in a bench scale bioreactor.

    PubMed

    Kronemberger, Frederico de Araujo; Santa Anna, Lidia Maria Melo; Fernandes, Ana Carolina Loureiro Brito; Menezes, Reginaldo Ramos de; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    2008-03-01

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mgO(2)/g(DW) h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mgO(2)/g(DW) h. The carbon source consumption is linear during the whole process.

  10. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  11. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    NASA Astrophysics Data System (ADS)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  12. Occurrence of Biosurfactant Producing Bacillus spp. in Diverse Habitats

    PubMed Central

    Joshi, Sanket J.; Suthar, Harish; Yadav, Amit Kumar; Hingurao, Krushi; Nerurkar, Anuradha

    2013-01-01

    Diversity among biosurfactant producing Bacillus spp. from diverse habitats was studied among 77 isolates. Cluster analysis based on phenotypic characteristics using unweighted pair-group method with arithmetic averages (UPGMAs) method was performed. Bacillus isolates possessing high surface tension activity and five reference strains were subjected to amplified 16S rDNA restriction analysis (ARDRA). A correlation between the phenotypic and genotypic characterization of Bacillus spp. is explored. Most of the oil reservoir isolates showing high surface activity clustered with B. licheniformis and B. subtilis, the hot water spring isolates clustered in two ingroups, while the petroleum contaminated soil isolates were randomly distributed in all the three ingroups. Present work revealed that diversity exists in distribution of Bacillus spp. from thermal and hydrocarbon containing habitats where majority of organisms belonged to B. licheniformis and B. subtilis group. Isolate B. licheniformis TT42 produced biosurfactant which reduced the surface tension of water from 72 mNm−1 to 28 mNm−1, and 0.05 mNm−1 interfacial tension against crude oil at 80°C. This isolate clustered with B. subtilis and B. licheniformis group on the basis of ARDRA. These findings increase the possibility of exploiting the Bacillus spp. from different habitats and their possible use in oil recovery. PMID:25969778

  13. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  14. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil.

    PubMed

    Lai, Chin-Chi; Huang, Yi-Chien; Wei, Yu-Hong; Chang, Jo-Shu

    2009-08-15

    A screening method was developed to evaluate the oil removal capability of biosurfactants for oil-contaminated soils collected from a heavy oil-polluted site. The ability of removing total petroleum hydrocarbon (TPH) from soil by two biosurfactants was identified and compared with that of synthetic surfactants. The results show that biosurfactants exhibited much higher TPH removal efficiency than the synthetic ones examined. By using 0.2 mass% of rhamnolipids, surfactin, Tween 80, and Triton X-100, the TPH removal for the soil contaminated with ca. 3,000 mg TPH/kg dry soil was 23%, 14%, 6%, and 4%, respectively, while removal efficiency increased to 63%, 62%, 40%, and 35%, respectively, for the soil contaminated with ca. 9000 mg TPH/kg dry soil. The TPH removal efficiency also increased with an increase in biosurfactant concentration (from 0 to 0.2 mass%) but it did not vary significantly for the contact time of 1 and 7 days.

  15. Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite.

    PubMed

    Perez-Ameneiro, M; Vecino, X; Cruz, J M; Moldes, A B

    2015-10-20

    In this work, a natural lipopeptide biosurfactant obtained from corn steep liquor was included in the formulation of a lignocellulosic biocomposite used for the treatment of wastewater. The results obtained indicate that the dye sorption capacity of the hydrogel containing hydrolysed vineyard pruning waste can be significantly promoted via surfactant modification using natural detergents. The elimination of dye compounds and the removal of sulphates were increased around 10% and 62%, respectively, when the biocomposite modified with biosurfactant was used. This outcome can be intrinsically related to the rougher, rounder, more compact and better-emulsified sphere achieved after the addition of the lipopeptide biosurfactant. The bioadsorption process followed a pseudo-second order kinetic model and both intraparticle diffusion and liquid film diffusion were involved in the bioadsorption mechanism. Therefore, the utilisation of biosurfactants shows great potential in the formulation of eco-friendly adsorbents for environmental application.

  16. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm.

    PubMed

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mall, Gangotri; Panda, Himadri Tanaya; Sukla, Lala Behari; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2013-11-01

    Biosurfactants are amphiphilic molecules having hydrophobic and hydrophilic moieties produced by various microorganisms. These molecules trigger the reduction of surface tension or interfacial tension in liquids. A biosurfactant-producing halophile was isolated from Lake Chilika, a brackish water lake of Odisha, India (19°41'39″N, 85°18'24″E). The halophile was identified as Bacillus tequilensis CH by biochemical tests and 16S rRNA gene sequencing and assigned accession no. KC851857 by GenBank. The biosurfactant produced by B. tequilensis CH was partially characterized as a lipopeptide using thin-layer chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance techniques. The minimum effective concentration of a biosurfactant for inhibition of pathogenic biofilm (Escherichia coli and Streptococcus mutans) on hydrophilic and hydrophobic surfaces was found to be 50 μg ml(-1). This finding has potential for a variety of applications.

  17. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    PubMed Central

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  18. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    PubMed

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m(-1), with the critical micelle concentration (CMC) of 56 mg L(-1). FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  19. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.

    PubMed

    Ebadipour, N; Lotfabad, T Bagheri; Yaghmaei, S; RoostaAzad, R

    2016-01-01

    Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box-Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R(2) = 0.86 and adj-R(2) = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications.

  20. Production of Biosurfactants by Pseudomonas Species for Application in the Petroleum Industry.

    PubMed

    Silva, Maria Aparecida M; Silva, Aline F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2017-02-01

      The production of surfactants by microorganisms has become an attractive option in the treatment of oil-contaminated environments because biosurfactants are biodegradable and less toxic than synthetic surfactants, although production costs remain high. With the aim of reducing the cost of biosurfactant production, three strains of Pseudomonas (designated P1, P2, and P3) were cultivated in a low-cost medium containing molasses and corn steep liquor as substrates. Following the selection of the best producer (P3), a rotational central composite design (RCCD) was used to determine the influence of substrates concentration on surface tension and biosurfactant yield. The biosurfactant reduced the surface tension of water to 27.5 mN/m, and its CMC was determined to be 600 mg/L. The yield was 4.0 g/L. The biosurfactant demonstrated applicability under specific environmental conditions and was able to remove 80 to 90% of motor oil adsorbed to sand. The properties of the biosurfactant suggest its potential application in bioremediation of hydrophobic pollutants.

  1. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada.

    PubMed

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Song, Xing; Zhu, Zhiwen; Cao, Tong

    2015-05-01

    From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites.

  2. Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2

    PubMed Central

    Hu, Xiaoke; Wang, Caixia; Wang, Peng

    2015-01-01

    A biosurfactant-producing bacterium, designated 3B-2, was isolated from marine sediment and identified as Vibrio sp. by 16S rRNA gene sequencing. The culture medium composition was optimized to increase the capability of 3B-2 for producing biosurfactant. The produced biosurfactant was characterized in terms of protein concentration, surface tension, and oil-displacement efficiency. The optimal medium for biosurfactant production contained: 0.5% lactose, 1.1% yeast extract, 2% sodium chloride, and 0.1% disodium hydrogen phosphate. Under optimal conditions (28°C), the surface tension of crude biosurfactant could be reduced to 41 from 71.5 mN/m (water), while its protein concentration was increased to up to 6.5 g/L and the oil displacement efficiency was improved dramatically at 6.5 cm. Two glycoprotein fractions with the molecular masses of 22 and 40 kDa were purified from the biosurfactant, which held great potential for applications in microbial enhanced oil recovery and bioremediation. PMID:26441908

  3. Biosurfactant production by cultivation of Bacillus atrophaeus ATCC 9372 in semidefined glucose/casein-based media.

    PubMed

    das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Penna, Thereza Christina Vessoni; Converti, Attilio

    2007-04-01

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35 degrees C for 24 h on glucose-and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B(max)=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  4. Structural analysis of bacteriorhodopsin solubilized by lipid-like phosphocholine biosurfactants with varying micelle concentrations.

    PubMed

    Wang, Xiaoqiang; Huang, Haihong; Sun, Chenghao; Huang, Fang

    2015-01-01

    Surfactants that can provide a more natural substitute for lipid bilayers are important in the purification and in vitro study of membrane proteins. Here we investigate the structural response of a model membrane protein, bacteriorhodopsin (BR), to phosphocholine biosurfactants. Phosphocholine biosurfactants are a type of biomimetic amphiphile that are similar to phospholipids, in which membrane proteins are commonly embedded. Multiple spectroscopic and zeta potential measurements are employed to characterize the conformational change, secondary and tertiary structure, oligomeric status, surface charge distribution and the structural stability of BR solubilized with phosphocholine biosurfactants of varying tail length. The process of phosphocholine micelle formation is found to facilitate the solubilization of BR, and for long-chain phosphocholines, concentrations much higher than their critical micelle concentrations achieve good solubilization. Phosphocholine biosurfactants are shown to be mild compared with the ionic surfactant SDS or CTAB, and tend to preserve membrane protein structure during solubilization, especially at low micelle concentrations, by virtue of their phospholipid-like zwitterionic head groups. The increase of alkyl chain length is shown to obviously enhance the capability of phosphocholine biosurfactants to stabilize BR. The underlying mechanism for the favorable actions of phosphocholine biosurfactant is also discussed.

  5. Characterization of biosurfactants from indigenous soil bacteria recovered from oil contaminated sites.

    PubMed

    Kumar, Govind; Kumar, Rajesh; Sharma, Anita

    2015-09-01

    Three bacterial isolates (G1, G2 and G3) characterized as Pseudomonas plecoglossicida, Lysinibacillus fusiformis and Bacillus safensis were recovered from contaminated soil of oil refinery. These bacterial isolates produced biosurfactants in MSM medium in stationary phase. Biosurfactants were characterized on the basis of their emulsifying properties with petrol, diesel, mobil oil and petrol engine oil. Reduction in surface tension (below 40 mN m(-1)) and blood hemolysis were also included in biosurfactants characterization. Emulsification indices of G1, G2 and G3 were in the range of 98.82, 23.53 and 58.82 for petrol; 29.411,1.05 and 70.588 for diesel; 35.31, 2.93 and 17.60 for mobil oil and 35.284, 58.82 and 17.647 for petrol engine oil respectively. Dry weight of the extracted biosurfactant was 4.6, 1.4 and 2.4 g I(-1) for G1, G2 and G3 respectively. Structural analysis of the biosurfactants by Fourier Transform Infrared Spectroscopy (FTIR) revealed significant differences in the bonding pattern of individual biosurfactant.

  6. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  7. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil.

    PubMed

    Moldes, A B; Paradelo, R; Vecino, X; Cruz, J M; Gudiña, E; Rodrigues, L; Teixeira, J A; Domínguez, J M; Barral, M T

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2-CH3 and C-O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg(-1) of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  8. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.

    PubMed

    Saikia, Rashmi Rekha; Deka, Suresh; Deka, Manab; Sarma, Hemen

    2012-08-01

    A biosurfactant producing Pseudomonas aeruginosa RS29 (identified on the basis of 16S rDNA analysis) with good foaming and emulsification properties has been isolated from crude oil contaminated sites. Optimization of different environmental factors was carried out with an objective to achieve maximum production of biosurfactant. Production of biosurfactant was estimated in terms of surface tension reduction and emulsification (E24) index. It was recorded that the isolated strain produced highest biosurfactant after 48 h of incubation at 37.5 °C, with a pH range of 7-8 and at salinity <0.8% (w/v). Ammonium nitrate used in the experiment was the best nitrogen source for the growth of biomass of P. aeruginosa RS29. On the other hand sodium and potassium nitrate enhanced the production of biosurfactant (Surface tension, 26.3 and 26.4 mN/m and E24 index, 80 and 79% respectively). The CMC of the biosurfactant was 90 mg/l. Maximum biomass (6.30 g/l) and biosurfactant production (0.80 g/l) were recorded at an optimal C/N ratio of 12.5. Biochemical analysis and FTIR spectra confirmed that the biosurfactant was rhamnolipid in nature. GC-MS analysis revealed the presence of C(8) and C(10) fatty acid components in the purified biosurfactant.

  9. Membrane Glycolipids Content Variety in Gastrointestinal Tumors and Transplantable Hepatomas in Mice

    PubMed Central

    Lv, Jun; Lv, Can Qun; Wang, Bo-Liang; Mei, Ping; Xu, Lei

    2016-01-01

    Background The aim of this study was to investigate the variety of plasma contents of membrane glycolipids in 65 gastrointestinal tumors and 31 transplant hepatomas in mice. Material/Methods The experimental model was a transplantable murine hepatoma. Experimental mice were divided into 3 groups. Results The LSA and TSA content in the 2 groups were significantly difference (p<0.01), and were significantly lower in the therapeutic group than in the control group (p<0.01). Conclusions These results indicate that membrane glycolipids index LSA and TSA are sensitive markers in gastrointestinal tumors. In the transplanted hepatomas in mice, they may be considered as ancillary indicators for judging the therapeutic effect of hepatoma. PMID:27554918

  10. Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus.

    PubMed Central

    Pask-Hughes, R A; Shaw, N

    1982-01-01

    The lipids of Thermus aquaticus YT1, Thermus thermophilus HB8, Thermus sp. strains H and J (from Icelandic hot springs), and Thermus sp. strain NH (from domestic hot water) have been investigated. Each strain contained two major components, a glycolipid and a glycophospholipid, which have been isolated and analyzed. All of the strains contained as the principal component (41 to 57% of total lipid) a diacyldiglycosyl-(N-acyl)glycosaminylglucosylglycerol, but the five glycolipids differed in carbohydrate composition. The glycophospholipid appeared to be identical in each strain and contained an N-acylglucosamine residue. The principal fatty acids were C15 and C17 branched-chain compounds. This unique polar lipid composition should be of value in the classification of other thermophiles in the genus Thermus. The exceptionally high carbohydrate content of the lipids of these extreme thermophiles may be of significance in relation to the molecular basis of thermophily. PMID:7054151

  11. Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum.

    PubMed

    Tsukatani, Yusuke; Mizoguchi, Tadashi; Thweatt, Jennifer; Tank, Marcus; Bryant, Donald A; Tamiaki, Hitoshi

    2016-06-01

    Chlorosomes are large and efficient light-harvesting organelles in green photosynthetic bacteria, and they characteristically contain large numbers of bacteriochlorophyll c, d, or e molecules. Self-aggregated bacteriochlorophyll pigments are surrounded by a monolayer envelope membrane comprised of glycolipids and Csm proteins. Here, we analyzed glycolipid compositions of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum mutants lacking one, two, or three Csm proteins by HPLC equipped with an evaporative light-scattering detector. The ratio of monogalactosyldiacylglyceride (MGDG) to rhamnosylgalactosyldiacylglyceride (RGDG) was smaller in chlorosomes from mutants lacking two or three proteins in CsmC/D/H motif family than in chlorosomes from the wild-type, whereas chlorosomes lacking CsmIJ showed relatively less RGDG than MGDG. The results suggest that the CsmC, CsmD, CsmH, and other chlorosome proteins are involved in organizing MGDG and RGDG and thereby affect the size and shape of the chlorosome.

  12. The isolation and partial characterization of the glycolipids of BP8/C3H ascites-sarcoma cells

    PubMed Central

    Gray, G. M.

    1965-01-01

    1. The total lipid was extracted from BP8/C3H ascites-sarcoma cells with acetone, light petroleum, pyridine and chloroform–methanol successively. Each extract was treated with mild alkali. The alkali-stable lipids from the pyridine and chloroform–methanol extracts, which included the glycolipids, were fractionated on silicic acid and silica gel G columns. 2. The total yield of glycolipid was about 60 mg./100 g. dry wt. of tumour cells, about 0·4% of the total lipid. Four classes of glycolipid were isolated and characterized as ceramide monohexoside (G1), ceramide dihexoside (G2), ceramide trihexoside (G3) and ceramide hexosaminyltrihexoside (G4). 3. G1, G2, G3 and G4 constituted 55, 21, 9 and 15% of the total glycolipid respectively. 4. G1 was a mixture of ceramide glucoside (70%) and ceramide galactoside. 5. The general structures of the oligosaccharide moieties of G2, G3 and G4 were elucidated by partial acid hydrolysis of the glycolipids with water-soluble polystyrenesulphonic acid. G2 was mostly ceramidelactoside with about 10% of ceramide galactosylgalactoside. G3 and G4 were probably a ceramide digalactosylglucoside and a ceramide N-acetylgalactosaminylgalactosylgalactosylglucoside respectively. 6. The fatty acid compositions of the glycolipids were very similar; lignoceric acid and nervonic acid were the major components and all contained monohydroxy acids in proportions varying from 10 to 25% of the total acids. PMID:14342256

  13. Accumulation of Novel Glycolipids and Ornithine Lipids in Mesorhizobium loti under Phosphate Deprivation

    PubMed Central

    Diercks, Hannah; Semeniuk, Adrian; Gisch, Nicolas; Moll, Hermann; Duda, Katarzyna A.

    2014-01-01

    Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and two so far unknown glycolipids, which were identified in this study by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy as O-methyl-digalactosyl diacylglycerol (Me-DGD) and glucuronosyl diacylglycerol (GlcAD). Me-DGD is a novel glycolipid, whose synthesis depends on Pgt-Ml activity and the involvement of an unknown methyltransferase, while GlcAD is formed by a novel glycosyltransferase encoded by the open reading frame (ORF) mlr2668, using UDP-glucuronic acid as a sugar donor. Deletion mutants lacking GlcAD are not impaired in growth. Our data suggest that the different glycolipids in Mesorhizobium can mutually replace each other. This may be an adaptation mechanism to enhance the competitiveness in natural environments. A further nonphospholipid in Mesorhizobium was identified as a hydroxylated form of an ornithine lipid with the additional hydroxy group linked to the amide-bound fatty acid, introduced by the hydroxylase OlsD. The presence of this lipid has not been reported for rhizobia yet. The hydroxy group is placed on the C-2 position of the acyl chain as determined by NMR spectroscopy. Furthermore, the isolated ornithine lipids contained up to 80 to 90% d-configured ornithine, a stereoform so far undescribed in bacteria. PMID:25404698

  14. Human glycolipid transfer protein (GLTP) genes: organization, transcriptional status and evolution

    PubMed Central

    Zou, Xianqiong; Chung, Taeowan; Lin, Xin; Malakhova, Margarita L; Pike, Helen M; Brown, Rhoderick E

    2008-01-01

    Background Glycolipid transfer protein is the prototypical and founding member of the new GLTP superfamily distinguished by a novel conformational fold and glycolipid binding motif. The present investigation provides the first insights into the organization, transcriptional status, phylogenetic/evolutionary relationships of GLTP genes. Results In human cells, single-copy GLTP genes were found in chromosomes 11 and 12. The gene at locus 11p15.1 exhibited several features of a potentially active retrogene, including a highly homologous (~94%), full-length coding sequence containing all key amino acid residues involved in glycolipid liganding. To establish the transcriptional activity of each human GLTP gene, in silico EST evaluations, RT-PCR amplifications of GLTP transcript(s), and methylation analyses of regulator CpG islands were performed using various human cells. Active transcription was found for 12q24.11 GLTP but 11p15.1 GLTP was transcriptionally silent. Heterologous expression and purification of the GLTP paralogs showed glycolipid intermembrane transfer activity only for 12q24.11 GLTP. Phylogenetic/evolutionary analyses indicated that the 5-exon/4-intron organizational pattern and encoded sequence of 12q24.11 GLTP were highly conserved in therian mammals and other vertebrates. Orthologs of the intronless GLTP gene were observed in primates but not in rodentiates, carnivorates, cetartiodactylates, or didelphimorphiates, consistent with recent evolutionary development. Conclusion The results identify and characterize the gene responsible for GLTP expression in humans and provide the first evidence for the existence of a GLTP pseudogene, while demonstrating the rigorous approach needed to unequivocally distinguish transcriptionally-active retrogenes from silent pseudogenes. The results also rectify errors in the Ensembl database regarding the organizational structure of the actively transcribed GLTP gene in Pan troglodytes and establish the intronless GLTP as

  15. Fusaroside, a unique glycolipid from Fusarium sp., an endophytic fungus isolated from Melia azedarach.

    PubMed

    Yang, Sheng-Xiang; Wang, Hong-Peng; Gao, Jin-Ming; Zhang, Qiang; Laatsch, Hartmut; Kuang, Yi

    2012-01-28

    Fusaroside (1), a unique trehalose-containing glycolipid composed of the 4-hydroxyl group of a trehalose unit attached to the carboxylic carbon of a long-chain fatty acid, was isolated from the organic extract of fermentation broths of an endophytic fungus, Fusarium sp. LN-11 isolated from the leaves of Melia azedarach. Six known compounds, phalluside (2), (9R*,10R*,7E)-6, 9,10-trihydroxyoctadec-7-enoic acid (3), porrigenic acid (4), (9Z)-2,3-dihydroxypropyl octadeca-9-enoate (5), cerevisterol (6) and ergokonin B (7), were also isolated from this fungus. The glycolipid contains a rare branched long-chain fatty acid (C(20:4)) with a conjugated diene moiety and a conjugated ketone moiety. The structure of the new compound 1 was elucidated by spectroscopic methods (1D and 2D NMR experiments, MS) and chemical degradations. The metabolites 1-5 were shown to have moderate to weak active against the brine shrimp larvae. To our knowledge, this is the first report of isolation of the first representative of a new family of glycolipids from natural sources.

  16. Mechanisms for glycolipid antigen-driven cytokine polarization by Valpha14i NKT cells.

    PubMed

    Sullivan, Barbara A; Nagarajan, Niranjana A; Wingender, Gerhard; Wang, Jing; Scott, Iain; Tsuji, Moriya; Franck, Richard W; Porcelli, Steven A; Zajonc, Dirk M; Kronenberg, Mitchell

    2010-01-01

    Certain glycolipid Ags for Valpha14i NKT cells can direct the overall cytokine balance of the immune response. Th2-biasing OCH has a lower TCR avidity than the most potent agonist known, alpha-galactosylceramide. Although the CD1d-exposed portions of OCH and alpha-galactosylceramide are identical, structural analysis indicates that there are subtle CD1d conformational differences due to differences in the buried lipid portion of these two Ags, likely accounting for the difference in antigenic potency. Th1-biasing C-glycoside/CD1d has even weaker TCR interactions than OCH/CD1d. Despite this, C-glycoside caused a greater downstream activation of NK cells to produce IFN-gamma, accounting for its promotion of Th1 responses. We found that this difference correlated with the finding that C-glycoside/CD1d complexes survive much longer in vivo. Therefore, we suggest that the pharmacokinetic properties of glycolipids are a major determinant of cytokine skewing, suggesting a pathway for designing therapeutic glycolipids for modulating invariant NKT cell responses.

  17. Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells.

    PubMed

    Zajonc, Dirk M; Kronenberg, Mitchell

    2009-07-01

    Most T lymphocytes recognize peptide antigens bound to or presented by molecules encoded in the major histocompatibility complex (MHC). The CD1 family of antigen-presenting molecules is related to the MHC-encoded molecules, but CD1 proteins present lipid antigens, mostly glycolipids. Here we review T-lymphocyte recognition of glycolipids, with particular emphasis on the subpopulation known as natural killer T (NKT) cells. NKT cells influence many immune responses, they have a T-cell antigen receptor (TCR) that is restricted in diversity, and they share properties with cells of the innate immune system. NKT cells recognize antigens presented by CD1d with hexose sugars in alpha-linkage to lipids, although other, related antigens are known. The hydrophobic alkyl chains are buried in the CD1d groove, with the carbohydrate exposed for TCR recognition, together with the surface of the CD1d molecule. Therefore, understanding the biochemical basis for antigen recognition by NKT cells requires an understanding of how the trimolecular complex of CD1d, glycolipid, and the TCR is formed, which is in part a problem of carbohydrate recognition by the TCR. Recent investigations from our laboratories as well as studies from other groups have provided important information on the structural basis for NKT-cell specificity.

  18. Advances in utilization of renewable substrates for biosurfactant production

    PubMed Central

    2011-01-01

    Biosurfactants are amphiphilic molecules that have both hydrophilic and hydrophobic moieties which partition preferentially at the interfaces such as liquid/liquid, gas/liquid or solid/liquid interfaces. Such characteristics enable emulsifying, foaming, detergency and dispersing properties. Their low toxicity and environmental friendly nature and the wide range of potential industrial applications in bioremediation, health care, oil and food processing industries makes them a highly sought after group of chemical compounds. Interest in them has also been encouraged because of the potential advantages they offer over their synthetic counterparts in many fields spanning environmental, food, biomedical, petrochemical and other industrial applications. Their large scale production and application however are currently restricted by the high cost of production and by the limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and latest advances in the search for cost effective renewable agro industrial alternative substrates for their production. PMID:21906330

  19. Design, synthesis, and functional activity of labeled CD1d glycolipid agonists.

    PubMed

    Jervis, Peter J; Polzella, Paolo; Wojno, Justyna; Jukes, John-Paul; Ghadbane, Hemza; Garcia Diaz, Yoel R; Besra, Gurdyal S; Cerundolo, Vincenzo; Cox, Liam R

    2013-04-17

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR-α-GalCer-CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR-glycolipid-CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for attaching

  20. Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities

    PubMed Central

    Cao, Xiao-Hong; Liao, Zhen-Yu; Wang, Chun-Ling; Yang, Wen-Yan; Lu, Mei-Fang

    2009-01-01

    A lipopeptide biosurfactant produced by Bacillus natto TK-1 has a strong surface activity. The biosurfactant was found to be an anti-adhesive agent against several bacterial strains, and also showed a broad spectrum of antimicrobial activity. The biosurfactant induced a significant reduction in tumor cells viability in a dose-dependent manner. PMID:24031375

  1. Production and partial characterization of biosurfactant produced by Streptomyces sp. R1.

    PubMed

    Zambry, Nor Syafirah; Ayoib, Adilah; Md Noh, Nur Asshifa; Yahya, Ahmad Ramli Mohd

    2017-04-07

    The present study focused on developing a wild-type actinomycete isolate as a model for a non-pathogenic filamentous producer of biosurfactants. A total of 33 actinomycetes isolates were screened and their extracellular biosurfactants production was evaluated using olive oil as the main substrate. Out of 33 isolates, 32 showed positive results in the oil spreading technique (OST). All isolates showed good emulsification activity (E24) ranging from 84.1 to 95.8%. Based on OST and E24 values, isolate R1 was selected for further investigation in biosurfactant production in an agitated submerged fermentation. Phenotypic and genotypic analyses tentatively identified isolate R1 as a member of the Streptomyces genus. A submerged cultivation of Streptomyces sp. R1 was carried out in a 3-L stirred-tank bioreactor. The influence of impeller tip speed on volumetric oxygen transfer coefficient (k L a), growth, cell morphology and biosurfactant production was observed. It was found that the maximum biosurfactant production, indicated by the lowest surface tension measurement (40.5 ± 0.05 dynes/cm) was obtained at highest k L a value (50.94 h(-1)) regardless of agitation speed. The partially purified biosurfactant was obtained at a concentration of 7.19 g L(-1), characterized as a lipopeptide biosurfactant and was found to be stable over a wide range of temperature (20-121 °C), pH (2-12) and salinity [5-20% (w/v) of NaCl].

  2. Scale up and application of biosurfactant from Bacillus subtilis in Enhanced Oil recovery.

    PubMed

    Amani, Hossein; Mehrnia, Mohammad Reza; Sarrafzadeh, Mohammad Hossein; Haghighi, Manouchehr; Soudi, Mohammad Reza

    2010-09-01

    There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y(p/x)), biosurfactant on sucrose (Y(p/s)), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g(-1), 0.18 g g(-1), and 0.03 g l(-1) h(-1), respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y(x/s), Y(p/x), Y(p/s), and Y of 0.42 g g(-1), 0.595 g g(-1), 0.25 g g(-1), and 0.057 g l(-1) h(-1), respectively. The biosurfactant maximum production, 2.5 g l(-1), was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K(L)a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s(-1), respectively. Comparison of K(L)a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K(L) a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.

  3. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    PubMed

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  4. The interaction of boron with glycolipids is required to increase tolerance to stresses in Anabaena PCC 7120.

    PubMed

    Abreu, Isidro; Orús, Isabel; Bolaños, Luis; Bonilla, Ildefonso

    2014-10-01

    Boron (B) is an essential nutrient for heterocystous cyanobacteria growing under diazotrophic conditions. Under B-deficient conditions, the heterocyst envelope is highly disorganized, and the glycolipid layer is predominantly lost. Therefore, we examined whether B is implicated in the regulation of synthesis or processing and/or stability of glycolipids in Anabaena PCC 7120. RT-PCR analysis indicated that the expression of hglE was not significantly changed under B deficiency, suggesting that the synthesis of glycolipids during heterocyst formation was not compromised. In contrast, the overexpression of devB and hepA, encoding a glycolipid and a carbohydrate transporter, respectively, results in the instability of the envelope under B-deficient conditions. The capacity of borate to bind and stabilize molecules is considered the basis of any B biological function. Using a borate-binding-specific resin and thin layer chromatography, we detected the glycolipids that interact with B. Several heterocyst-specific glycolipids were detected as putative B ligands, suggesting a role for B in stabilizing the heterocyst envelope. Moreover, the glycolipids of Anabaena growing in non-diazotrophic conditions were also detected as putative B ligands. Although B is not essential for Anabaena under non-N2-fixing conditions, the presence of this micronutrient increased the tolerance of Anabaena to detergent treatment, salinity and hyperosmotic conditions. Taken together, the results of the present experiment suggest a beneficial role for B in environmental adaptation. Furthermore, we discuss the nutrient requirement for living organisms growing in nature and not under laboratory conditions.

  5. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.

    PubMed

    Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy

    2015-12-01

    A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR.

  6. Involvement of phenazines and biosurfactants in biocontrol of Pythium myriotylum root rot on cocoyam by Pseudomonas sp. CMR12A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas sp. CMR12a was isolated from the rhizosphere of the tropical tuber crop cocoyam and produces both phenazines and cyclic lipopeptide (CLP) biosurfactants. CMR12a was shown to be an efficient biocontrol agent of P. myriotylum on cocoyam. To assess the importance of phenazine and biosurfact...

  7. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.

    PubMed

    Rivardo, F; Turner, R J; Allegrone, G; Ceri, H; Martinotti, M G

    2009-06-01

    In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26-30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.

  8. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration.

    PubMed

    Ghribi, Dhouha; Ellouze-Chaabouni, Semia

    2011-01-01

    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate substrate as a carbon source; among carbohydrates, glucose enhanced the best surfactin production. The optimum glucose concentration was 40 g/L. Higher amount of biosurfactants was obtained using 5 g/L of urea as organic nitrogen source and applying C/N ratio of 7 with ammonium chloride as inorganic nitrogen source. The highest amount of biosurfactants was recorded with the addition of 2% kerosene. Moreover, it was shown, using an automated full-controlled 2.6 L fermenter, that aeration of the medium, which affected strongly the growth regulated biosurfactants synthesis by the producing cell. So that, low or high aerations lead to a decrease of biosurfactants synthesis yields. It was found that when using dissolved oxygen saturation of the medium at 30%, biosurfactants production reached 4.92 g/L.

  9. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.

    PubMed

    Vasileva-Tonkova, Evgenia; Sotirova, Anna; Galabova, Danka

    2011-02-01

    In this study, the effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on bacterial strains, laboratory strains, and isolates from industrial wastewater was investigated. It was shown that biosurfactant, depending on the concentration, has a neutral or detrimental effect on the growth and protein release of model Gram (+) strain Bacillus subtilis 168. The growth and protein release of model Gram (-) strain Pseudomonas aeruginosa 1390 was not influenced by the presence of biosurfactant in the medium. Rhamnolipid biosurfactant at the used concentrations supported the growth of some slow growing on hexadecane bacterial isolates, members of the microbial community. Changes in cell surface hydrophobicity and permeability of some Gram (+) and Gram (-) isolates in the presence of rhamnolipid biosurfactant were followed in experiments in vitro. It was found that bacterial cells treated with biosurfactant became more or less hydrophobic than untreated cells depending on individual characteristics and abilities of the strains. For all treated strains, an increase in the amount of released protein was observed with increasing the amount of biosurfactant, probably due to increased cell permeability as a result of changes in the organization of cell surface structures. The results obtained could contribute to clarify the relationships between members of the microbial community as well as suggest the efficiency of surface properties of rhamnolipid biosurfactant from Pseudomonas fluorescens making it potentially applicable in bioremediation of hydrocarbon-polluted environments.

  10. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    PubMed Central

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol. PMID:24031810

  11. Comparing the effect of biosurfactant and chemical surfactant on bubble hydrodynamics in a flotation column.

    PubMed

    Wang, Huanran; Yang, Jingjing; Lei, Shaomin; Wang, Xinbing

    2013-01-01

    Bubble hydrodynamics is fundamental to the performance of the flotation process widely used in the separation industry. To compare the effect of biosurfactants and chemical synthetic surfactants on bubble hydrodynamics in the flotation process, the motion of a single bubble and the size distribution of bubble swarms in various surfactants (rhamnolipid, tea saponin and Triton X-100) solutions were observed directly using a high-speed video camera in a laboratory scale flotation column. Bubble trajectory, dimensions, velocity and size distribution were then determined through image analysis. The results indicated that the addition of biosurfactants had the same significant effects on bubble motion and size distribution as chemosynthetic surfactants. The biosurfactant effect on bubble behavior was also found to depend on their type and concentration. In general, the effect of tea saponin was stronger than another biosurfactant (rhamnolipid) used in the present study. The present findings implied that some biosurfactants like tea saponin can replace chemosynthetic surfactants in controlling bubble behavior in flotation operation. This will contribute to promoting the use of green environmentally friendly flotation agents in the separation industry.

  12. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1.

    PubMed

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L; Rahman, Pattanathu K S M; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l(-1)). Specifically, the low molecular weight compounds, i.e., C10-C14 were completely degraded, while C15-C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment.

  13. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    PubMed Central

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  14. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  15. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation.

    PubMed

    Chakraborty, Samrat; Ghosh, Mandakini; Chakraborti, Srijita; Jana, Sougata; Sen, Kalyan Kumar; Kokare, Chandrakant; Zhang, Lixin

    2015-08-01

    This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 μg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability.

  16. Bioremediation of multi-metal contaminated soil using biosurfactant - a novel approach.

    PubMed

    Juwarkar, Asha A; Dubey, Kirti V; Nair, Anupa; Singh, Sanjeev Kumar

    2008-03-01

    An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization of metal and decontamination of contaminated soil. Within 36 hours of leaching study, di-rhamnolipid as compared to tap water facilitated 13 folds higher removal of Cr from the heavy metal spiked soil whereas removal of Pb and Cu was 9-10 and 14 folds higher respectively. Leaching of Cd and Ni was 25 folds higher from the spiked soil. This shows that leaching behavior of biosurfactant was different for different metals. The use of wastewater for production of biosurfactant and its efficient use in metal removal make it a strong applicant for bioremediation.

  17. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate.

    PubMed

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  18. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses.

    PubMed

    Colla, Luciane Maria; Rizzardi, Juliana; Pinto, Marta Heidtmann; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2010-11-01

    Lipases and biosurfactants are compounds produced by microorganisms generally involved in the metabolization of oil substrates. However, the relationship between the production of lipases and biosurfactants has not been established yet. Therefore, this study aimed to evaluate the correlation between production of lipases and biosurfactants by submerged (SmgB) and solid-state bioprocess (SSB) using Aspergillus spp., which were isolated from a soil contaminated by diesel oil. SSB had the highest production of lipases, with lipolytic activities of 25.22U, while SmgB had 4.52U. The production of biosurfactants was not observed in the SSB. In the SmgB, correlation coefficients of 91% and 87% were obtained between lipolytic activity and oil in water and water in oil emulsifying activities, respectively. A correlation of 84% was obtained between lipolytic activity and reduction of surface tension in the culture medium. The surface tension decreased from 50 to 28mNm(-1) indicating that biosurfactants were produced in the culture medium.

  19. Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus.

    PubMed

    Portilla-Rivera, O; Torrado, A; Domínguez, J M; Moldes, A B

    2008-09-10

    Lactobacillus pentosus grown on sugars from agricultural residues produces biosurfactants with emulsifying properties that could facilitate the bioremediation of hydrocarbon contaminated sites. The biosurfactans obtained after growing L. pentosus cells on distilled grape marc hydrolyzates gave values of relative emulsion volume (EV) close to 50%, being stable after 72 h when gasoline or kerosene were employed. These EV values were higher than those achieved using commercial surfactin (14.1% for gasoline and 27.2% for kerosene). Moreover, assays carried out with kerosene showed that L. pentosus produced biosurfactants from distilled grape marc hydrolyzates with the highest stabilizing capacity value (ES) to maintain the emulsion (99%) followed by biosurfactants produced from hazelnut shell hydrolyzates (97%). These data are comparable with those obtained using sodium dodecyl sulfate, SDS (87.7%), whereas surfactin only gave an ES value of 65.4%. Consequently, this work shows that utilization of low-cost feedstock agricultural residues as substrates for producing biosurfactants/bioemulsifiers is possible thus removing obstacles for the wide-scale industrial application of biosurfactants/bioemulsifiers.

  20. Potential production of biosurfactants under electric field supplied to clayey soil

    SciTech Connect

    Ju, L.; Elektorowicz, M.

    1999-07-01

    The possibility of the introduction of nutrients and bacteria into clayey soil using electrokinetic methodology makes bioremediation more popular. However, biodegradation of polynuclear aromatic hydrocarbons (PAHs) is limited by their low solubility. The potential production of biosurfactants in clayey soil under the electric field was presented in this study. The electrokinetic cell tests were carried out to investigate the production of biosurfactants in the contaminated soil and soil without contaminants. The results showed that there was 1.5 times higher production in the soil contaminated by phenanthrene than that without it. In the middle of the electrokinetic cell, there are more biosurfactants produced than at the anode and the cathode areas. It was observed that there was migration of micelles with the electromigration and electroosmosis. In spite of the anionic properties of biosurfactant, the movement of the micelle was only partially directed to the anode. It was also observed that the electroosmosic flow transported micelles to the cathode. The results suggested the possibility of production of biosurfactants under the electric field and uniform distribution in the subsoil. The results could find a direct applicability in the enhanced remediation of PAH-contaminated sites.

  1. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  2. Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed.

    PubMed

    Singh, Durgesh Narain; Tripathi, Anil Kumar

    2013-01-01

    A strain of Pseudomonas stutzeri was isolated form an enrichment of perchlorate reducing bacteria from the formation water collected from an Indian coalbed which solubilized coal and produced copious amount of biosurfactant when coal was added to the medium. It produced maximum biosurfactant with lignite coal followed by olive oil and soybean oil which was able to emulsify several aromatic hydrocarbons including kerosene oil, diesel oil, hexane, toluene etc. Haemolytic test, growth inhibition of Bacillus subtilis and FTIR analysis showed rhamnolipid nature of the biosurfactant. The stability of the coal induced biosurfactant in pH range of 4-8 and up to 25% NaCl concentration and 100 °C temperature suggests that due to its ability to produce biosurfactant and solubilize coal P. stutzeri may be useful in the coalbed for in situ biotransformation of coal into methane and in the bioremediation of PAHs from oil contaminated sites including marine environments.

  3. Biosurfactant activity, heavy metal tolerance and characterization of Joostella strain A8 from the Mediterranean polychaete Megalomma claparedei (Gravier, 1906).

    PubMed

    Rizzo, Carmen; Michaud, Luigi; Graziano, Marco; De Domenico, Emilio; Syldatk, Christoph; Hausmann, Rudolf; Lo Giudice, Angelina

    2015-08-01

    The effect of heavy metals on the activity of biosurfactants produced by Joostella strain A8 from the polychaete Megalomma claparedei was investigated. Biosurfactant activity was first improved by evaluating the influence of abiotic parameters. Higher E(24) indices were achieved at 25 °C in mineral salt medium supplemented with 2 % glucose, 3 % sodium chloride (w/v) and 0.1 % ammonium chloride (w/v). Considerable surface tension reduction was never recorded. Heavy metal tolerance was preliminarily assayed by plate diffusion method resulting in the order of toxicity Cd > Cu > Zn. The activity of biosurfactants was then evaluated in the presence of heavy metals at different concentrations in liquid cultures that were incubated under optimal conditions for biosurfactant activity. The production of stable emulsions resulted generally higher in the presence of metals. These findings suggest that biosurfactant production could represent a bacterial adaptive strategy to defend cells from a stress condition derived from heavy metals in the bulk environment.

  4. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2

    SciTech Connect

    Drage, Michael G.; Tsai, Han-Chun; Pecora, Nicole D.; Cheng, Tan-Yun; Arida, Ahmad R.; Shukla, Supriya; Rojas, Roxana E.; Seshadri, Chetan; Moody, D. Branch; Boom, W. Henry; Sacchettini, James C.; Harding, Clifford V.

    2010-09-27

    Knockout of lprG results in decreased virulence of Mycobacterium tuberculosis (MTB) in mice. MTB lipoprotein LprG has TLR2 agonist activity, which is thought to be dependent on its N-terminal triacylation. Unexpectedly, here we find that nonacylated LprG retains TLR2 activity. Moreover, we show LprG association with triacylated glycolipid TLR2 agonists lipoarabinomannan, lipomannan and phosphatidylinositol mannosides (which share core structures). Binding of triacylated species was specific to LprG (not LprA) and increased LprG TLR2 agonist activity; conversely, association of glycolipids with LprG enhanced their recognition by TLR2. The crystal structure of LprG in complex with phosphatidylinositol mannoside revealed a hydrophobic pocket that accommodates the three alkyl chains of the ligand. In conclusion, we demonstrate a glycolipid binding function of LprG that enhances recognition of triacylated MTB glycolipids by TLR2 and may affect glycolipid assembly or transport for bacterial cell wall biogenesis.

  5. A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens

    PubMed Central

    Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.

    2014-01-01

    Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610

  6. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens.

    PubMed

    Arora, Pooja; Baena, Andres; Yu, Karl O A; Saini, Neeraj K; Kharkwal, Shalu S; Goldberg, Michael F; Kunnath-Velayudhan, Shajo; Carreño, Leandro J; Venkataswamy, Manjunatha M; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R; Jervis, Peter J; Veerapen, Natacha; Besra, Gurdyal S; Porcelli, Steven A

    2014-01-16

    Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α(+) DEC-205(+) dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α(+) dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses.

  7. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    PubMed

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P < 0.05) total aerobic count in biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage.

  8. Antibodies to glycolipids activate complement and promote proteinuria in passive Heymann nephritis.

    PubMed

    Susani, M; Schulze, M; Exner, M; Kerjaschki, D

    1994-04-01

    Passive Heymann nephritis is an experimental rat model of human membranous nephropathy induced by injection of antisera against crude renal cortical fractions such as Fx1A or rat tubular microvilli. This results in the formation of subepithelial immune deposits, the activation of the C5b-9 membrane attack complex of complement, and severe proteinuria. While the formation of immune deposits is attributed to in situ immune complex formation with antibodies specific for the gp330-Heymann nephritis antigenic complex (HNAC), activation of complement and proteinuria appear to be caused by at least one additional antibody species present in anti-Fx1A sera. We have separated by affinity absorption polyspecific antisera against Fx1A and rat microvilli into one IgG fraction directed specifically against microvillar proteins (anti-Fx1A-prot) and another IgG fraction specific for glycolipids (ant-Fx1A-lip) of tubular microvilli. When injected into rats, the anti-Fx1A-prot fraction induced immune deposits but failed to activate complement or produce proteinuria, similar to results obtained with affinity-purified anti-gp330 IgG. When the antibodies of the anti-Fx1A-lip fraction were injected alone they did not bind to glomeruli. By contrast, when the IgGs specific for the Fx1A-prot fraction (or for gp330-HNAC) were combined with those directed against the Fx1A-lip glycolipid preparation, immune deposits were formed, in situ complement activation was observed, and also proteinuria was induced. It is concluded that within anti-Fx1A and anti-microvillar sera there are at least two IgG fractions of relevance for the development of PHN: one directed against the gp330-HNAC complex which is responsible for the development of immune deposits, and a second specific for glycolipid antigen(s) which activate(s) the complement cascade.

  9. Synthesis and antigenicity of BBGL-2 glycolipids of Borrelia burgdorferi, the causative agent of Lyme disease

    PubMed Central

    Pozsgay, Vince; Kubler-Kielb, Joanna; Coxon, Bruce; Marques, Adriana; Robbins, John B.; Schneerson, Rachel

    2011-01-01

    Borrelia burgdorferi is the etiological agent for Lyme disease (LD), the most common vector borne disease in the United States. There is no human vaccine against LD currently available. Our approach to a vaccine is based on its surface-exposed glycolipids. One group of these glycolipids termed BBGL-2 consists of 1,2-di-O-acyl-3-O-(α-D-galactopyranosyl)-sn-glycerol congeners having palmitic, oleic, stearic, linoleic, and myristic acids. In order to delineate the immunodominant region(s) of the BBGL-2 components, we embarked on a synthetic project to provide available structurally defined, homogeneous analogs of BBGL-2 that might help identify the best vaccine candidate. The antigenicity of the synthetic glycolipids was examined by dot-blot analysis using mice sera obtained by immunization with killed B. burgdorferi cells, with native BBGL-2 in complete Freund's adjuvant, as well as sera obtained from patients with Lyme disease. We found that the presence of two acyl groups in the glycerol moiety was essential for antigenicity. At least one of these groups must be an oleoyl moiety. Neither the anomeric configuration of the galactose nor the configuration of the glycerol at C-2 was a decisive factor. Based on these findings we designed an `unnatural' BBGL-2 analog having the structure 3-O-(β-D-galactopyranosyl)-1,2-di-O-oleoyl-DL-glycerol which is easier and less expensive to synthesize than the other BBGL-2 congeners prepared in this study. This substance proved to be antigenic and is considered a candidate vaccine for Lyme disease. PMID:21601180

  10. Design, Synthesis, and Functional Activity of Labeled CD1d Glycolipid Agonists

    PubMed Central

    2013-01-01

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR−α-GalCer–CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR–glycolipid–CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for

  11. Plasma-dependent chemotaxis of macrophages toward BCG cell walls and the mycobacterial glycolipid P3.

    PubMed

    Kelly, M T

    1977-01-01

    BCG cell walls, associated with oil droplets in the form of emulsions in saline, generate macrophage chemotactic activity from fresh guinea pig plasma. Serum and heat-inactivated plasma were inactive, suggesting involvement of complement or fibrinogen-derived chemotactic factors. Suspensions of cell walls and oil droplets each generated chemotactic activity from plasma, and the activity of the cell wall vaccine was due to the additive effects of these two components. A mycobacterial glycolipid (P3), which is a constituent of BCG cell walls, also had plasma-dependent chemotactic activity. The results suggest that macrophage chemotaxis may be an important part of the immunopotentiating activity of these mycobacterial products.

  12. Applications of biosurfactants in the petroleum industry and the remediation of oil spills.

    PubMed

    de Cássia F S Silva, Rita; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie Asfora

    2014-07-15

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills.

  13. Optimizing Carbon/Nitrogen Ratio for Biosurfactant Production by a Bacillus subtilis Strain

    NASA Astrophysics Data System (ADS)

    Fonseca, R. R.; Silva, A. J. R.; de Franca, F. P.; Cardoso, V. L.; Sérvulo, E. F. C.

    A Bacillus subtilis strain isolated from contaminated soil from a refinery has been screened for biosurfactant production in crystal sugar (sucrose) with different nitrogen sources (NaNO3' (NH4)2SO4' urea, and residual brewery yeast). The highest reduction in surface tension was achieved with a 48-h fermentation of crystal sugar and ammonium nitrate. Optimization of carbon/nitrogen ratio (3,9, and 15) and agitation rate (50, 150, and 250 rpm) for biosurfactant production was carried out using complete factorial design and response surface analysis. The condition of C/N 3 and 250 rpm allowed the maximum increase in surface activity of biosurfactant. A suitable model has been developed, having presented great accordance experimental data. Preliminary characterization of the bioproduct suggested it to be a lipopeptide with some isomers differing from those of a commercial surfactin.

  14. Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation.

    PubMed

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2013-10-15

    This study analyzes the kinetics of sediment sorption on two chemical surfactants (Tween 20 and SDS) and a biotechnologically produced surfactant (obtained from Lactobacillus pentosus). Biosurfactants were produced by fermentation of hemicellulosic sugars from vineyard pruning waste supplied as a substrate to L. pentosus. Results obtained showed that almost no SDS was adsorbed onto the sediments, whereas Tween 20 and biosurfactants from L. pentosus were absorbed after a few minutes. Kinetic models revealed that adsorption of surfactant onto riverbed sediments is governed not only by an intra-particle diffusion model (evaluated by the Weber and Morris model), but also by surface reaction models (evaluated by first, second, third order equations and Elovich equation), showing the best fit when employing the Elovich model. The adsorption properties showed by biosurfactant from L. pentosus onto sediments present it as a potential foaming agent in froth flotation.

  15. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    PubMed Central

    Silva, Rita de Cássia F. S.; Almeida, Darne G.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie Asfora

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills. PMID:25029542

  16. Production of Biosurfactant by Pseudomonas aeruginosa Grown on Cashew Apple Juice

    NASA Astrophysics Data System (ADS)

    Rocha, Maria V. P.; Souza, Maria C. M.; Benedicto, Sofia C. L.; Bezerra, Márcio S.; Macedo, Gorete R.; Saavedra Pinto, Gustavo A.; Gonçalves, Luciana R. B.

    In this work, the ability of biosurfactant production by Pseudomonas aeruginosa in batch cultivation using cashew apple juice (CAJ) and mineral media was evaluated. P. aeruginosa was cultivated in CAJ, which was supplemented with peptone (5.0 g/L) and nutritive broth. All fermentation assays were performed in Erlenmeyer flasks containing 300 mL, incubated at 30°C and 150 rpm. Cell growth (biomass and cell density), pH, and superficial tension were monitored vs time. Surface tension was reduced by 10.58 and 41% when P. aeruginosa was cultivated in nutrient broth and CAJ supplemented with peptone, respectively. These results indicated that CAJ is an adequate medium for growth and biosurfactant production. Best results of biosurfactant production were obtained when CAJ was supplemented with peptone.

  17. Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses.

    PubMed

    Nikolopoulou, Maria; Kalogerakis, Nicolas

    2008-11-01

    Many research studies have demonstrated the feasibility and efficacy of fertilization with nitrogen and phosphorus to combat oil spills in marine environments. Rapid dilution of water-soluble nutrients can be overcome by oleophilic formulations that retain optimal nutrient concentrations at the oil-water interface where biodegradation occurs. Previous work has demonstrated that biodegradation processes are enhanced by the addition of lipophilic fertilizers of natural origin (uric acid and lecithin). In this work, we examined the effectiveness of these nutrients in combination with biosurfactants (rhamnolipids) and molasses (source of C and vitamins) to enhance the biodegradation by naturally occurring microorganisms. It was found that the use of biosurfactants resulted in an increased removal of petroleum hydrocarbons (96% removal of C19-C34 n-alkanes within a period of 18 days) as well as in a reduction of the lag phase (almost 80% removal was achieved within the first week of biosurfactant application).

  18. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    PubMed

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  19. Carbohydrates act as receptors for the periodontitis-associated bacterium Porphyromonas gingivalis: a study of bacterial binding to glycolipids.

    PubMed

    Hellström, Ulrika; Hallberg, Eva C; Sandros, Jens; Rydberg, Lennart; Bäcker, Annika E

    2004-06-01

    In this study we show for the first time the use of carbohydrate chains on glycolipids as receptors for the periodontitis-associated bacterium Porphyromonas gingivalis. Previous studies have shown that this bacterium has the ability to adhere to and invade the epithelial lining of the dental pocket. Which receptor(s) the adhesin of P. gingivalis exploit in the adhesion to epithelial cells has not been shown. Therefore, the binding preferences of this specific bacterium to structures of carbohydrate origin from more than 120 different acid and nonacid glycolipid fractions were studied. The bacteria were labeled externally with (35)S and used in a chromatogram binding assay. To enable detection of carbohydrate receptor structures for P. gingivalis, the bacterium was exposed to a large number of purified total glycolipid fractions from a variety of organs from different species and different histo-blood groups. P. gingivalis showed a preference for fractions of human and pig origin for adhesion. Both nonacid and acid glycolipids were used by the bacterium, and a preference for shorter sugar chains was noticed. Bacterial binding to human acid glycolipid fractions was mainly obtained in the region of the chromatograms where sulfated carbohydrate chains usually are found. However, the binding pattern to nonacid glycolipid fractions suggests a core chain of lactose bound to the ceramide part as a tentative receptor structure. The carbohydrate binding of the bacterium might act as a first step in the bacterial invasion process of the dental pocket epithelium, subsequently leading to damage to periodontal tissue and tooth loss.

  20. Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant

    PubMed Central

    Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A. Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B.

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L−1 Hg2+) resulted in better separation (36.4%), while concentrated solutions (100 mg L−1) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions. PMID:22174661

  1. The anionic biosurfactant rhamnolipid does not denature industrial enzymes.

    PubMed

    Madsen, Jens K; Pihl, Rasmus; Møller, Anders H; Madsen, Anne T; Otzen, Daniel E; Andersen, Kell K

    2015-01-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL) and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS) on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ), the phospholipase Lecitase Ultra® (LT) and the α-amylase Stainzyme® (SZ). Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction toward the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the enzyme well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries) to SZ. Furthermore, all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant enzymes. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications.

  2. Cost effective technologies and renewable substrates for biosurfactants' production.

    PubMed

    Banat, Ibrahim M; Satpute, Surekha K; Cameotra, Swaranjit S; Patil, Rajendra; Nyayanit, Narendra V

    2014-01-01

    Diverse types of microbial surface active amphiphilic molecules are produced by a range of microbial communities. The extraordinary properties of biosurfactant/bioemulsifier (BS/BE) as surface active products allows them to have key roles in various field of applications such as bioremediation, biodegradation, enhanced oil recovery, pharmaceutics, food processing among many others. This leads to a vast number of potential applications of these BS/BE in different industrial sectors. Despite the huge number of reports and patents describing BS and BE applications and advantages, commercialization of these compounds remain difficult, costly and to a large extent irregular. This is mainly due to the usage of chemically synthesized media for growing producing microorganism and in turn the production of preferred quality products. It is important to note that although a number of developments have taken place in the field of BS industries, large scale production remains economically challenging for many types of these products. This is mainly due to the huge monetary difference between the investment and achievable productivity from the commercial point of view. This review discusses low cost, renewable raw substrates, and fermentation technology in BS/BE production processes and their role in reducing the production cost.

  3. [Antiadhesive potencial of Rhodococcus erythropolis IMB Ac-5017 biosurfactants].

    PubMed

    Pirog, T P; Gritsenko, N A; Konon, A D; Shevchuk, T A; Iutinskaia, G A

    2014-01-01

    The effect of Rhodococcus erythropolis IMB Ac-5017 biosurfactants (surface-active substances, SAS) with different degree of purification on attachment of bacteria (Escherichia coli IEM-1, Bacillus subtilis BT-2, Proteus vulgaris BT-1, Staphylococcus aureus BMC-1, Pseudomonas aeruginosa P-55, Enterobacter cloacae AC-22, Erwinia aroidaeae B-433), yeasts (Candida albicans D-6) and fungi (Aspergillus niger P-3, Fusarium culmorum T-7) to the abiotic surfaces (glass, plastic, ceramics, steel, linoleum) was studied. The dependence of microorganisms adhesion on degree of SAS purification (supernatant, purified SAS solution), SAS concentration (0,04-1,25 mg/ml), type of surface and test-cultures was established. The adhesion of majority investigated bacterial cells after treatment of abiotic surfaces with supernatant of cultural liquid with SAS concentration 0,06-0,25 mg/ml was on the average 20-45, yeasts C. albicans D-6--30-75% and was less than that purified SAS solution with the same concentration. Higher antiadhesive activity of supernatant as compared to purified SAS solution testifies to possibility of exception of the expensive stage of isolation and purification at obtaining of preparations with antiadhesive properties.

  4. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    PubMed Central

    Madsen, Jens K.; Pihl, Rasmus; Møller, Anders H.; Madsen, Anne T.; Otzen, Daniel E.; Andersen, Kell K.

    2015-01-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL) and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS) on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ), the phospholipase Lecitase Ultra® (LT) and the α-amylase Stainzyme® (SZ). Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction toward the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the enzyme well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries) to SZ. Furthermore, all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant enzymes. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications. PMID:25941516

  5. Boolean Models of Biosurfactants Production in Pseudomonas fluorescens

    PubMed Central

    Richard, Adrien; Rossignol, Gaelle; Comet, Jean-Paul; Bernot, Gilles; Guespin-Michel, Jannine; Merieau, Annabelle

    2012-01-01

    Cyclolipopeptides (CLPs) are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene () and not restored by complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained. PMID:22303435

  6. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1.

    PubMed

    Santa Anna, L M; Sebastian, G V; Pereira, N; Alves, T L; Menezes, E P; Freire, D M

    2001-01-01

    The Pseudomonas aeruginosa PA1 strain, isolated from the water of oil production in Sergipe, Northeast Brazil, was evaluated as a potential rhamnolipid type of biosurfactant producer. The production of biosurfactants was investigated using different carbon sources (n-hexadecane, paraffin oil, glycerol, and babassu oil) and inoculum concentrations (0.0016-0.008 g/L). The best results were obtained with glycerol as the substrate and an initial cell concentration of 0.004 g/L. A C:N ratio of 22.8 led to the greatest production of rhamnolipids (1700 mg/L) and efficiency (1.18 g of rhamnolipid/g of dry wt).

  7. Bacterial biosurfactants, and their role in microbial enhanced oil recovery (MEOR).

    PubMed

    Khire, J M

    2010-01-01

    Surfactants are chemically synthesized surface-active compounds widely used for large number of applications in various industries. During last few years there is increase demand of biological surface-active compounds or biosurfactants which are produced by large number of microorganisms as they exert biodegradability, low toxicity and widespread application compared to chemical surfactants. They can be used as emulsifiers, de-emulsifiers, wetting agents, spreading agents, foaming agents, functional food ingredients and detergents. Various experiments at laboratory scale on sand-pack columns and field trials have successfully indicated effectiveness of biosurfactants in microbial enhanced oil recovery (MEOR).

  8. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives

  9. High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves

    PubMed Central

    Burch, Adrien Y.; Do, Paulina T.; Sbodio, Adrian; Suslow, Trevor V.

    2016-01-01

    ABSTRACT To better characterize the bacterial community members capable of biosurfactant production on leaves, we distinguished culturable biosurfactant-producing bacteria from nonproducers and used community sequencing to compare the composition of these distinct cultured populations with that from DNA directly recovered from leaves. Communities on spinach, romaine, and head lettuce leaves were compared with communities from adjacent samples of soil and irrigation source water. Soil communities were poorly described by culturing, with recovery of cultured representatives from only 21% of the prevalent operational taxonomic units (OTUs) (>0.2% reads) identified. The dominant biosurfactant producers cultured from soil included bacilli and pseudomonads. In contrast, the cultured communities from leaves are highly representative of the culture-independent communities, with over 85% of the prevalent OTUs recovered. The dominant taxa of surfactant producers from leaves were pseudomonads as well as members of the infrequently studied genus Chryseobacterium. The proportions of bacteria cultured from head lettuce and romaine leaves that produce biosurfactants were directly correlated with the culture-independent proportion of pseudomonads in a given sample, whereas spinach harbored a wider diversity of biosurfactant producers. A subset of the culturable bacteria in irrigation water also became enriched on romaine leaves that were irrigated overhead. Although our study was designed to identify surfactant producers on plants, we also provide evidence that most bacteria in some habitats, such as agronomic plant surfaces, are culturable, and these communities can be readily investigated and described by more classical culturing methods. IMPORTANCE The importance of biosurfactant production to the bacteria that live on waxy leaf surfaces as well as their ability to be accurately assessed using culture-based methodologies was determined by interrogating epiphytic populations by

  10. Major surface antigen, P30, of Toxoplasma gondii is anchored by a glycolipid

    SciTech Connect

    Nagel, S.D.; Boothroyd, J.C.

    1989-04-05

    P30, the major surface antigen of the parasitic protozoan Toxoplasma gondii, can be specifically labeled with (/sup 3/H)palmitic acid and with myo-(2-/sup 3/H)inositol. The fatty acid label can be released by treatment of P30 with phosphatidylinositol-specific phospholipase C (PI-PLC). Such treatment exposes an immunological cross-reacting determinant first described on Trypanosoma brucei variant surface glycoprotein. PI-PLC cleavage of intact parasites metabolically labeled with (/sup 35/S)methionine results in the release of intact P30 polypeptide in a form which migrates faster in polyacrylamide gel electrophoresis. These results argue that P30 is anchored by a glycolipid. Results from thin layer chromatography analysis of purified (/sup 3/H) palmitate-labeled P30 treated with PI-PLC, together with susceptibility to mild alkali hydrolysis and to cleavage with phospholipase A2, suggest that the glycolipid anchor of T. gondii P30 includes a 1,2-diacylglycerol moiety.

  11. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.

    PubMed

    Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments.

  12. Hydration and molecular motions in synthetic phytanyl-chained glycolipid vesicle membranes.

    PubMed Central

    Baba, T; Minamikawa, H; Hato, M; Handa, T

    2001-01-01

    Proton permeation rates across membranes of a synthetic branch-chained glycolipid, 1,3-di-O-phytanyl-2-O-(beta-D-maltotriosyl)glycerol (Mal3(Phyt)2) as well as a branch-chained phospholipid, diphytanoylphosphatidylcholine (DPhPC) were lower than those of straight-chained lipids such as egg yolk phosphatidylcholine (EPC) by a factor of approximately 4 at pH 7.0 and 25 degrees C. To examine whether degrees of water penetration and molecular motions in Mal3(Phyt)2 membranes can account for the lower permeability, nanosecond time-resolved fluorescence spectroscopy was applied to various membranes of branch-chained lipids (Mal3(Phyt)2, DPhPC, and a tetraether lipid from an extremely thermoacidophilic archaeon Thermoplasma acidophilum), as well as straight-chained lipids (EPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and digalactosyldiacylglycerol (DGDG)) using several fluorescent lipids. Degrees of hydration of glycolipids, Mal3(Phyt)2, and DGDG were lower than those of phospholipids, EPC, POPC, and DPhPC at the membrane-water interfaces. DPhPC showed the highest hydration among the lipids examined. Meanwhile, rotational and lateral diffusive motions of the fluorescent phospholipid in branch-chained lipid membranes were more restricted than those in straight-chained ones. The results suggest that the restricted motion of chain segments rather than the lower hydration accounts for the lower proton permeability of branch-chained lipid membranes. PMID:11721000

  13. Alteration of glycolipids in ras-transfected NIH 3T3 cells

    SciTech Connect

    Matyas, G.R.; Aaronson, S.A.; Brady, R.O.; Fishman, P.H.

    1987-09-01

    Glycosphingolipid alterations upon viral transformation are well documented. Transformation of mouse 3T3 cells with murine sarcoma viruses results in marked decreases in the levels of gangliosides GM1 and GD1a and an increase in gangliotriaosylceramide. The transforming oncogenes of these viruses have been identified as members of the ras gene family. The authors analyzed NIH 3T3 cells transfected with human H-, K- and N-ras oncogenes for their glycolipid composition and expression of cell surface gangliosides. Using conventional thin-layer chromatographic analysis, they found that the level of GM3 was increased and that of GD1a was slightly decreased or unchanged, and GM1 was present but not in quantifiable levels. Cell surface levels of GM1 were determined by /sup 125/I-labeled cholera toxin binding to intact cells. GD1a was determined by cholera toxin binding to cells treated with sialidase prior to toxin binding. All ras-transfected cells had decreased levels of surface GM1 and GD1 as compared to logarithmically growing normal NIH 3T3 cells. Levels of GM1 and, to a lesser extent, GD1a increased as the latter cells became confluent. Using a monoclonal antibody assay, they found that gangliotriaosylceramide was present in all ras-transfected cells studied but not in logarithmically growing untransfected cells. These results indicated that ras oncogenes derived form human tumors are capable of inducing alterations in glycolipid composition.

  14. Combinatorial effect of Bacillus amyloliquefaciens AG1 biosurfactant and Bacillus thuringiensis Vip3Aa16 toxin on Spodoptera littoralis larvae.

    PubMed

    Ben Khedher, Saoussen; Boukedi, Hanen; Dammak, Mariam; Kilani-Feki, Olfa; Sellami-Boudawara, Tahya; Abdelkefi-Mesrati, Lobna; Tounsi, Slim

    2017-03-01

    Spodoptera littoralis, one of the most serious and destructive agricultural pests in the world, is very susceptible to Vip3 toxin. In order to develop a new efficient bioinsecticide and to prevent the development of resistance by the target pest, insecticidal activity of biosurfactant produced by Bacillus amyloliquefaciens AG1 was evaluated against S. littoralis. Bioassays revealed the susceptibility of the first instar larvae of this pest to AG1 biosurfactant with an LC50 of 245ng/cm(2). Moreover, the histopathology examination of the larval midgut treated by AG1 biosurfactant showed vacuolization, necrosis and disintegration of the basement membrane. Binding experiments revealed that the AG1 biosurfactant recognized three putative receptors located in the brush border membrane vesicles of S. littoralis with sizes of 91, 72 and 64kDa. Competition assays using biotinylated metabolites indicated that AG1 biosurfactant and Vip3Aa16 toxin did not compete for the same S. littoralis receptors. When combined, AG1 biosurfactant and Vip3Aa16 showed an additive effect against S. littoralis larvae. These findings suggested that B. amyloliquefaciens AG1 biosurfactant could be a promising biocontrol agent to eradicate S. littoralis and to prevent resistance development by this pest.

  15. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    PubMed

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.

  16. Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design.

    PubMed

    Roldán-Carrillo, T; Martínez-García, X; Zapata-Peñasco, I; Castorena-Cortés, G; Reyes-Avila, J; Mayol-Castillo, M; Olguín-Lora, P

    2011-09-01

    The strain SmSA, identified as Serratia marcescens and known as a biosurfactant producer, was isolated from hydrocarbon contaminated soil from Veracruz, México. The interactions among the C/N, C/Mg and C/Fe ratios have not been examined for this microorganism. In this work was evaluated the effect of these nutrients at three levels using a mineral medium with glucose as the carbon source. A Box-Behnken experimental design was utilised to maximise biosurfactant production, which was assessed by oil spreading and surface tension tests. The treatment with C/N=5, C/Fe=26,000 and C/Mg=30 showed the best result since the surface tension was reduced to 30 mN m(-1). The multiple regression and response surface analyses indicated that the interaction between C/N and C/Mg had the utmost effect on the reduction of surface tension and biosurfactant production. The conditions of the best treatment were used to scale up biosurfactant production in a 3L bioreactor giving a yield of 4.1 gL(-1) of pure biosurfactant. It was found that the biosurfactant was mainly produced in the exponential phase and decreased the surface tension to 31 mN m(-1). The contact between the biosurfactant with heavy oil (15° API) increased its displacement from 9.3 to 18 cm.

  17. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems.

    PubMed

    Yu, Hui; Huang, Guo-He; Xiao, Huining; Wang, Lei; Chen, Wei

    2014-09-01

    This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil-water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM-biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.

  18. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1.

    PubMed

    Sriram, Muthu Irulappan; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Gracerosepat, Raja; Srisakthi, Kandasamy; Gurunathan, Sangiliyandi

    2011-07-01

    Biosurfactants are worthful microbial amphiphilic molecules with efficient surface-active and biological properties applicable to several industries and processes. Among them lipopeptides represent a class of microbial surfactants with increasing scientific, therapeutic and biotechnological interests. A heavy metal tolerant Bacillus strain has been isolated and the biofilm inhibition and antimicrobial activity of biosurfactant produced by the strain have been studied. Biosurfactant production was confirmed by the conventional screening methods including hemolytic activity, drop collapsing test, oil displacement test, emulsification and lipase production assays. The biosurfactant produced by this strain was a lipopeptide and exhibited strong surface activity. The biosurfactant has been characterized using FTIR, TLC and HPLC. The minimum active dose of this biosurfactant when compared with the other chemical surfactants was found as 0.150±0.06 μg. The critical micelle concentration was found to be 45 mg/l. The biosurfactant was found to be stable and active over a wide range of pH, temperature and NaCl concentration. It was also able to emulsify a wide range of hydrocarbons and oils thereby extending its application for the bioremediation of oil contaminated sites. The biosurfactant exhibited significant reduction in biofilm formation by pathogens and showed potent antimicrobial activity against various gram positive, gram negative bacteria and fungi. Agar diffusion assay for heavy metal resistance showed that the isolate was resistant to ferrous, lead and zinc. Considering the biofilm inhibition and antimicrobial property of biosurfactant, it can be utilized as a potential therapeutic molecule for numerous microbial infections. The heavy metal resistance of the strain can also be harnessed as an invaluable biological tool for in situ bioremediation.

  19. Agro-Industrial Wastes for Production of Biosurfactant by Bacillus subtilis ANR 88 and Its Application in Synthesis of Silver and Gold Nanoparticles

    PubMed Central

    Rane, Ashwini N.; Baikar, Vishakha V.; Ravi Kumar, D. V.; Deopurkar, Rajendra L.

    2017-01-01

    Biosurfactants, surface-active amphiphilic compounds, despite having a wide range of applications, have a high cost of production, which severely restricts their use. For cheaper production of biosurfactant, we investigated the potential of the indigenously isolated biosurfactant producing organism, Bacillus subtilis ANR 88, to grow on different cheap carbon sources (molasses, whey, and extracts of potato peels, orange peels, banana peels, and bagasse). We found that, B. subtilis ANR 88 used significant amounts of total sugar to produce cell biomass and biosurfactant. The biosurfactant production in minimal medium containing glucose as sole source of carbon was 0.207 g/l and the same with molasses as carbon source was 0.241 g/l. With whey as carbon source, isolate failed to produce biosurfactant. Amongst the extracts of the agro-wastes, the extracts of bagasse and orange peels gave 0.127 and 0.089 g/l of biosurfactant respectively. One-variable-at-a-time (OVAT) studies carried out to optimize the production of biosurfactant by B. subtilis ANR 88 resulted into maximum biosurfactant yield of 0.513 g/l in medium: molasses 4%, ammonium ferric citrate 0.25%, pH 7. Plackett–Burman design based statistical method for optimization increased the production of biosurfactant to 0.746 g/l, which is 3.6-fold of that produced on glucose. The biosurfactant produced by B. subtilis ANR 88 was analyzed by Fourier Transform Infrared Spectroscopy (FT-IR); it showed that the biosurfactant contained alkyl as well as peptide groups. The biosurfactant of B. subtilis ANR 88 was found effective in the synthesis of silver as well as gold nanoparticles in the total absence of conventional chemical reducing agents. Interestingly, nanoparticles produced were almost uniform in their size and shapes i.e., spherical silver (4–18 nm) and hexagonal gold nanoparticles (40–60 nm), as evident in TEM images. PMID:28392783

  20. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants

    PubMed Central

    López, Carmen; Cruz-Izquierdo, Álvaro; Picó, Enrique A.; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J.; Serra, Juan L.

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale. PMID:25207271

  1. Surface forces and properties of foam films from rhamnolipid biosurfactants.

    PubMed

    Cohen, R; Exerowa, D

    2007-10-31

    Foam films are considered as a convenient model to study the interaction behaviour and surface properties of microbial rhamnolipid type biosurfactants. The Scheludko-Exerowa microinterferometric methodology of film thickness measurements is employed for experimental studies of microscopic foam films formed from aqueous solutions of a single rhamnolipid Rh1 (with one rhamnosyl head group) and of mixtures of rhamnolipid surfactants Rh1 and Rh2 (with two rhamnosyl head groups) at ratios Rh2/Rh1=1.2 and Rh2/Rh1=0.69. The measurements of the equilibrium thickness (h) of the obtained films as a function of surfactant concentration (Cs) and electrolyte (NaCl) concentration (C el) determine the conditions for obtaining common, common black and Newton black films. The saturation values of the diffuse electric layer potential phi 0 approximately 60 mV for the Rh1.2 and phi 0 approximately 94 mV for the Rh0.69 common films conform the ionic character of the rhamnolipids. The h(C el) curves of the rhamnolipid foam films and the directly measured disjoining pressure (Pi(h)) isotherms indicate the ranges of action of the DLVO and non-DLVO surface forces. The obtained foam film parameters allow their practical use in ecology and in various technological processes where rhamnolipid surfactants are used. Experiments with model lung surfactant (Infasurf) foam films with rhamnolipid added outline a perspective for the potential application of the foam film for investigating the effect of rhamnolipids on human alveoli.

  2. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants.

    PubMed

    López, Carmen; Cruz-Izquierdo, Alvaro; Picó, Enrique A; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J; Serra, Juan L

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale.

  3. Halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery

    SciTech Connect

    Jenneman, G.E.; McInerney, M.J.; Knapp, R.M.; Clark, J.B.; Feero, J.M.; Revus, D.E.; Menzie, D.E.

    1983-01-01

    A biosurfactant-producing Bacillus licheniformis was isolated from oil-field injection water with properties potentially useful for in situ enhanced oil recovery. Conventional miscible flooding procedures use expensive synthetic detergents such as petroleum sulfonates that precipitate in high NaCl brines and adsorb to rock surfaces. The Bacillus sp. produced a biosurfactant when grown at 40 C in a sucrose mineral salts medium containing 5% NaCl. The biosurfactant was produced during the log phase of growth in the presence or absence of either crude oil or hexadecane. The surface tension of a 5% NaCl solution decreased from 74.0 mN/m to 27 mN/m when the surfactant was added. Interfacial tension of a 5% NaCl brine/octane mixture was as low as 0.43 mN/m when measured by a spinning drop tensiometer. The surfactant was extracted by acid precipitation at a pH of 2.0. The extracted surfactant exhibited optimal surface tension-lowering ability in 4-5% NaCl solutions between pH's of 6.0 to 10.0. The addition of calcium up to 340 mg/liter and incubation temperatures up to 100 C did not alter appreciably the surfactant activity. Mobilization of crude oil and oil bank formation occurred in a sandpack column after addition of the biosurfactant. 16 references, 1 figure, 2 tables.

  4. The influence of vegetable oils on biosurfactant production by Serratia marcescens.

    PubMed

    Ferraz, Cristina; De Araújo, Alvaro A; Pastore, Glaucia M

    2002-01-01

    The production of biosurfactant, a surface-active compound, by two Serratia marcescensstrains was tested on minimal culture medium supplemented with vegetable oils, considering that it is well known that these compounds stimulate biosurfactant production. The vegetable oils tested included soybean, olive, castor, sunflower, and coconut fat. The results showed a decrease in surface tension of the culture medium without oil from 64.54 to 29.57, with a critical micelle dilution (CMD(-1)) and CMD(-2) of 41.77 and 68.92 mN/m, respectively. Sunflower oil gave the best results (29.75 mN/m) with a CMD(-1) and CMD-2 of 36.69 and 51.41 mN/m, respectively. Sunflower oil contains about 60% of linoleic acid. The addition of linoleic acid decreased the surface tension from 53.70 to 28.39, with a CMD(-1) of 29.72 and CMD(-2) of 37.97, suggesting that this fatty acid stimulates the biosurfactant production by the LB006 strain. In addition, the crude precipitate surfactant reduced the surface tension of water from 72.00 to 28.70 mN/m. These results suggest that the sunflower oil's linoleic acid was responsible for the increase in biosurfactant production by the LB006 strain.

  5. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    PubMed

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time.

  6. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant.

    PubMed

    Patowary, Rupshikha; Patowary, Kaustuvmani; Kalita, Mohan Chandra; Deka, Suresh

    2016-10-01

    The present study aimed at isolating rhamnolipid biosurfactant-producing bacteria that could utilize paneer whey, an abundant waste source as sole medium for the production purpose. Pseudomonas aeruginosa strain, SR17, was isolated from hydrocarbon-contaminated soil that could efficiently utilize paneer whey for rhamnolipid production and reduce surface tension of the medium from 52 to 26.5 mN/m. The yield of biosurfactant obtained was 2.7 g/l, upgraded to 4.8 g/l when supplemented with 2 % glucose and mineral salts. Biochemical, FTIR, and LC-MS analysis revealed that extracted biosurfactant is a combination of both mono and di-rhamnolipid congeners. The critical micelle concentration (CMC) was measured to be 110 mg/l. Emulsification activity of the biosurfactant against n-hexadecane, olive oil, kerosene, diesel oil, engine oil, and crude oil were found to be 83, 88, 81, 92, 86, and 100 %, respectively. The rhamnolipid was detected to be non-toxic against mouse fibroblastic cell line L292.

  7. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9.

    PubMed

    Morán, A C; Olivera, N; Commendatore, M; Esteves, J L; Siñeriz, F

    2000-01-01

    A non-sterile biosurfactant preparation (surfactin) was obtained from a 24-h culture of Bacillus subtilis O9 grown on sucrose and used to study its effect on the biodegradation of hydrocarbon wastes by an indigenous microbial community at the Erlenmeyer-flask scale. Crude biosurfactant was added to the cultures to obtain concentrations above and below the critical micelle concentration (CMC). Lower concentration affected neither biodegradation nor microbial growth. Higher concentration gave higher cell concentrations. Biodegradation of aliphatic hydrocarbons increased from 20.9 to 35.5% and in the case of aromatic hydrocarbons from nil to 41%, compared to the culture without biosurfactant. The enhancement effect of biosurfactant addition was more noticeable in the case of long chain alkanes. Pristane and phytane isoprenoids were degraded to the same extent as n-C17 and n-C18 alkanes and, consequently, no decrease in the ratios n-C17/pri and n-C18/phy was observed. Rapid production of surfactin crude preparation could make it practical for bioremediation of ship bilge wastes.

  8. Screening of novel microorganisms for biosurfactant and biocontrol activity against Phytophthora infestans.

    PubMed

    Tomar, Sonica; Singh, B P; Lal, Mehi; Ma, Khan; Hussain, Touseef; Sharma, Sanjeev; Kaushik, S K; Kumar, Satish

    2014-09-01

    In the present study, 95 isolates of bacteria were tested for their biosurfactant as well as biocontrol activity against Phytophthora infestans. The results revealed that only 15.8% isolates showed biosurfactant activity. The emulsification index ranged from 0-68% and 24.2% isolates showed positive reaction for biosurfactant properties. In emulsification assay and oil spreading test, 18.95% and 5.26% isolates, respectively scored positive for biosurfactant production. Among all, only five isolates were found effective against P. infestans, for biocontrol properties. Pseudomonas aeruginosa-1 showed 62.22% inhibition zone after 72 hrs while P. aeruginosa-3 showed 46.42%. Forty-eight hrs old culture supernatants were highly effective in food-poisoning test, tuber slice test and detached leaf method against P. infestans. In whole potato plant test, bacterial cell based formulation, culture supernatant and bacterial cell suspension of P. aeruginosa-1 showed 10.42%, 9.94% and 17.96% diseases severity respectively, as against 53.96% in control. This isolate holds promise as biological control agent against P. infestans in field.

  9. Structural characterization of novel sophorolipid biosurfactants from a newly-identified species of Candida yeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sophorolipids are a group of O-acylsophorose-based biosurfactants produced by several yeasts of the Starmerella clade. The known sophorolipids are typically partially acetylated 2-O-ß-D-glucopyranosyl-D-glucopyranose (sophorose) ß-O-glycosidically-linked to 17-L-hydroxy-delta-9-octadecenoic aci...

  10. Effects of biosurfactants on the viability and proliferation of human breast cancer cells.

    PubMed

    Duarte, Cristina; Gudiña, Eduardo J; Lima, Cristovao F; Rodrigues, Ligia R

    2014-01-01

    Biosurfactants are molecules with surface activity produced by microorganisms that can be used in many biomedical applications. The anti-tumour potential of these molecules is being studied, although results are still scarce and few data are available regarding the mechanisms underlying such activity. In this work, the anti-tumour activity of a surfactin produced by Bacillus subtilis 573 and a glycoprotein (BioEG) produced by Lactobacillus paracasei subsp. paracasei A20 was evaluated. Both biosurfactants were tested against two breast cancer cell lines, T47D and MDA-MB-231, and a non-tumour fibroblast cell line (MC-3 T3-E1), specifically regarding cell viability and proliferation. Surfactin was found to decrease viability of both breast cancer cell lines studied. A 24 h exposure to 0.05 g l(-1) surfactin led to inhibition of cell proliferation as shown by cell cycle arrest at G1 phase. Similarly, exposure of cells to 0.15 g l(-1) BioEG for 48 h decreased cancer cells' viability, without affecting normal fibroblasts. Moreover, BioEG induced the cell cycle arrest at G1 for both breast cancer cell lines. The biosurfactant BioEG was shown to be more active than surfactin against the studied breast cancer cells. The results gathered in this work are very promising regarding the biosurfactants potential for breast cancer treatment and encourage further work with the BioEG glycoprotein.

  11. Characterization of a Soybean Oil-based Biosurfactant and Evaluation of its Ability to Form Microbubbles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper characterizes the physio-chemical properties of the soybean oil (SBO)-based polymeric surfactant, Palozengs R-004 (hereafter referred to as R-004). The surface activity of R-004 is comparable to the reported activities of biosurfactants produced by microorganisms and higher than some of ...

  12. Biosurfactant production by a CO2 sequestering Bacillus sp. strain ISTS2.

    PubMed

    Sundaram, Smita; Thakur, Indu Shekhar

    2015-01-01

    A chemolithotrophic bacterium, Bacillus sp. strain ISTS2, produced biosurfactant when enriched in the chemostat in presence of sodium bicarbonate as carbon source was evaluated for carbon dioxide (CO2) sequestration and biosurfactant production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Biosurfactant production ability at 100 mM NHCO3 and 5% CO2 was screened by surface and interfacial tension measurement, emulsification stability test, hydrophobicity test, contact angle measurement, bacterial adhesion to hydrocarbon and purified by silica gel column (60-120 mesh). Thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) showed that the crude biosurfactant of ISTS2 were composed of lipopeptides and free fatty acids (FA) and its hydrophobic fraction contained five kinds of fatty acids (FA) with chain lengths of C14-C19. Thus Bacillus sp. strain IST2 can be used as a cleaner bioprocess for the utilization of industrial CO2 as alternate substrate.

  13. The Drosophila melanogaster brainiac protein is a glycolipid-specific beta 1,3N-acetylglucosaminyltransferase.

    PubMed

    Müller, Reto; Altmann, Friedrich; Zhou, Dapeng; Hennet, Thierry

    2002-09-06

    Mutations at the Drosophila melanogaster brainiac locus lead to defective formation of the follicular epithelium during oogenesis and to neural hyperplasia. The brainiac gene encodes a type II transmembrane protein structurally similar to mammalian beta1,3-glycosyltransferases. We have cloned the brainiac gene from D. melanogaster genomic DNA and expressed it as a FLAG-tagged recombinant protein in Sf9 insect cells. Glycosyltransferase assays showed that brainiac is capable of transferring N-acetylglucosamine (GlcNAc) to beta-linked mannose (Man), with a marked preference for the disaccharide Man(beta1,4)Glc, the core of arthro-series glycolipids. The activity of brainiac toward arthro-series glycolipids was confirmed by showing that the enzyme efficiently utilized glycolipids from insects as acceptors whereas it did not with glycolipids from mammalian cells. Methylation analysis of the brainiac reaction product revealed a beta1,3 linkage between GlcNAc and Man, proving that brainiac is a beta1,3GlcNAc-transferase. Human beta1,3GlcNAc-transferases structurally related to brainiac were unable to transfer GlcNAc to Man(beta1,4)Glc-based acceptor substrates and failed to rescue a homozygous lethal brainiac allele, indicating that these proteins are paralogous and not orthologous to brainiac.

  14. The glycolipids from the non-capsulated strain of Pneumococcus I-192R, A.T.C.C. 12213

    PubMed Central

    Brundish, D. E.; Shaw, N.; Baddiley, J.

    1965-01-01

    1. The total lipid was extracted from the non-capsulated strain of Pneumococcus I–192R, A.T.C.C. 12213, with chloroform–methanol mixtures. Two glycolipids were isolated by chromatography on silicic acid and DEAE-cellulose (acetate form). 2. The major glycolipid was obtained pure in a yield of 640mg./34g. dry wt. of cells and represents about 34% of the total lipid. It contained galactose, glucose, glycerol and fatty acid ester residues in the proportions 1:1:1:2, and yielded on saponification a crystalline non-reducing glycoside. 3. The structure of the glycoside was shown to be O-α-d-galactopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-d-glycerol. The fatty acids obtained on saponification were identified by gas–liquid partition chromatography of their methyl esters. 4. The minor glycolipid was obtained as a 1:1 (w/w) mixture with the major component, but after saponification the two glycosides were separated by paper chromatography. Evidence was obtained for the structure of the glycoside derived from the minor glycolipid as 1-O-α-d-glucosylglycerol. 5. A general method is described for determining the stereochemistry of the glycerol moiety in 1-linked glycerol glycosides. PMID:16749097

  15. Antibodies to glycolipids activate complement and promote proteinuria in passive Heymann nephritis.

    PubMed Central

    Susani, M.; Schulze, M.; Exner, M.; Kerjaschki, D.

    1994-01-01

    Passive Heymann nephritis is an experimental rat model of human membranous nephropathy induced by injection of antisera against crude renal cortical fractions such as Fx1A or rat tubular microvilli. This results in the formation of subepithelial immune deposits, the activation of the C5b-9 membrane attack complex of complement, and severe proteinuria. While the formation of immune deposits is attributed to in situ immune complex formation with antibodies specific for the gp330-Heymann nephritis antigenic complex (HNAC), activation of complement and proteinuria appear to be caused by at least one additional antibody species present in anti-Fx1A sera. We have separated by affinity absorption polyspecific antisera against Fx1A and rat microvilli into one IgG fraction directed specifically against microvillar proteins (anti-Fx1A-prot) and another IgG fraction specific for glycolipids (ant-Fx1A-lip) of tubular microvilli. When injected into rats, the anti-Fx1A-prot fraction induced immune deposits but failed to activate complement or produce proteinuria, similar to results obtained with affinity-purified anti-gp330 IgG. When the antibodies of the anti-Fx1A-lip fraction were injected alone they did not bind to glomeruli. By contrast, when the IgGs specific for the Fx1A-prot fraction (or for gp330-HNAC) were combined with those directed against the Fx1A-lip glycolipid preparation, immune deposits were formed, in situ complement activation was observed, and also proteinuria was induced. It is concluded that within anti-Fx1A and anti-microvillar sera there are at least two IgG fractions of relevance for the development of PHN: one directed against the gp330-HNAC complex which is responsible for the development of immune deposits, and a second specific for glycolipid antigen(s) which activate(s) the complement cascade. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:8160779

  16. Nanomapping of CD1d-glycolipid complexes on THP1 cells by using simultaneous topography and recognition imaging.

    PubMed

    Duman, Memed; Chtcheglova, Lilia A; Zhu, Rong; Bozna, Bianca L; Polzella, Paolo; Cerundolo, Vicenzo; Hinterdorfer, Peter

    2013-09-01

    CD1d molecule, a monomorphic major histocompatibility complex class I-like molecule, presents different types of glycolipids to invariant natural killer T (iNKT) cells that play an important role in immunity to infection and tumors, as well as in regulating autoimmunity. Here, we present simultaneous topography and recognition imaging (TREC) analysis to detect density, distribution and localization of single CD1d molecules on THP1 cells that were loaded with different glycolipids. TREC was conducted using magnetically coated atomic force microscopy tips functionalized with a biotinylated iNKT cell receptor (TCR). The recognition map revealed binding sites visible as dark spots, resulting from oscillation amplitude reduction during specific binding between iNKT TCR and the CD1d-glycolipid complex. THP1 cells were pulsed with three different glycolipids (α-GalCer, C20 and OCH12) for 4 and 16 hr. Whereas CD1d-α-GalCer and CD1d-C20:2 complexes on cellular membrane formed smaller microdomains up to ~10 000 nm(2) (dimension area), OCH12 loaded CD1d complexes presented larger clusters with a dimension up to ~30 000 nm(2). Moreover, the smallest size of recognition spots was about 25 nm, corresponding to a single CD1d binding site. TREC successfully revealed the distribution and localization of CD1d-glycolipid complexes on THP1 cell with single molecule resolution under physiological conditions.

  17. Effect of bio-surfactant on municipal solid waste composting process.

    PubMed

    Xi, Bei-Dou; Liu, Hong-Liang; Huang, G H; Zhang, Bai-Yu; Qin, Xiao-Sheng

    2005-01-01

    Bio-surfactant is a new type of surfactant that is produced in microbial metabolism. Adding bio-surfactant during composting process, especially to those contain some toxic substances, has been proved to be a promising way. In this study, Strains III (2), a bacterial with high activity to produce bio-surfactant, were isolated firstly. Following comparison experiments with and without adding Strains III (2), namely Run 1 and Run R, were conducted, respectively. The experimental results showed that, by adding Strains III (2), the surface tension could reduce from 46.5 mN/m to 39.8 mN/m and the corresponding time to maintain the surface tension under 50 mN/ m could prolong from 60 h to 90 h. The oxygen uptake rate and total accumulated oxygen consumption with Stains III (2) were both higher than those without Strains III (2), while the accumulation of H2S in outlet gas was reduced to around 50% of Run R. Moreover, two additional experiments were also carried out to examine the effects of strains coming from different systems. One is adding Strains III (2) with a dose of 0.4% (Run 2), and the other is seedling commercial Strains at the same conditions, the composting experiments showed that: Run 2 was more effective than Run 3, because the commercial Strains can be suppressed significantly in a complex composting system with different pH, high temperature and some of metals. The bio-surfactant was also added into the solid waste, which contained some toxic substances, the corresponding results showed that the remove rate of Hg and sodium pentachlorophenolate (PCP-Na) could be improved highly. Thus, the microenvironment, reactionrate and composting quality could be enhanced effectively by adding bio-surfactant to the composting process.

  18. T cell receptor recognition of CD1b presenting a mycobacterial glycolipid

    PubMed Central

    Gras, Stephanie; Van Rhijn, Ildiko; Shahine, Adam; Cheng, Tan-Yun; Bhati, Mugdha; Tan, Li Lynn; Halim, Hanim; Tuttle, Kathryn D.; Gapin, Laurent; Le Nours, Jérôme; Moody, D. Branch; Rossjohn, Jamie

    2016-01-01

    CD1 proteins present microbial lipids to T cells. Germline-encoded mycolyl lipid-reactive (GEM) T cells with conserved αβ T cell receptors (TCRs) recognize CD1b presenting mycobacterial mycolates. As the molecular basis underpinning TCR recognition of CD1b remains unknown, here we determine the structure of a GEM TCR bound to CD1b presenting glucose-6-O-monomycolate (GMM). The GEM TCR docks centrally above CD1b, whereby the conserved TCR α-chain extensively contacts CD1b and GMM. Through mutagenesis and study of T cells from tuberculosis patients, we identify a consensus CD1b footprint of TCRs present among GEM T cells. Using both the TCR α- and β-chains as tweezers to surround and grip the glucose moiety of GMM, GEM TCRs create a highly specific mechanism for recognizing this mycobacterial glycolipid. PMID:27807341

  19. Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells.

    PubMed

    Kinjo, Yuki; Pei, Bo; Bufali, Simone; Raju, Ravinder; Richardson, Stewart K; Imamura, Masakazu; Fujio, Masakazu; Wu, Douglass; Khurana, Archana; Kawahara, Kazuyoshi; Wong, Chi-Huey; Howell, Amy R; Seeberger, Peter H; Kronenberg, Mitchell

    2008-07-21

    Mouse natural killer T (NKT) cells expressing an invariant T cell antigen receptor (TCR) recognize glycosphingolipids (GSLs) from Sphingomonas bacteria. The synthetic antigens previously tested, however, were designed to closely resemble the potent synthetic agonist alpha-galactosyl ceramide (alphaGalCer), which contains a monosaccharide and a C18:0 sphingosine lipid. Some Sphingomonas bacteria, however, also have oligosaccharide-containing GSLs, and they normally synthesize several GSLs with different sphingosine chains including one with a cyclopropyl ring-containing C21:0 (C21cycl) sphingosine. Here we studied the stimulation of NKT cells with synthetic GSL antigens containing natural tetrasaccharide sugars, or the C21cycl sphingosine. Our results indicate that there is a great degree of variability in the antigenic potency of different natural Sphingomonas glycolipids, with the C21cycl sphingosine having intermediate potency and the oligosaccharide-containing antigens exhibiting limited or no stimulatory capacity.

  20. Convenient and rapid removal of detergent from glycolipids in detergent-resistant membrane microdomains.

    PubMed

    Suzuki, Yusuke; Kabayama, Kazuya

    2012-03-01

    Although detergents are often essential in protocols, they are usually incompatible with further biochemical analysis. There are several methods for detergent removal, but the procedures are complicated or suffer from sample loss. Here, we describe a convenient and rapid method for detergent removal from sialic acid-containing glycosphingolipids (gangliosides) and neutral glycolipids in detergent-resistant membrane (DRM) microdomain. It is based on selective detergent extraction, in which the sample is dried on a glass tube, followed by washing with organic solvent. We investigated 18 organic solvents and used high performance thin-layer chromatography (HPTLC) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) to confirm that dichloroethane (DCE) was the most suitable solvent and completely removed the nonionic detergent Triton X-100. Furthermore, DCE extraction effectively removed interference caused by other nonionic, zwitterionic, or ionic detergents in MALDI-QIT-TOF MS analysis.

  1. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10.

    PubMed

    Gandhimathi, R; Seghal Kiran, G; Hema, T A; Selvin, Joseph; Rajeetha Raviji, T; Shanmughapriya, S

    2009-10-01

    A sponge-associated marine actinomycetes Nocardiopsis alba MSA10 was screened and evaluated for the production of biosurfactant. Biosurfactant production was confirmed by conventional screening methods including hemolytic activity, drop collapsing test, oil displacement method, lipase production and emulsification index. The active compound was extracted with three solvents including ethyl acetate, diethyl ether and dichloromethane. The diethyl ether extract was fractionated by TLC and semi-preparative HPLC to isolate the pure compound. In TLC, a single discrete spot was obtained with the R (f) 0.60 and it was extrapolated as valine. Based on the chemical characterization, the active compound was partially confirmed as lipopeptide. The optimum production was attained at pH 7, temperature 30 degrees C, and 1% salinity with glucose and peptone supplementation as carbon and nitrogen sources, respectively. Considering the biosurfactant production potential of N. alba, the strain could be developed for large-scale production of lipopeptide biosurfactant.

  2. Expression and Characterization of a Mycoplasma genitalium Glycosyltransferase in Membrane Glycolipid Biosynthesis

    PubMed Central

    Andrés, Eduardo; Martínez, Núria; Planas, Antoni

    2011-01-01

    Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosyldiacylglycerols. When recombinantly expressed in Escherichia coli, the enzyme was functional in vivo and yielded membrane glycolipids from which Glcβ1,6GlcβDAG was identified as the main product. A chaperone co-expression system and extraction with CHAPS detergent afforded soluble protein that was purified by affinity chromatography. GT MG517 transfers glucosyl and galactosyl residues from UDP-Glc and UDP-Gal to dioleoylglycerol (DOG) acceptor to form the corresponding β-glycosyl-DOG, which then acts as acceptor to give β-diglycosyl-DOG products. The enzyme (GT2 family) follows Michaelis-Menten kinetics. kcat is about 5-fold higher for UDP-Gal with either DOG or monoglucosyldioleoylglycerol acceptors, but it shows better binding for UDP-Glc than UDP-Gal, as reflected by the lower Km, which results in similar kcat/Km values for both donors. Although sequentially adding glycosyl residues with β-1,6 connectivity, the first glycosyltransferase activity (to DOG) is about 1 order of magnitude higher than the second (to monoglucosyldioleoylglycerol). Because the ratio between the non-bilayer-forming monoglycosyldiacylglycerols and the bilayer-prone diglycosyldiacylglycerols contributes to regulate the properties of the plasma membrane, both synthase activities are probably regulated. Dioleoylphosphatidylglycerol (anionic phospholipid) activates the enzyme, kcat linearly increasing with dioleoylphosphatidylglycerol concentration. GT MG517 is shown to be encoded by an essential gene, and the addition of GT inhibitors results in cell growth inhibition. It is proposed that glycolipid synthases are potential targets for drug discovery against infections by mycoplasmas. PMID

  3. Th1-skewed tissue responses to a mycolyl glycolipid in mycobacteria-infected rhesus macaques

    SciTech Connect

    Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki; Komori, Takaya; Nakamura, Takashi; Igarashi, Tatsuhiko; Harashima, Hideyoshi; Sugita, Masahiko

    2013-11-08

    Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cell responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection.

  4. Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications.

    PubMed

    Gargouri, Boutheina; Contreras, María Del Mar; Ammar, Sonda; Segura-Carretero, Antonio; Bouaziz, Mohamed

    2016-11-26

    In this work, biosurfactant-producing microorganisms were isolated from hydrocarbon-contaminated water collected from Tunisian oilfield. After enrichment and isolation, different bacterial strains were preliminary studied for their biosurfactant/bioemulsifier properties when using crude oil as the unique carbon source. In particular, the isolate strain B-2, a Gram-negative, rod-shaped bacterium, efficiently emulsified crude oil. The extracellular biosurfactant product from this strain presented an emulsification activity above 70% and a hydrophobicity of 71%. In addition, a diameter of 6 cm was observed in the oil displacement test. The characterization of B-2 strain using 16S rDNA sequencing enables us to find a high degree of similarity with various members of the genus Stenotrophomonas (with a percentage of similarity of 99%). The emulsification activity of Stenotrophomonas biosurfactant B-2 was maintained in a wide range of pH (2 to 6), temperature (4 to 55 °C), and salinity (0 to 50 g L(-1)) conditions. It also enhanced the solubility of phenanthrene in water and could be used in the re-mobilization of hydrocarbon-contaminated environment. In addition, this biosurfactant exhibited antimicrobial and antioxidant properties. Infrared spectroscopy suggested potential lipidic and peptidic moieties, and mass spectrometry-based analyses showed that the biosurfactant contains mainly cyclic peptidic structures belonging to the class of diketopiperazines. Therefore, the B-2 strain is a promising biosurfactant-producing microorganism and its derived biosurfactant presents a wide range of industrial applications.

  5. Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Canet, Isabelle; Sancelme, Martine; Wirgot, Nolwenn; Deguillaume, Laurent; Delort, Anne-Marie

    2016-09-01

    A total of 480 microorganisms collected from 39 clouds sampled at the Puy de Dôme station (alt. 1465 m; 45°46'19'' N, 2°57'52'' E; Massif Central, France) were isolated and identified. This unique collection was screened for biosurfactant (surfactants of microbial origin) production by measuring the surface tension (σ) of the crude extracts, comprising the supernatants of the pure cultures, using the pendant drop technique. The results showed that 41 % of the tested strains were active producers (σ < 55 mN m-1), with 7 % being extremely active (σ < 30 mN m-1). The most efficient biosurfactant producers (σ < 45 mN m-1) belong to a few bacterial genera (Pseudomonas and Xanthomonas) from the Υ-Proteobacteria class (78 %) and a yeast genus (Udeniomyces) from the Basidiomycota phylum (11 %). Some Bacillus strains from the Firmicutes phylum were also active but represented a small fraction of the collected population. Strains from the Actinobacteria phylum in the collection examined in the present study showed moderate biosurfactant production (45<σ < 55 mN m-1). Pseudomonas (Υ-Proteobacteria), the most frequently detected genus in clouds, with some species issued from the phyllosphere, was the dominant group for the production of biosurfactants. We observed some correlations between the chemical composition of cloud water and the presence of biosurfactant-producing microorganisms, suggesting the "biogeography" of this production. Moreover, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.

  6. A Novel Biosurfactant Produced by Aureobasidium pullulans L3-GPY from a Tiger Lily Wild Flower, Lilium lancifolium Thunb.

    PubMed Central

    Kim, Jong Shik; Lee, In Kyoung; Yun, Bong Sik

    2015-01-01

    Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m). These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications. PMID:25849549

  7. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant.

    PubMed

    Varjani, Sunita J; Upasani, Vivek N

    2016-12-01

    The present research work was undertaken with a mandate to study carbon spectrum utilization and structural characterization of biosurfactant produced by indigenous Pseudomonas aeruginosa NCIM 5514, which showed unique properties to utilize a large number of carbon sources effectively for production of biosurfactant, although glucose was the best carbon substrate. In Bushnell-Hass medium supplemented with glucose (1%, w/v), 3.178±0.071g/l biosurfactant was produced by this isolate in 96h. The biosurfactant produced showed surface tension and emulsification activity values from 29.14±0.05 to 62.29±0.13mN/m and 88.50±1.96 to 15.40±0.91%, respectively. Toluene showed highest emulsification activity followed by kerosene. However, kerosene exhibited emulsion stability for 30days. Biosurfactant was characterized as a mixture of di-rhamnolipid (Rha-Rha-C10-C14:1) and mono-rhamnolipid (Rha-C8-C10) by FTIR, ESI-MS and LC-MS techniques. High biosurfactant yield opens up doors for the isolate to find utility in various industries.

  8. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil.

    PubMed

    Pornsunthorntawee, Orathai; Wongpanit, Panya; Chavadej, Sumaeth; Abe, Masahiko; Rujiravanit, Ratana

    2008-04-01

    Pseudomonas aeruginosa strain SP4, isolated from petroleum-contaminated soil in Thailand, was used to produce a biosurfactant from a nutrient broth with palm oil as the carbon source. The key components of the crude biosurfactant were fractionated by using HPLC-ELSD technique. With the use of ATR-FTIR spectroscopy, in combination with (1)H NMR and MS analyses, chemical structures of the fractionated components of the crude biosurfactant were identified as rhamnolipid species. When compared to synthetic surfactants, including Pluronic F-68, which is a triblock nonionic surfactant containing poly(ethylene oxide) and poly(propylene oxide), and sodium dodecyl sulfate, the crude biosurfactant showed comparable physicochemical properties, in terms of the surface activities. The crude biosurfactant reduced the surface tension of pure water to 29.0 mN/m with a critical micelle concentration of approximately 200 mg/l, and it exhibited good thermal and pH stability. The crude biosurfactant also formed stable water-in-oil microemulsions with crude oil and various types of vegetable oils, but not with short-chain hydrocarbons.

  9. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.

    PubMed

    Lin, Weijia; Guo, Chuling; Zhang, Hui; Liang, Xujun; Wei, Yanfu; Lu, Guining; Dang, Zhi

    2016-04-01

    Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils.

  10. Assessment of the antidiabetic and antilipidemic properties of Bacillus subtilis SPB1 biosurfactant in alloxan-induced diabetic rats.

    PubMed

    Zouari, Raida; Ben Abdallah-Kolsi, Rihab; Hamden, Khaled; Feki, Abdelfattah El; Chaabouni, Khansa; Makni-Ayadi, Fatma; Sallemi, Fahima; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2015-11-01

    The present study aimed to scrutinize the potential of Bacillus subtilis SPB1biosurfactant, orally administered, for preventing diabetic complications in rats. The findings revealed that, Bacillus subtilis biosurfactant was an effective reducer of α-amylase activity in the plasma. Moreover, this supplement helped protect the β-cells from death and damage. Both the inhibitory action of SPB1 biosurfactant on α-amylase and the protection of the pancreas' β-cells lead to a decrease of the blood glucose levels, consequently antihyperglycemic effect. Interestingly, this lipopeptide biosurfactant modulated key enzyme related to hyperlipidemia as lipase; which leads to the regulation of the lipid profile in serum by the delay in the absorption of LDL-cholesterol and triglycerides, and a significant increase in HDL-cholesterol. Histological analyses also showed that it exerted a protective action on the pancreases and efficiently preserved the liver-kidney functions of diabetic rats, evidenced by significant decreases in aspartate transaminase, alanine transaminase, gamma-glytamyl transpeptidase and lactate deshydrogenase activities in the plasma, as well as in the creatinine and urea contents. Overall, the present study demonstrated that the hypoglycemic and antilipidemic activities exhibited by Bacillus subtilis biosurfactant were effective enough to alleviate induced diabetes in experimental rats. Therefore, SPB1biosurfactant could be considered as a potential strong candidate for the treatment and prevention of diabetes.

  11. Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa.

    PubMed

    Thavasi, Rengathavasi; Jayalakshmi, Singaram; Banat, Ibrahim M

    2011-01-01

    This study was conducted to investigate the effects of fertilizers and biosurfactants on biodegradation of crude oil by three marine bacterial isolates; Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Five sets of experiments were carried out in shake flask and microcosm conditions with crude oil as follows: Set 1-only bacterial cells added (no fertilizer and biosurfactant), Set 2-with additional fertilizer only, Set 3-with additional biosurfactant only, Set 4-with added biosurfactant+fertilizer, Set 5-with no bacterial cells added (control), all the above experimental sets were incubated for 168 h. The biosurfactant+fertilizer added Set 4, resulted in maximum crude oil degradation within shake flask and microcosm conditions. Among the three bacterial isolates, P. aeruginosa and biosurfactant produced by this strain resulted in maximum crude oil degradation compared to the other two bacterial strains investigated. Interestingly, when biosurfactant and bacterial cells were used (Set 3), significant oil biodegradation activity occurred and the difference between this treatment and that in Set 4 with added fertilizer+biosurfactant were only 4-5% higher degradation level in shake flask and 3.2-7% in microcosm experiments for all three bacterial strains used. It is concluded that, biosurfactants alone capable of promoting biodegradation to a large extent without added fertilizers, which will reduce the cost of bioremediation process and minimizes the dilution or wash away problems encountered when water soluble fertilizers used during bioremediation of aquatic environments.

  12. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    PubMed Central

    Sharma, Deepak; Ansari, Mohammad Javed; Gupta, Sonam; Al Ghamdi, Ahmad; Pruthi, Parul; Pruthi, Vikas

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a

  13. Biosurfactant assisted recovery of the C5-C11 hydrocarbon fraction from oily sludge using biosurfactant producing consortium culture of bacteria.

    PubMed

    Nkhalambayausi Chirwa, Evans M; Mampholo, Chidinyane T; Fayemiwo, Oluwademilade M; Bezza, Fisseha A

    2017-03-10

    A biosurfactant producing culture of bacteria was isolated from an automobile engine oil dump site which was later used as an inoculum in batch and continuous flow oil recovery from oily sludge. Initially, an emulsion of oily sludge was prepared by mixing 5% m/v solids: 21% v/v bituminous sludge: 77% v/v water. The isolated cultures were added to vessels with stable emulsions to facilitate the separation of oil droplets from the sludge matrix. In batches with live cultures, up to 35% oil recovery was achieved after incubation for 10 days. Further investigations were conducted in a semi-continuous feed, fed-batch plug flow reactor (FB-PFR) system. Up to 99.7% was achieved in the FB-PFR after operation for 10 days, much higher than the recovery achieved in the pure batch systems where only 35% oil was recovered after incubation for 10 days. The improved performance in the FB-PFR was attributed to differential separation of particles under variable velocity along the reactor. The culture in the reactor was predominated by Klebsiellae, Enterobacteriaceae and Bacilli throughout the experiment. A crude biosurfactant produced by the cultures was partially purified and analyzed using the liquid chromatograph coupled to a tandem mass spectrometer (LC-MS/MS) which showed that the molecular structure of the biosurfactant produced closely matched the structure of lipopeptides identified in earlier studies. This process is aimed at recovering useful oil from oily waste sludge with the added advantage of degrading aromatic organic impurities in the oil to produce a cleaner oil product. The further advantage of the FB-PFR system was that, the bacteria discharged together with effluent sludge residue further degraded chemical oxygen demand (COD) in the treated sludge thereby reducing the polluting potential of the final disposed sludge.

  14. The mycobacterial acyltransferase PapA5 is required for biosynthesis of cell wall-associated phenolic glycolipids.

    PubMed

    Chavadi, Sivagami Sundaram; Onwueme, Kenolisa C; Edupuganti, Uthamaphani R; Jerome, Jeff; Chatterjee, Delphi; Soll, Clifford E; Quadri, Luis E N

    2012-05-01

    Phenolic glycolipids (PGLs) are non-covalently bound components of the outer membrane of many clinically relevant mycobacterial pathogens, and play important roles in pathogen biology. We report a mutational analysis that conclusively demonstrates that the conserved acyltransferase-encoding gene papA5 is essential for PGL production. In addition, we provide an in vitro acyltransferase activity analysis that establishes proof of principle for the competency of PapA5 to utilize diol-containing polyketide compounds of mycobacterial origin as acyl-acceptor substrates. Overall, the results reported herein are in line with a model in which PapA5 catalyses the acylation of diol-containing polyketides to form PGLs. These studies advance our understanding of the biosynthesis of an important group of mycobacterial glycolipids and suggest that PapA5 might be an attractive target for exploring the development of antivirulence drugs.

  15. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J

    2012-09-01

    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  16. Specific tumor delivery of paclitaxel using glycolipid-like polymer micelles containing gold nanospheres.

    PubMed

    You, Jian; Wang, Zuhua; Du, Yongzhong; Yuan, Hong; Zhang, Peizun; Zhou, Jialin; Liu, Fei; Li, Chun; Hu, Fuqiang

    2013-06-01

    It is difficult for most of the drug delivery systems to really display a temporal and spatial release of entrapped drug once the systems are iv administrated. We hypothesized that the photothermal effect, mediated by a near-infrared (NIR) laser and hollow gold nanospheres (HAuNS), can modulate paclitaxel (PTX) release from polymer micelles, and further result in the enhanced antitumor activity of the micelles. We loaded PTX and HAuNS, which display strong plasmon absorption in the NIR region, into glycolipid-like polymer micelles with an excellent cell internalization capability. The surface of the micelles was conjugated successfully with a peptide, which has the specific-binding with EphB4, a member of the Eph family of receptor tyrosine kinases overexpressed on cell membrane of numerous tumors, to increase the delivery of PTX into tumor cells. Rapid and repetitive drug release from our polymer (HP-TCS) micelles could be readily achieved upon NIR laser irradiation. Our data demonstrated the specific delivery of HP-TCS micelles into positive-EphB4 tumors using a duel-tumor model after iv administration during the whole experiment process (1-48 h). Interestingly, significantly higher uptake of the micelles by SKOV3 tumors (positive-EphB4) than A549 tumors (negtive-EphB4) was observed, with increased ratio on experiment time. However, the specific cell uptake was observed only during the short incubation time (1-4 h) in vitro. Our data also indicated the treatment of tumor cells with the micelles followed by NIR laser irradiation showed significantly greater toxicity activity than the treatment with the micelles alone, free PTX and the micelles (without PTX loading) plus NIR laser irradiation. The enhanced toxicity activity to tumor cells should be attributed to the enhanced drug cellular uptake mediated by the glycolipid-like micelles, chemical toxicity of the released drug from the micelles due to the trigger of NIR laser, and the photothermal ablation under NIR

  17. Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560.

    PubMed

    Domingos, Daniela Ferreira; de Faria, Andreia Fonseca; de Souza Galaverna, Renan; Eberlin, Marcos Nogueira; Greenfield, Paul; Zucchi, Tiago Domingues; Melo, Itamar Soares; Tran-Dinh, Nai; Midgley, David; de Oliveira, Valéria Maia

    2015-04-01

    Many Bacillus species can produce biosurfactant, although most of the studies on lipopeptide production by this genus have been focused on Bacillus subtilis. Surfactants are broadly used in pharmaceutical, food and petroleum industry, and biological surfactant shows some advantages over the chemical surfactants, such as less toxicity, production from renewable, cheaper feedstocks and development of novel recombinant hyperproducer strains. This study is aimed to unveil the biosurfactant metabolic pathway and chemical composition in Bacillus safensis strain CCMA-560. The whole genome of the CCMA-560 strain was previously sequenced, and with the aid of bioinformatics tools, its biosurfactant metabolic pathway was compared to other pathways of closely related species. Fourier transform infrared (FTIR) and high-resolution TOF mass spectrometry (MS) were used to characterize the biosurfactant molecule. B. safensis CCMA-560 metabolic pathway is similar to other Bacillus species; however, some differences in amino acid incorporation were observed, and chemical analyses corroborated the genetic results. The strain CCMA-560 harbours two genes flanked by srfAC and srfAD not present in other Bacillus spp., which can be involved in the production of the analogue gramicidin. FTIR and MS showed that B. safensis CCMA-560 produces a mixture of at least four lipopeptides with seven amino acids incorporated and a fatty acid chain with 14 carbons, which makes this molecule similar to the biosurfactant of Bacillus pumilus, namely, pumilacidin. This is the first report on the biosurfactant production by B. safensis, encompassing the investigation of the metabolic pathway and chemical characterization of the biosurfactant molecule.

  18. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Korshunova, Irina O; Stukova, Galina I; Krivoruchko, Anastasiya V

    2016-03-01

    This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.

  19. Production and characterization of microbial biosurfactants for potential use in oil-spill remediation.

    PubMed

    Marti, M E; Colonna, W J; Patra, P; Zhang, H; Green, C; Reznik, G; Pynn, M; Jarrell, K; Nyman, J A; Somasundaran, P; Glatz, C E; Lamsal, B P

    2014-02-05

    Two biosurfactants, surfactin and fatty acyl-glutamate, were produced from genetically-modified strains of Bacillus subtilis on 2% glucose and mineral salts media in shake-flasks and bioreactors. Biosurfactant synthesis ceased when the main carbohydrate source was completely depleted. Surfactin titers were ∼30-fold higher than fatty acyl-glutamate in the same medium. When bacteria were grown in large aerated bioreactors, biosurfactants mostly partitioned to the foam fraction, which was recovered. Dispersion effectiveness of surfactin and fatty acyl-glutamate was evaluated by measuring the critical micelle concentration (CMC) and dispersant-to-oil ratio (DOR). The CMC values for surfactin and fatty acyl-glutamate in double deionized distilled water were 0.015 and 0.10 g/L, respectively. However, CMC values were higher, 0.02 and 0.4 g/L for surfactin and fatty acyl-glutamate, respectively, in 12 parts per thousand Instant Ocean®[corrected].sea salt, which has been partly attributed to saline-induced conformational changes in the solvated ionic species of the biosurfactants. The DORs for surfactin and fatty acyl-glutamate were 1:96 and 1:12, respectively, in water. In Instant Ocean® solutions containing 12 ppt sea salt, these decreased to 1:30 and 1:4, respectively, suggesting reduction in oil dispersing efficiency of both surfactants in saline. Surfactant toxicities were assessed using the Gulf killifish, Fundulus grandis, which is common in estuarine habitats of the Gulf of Mexico. Surfactin was 10-fold more toxic than fatty acyl-glutamate. A commercial surfactant, sodium laurel sulfate, had intermediate toxicity. Raising the salinity from 5 to 25 ppt increased the toxicity of all three surfactants; however, the increase was the lowest for fatty acyl-glutamate.

  20. Biosurfactants' Production from Renewable Natural Resources: Example of Innovativeand Smart Technology in Circular Bioeconomy

    NASA Astrophysics Data System (ADS)

    Satpute, Surekha K.; Płaza, Grażyna A.; Banpurkar, Arun G.

    2017-03-01

    A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant's production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.

  1. Biosurfactants as demulsifying agents for oil recovery from oily sludge--performance evaluation.

    PubMed

    Chirwa, Evans M N; Mampholo, Tshepo; Fayemiwo, Oluwademilade

    2013-01-01

    The oil producing and petroleum refining industries dispose of a significant amount of oily sludge annually. The sludge typically contains a mixture of oil, water and solid particles in the form of complex slurry. The oil in the waste sludge is inextractible due to the complex composition and complex interactions in the sludge matrix. The sludge is disposed of on land or into surface water bodies thereby creating toxic conditions or depleting oxygen required by aquatic animals. In this study, a fumed silica mixture with hydrocarbons was used to facilitate stable emulsion ('Pickering' emulsion) of the oily sludge. The second step of controlled demulsification and separation of oil and sludge into layers was achieved using either a commercial surfactant (sodium dodecyl sulphate (SDS)) or a cost-effective biosurfactant from living organisms. The demulsification and separation of the oil layer using the commercial surfactant SDS was achieved within 4 hours after stopping mixing, which was much faster than the 10 days required to destabilise the emulsion using crude biosurfactants produced by a consortium of petrochemical tolerant bacteria. The recovery rate with bacteria could be improved by using a more purified biosurfactant without the cells.

  2. Physicochemical characterization of biosurfactant and its potential to remove oil from soil and cotton cloth.

    PubMed

    Jain, Rakeshkumar M; Mody, Kalpana; Mishra, Avinash; Jha, Bhavanath

    2012-08-01

    An alkaliphilic bacterium, Klebsiella sp. strain RJ-03, produced a biosurfactant, which showed low viscosity with pseudoplastic rheological behavior and exhibited emulsification activity with oils and hydrocarbons. The biosurfactant has excellent oil removing efficiency as compared to chemical surfactants. The isolated biosurfactant has compatibility with detergents and enhanced oil removing efficiency from soil and cotton cloths. It comprised of sugar, uronic acid, protein and sulfate. GC-MS analysis confirmed the presence of six monosaccharides (w/w), glucose (6.65%), galactose (23.98%), rhamnose (14.94%), mannose (17.54%), fucose (9.47%) and 6-O-Me-galactose (1.4%). It is a high molecular weight, thermostable biopolymer showing degradation above 300 °C. Positive ion reflector mode of MALDI TOF-TOF MS analysis revealed series of low and mid range mass peaks (m/z) corresponding to mono-, di-, tri- and oligo-saccharides content. The NMR, FT-IR, EDX-SEM, AFM and PSD analysis confirmed the presence of functional groups, bonds, elements and particle size respectively.

  3. Adsorption of a biosurfactant on surfaces to enhance the disinfection of surfaces contaminated with Listeria monocytogenes.

    PubMed

    Meylheuc, T; Renault, M; Bellon-Fontaine, M N

    2006-05-25

    The effects of sodium hypochlorite (NaOCl) and peracetic acid/hydrogen peroxide (PAH) on the inactivation of adherent Listeria monocytogenes LO28 cells were examined. The surfaces tested were stainless steel and polytetrafluoroethylene (PTFE) conditioned or not with an anionic biosurfactant produced by Pseudomonas fluorescens. Dilution-neutralization methods were used to assess the effectiveness of sanitizer solutions on planktonic and adherent cells. Tests were performed on L. monocytogenes cultivated at 37 degrees Celsius (body temperature) or 20 degrees Celsius (ambient temperature). The results demonstrated that i) a total deficiency in nutrients induced by the incubation of cells in 0.15 M NaCl favored the action of NaOCl and PAH on planktonic cells; ii) by reducing the number of cells adhering to stainless steel, pre-conditioning of the surface with the biosurfactant reduced the level of contamination of the surface and thus favored the bactericidal activities of the disinfectants; and iii) the weak binding energies involved in the adsorption of the biosurfactant on PTFE surfaces resulted in there being no reduction by the polymer of the surface contamination. Furthermore, this study confirmed that adherent cells exhibited increased resistance to the actions of the disinfectants when compared to the resistance of planktonic cells.

  4. Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae.

    PubMed

    Kügler, Johannes H; Muhle-Goll, Claudia; Kühl, Boris; Kraft, Axel; Heinzler, Raphael; Kirschhöfer, Frank; Henkel, Marius; Wray, Victor; Luy, Burkhard; Brenner-Weiss, Gerald; Lang, Siegmund; Syldatk, Christoph; Hausmann, Rudolf

    2014-11-01

    Actinomycetales are known to produce various secondary metabolites including products with surface-active and emulsifying properties known as biosurfactants. In this study, the nonpathogenic actinomycetes Tsukamurella spumae and Tsukamurella pseudospumae are described as producers of extracellular trehalose lipid biosurfactants when grown on sunflower oil or its main component glyceryltrioleate. Crude extracts of the trehalose lipids were purified using silica gel chromatography. The structure of the two trehalose lipid components (TL A and TL B) was elucidated using a combination of matrix-assisted laser desorption/ionization time-of-flight/time-of-flight/tandem mass spectroscopy (MALDI-ToF-ToF/MS/MS) and multidimensional NMR experiments. The biosurfactants were identified as 1-α-glucopyranosyl-1-α-glucopyranosid carrying two acyl chains varying of C4 to C6 and C16 to C18 at the 2' and 3' carbon atom of one sugar unit. The trehalose lipids produced demonstrate surface-active behavior and emulsifying capacity. Classified as risk group 1 organisms, T. spumae and T. pseudospumae hold potential for the production of environmentally friendly surfactants.

  5. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    PubMed Central

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-01-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter. PMID:26869357

  6. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3

    PubMed Central

    Wang, Wanpeng; Cai, Bobo; Shao, Zongze

    2014-01-01

    Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC) of the purified di-rhamnolipid was determined to be 120 mgL−1, and it lowered the surface tension of water from 74 ± 0.2 to 38 ± 0.2 mN m−1. Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR), respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane, and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal. PMID:25566224

  7. Emulsification and antioxidation of biosurfactant extracts from Chinese medicinal herbs fermentation in vitro.

    PubMed

    Chen, Chunyeh; Lin, Tachen; Shieh, Youmin

    2015-10-01

    Much attention has been paid to biosurfactants produced using microorganisms, but little direct evidence for the development of natural biosurfactants combined with Chinese medicinal herbs are available. We investigated the emulsification and antioxidation of biosurfactant extracts from Chinese medicinal herb fermentation (BECMHF) in vitro and their application in water retention capacity and the skin prick and allergy test (SPAT) index for skin cells. The results showed that the water retention capacity of BECMHF was positively associated with the emulsification index. The SPAT index of 8 Chinese medicinal herbs was 0 at a 1% or 2% concentration, suggesting no sensitivity or adverse effects on the skin cells. Eight BECMHFs produced using Alcaligenes piechaudii CC-ESB2 exhibited antioxidant capabilities, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide scavenging activity, and superoxide dismutase (SOD)-like activity at a concentration of 10 mg/ml. The mechanism involved inhibitory effects on nitrite, inducible nitric oxide synthase (iNOS) expression, and reactive oxygen species (ROSs) generation. BECMHFs exhibit favorable antioxidative properties in health food and satisfactory emulsifying and moisturizing characteristics in cosmetic formulations, which have potential applications in the health food and cosmetic industries, respectively.

  8. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies.

    PubMed

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B; Kumar, Pushpendra; Laik, Sukumar

    2016-02-12

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter.

  9. Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation.

    PubMed

    Zhou, Mei-Fang; Yuan, Xing-Zhong; Zhong, Hua; Liu, Zhi-Feng; Li, Hui; Jiang, Li-Li; Zeng, Guang-Ming

    2011-05-01

    The effects of two biosurfactants, tea saponin (TS) and rhamnolipid (RL), on the production of laccase and the degradation of phenol by P. simplicissimum were investigated in solid-state fermentation consisting of rice straw, rice bran, and sawdust. Firstly, the effects of phenol on the fermentation process were studied in the absence of surfactants. Then, a phenol concentration of 3 mg/g in the fermentation was selected for detailed research with the addition of biosurfactants. The results showed that TS and RL at different concentrations had stimulative effects on the enzyme activity of laccase. The highest laccase activities during the fermentation were enhanced by 163.7%, 68.2%, and 23.3% by TS at concentrations of 0.02%, 0.06%, and 0.10%, respectively. As a result of the enhanced laccase activity, the efficiency of phenol degradation was also improved by both biosurfactants. RL caused a significant increase of fungal biomass in the early stage of the fermentation, while TS had an inhibitory effect in the whole process. These results indicated that RL could mitigate the negative effects of phenol on fungal growth and consequently improve laccase production and phenol degradation. TS was potentially applicable to phenol-polluted solid-state fermentation.

  10. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community.

    PubMed

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-06-08

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library.

  11. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants.

    PubMed

    Portet-Koltalo, F; Ammami, M T; Benamar, A; Wang, H; Le Derf, F; Duclairoir-Poc, C

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) can be preponderant in contaminated sediments and understanding how they are sorbed in the different mineral and organic fractions of the sediment is critical for effective removal strategies. For this purpose, a mixture of seven PAHs was studied at the sediment/water interface and sorption isotherms were obtained. The influence of various factors on the sorption behavior of PAHs was evaluated, such as the nature of minerals, pH, ionic strength and amount of organic matter. Afterwards, the release of PAHs from the sediment by surfactants was investigated. The effectiveness of sodium dodecyl sulfate (SDS) was compared to natural biosurfactants, of cyclolipopeptidic type (amphisin and viscosin-like mixture), produced by two Pseudomonas fluorescens strains. The desorption of PAHs (from naphthalene to pyrene), from the highly retentive kaolinite fraction, could be favored by adding SDS or amphisin, but viscosin-like biosurfactants were only effective for 2-3 ring PAHs desorption (naphthalene to phenanthrene). Moreover, while SDS favors the release of all the target PAHs from a model sediment containing organic matter, the two biosurfactants tested were only effective to desorb the lowest molecular weight PAHs (naphthalene to fluorene).

  12. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant).

    PubMed Central

    Zhang, Y; Miller, R M

    1992-01-01

    A microbial surfactant (biosurfactant) was investigated for its potential to enhance bioavailability and, hence, the biodegradation of octadecane. The rhamnolipid biosurfactant used in this study was extracted from culture supernatants after growth of Pseudomonas aeruginosa ATCC 9027 in phosphate-limited proteose peptone-glucose-ammonium salts medium. Dispersion of octadecane in aqueous solutions was dramatically enhanced by 300 mg of the rhamnolipid biosurfactant per liter, increasing by a factor of more than 4 orders of magnitude, from 0.009 to > 250 mg/liter. The relative enhancement of octadecane dispersion was much greater at low rhamnolipid concentrations than at high concentrations. Rhamnolipid-enhanced octadecane dispersion was found to be dependent on pH and shaking speed. Biodegradation experiments done with an initial octadecane concentration of 1,500 mg/liter showed that 20% of the octadecane was mineralized in 84 h in the presence of 300 mg of rhamnolipid per liter, compared with only 5% octadecane mineralization when no surfactant was present. These results indicate that rhamnolipids may have potential for facilitating the bioremediation of sites contaminated with hydrocarbons having limited water solubility. PMID:1444363

  13. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    NASA Astrophysics Data System (ADS)

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-02-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter.

  14. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    PubMed Central

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  15. Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system.

    PubMed

    Zhao, Zhenyong; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung

    2011-06-15

    This study aimed at investigating the synergistic effect of temperature and biosurfactant on the biodegradation of phenanthrene in bioslurry. Bench-scale bioslurry experiments were conducted at 25 and 55°C. The desorption rate coefficients of phenanthrene (K(des)) obtained using the pseudo-first order model were 0.0026 and 0.0035 kg mg(-1)h(-1) at 25 and 55°C, respectively. Addition of 1500 mg L(-1) biosurfactant, produced by Acinetobacter calcoaceticus BU03, marginally increased the K(des) at 25°C since most of biosurfactant was sorbed onto soil; however, significantly increased the K(des) to 0.0087 kg mg(-1)h(-1) at 55°C as the thermophilic temperature reduced the adsorption of the biosurfactant onto soil and subsequently enhanced the desorption of phenanthrene. The biodegradation of phenanthrene well fitted pseudo-first order kinetics based on the assumption that biodegradation was limited by the desorption. About 78.7% of phenanthrene was degraded in 30 days at 25°C; and addition of biosurfactant did not affect the biodegradation. However, addition of the biosurfactant or inoculation of A. calcoaceticus BU03 at 55°C significantly enhanced the biodegradation by increasing the K(des). Results indicate that synergistic application of thermophilic temperature and biosurfactant or inoculation of biosurfactant producing microorganisms is an effective and innovative method to enhance the efficiency of PAH degradation in bioslurry system.

  16. Characterization and properties of biosurfactants produced by a newly isolated strain Bacillus methylotrophicus DCS1 and their applications in enhancing solubility of hydrocarbon.

    PubMed

    Jemil, Nawel; Ben Ayed, Hanen; Hmidet, Noomen; Nasri, Moncef

    2016-11-01

    Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m(-1) and have a critical micelle concentration (CMC) of 100 mg L(-1). Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.

  17. Mycoplasma fermentans glycolipid-antigen as a pathogen of rheumatoid arthritis

    SciTech Connect

    Kawahito, Yutaka; Ichinose, Sizuko; Sano, Hajime; Tsubouchi, Yasunori; Kohno, Masataka; Yoshikawa, Toshikazu; Tokunaga, Daisaku; Hojo, Tatsuya; Harasawa, Ryo; Nakano, Teruaki; Matsuda, Kazuhiro

    2008-05-02

    Mycoplasma fermentans has been suspected as one of the causative pathogenic microorganisms of rheumatoid arthritis (RA) however, the pathogenic mechanism is still unclear. We, previously, reported that glycolipid-antigens (GGPL-I and III) are the major antigens of M. fermentans. Monoclonal antibody against the GGPL-III could detect the existence of the GGPL-III antigens in synovial tissues from RA patients. GGPL-III antigens were detected in 38.1% (32/84) of RA patient's tissues, but not in osteoarthritis (OA) and normal synovial tissues. Immunoelectron microscopy revealed that a part of GGPL-III antigens are located at endoplasmic reticulum. GGPL-III significantly induced TNF-{alpha} and IL-6 production from peripheral blood mononulear cells, and also proliferation of synovial fibroblasts. Further study is necessary to prove that M. fermentans is a causative microorganism of RA; however, the new mechanisms of disease pathogenesis provides hope for the development of effective and safe immunotherapeutic strategies based on the lipid-antigen, GGPL-III, in the near future.

  18. Characterization of a low molecular weight glycolipid antigen from Cryptosporidium parvum.

    PubMed

    Priest, Jeffrey W; Mehlert, Angela; Arrowood, Michael J; Riggs, Michael W; Ferguson, Michael A J

    2003-12-26

    Cryptosporidium parvum, an Apicomplexan parasite of the mammalian gut epithelium, causes a diarrheal illness in a wide range of hosts and is transmitted by contamination of food or water with oocyst-laden feces from an infected animal. We have identified a glycosylinositol phospholipid from the sporozoite stage of the parasite that is frequently recognized by serum antibodies from human cryptosporidiosis patients. The humoral immune response is dominated by IgG1 subclass antibodies but can also include IgA and IgM antibodies. The glycosylinositol phospholipids were purified by butanol extraction of a Triton X-114-soluble fraction followed by octyl-Sepharose column chromatography and preparative high performance TLC and were shown to include at least 5 species. By using mass spectrometry and radiolabeled neutral glycan analysis, we found that the structure of the dominant glycosylinositol phospholipid antigen contained a C18:0 lyso-acylglycerol, a C16:0-acylated inositol, and an unsubstituted mannose3-glucosamine glycan core. Other diacyl species were also identified, most notably a series of glycosylinositol phospholipids having an acyl-linked C20:0 to C28:0 lipid on the inositol ring. Less abundant species having three acyl-linked fatty acids and species with an additional 1-3 hexoses linked to the mannose core were also observed. We are currently working to determine the role that these glycolipids may play in the development of disease and in the clearance of infection.

  19. Glycolipid-based TLR4 Modulators and Fluorescent Probes: Rational Design, Synthesis, and Biological Properties.

    PubMed

    Ciaramelli, Carlotta; Calabrese, Valentina; Sestito, Stefania E; Pérez-Regidor, Lucia; Klett, Javier; Oblak, Alja; Jerala, Roman; Piazza, Matteo; Martín-Santamaría, Sonsoles; Peri, Francesco

    2016-08-01

    The cationic glycolipid IAXO-102, a potent TLR4 antagonist targeting both MD-2 and CD14 co-receptors, has been used as scaffold to design new potential TLR4 modulators and fluorescent labels for the TLR4 receptor complex (membrane TLR4.MD-2 dimer and CD14). The primary amino group of IAXO-102, not involved in direct interaction with MD-2 and CD14 receptors, has been exploited to covalently attach a fluorescein (molecules 1 and 2) or to link two molecules of IAXO-102 through diamine and diammonium spacers, obtaining 'dimeric' molecules 3 and 4. The structure-based rational design of compounds 1-4 was guided by the optimization of MD-2 and CD14 binding. Compounds 1 and 2 inhibited TLR4 activation, in a concentration-dependent manner, and signaling in HEK-Blue TLR4 cells. The fluorescent labeling of murine macrophages by molecule 1 was inhibited by LPS and was also abrogated when cell surface proteins were digested by trypsin, thus suggesting an interaction of fluorescent probe 1 with membrane proteins of the TLR4 receptor system.

  20. Glycolipid Crosslinking Is Required for Cholera Toxin to Partition Into and Stabilize Ordered Domains.

    PubMed

    Raghunathan, Krishnan; Wong, Tiffany H; Chinnapen, Daniel J; Lencer, Wayne I; Jobling, Michael G; Kenworthy, Anne K

    2016-12-20

    Current models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of glycolipid crosslinking as a raft targeting and ordering mechanism using the well-studied raft marker cholera toxin B pentamer (CTxB) that binds up to five GM1 glycosphingolipids to enter host cells. We show that when applied to cell-derived giant plasma membrane vesicles, a variant of CTxB containing only a single functional GM1 binding site exhibits significantly reduced partitioning to the ordered phase compared to wild-type CTxB with five binding sites. Moreover, monovalent CTxB does not stabilize membrane domains, unlike wild-type CTxB. These results support the long-held hypothesis that CTxB stabilizes raft domains via a lipid crosslinking mechanism and establish a role for crosslinking in the partitioning of CTxB to ordered domains.

  1. The structures of glycolipids isolated from the highly thermophilic bacterium Thermus thermophilus Samu-SA1.

    PubMed

    Leone, Serena; Molinaro, Antonio; Lindner, Buko; Romano, Ida; Nicolaus, Barbara; Parrilli, Michelangelo; Lanzetta, Rosa; Holst, Otto

    2006-08-01

    Thermophiles constitute a class of microorganisms able to grow at extremely elevated temperatures. Some of these species are classified as Gram-negative bacteria, because of the presence of an outer membrane in the cell envelope, which is located on the top of a thick murein layer. Unlike typical Gram-negative bacteria, the outer membranes of Thermus species are not composed of lipopolysaccharides but of peculiar glycolipids (GL), whose structures seem to be strictly involved in the adaptation to high temperatures. In this work, the complete structures of the major GL components from the cell envelope of the thermophilic bacterium Thermus thermophilus Samu-SA1 are presented. Protocols conventionally adopted for Gram-negative bacteria were used, and, for the first time, GL from Thermus were analyzed in their native form. Two GL and one phosphoglycolipid (PGL) were detected and characterized. The two GL, analyzed by nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization Fourier transform ion cyclotron resonance (ESI FT-ICR) mass spectrometry, possessed the same tetrasaccharide structure linked to a glycerol unit or, alternatively, to a long-chain diol. Moreover, a PGL from Thermus was characterized for the first time, in which N-glyceroyl-heptadecaneamine was present. These molecules are chemically related to other GL from thermophile bacteria, in which they play a crucial role in the adaptation of cell membranes to heat.

  2. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids

    PubMed Central

    da Costa, Elisabete; Silva, Joana; Mendonça, Sofia Hoffman; Abreu, Maria Helena; Domingues, Maria Rosário

    2016-01-01

    In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals. PMID:27213410

  3. Simultaneous analysis of glycolipids and phospholids molecular species in avocado (Persea americana Mill) fruit.

    PubMed

    Pacetti, Deborah; Boselli, Emanuele; Lucci, Paolo; Frega, Natale G

    2007-05-25

    The molecular species of phospholipids (PLs) and glycolipids (GLs) were simultaneously characterized in the pulp and almond of the avocado fruit (Persea americana Mill) of four varieties by means of high performance liquid chromatography-electrospray ionisation ion-trap tandem mass spectrometry. In the pulp, the predominant species of monoglycosyldiglycerides (MGD) were m/z 796.6 (oleic/linolenic and linoleic/linoleic acids) and m/z 800.4 (stearic/linoleic and oleic/oleic acids). One of the main diglycosyldiglycerides (DGD) both in the pulp and almond was m/z 958.5 (oleic/linolenic); however, the pulp was also rich of m/z 962.4 (oleic/oleic), whereas in the almond, m/z 934.5 (palmitic/linoleic and palmitoleic/oleic) and m/z 960.5 (oleic/linoleic and stearic/linolenic) were more abundant. In the almond, the main PL classes (phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI)) contained always palmitic/linoleic acids. Alpha-linolenic acid was contained as MGD (linolenic/linolenic) and DGD (linolenic/linolenic), more present in the pulp than in the almond. The major molecular species of glycocerebrosides (GCer) in the pulp and almond carried hydroxy-palmitic acid (C(16h:0))/4,8-sphyngadienine (d(18:2)).

  4. Modulation of the cytokine response in human monocytes by mycobacterium leprae phenolic glycolipid-1.

    PubMed

    Manca, Claudia; Peixoto, Blas; Malaga, Wladimir; Guilhot, Christophe; Kaplan, Gilla

    2012-01-01

    Leprosy is a chronic but treatable infectious disease caused by the intracellular pathogen Mycobacterium leprae. M. leprae cell wall is characterized by a unique phenolic glycolipid-1 (PGL-1) reported to have several immune functions. We have examined the role of PGL-1 in the modulation of monocyte cytokine/chemokine production in naive human monocytes. PGL-1 in its purified form or expressed in a recombinant Mycobacterium bovis Bacillus Colmette-Guérin (BCG) background (rBCG-PGL-1) was tested. We found that PGL-1 selectively modulated the induction of specific monocyte cytokines and chemokines and, when used as prestimulus, exerted priming and/or inhibitory effects on the induction of selected cytokines/chemokines in response to a second stimulus. Taken together, the results of this study support a modulatory role for PGL-1 in the innate immune response to M. leprae. Thus, PGL-1 may play an important role in the development of the anergic clinical forms of disease and in tissue damage seen in lepromatous patients and during the reactional states of leprosy.

  5. Deciphering the glycolipid code of Alzheimer's and Parkinson's amyloid proteins allowed the creation of a universal ganglioside-binding peptide.

    PubMed

    Yahi, Nouara; Fantini, Jacques

    2014-01-01

    A broad range of microbial and amyloid proteins interact with cell surface glycolipids which behave as infectivity and/or toxicity cofactors in human pathologies. Here we have deciphered the biochemical code that determines the glycolipid-binding specificity of two major amyloid proteins, Alzheimer's β-amyloid peptide (Aβ) and Parkinson's disease associated protein α-synuclein. We showed that both proteins interact with selected glycolipids through a common loop-shaped motif exhibiting little sequence homology. This 12-residue domain corresponded to fragments 34-45 of α-synuclein and 5-16 of Aβ. By modulating the amino acid sequence of α-synuclein at only two positions in which we introduced a pair of histidine residues found in Aβ, we created a chimeric α-synuclein/Aβ peptide with extended ganglioside-binding properties. This chimeric peptide retained the property of α-synuclein to recognize GM3, and acquired the capacity to recognize GM1 (an Aβ-inherited characteristic). Free histidine (but not tryptophan or asparagine) and Zn2+ (but not Na+) prevented this interaction, confirming the key role of His-13 and His-14 in ganglioside binding. Molecular dynamics studies suggested that the chimeric peptide recognized cholesterol-constrained conformers of GM1, including typical chalice-shaped dimers, that are representative of the condensed cholesterol-ganglioside complexes found in lipid raft domains of the plasma membrane of neural cells. Correspondingly, the peptide had a particular affinity for raft-like membranes containing both GM1 and cholesterol. The chimeric peptide also interacted with several other gangliosides, including major brain gangliosides (GM4, GD1a, GD1b, and GT1b) but not with neutral glycolipids such as GlcCer, LacCer or asialo-GM1. It could inhibit the binding of Aβ1-42 onto neural SH-SY5Y cells and did not induce toxicity in these cells. In conclusion, deciphering the glycolipid code of amyloid proteins allowed us to create a universal

  6. An efficient biosurfactant-producing bacterium Selenomonas ruminantium CT2, isolated from mangrove sediment in south of Thailand.

    PubMed

    Saimmai, Atipan; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2013-01-01

    Biosurfactant-producing bacteria, isolate CT2, was isolated from mangrove sediment in the south of Thailand. The sequence of the 16S rRNA gene from isolate CT2 showed 100 % similarity with Selenomonas ruminantium. The highest biosurfactant production (5.02 g/l) was obtained when the cells were grown on minimal salt medium containing 15 g/l molasses and 1 g/l commercial monosodium glutamate supplemented with 1 g/l NaCl, 0.1 g/l leucine, 5 % (v/v) inoculum size at 30 °C and 150 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small CMC value (8 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test, FT-IR, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  7. Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin.

    PubMed

    Toribio, Jeiry; Escalante, Ana E; Caballero-Mellado, Jesús; González-González, Andrea; Zavala, Sergio; Souza, Valeria; Soberón-Chávez, Gloria

    2011-11-01

    The aim of this work is the taxonomic characterization of three biosurfactant-producing bacterial isolates from the Churince system at Cuatro Ciénegas Basin (CCB) in the Mexican State of Coahuila, and the study of the possible role of biosurfactant production in their ecology and evolution. We determined that these isolates belong to a Pseudomonas koreensis lineage endemic to CCB, using standard taxonomical techniques, phylogenetic analysis of three chromosomal loci and phenotypic characterization. This new lineage has the distinct capacity to produce a biosurfactant when compared with previously reported P. koreensis isolates recovered from agricultural soils in Korea. We present evidence suggesting that the biosurfactant secreted by CCB P. koreensis strains is involved in their ability to compete with a CCB Exiguobacterium aurantiacum strain (m5-66) used as a model organism in competition experiments. Furthermore, the ethyl acetate extract of culture supernatant of CCB P. koreensis strains results in growth inhibition not only of E. aurantiacum m5-66, but also of a Bacillus subtilis type strain (ATCC6633). Based on these results we propose that the production of biosurfactant could be of ecological importance and could play a role in the separation of the P. koreensis CCB lineage.

  8. Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2015-01-01

    The main objective of the investigation was to study the biodegradation of endosulfan isomers and its major metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. The significance of the study is to evaluate the capability of biosurfactant producing bacterial strains in enhancing the bioavailability of endosulfan. Sixty bacterial strains were isolated from the endosulfan degrading bacterial consortium and were screened for endosulfan degradation and biosurfactant production. Among those, two strains Bordetella petrii I GV 34 (Gene bank Accession No KJ02262) and Bordetella petrii II GV 36 (Gene bank Accession No KJ022625) were capable of degrading endosulfan with simultaneous biosurfactant production. Bordetella petrii I degraded 89% of α and 84% of β isomers of endosulfan whereas Bordetella petrii II degraded 82% of both the isomers. Both the strains were able to reduce the surface tension up to 19.6% and 21.4% with a minimum observed surface tension of 45 Dynes/cm and 44 Dynes/cm, respectively. The study revealed that the strains have the potential to enhance the degradation endosulfan residues in contaminated sites and water by biosurfactant production.

  9. Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-State Fermentation

    PubMed Central

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Mnif, Ines; Kammoun, Radhouan; Ayadi, Imen; Saadaoui, Imen; Maktouf, Sameh; Chaabouni-Ellouze, Semia

    2012-01-01

    During the last years, several applications of biosurfactants with medical purposes have been reported. Biosurfactants are considered relevant molecules for applications in combating many diseases. However, their use is currently extremely limited due to their high cost in relation to that of chemical surfactants. Use of inexpensive substrates can drastically decrease its production cost. Here, twelve solid substrates were screened for the production of Bacillus subtilis SPB1 biosurfactant and the maximum yield was found with millet. A Plackett-Burman design was then used to evaluate the effects of five variables (temperature, moisture, initial pH, inoculum age, and inoculum size). Statistical analyses showed that temperature, inoculum age, and moisture content had significantly positive effect on SPB1 biosurfactant production. Their values were further optimized using a central composite design and a response surface methodology. The optimal conditions of temperature, inoculum age, and moisture content obtained under the conditions of study were 37°C, 14 h, and 88%, respectively. The evaluation of the antimicrobial activity of this compound was carried out against 11 bacteria and 8 fungi. The results demonstrated that this biosurfactant exhibited an important antimicrobial activity against microorganisms with multidrug-resistant profiles. Its activity was very effective against Staphylococcus aureus, Staphylococcus xylosus, Enterococcus faecalis, Klebsiella pneumonia, and so forth. PMID:22536017

  10. Formulation of a Commercial Biosurfactant for Application as a Dispersant of Petroleum and By-Products Spilled in Oceans

    PubMed Central

    Freitas, Bruno G.; Brito, Juliana G. M.; Brasileiro, Pedro P. F.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2016-01-01

    Oil spills in oceans cause irreparable damage to marine life and harm the coastal populations of affected areas. It is therefore fundamental to develop treatment strategies for such spills. Currently, chemical dispersants have been used during oil spills, although these agents have been increasingly restricted due to their toxic potential. Thus, the aim of the present study was to formulate a biodegradable commercial biosurfactant for application as a dispersant. Biosurfactants are scientifically known biomolecules produced by microorganisms capable of allowing water-oil interaction. Thus, a biosurfactant was produced by the yeast Candida bombicola URM 3718 cultivated in industrial waste and formulated with the addition of a potassium sorbate preservative for fractionated sterilization (tyndallization) and the combination of fluent vaporization with the preservative. After formulation, samples were stored for 120 days, followed by surface tension, emulsification and oil dispersant tests in sea water. The results were promising for the biosurfactant formulated with the preservative, which demonstrated stability and an absence of toxicity in experiments with a marine indicator. The commercial biosurfactant was tested at different pH values, temperatures and in the presence of salt, demonstrating potential industrial application at a cost compatible with the environmental field. The formulation process developed in this research was patented in the Brazilian National Intellectual Property Institute (patent number BR1020140179631). PMID:27803697

  11. The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor.

    PubMed

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Boukedi, Hanen; Elleuch, Mouna; Ellouze-Chaabouni, Semia; Tounsi, Slim

    2012-02-01

    SPB1 is a Bacillus subtilis strain producing a lipopeptide biosurfactant. The insecticidal activity of this biosurfactant was evaluated against the Egyptian cotton leaf worm (Spodoptera littoralis). It displayed toxicity with an LC(50) of 251 ng/cm(2). The histopathological changes occurred in the larval midgut of S. littoralis treated with B. subtilis SPB1 biosurfactant were vesicle formation in the apical region, cellular vacuolization and destruction of epithelial cells and their boundaries. Ligand-blotting experiments with S. littoralis brush border membrane vesicles showed binding of SPB1 biosurfactant to a protein of 45 kDa corresponding to its putative receptor. The latter differs in molecular size from those recognized by Bacillus thuringiensis Vip3A and Cry1C toxins, commonly known by their activity against S. littoralis. This result wires the application of B. subtilis biosurfactant for effective control of S. littoralis larvae, particularly in the cases where S. littoralis will develop resistance against B. thuringiensis toxins.

  12. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.

    PubMed

    Xia, Wenjie; Du, Zhifeng; Cui, Qingfeng; Dong, Hao; Wang, Fuyi; He, Panqing; Tang, YongChun

    2014-07-15

    Alkanes and polycyclic aromatic hydrocarbons (PAHs) have threatened the environment due to toxicity and poor bioavailability. Interest in degradation of these hazardous materials by biosurfactant-producing bacteria has been steadily increasing in recent years. In this work, a novel biosurfactant-producing Pseudomonas sp. WJ6 was isolated to degrade a wide range of n-alkanes and polycyclic aromatic hydrocarbons. Production of lipopeptide biosurfactant was observed in all biodegradable studies. These lipopeptides were purified and identified by C18 RP-HPLC system and electrospray ionization-mass spectrometry. Results of structural analysis showed that these lipopeptides generated from different hydrocarbons were classified to be surfactin, fengycin and lichenysin. Heavy-oil sludge washing experiments demonstrated that lipopeptides produced by Pseudomonas sp. WJ6 have 92.46% of heavy-oil washing efficiency. The obtained results indicate that this novel bacterial strain and its lipopeptides have great potentials in the environmental remediation and petroleum recovery.

  13. A Novel Glycolipid Antigen for NKT Cells That Preferentially Induces IFN-γ Production.

    PubMed

    Birkholz, Alysia M; Girardi, Enrico; Wingender, Gerhard; Khurana, Archana; Wang, Jing; Zhao, Meng; Zahner, Sonja; Illarionov, Petr A; Wen, Xiangshu; Li, Michelle; Yuan, Weiming; Porcelli, Steven A; Besra, Gurdyal S; Zajonc, Dirk M; Kronenberg, Mitchell

    2015-08-01

    In this article, we characterize a novel Ag for invariant NKT (iNKT) cells capable of producing an especially robust Th1 response. This glycosphingolipid, DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), with the only change being a single atom: the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared with αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by dendritic cells in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB06-1 compared with αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Therefore, our data are consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result, in part, from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10-producing iNKT cells, which could counteract the benefits of increased early IFN-γ production.

  14. A novel glycolipid antigen for NKT cells that preferentially induces IFN-γ production

    PubMed Central

    Birkholz, Alysia M.; Girardi, Enrico; Wingender, Gerhard; Khurana, Archana; Wang, Jing; Zhao, Meng; Zahner, Sonja; Illarionov, Petr A.; Wen, Xiangshu; Li, Michelle; Yuan, Weiming; Porcelli, Steven A.; Besra, Gurdyal S.; Zajonc, Dirk M.; Kronenberg, Mitchell

    2015-01-01

    Here we characterize a novel Ag for invariant natural killer T-cells (iNKT cells) capable of producing an especially robust Th1 response. This glycosphingolipid (GSL), DB06-1, is similar in chemical structure to the well-studied α-galactosylceramide (αGalCer), the only change being in a single atom, the substitution of a carbonyl oxygen with a sulfur atom. Although DB06-1 is not a more effective Ag in vitro, the small chemical change has a marked impact on the ability of this lipid Ag to stimulate iNKT cells in vivo, with increased IFN-γ production at 24 h compared to αGalCer, increased IL-12, and increased activation of NK cells to produce IFN-γ. These changes are correlated with an enhanced ability of DB06-1 to load in the CD1d molecules expressed by DCs in vivo. Moreover, structural studies suggest a tighter fit into the CD1d binding groove by DB061 compared to αGalCer. Surprisingly, when iNKT cells previously exposed to DB06-1 are restimulated weeks later, they have greatly increased IL-10 production. Our data are therefore consistent with a model whereby augmented and or prolonged presentation of a glycolipid Ag leads to increased activation of NK cells and a Th1-skewed immune response, which may result in part from enhanced loading into CD1d. Furthermore, our data suggest that strong antigenic stimulation in vivo may lead to the expansion of IL-10 producing iNKT cells, which could counteract the benefits of increased, early IFN-γ production. PMID:26078271

  15. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin.

    PubMed Central

    Sandberg, A L; Ruhl, S; Joralmon, R A; Brennan, M J; Sutphin, M J; Cisar, J O

    1995-01-01

    Recognition of receptors on sialidase-treated polymorphonuclear leukocytes (PMNs) by the Gal/GalNAc lectin associated with the type 2 fimbriae of certain strains of actinomyces results in activation of the PMNs, phagocytosis, and destruction of the bacteria. In the present study, plant lectins were utilized as probes to identify putative PMN receptors for the actinomyces lectin. The Gal-reactive lectin from Ricinus communis (RCAI), the Gal/GalNAc-reactive lectins from R. communis (RCAII) and Bauhinia purpurea (BPA), as well as the Gal beta 1-3GalNAc-specific lectins from Arachis hypogaea (PNA) and Agaricus bisporus (ABA) inhibited killing of Actinomyces naeslundii WVU45 by sialidase-treated PMNs. These five lectins detected a 130-kDa surface-labeled glycoprotein on nitrocellulose transfers of PMN extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This glycoprotein was revealed only after treatment of the transfers with sialidase, a condition analogous to the sialidase dependence of the lectin-mediated biological responses of the PMNs to the actinomyces. The mannose-reactive lectin concanavalin A did not inhibit killing of the actinomyces and failed to detect the 130-kDa glycoprotein but did block PMN-dependent killing of Escherichia coli B, a bacterium that possesses mannose-sensitive fimbriae. Therefore, the PMN glycoprotein receptor for A. naeslundii is clearly distinct from those recognized by E. coli. Two major putative glycolipid receptors were also identified by actinomyces and RCAI overlays on sialidase-treated thin-layer chromatograms of PMN gangliosides. Thus, both a 130-kDa glycoprotein and certain gangliosides are implicated in the attachment of the actinomyces to PMNs. PMID:7790078

  16. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.

    PubMed

    Duman, John G

    2015-06-01

    Ice-binding proteins (IBPs) assist in subzero tolerance of multiple cold-tolerant organisms: animals, plants, fungi, bacteria etc. IBPs include: (1) antifreeze proteins (AFPs) with high thermal hysteresis antifreeze activity; (2) low thermal hysteresis IBPs; and (3) ice-nucleating proteins (INPs). Several structurally different IBPs have evolved, even within related taxa. Proteins that produce thermal hysteresis inhibit freezing by a non-colligative mechanism, whereby they adsorb onto ice crystals or ice-nucleating surfaces and prevent further growth. This lowers the so-called hysteretic freezing point below the normal equilibrium freezing/melting point, producing a difference between the two, termed thermal hysteresis. True AFPs with high thermal hysteresis are found in freeze-avoiding animals (those that must prevent freezing, as they die if frozen) especially marine fish, insects and other terrestrial arthropods where they function to prevent freezing at temperatures below those commonly experienced by the organism. Low thermal hysteresis IBPs are found in freeze-tolerant organisms (those able to survive extracellular freezing), and function to inhibit recrystallization - a potentially damaging process whereby larger ice crystals grow at the expense of smaller ones - and in some cases, prevent lethal propagation of extracellular ice into the cytoplasm. Ice-nucleator proteins inhibit supercooling and induce freezing in the extracellular fluid at high subzero temperatures in many freeze-tolerant species, thereby allowing them to control the location and temperature of ice nucleation, and the rate of ice growth. Numerous nuances to these functions have evolved. Antifreeze glycolipids with significant thermal hysteresis activity were recently identified in insects, frogs and plants.

  17. Structural Characterization and Anti-HSV-1 and HSV-2 Activity of Glycolipids from the Marine Algae Osmundaria obtusiloba Isolated from Southeastern Brazilian Coast

    PubMed Central

    de Souza, Lauro M.; Sassaki, Guilherme L.; Romanos, Maria Teresa Villela; Barreto-Bergter, Eliana

    2012-01-01

    Glycolipids were extracted from the red alga Osmundaria obtusiloba from Southeastern Brazilian coast. The acetone insoluble material was extracted with chloroform/methanol and the lipids, enriched in glycolipids, were fractionated on a silica gel column eluted with chloroform, acetone and then methanol. Three major orcinol-positive bands were found in the acetone and methanol fractions, being detected by thin layer chromatography. The structures of the corresponding glycolipids were elucidated by ESI-MS and 1H/13C NMR analysis, on the basis of their tandem-MS behavior and HSQC, TOCSY fingerprints. For the first time, the structure of sulfoquinovosyldiacylglycerol from the red alga Osmundaria obtusiloba was characterized. This molecule exhibited potent antiviral activity against HSV-1 and HSV-2 with EC50 values of 42 µg/mL to HSV-1 and 12 µg/mL to HSV-2, respectively. Two other glycolipids, mono- and digalactosyldiacylglycerol, were also found in the alga, being characterized by ESI-MS/MS. The structural elucidation of algae glycolipids is a first step for a better understanding of the relation between these structures and their biological activities. PMID:22690151

  18. Evaluation of the humoral immune response and cross reactivity against Mycobacterium tuberculosis of mice immunized with liposomes containing glycolipids of Mycobacterium smegmatis

    PubMed Central

    2013-01-01

    Mycobacterium smegmatis (Ms) is a nonpathogenic mycobacteria of rapid growth, which shares many characteristics with Mycobacterium tuberculosis (MTB), the major causative agent of tuberculosis. MTB has several cell wall glycolipids in common with Ms, which play an important role in the pathogenesis of tuberculosis and the induction of a protective immune response against MTB infection in some animal models. In this study, the humoral immune response and cross reactivity against MTB, of liposomes containing a mixture of cell wall glycolipids of Ms and commercial lipids was evaluated, in order to study its possible use as a component of a vaccine candidate against tuberculosis. Liposomes containing total lipids extracted from Ms, distearoyl phosphatidyl choline and cholesterol were prepared by the dehydration-rehydration technique. Balb/c mice were immunized with the liposomes obtained and the antibody response and cross reactivity against MTB were tested by ELISA. Total lipids extract from Ms showed the presence of several polar glycolipids in common with MTB, such as phosphatidylinositol mannosides. Liposomes that contained glycolipids of Ms were capable of inducing a specific IgG antibody response that allowed the recognition of surface antigens of MTB. The results of this study demonstrated the presence of immunogenic glycolipids in Ms, which could be included to enhance the protective effects of subunit vaccine formulations against tuberculosis. PMID:23458474

  19. Colonization of olive trees (Olea europaea L.) with the arbuscular mycorrhizal fungus Glomus sp. modified the glycolipids biosynthesis and resulted in accumulation of unsaturated fatty acids.

    PubMed

    Mechri, Beligh; Attia, Faouzi; Tekaya, Meriem; Cheheb, Hechmi; Hammami, Mohamed

    2014-09-01

    The influence of arbuscular mycorrhizal (AM) fungi colonization on photosynthesis, mineral nutrition, the amount of phospholipids and glycolipids in the leaves of olive (Olea europaea L.) trees was investigated. After six months of growth, the rate of photosynthesis, carboxylation efficiency, transpiration and stomatal conductance in mycorrhizal (M) plants was significantly higher than that of non-mycorrhizal (NM) plants. The inoculation treatment increased the foliar P and Mg but not N. The amount of glycolipids in the leaves of M plants was significantly higher than that of NM plants. However, the amount of phospholipids in the leaves of M plants was not significantly different to that in the leaves of NM plants. Also, we observed a significant increase in the level of α-linolenic acid (C18:3ω3) in glycolipids of M plants. This work supports the view that increased glycolipids level in the leaves of M plants could be involved, at least in part, in the beneficial effects of mycorrhizal colonization on photosynthesis performance of olive trees. To our knowledge, this is the first report on the effect of AM fungi on the amount of glycolipids in the leaves of mycorrhizal plants.

  20. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents

    PubMed Central

    Daniotti, Jose Luis; Lardone, Ricardo D.; Vilcaes, Aldo A.

    2016-01-01

    Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation, and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets. PMID:26779443

  1. Production of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall in aerosol murine models of tuberculosis.

    PubMed

    Cardona, P J; Julián, E; Vallès, X; Gordillo, S; Muñoz, M; Luquin, M; Ausina, V

    2002-06-01

    Evolution of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall has been studied for the first time in experimental murine models of tuberculosis induced by aerosol, in which infection, reinfection, reactivation, prophylaxis and treatment with antibiotics have been assayed. Results show a significant humoral response against these antigens, where diacyltrehaloses (DAT) and sulpholipid I (SL-I) elicited higher antibody levels than protein antigens like antigen 85 protein complex (Ag85), culture filtrate proteins (CFP) and purified protein derivative (PPD). Only immunoglobulin M (IgM) antibodies have been detected against DAT and SL-I. Their evolution has a positive correlation with bacillary concentration in tissues.

  2. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae).

    PubMed

    Rossi, Eliandra M; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H; Tondo, Eduardo C

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves' stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves.

  3. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system.

    PubMed

    Yu, Hui; Huang, Guo-he; An, Chun-jiang; Wei, Jia

    2011-06-15

    The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  4. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity

    PubMed Central

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z.

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics. PMID:25566212

  5. Biosurfactant Produced by Salmonella Enteritidis SE86 Can Increase Adherence and Resistance to Sanitizers on Lettuce Leaves (Lactuca sativa L., cichoraceae)

    PubMed Central

    Rossi, Eliandra M.; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H.; Tondo, Eduardo C.

    2016-01-01

    Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves’ stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves. PMID:26834727

  6. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil.

    PubMed

    Silva, Elias J; Rocha e Silva, Nathália Maria P; Rufino, Raquel D; Luna, Juliana M; Silva, Ricardo O; Sarubbo, Leonie A

    2014-05-01

    The bacterium Pseudomonas cepacia CCT6659 cultivated with 2% soybean waste frying oil and 2% corn steep liquor as substrates produced a biosurfactant with potential application in the bioremediation of soils. The biosurfactant was classified as an anionic biomolecule composed of 75% lipids and 25% carbohydrates. Characterization by proton nuclear magnetic resonance ((1)H and (13)C NMR) revealed the presence of carbonyl, olefinic and aliphatic groups, with typical spectra of lipids. Four sets of biodegradation experiments were carried out with soil contaminated by hydrophobic organic compounds amended with molasses in the presence of an indigenous consortium, as follows: Set 1-soil+bacterial cells; Set 2-soil+biosurfactant; Set 3-soil+bacterial cells+biosurfactant; and Set 4-soil without bacterial cells or biosurfactant (control). Significant oil biodegradation activity (83%) occurred in the first 10 days of the experiments when the biosurfactant and bacterial cells were used together (Set 3), while maximum degradation of the organic compounds (above 95%) was found in Sets 1-3 between 35 and 60 days. It is evident from the results that the biosurfactant alone and its producer species are both capable of promoting biodegradation to a large extent.

  7. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity.

    PubMed

    Das, Palashpriya; Yang, Xin-Ping; Ma, Luyan Z

    2014-01-01

    Rhamnolipid biosurfactants produced mainly by Pseudomonas sp. had been reported to possess a wide range of potential industrial application. These biosurfactants are produced as monorhamnolipid (MRL) and di-rhamnolipid (DRL) congeners. The present study deals with rhamnolipid biosurfactants produced by three bacterial isolates from crude oil. Biosurfactants produced by one of the strains (named as IMP67) was found to be very efficacious based on its critical micelle concentration value and hydrocarbon emulsification property. Strikingly, antimicrobial, and anti-biofilm potential of this biosurfactant were higher than biosurfactants produced by other two strains. Thin layer chromatography analysis and rhamnose quantification showed that the rhamnolipids of IMP67 had more MRL congeners than biosurfactants of the other two strains. Emulsification and antimicrobial actions were affected by manual change of MRL and DRL congener proportions. Increase of MRL proportion enhanced emulsification index and antimicrobial property to Gram negative bacteria. This result indicated that the ratio of MRL and DRL affected the emulsification potentials of rhamnolipids, and suggested that high emulsification potentials might enhance rhamnolipids to penetrate the cell wall of Gram negative bacteria. In line with this finding, rhamnolipids of IMP67 also reduced the MIC of some antibiotics against bacteria, suggesting their synergistic role with the antibiotics.

  8. Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant

    NASA Astrophysics Data System (ADS)

    Behera, M.; Giri, G.

    2014-12-01

    Herein, we report a facile green synthesis of Cu2O nanoparticles (NPs) using copper sulfate as precursor salt and hydrazine hydrate as reducing agent in presence of bio-surfactant (i.e. leaves extract of arka — a perennial shrub) at 60 to 70 °C in an aqueous medium. A broad band centered at 460 nm in absorption spectrum reveals the formation of surfactant stabilized Cu2O NPs. X-ray diffraction pattern of the surfactant stabilized NPs suggests the formation of only Cu2O phase in assistance of a bio-surfactant with the crystallite size of ˜8 nm. A negative zeta potential of -12 mV at 8.0 pH in surfactant stabilized Cu2O NPs hints non-bonding electron transfer from O-atom of saponin to the surface of NP. Red-shift in the vibrational band (Cu-O stretching) of Cu2O from 637 cm-1 to 640 cm-1 in presence of bio-surfactant suggests an interfacial interaction between NPs and O-atoms of -OH groups of saponin present in the plant (i.e. Calotropis gigantean) extract. From X-ray photoelectron spectroscopy spectra, a decrease in binding energy of both 2p3/2 and 2p1/2 bands in Cu2O with saponin molecules as compared to bulk Cu atom reveals a charge transfer interaction between NP and saponin surfactant molecules. Transmission electron microscopy images show crystalline nature of Cu2O NPs with an fcc lattice.

  9. Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas.

    PubMed

    Yan, Ping; Lu, Mang; Yang, Qin; Zhang, Hai-Ling; Zhang, Zhong-Zhi; Chen, Rong

    2012-07-01

    In this study, a rhamnolipid biosurfactant-producing strain, Pseudomonas aeruginosa F-2, was used to recover oil from refinery oily sludge in laboratory and pilot-scale experiments. The optimum values of carbon to nitrogen ratio, temperature, sludge-water ratio and inoculum size for oil recovery were determined as 10, 35 °C, 1:4 and 4%, respectively. An oil recovery of up to 91.5% was obtained with the equipping of draft tubes during the field pilot-scale studies. The results showed that strain F-2 has the potential for industrial applications and may be used in oil recovery from oily sludge.

  10. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-06-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g., surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS (high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry) analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent-extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26 carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs

  11. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid based molecular thermometers

    NASA Astrophysics Data System (ADS)

    Bauersachs, T.; Rochelmeier, J.; Schwark, L.

    2015-01-01

    It has been demonstrated that the relative distribution of heterocyst glycolipids (HGs) in cultures of N2-fixing heterocystous cyanobacteria is largely controlled by growth temperature, suggesting a potential use of these components in paleoenvironmental studies. Here, we investigated the effect of environmental parameters (e.g. surface water temperatures, oxygen concentrations and pH) on the distribution of HGs in a natural system using water column filtrates collected from Lake Schreventeich (Kiel, Germany) from late July to the end of October 2013. HPLC-ESI/MS analysis revealed a dominance of 1-(O-hexose)-3,25-hexacosanediols (HG26 diols) and 1-(O-hexose)-3-keto-25-hexacosanol (HG26 keto-ol) in the solvent extracted water column filtrates, which were accompanied by minor abundances of 1-(O-hexose)-3,27-octacosanediol (HG28 diol) and 1-(O-hexose)-3-keto-27-octacosanol (HG28 keto-ol) as well as 1-(O-hexose)-3,25,27-octacosanetriol (HG28 triol) and 1-(O-hexose)-3-keto-25,27-octacosanediol (HG28 keto-diol). Fractional abundances of alcoholic and ketonic HGs generally showed strong linear correlations with surface water temperatures and no or only weak linear correlations with both oxygen concentrations and pH. Changes in the distribution of the most abundant diol and keto-ol (e.g., HG26 diol and HG26 keto-ol) were quantitatively expressed as the HDI26 (heterocyst diol index of 26carbon atoms) with values of this index ranging from 0.89 in mid-August to 0.66 in mid-October. An average HDI26 value of 0.79, which translates into a calculated surface water temperature of 15.8 ± 0.3 °C, was obtained from surface sediments collected from Lake Schreventeich. This temperature - and temperatures obtained from other HG indices (e.g., HDI28 and HTI28) - is similar to the one measured during maximum cyanobacterial productivity in early to mid-September and suggests that HGs preserved in Lake Schreventeich sediments record summer surface water temperatures. As N2-fixing

  12. Detecting Protein-Glycolipid Interactions Using Glycomicelles and CaR-ESI-MS.

    PubMed

    Han, Ling; Kitova, Elena N; Klassen, John S

    2016-11-01

    This study reports on the use of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay, combined with glycomicelles, as a method for detecting specific interactions between water-soluble proteins and glycolipids (GLs) in aqueous solution. The B subunit homopentamers of cholera toxin (CTB5) and Shiga toxin type 1 B (Stx1B5) and the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2 served as model systems for this study. The CTB5 exhibits broad specificity for gangliosides and binds to GM1, GM2, GM3, GD1a, GD1b, and GT1b; Stx1B5 does not recognize gangliosides. The CaR-ESI-MS assay was used to analyze solutions of CTB5 or Stx1B5 and individual gangliosides (GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2) or mixtures thereof. The high affinity interaction of CTB5 with GM1 was successfully detected. However, the apparent affinity, as determined from the mass spectra, is significantly lower than that of the corresponding pentasaccharide or when GM1 is presented in model membranes such as nanodiscs. Interactions between CTB5 and the low affinity gangliosides GD1a, GD1b, and GT1b, as well as GD2, which served as a negative control, were detected; no binding of CTB5 to GM2 or GM3 was observed. The CaR-ESI-MS results obtained for Stx1B5 reveal that nonspecific protein-ganglioside binding can occur during the ESI process, although the extent of binding varies between gangliosides. Consequently, interactions detected for CTB5 with GD1a, GD1b, and GT1b are likely nonspecific in origin. Taken together, these results reveal that the CaR-ESI-MS/glycomicelle approach for detecting protein-GL interactions is prone to false positives and false negatives and must be used with caution. Graphical Abstract .

  13. Detecting Protein-Glycolipid Interactions Using Glycomicelles and CaR-ESI-MS

    NASA Astrophysics Data System (ADS)

    Han, Ling; Kitova, Elena N.; Klassen, John S.

    2016-11-01

    This study reports on the use of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay, combined with glycomicelles, as a method for detecting specific interactions between water-soluble proteins and glycolipids (GLs) in aqueous solution. The B subunit homopentamers of cholera toxin (CTB5) and Shiga toxin type 1 B (Stx1B5) and the gangliosides GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2 served as model systems for this study. The CTB5 exhibits broad specificity for gangliosides and binds to GM1, GM2, GM3, GD1a, GD1b, and GT1b; Stx1B5 does not recognize gangliosides. The CaR-ESI-MS assay was used to analyze solutions of CTB5 or Stx1B5 and individual gangliosides (GM1, GM2, GM3, GD1a, GD1b, GT1b, and GD2) or mixtures thereof. The high affinity interaction of CTB5 with GM1 was successfully detected. However, the apparent affinity, as determined from the mass spectra, is significantly lower than that of the corresponding pentasaccharide or when GM1 is presented in model membranes such as nanodiscs. Interactions between CTB5 and the low affinity gangliosides GD1a, GD1b, and GT1b, as well as GD2, which served as a negative control, were detected; no binding of CTB5 to GM2 or GM3 was observed. The CaR-ESI-MS results obtained for Stx1B5 reveal that nonspecific protein-ganglioside binding can occur during the ESI process, although the extent of binding varies between gangliosides. Consequently, interactions detected for CTB5 with GD1a, GD1b, and GT1b are likely nonspecific in origin. Taken together, these results reveal that the CaR-ESI-MS/glycomicelle approach for detecting protein-GL interactions is prone to false positives and false negatives and must be used with caution.

  14. Antibody to endotoxin core glycolipid reverses reticuloendothelial system depression in an animal model of severe sepsis and surgical injury

    SciTech Connect

    Aldridge, M.C.; Chadwick, S.J.; Cheslyn-Curtis, S.; Rapson, N.; Dudley, H.A.

    1987-10-01

    To study the effect of severe sepsis on the function of the reticuloendothelial system (RES) we have measured the clearance kinetics and organ distribution of both low-dose technetium tin colloid (TTC) and /sup 75/selenomethionine-labelled E. coli in rabbits 24 hours after either sham laparotomy or appendix devascularization. Sepsis resulted in similar delayed blood clearance and reduced liver (Kupffer cell) uptake of both TTC and E. coli. To investigate the ability of polyclonal antibody to E. coli-J-5 (core glycolipid) to improve RES function in the same model of sepsis, further animals were pretreated with either core glycolipid antibody or control serum (10 ml IV) 2 hours before induction of sepsis. TTC clearance kinetics were determined 24 hours later. Antibody pretreated animals showed: a reduced incidence of bacteremia; normalization of the rate of blood clearance and liver uptake of TTC; and a 'rebound' increase in splenic uptake of TTC. We conclude that antibody to E. coli-J-5 enhances bacterial clearance by the RES.

  15. Implications of Lymphocyte Anergy to Glycolipids in Multiple Sclerosis (MS): iNKT Cells May Mediate the MS Infectious Trigger

    PubMed Central

    Hogan, Edward L; Podbielska, Maria; O’Keeffe, Joan

    2015-01-01

    Immunogenic lipids may play key roles in host defenses against infection and in generating autoimmune inflammation and organ-specific damage. In multiple sclerosis (MS) there are unequivocal autoimmune features and vulnerability to aggravation or induction by microbial or viral infection. We have found glycolipid-driven anergy of circulating lymphocytes in MS indicating that this immune response is affected in MS and the robust effects of iNKT activation with potent cellular and cytokine activities emphasizes its potential importance. Diverse glycolipids including the endogenous myelin acetylated-galactosylceramides (AcGalCer) can drive activation that could be critical to the inflammatory demyelination in the central nervous system and clinical consequences. The iNKT cells and their invariant or iTCR (Vα24Jα18Vβ11) receptor an innate defense–a discrete immune arm that is separate from peptide-driven acquired immune responses. This offers new possibilities for insight including a likelihood that the pattern recognition of exogenous microbial and myelin immunogens can overlap and cross-react especially in an inflammatory milieu. PMID:26347308

  16. Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation.

    PubMed

    Benning, C; Huang, Z H; Gage, D A

    1995-02-20

    Cells of the photosynthetic bacterium Rhodobacter sphaeroides grown under phosphate-limiting conditions accumulated nonphosphorous glycolipids and lipids carrying head groups derived from amino acids. Concomitantly, the relative amount of phosphoglycerolipids decreased from 90 to 22 mol% of total polar lipids in the membranes. Two lipids, not detectable in cells grown under standard conditions, were synthesized during phosphate-limited growth. Fast atom bombardment mass spectroscopy, exact mass measurements, 1H NMR spectroscopy, sugar composition analysis, and methylation analysis of the predominant glycolipid led to the identification of the novel compound 1,2-di-O-acyl-3-O-[alpha-D-glucopyranosyl-(1-->4)-O-beta-D-galactopyr anosyl]glycerol. The second lipid was identified as the betaine lipid 1,2-di-O-acyl-[4'-(N,N,N-trimethyl)-homoserine]glycerol by cochromatography employing an authentic standard from Chlamydomonas reinhardtii, fast atom bombardment mass spectroscopy, exact mass measurements, and 1H NMR spectroscopy. Prior to this observation, the occurrence of this lipid was thought to be restricted to lower plants and algae. Apparently, these newly synthesized nonphosphorous lipids, in addition to the sulfo- and the ornithine lipid also found in R. sphaeroides grown under optimal conditions, take over the role of phosphoglycerolipids in phosphate-deprived cells.

  17. Coadministration of glycolipid-like micelles loading cytotoxic drug with different action site for efficient cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Dan; Hu, Fu-Qiang; Du, Yong-Zhong; Yuan, Hong; Chen, Feng-Ying; Lou, Ya-Min; Yu, He-Yong

    2009-02-01

    To reduce the side effects and drug resistance in cancer chemotherapy, we have examined the in vitro efficacy of the combination of paclitaxel (PTX) and doxorubicin (DOX) loaded in nanosized polymeric micelles with glycolipid-like structure, which formed by lipid grafted chitosan. The cytotoxicities of PTX and DOX, either as single agents or in combination, were examined using drug sensitive tumor cells and drug resistant cells. It was found that the 50% inhibition of cellular growth (IC50) of PTX and DOX in micelles against drug sensitive cells was lowered about 20-fold and 4-7-fold compared to that of Taxol and DOX solution, respectively. The IC50 of PTX and DOX in micelles against drug resistant cells was lowered more significantly, and no clear difference was found between drug sensitive and drug resistant cells. The coadministration of PTX and DOX in micelles showed a more conspicuous effect than that of micelles loaded with a single drug. The micelles presented excellent internalization to cancer cells, which results in increased intracellular accumulation of PTX and DOX in its molecular-target site. The coadministration of glycolipid-like micelles loaded with different cytotoxic drugs indicated synergistic effects for drug sensitive cells and drug resistant cells.

  18. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3.

    PubMed

    Nie, Maiqian; Yin, Xihou; Ren, Chunyan; Wang, Yang; Xu, Feng; Shen, Qirong

    2010-01-01

    A novel rhamnolipid biosurfactant-producing and Polycyclic Aromatic Hydrocarbon (PAH)-degrading bacterium Pseudomonas aeruginosa strain NY3 was isolated from petroleum-contaminated soil samples. Strain NY3 was characterized by its extraordinary capacity to produce structurally diverse rhamnolipids. A total of 25 rhamnolipid components and 37 different parent molecular ions, representing various metal ion adducts (Na(+), 2Na(+) and K(+)), were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among these compounds are ten new rhamnolipids. In addition to its biosurfactant production, strain NY3 was shown to be capable of efficient degradation of PAHs as well as synergistic improvement in the degradation of high molecular weight PAHs by its biosurfactant. These findings have added novel members to the rhamnolipid group and expanded current knowledge regarding the diversity and productive capability of rhamnolipid biosurfactants from a single specific strain with variation of only one carbon source. Additionally, this paper lays the foundation for improvement in the yield of NY3BS and study of the degradation pathway(s) of PAHs in P. aeruginosa strain NY3.

  19. Production of a Lipopeptide Biosurfactant by a Novel Bacillus sp. and Its Applicability to Enhanced Oil Recovery.

    PubMed

    Varadavenkatesan, Thivaharan; Murty, Vytla Ramachandra

    2013-01-01

    Biosurfactants are surface-active compounds derived from varied microbial sources including bacteria and fungi. They are secreted extracellularly and have a wide range of exciting properties for bioremediation purposes. They also have vast applications in the food and medicine industry. With an objective of isolating microorganisms for enhanced oil recovery (EOR) operations, the study involved screening of organisms from an oil-contaminated site. Morphological, biochemical, and 16S rRNA analysis of the most promising candidate revealed it to be Bacillus siamensis, which has been associated with biosurfactant production, for the first time. Initial fermentation studies using mineral salt medium supplemented with crude oil resulted in a maximum biosurfactant yield of 0.64 g/L and reduction of surface tension to 36.1 mN/m at 96 h. Characterization studies were done using thin layer chromatography and Fourier transform infrared spectroscopy. FTIR spectra indicated the presence of carbonyl groups, alkyl bonds, and C-H and N-H stretching vibrations, typical of peptides. The extracted biosurfactant was stable at extreme temperatures, pH, and salinity. Its applicability to EOR was further verified by conducting sand pack column studies that yielded up to 60% oil recovery.

  20. A comparison of effects of broad-spectrum antibiotics and biosurfactants on established bacterial biofilms.

    PubMed

    Quinn, Gerry A; Maloy, Aaron P; Banat, Malik M; Banat, Ibrahim M

    2013-11-01

    Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74-88 and 74-98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms.

  1. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.

    PubMed

    Diaz De Rienzo, M A; Stevenson, P S; Marchant, R; Banat, I M

    2016-07-01

    Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds.

  2. Natural emulsifiers - Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance.

    PubMed

    McClements, David Julian; Gumus, Cansu Ekin

    2016-08-01

    There is increasing consumer pressure for commercial products that are more natural, sustainable, and environmentally friendly, including foods, cosmetics, detergents, and personal care products. Industry has responded by trying to identify natural alternatives to synthetic functional ingredients within these products. The focus of this review article is on the replacement of synthetic surfactants with natural emulsifiers, such as amphiphilic proteins, polysaccharides, biosurfactants, phospholipids, and bioparticles. In particular, the physicochemical basis of emulsion formation and stabilization by natural emulsifiers is discussed, and the benefits and limitations of different natural emulsifiers are compared. Surface-active polysaccharides typically have to be used at relatively high levels to produce small droplets, but the droplets formed are highly resistant to environmental changes. Conversely, surface-active proteins are typically utilized at low levels, but the droplets formed are highly sensitive to changes in pH, ionic strength, and temperature. Certain phospholipids are capable of producing small oil droplets during homogenization, but again the droplets formed are highly sensitive to changes in environmental conditions. Biosurfactants (saponins) can be utilized at low levels to form fine oil droplets that remain stable over a range of environmental conditions. Some nature-derived nanoparticles (e.g., cellulose, chitosan, and starch) are effective at stabilizing emulsions containing relatively large oil droplets. Future research is encouraged to identify, isolate, purify, and characterize new types of natural emulsifier, and to test their efficacy in food, cosmetic, detergent, personal care, and other products.

  3. BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies.

    PubMed

    Oliveira, Jorge S; Araújo, Wydemberg; Lopes Sales, Ana Isabela; Brito Guerra, Alaine de; Silva Araújo, Sinara Carla da; de Vasconcelos, Ana Tereza Ribeiro; Agnez-Lima, Lucymara F; Freitas, Ana Teresa

    2015-01-01

    Crude oil extraction, transportation and use provoke the contamination of countless ecosystems. Therefore, bioremediation through surfactants mobilization or biodegradation is an important subject, both economically and environmentally. Bioremediation research had a great boost with the recent advances in Metagenomics, as it enabled the sequencing of uncultured microorganisms providing new insights on surfactant-producing and/or oil-degrading bacteria. Many research studies are making available genomic data from unknown organisms obtained from metagenomics analysis of oil-contaminated environmental samples. These new datasets are presently demanding the development of new tools and data repositories tailored for the biological analysis in a context of bioremediation data analysis. This work presents BioSurfDB, www.biosurfdb.org, a curated relational information system integrating data from: (i) metagenomes; (ii) organisms; (iii) biodegradation relevant genes; proteins and their metabolic pathways; (iv) bioremediation experiments results, with specific pollutants treatment efficiencies by surfactant producing organisms; and (v) a biosurfactant-curated list, grouped by producing organism, surfactant name, class and reference. The main goal of this repository is to gather information on the characterization of biological compounds and mechanisms involved in biosurfactant production and/or biodegradation and make it available in a curated way and associated with a number of computational tools to support studies of genomic and metagenomic data.

  4. The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity.

    PubMed

    Burch, Adrien Y; Zeisler, Viktoria; Yokota, Kenji; Schreiber, Lukas; Lindow, Steven E

    2014-07-01

    Biosurfactant production by bacteria on leaf surfaces is poorly documented, and its role in this habitat has not been explored. Therefore, we investigated the production and fitness benefits of syringafactin by Pseudomonas syringae pv. syringae B728a on leaves. Syringafactin largely adsorbed to the waxy leaf cuticle both when topically applied and when produced by cells on plants. Syringafactin increased the rate of diffusion of water across isolated cuticles and attracted water to hydrophobic surfaces exposed to high relative humidity due to its hygroscopic properties. While a wild-type and syringafactin mutant exhibited similar fitness on bean leaves incubated in static conditions, the fitness of the wild-type strain was higher under fluctuating humidity conditions typical of field conditions. When co-inoculated onto either the host plant bean or the non-host plant romaine lettuce, the proportion of viable wild-type cells recovered from plants relative to that of a mutant unable to produce syringafactin increased 10% over 10 days. The number of disease lesions incited by the wild-type strain on bean was also significantly higher than that of the syringafactin mutant. The production of hygroscopic biosurfactants on waxy leaf surfaces apparently benefits bacteria by both attracting moisture and facilitating access to nutrients.

  5. Enhanced Biological Control of Phytophthora Blight of Pepper by Biosurfactant-Producing Pseudomonas

    PubMed Central

    Özyilmaz, Ümit; Benlioglu, Kemal

    2013-01-01

    Pseudomonas isolates from different crop plants were screened for in vitro growth inhibition of Phytophthora capsici and production of biosurfactant. Two in vivo experiments were performed to determine the efficacy of selected Pseudomonas strains against Phytophthora blight of pepper by comparing two fungicide treatments [acibenzolar-S-methyl (ASM) and ASM + mefenoxam]. Bacterial isolates were applied by soil drenching (1 × 109 cells/ml), ASM (0.1 μg a.i./ml) and ASM + mefenoxam (0.2 mg product/ml) were applied by foliar spraying, and P. capsici inoculum was incorporated into the pot soil three days after treatments. In the first experiment, four Pseudomonas strains resulted in significant reduction from 48.4 to 61.3% in Phytophthora blight severity. In the second experiment, bacterial treatments combining with olive oil (5 mL per plant) significantly enhanced biological control activity, resulting in a reduction of disease level ranging from 56.8 to 81.1%. ASM + mefenoxam was the most effective treatment while ASM alone was less effective in both bioassays. These results indicate that our Pseudomonas fluorescens strains (6L10, 6ba6 and 3ss9) that have biosurfactant-producing abilities are effective against P. capsici on pepper, and enhanced disease suppression could be achieved when they were used in combination with olive oil. PMID:25288970

  6. Optimization of biosurfactant production from Vibrio sp. BSM-30 isolated in tropical waters

    NASA Astrophysics Data System (ADS)

    Su, Zengjian; Li, Min; Zhang, Yuxiu

    2017-01-01

    The strain BSM-30 (Vibrio sp.), isolated from Chinese tropical waters, could be a biosurfactant producing bacteria according with results obtained by the oil spreading method. The culture conditions for biosurfactant production were tested respectively such as inoculation (2%,6%,10%,14% as setting), shaking speed(120 r/min,150 r/min,180 r/min as setting), temperature (25°C,30°C,35°C as setting), pH (7,8,9 as setting), salinity (1.5%, 2.5%, 3.0%, 4.5%, 5.5% as setting), which results showed that the best culture conditions for BS production were 10% inoculation quantity, 180 r/min, 25°C, pH 8, and 3.5% salinity. The optimization of carbon sources (20g/ of glucose, 20g/L of starch, 20g/L of paraffin oil 20g/L of diesel, 20g/L of oil as setting) and nitrogen sources (6g/L of NaNO3,7.1g/L of KNO3,5.6g/L of NH4NO3,9.3g/L of (NH4)2SO4, 4.2g/L of CO(NH2)2 as setting) were also tested, which results showed that the best nitrogen source and carbon source were (NH4) 2SO4 and soluble starch.

  7. [Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant].

    PubMed

    Liu, Xia; Wang, Jian-Tao; Zhang, Meng; Wang, Li; Yang, Ya-Ti

    2013-04-01

    Because of its strong chelation, solubilization characteristics, the chelating agents and biosurfactant are widely used in remediation of heavy metals and organic contaminated soils. Ethylenediamine tetraacetic acid (EDTA), citric acid (CIT) and dirhamnolipid (RL2) were selected as the eluent. Batch experiments and column experiments were conducted to investigate the leaching effect of the three kinds of eluent, as well as the mixture of biosurfactant and chelating agent for Cu, Pb contaminated loess soil. The results showed that the leaching efficiencies of different eluent on Cu, Pb contaminated loess soil followed the sequence of EDTA > CIT > RL2. At an eluent concentration of 0.02 mol x L(-1), the Cu leaching efficiency was 62.74% (EDTA), 52.28% (CIT) and 15.35% (RL2), respectively; the Pb leaching efficiency was 96.10% (EDTA), 23.08% (CIT) and 14.42% (RL2), respectively. When the concentration of RL2 was 100 CMC, it had synergistic effects on the other two kinds of chelating agent in Cu leaching, and when the concentration of RL2 was 200 CMC, it had antagonism effects. The effect of RL2 on EDTA in Pb leaching was similar to that in Cu leaching. Pb leaching by CIT was inhibited in the presence of RL2. EDTA and CIT could effectively remove Cu and Pb in exchangeable states, adsorption states, carbonate salts and organic bound forms; RL2 could effectively remove Cu and Pb in exchangeable and adsorbed states.

  8. Characterization of novel long-chain 1,2-diols in Thermus species and demonstration that Thermus strains contain both glycerol-linked and diol-linked glycolipids.

    PubMed Central

    Wait, R; Carreto, L; Nobre, M F; Ferreira, A M; da Costa, M S

    1997-01-01

    In this study, we purified and characterized tetra- and triglycosyl glycolipids (GL-1 and GL-2, respectively) from two different colonial forms of Thermus scotoductus X-1, from T. filiformis Tok4 A2, and from T. oshimai SPS-11. Acid hydrolysis of the purified glycolipids liberated, in addition to the expected long-chain fatty acids, two components which were identified by gas chromatography-mass spectrometry as 16-methylheptadecane-1,2-diol and 15-methylheptadecane-1,2-diol. Fast atom bombardment mass spectrometry of the intact glycolipids indicated that a major proportion consisted of components with glycan head groups linked to long-chain 1,2-diols rather than to glycerol, although in all cases glycerol-linked compounds containing similar glycan head groups were also present. As in other Thermus strains, the polar head group of GL-1 from T. filiformis Tok4 A2 and from T. scotoductus X-1 colony type t2 was a glucosylgalactosyl-(N-acyl)glucosaminylglucosyl moiety. However, GL-2 from T. scotoductus X-1 colony type t1 and from T. oshimai SPS-11 was a truncated analog which lacked the nonreducing terminal glucose. Long-chain 1,2-diols have been previously reported in the polar lipids of Thermomicrobium roseum and (possibly) Chloroflexus aurantiacus, but to our knowledge, this is the first report of their detection in other bacteria and the first account of the structural determination of long-chain diol-linked glycolipids. PMID:9324266

  9. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations.

    PubMed

    Källenius, Gunilla; Correia-Neves, Margarida; Buteme, Helen; Hamasur, Beston; Svenson, Stefan B

    2016-01-01

    Exposure to Mycobacterium tuberculosis (Mtb) may lead to active or latent tuberculosis, or clearance of Mtb, depending essentially on the quality of the host's immune response. This response is initiated through the interaction of Mtb cell wall surface components, mostly glycolipids, with cells of the innate immune system, particularly macrophages (Mφs) and dendritic cells (DCs). The way Mφs and DC alter their cytokine secretome, activate or inhibit different microbicidal mechanisms and present antigens and consequently trigger the T cell-mediated immune response impacts the host immune response against Mtb. Lipoarabinomannan (LAM) is one of the major cell wall components of Mtb. Mannosyl-capped LAM (ManLAM), and its related cell wall-associated types of glycolipids/lipoglycans, namely phosphatidylinositol mannosides (PIMs) and lipomannan (LM), exhibit important and distinct immunomodulatory properties. The structure, internal heterogeneity and abundance of these molecules vary between Mtb strains exhibiting distinct degrees of virulence. Thus ManLAM, LM and PIMs may be considered crucial Mtb-associated virulence factors in the pathogenesis of tuberculosis. Of particular relevance for this review, there is controversy about the specific immunomodulatory properties of these distinct glycolipids, particularly when tested as purified molecules in vitro. In addition to the variability in the glycolipid composition conflicting reports may also result from differences in the protocols used for glycolipid isolation and for in vitro experiments including immune cell types and procedures to generate them. Understanding the immunomodulatory properties of these cell wall glycolipids, how they differ between distinct Mtb strains, and how they influence the degree of Mtb virulence, is of utmost relevance to understand how the host mounts a protective or otherwise pathologic immune response. This is essential for the design of preventive strategies against tuberculosis. Thus

  10. Delayed hypersensitivity and granulomatous response after immunization with protein antigens associated with a mycobacterial glycolipid and oil droplets.

    PubMed

    Granger, D L; Yamamoto, K I; Ribi, E

    1976-02-01

    A myocardial glycolipid (P3) mixed with protein antigens in oil-in-water emulsion induced lasting delayed hypersensitivity (DH) and granulomatous inflammation after intradermal injection into guinea pigs. This did not occur when P3 and bovine serum albumin (BSA) were given in Freund's incomplete adjuvant. The oil-in-water emulsions consisted of microscopic oil droplets suspended in aqueous medium. By separating oil and aqueous phases from BSA + P3 emulsion it was shown that antigen retained with oil droplets led to DH and granuloma formation. The association of antigen with oil droplets was P3 dependent and was quantitated with 125I-labeled BSA. The same phenomenon occurred with 125I-labeled rabbit gamma-globulin (RGG) + P3 emulsion. Fluorescein-conjugated RGG was observed in a particulate state within or on oil droplets in emulsion containing P3. These physical characteristics of antigen + P3 emulsion appeared to be important for immunogenicity.

  11. Common links in the structure and cellular localization of Rhizobium chitolipooligosaccharides and general Rhizobium membrane phospholipid and glycolipid components.

    PubMed

    Cedergren, R A; Lee, J; Ross, K L; Hollingsworth, R I

    1995-04-04

    Several common links between the structural chemistry of the chitolipooligosaccharides of Rhizobium and the general rhizobial membrane lipid and lipopolysaccharide chemistry of these bacteria have been uncovered. Aspects of common chemistry include sulfation, methylation, and the position and extent of fatty acyl chain unsaturation. We find that bacteria which are known to synthesize sulfated chitolipooligosaccharides (such as Rhizobium meliloti strains and the broad-host-range Rhizobium species strain NGR234) also have sulfated lipopolysaccharides. Their common origins of sulfation have been demonstrated by using mutants which are known to be impaired in sulfating their chitolipooligosaccharides. In such cases, there is a corresponding diminution or complete lack of sulfation of the lipopolysaccharides. The structural diversity of the fatty acids observed in the chitolipooligosaccharides is also observed in the other membrane lipids. For instance, the doubly unsaturated fatty acids which are known to be predominant components of R. meliloti chitolipooligosaccharides were also found in the usual phospholipids and glycolipids. Also, the known functionalization of the chitolipooligosaccharides of R. sp. NGR234 by O- and N-methylation was also reflected in the lipopolysaccharide of this organism. The common structural features of chitolipooligosaccharides and membrane components are consistent with a substantial degree of biosynthetic overlap and a large degree of cellular, spatial overlap between these molecules. The latter aspect is clearly demonstrated here since we show that the chitolipooligosaccharides are, in fact, normal membrane components of Rhizobium. This increases the importance of understanding the role of the bacterial cell surface chemistry in the Rhizobium/legume symbiosis and developing a comprehensive understanding of the highly integrated membrane lipid and glycolipid chemistry of Rhizobium.

  12. Structure-function features of a Mycoplasma glycolipid synthase derived from structural data integration, molecular simulations, and mutational analysis.

    PubMed

    Romero-García, Javier; Francisco, Carles; Biarnés, Xevi; Planas, Antoni

    2013-01-01

    Glycoglycerolipids are structural components of mycoplasma membranes with a fundamental role in membrane properties and stability. Their biosynthesis is mediated by glycosyltransferases (GT) that catalyze the transfer of glycosyl units from a sugar nucleotide donor to diacylglycerol. The essential function of glycolipid synthases in mycoplasma viability, and the absence of glycoglycerolipids in animal host cells make these GT enzymes a target for drug discovery by designing specific inhibitors. However, rational drug design has been hampered by the lack of structural information for any mycoplasma GT. Most of the annotated GTs in pathogenic mycoplasmas belong to family GT2. We had previously shown that MG517 in Mycoplasma genitalium is a GT-A family GT2 membrane-associated glycolipid synthase. We present here a series of structural models of MG517 obtained by homology modeling following a multiple-template approach. The models have been validated by mutational analysis and refined by long scale molecular dynamics simulations. Based on the models, key structure-function relationships have been identified: The N-terminal GT domain has a GT-A topology that includes a non-conserved variable region involved in acceptor substrate binding. Glu193 is proposed as the catalytic base in the GT mechanism, and Asp40, Tyr126, Tyr169, Ile170 and Tyr218 define the substrates binding site. Mutation Y169F increases the enzyme activity and significantly alters the processivity (or sequential transferase activity) of the enzyme. This is the first structural model of a GT-A glycoglycerolipid synthase and provides preliminary insights into structure and function relationships in this family of enzymes.

  13. Structure-Function Features of a Mycoplasma Glycolipid Synthase Derived from Structural Data Integration, Molecular Simulations, and Mutational Analysis

    PubMed Central

    Romero-García, Javier; Francisco, Carles; Biarnés, Xevi; Planas, Antoni

    2013-01-01

    Glycoglycerolipids are structural components of mycoplasma membranes with a fundamental role in membrane properties and stability. Their biosynthesis is mediated by glycosyltransferases (GT) that catalyze the transfer of glycosyl units from a sugar nucleotide donor to diacylglycerol. The essential function of glycolipid synthases in mycoplasma viability, and the absence of glycoglycerolipids in animal host cells make these GT enzymes a target for drug discovery by designing specific inhibitors. However, rational drug design has been hampered by the lack of structural information for any mycoplasma GT. Most of the annotated GTs in pathogenic mycoplasmas belong to family GT2. We had previously shown that MG517 in Mycoplasma genitalium is a GT-A family GT2 membrane-associated glycolipid synthase. We present here a series of structural models of MG517 obtained by homology modeling following a multiple-template approach. The models have been validated by mutational analysis and refined by long scale molecular dynamics simulations. Based on the models, key structure-function relationships have been identified: The N-terminal GT domain has a GT-A topology that includes a non-conserved variable region involved in acceptor substrate binding. Glu193 is proposed as the catalytic base in the GT mechanism, and Asp40, Tyr126, Tyr169, Ile170 and Tyr218 define the substrates binding site. Mutation Y169F increases the enzyme activity and significantly alters the processivity (or sequential transferase activity) of the enzyme. This is the first structural model of a GT-A glycoglycerolipid synthase and provides preliminary insights into structure and function relationships in this family of enzymes. PMID:24312618

  14. Targeted killing of myofibroblasts by biosurfactant di-rhamnolipid suggests a therapy against scar formation

    PubMed Central

    Shen, Chong; Jiang, Lifang; Shao, Huawei; You, Chuangang; Zhang, Guoliang; Ding, Sitong; Bian, Tingwei; Han, Chunmao; Meng, Qin

    2016-01-01

    Pathological myofibroblasts are often involved in skin scarring via generating contractile force and over-expressing collagen fibers, but no compound has been found to inhibit the myofibroblasts without showing severe toxicity to surrounding physiological cells. Here we report that di-rhamnolipid, a biosurfactant secreted by Pseudomonas aeruginosa, showed potent effects on scar therapy via a unique mechanism of targeted killing the myofibroblasts. In cell culture, the fibroblasts-derived myofibroblasts were more sensitive to di-rhamnolipid toxicity than fibroblasts at a concentration-dependent manner, and could be completely inhibited of their specific functions including α-SMA expression and collagen secretion/contraction. The anti-fibrotic function of di-rhamnolipid was further verified in rabbit ear hypertrophic scar models by presenting the significant reduction of scar elevation index, type I collagen fibers and α-SMA expression. In this regard, di-rhamnolipid treatment could be suggested as a therapy against skin scarring. PMID:27901027

  15. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

    NASA Astrophysics Data System (ADS)

    Sempels, Wouter; de Dier, Raf; Mizuno, Hideaki; Hofkens, Johan; Vermant, Jan

    2013-04-01

    The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

  16. Biosurfactants and increased bioavailability of sorbed organic contaminants: Measurements using a biosensor

    SciTech Connect

    Strong-Gunderson, J.M.; Palumbo, A.V.; Applegate, B.; Saylor, G.S.

    1993-12-31

    Bioremediation of sites contaminated with hydrophobic materials that sorb onto the soil matrix is very difficult due to reduced microbial (bio)availability. Following biosurfactant addition, we have measured an increase in contaminant bioavailability by using a lux biosensor. Direct microbial bioavailability was determined by using a genetically engineered microbial bioreporter strain of Pseudomonas putida. This strain was engineered so the lux genes, which code for light production, are transcriptionally fused with genes that code for contaminant degradation and are thus induced in the presence of specific compounds. By using a bioreporter we can quantify the actual microbial bioavailability of the contaminants and compare it to concentrations measured by other analytical methods (e.g. gas chromatograph). It is possible that these values are not equal to each other. Thus, bioremediation rates may not be accurately predicted if bioavailability is not considered.

  17. Purification and antitumour activity of a lipopeptide biosurfactant produced by Bacillus natto TK-1.

    PubMed

    Cao, Xiao-Hong; Liao, Zhen-Yu; Wang, Chun-Ling; Cai, Ping; Yang, Wen-Yan; Lu, Mei-Fang; Huang, Guo-Wei

    2009-02-01

    An antitumour lipopeptide biosurfactant purified from Bacillus natto TK-1 was able to inhibit the proliferation of MCF-7 human breast-cancer cells in a dose- and time-dependent manner. The activity of lactate dehydrogenase release showed no significant difference between MCF-7 cells treated with lipopeptide and untreated controls. The antitumour activity of the lipopeptide in MCF-7 cells was associated with cell apoptosis determined by typical morphological changes and sub-G(1) peak in cell growth-phase distribution. The cell cycle was arrested at G(2)/M phase. In addition, the caspase activity assay revealed that lipopeptide-induced apoptosis in MCF-7 cells was associated with caspase 3.

  18. Computational study of elements of stability of a four-helix bundle protein biosurfactant

    NASA Astrophysics Data System (ADS)

    Schaller, Andrea; Connors, Natalie K.; Dwyer, Mirjana Dimitrijev; Oelmeier, Stefan A.; Hubbuch, Jürgen; Middelberg, Anton P. J.

    2015-01-01

    Biosurfactants are surface-active molecules produced principally by microorganisms. They are a sustainable alternative to chemically-synthesized surfactants, having the advantages of being non-toxic, highly functional, eco-friendly and biodegradable. However they are currently only used in a few industrial products due to costs associated with production and purification, which exceed those for commodity chemical surfactants. DAMP4, a member of a four-helix bundle biosurfactant protein family, can be produced in soluble form and at high yield in Escherichia coli, and can be recovered using a facile thermal phase-separation approach. As such, it encompasses an interesting synergy of biomolecular and chemical engineering with prospects for low-cost production even for industrial sectors. DAMP4 is highly functional, and due to its extraordinary thermal stability it can be purified in a simple two-step process, in which the combination of high temperature and salt leads to denaturation of all contaminants, whereas DAMP4 stays stable in solution and can be recovered by filtration. This study aimed to characterize and understand the fundamental drivers of DAMP4 stability to guide further process and surfactant design studies. The complementary use of experiments and molecular dynamics simulation revealed a broad pH and temperature tolerance for DAMP4, with a melting point of 122.4 °C, suggesting the hydrophobic core as the major contributor to thermal stability. Simulation of systematically created in silico variants of DAMP4 showed an influence of number and location of hydrophilic mutations in the hydrophobic core on stability, demonstrating a tolerance of up to three mutations before a strong loss in stability occurred. The results suggest a consideration of a balance of stability, functionality and kinetics for new designs according to their application, aiming for maximal functionality but at adequate stability to allow for cost-efficient production using thermal

  19. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides

    PubMed Central

    Perez, Karla J.; Viana, Jaime dos Santos; Lopes, Fernanda C.; Pereira, Jamile Q.; dos Santos, Daniel M.; Oliveira, Jamil S.; Velho, Renata V.; Crispim, Silvia M.; Nicoli, Jacques R.; Brandelli, Adriano; Nardi, Regina M. D.

    2017-01-01

    Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na]+) and peak m/z 1079 (C15 iturin [M+Na]+) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances. PMID:28197131

  20. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides.

    PubMed

    Perez, Karla J; Viana, Jaime Dos Santos; Lopes, Fernanda C; Pereira, Jamile Q; Dos Santos, Daniel M; Oliveira, Jamil S; Velho, Renata V; Crispim, Silvia M; Nicoli, Jacques R; Brandelli, Adriano; Nardi, Regina M D

    2017-01-01

    Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na](+)) and peak m/z 1079 (C15 iturin [M+Na](+)) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances.

  1. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles.

    PubMed

    El-Sheshtawy, H S; Khalil, N M; Ahmed, W; Abdallah, R I

    2014-10-15

    Fifteen crude oil-degrading bacterial isolates were isolated from an oil-polluted area in Gemsa Bay, Red Sea, Egypt. Two bacterial species showed the highest growth rate on crude oil hydrocarbons. From an analysis of 16S rRNA sequences, these isolates were identified as Pseudomonas xanthomarina KMM 1447 and Pseudomonas stutzeri ATCC 17588. Gas Chromatographic (GC) analysis of the crude oil remaining in the culture medium after one week at 30°C showed that the optimum biodegradation of crude petroleum oil was demonstrated at 50% in medium containing biosurfactant with two types of nanoparticles separately and two bacterial species. The complete degradation of some different members of polyaromatics and the percentage biodegradation of other polyaromatics increased in microcosm containing two different types of nanoparticles with biosurfactant after 7 days. In conclusion, these bacterial strains may be useful for the bioremediation process in the Gemsa Bay, Red Sea decreasing oil pollution in this marine ecosystem.

  2. Malachite green bioremoval by a newly isolated strain Citrobacter sedlakii RI11; enhancement of the treatment by biosurfactant addition.

    PubMed

    Mnif, Inès; Fendri, Raouia; Ghribi, Dhouha

    2015-01-01

    Citrobacter sedlackii RI11, isolated from acclimated textile effluent after selective enrichment on synthetic dyes, was assessed for malachite green (MG) biotreatment potency. Results indicate that this bacterium has potential for use in effective treatment of MG contaminated wastewaters under shaking conditions at neutral and alkaline pH value, characteristic of typical textile effluents. Also, the newly isolated strain can tolerate higher doses of dye and decolorize up to 1,000 mg/l of dye. When used as microbial surfactant to enhance MG biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized the decolorization efficiency at an optimal concentration of biosurfactant of about 0.075%. Studies ensured that MG removal by this strain could be due to biodegradation and/or adsorption. Results on germination potencies of different seeds using the treated dyes under different conditions favor the use of SPB1 biosurfactant for the treatment of MG.

  3. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil.

    PubMed

    Ángeles, Martínez-Toledo; Refugio, Rodríguez-Vázquez

    2013-01-01

    In situ biosurfactant (rhamnolipid) production by Pseudomonas putida CB-100 was achieved during a bioaugmented and biostimulated treatment to remove hydrocarbons from aged contaminated soil from oil well drilling operations. Rhamnolipid production and contaminant removal were determined for several treatments of irradiated and non-irradiated soils: nutrient addition (nitrogen and phosphorus), P. putida addition, and addition of both (P. putida and nutrients). The results were compared against a control treatment that consisted of adding only sterilized water to the soils. In treatment with native microorganisms (non-irradiated soils) supplemented with P. putida, the removal of total petroleum hydrocarbons (TPH) was 40.6%, the rhamnolipid production was 1.54 mg/kg, and a surface tension of 64 mN/m was observed as well as a negative correlation (R = -0.54; p < 0.019) between TPH concentration (mg/kg) and surface tension (mN/m), When both bacteria and nutrients were involved, TPH levels were lowered to 33.7%, and biosurfactant production and surface tension were 2.03 mg/kg and 67.3 mN/m, respectively. In irradiated soil treated with P. putida, TPH removal was 24.5% with rhamnolipid generation of 1.79 mg/kg and 65.6 mN/m of surface tension, and a correlation between bacterial growth and biosurfactant production (R = -0.64; p < 0.009) was observed. When the nutrients and P. putida were added, TPH removal was 61.1%, 1.85 mg/kg of biosurfactants were produced, and the surface tension was 55.6 mN/m. In summary, in irradiated and non-irradiated soils, in situ rhamnolipid production by P. putida enhanced TPH decontamination of the soil.

  4. Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from Caatinga soil in the northeast of Brazil.

    PubMed

    Andrade Silva, Nadielly R; Luna, Marcos A C; Santiago, André L C M A; Franco, Luciana O; Silva, Grayce K B; de Souza, Patrícia M; Okada, Kaoru; Albuquerque, Clarissa D C; da Silva, Carlos A Alves; Campos-Takaki, Galba M

    2014-09-01

    A Mucoralean fungus was isolated from Caatinga soil of Pernambuco, Northeast of Brazil, and was identified as Cunninghamella echinulata by morphological, physiological, and biochemical tests. This strain was evaluated for biosurfactant/bioemulsifier production using soybean oil waste (SOW) and corn steep liquor (CSL) as substrates, added to basic saline solution, by measuring surface tension and emulsifier index and activity. The best results showed the surface water tension was reduced from 72 to 36 mN/m, and an emulsification index (E₂₄) of 80% was obtained using engine oil and burnt engine oil, respectively. A new molecule of biosurfactant showed an anionic charge and a polymeric chemical composition consisting of lipids (40.0% w/w), carbohydrates (35.2% w/w) and protein (20.3% w/w). In addition, the biosurfactant solution (1%) demonstrated its ability for an oil displacement area (ODA) of 37.36 cm², which is quite similar to that for Triton X-100 (38.46 cm²). The stability of the reduction in the surface water tension as well as of the emulsifier index proved to be stable over a wide range of temperatures, in pH, and in salt concentration (4%-6% w/v). The biosurfactant showed an ability to reduce and increase the viscosity of hydrophobic substrates and their molecules, suggesting that it is a suitable candidate for mediated enhanced oil recovery. At the same time, these studies indicate that renewable, relatively inexpensive and easily available resources can be used for important biotechnological processes.

  5. Effects of sludge retention time and biosurfactant on the treatment of polyaromatic hydrocarbon (PAH) in a petrochemical industry wastewater.

    PubMed

    Sponza, D T; Gok, O

    2011-01-01

    A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of sludge retention time (SRT) on the removal of three polyaromatic hydrocarbons (PAHs) with low benzene rings [(acenaphthene (ACT), fluorene (FLN) and phenanthrene (PHE)] and six PAHs with high benzene rings [(benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP)] in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. This study showed that biosurfactants enhance the PAH biodegradation by increasing the biomass growth. RD exhibits a better performance than the other biosurfactants in the removal of the chemical oxygen demand (COD) and PAHs. At a RD concentration of 15 mg/L aerobic treatment for 25 days, SRT was enough to remove over 95% of total PAHs, and COD(dis). Under the same conditions 75% of COD originating from the inert organics (COD(inert)) and 96% of COD originating from the inert soluble microbial products (COD(imp)) were removed. At 25 days SRT and 15 mg/L RD concentration, about 88% of PAHs were biodegraded by the AASR system, 4% were accumulated in the system, 3% were released in the effluent, and 5% remained in the waste sludge.

  6. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site.

    PubMed

    Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons.

  7. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments.

    PubMed

    Ammami, M T; Portet-Koltalo, F; Benamar, A; Duclairoir-Poc, C; Wang, H; Le Derf, F

    2015-04-01

    Dredged harbor sediment co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) was subjected to enhanced electrokinetic treatments, using a mixture of a chelating agent (citric acid CA) and a surfactant as additives in the processing fluids. We tested various operating conditions (at 1 V cm(-1)): different CA concentrations, applying a periodic voltage gradient, pre-conditioning the sediment with the additives, and replacing the synthetic surfactant Tween 20 (TW20) by biosurfactants. Increasing the CA concentration was favorable for both metal and PAH removal. Applying a periodic voltage gradient associated to a low concentration of CA and TW20 provided the best results for Zn, Cd and Pb removal and also for removal of the 16 priority PAHs. Promising results were obtained with solutions containing rhamnolipids (0.028%) and a viscosin-like biosurfactant produced by Pseudomonas fluorescens Pfa7B (0.025%), associated to a periodic voltage gradient. Although the rhamnolipid and the viscosin-like compounds involved a higher electrical current than TW20, metals were less removed from the sediment. The electroosmotic flow was lower when we used biosurfactants, hence a less effective effect on PAH removal.

  8. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia.

    PubMed

    Elazzazy, Ahmed M; Abdelmoneim, T S; Almaghrabi, O A

    2015-07-01

    Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems.

  9. Sulfur source-mediated transcriptional regulation of the rhlABC genes involved in biosurfactants production by Pseudomonas sp. strain AK6U

    PubMed Central

    Ismail, Wael; El Nayal, Ashraf M.; Ramadan, Ahmed R.; Abotalib, Nasser

    2014-01-01

    Despite the nutritional significance of sulfur, its influence on biosurfactants production has not been sufficiently studied. We investigated the expression of key biosurfactants production genes, rhlABC, in cultures of Pseudomonas sp. AK6U grown with inorganic or organic sulfur sources. AK6U grew with either inorganic sulfate (MgSO4), dibenzothiophene (DBT), or DBT-sulfone as a sole sulfur source in the presence of glucose as a carbon source. The AK6U cultures produced variable amounts of biosurfactants depending on the utilized sulfur source. Biosurfactants production profile of the DBT cultures was significantly different from that of the DBT-sulfone and inorganic sulfate cultures. The last two cultures were very similar in terms of biosurfactants productivity. Biosurfactants yield in the DBT cultures (1.3 g/L) was higher than that produced by the DBT-sulfone (0.5 g/L) and the inorganic sulfate (0.44 g/L) cultures. Moreover, the surface tension reduction in the DBT cultures (33 mN/m) was much stronger than that measured in the DBT-sulfone (58 mN/m) or inorganic sulfate (54 mN/m) cultures. RT-qPCR revealed variations in the expression levels of the rhlABC genes depending on the sulfur source. The DBT cultures had higher expression levels for the three genes as compared to the DBT-sulfone and inorganic sulfate cultures. There was no significant difference in the expression profiles between the DBT-sulfone and the MgSO4 cultures. The increased expression of rhlC in the DBT cultures is indicative for production of higher amounts of dirhamnolipids compared to the DBT-sulfone and inorganic sulfate cultures. The gene expression results were in good agreement with the biosurfactants production yields and surface tension measurements. The sulfur source mediates a fine-tuned mechanism of transcriptional regulation of biosurfactants production genes. Our findings can have an impact on industrial production of biosurfactants and other biotechnological processes like

  10. Sulfur source-mediated transcriptional regulation of the rhlABC genes involved in biosurfactants production by Pseudomonas sp. strain AK6U.

    PubMed

    Ismail, Wael; El Nayal, Ashraf M; Ramadan, Ahmed R; Abotalib, Nasser

    2014-01-01

    Despite the nutritional significance of sulfur, its influence on biosurfactants production has not been sufficiently studied. We investigated the expression of key biosurfactants production genes, rhlABC, in cultures of Pseudomonas sp. AK6U grown with inorganic or organic sulfur sources. AK6U grew with either inorganic sulfate (MgSO4), dibenzothiophene (DBT), or DBT-sulfone as a sole sulfur source in the presence of glucose as a carbon source. The AK6U cultures produced variable amounts of biosurfactants depending on the utilized sulfur source. Biosurfactants production profile of the DBT cultures was significantly different from that of the DBT-sulfone and inorganic sulfate cultures. The last two cultures were very similar in terms of biosurfactants productivity. Biosurfactants yield in the DBT cultures (1.3 g/L) was higher than that produced by the DBT-sulfone (0.5 g/L) and the inorganic sulfate (0.44 g/L) cultures. Moreover, the surface tension reduction in the DBT cultures (33 mN/m) was much stronger than that measured in the DBT-sulfone (58 mN/m) or inorganic sulfate (54 mN/m) cultures. RT-qPCR revealed variations in the expression levels of the rhlABC genes depending on the sulfur source. The DBT cultures had higher expression levels for the three genes as compared to the DBT-sulfone and inorganic sulfate cultures. There was no significant difference in the expression profiles between the DBT-sulfone and the MgSO4 cultures. The increased expression of rhlC in the DBT cultures is indicative for production of higher amounts of dirhamnolipids compared to the DBT-sulfone and inorganic sulfate cultures. The gene expression results were in good agreement with the biosurfactants production yields and surface tension measurements. The sulfur source mediates a fine-tuned mechanism of transcriptional regulation of biosurfactants production genes. Our findings can have an impact on industrial production of biosurfactants and other biotechnological processes like

  11. The structure of the first representative of Pfam family PF06475 reveals a new fold with possible involvement in glycolipid metabolism

    PubMed Central

    Bakolitsa, Constantina; Kumar, Abhinav; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Carlton, Dennis; Najmanovich, Rafael; Abdubek, Polat; Astakhova, Tamara; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Marciano, David; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Trout, Christina V.; van den Bedem, Henry; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of PA1994 from Pseudomonas aeruginosa, a member of the Pfam PF06475 family classified as a domain of unknown function (DUF1089), reveals a novel fold comprising a 15-stranded β-sheet wrapped around a single α-helix that assembles into a tight dimeric arrangement. The remote structural similarity to lipoprotein localization factors, in addition to the presence of an acidic pocket that is conserved in DUF1089 homologs, phospholipid-binding and sugar-binding proteins, indicate a role for PA1994 and the DUF1089 family in glycolipid metabolism. Genome-context analysis lends further support to the involvement of this family of proteins in glycolipid metabolism and indicates possible activation of DUF1089 homologs under conditions of bacterial cell-wall stress or host–pathogen interactions. PMID:20944213

  12. Improving Mycobacterium bovis Bacillus Calmette-Guèrin as a Vaccine Delivery Vector for Viral Antigens by Incorporation of Glycolipid Activators of NKT Cells

    PubMed Central

    Kharkwal, Shalu S.; Carreño, Leandro J.; Johnson, Alison J.; Kunnath-Velayudhan, Shajo; Liu, Zheng; Bittman, Robert; Jervis, Peter J.; Cox, Liam R.; Besra, Gurdyal S.; Wen, Xiangshu; Yuan, Weiming; Tsuji, Moriya; Li, Xiangming; Ho, David D.; Chan, John; Lee, Sunhee; Frothingham, Richard; Haynes, Barton F.; Panas, Michael W.; Gillard, Geoffrey O.; Sixsmith, Jaimie D.; Korioth-Schmitz, Birgit; Schmitz, Joern E.; Larsen, Michelle H.; Jacobs, William R.; Porcelli, Steven A.

    2014-01-01

    Recombinant Mycobacterium bovis bacillus Calmette-Guèrin (rBCG) has been explored as a vector for vaccines against HIV because of its ability to induce long lasting humoral and cell mediated immune responses. To maximize the potential for rBCG vaccines to induce effective immunity against HIV, various strategies are being employed to improve its ability to prime CD8+ T cells, which play an important role in the control of HIV infections. In this study we adopted a previously described approach of incorporating glycolipids that activate CD1d-restricted natural killer T (NKT) cells to enhance priming of CD8+ T cells by rBCG strains expressing an SIV Gag antigen (rBCG-SIV gag). We found that the incorporation of the synthetic NKT activating glycolipid α-galactosylceramide (α-GC) into rBCG-SIV gag significantly enhanced CD8+ T cell responses against an immunodominant Gag epitope, compared to responses primed by unmodified rBCG-SIV gag. The abilities of structural analogues of α-GC to enhance CD8+ T cell responses to rBCG were compared in both wild type and partially humanized mice that express human CD1d molecules in place of mouse CD1d. These studies identified an α-GC analogue known as 7DW8-5, which has previously been used successfully as an adjuvant in non-human primates, as a promising compound for enhancing immunogenicity of antigens delivered by rBCG.vectors. Our findings support the incorporation of synthetic glycolipid activators of NKT cells as a novel approach to enhance the immunogenicity of rBCG-vectored antigens for induction of CD8+ T cell responses. The glycolipid adjuvant 7DW8-5 may be a promising candidate for advancing to non-human primate and human clinical studies for the development of HIV vaccines based on rBCG vectors. PMID:25255287

  13. Minimum structure requirement of immunomodulatory glycolipids for predominant Th2 cytokine induction and the discovery of non-linear phytosphingosine analogs.

    PubMed

    Toba, Tetsuya; Murata, Kenji; Nakanishi, Kyoko; Takahashi, Bitoku; Takemoto, Naohiro; Akabane, Minako; Nakatsuka, Takashi; Imajo, Seiichi; Yamamura, Takashi; Miyake, Sachiko; Annoura, Hirokazu

    2007-05-15

    Analogs of immunomodulatory glycolipid OCH (2) were prepared and minimum structure requirement to exhibit equivalent profiles was disclosed. Analogs bearing non-linear hydrocarbon chain in the phytosphingosine moiety (18, 19) were shown for the first time to possess comparable cytokine inducing profile to 2. Molecular modeling of 2/hCD1d complex based on the crystal structure of alpha-GalCer (1)/hCD1d complex is also described.

  14. Antibacterial properties of a glycolipid-rich extract and active principle from Nunavik collections of the macroalgae Fucus evanescens C. Agardh (Fucaceae).

    PubMed

    Treyvaud Amiguet, Virginie; Jewell, Linda E; Mao, Halimasadia; Sharma, Manju; Hudson, James B; Durst, Tony; Allard, Marc; Rochefort, Guy; Arnason, John Thor

    2011-09-01

    This study investigated the antibacterial activity of glycolipid-rich extracts of the brown macroalga Fucus evanescens in cell culture. Accessions were collected on the Arctic coast of Ungava Bay, Nunavik, Quebec. The crude ethyl acetate extract of these accessions showed strong antibacterial activity (≥4 log(10) cfu) against Hemophilus influenzae , Legionella pneumophila , Propionibacterium acnes (ATCC and clinical isolate), and Streptococcus pyogenes at 100 µg/mL. This algal extract inhibited by 3 log(10) Clostridium difficile and methicillin-resistant Staphylococcus aureus , whereas Bacillus cereus , Escherichia coli , Klebsiella pneumoniae , and Pseudomonas aeruginosa were not significantly affected. Further investigations of the activity of a glycolipid-rich fraction, extracted with dichloromethane, against Propionibacterium acnes showed an MIC(100) of 50 µg/mL, with an inhibition of more than 99% at only 7.8 µg/mL. The main active compound, a β-d-galactosyl O-linked glycolipid, was synthesized for the bioassay and showed an MIC(100) of 50 µg/mL but lost its activity more quickly with only 50% of inhibition at 12.5 µg/mL. Therefore, the semipurified F. evanescens extract could be a good choice for future research into the development of alternative treatments for acne therapy.

  15. Use of biosurfactants from urban wastes compost in textile dyeing and soil remediation.

    PubMed

    Montoneri, Enzo; Boffa, Vittorio; Savarino, Piero; Tambone, Fulvia; Adani, Fabrizio; Micheletti, Luca; Gianotti, Carlo; Chiono, Roberto

    2009-01-01

    A compost isolated humic acid-like (cHAL) material was pointed out in previous work for its potential as auxiliary in chemical technology. Its potential is based on its relatively low 0.4gL(-1) critical micellar concentration (cmc) in water, which enables cHAL to enhance the water solubility of hydrophobic substances, like phenanthrene, when used at higher concentrations than 0.4gL(-1). This material could be obtained from a 1:1 v/v mixture of municipal solid and lignocellulosic wastes composted for 15 days. The compost, containing 69.3% volatile solids, 39.6% total organic C and 21C/N ratio, was extracted for 24h at 65 degrees C under N2 with aqueous 0.1molL(-1) NaOH and 0.1molL(-1) Na4P2O7, and the solution was acidified to separate the precipitated cHAL in 12% yield from soluble carbohydrates and other humic and non-humic substances. In this work two typical applications of surfactants, i.e., textile dyeing (TD) and soil remediation by washing (SW), were chosen as grounds for testing the performance of the cHAL biosurfactant against the one of sodium dodecylsulfate (SDS), which is a well established commercial synthetic surfactant. The TD trials were carried out with nylon 6 microfiber and a water insoluble dye, while the SW tests were performed with two soils contaminated by polycyclic aromatic hydrocarbons (PAH) for several decades. Performances were rated in the TD experiments based on the fabric colour intensity (DeltaE) and uniformity (sigmaDeltaE), and in the SW experiments based on the total hydrocarbons concentration (CWPAH) and on the residual surfactant (Cre) concentrations in the washing solution equilibrated with the contaminated soils. The results show that both cHAL and SDS exhibit enhanced performance when applied above their cmc values. However, while in the TD case a significant performance effect was observed at the surfactants cmc value, in the SW case the required surfactants concentration values were equivalent to 25-125xcmc for cHAL and to

  16. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  17. TCR bias and affinity define two compartments of the CD1b-glycolipid-specific T Cell repertoire.

    PubMed

    Van Rhijn, Ildiko; Gherardin, Nicholas A; Kasmar, Anne; de Jager, Wilco; Pellicci, Daniel G; Kostenko, Lyudmila; Tan, Li Lynn; Bhati, Mugdha; Gras, Stephanie; Godfrey, Dale I; Rossjohn, Jamie; Moody, D Branch

    2014-05-01

    Current views emphasize TCR diversity as a key feature that differentiates the group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 systems. Whereas TCR sequence motifs define CD1d-reactive NKT cells, the available data do not allow a TCR-based organization of the group 1 CD1 repertoire. The observed TCR diversity might result from donor-to-donor differences in TCR repertoire, as seen for MHC-restricted T cells. Alternatively, diversity might result from differing CD1 isoforms, Ags, and methods used to identify TCRs. Using CD1b tetramers to isolate clones recognizing the same glycolipid, we identified a previously unknown pattern of V gene usage (TRAV17, TRBV4-1) among unrelated human subjects. These TCRs are distinct from those present on NKT cells and germline-encoded mycolyl lipid-reactive T cells. Instead, they resemble the TCR of LDN5, one of the first known CD1b-reactive clones that was previously thought to illustrate the diversity of the TCR repertoire. Interdonor TCR conservation was observed in vitro and ex vivo, identifying LDN5-like T cells as a distinct T cell type. These data support TCR-based organization of the CD1b repertoire, which consists of at least two compartments that differ in TCR sequence motifs, affinity, and coreceptor expression.

  18. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains

    PubMed Central

    1996-01-01

    p56lck (Lck) is a lymphoid-specific Src family tyrosine kinase that is critical for T-cell development and activation. Lck is also a membrane protein, and approximately half of the membrane-associated Lck is associated with a glycolipid-enriched membrane (GEM) fraction that is resistant to solubilization by Triton X-100 (TX-100). To compare the membrane-associated Lck present in the GEM and TX-100-soluble fractions of Jurkat cells, Lck from each fraction was immunoblotted with antibody to phosphotyrosine. Lck in the GEM fraction was found to be hyperphosphorylated on tyrosine, and this correlated with a lower kinase specific activity relative to the TX-100-soluble Lck. Peptide mapping and phosphatase diagests showed that the hyperphosphorylation and lower kinase activity of GEM-associated Lck was due to phosphorylation of the regulatory COOH-terminal Tyr505. In addition, we determined that the membrane-bound tyrosine phosphatase CD45 was absent from the GEM fraction. Cells lacking CD45 showed identical phosphorylation of Lck in GEM and TX-100-soluble membranes. We propose that the GEM fraction represents a specific membrane domain present in T-cells, and that the hyperphosphorylation of tyrosine and lower kinase activity of GEM-associated Lck is due to exclusion of CD45 from these domains. Lck associated with the GEM domains may therefore consitute a reservoir of enzyme that can be readily activated. PMID:8978819

  19. Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle*

    PubMed Central

    Feinberg, Hadar; Rambaruth, Neela D. S.; Jégouzo, Sabine A. F.; Jacobsen, Kristian M.; Djurhuus, Rasmus; Poulsen, Thomas B.; Weis, William I.; Taylor, Maureen E.; Drickamer, Kurt

    2016-01-01

    The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis. Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are attached to the 6-hydroxyl groups, has been the subject of speculation. In the work reported here, the interaction of trehalose derivatives with bovine mincle has been probed with a series of synthetic mimics of trehalose dimycolate in binding assays, in structural studies by x-ray crystallography, and by site-directed mutagenesis. Binding studies reveal that, rather than reflecting specific structural preference, the apparent affinity of mincle for ligands with hydrophobic substituents correlates with their overall size. Structural and mutagenesis analysis provides evidence for interaction of the hydrophobic substituents with multiple different portions of the surface of mincle and confirms the presence of three Ca2+-binding sites. The structure of an extended portion of the extracellular domain of mincle, beyond the minimal C-type carbohydrate recognition domain, also constrains the way the binding domains may interact on the surface of macrophages. PMID:27542410

  20. Collapsed bipolar glycolipids at the air/water interface: effect of the stereochemistry on the stretched/bent conformations.

    PubMed

    Jacquemet, Alicia; Terme, Nolwenn; Benvegnu, Thierry; Vié, Véronique; Lemiègre, Loïc

    2013-12-15

    This article describes a comparative study of several bipolar lipids derived from tetraether structures. The sole structural difference between the main two glycolipids is a unique stereochemical variation on a cyclopentyl ring placed in the middle of the lipids. We discuss the comparative results obtained at the air/water interface on the basis of tensiometry and ellipsometry. Langmuir-Blodgett depositions during lipid film compressions and decompressions were also analyzed by AFM. The lactosylated tetraether (bipolar) lipid structures involved the formation of highly stable multilayers, which are still present at 10 mN m(-1) during decompression. This study suggests also that the stereochemistry of a central cyclopentyl ring dramatically drives the conformation of the corresponding bipolar lipids. Both isomers (trans and cis) adopt a U-shaped (bent) conformation at the air/water interface but the trans cyclopentyl ring induces a much more frustration within this type of conformation. Consequently, this bipolar lipid (trans-tetraether) undergoes a flip of one polar head-group (lactosyl) leading to a stretched conformation during collapse.

  1. Novel Glycolipids Synthesized Using Plant Essential Oils and Their Application in Quorum Sensing Inhibition and as Antibiofilm Agents

    PubMed Central

    Prabhune, Asmita

    2014-01-01

    Essential oils (EOs) form an important part of traditional medicine so their anti-microbial and, in the recent past, antiquorum sensing activity has been well studied. However it is likely that due to their hydrophobic nature and reduced solubility in aqueous environments full potential of their activity cannot be realized. hence it is only rational to formulate a process to make these molecules more polar in nature. The present paper reports synthesis of sophorolipids using 12 different essential oils as substrates, thus providing surfactant-like properties to these EOs. The synthesis protocol makes the use of Candida bombicola ATCC 22214 as producer organism. The production process required 7 days of incubation at 28°C and 180 rpm. Preliminary characterization of the synthesized essential oil sophorolipids (EOSLs) was performed using thin layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Additionally, essential oils that were incapable of mediating quorum sensing inhibition (QSI) on their own became potent quorum sensing inhibitors upon conversion into their corresponding EOSLs. Antibiofilm potential of these EOSLs was also demonstrated using V. cholerae as test organism. Use of essential oils as substrates for glycolipid synthesis has not been attempted previously, and hence this is the first report. PMID:24558341

  2. Spatially-Resolved Analysis of Glycolipids and Metabolites in Living Synechococcus sp. PCC7002 Using Nanospray Desorption Electrospray Ionization

    SciTech Connect

    Lanekoff, Ingela T.; Geydebrekht, Oleg V.; Pinchuk, Grigoriy E.; Konopka, Allan; Laskin, Julia

    2013-04-07

    Microorganisms release a diversity of organic compounds that couple interspecies metabolism, enable communication, or provide benefits to other microbes. Increased knowledge of microbial metabolite production will contribute to understanding of the dynamic microbial world and can potentially lead to new developments in drug discovery, biofuel production, and clinical research. Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization technique that enables detailed chemical characterization of molecules from a specific location on a surface without special sample pretreatment. Due to its ambient nature, living bacterial colonies growing on agar plates can be rapidly and non-destructively analyzed. We performed spatially resolved nano-DESI analysis of living Synechococcus sp. PCC 7002 colonies on agar plates. We use high resolution mass spectrometry and MS/MS analysis of the living Synechococcus sp. PCC 7002 colonies to detect metabolites and lipids, and confirm their identities. We found that despite the high salt content of the agar (osmolarity ca. 700 mM), nano-DESI analysis enables detailed characterization of metabolites produced by the colony. Using this technique, we identified several glycolipids found on the living colonies and examined the effect of the age of the colony on the chemical gradient of glucosylglycerol secreted onto agar.

  3. Ieodoglucomide C and Ieodoglycolipid, New Glycolipids from a Marine-Derived Bacterium Bacillus licheniformis 09IDYM23.

    PubMed

    Tareq, Fakir Shahidullah; Lee, Hyi-Seung; Lee, Yeon-Ju; Lee, Jong Seok; Shin, Hee Jae

    2015-05-01

    Chemical examination of the ethyl acetate extract from the fermentation broth of the marine-derived bacterium Bacillus licheniformis resulted in the isolation of two new glycolipids, ieodoglucomide C (1) and ieodoglycolipid (2). The structural characterization of 1 and 2 was achieved by extensive spectroscopic evidence, including 2D NMR experiments. A combination of chemical derivatization techniques followed by NMR studies, LC-MS data analysis and a literature review was deployed for the establishment of the stereo-configurations of 1 and 2. Compounds 1 and 2 exhibited good antibiotic properties against Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa with MICs ranging from 0.01 to 0.05 μM. Furthermore, the antifungal activity of 1 and 2 was evaluated against plant pathogenic fungi Aspergillus niger, Rhizoctonia solani, Botrytis cinerea and Colletotrichum acutatum as well as the human pathogen Candida albicans. Compounds 1 and 2 inhibited the mycelial growth of these pathogens with MIC values of 0.03-0.05 μM, revealing that these compounds are good candidates for the development of new fungicides.

  4. Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals.

    PubMed

    Gnanamani, A; Kavitha, V; Radhakrishnan, N; Suseela Rajakumar, G; Sekaran, G; Mandal, A B

    2010-09-01

    The present study demonstrates hexavalent chromium reduction and trivalent chromium tolerance behavior of marine Bacillus sp., MTCC 5514 through its extracellular enzyme reductase and biosurfactants production. The isolate reduces 10-2000 mg/L of hexavalent chromium to trivalent chromium with in 24-96 h respectively and the release of extracellular chromium reductase, found responsible for the reduction. Upon reduction, the concentration of trivalent chromium in the medium found comparatively less. Experimental results reveal, biosurfactants activity found responsible for the less concentration of Cr(III). Hypothetically, trivalent chromium upon formation get entrapped in the micelle of biosurfactants, prevents microbial cells from exposure towards trivalent chromium. Thus, the chosen isolate exhibit tolerance and growth with the increasing concentration of chromium.

  5. Fabrication and Characterization of Immobilized Biosurfactant Produced by Pseudomonas aeruginosa Grown on Cassava Industrial Wastewater into Activated Allophane as an Adsorbent

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Widjonarko, D. M.; Windrawati; Widyaningsih, V.

    2017-02-01

    The immobilization of biosurfactant into activated allophane has been conducted with mass ratio of biosurfactant:allophane of 1:5; 1:7 and 1:10 and contact time of 24 and 48 h. The optimum condition for immobilization was reached when the mass ratio of biosurfactant: allophane of 1:10 with the contact time of 24 h was applied. The result yielded the immobilization product having the specific surface area of 82.42 m2/g and the surface acidity of 9.12 mmol/g. A better adsorbent has been produced. In respect to the activated allophane, there was a decreasing of specific surface area about 20% and increasing of surface acidity value about 120%.

  6. Study of the synergistic effects of salinity, pH, and temperature on the surface-active properties of biosurfactants produced by Lactobacillus pentosus.

    PubMed

    Bello, Xanel Vecino; Devesa-Rey, Rosa; Cruz, José Manuel; Moldes, Ana Belén

    2012-02-08

    Many studies have investigated the effects of pH, temperature, and salinity on the surface-active properties of various surfactants, although in most cases the variables have been studied separately, without considering the effects of any interactions between them. In the present study, a Box-Behnken factorial design was applied to study the effects of pH, temperature, and salinity on the surface-active properties of a biosurfactant produced by Lactobacillus pentosus. The data obtained enabled development of a second-order model describing the interrelationships between operational and experimental variables, by equations including linear, interaction, and quadratic terms. The variable that had the greatest effect on the surface-active properties of the biosurfactant was pH. Moreover, at pH 3-5.5, decreases in salinity and temperature acted synergistically, reducing the surface tension of the biosurfactant; at pH 8, the same effect was observed with increasing salinity and temperature.

  7. Biosurfactant production and surface translocation are regulated by PlcR in Bacillus cereus ATCC 14579 under low-nutrient conditions.

    PubMed

    Hsueh, Yi-Huang; Somers, Eileen B; Lereclus, Didier; Ghelardi, Emilia; Wong, Amy C Lee

    2007-11-01

    Bacillus cereus ATCC 14579 can respond to nutrient changes by adopting different forms of surface translocation. The B. cereus ATCC 14579 DeltaplcR mutant, but not the wild type, formed dendritic (branched) patterns on EPS [a low-nutrient medium that contains 7.0 g K(2)HPO(4), 3.0 g KH(2)PO(4), 0.1 g MgSO(4).7H(2)O, 0.1 g (NH(4))(2)SO(4), 0.01 g CaCl(2), 0.001 g FeSO(4), 0.1 g NaCl, 1.0 g glucose, and 125 mg yeast extract per liter] containing 0.7% agar. The dendritic patterns formed by sliding translocation of nonflagellated cells are enhanced under low-nutrient conditions and require sufficient production of a biosurfactant, which appears to be repressed by PlcR. The wild-type and complemented strains failed to slide on the surface of EPS agar because of the production of low levels of biosurfactant. Precoating EPS agar surfaces with surfactin (a biosurfactant produced by Bacillus subtilis) or biosurfactant purified from the DeltaplcR mutant rescued the ability of the wild-type and complemented strains to slide. When grown on a nutrient-rich medium like Luria-Bertani agar, both the wild-type and DeltaplcR mutant strains produced flagella. The wild type was hyperflagellated and elongated and exhibited swarming behavior, while the DeltaplcR mutant was multiflagellated and the cells often formed long chains but did not swarm. Thin-layer chromatography and mass spectrometry analyses suggested that the biosurfactant purified from the DeltaplcR mutant was a lipopeptide and had a mass of 1,278.1722 (m/z). This biosurfactant has hemolytic activity and inhibited the growth of several gram-positive bacteria.

  8. Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution.

    PubMed

    Jin, Lei; Garamus, Vasil M; Liu, Fang; Xiao, Jingwen; Eckerlebe, Helmut; Willumeit-Römer, Regine; Mu, Bozhong; Zou, Aihua

    2016-11-01

    The interaction between biosurfactant Surfactin and cationic Gemini surfactant ethanediyl-1,3-bis(dodecyldimethylammonium bromide) (abbreviated as 12-3-12) was investigated using turbidity, surface tension, dynamic light scattering (DLS) and small angle neutron scattering (SANS). Analysis of critical micelle concentration (CMC) values in Surfactin/12-3-12 mixture indicates that there is synergism in formation of mixed Surfactin/12-3-12 micelles. Although Surfactin and 12-3-12 are oppositely charged in phosphate buffer solution (PBS, pH7.4), there are no precipitates observed at the concentrations below the CMC of Surfactin/12-3-12 system. However, at the concentration above CMC value, the Surfactin/12-3-12 mixture is severely turbid with high 12-3-12 content. DLS and SANS measurements follow the size and shape changes of mixed Surfactin/12-3-12 aggregates from small spherical micelles via elongated aggregates to large bulk complexes with increasing fraction of Gemini surfactant.

  9. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant.

    PubMed

    Zhou, Wenjun; Yang, Juanjuan; Lou, Linjie; Zhu, Lizhong

    2011-05-01

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd2+ or Zn2+. Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils.

  10. Natural attenuation and biosurfactant-stimulated bioremediation of estuarine sediments contaminated with diesel oil.

    PubMed

    Bayer, Débora M; Chagas-Spinelli, Alessandra C O; Gavazza, Sávia; Florencio, Lourdinha; Kato, Mario T

    2013-09-01

    We evaluated the bioremediation, by natural attenuation (NA) and by natural attenuation stimulated (SNA) using a rhamnolipid biosurfactant, of estuarine sediments contaminated with diesel oil. Sediment samples (30 cm) were put into 35 cm glass columns, and the concentrations of the 16 polycyclic aromatic hydrocarbons (PAHs) prioritized by the US Environmental Protection Agency were monitored for 111 days. Naphthalene percolated through the columns more than the other PAHs, and, in general, the concentrations of the lower molecular weight PAHs, consisting of two and three aromatic rings, changed during the first 45 days of treatment, whereas the concentrations of the higher molecular weight PAHs, consisting of four, five, and six rings, were more stable. The higher molecular weight PAHs became more available after 45 days, in the deeper parts of the columns (20-30 cm). Evidence of degradation was observed only for some compounds, such as pyrene, with a total removal efficiency of 82 and 78 % in the NA and SNA treatments, respectively, but without significant difference. In the case of total PAH removal, the efficiencies were significantly different of 82 and 67 %, respectively.

  11. WETTABILITY ALTERATION OF CARBONATE ROCK MEDIATED BY BIOSURFACTANT PRODUCED FROM HIGH-STARCH AGRICULTURAL EFFLUENTS

    SciTech Connect

    Mehdi Salehi; Stephen Johnson; Gregory Bala; Jenn-Tai Liang

    2006-09-01

    Surfactants can be used to alter wettability of reservoir rock, increasing spontaneous imbibition and thus improving oil yields. Commercial synthetic surfactants are often prohibitively expensive and so a crude preparation of the anionic biosurfactant, surfactin, from Bacillus subtilis grown on high-starch industrial and agricultural effluents has been proposed as an economical alternative. To assess the effectiveness of the surfactin, it is compared to commercially available surfactants. In selecting a suitable benchmark surfactant, two metrics are examined: the ability of the surfactants to alter wettability at low concentrations, and the degree to which they are absorbed onto reservoir matrix. We review the literature to survey the adsorption models that have been developed to describe surfactant adsorption in porous media. These models are evaluated using the experimental data from this study. Crushed carbonate rock samples are cleaned and aged in crude oil. The wettability change mediated by dilute solutions of commercial anionic surfactants and surfactin is assessed using a two-phase separation; and surfactant loss due to retention and adsorption the rock is determined.

  12. Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast.

    PubMed

    Price, Neil P J; Ray, Karen J; Vermillion, Karl E; Dunlap, Christopher A; Kurtzman, Cletus P

    2012-02-01

    Sophorolipids are a group of O-acylsophorose-based biosurfactants produced by several yeasts of the Starmerella clade. The known sophorolipids are typically partially acetylated 2-O-β-D-glucopyranosyl-D-glucopyranose (sophorose) O-β-glycosidically linked to 17-L-hydroxy-Δ9-octadecenoic acid, where the acyl carboxyl group often forms a 4″-lactone to the terminal glucosyl residue. In a recent MALDI-TOFMS-based screen for sophorolipid-producing yeasts we identified a new species, Candida sp. NRRL Y-27208, that produces significant amounts of novel sophorolipids. This paper describes the structural characterization of these new compounds, using carbohydrate and lipid analysis, mass spectrometry, and NMR spectroscopy. Unlike those reported previously, the NRRL Y-27208 sophorolipids contain an ω-hydroxy-linked acyl group (typically 18-hydroxy-Δ9-octadecenoate), and occur predominantly in a non-lactone, anionic form. In addition, 17 dimeric and trimeric sophoroses were identified by MALDI-TOFMS from this strain. The surfactant-like properties of these sophorolipids have value as potential replacements for petroleum-based detergents and emulsifiers.

  13. A Biosurfactant-Sophorolipid Acts in Synergy with Antibiotics to Enhance Their Efficiency

    PubMed Central

    Joshi-Navare, Kasturi; Prabhune, Asmita

    2013-01-01

    Sophorolipids (SLs), biosurfactants with antimicrobial properties, have been tried to address the problem of antibiotic resistance. The synergistic action of SL and antibiotics was checked using standard microdilution and spread plate methods. With Staphylococcus aureus, SL-tetracycline combination achieved total inhibition before 4 h of exposure while tetracycline alone couldnot achieve total inhibition till the end of 6 h. The inhibition caused by exposure of bacterium to SL-tetracycline mixture was ~25% more as compared to SL alone. In spite of known robustness of gram-negative bacteria, SL-cefaclor mixture proved to be efficient against Escherichia coli which showed ~48% more inhibition within 2 h of exposure as compared to cefaclor alone. Scanning electron microscopy of the cells treated with mixture revealed bacterial cell membrane damage and pore formation. Moreover, SLs being a type of asymmetric bola, they are expected to form self-assemblies with unique functionality. This led to the speculation that SLs being amphiphilic in nature can span through the structurally alike cell membrane and facilitate the entry of drug molecules. PMID:24089681

  14. Micelles versus Ribbons: How Congeners Drive the Self-Assembly of Acidic Sophorolipid Biosurfactants.

    PubMed

    Dhasaiyan, Prabhu; Le Griel, Patrick; Roelants, Sophie; Redant, Emile; Van Bogaert, Inge N A; Prevost, Sylvain; Prasad, B L V; Baccile, Niki

    2017-03-17

    Sophorolipids (SLs), a class of microbially derived biosurfactants, are reported by different research groups to have different self-assembled structures (either micelles or giant ribbons) under the same conditions. Here we explore the reasons behind these contradictory results and attribute these differences to the role of specific congeners that are present in minute quantities. We show that a sample composed of a majority of oleic acid (C18:1) sophorolipid in the presence of only 0.5 % (or more) of congeners with stearic acid (C18:0) or linoleic acid (C18:2) results in the formation of micelles that are stable over long periods of time. Conversely, the presence of only 10 to 15 % of congeners with a stearic acid chain gives fibrillar structures instead of micelles. To study the mechanisms responsible, oleic acid SLs devoid of any other congeners were prepared. Very interestingly, this sample can self-assemble into either micelles or fibers depending on minute modifications to the self-assembly conditions. The findings are supported by light scattering, small-angle X-ray scattering, transmission electron microscopy under cryogenic conditions, high-pressure liquid chromatography, and NMR spectroscopy.

  15. Biological Activities of a Mixture of Biosurfactant from Bacillus subtilis and Alkaline Lipase from Fusarium oxysporum

    PubMed Central

    Pereira de Quadros, Cedenir; Cristina Teixeira Duarte, Marta; Maria Pastore, Gláucia

    2011-01-01

    In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix) on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC) micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1). In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05). PMID:24031642

  16. Metal removal from contaminated soil and sediments by the biosurfactant surfactin

    SciTech Connect

    Mulligan, C.N.; Yong, R.N.; Gibbs, B.F.; James, S.; Bennett, H.P.J.

    1999-11-01

    Batch soil washing experiments were performed to evaluate the feasibility of using surfactin from Bacillus subtilis, a lipopeptide biosurfactant, for the removal of heavy metals from a contaminated soil and sediments. The soil contained high levels of metals and hydrocarbons (890 mg/kg of zinc, 420 mg/kg of copper, and 12.6% oil and grease), and the sediments contained 110 mg/kg of copper and 3,300 mg/kg of zinc. The contaminated soil was spiked to increase the level of copper, zinc, and cadmium to 550, 1,200, and 2,000 mg/kg, respectively. Water alone removed minimal amounts of copper and zinc (less than 1%). Results showed that 0.25% surfactin/1% NaOH could remove 25% of the copper and 6% of the zinc from the soil and 15% of the copper and 6% of the zinc from the sediments. A series of five washings of the soil with 0.25% surfactin (1% NaOH) was able to remove 70% of the copper and 22% of the zinc. The technique of ultrafiltration and the measurement of octanol-water partitioning and {zeta}-potential were used to determine the mechanism of metal removal by surfactin. It was indicated that surfactin was able to remove the metals by sorption at the soil interphase and metal complexation, followed by desorption of the metal through interfacial tension lowering and fluid forces and finally complexation of the metal with the micelles.

  17. [Electricity generation of surplus sludge microbial fuel cell enhanced by biosurfactant].

    PubMed

    Peng, Hai-Li; Zhang, Zhi-Ping; Li, Xiao-Ming; Yang, Qi; Luo, Kun; Yi, Xin

    2014-01-01

    The effect of biosurfactant (rhamnolipid/TSS, 0.3 g x g(-1)) on the characteristics of electricity generation by surplus sludge microbial fuel cell (SSMFC) and the reduction of surplus sludge were discussed. In the control group, the electrogenesis cycle was 20 d, the maximal power density was 236.84 mW x m(-2), the coulomb efficiency was 5.7%, and the TCOD, TSS and VSS removal efficiency was 58.5%, 56.7% and 66.3%, respectively. In the experimental group, the electrogenesis cycle was 35 d, the coulomb efficiency was 11.8%, the maximal power density was 516. 67 mW x m(-2) which was increased by 118. 15% as compared to the control group, and the TCOD, TSS and VSS removal efficiency was 58.5% , 56.7% and 66.3%, which raised by 104.5%, 96.2% and 98.5% as compared to the control group, respectively. With the operation of the system, the output voltage of control group and experimental group kept stable for a period of time before gradually reduced, the SCOD, protein and soluble sugar concentrations of surplus sludge first increased and then decreased. This study demonstrated that the addition of rhamnolipid enhanced the electricity generation of SSMFC with simultaneous promotion of sludge reduction.

  18. Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipd biosurfactants.

    PubMed

    Liley, J R; Penfold, J; Thomas, R K; Tucker, I M; Petkov, J T; Stevenson, P S; Banat, I M; Marchant, R; Rudden, M; Terry, A; Grillo, I

    2017-02-01

    The self-assembly of dilute aqueous solutions of a ternary surfactant mixture and rhamnolipid biosurfactant/surfactant mixtures has been studied by small angle neutron scattering. In the ternary surfactant mixture of octaethylene glycol monododecyl ether, C12E8, sodium dodecyl 6-benzene sulfonate, LAS, and sodium dioxyethylene monododecyl sulfate, SLES, small globular interacting micelles are observed over the entire composition and concentration range studied. The modelling of the scattering data strongly supports the assumption that the micelle compositions are close to the solution compositions. In the 5-component rhamnolipid/surfactant mixture of the mono-rhamnose, R1, di-rhamnose, R2, rhamnolipids with C12E8/LAS/SLES, globular micelles are observed over much of the concentration and composition range studied. However, for solutions relatively rich in rhamnolipid and LAS, lamellar/micellar coexistence is observed. The transition from globular to more planar structures arises from a synergistic packing in the 5 component mixture. It is not observed in the individual components nor in the ternary C12E8/LAS/SLES mixture at these relatively low concentrations. The results provide an insight into how synergistic packing effects can occur in the solution self-assembly of complex multi-component surfactant mixtures, and give rise to an unexpected evolution in the phase behaviour.

  19. [BIOCONVERSION OF CRUDE GLYCEROL AND MOLASSES MIXTURE IN BIOSURFACTANTS OF NOCARDIA VACCINII IMB B-7405].

    PubMed

    Pirog, T P; Kudrya, N V; Shevchuk, T A; Beregova, K A; Iutynska, G O

    2015-01-01

    The possibility of replacing glucose and pure glycerol in mixed substrates for surtace-active substances (SAS, biosurfactants) biosynthesis of Nocardia vaccinii IMB B-7405 on molasses (sugar production waste) and crude glycerol (by-product of biodiesel production) was established. It was established that the increasing concentration of crude glycerol to 6% in mixture with 1.0% molasses was accompanied by increase of amount of SAS synthesized more than twice, and the increasing content of molasses to 3.0% in mixture with 1.0% crude glycerol--by some decrease in the level of surfactant as compared to that in a medium containing 1.0% monosubstrates. It was shown that the increasing concentration of sodium nitrate to 2-fold in medium cultivation of N. vaccinii IMB B-7405 allowed to increase to 7.0% content of grude glycerol in mixture with 1.0% molasses. Under such conditions of cultivation concentration of exocellular SAS synthesized was 7,5 g/l, that to 1,3 fold higher than in basic medium with a lower content of nitrogen source.

  20. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    PubMed

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid.

  1. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.

    PubMed

    Xu, Ying; Chen, Yu

    2015-07-01

    The chelator [S,S]-ethylene diamine disuccinic acid, citric acid, and biosurfactant saponin are selected as leaching agents. In this study, the leaching effect of saponin mixed with either ethylene diamine disuccinic acid or citric acid on the levels of copper, zinc, lead, and cadmium in municipal solid waste incinerator fly ash is investigated. Results indicate that saponin separately mixed with ethylene diamine disuccinic acid and citric acid exhibits a synergistic solubilisation effect on copper, zinc, lead, and cadmium leaching from fly ash. However, saponin and ethylene diamine disuccinic acid mixed solution exhibits a synergistic solubilisation effect that is superior to that of a saponin and citric acid mixed solution. The extraction rate of heavy metal in fly ash leached with a saponin and chelator mixed solution is related to the pH of the leaching solution, and the optimal range of the pH is suggested to be approximately neutral. After leaching with a saponin and chelator mixed solution, copper, zinc, lead, and cadmium contents significantly decreased (p < 0.05) in the extractable or acid-soluble and reducible fractions. By adopting the proposed approach, the leaching concentrations of copper, zinc, lead, and cadmium in treated fly ash are in accordance with Standard for Pollution Control on the Security Landfill Site for Hazardous Wastes GB18598-2001.

  2. Effects of biosurfactant-producing bacteria on biodegradation and transport of phenanthrene in subsurface soil.

    PubMed

    Chang, Jae-Soo; Cha, Daniel K; Radosevich, Mark; Jin, Yan

    2015-01-01

    This study investigated the effects of surfactant-producing microorganism, Pseudomonas aeruginosa ATCC 9027, on phenanthrene (PHE) biodegradation by two different PHE-degrading bacteria (Isolate P5-2 and Pseudomonas strain R) in soil. Phenanthrene mineralization experiments were conducted with soils inoculated with one of PHE-degraders and/or the surfactant-producer. Influence of co-inoculation with the surfactant-producing bacteria on phenanthrene transport and biodegradation was also examined in soil columns. P. strain R mineralized phenanthrene faster and to a greater extent than Isolate P5-2 in the test soil. Co-inoculation with the surfactant-producing bacteria significantly enhanced phenanthrene biodegradation by P. strain R but it did not affect the biodegradation by Isolate P5-2 in both batch and column systems. Production of biosurfactants by P. aeruginosa ATCC 9027 was negligible under the given conditions. This study demonstrated that bioaugmentation with surfactant-producing bacteria could enhance in situ bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) and the beneficial effect of the bioaugmentation depended on types of PAH-degrading microorganisms present.

  3. Biotechnological production of phenyllactic acid and biosurfactants from trimming vine shoot hydrolyzates by microbial coculture fermentation.

    PubMed

    Rodríguez-Pazo, Noelia; Salgado, José Manuel; Cortés-Diéguez, Sandra; Domínguez, José Manuel

    2013-04-01

    Coculture fermentations show advantages for producing food additives from agroindustrial wastes, considering that different specified microbial strains are combined to improve the consumption of mixed sugars obtained by hydrolysis. This technology dovetails with both the growing interest of consumers towards the use of natural food additives and with stricter legislations and concern in developed countries towards the management of wastes. The use of this technology allows valorization of both cellulosic and hemicellulosic fractions of trimming vine shoots for the production of lactic acid (LA), phenyllactic acid (PLA), and biosurfactants (BS). This work compares the study of the potential of hemicellulosic and cellulosic fractions of trimming vine shoots as cheaper and renewable carbon sources for PLA and BS production by independent or coculture fermentations. The highest LA and PLA concentrations, 43.0 g/L and 1.58 mM, respectively, were obtained after 144 h during the fermentation of hemicellulosic sugars and simultaneous saccharification and fermentation (SSF) carried out by cocultures of Lactobacillus plantarum and Lactobacillus pentosus. Additionally, cell-bond BS decreased the surface tension (ST) in 17.2 U; meanwhile, cell-free supernatants (CFS) showed antimicrobial activity against Salmonella enterica and Listeria monocytogenes with inhibition halos of 12.1±0.6 mm and 11.5±0.9 mm, respectively.

  4. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp.

    PubMed

    Pi, Yongrui; Chen, Bing; Bao, Mutai; Fan, Fuqiang; Cai, Qinhong; Ze, Lv; Zhang, Baiyu

    2017-02-07

    Rhodococcus erythropolis M-25, one of the representative biosurfactant producers, performed effectively during the biodegradation of four crude oil. The microbial degradation efficiency is positively relevant to the API of the crude oil. The chemical dispersant Corexit 9500A did not enhance the biodegradation of the petroleum hydrocarbons during the experimental period. 70.7% of the N-4 oil was degraded after 30days, while in the Corexit 9500A plus sample the biodegradation removal was 42.8%. The Corexit-derived compounds were metabolized by M-25 at the same time of the petroleum hydrocarbons biodegrading. Neither biodegradation nor chemical dispersion process has almost no effect on the biomarker (m/z=231). The saturated methyl-branched fatty acids increased from 37.3%, to 49.4%, when M-25 was exposed with the N-4 crude oil. Similarly, the saturated methyl-branched fatty acids in the membrane of N3-2P increased from 20.25% to 44.1%, when exposed it with the N-4 crude oil.

  5. Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.

    PubMed

    Pinto, S; Alves, P; Santos, A C; Matos, C M; Oliveiros, B; Gonçalves, S; Gudiña, E; Rodrigues, L R; Teixeira, J A; Gil, M H

    2011-09-15

    Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these compounds affect the PDMS surface properties. BSs isolated from four probiotic strains (Lactococcus lactis, Lactobacillus paracasei, Streptococcus thermophilus A, and Streptococcus thermophilus B) were used. Bare PDMS and PDMS coated with BSs were characterized by contact angle measurements, infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The influence of the surface modifications on the materials blood compatibility was studied through thrombosis and hemolysis assays. The cytotoxicity of these materials was tested against rat peritoneal macrophages. AFM results demonstrated the successful coating of the surfaces. Also, by contact angle measurements, an increase of the coated surfaces hydrophilicity was seen. Furthermore, XPS analysis indicated a decrease of the silicon content at the surface, and ATR-FTIR results showed the presence of BS characteristic groups as a consequence of the modification. All the studied materials revealed no toxicity and were found to be nonhemolytic. The proposed approach for the modification of PDMS surfaces was found to be effective and opens new possibilities for the application of these surfaces in the biomedical field.

  6. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains.

    PubMed

    Merghni, Abderrahmen; Dallel, Ines; Noumi, Emira; Kadmi, Yassine; Hentati, Hajer; Tobji, Samir; Ben Amor, Adel; Mastouri, Maha

    2017-03-01

    Biosurfactants also called bioemulsifiers are amphipathic compounds produced by many microorganisms that allow them to exhibit a wide range of biological activities. The aim of this study was to determine the antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and to assess their anti-adhesive and anti-biofilm abilities against oral opportunistic Staphylococcus aureus strains. The antioxidant activity of biosurfactant was evaluated using the in vitro scavenging ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The antiproliferative activity was determined on epithelial cell line (HEp-2) by the Methylthiazole tetrazolium (MTT) reduction assay. The anti-adhesive and antibiofilm activity against S. aureus strains were achieved using crystal violet staining. Our results revealed that the DPPH scavenging activity of biosurfactants at 5.0 mg/mL concentration is between 74.6 and 77.3%. Furthermore, biosurfactants showed antiproliferative potency against studied epithelial cells as judged by IC50 and its value ranged from 109.1 ± 0.84 mg/mL to 129.7 ± 0.52 mg/mL. The results of the growth inhibition indicate that biosurfactant BS-LBl was more effective against oral S. aureus strains 9P and 29P with an IC50 of 1.92 ± 0.26 mg/mL and 2.16 ± 0.12 mg/mL respectively. Moreover, both biosurfactants displayed important antibiofilm activity with eradication percentages ranging from 80.22 ± 1.33% to 86.21 ± 2.94% for the BS-LBl, and from 53.38 ± 1.77% to 64.42 ± 2.09% for the BS-LZ9. Our findings demonstrate that biosurfactants from L. casei strains exhibited considerable antioxidant and antiproliferative potencies and were able to inhibit oral S. aureus strains with important antibiofilm efficacy. They could have a promising role in the prevention of oral diseases.

  7. Effects of sleeve gastrectomy with jejuno-jejunal or jejuno-ileal loop on glycolipid metabolism in diabetic rats

    PubMed Central

    Zhong, Ming-Wei; Liu, Shao-Zhuang; Zhang, Guang-Yong; Zhang, Xiang; Hu, San-Yuan

    2016-01-01

    AIM To explore the effect of sleeve gastrectomy (SG) with jejuno-jejunal or jejuno-ileal loop on glycolipid metabolism in diabetic rats. METHODS Diabetic rats, which were induced by high-fat diet (HFD), nicotinamide and low-dose streptozotocin, underwent sham operations, SG, SG with jejuno-ileal loop (SG-JI) and SG with jejuno-jejunal loop (SG-JJ) followed by postoperative HFD. Then, at the time points of baseline and 2, 12 and 24 wk postoperatively, we determined and compared several variables, including the area under the curve for the results of oral glucose tolerance test (AUCOGTT), serum levels of triglyceride, cholesterol and ghrelin in fasting state, homeostasis model assessment of insulin resistance (HOMA-IR), body weight, calorie intake, glucagon-like peptide (GLP)-1 and insulin secretions after glucose gavage at dose of 1 g/kg. RESULTS At 2 wk postoperatively, rats that underwent SG, SG-JJ and SG-JI, compared with sham-operated (SHAM) rats, demonstrated lower body weight, calorie intake and ghrelin (P < 0.05 vs SHAM), enhanced secretion of insulin and GLP-1 after glucose gavage (P < 0.05 vs SHAM), improved AUCOGTT, HOMA-IR, fasting serum triglyceride and cholesterol (AUCOGTT: 1616.9 ± 83.2, 837.4 ± 83.7, 874.9 ± 97.2 and 812.6 ± 81.9, P < 0.05 vs SHAM; HOMA-IR: 4.31 ± 0.54, 2.94 ± 0.22, 3.17 ± 0.37 and 3.41 ± 0.22, P < 0.05 vs SHAM; Triglyceride: 2.35 ± 0.17, 1.87 ± 0.23, 1.98 ± 0.30 and 2.04 ± 0.21 mmol/L, P < 0.05 vs SHAM; Cholesterol: 1.84 ± 0.21, 1.53 ± 0.20, 1.52 ± 0.20 and 1.46 ± 0.23 mmol/L). At 12 wk postoperatively, rats receiving SG-JJ and SG-JI had lower body weight, reduced levels of triglyceride and cholesterol and elevated level of GLP-1 compared to those receiving SG (P < 0.05 vs SG). At 24 wk after surgery, compared with SG, the advantage of SG-JJ and SG-JI for glucolipid metabolism was still evident (P < 0.05 vs SG). SG-JI had a better performance in lipid metabolism and GLP-1 secretion of rats than did SG-JJ. CONCLUSION

  8. Trichodysplasia spinulosa-Associated Polyomavirus Uses a Displaced Binding Site on VP1 to Engage Sialylated Glycolipids.

    PubMed

    Ströh, Luisa J; Gee, Gretchen V; Blaum, Bärbel S; Dugan, Aisling S; Feltkamp, Mariet C W; Atwood, Walter J; Stehle, Thilo

    2015-08-01

    Trichodysplasia spinulosa-associated Polyomavirus (TSPyV) was isolated from a patient suffering from trichodysplasia spinulosa, a skin disease that can appear in severely immunocompromised patients. While TSPyV is one of the five members of the polyomavirus family that are directly linked to a human disease, details about molecular recognition events, the viral entry pathway, and intracellular trafficking events during TSPyV infection remain unknown. Here we have used a structure-function approach to shed light on the first steps of TSPyV infection. We established by cell binding and pseudovirus infection studies that TSPyV interacts with sialic acids during attachment and/or entry. Subsequently, we solved high-resolution X-ray structures of the major capsid protein VP1 of TSPyV in complex with three different glycans, the branched GM1 glycan, and the linear trisaccharides α2,3- and α2,6-sialyllactose. The terminal sialic acid of all three glycans is engaged in a unique binding site on T