Science.gov

Sample records for glycolipid biosurfactants mannosylerythritol

  1. Application of yeast glycolipid biosurfactant, mannosylerythritol lipid, as agrospreaders.

    PubMed

    Fukuoka, Tokuma; Yoshida, Shigenobu; Nakamura, Junichi; Koitabashi, Motoo; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai; Kitamoto, Hiroko

    2015-01-01

    The spreading property of mannosylerythritol lipids (MELs) was investigated in connection with our search for new application in agriculture. The wetting ability of MEL solutions for hydrophobic surfaces was evaluated based on contact angle measurements for several surfactant solutions on abiotic and biotic surfaces. The contact angle of MEL-A solution on a hydrophobic plastic surface at 100 s after placement decreased to 8.4°, and those of other MEL solutions decreased more significantly compared to those of commonly-used nonionic surfactants. In addition, the contact angle of MEL solutions also dropped down to around 10° on various plant leaf surfaces. MEL solutions, in particular, efficiently spread even on poorly wettable Gramineae plant surfaces on which general nonionic surfactant solutions could not. Moreover, the wetting ability of MEL solutions was found to be greatly affected by the structural difference in their carbohydrate configuration. Furthermore, surface pretreatment with MEL solution led to more efficient spreading and fixing of microbial cells onto plant leaf surface compared to several conventional surfactants used in this study. These results suggested that MELs have a potential to use as a natural bio-based spreading agent, particularly as agrochemical spreader for biopesticides.

  2. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin.

    PubMed

    Yamamoto, Shuhei; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Yanagidani, Shusaku; Sogabe, Atsushi; Kitamoto, Dai; Kitagawa, Masaru

    2012-01-01

    Glycolipid biosurfactants, such as mannosylerythritol lipids (MELs), are produced by different yeasts belonging to the genus Pseudozyma and have been attracting much attention as new cosmetic ingredients owing to their unique liquid-crystal-forming and moisturizing properties. In this study, the effects of different MEL derivatives on the skin were evaluated in detail using a three-dimensional cultured human skin model and an in vivo human study. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS), and the effects of different lipids on the SDS-damaged cells were evaluated on the basis of cell viability. Most MEL derivatives efficiently recovered the viability of the cells and showed high recovery rates (over 80%) comparable with that of natural ceramide. It is interesting that the recovery rate with MEL-A prepared from olive oil was significantly higher than that of MEL-A prepared from soybean oil. The water retention properties of MEL-B were further investigated on human forearm skin in a preliminary study. Compared with the control, the aqueous solution of MEL-B (5 wt%) was estimated to considerably increase the stratum corneum water content in the skin. Moreover, perspiration on the skin surface was clearly suppressed by treatment with the MEL-B solution. These results suggest that MELs are likely to exhibit a high moisturizing action, by assisting the barrier function of the skin. Accordingly, the yeast glycolipids have a strong potential as a new ingredient for skin care products.

  3. Direct xylan conversion into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma antarctica PYCC 5048(T).

    PubMed

    Faria, Nuno Torres; Marques, Susana; Fonseca, César; Ferreira, Frederico Castelo

    2015-04-01

    Mannosylerythritol lipids (MEL) are glycolipid biosurfactants, produced by Pseudozyma spp., with increasing commercial interest. While MEL can be produced from d-glucose and d-xylose, the direct conversion of the respective lignocellulosic polysaccharides, cellulose and xylan, was not reported yet. The ability of Pseudozyma antarctica PYCC 5048(T) and Pseudozyma aphidis PYCC 5535(T) to use cellulose (Avicel(®)) and xylan (beechwood) as carbon and energy source has been assessed along with their capacity of producing cellulolytic and hemicellulolytic enzymes, toward a consolidated bioprocess (CBP) for MEL production. The yeasts assessed were neither able to grow in medium containing Avicel(®) nor produce cellulolytic enzymes under the conditions tested. On contrary, both yeasts were able to efficiently grow in xylan, but MEL production was only detected in P. antarctica PYCC 5048(T) cultures. MEL titers reached 1.3g/l after 10 days in batch cultures with 40g/l xylan, and 2.0g/l in fed-batch cultures with xylan feeding (additional 40g/l) at day 4. High levels of xylanase activities were detected in xylan cultures, reaching 47-62U/ml (31-32U/mg) at 50°C, and still exhibiting more than 10U/ml under physiological temperature (28°C). Total β-xylosidase activities, displayed mainly as wall-bounded and extracellular activity, accounted for 0.154 and 0.176U/ml in P. antarctica PYCC 5048(T) and P. aphidis PYCC 5535(T) cultures, respectively. The present results demonstrate the potential of Pseudozyma spp. for using directly a fraction of lignocellulosic biomass, xylan, and combining in the same bioprocess the production of xylanolytic enzymes with MEL production.

  4. Conversion of cellulosic materials into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma spp. under SHF and SSF processes.

    PubMed

    Faria, Nuno Torres; Santos, Marisa; Ferreira, Carla; Marques, Susana; Ferreira, Frederico Castelo; Fonseca, César

    2014-11-04

    Mannosylerythritol lipids (MEL) are glycolipids with unique biosurfactant properties and are produced by Pseudozyma spp. from different substrates, preferably vegetable oils, but also sugars, glycerol or hydrocarbons. However, solvent intensive downstream processing and the relatively high prices of raw materials currently used for MEL production are drawbacks in its sustainable commercial deployment. The present work aims to demonstrate MEL production from cellulosic materials and investigate the requirements and consequences of combining commercial cellulolytic enzymes and Pseudozyma spp. under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes. MEL was produced from cellulosic substrates, Avicel® as reference (>99% cellulose) and hydrothermally pretreated wheat straw, using commercial cellulolytic enzymes (Celluclast 1.5 L® and Novozyme 188®) and Pseudozyma antarctica PYCC 5048(T) or Pseudozyma aphidis PYCC 5535(T). The strategies included SHF, SSF and fed-batch SSF with pre-hydrolysis. While SSF was isothermal at 28°C, in SHF and fed-batch SSF, yeast fermentation was preceded by an enzymatic (pre-)hydrolysis step at 50°C for 48 h. Pseudozyma antarctica showed the highest MEL yields from both cellulosic substrates, reaching titres of 4.0 and 1.4 g/l by SHF of Avicel® and wheat straw (40 g/l glucan), respectively, using enzymes at low dosage (3.6 and 8.5 FPU/gglucan at 28°C and 50°C, respectively) with prior dialysis. Higher MEL titres were obtained by fed-batch SSF with pre-hydrolysis, reaching 4.5 and 2.5 g/l from Avicel® and wheat straw (80 g/l glucan), respectively. This work reports for the first time MEL production from cellulosic materials. The process was successfully performed through SHF, SSF or Fed-batch SSF, requiring, for maximal performance, dialysed commercial cellulolytic enzymes. The use of inexpensive lignocellulosic substrates associated to straightforward downstream processing

  5. Production of microbial glycolipid biosurfactants and their antimicrobial activity

    USDA-ARS?s Scientific Manuscript database

    Microbial glycolipids produced by bacteria or yeast as secondary metabolites, such as sophorolipids (SLs), rhamnolipids (RLs) and mannosylerythritol lipids (MELs) are “green” biosurfactants desirable in a bioeconomy. High cost of production is a major hurdle toward widespread commercial use of bios...

  6. Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H(2)O(2)-induced oxidative stress in cultured human skin fibroblasts.

    PubMed

    Takahashi, Makoto; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-01-01

    Mannosylerythritol lipids (MELs) are biosurfactants known for their versatile interfacial and biochemical properties. To broaden their application in cosmetics, we investigated the antioxidant properties of different MEL derivatives (MEL-A, -B, and -C) by using a 1,1-diphenyl-2-picryl hydrazine (DPPH) free-radical- and superoxide anion-scavenging assay. All MEL derivatives tested showed antioxidant activity in vitro, but at lower levels than those of arbutin. Of the MELs, MEL-C, which is produced from soybean oil by Pseudozyma hubeiensis, showed the highest rates of DPPH radical scavenging (50.3% at 10 mg/mL) and superoxide anion scavenging (>50% at 1 mg/mL). The antioxidant property of MEL-C was further examined using cultured human skin fibroblasts (NB1RGB cells) under H(2)O(2) induced oxidative stress. Surprisingly, MEL-C had a higher protective activity against oxidative stress than arbutin did: 10 µg/mL of MEL-C and arbutin had protective activities of 30.3% and 13%, respectively. Expression of an oxidative stress marker, cyclooxygenase-2, in these cells was repressed by treatment with MEL-C as well as by arbutin. MEL-C was thus confirmed to have antioxidant and protective effects in cells, and we suggest that MELs have potential as anti-aging skin care ingredients.

  7. Current status in biotechnological production and applications of glycolipid biosurfactants.

    PubMed

    Paulino, Bruno Nicolau; Pessôa, Marina Gabriel; Mano, Mario Cezar Rodrigues; Molina, Gustavo; Neri-Numa, Iramaia Angélica; Pastore, Glaucia Maria

    2016-12-01

    Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.

  8. Production of glycolipid biosurfactants by basidiomycetous yeasts.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2009-05-01

    BSs (biosurfactants) produced by various micro-organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy-saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation-inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described.

  9. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells.

    PubMed

    Morita, Tomotake; Kitagawa, Masaru; Suzuki, Michiko; Yamamoto, Shuhei; Sogabe, Atsushi; Yanagidani, Shusaku; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai

    2009-01-01

    Mannosylerythritol lipids (MELs) are produced in large amounts from renewable vegetable oils by Pseudozyma antarctica, and are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics and pharmaceuticals, the skin care property of MEL-A, the major component of MELs, was investigated using a three-dimensional cultured human skin model. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS) solution of 1 wt%, and the effects of different lipids on the SDS-damaged cells were then evaluated on the basis of the cell viability. The viability of the damaged cells was markedly recovered by the addition of MEL-A in a dose-dependent manner. Compared to the control, MEL-A solutions of 5 wt% and 10 wt% gave the recovery rate of 73% and 91%, respectively, while ceramide solution of 1 wt% gave the rate of over 100%. This revealed that MEL-A shows a ceramide-like moisturizing activity toward the skin cells. Considering the drawbacks of natural ceramides, namely limited amount and high production cost, the yeast biosurfactants should have a great potential as a novel moisturizer for treating the damaged skin.

  10. Production and antimicrobial property of glycolipid biosurfactants

    USDA-ARS?s Scientific Manuscript database

    Microbial glycolipids such as rhamnolipid (RL) and sophorolipid (SL) are an important class of biosurfactants with excellent surface tension-lowering activity. Besides their surfactant- and environment-friendly properties, however, additional value-added property such as bacteriocidal activity is n...

  11. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry.

    PubMed

    Mnif, Inès; Ghribi, Dhouha

    2016-10-01

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by high structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface, respectively. Rhamnolipids, trehalolipids, mannosylerythritol lipids and cellobiose lipids are among the most popular glycolipids. They have received much practical attention as biopesticides for controlling plant diseases and protecting stored products. As a result of their antifungal activity towards phytopathogenic fungi and larvicidal and mosquitocidal potencies, glycolipid biosurfactants permit the preservation of plants and plant crops from pest invasion. Also, as a result of their emulsifying and antibacterial activities, glycolipids have great potential as food additives and food preservatives. Furthermore, the valorization of food byproducts via the production of glycolipid biosurfactant has received much attention because it permits the bioconversion of byproducts on valuable compounds and decreases the cost of production. Generally, the use of glycolipids in many fields requires their retention from fermentation media. Accordingly, different strategies have been developed to extract and purify glycolipids. © 2016 Society of Chemical Industry.

  12. Mannosylerythritol lipids: a review.

    PubMed

    Arutchelvi, Joseph Irudayaraj; Bhaduri, Sumit; Uppara, Parasu Veera; Doble, Mukesh

    2008-12-01

    Mannosylerythritol lipids (MELs) are surface active compounds that belong to the glycolipid class of biosurfactants (BSs). MELs are produced by Pseudozyma sp. as a major component while Ustilago sp. produces them as a minor component. Although MELs have been known for over five decades, they recently regained attention due to their environmental compatibility, mild production conditions, structural diversity, self-assembling properties and versatile biochemical functions. In this review, the MEL producing microorganisms, the production conditions, their applications, their diverse structures and self-assembling properties are discussed. The biosynthetic pathways and the regulatory mechanisms involved in the production of MEL are also explained here.

  13. Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2012-11-01

    In order to develop novel glycolipid biosurfactants, Pseudozyma parantarctica JCM 11752(T), which is known as a producer of mannosylerythritol lipids (MEL), was cultivated using different sugar alcohols with the presence of vegetable oil. When cultivated in a medium containing 4 % (w/v) olive oil and 4 % D-ribitol or D-arabitol, the yeast strain provided different glycolipids, compared to the case of no sugar alcohol. On TLC, both of the extracted glycolipid fractions gave two major spots corresponding to MEL-A (di-acetylated MEL) and MEL-B (mono-acetylated MEL). Based on (1)H NMR analysis, one glycolipid was identified as MEL-A, but the other was not MEL-B. On high-performance liquid chromatography after acid hydrolysis, the unknown glycolipid from the D-ribitol culture provided mainly two peaks identical to D-mannose and D-ribitol, and the other unknown glycolipid from the D-arabitol culture did two peaks identical to D-mannose and D-arabitol. Accordingly, the two unknown glycolipids were identified as mannosylribitol lipid (MRL) and mannosylarabitol lipid (MAL), respectively. The observed critical micelle concentration (CMC) and surface tension at CMC of MRL were 1.6 × 10(-6) M and 23.7 mN/m, and those of MAL were 1.5 × 10(-6) M and 24.2 mN/m, respectively. These surface-tension-lowering activities were significantly higher compared to conventional MEL. Furthermore, on a water-penetration scan, MRL and MAL efficiently formed not only the lamella phase (L(α)) but also the myelins at a wide range of concentrations, indicating their excellent self-assembling properties and high hydrophilicity. The present two glycolipids should thus facilitate the application of biosurfactants as new functional materials.

  14. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications.

    PubMed

    Inès, Mnif; Dhouha, Ghribi

    2015-10-30

    Glycolipids, consisting of a carbohydrate moiety linked to fatty acids, are microbial surface active compounds produced by various microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively. Rhamnolipids, trehalolipids, mannosylerythritol-lipids and cellobiose lipids are among the most popular glycolipids. Moreover, their ability to form pores and destabilize biological membrane permits their use in biomedicine as antibacterial, antifungal and hemolytic agents. Their antiviral and antitumor effects enable their use in pharmaceutic as therapeutic agents. Also, glycolipids can inhibit the bioadhesion of pathogenic bacteria enabling their use as anti-adhesive agents and for disruption of biofilm formation and can be used in cosmetic industry. Moreover, they have great potential application in industry as detergents, wetting agents and for flotation. Furthermore, glycolipids can act at the surface and can modulate enzyme activity permitting the enhancement or the inhibition of the activity of certain enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    PubMed

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  16. Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids.

    PubMed

    Morita, Tomotake; Koike, Hideaki; Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials.

  17. Functions and potential applications of glycolipid biosurfactants--from energy-saving materials to gene delivery carriers.

    PubMed

    Kitamoto, Dai; Isoda, Hiroko; Nakahara, Tadaatsu

    2002-01-01

    Biosurfactants (BS) produced by various microorganisms show unique properties (e.g., mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared to their chemical counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in environmental protection and energy-saving technology as well. Glycolipid BS are the most promising, due to high productivity from renewable resources and versatile biochemical properties. Mannosylerythritol lipids (MEL), which are glycolipid BS produced by a yeast Candida antarctrica, exhibit not only excellent interfacial properties but also remarkable differentiation-inducing activities against human leukemia cells. MEL also show a potential anti-agglomeration effect on ice particles in ice slurry used for cold thermal storage. Recently, the cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BS should broaden its applications in new advanced technologies. The current status of research and development on glycolipid BS, especially their function and potential applications, is discussed.

  18. Biosurfactants: a sustainable replacement for chemical surfactants?

    PubMed

    Marchant, Roger; Banat, Ibrahim M

    2012-09-01

    Glycolipid biosurfactants produced by bacteria and yeasts provide significant opportunities to replace chemical surfactants with sustainable biologically produced alternatives in bulk commercial products such as laundry detergents and surface cleaners. Sophorolipids are already available in sufficient yield to make their use feasible while rhamnolipids and mannosylerythritol lipids require further development. The ability to tailor the biosurfactant produced to the specific needs of the product formulation will be an important future step.

  19. Glycolipids produced by Rouxiella sp. DSM 100043 and isolation of the biosurfactants via foam-fractionation.

    PubMed

    Kügler, Johannes H; Muhle-Goll, Claudia; Hansen, Silla H; Völp, Annika R; Kirschhöfer, Frank; Kühl, Boris; Brenner-Weiss, Gerald; Luy, Burkhard; Syldatk, Christoph; Hausmann, Rudolf

    2015-12-01

    Microorganisms produce a great variety of secondary metabolites that feature surface active and bioactive properties. Those possessing an amphiphilc molecular structure are also termed biosurfactant and are of great interest due to their often unique properties. Rouxiella sp. DSM 100043 is a gram negative enterobacter isolated from peat-bog soil and described as a new biosurfactant producing species in this study. Rouxiella sp. produces glycolipids, biosurfactants with a carbohydrate moiety in its structure. This study characterizes the composition of glycolipids with different hydrophobicities that have been produced during cultivation in a bioreactor and been extracted and purified from separated foam. Using two dimensional nuclear magnetic resonance spectroscopy, the hydrophilic moieties are elucidated as glucose with various acylation sites and as talose within the most polar glycolipids. The presence of 3' hydroxy lauroleic acid as well as myristic and myristoleic acid has been detected.

  20. Antimicrobial activities of a promising glycolipid biosurfactant from a novel marine Staphylococcus saprophyticus SBPS 15.

    PubMed

    Mani, P; Dineshkumar, G; Jayaseelan, T; Deepalakshmi, K; Ganesh Kumar, C; Senthil Balan, S

    2016-12-01

    Biosurfactants have gained a renewed interest in the recent years for their commercial application in diverse research areas. Recent evidences suggest that the antimicrobial activities exhibited by biosurfactants make them promising molecules for the application in the field of therapeutics. Marine microbes are well known for their unique metabolic and functional properties; however, few reports are available till date regarding their biosurfactant production and antimicrobial potential. In an ongoing survey for bioactive microbial metabolites from microbes isolated from diverse ecological niches, a marine Staphylococcus saprophyticus SBPS 15 isolated from the petroleum hydrocarbon contaminated coastal site, Puducherry, India, was identified as a promising biosurfactant producer based on multiple screening methods. This bacterium exhibited growth-dependent biosurfactant production and the recorded yield was 1.345 ± 0.056 g/L (on dry weight basis). The biosurfactant was purified and chemically characterized as a glycolipid with a molecular mass of 606.7 Da, based on TLC, biochemical estimation methods, FT-IR spectrum and MALDI-TOF-MS analysis. Further, the estimated molecular mass was different from the earlier reports on biosurfactants. This new glycolipid biosurfactant exhibited a board range of pH and temperature stability. Furthermore, it revealed a promising antimicrobial activity against many tested human pathogenic bacterial and fungal clinical isolates. Based on these observations, the isolated biosurfactant from the marine S. saprophyticus revealed board physicochemical stabilities and possess excellent antimicrobial activities which proves its significance for possible use in various therapeutic and biomedical applications. To the best of our knowledge, this is the first report of a biosurfactant from the bacterium, S. saprophyticus.

  1. Natural surfactants used in cosmetics: glycolipids.

    PubMed

    Lourith, N; Kanlayavattanakul, M

    2009-08-01

    Cosmetic surfactant performs detergency, wetting, emulsifying, solubilizing, dispersing and foaming effects. Adverse reactions of chemical synthesis surfactant have an effect on environment and humans, particularly severe in long term. Biodegradability, low toxicity and ecological acceptability which are the benefits of naturally derived surfactant that promises cosmetic safety are, therefore, highly on demand. Biosurfactant producible from microorganisms exhibiting potential surface properties suitable for cosmetic applications especially incorporate with their biological activities. Sophorolipids, rhamnolipids and mannosylerythritol lipids are the most widely used glycolipids biosurfactant in cosmetics. Literatures and patents relevant to these three glycolipids reviewed were emphasizing on the cosmetic applications including personal care products presenting the cosmetic efficiency, efficacy and economy benefits of glycolipids biosurfactant.

  2. Production of mannosylerythritol lipids and their application in cosmetics.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2013-06-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants abundantly produced by different basidiomycetous yeasts such as Pseudozyma, and show not only excellent interfacial properties but also versatile biochemical actions. These features of MELs make their application in new technology areas possible. Recently, the structural and functional variety of MELs was considerably expanded by advanced microbial screening methods. Different types of MELs bearing different hydrophilic and hydrophobic parts have been reported. The genes responsible for MEL biosynthesis were identified, and their genetic study is now in progress, aiming to control the chemical structure. The excellent properties leading to practical cosmetic ingredients, i.e., moisturization of dry skin, repair of damaged hair, activation of fibroblast and papilla cells and antioxidant and protective effects in skin cells, have been demonstrated on the yeast glycolipid biosurfactants. In this review, the current status of research and development on MELs, particularly the commercial application in cosmetics, is described.

  3. Mannosylerythritol lipids: production and applications.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2015-01-01

    Mannosylerythritol lipids (MELs) are a glycolipid class of biosurfactants produced by a variety yeast and fungal strains that exhibit excellent interfacial and biochemical properties. MEL-producing fungi were identified using an efficient screening method for the glycolipid production and taxonomical classification on the basis of ribosomal RNA sequences. MEL production is limited primarily to the genus Pseudozyma, with significant variability among the MEL structures produced by each species. Outside of Pseudozyma, one recently isolated strain, Ustilago scitaminea, has been shown to exhibit abundant MEL-B production from sugarcane juice. Structural analyses of these compounds suggest a role for MELs in numerous cosmetic applications. MELs act as effective topical moisturizers and can repair damaged hair. Furthermore, these compounds have been shown to exhibit both protective and healing activities, to activate fibroblasts and papilla cells, and to act as natural antioxidants. In this review, we provide a brief summary of MEL research over the past few decades, focusing on the identification of MEL-producing fungi, the structural characterization of MELs, the use of alternative compounds as a primary carbon source, and the use of these compounds in cosmetic applications.

  4. [Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties].

    PubMed

    Kitamoto, Dai

    2008-05-01

    Biosurfactants (BS) are functional amphiphilic compounds produced by a variety of microorganisms. They show unique properties (e.g. mild production conditions, lower toxicity, and environmental compatibility) compared to chemically synthesized counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in energy and environmental technologies as well. Mannosylerythritol lipids (MELs) are one of the most promising BS known, and are produced at yields of over 100 g/l from vegetable oils by yeast strains belonging to the genus Pseudozyma. MELs exhibit excellent surface-active and self-assembling properties leading to the formation of different lyotropic liquid crystals such as sponge (L(3)), bicontinuous cubic (V(2)) and lamella (L(alpha)) phases. They also show versatile biochemical actions, including antitumor and differentiation-inducing activities against human leukemia cells, rat pheochromocytoma cells and mouse melanoma cells. MELs also display high binding affinity toward different immunoglobulins and lectins, indicating great potentials as new affinity ligands for the glycoproteins. More significantly, the cationic liposomes bearing MELs increase dramatically the efficiency of gene transfection into mammalian cells via membrane fusion processes. The yeast BS should thus be novel nanobiomaterials, and broaden their applications in various advanced technologies.

  5. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.

    PubMed

    Dhasayan, Asha; Kiran, G Seghal; Selvin, Joseph

    2014-12-01

    Biosurfactant-producing Halomonas sp. MB-30 was isolated from a marine sponge Callyspongia diffusa, and its potency in crude oil recovery from sand pack column was investigated. The biosurfactant produced by the strain MB-30 reduced the surface tension to 30 mN m(-1) in both glucose and hydrocarbon-supplemented minimal media. The critical micelle concentration of biosurfactant obtained from glucose-based medium was at 0.25 mg ml(-1) at critical micelle dilution 1:10. The chemical structure of glycolipid biosurfactant was characterised by infrared spectroscopy and proton magnetic resonance spectroscopy. The emulsification activity of MB-30 biosurfactant was tested with different hydrocarbons, and 93.1 % emulsification activity was exhibited with crude oil followed by kerosene (86.6 %). The formed emulsion was stable for up to 1 month. To identify the effectiveness of biosurfactant for enhanced oil recovery in extreme environments, the interactive effect of pH, temperature and salinity on emulsion stability with crude oil and kerosene was evaluated. The stable emulsion was formed at and above pH 7, temperature >80 °C and NaCl concentration up to 10 % in response surface central composite orthogonal design model. The partially purified biosurfactant recovered 62 % of residual crude oil from sand pack column. Thus, the stable emulsifying biosurfactant produced by Halomonas sp. MB-30 could be used for in situ biosurfactant-mediated enhanced oil recovery process and hydrocarbon bioremediation in extreme environments.

  6. A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum

    PubMed Central

    Smith, Derek D. N.; Nickzad, Arvin

    2016-01-01

    ABSTRACT Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections. PMID

  7. Microbial biosurfactants: challenges and opportunities for future exploitation.

    PubMed

    Marchant, Roger; Banat, Ibrahim M

    2012-11-01

    The drive for industrial sustainability has pushed biosurfactants to the top of the agenda of many companies. Biosurfactants offer the possibility of replacing chemical surfactants, produced from nonrenewable resources, with alternatives produced from cheap renewable feedstocks. Biosurfactants are also attractive because they are less damaging to the environment yet are robust enough for industrial use. The most promising biosurfactants at the present time are the glycolipids, sophorolipids produced by Candida yeasts, mannosylerythritol lipids (MELs) produced by Pseudozyma yeasts, and rhamnolipids produced by Pseudomonas. Despite the current enthusiasm for these compounds several residual problems remain. This review highlights remaining problems and indicates the prospects for imminent commercial exploitation of a new generation of microbial biosurfactants.

  8. Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants.

    PubMed

    Hirata, Yoshihiko; Ryu, Mizuyuki; Oda, Yuka; Igarashi, Keisuke; Nagatsuka, Asami; Furuta, Taro; Sugiura, Masaki

    2009-08-01

    Sophorolipids (SLs) are a family of glycolipid type biosurfactants, which are largely produced by the non-pathogenic yeast, Candida bombicola. In order to investigate the possibility of SLs for industrial use, here we examined the interfacial activities, cytotoxicity and biodegradability of SLs, and compared these properties with those of two lipopeptide type biosurfactants (surfactin and arthrofactin), sodium laurate (soap, SP) and four kinds of chemically synthesized surfactants including two block-copolymer nonionic surfactants (BPs), polyoxyethylene lauryl ether (AE) and sodium dodecyl sulfate (SDS). It was indicated that SLs had extremely low-foaming properties and high detergency comparable with commercially available low-foaming BPs. These interfacial activities of SLs were maintained under 100 ppm water hardness. Cytotoxicity of SLs on human keratinocytes was the same as surfactin, which has already been commercialized as cosmetic material, but higher than BPs. Moreover, biodegradability of SLs using the OECD Guidelines for Testing of Chemicals (301C, Modified MITI Test) displayed that SLs can be classified as "readily" biodegradable chemicals, which are defined as chemicals that are degraded 60% within 28 days under specified test methods. We observed 61% degradation of SLs on the eighth day of cultivation. Our results indicate that SLs are low-foaming surfactants with high detergency, which also exhibit both low cytotoxicity and readily biodegradable properties.

  9. Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation.

    PubMed

    Kiran, G Seghal; Thomas, T Anto; Selvin, Joseph

    2010-06-15

    Considering the need of potential biosurfactant producers and economic production processes using industrial waste, the present study aims to develop solid-state culture (SSC) of a marine actinobacterium for biosurfactant production. A potential biosurfactant producer Nocardiopsis lucentensis MSA04 was isolated from the marine sponge Dendrilla nigra. Among the substrates screened, wheat bran increased the production significantly (E(24) 25%) followed by oil seed cake and industrial waste such as tannery pretreated sludge, treated molasses (distillery waste) and pretreated molasses. Enhanced biosurfactant production was achieved under SSC conditions using kerosene as carbon source, beef extract as nitrogen source and wheat bran as substrate. The maximum production of biosurfactant by MSA04 occurred at a C/N ratio of 0.5 envisaging that a higher amount of nitrogen source is required by the strain compared to that of the carbon source. The kerosene and beef extract interactively increase the production and a stable production was attained with the influence of both factors independently. A significant interactive influence of secondary control factors such as copper sulfate and inoculum size was validated in response surface methods-based experiments. The surface active compound produced by MSA04 was characterized as glycolipid with a hydrophobic non-polar hydrocarbon chain (nonanoic acid methyl ester) and hydrophilic sugar, 3-acetyl 2,5 dimethyl furan. In conclusion, the strain N. lucentensis MSA04 was a potential source of glycolipid biosurfactant, could be used for the development of bioremediation processes in the marine environment. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Glycolipid Biosurfactants Activate, Dimerize, and Stabilize Thermomyces lanuginosus Lipase in a pH-Dependent Fashion.

    PubMed

    Madsen, Jens Kvist; Kaspersen, Jørn Døvling; Andersen, Camilla Bertel; Nedergaard Pedersen, Jannik; Andersen, Kell Kleiner; Pedersen, Jan Skov; Otzen, Daniel E

    2017-08-15

    We present a study of the interactions between the lipase from Thermomyces lanuginosus (TlL) and the two microbially produced biosurfactants (BSs), rhamnolipid (RL) and sophorolipid (SL). Both RL and SL are glycolipids; however, RL is anionic, while SL is a mixture of anionic and non-ionic species. We investigate the interactions of RL and SL with TlL at pH 6 and 8 and observe different effects at the two pH values. At pH 8, neither RL nor SL had any major effect on TlL stability or activity. At pH 6, in contrast, both surfactants increase TlL's thermal stability and fluorescence and activity measurements indicate interfacial activation of TlL, resulting in 3- and 6-fold improved activity in SL and RL, respectively. Nevertheless, isothermal titration calorimetry reveals binding of only a few BS molecules per lipase. Size-exclusion chromatography and small-angle X-ray scattering suggest formation of TlL dimers with binding of small amounts of either RL or SL at the dimeric interface, forming an elongated complex. We conclude that RL and SL are compatible with TlL and constitute promising green alternatives to traditional surfactants.

  11. Production of a novel mannosylerythritol lipid containing a hydroxy fatty acid from castor oil by Pseudozyma tsukubaensis.

    PubMed

    Yamamoto, Shuhei; Fukuoka, Tokuma; Imura, Tomohiro; Morita, Tomotake; Yanagidani, Shusaku; Kitamoto, Dai; Kitagawa, Masaru

    2013-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by various yeasts belonging to the genus Pseudozyma, which exhibit excellent surface activities as well as versatile biochemical activities. A study on P. tsukubaensis NBRC1940 as a mono-acetylated MEL (MEL-B) producer revealed that the yeast accumulated a novel glycolipid from castor oil at a yield of 22 g/L. Its main chemical structure was identified as 1-O-β-(2'-O-alka(e)noyl-3'-O-hydroxyalka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol designated as "new MEL-B." The new MEL-B, comprising a hydroxy fatty acid had a reduced surface tension of 28.5 mN/m at a critical micelle concentration (CMC) of 2.2×10⁻⁵ M in water. The observed CMC was 5-fold higher than that of conventional MEL-B. When conventional MEL-B was dispersed in water, it self-assembled to form the lamellar (L(α)) phase at a wide range of concentrations. In contrast, new MEL-B formed spherical oily droplets similar to the sponge (L₃) phase, which is observed in aqueous solutions of di-acetylated MEL (MEL-A). The data suggest that the newly identified MEL-B is likely to have a different structure and interfacial properties compared to the conventional MELs, and could facilitate an increase in the application of glycolipid biosurfactants.

  12. Characterization of glycolipid biosurfactant from Pseudomonas aeruginosa CPCL isolated from petroleum-contaminated soil.

    PubMed

    Arutchelvi, J; Doble, M

    2010-07-01

    To isolate and characterize the biosurfactant-producing micro-organism from petroleum-contaminated soil as well as to determine the biochemical properties of the biosurfactant. A novel rhamnolipid-producing Pseudomonas aeruginosa (GenBank accession number GQ241355) strain was isolated from a petroleum-contaminated soil. Surface active compound was separated by solvent extraction of the acidified culture supernatant. The extract was able to reduce the surface tension of water from 72 to 44 mN m(-1) at a critical micelle concentration of 11.27 +/- 1.85 mg l(-1). It showed better activity (based on microdilution method) against Gram-positive (or= 125 mg ml(-1)) with mild toxicity (HC(50)- 38 +/- 8.22 microg ml(-1)) to red blood cells. Fourier transform infrared spectroscopy revealed the presence of aliphatic chain, hydroxyl groups, ester and glycosidic bonds. Presence of nineteen rhamnolipid homologues with variation in chain length and saturation was revealed from liquid chromatography coupled to mass spectrometry with electrospray ionization. The results indicate that the isolated biosurfactant has a novel combination of rhamnolipid congeners with unique properties. This study provides a biosurfactant, which can be used as a biocontrol agent against phytopathogens (Fusarium proliferatum NCIM 1105 and Aspergillus niger NCIM 596) and exploited for biomedical applications.

  13. Draft Genome Sequence of the Yeast Starmerella bombicola NBRC10243, a Producer of Sophorolipids, Glycolipid Biosurfactants

    PubMed Central

    Matsuzawa, Tomohiko; Koike, Hideaki; Saika, Azusa; Fukuoka, Tokuma; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2015-01-01

    The yeast Starmerella bombicola NBRC10243 is an excellent producer of sophorolipids (SLs) from various feedstocks. Here, we report the draft genome sequence of S. bombicola NBRC10243. Analysis of the sequence may provide insight into the properties of this yeast that make it superior for use in the production of functional glycolipids and biomolecules, leading to the further development of S. bombicola NBRC10243 for industrial applications. PMID:25814600

  14. Effect of Fe nanoparticle on growth and glycolipid biosurfactant production under solid state culture by marine Nocardiopsis sp. MSA13A

    PubMed Central

    2014-01-01

    Background Iron is an essential element in several pathways of microbial metabolism, and therefore low iron toxicity is expected on the usage of Fe nanoparticles (NPs). This study aims to determine the effect of Fe NPs on biosurfactant production by marine actinobacterium Nocardiopsis sp. MSA13A under solid state culture. Foam method was used in the production of Fe NPs which were long and fiber shaped in nature. Results The SEM observation showed non toxic nature of Fe NPs as no change in the morphology of the filamentous structure of Nocardiopsis MSA13A. The production of biosurfactant by Nocardiopsis MSA13A under solid state culture supplemented with Fe NPs increased to 80% over control. The biosurfactant produced by Nocardiopsis MSA13A was characterized as glycolipid derivative which effectively disrupted the pre-formed biofilm of Vibrio pathogen. Conclusion The use of metal NPs as supplement would reduce the impact of non-metallic ions of the metal salts in a fermentation process. This would ultimately useful to achieve greener production process for biosurfactants. The present results are first report on the optimization of biosurfactant production under SSC using Fe NPs. PMID:24885470

  15. Biosurfactants

    USDA-ARS?s Scientific Manuscript database

    Biosurfactants are surfactants whose common feature is biodegradability, which provides them with a major advantage over the majority of surfactants currently in the market. Biosurfactants are produced from a wide range of raw materials, and manufactured using chemical, enzymatic, microbial, and a c...

  16. pH-triggered formation of nanoribbons from yeast-derived glycolipid biosurfactants.

    PubMed

    Cuvier, Anne-Sophie; Berton, Jan; Stevens, Christian V; Fadda, Giulia C; Babonneau, Florence; Van Bogaert, Inge N A; Soetaert, Wim; Pehau-Arnaudet, Gérard; Baccile, Niki

    2014-06-14

    In the present paper, we show that the saturated form of acidic sophorolipids, a family of industrially scaled bolaform microbial glycolipids, unexpectedly forms chiral nanofibers only at pH below 7.5. In particular, we illustrate that this phenomenon derives from a subtle cooperative effect of molecular chirality, hydrogen bonding, van der Waals forces and steric hindrance. The pH-responsive behaviour was shown by Dynamic Light Scattering (DLS), pH-titration and Field Emission Scanning Electron Microscopy (FE-SEM) while the nanoscale chirality was evidenced by Circular Dichroism (CD) and cryo Transmission Electron Microscopy (cryo-TEM). The packing of sophorolipids within the ribbons was studied using Small Angle Neutron Scattering (SANS), Wide Angle X-ray Scattering (WAXS) and 2D (1)H-(1)H through-space correlations via Nuclear Magnetic Resonance under very fast (67 kHz) Magic Angle Spinning (MAS-NMR).

  17. Characterization and Inducing Melanoma Cell Apoptosis Activity of Mannosylerythritol Lipids-A Produced from Pseudozyma aphidis

    PubMed Central

    Fan, Linlin; Li, Hongji; Niu, Yongwu; Chen, Qihe

    2016-01-01

    Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS). PMID:26828792

  18. Biosynthesis and skin health applications of antimicrobial glycolipids

    USDA-ARS?s Scientific Manuscript database

    Microbial-produced glycolipids (MGLs) such as sophorolipids (SLs), rhamnolipids (RLs), and mannosylerythritol lipids (MELs) are amphiphilic molecules, and thus have been widely explored for use as surfactants/detergents, emulsifiers, and lubricants. One major hindrance to their widespread commercia...

  19. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    PubMed

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed.

  1. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis.

    PubMed

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL.

  2. Chemical characterization of carbohydrate-based biosurfactants

    USDA-ARS?s Scientific Manuscript database

    High-yield, glycolipid-based biosurfactants are of increasing interest for use in environmentally benign cleaning or emulsifying agents. We have developed a MALDI-TOF/MS screen for the rapid analysis of several types of biosurfactants, including various acylated rhamnolipids in Pseudomonas extracts...

  3. Carbohydrate-based renewable biosurfactants: Rhamnolipids, sophorolipids, and novel liamocins

    USDA-ARS?s Scientific Manuscript database

    High-yield, glycolipid-based biosurfactants are of increasing interest for use in environmentally benign cleaning or emulsifying agents. We have developed a MALDI-TOF/MS screen for the rapid analysis of several types of biosurfactants, including various acylated rhamnolipids in Pseudomonas extracts...

  4. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis

    PubMed Central

    Saika, Azusa; Koike, Hideaki; Fukuoka, Tokuma; Yamamoto, Shuhei; Kishimoto, Takahide; Morita, Tomotake

    2016-01-01

    Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL. PMID:27327162

  5. Potential therapeutic applications of biosurfactants.

    PubMed

    Gudiña, Eduardo J; Rangarajan, Vivek; Sen, Ramkrishna; Rodrigues, Lígia R

    2013-12-01

    Biosurfactants have recently emerged as promising molecules for their structural novelty, versatility, and diverse properties that are potentially useful for many therapeutic applications. Mainly due to their surface activity, these molecules interact with cell membranes of several organisms and/or with the surrounding environments, and thus can be viewed as potential cancer therapeutics or as constituents of drug delivery systems. Some types of microbial surfactants, such as lipopeptides and glycolipids, have been shown to selectively inhibit the proliferation of cancer cells and to disrupt cell membranes causing their lysis through apoptosis pathways. Moreover, biosurfactants as drug delivery vehicles offer commercially attractive and scientifically novel applications. This review covers the current state-of-the-art in biosurfactant research for therapeutic purposes, providing new directions towards the discovery and development of molecules with novel structures and diverse functions for advanced applications.

  6. Enhanced separation and analysis procedure reveals production of tri-acylated mannosylerythritol lipids by Pseudozyma aphidis.

    PubMed

    Goossens, Eliane; Wijnants, Marc; Packet, Dirk; Lemière, Filip

    2016-11-01

    Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants because of their high fermentation yields (>100 g l(-1)) and during the last two decades they have gained a lot of attention due to their interesting self-assembling properties and biological activities. In this study, MELs were produced by fed-batch bioreactor fermentation of rapeseed oil with Pseudozyma aphidis MUCL 27852. This high-level MEL-producing yeast secretes four conventional MEL structures, -A, -B, -C and -D, which differ in their degree of acetylation. During our research, unknown compounds synthesized by P. aphidis were detected by thin-layer chromatography. The unknown compounds were separated by flash chromatography and identified as tri-acylated MELs by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The third fatty acid chain on the tri-acylated MELs was positioned on the primary alcohol of the erythritol moiety and comprised long-chain acids, mainly oleic and linoleic acid, which are not found in conventional di-acylated MELs. Furthermore, the LC-MS analysis time of conventional MELs was reduced to almost one-third by switching from HPLC-MS/MS to ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Provided optimization of the fermentation yield, P. aphidis could be an interesting novel producer of tri-acylated MELs and, thereby expand the supply and applicability of biosurfactants.

  7. Microbial biosurfactant - physiology, biochemistry, and applications

    SciTech Connect

    Finnerty, W.R.; Singer, M.E.

    1984-01-01

    A bacterial soil isolate H-13A was isolated which produces a cellular and extra-cellular glycolipid surfactant. Glycolipid is synthesized only during growth on n-alkanes (C12 ..-->.. C20). The glycolipid contains disaccharide, glycerol, amino sugar, N-acylated, and O-acylated fatty acids. Cellular glycolipid is characterized by saturated fatty acids and unsaturated fatty acids; whereas extracellular glycolipid contains saturated fatty acids and 2-hydroxy fatty acids. The hexadecane-derived glycolipid exhibits an interfacial-tension value of 2.0 x 10/sup -2/ dynes/cm at an effective alkane carbon number equivalent to decane. Addition of pentanol as a cosurfactant reduces the interfacial tension to 6.0 x 10/sup -5/ dynes/cm with an effective alkane carbon number equivalent to undecane. The glycolipid is effective in the reduction of heavy crude-oil viscosity by formation of stable oil-in-water emulsions with improved rheological properties. Growth of H-13A on Monagas crude ion results in a 95% reduction in oil viscosity. This glycolipid biosurfactant exhibits applicability to the transport, pipelining, processing, and recovery of heavy crude oils. 18 references, 1 figure, 4 tables.

  8. Biosurfactants in cosmetics and biopharmaceuticals.

    PubMed

    Varvaresou, A; Iakovou, K

    2015-09-01

    Biosurfactants are surface-active biomolecules that are produced by various micro-organisms. They show unique properties i.e. lower toxicity, higher biodegradability and environmental compatibility compared to their chemical counterparts. Glycolipids and lipopeptides have prompted application in biotechnology and cosmetics due to their multi-functional profile i.e. detergency, emulsifying, foaming and skin hydrating properties. Additionally, some of them can be served as antimicrobials. In this study the current status of research and development on rhamnolipids, sophorolipids, mannosyloerythritol lipids, trehalipids, xylolipids and lipopeptides particularly their commercial application in cosmetics and biopharmaceuticals, is described. © 2015 The Society for Applied Microbiology.

  9. Synthesis of biosurfactants and their advantages to microorganisms and mankind.

    PubMed

    Cameotra, Swaranjit Singh; Makkar, Randhir S; Kaur, Jasminder; Mehta, S K

    2010-01-01

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and hydrophilic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures--lipopeptides, glycolipids, neutral lipids and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. The low water solubility of these hydrophobic compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential applications in bioremediation. Not only are the biosurfactants useful in a variety of industrial processes, they are also of vital importance to the microbes in adhesion, emulsification, bioavailability, desorption and defense strategy. These interesting facts are discussed in this chapter.

  10. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    PubMed

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties.

  11. Production and Structural Characterization of Lactobacillus helveticus Derived Biosurfactant

    PubMed Central

    Sharma, Deepansh; Saharan, Baljeet Singh; Chauhan, Nikhil; Bansal, Anshul; Procha, Suresh

    2014-01-01

    A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications. PMID:25506070

  12. Synthesis of Glycolipids

    NASA Astrophysics Data System (ADS)

    Wakao, Masahiro; Suda, Yasuo

    Glycolipids, composed of hydrophilic carbohydrate and hydrophobic aliphatic residues, have a wide variety of biological activity. Natural glycolipids are known to be very complex and heterogeneous, and sometimes contain lipophilic contaminants, which cause confusion in the understanding of their original functions in biological process. To investigate their function at the molecular level, structurally defined glycolipids are necessary. A chemical synthetic approach may be the only method to overcome this issue. So far, a lot of synthetic efforts have been devoted in this field. This chapter summarizes syntheses of natural and related glycolipids, sphingoglycolipids, glyceroglycolipids, lipoteichoic acid, mycoloyl arabinan, lipopolysaccharide, glycophosphatidylinositol, etc.

  13. Selective production of deacetylated mannosylerythritol lipid, MEL-D, by acetyltransferase disruption mutant of Pseudozyma hubeiensis.

    PubMed

    Konishi, Masaaki; Makino, Motoki

    2017-08-25

    Mannosylerythritol lipids (MELs) are produced by several smut fungi of the Ustilaginaceae family; they are promising microbial biosurfactants and have excellent surface-active and self-assembling properties. Pseudozyma hubeiensis is a candidate for abundant MEL production and produces large amounts of 4-O-[(4'-mono-O-acetyl-2',3'-di-O-alkanoyl)-β-d-mannopyranosyl]-meso-erythritol (MEL-C). An acetyltransferase disruption mutant of P. hubeiensis, SY62-MM36, was obtained to selectively produce deacetylated 4-O-[(2',3'-di-O-alkanoyl)-β-d-mannopyranosyl]-meso-erythritol (MEL-D), and the structures of the products were determined. Lower mobility of major spots of the mutant on silica gel thin-layer chromatography verified its more hydrophilic nature than that of wild-type MEL-A, B, and C. Structural analyses confirmed the product to be MEL-D, which comprises acyl chains of caproic acid (C6:0), capric acid (C10:0), and lauric acid (C12:0). The critical micelle concentration (CMC) and the surface tension (γCMC) of the MEL-D were 2.0 × 10(-5) M and 29.7 mN/m, respectively. SY62-MM36 also produced a minor product that was estimated as triacylated MEL-D. The triacylated MEL-D had a CMC of 3.5 × 10(-5) M and a γCMC of 29.6 mN/m. In water, MEL-D formed a lamella liquid crystal phase over a broad range of concentrations. By fed-batch cultivation, the mutant produced 91.6 ± 6.3 g/L of MEL-D for 7 days. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Production of a Biosurfactant from Torulopsis bombicola

    PubMed Central

    Cooper, D. G.; Paddock, D. A.

    1984-01-01

    Two types of carbon sources—carbohydrate and vegetable oil—are necessary to obtain large yields of biosurfactant from Torulopsis bombicola ATCC 22214. Most of the surfactant is produced in the late exponential phase of growth. It is possible to grow the yeast on a single carbon source and then add the other type of substrate, after the exponential growth phase, and cause a burst of surfactant production. This product is a mixture of glycolipids. The maximum yield is 70 g liter−1, or 35% of the weight of the substrate used. An economic comparison demonstrated that this biosurfactant could be produced significantly more cheaply than any of the previously reported microbial surfactants. PMID:16346455

  15. Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant.

    PubMed

    Abbasi, Habib; Hamedi, Mir Manochehr; Lotfabad, Tayebe Bagheri; Zahiri, Hossein Shahbani; Sharafi, Hakimeh; Masoomi, Fatemeh; Moosavi-Movahedi, Ali Akbar; Ortiz, Antonio; Amanlou, Massoud; Noghabi, Kambiz Akbari

    2012-02-01

    An extensive investigation was conducted to isolate indigenous bacterial strains with outstanding performance for biosurfactant production from different types of spoiled fruits, food-related products and food processing industries. An isolate was selected from 800 by the highest biosurfactant yield in soybean oil medium and it was identified by 16S rRNA and the two most relevant hypervariable regions of this gene; V3 and V6 as Pseudomonas aeruginosa MA01. The isolate was able to produce 12 g/l of a glycolipid-type biosurfactant and generally less efficient to emulsify vegetable oils compared to hydrocarbons and could emulsify corn and coconut oils more than 50%. However, emulsification index (E(24)) of different hydrocarbons including hexane, toluene, xylene, brake oil, kerosene and hexadecane was between 55.8% and 100%. The surface tension of pure water decreased gradually with increasing biosurfactant concentration to 32.5 mNm(-1) with critical micelle concentration (CMC) value of 10.1mg/l. Among all carbon substrates examined, vegetable oils were the most effective on biosurfactant production. Two glycolipid fractions were purified from the biosurfactant crude extracts, and FTIR and ES-MS were used to determine the structure of these compounds. The analysis indicated the presence of three major monorhamnolipid species: R(1)C(10)C(10), R(1)C(10)C(12:1), and R(1)C(10)C(12); as well as another three major dirhamnolipid species: R(2)C(10)C(10), R(2)C(10)C(12:1), and R(2)C(10)C(12). The strain sweep experiment for measuring the linear viscoelastic of biosurfactant showed that typical behavior characteristics of a weak viscoelastic gel, with storage modulus greater than loss modulus at all frequencies examined, both showing some frequency dependence.

  16. [Biomedical activity of biosurfactants].

    PubMed

    Krasowska, Anna

    2010-07-23

    Biosurfactants, amphiphilic compounds, synthesized by microorganisms have surface, antimicrobial and antitumor properties. Biosurfactants prevent adhesion and biofilms formation by bacteria and fungi on various surfaces. For many years microbial surfactants are used as antibiotics with board spectrum of activity against microorganisms. Biosurfactants act as antiviral compounds and their antitumor activities are mediated through induction of apoptosis. This work presents the current state of knowledge related to biomedical activity of biosurfactants.

  17. Sophorolipid biosurfactant against bacteria relevant to tooth caries and skin hygiene

    USDA-ARS?s Scientific Manuscript database

    Sophorolipid (SL) is glycolipid biosurfactant produced by yeast. Its general antimicrobial activity was previously reported. In this paper, we present the antimicrobial activity of SL specifically against oral and skin bacteria. Using a microplate to continuously monitor cell growth, we found com...

  18. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    SciTech Connect

    Suryanti, Venty Hastuti, Sri; Pujiastuti, Dwi

    2016-02-08

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  19. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  20. Biosurfactant Production by a Soil Pseudomonas Strain Growing on Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Deziel, E.; Paquette, G.; Villemur, R.; Lepine, F.; Bisaillon, J.

    1996-01-01

    The capacity of polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria to produce biosurfactants was investigated. Twenty-three bacteria isolated from a soil contaminated with petroleum wastes were able to form clearing zones on mineral salt agar plates sprayed with solutions of PAHs. Naphthalene and phenanthrene were utilized as sole substrates. Biosurfactant production was detected by surface tension lowering and emulsifying activities from 10 of these strains grown in an iron-limited salt medium supplemented with high concentrations of dextrose or mannitol, as well as with naphthalene or phenanthrene. Glycolipid determinations showed that in cultures of Pseudomonas aeruginosa 19SJ on naphthalene, the maximal productivity of biosurfactants was delayed compared with that in cultures grown on mannitol. However, when small amounts of biosurfactants and naphthalene degradation intermediates were present at the onset of the cultivation, the delay was markedly shortened. Production of biosurfactants was accompanied by an increase in the aqueous concentration of naphthalene, indicating that the microorganism was promoting the solubility of its substrate. Detectable amounts of glycolipids were also produced on phenanthrene. This is the first report of biosurfactant production resulting from PAH metabolism. PMID:16535330

  1. Biosurfactants in agriculture.

    PubMed

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.

  2. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  3. Surface properties of lipoplexes modified with mannosylerythritol lipid-a and tween 80 and their cellular association.

    PubMed

    Ding, Wuxiao; Hattori, Yoshiyuki; Qi, Xianrong; Kitamoto, Dai; Maitani, Yoshie

    2009-02-01

    The surface properties of cationic liposomes and lipoplexes largely determine the cellular association and gene transfection efficiency. In this study, we measured the surface properties, such as zeta potentials, surface pH and hydration levels of MHAPC- and OH-Chol-lipoplexes and their cellular association, without and with the modification of biosurfactant mannosylerythritol lipid-A (MEL-A) or Tween 80 (MHAPC=N,N-methyl hydroxyethyl aminopropane carbamoyl cholesterol; OH-Chol=cholesteryl-3beta-carboxyamindoethylene-N-hydroxyethylamine). Compared to OH-Chol-lipoplexes, the higher cellular association of MHAPC-lipoplexes correlated with the significantly higher zeta potentials, lower surface pH levels and "drier" surface, as evaluated by the generalized polarization of laurdan. Both MEL-A and Tween 80 modification of MHAPC-lipoplexes did not significantly change zeta potentials and surface pH levels, while MEL-A modification of OH-Chol-lipoplexes seriously decreased them. MEL-A hydrated the liposomal surface of MHAPC-lipoplexes but dehydrated that of OH-Chol-lipoplexes, while Tween 80 hydrated those of MHAPC- and OH-Chol-lipoplexes. In all, cationic liposomes composed of lipids with secondary and tertiary amine exhibited different surface properties and cellular associations of lipoplexes, and modification with surfactants further enlarged their difference. The strong hydration ability of Tween 80 may relate to the low cellular association of lipoplexes, while the dehydration of MEL-A-modified OH-Chol-lipoplexes seemed to compensate the negative zeta potential for the cellular association of lipoplexes.

  4. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.

    PubMed

    Shavandi, Mahmoud; Mohebali, Ghasemali; Haddadi, Azam; Shakarami, Heidar; Nuhi, Ashrafossadat

    2011-02-01

    An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120°C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Algal and microbial exopolysaccharides: new insights as biosurfactants and bioemulsifiers.

    PubMed

    Paniagua-Michel, José de Jesús; Olmos-Soto, Jorge; Morales-Guerrero, Eduardo Roberto

    2014-01-01

    Currently, efforts are being made to utilize more natural biological systems as alternatives as a way to replace fossil forms of carbon. There is a growing concern at global level to have nontoxic, nonhazardous surface-active agents; contrary to synthetic surfactants, their biological counterparts or biosurfactants play a primary function, facilitating microbial presence in environments dominated by hydrophilic-hydrophobic interfaces. Algal and microbial biosurfactants/bioemulsifiers from marine and deep-sea environments are attracting major interest due to their structural and functional diversity as molecules actives of surface and an alternative biomass to replace fossil forms of carbon. Algal and microbial surfactants are lipid in nature and classified as glycolipids, phospholipids, lipopeptides, natural lipids, fatty acids, and lipopolysaccharides. These metabolic bioactive products are applicable in a number of industries and processes, viz., food processing, pharmacology, and bioremediation of oil-polluted environments. This chapter presents an update of the progress and potentialities of the principal producers of exopolysaccharide (EPS)-type biosurfactants and bioemulsifiers, viz., macro- and microalgae (cyanobacteria and diatoms) and bacteria from marine and extreme environments. Particular interest is centered into new sources and applications, viz., marine and deep-sea environments and promissory uses of these EPSs as biosurfactants/emulsifiers and other polymeric roles. The enormous benefits of these molecules encourage their discovery, exploitation, and development of new microbial EPSs that could possess novel industrial importance and corresponding innovations.

  6. Screening of biosurfactants from cloud microorganisms

    NASA Astrophysics Data System (ADS)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  7. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.

    PubMed

    Priji, Prakasan; Sajith, Sreedharan; Unni, Kizhakkepowathial Nair; Anderson, Robin C; Benjamin, Sailas

    2017-01-01

    This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L(-1) ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L(-1) critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries.

  8. Biosurfactant-producing strains in enhancing solubilization and biodegradation of petroleum hydrocarbons in groundwater.

    PubMed

    Liu, Hong; Wang, Hang; Chen, Xuehua; Liu, Na; Bao, Suriguge

    2014-07-01

    Three biosurfactant-producing strains designated as BS-1, BS-3, and BS-4 were screened out from crude oil-contaminated soil using a combination of surface tension measurement and oil spreading method. Thin layer chromatography and infrared analysis indicated that the biosurfactants produced by the three strains were lipopeptide, glycolipid, and phospholipid. The enhancement of solubilization and biodegradation of petroleum hydrocarbons in groundwater employing biosurfactant-producing strains was investigated. The three strain mixtures led to more solubilization of petroleum hydrocarbons in groundwater, and the solubilization rate was 10.5 mg l−1. The combination of biosurfactant-producing strains and petroleum-degrading strains exhibited a higher biodegradation efficiency of 85.4 % than the petroleum-degrading strains (71.2 %). Biodegradation was enhanced the greatest with biosurfactant-producing strains and petroleum-degrading strains in a ratio of 1:1. Fluorescence microscopy images illustrate that the oil dispersed into smaller droplets and emulsified in the presence of biosurfactant-producing strains, which attached to the oil. Thus, the biodegradation of petroleum hydrocarbons in groundwater was enhanced.

  9. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction.

    PubMed

    Kuyukina, M S; Ivshina, I B; Philp, J C; Christofi, N; Dunbar, S A; Ritchkova, M I

    2001-08-01

    In the present study, we proposed methyl tertiary-butyl ether (MTBE) as a solvent for extraction of biosurfactants from Rhodococcus bacterial cultures. After comparison with other well known solvent systems used for biosurfactant extraction, it was found that MTBE was able to extract crude surfactant material with high product recovery (10 g/l), efficiency (critical micelle concentration (CMC), 130-170 mg/l) and good functional surfactant characteristics (surface and interfacial tensions, 29 and 0.9 mN/m, respectively). The isolated surfactant complex contained 10% polar lipids, mostly glycolipids possessing maximal surface activity. Ultrasonic treatment of the extraction mixture increased the proportion of polar lipids in crude extract, resulting in increasing surfactant efficiency. Due to certain characteristics of MTBE, such as relatively low toxicity, biodegradability, ease of downstream recovery, low flammability and explosion safety, the use of this solvent as an extraction agent in industrial scale biosurfactant production is feasible.

  10. Cytotoxic effect of microbial biosurfactants against human embryonic kidney cancerous cell: HEK-293 and their possible role in apoptosis.

    PubMed

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mohapatra, Purusottam; Kundu, Chanakya Nath; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2014-11-01

    Two different microbial biosurfactants S9BS and CHBS were isolated from Lysinibacillus fusiformis S9 and Bacillus tequilensis CH. Cytotoxicity effect of these biosurfactants on human embryonic kidney cancerous cell (HEK-293) were studied with the help of 3-(4,5-dimethylthiazol-2yl-)-2, 5-diphenyl tetrazolium bromide (MTT) assay and morphological changes were observed under inverted microscope. The biosurfactants exhibited positive cytotoxic effect on HEK-293 cell line. It was found that LC50 of S9BS and CHBS were 75 and 100 μg ml(-1), respectively. Further cell cycle and apoptosis analysis of biosurfactant-treated HEK-293 cell line were done by FACS. In this study, cytotoxic effect of glycolipid biosurfactant against HEK-293 cell lines is reported for the first time. Mechanism towards increased membrane permeability of biosurfactant-treated cancer cell may be the incorporation of its lipid moiety into the plasma membrane leading to formation of pores and membrane disruption. Hence, these microbial biosurfactants can prove to be significant biomolecule for cancer treatment.

  11. Solubilization of Polycyclic Aromatic Hydrocarbons by Single and Binary Mixed Rhamnolipid-Sophorolipid Biosurfactants.

    PubMed

    Song, Dandan; Liang, Shengkang; Yan, Lele; Shang, Yujun; Wang, Xiuli

    2016-07-01

    Biosurfactants are promising additives for surfactant enhanced remediation (SER) technologies due to their low toxicity and high biodegradability. To develop green and efficient additives for SER, the aqueous solubility enhancements of polycyclic aromatic hydrocarbons (PAHs; naphthalene, phenanthrene, and pyrene) by rhamnolipid (RL) and sophorolipid (SL) biosurfactants were investigated in single and binary mixed systems. The solubilization capacities were quantified in terms of the solubility enhancement factor, molar solubilization ratio (MSR), and micelle-water partition coefficient (). Rughbin's model was applied to evaluate the interaction parameters (β) in the mixed RL-SL micelles. The solubility of the PAHs increased linearly with the glycolipid concentration above the critical micelle concentration (CMC) in both single and mixed systems. Binary RL-SL mixtures exhibited greater solubilization than individual glycolipids. At a SL molar fraction of 0.7 to 0.8, the solubilization capacity was the greatest, and the MSR and reached their maximum values, and β values became positive. These results suggest that the two biosurfactants act synergistically to increase the solubility of the PAHs. The solubilization capacity of the RL-SL mixtures increased with increasing temperature and decreased with increasing salinity. The aqueous solubility of phenanthrene reached a maximum value at pH of 5.5. Moreover, the mixed RL-SL systems exhibited a strong ability to solubilize PAHs, even in the presence of heavy metal ions. These mixed biosurfactant systems have the potential to improve the performance of SER technologies using biosurfactants to solubilize hydrophobic organic contaminants by decreasing the applied biosurfactant concentration, which reduces the costs of remediation.

  12. Glycolipids: Occurrence, Significance, and Properties

    NASA Astrophysics Data System (ADS)

    Holst, Otto

    This chapter focuses on the occurrence and the physicochemical properties of glycolipids in Nature. Owing to space limitations, the presented overview must be incomplete, and, thus, mainly publications of the past 15 years are included. However, all review articles cited herein inform the interested reader about earlier work. Although lipopolysaccharides (LPS), lipoarabinomannan (LAM), lipomannan, lipoglycans, and lipoteichoic acids are not understood as glycolipids per definition, their occurrence and properties are also described in this chapter. GPI-anchored lipids is a main topic of Chap. 7.4.

  13. Microbial biosurfactants and biodegradation.

    PubMed

    Ward, Owen P

    2010-01-01

    Microbial biosurfactants are amphipathic molecules having typical molecular weights of 500-1500 Da, made up of peptides, saccharides or lipids or their combinations. In biodegradation processes they mediate solubilisation, mobilization and/or accession of hydrophobic substrates to microbes. They may be located on the cell surface or be secreted into the extracellular medium and they facilitate uptake of hydrophobic molecules through direct cellular contact with hydrophobic solids or droplets or through micellarisation. They are also involved in cell physiological processes such as biofilm formation and detachment, and in diverse biofilm associated processes such as wastewater treatment and microbial pathogenesis. The protection of contaminants in biosurfactants micelles may also inhibit uptake of contaminants by microbes. In bioremediation processes biosurfactants may facilitate release of contaminants from soil, but soils also tend to bind surfactants strongly which makes their role in contaminant desorption more complex. A greater understanding of the underlying roles played by biosurfactants in microbial physiology and in biodegradative processes is developing through advances in cell and molecular biology.

  14. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant.

    PubMed

    Konishi, Masaaki; Nishi, Shinro; Fukuoka, Tokuma; Kitamoto, Dai; Watsuji, Tomo-O; Nagano, Yuriko; Yabuki, Akinori; Nakagawa, Satoshi; Hatada, Yuji; Horiuchi, Jun-Ichi

    2014-08-01

    Glycolipid biosurfactant-producing bacteria were isolated from deep-sea sediment collected from the Okinawa Trough. Isolate BS15 produced the largest amount of the glycolipid, generating up to 6.31 ± 1.15 g l(-1) after 4 days at 20 °C. Glucose was identified in the hydrolysate of the purified major component of the biosurfactant glycolipid. According to gas chromatography/mass spectrometry analysis, the hydrophobic moieties in the major component were hexadecanoate, octadecanoate, 3-hydroxyhexadecanoate, 2-hydroxyoctanoate, and succinate. The molecular weight of the purified major glycolipid was calculated to be 1,211, while (1)H and (13)C nuclear magnetic resonance spectra confirmed that the major component consisted of 2 mol of α-glucoside and 1 mol of β-glucoside. The molecular structure was assigned as novel trisaccharide-type glycolipid biosurfactant, glucotriose lipids. The critical micelle concentration of the purified major glycolipid was 2.3 × 10(-6) M, with a surface tension of 29.5 mN m(-1). Phylogenetic analysis showed isolate BS15 was closely related to a Rhodococcus strains isolated from Antarctica, and to Rhodococcus fascians, a phytopathogen. PCR analysis showed that the fasA, fasB, fasC, fasD, fasE, and fasF genes, which are involved in phytohormone-like cytokinin production, were not present in the genome of BS15; however, analysis of a draft genome sequence of BS15 (5.5 Mb) identified regions with 31 %, 53 %, 46 %, 30 %, and 31 % DNA sequence identity to the fasA, fasB, fasC, and fasD genes, respectively.

  15. Utilization of palm oil decanter cake as a novel substrate for biosurfactant production from a new and promising strain of Ochrobactrum anthropi 2/3.

    PubMed

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-03-01

    A biosurfactant-producing bacterium, isolate 2/3, was isolated from mangrove sediment in the south of Thailand. It was evaluated as a potential biosurfactant producer. The highest biosurfactant production (4.52 g/l) was obtained when the cells were grown on a minimal salt medium containing 25 % (v/v) palm oil decanter cake and 1 % (w/v) commercial monosodium glutamate as carbon and nitrogen sources, respectively. After microbial cultivation at 30 °C in an optimized medium for 96 h, the biosurfactant produced was found to reduce the surface tension of pure water to 25.0 mN/m with critical micelle concentrations of 8.0 mg/l. The stability of the biosurfactant at different salinities, pH and temperature and also its emulsifying activity was investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pH and salt concentrations. The biosurfactant obtained was confirmed as a glycolipid type biosurfactant by using a biochemical test, fourier-transform infrared spectroscopy, MNR and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance polyaromatic hydrocarbons solubility.

  16. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber.

    PubMed

    Busscher, H J; van Hoogmoed, C G; Geertsema-Doornbusch, G I; van der Kuijl-Booij, M; van der Mei, H C

    1997-10-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the presence of a conditioning film. Mechanistically, this interference in yeast adhesion by S. thermophilus B was not due to direct physical effects but to biosurfactant release by the adhering bacteria, because experiments with S. thermophilus B cells that had released their biosurfactants prior to adhesion to silicone rubber and competition with yeasts did not show interference with initial yeast adhesion. The amounts of biosurfactants released were highest for mid-exponential- and early-stationary-phase bacteria (37 mg.g of cells-1 [dry weight]), but biosurfactants released by stationary-phase bacteria (14 mg.g of cells-1 [dry weight]) were the most surface active. The crude biosurfactants released were mixtures of various components, with a glycolipid-like component being the most surface active. A lipid-enriched biosurfactant fraction reduced the surface tension of an aqueous solution to about 35 mJ.m-2 at a concentration of only 0.5 mg.ml-1. The amount of biosurfactant released per S. thermophilus B cell was estimated to be sufficient to cover approximately 12 times the area of the cross section of the bacterium, making biosurfactant release a powerful defense weapon in the postadhesion competition of the bacterium with microorganisms such as yeasts. Preadsorption of biosurfactants to the silicone rubber prior to allowing yeasts to adhere was as effective against C. albicans GB 1/2 adhesion as covering 1 to 2% of the silicone rubber surface with adhering S. thermophilus B, but a

  17. Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber.

    PubMed Central

    Busscher, H J; van Hoogmoed, C G; Geertsema-Doornbusch, G I; van der Kuijl-Booij, M; van der Mei, H C

    1997-01-01

    The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the presence of a conditioning film. Mechanistically, this interference in yeast adhesion by S. thermophilus B was not due to direct physical effects but to biosurfactant release by the adhering bacteria, because experiments with S. thermophilus B cells that had released their biosurfactants prior to adhesion to silicone rubber and competition with yeasts did not show interference with initial yeast adhesion. The amounts of biosurfactants released were highest for mid-exponential- and early-stationary-phase bacteria (37 mg.g of cells-1 [dry weight]), but biosurfactants released by stationary-phase bacteria (14 mg.g of cells-1 [dry weight]) were the most surface active. The crude biosurfactants released were mixtures of various components, with a glycolipid-like component being the most surface active. A lipid-enriched biosurfactant fraction reduced the surface tension of an aqueous solution to about 35 mJ.m-2 at a concentration of only 0.5 mg.ml-1. The amount of biosurfactant released per S. thermophilus B cell was estimated to be sufficient to cover approximately 12 times the area of the cross section of the bacterium, making biosurfactant release a powerful defense weapon in the postadhesion competition of the bacterium with microorganisms such as yeasts. Preadsorption of biosurfactants to the silicone rubber prior to allowing yeasts to adhere was as effective against C. albicans GB 1/2 adhesion as covering 1 to 2% of the silicone rubber surface with adhering S. thermophilus B, but a

  18. Effect of Mannosylerythritol lipid-A on light scattering of AOT/D2O/Octane

    NASA Astrophysics Data System (ADS)

    Sharifi, Soheil

    2016-09-01

    The light scattering technique is used for the study of interaction of Mannosylerythritol lipid-A on AOT/D2O/Octane. The collective diffusion of AOT/D2O droplets soluble in Octane mixed with lipid is founded from a correlation function of light scattering. We focus on the variation of the dynamic behavior of droplets as a function of the lipid concentrations and the size of droplets. The increase of concentration of Mannosylerythritol lipid-A on microemulsion decreases the dynamic of droplets. The SAXS experiment shows the size and the interaction of the droplets change by increase of Mannosylerythritol lipid-A concentration. A hard sphere model can describe the interaction of lipid with AOT/D2O droplets.

  19. Biosurfactants for microbubble preparation and application

    USDA-ARS?s Scientific Manuscript database

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes the type of biosurfactants based on their origin. Some of the widely used biosurfactants are introduced. The current statues and future trends in the production of biosurfactants are discus...

  20. Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents.

    PubMed

    Monteiro, Andrea S; Coutinho, Joana O P A; Júnior, Ary C; Rosa, Carlos A; Siqueira, Ezequias P; Santos, Vera L

    2009-12-01

    The yeast strain CLOA 72 isolated from the effluent of a dairy industry in Brazil and identified as Trichosporon montevideense, was able to grow and produce a glycolipid biosurfactant when cultured on a mineral medium (MM) with sunflower oil as the carbon source. Biosurfactant production was partially growth-associated and maximal emulsification activity was observed at 144 h of cultivation (78.92%). The biosurfactant purified by precipitation with ethanol showed 78.66% emulsifying activity when used in concentrations above 4.5 mg/ml and was able to reduce the surface tension of water to values below 44.9 mN/m. The critical micellar concentration (CMC) was found to be 2.2 mg/ml. The highest emulsifying activity (E(24)) has been observed with vegetable oils, toluene, kerosene, isooctane, cyclohexane, hexane, diesel oil and hexadecane as compared to mineral oil and oleic acid. The biosurfactant also showed good stability during exposure to 100 degrees C for different periods of time (10 to 60 min), to high salinity (30% of NaCl, KCl and NaHCO(3)), and to a wide range of pH values (1-10). The biosurfactant purified by gel filtration chromatography is a glycolipid, with lipid portion containing 16.03% (9Z)-octadec-9-enoic acid, 14.92% hexadecanoic acid, and 9.63% (E) octadec-9-enoic acid and the carbohydrate portion containing mannose (35.29%), xylose (41.99%), arabinose (17.47%), and glucose (5.25%).

  1. Isolation and functional characterization of a biosurfactant produced by a new and promising strain of Oleomonas sagaranensis AT18.

    PubMed

    Saimmai, Atipan; Rukadee, Onkamon; Onlamool, Theerawat; Sobhon, Vorasan; Maneerat, Suppasil

    2012-10-01

    Biosurfactant-producing bacteria were isolated from mangrove sediment in southern Thailand. Isolates were screened for biosurfactant production by using the surface tension test. The highest reduction of surface tension was achieved with a bacterial strain which was identified by 16S rRNA gene sequencing as Oleomonas sagaranensis AT18. It has also been investigated using different carbon and nitrogen sources. It showed that the strain was able to grow and reduce the surface tension of the culture supernatant to 25 mN/m. In all 5.30 g of biosurfactant yield was obtained after 54 h of cultivation by using molasses and NaNO₃ as carbon and nitrogen sources, respectively. The biosurfactant recovery by chloroform:methanol extraction showed a small critical micelle concentration value (8 mg/l), thermal and pH stability with respect to surface tension reduction. It also showed emulsification activity and a high level of salt concentration. The biosurfactant obtained was confirmed as a glycolipid by using a biochemical test, FT-IR and mass spectra. The crude biosurfactant showed a broad spectrum of antimicrobial activity and also had the ability to emulsify oil and enhance PAHs solubility.

  2. Interaction of a trehalose lipid biosurfactant produced by Rhodococcus erythropolis 51T7 with a secretory phospholipase A2.

    PubMed

    Zaragoza, Ana; Teruel, José A; Aranda, Francisco J; Ortiz, Antonio

    2013-10-15

    Trehalose-containing glycolipid biosurfactants form an emerging group of interesting compounds, which alter the structure and properties of phospholipid membranes, and interact with enzymatic and non-enzymatic proteins. Phospholipases A2 constitute a class of enzymes that hydrolyze the sn-2 ester of glycerophospholipids, and are classified into secreted phospholipases A2 (sPLA2) and intracellular phospholipases A2. In this work, pancreatic sPLA2 was chosen as a model enzyme to study the effect of the trehalose lipid biosurfactant on enzymes acting on interfaces. By using this enzyme, it is possible to study the modulation of enzyme activity, either by direct interaction of the biosurfactant with the protein, or as a result of the incorporation of the glycolipid on the phospholipid target membrane. It is shown that the succinoyl trehalose lipid isolated from Rhodococcus erythropolis 51T7 interacts with porcine pancreatic sPLA2 and inhibits its catalytic activity. Two modes of inhibition are observed, which are clearly differentiated by its timescale. First, a slow inhibition of sPLA2 activity upon preincubation of the enzyme with trehalose lipid in the absence of substrate is described. Second, incorporation of trehalose lipid into the phospholipid target membrane gives rise to a fast enzyme inhibition. These results are discussed in the light of previous data on sPLA2 inhibitors and extend the list of interesting biological activities reported for this R. erythropolis trehalose lipid biosurfactant.

  3. Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry.

    PubMed

    Luna, Juliana M; Rufino, Raquel D; Sarubbo, Leonie A; Campos-Takaki, Galba Maria

    2013-02-01

    The development of less toxic, biodegradable, surfactants, such as biosurfactants, is a key strategy for acquiring environmentally friendly compounds. The aim of the present study was to employ an optimised medium containing 9% ground nut oil refinery residue and 9% corn steep liquor for the production of a biosurfactant by Candida sphaerica. Fermentation was carried out at 28 °C and 200 rpm for 144 h. Biosurfactant yield was 9 g/l. The biosurfactant reduced the surface tension of the medium to 25 mN/m, with a critical micelle concentration of 0.025%. The product demonstrated stability with regard to surface tension reduction and emulsification in a range of temperatures (5-120 °C) and pH values (2-12) as well as tolerance to high concentrations of NaCl (2-10%). Hydrophobicity tests indicate two possible insoluble substrate uptake mechanisms: direct interfacial uptake and biosurfactant-mediated transfer (cell contact with emulsified or solubilised hydrocarbons). The biosurfactant was characterised as an anionic glycolipid consisting of 70% lipids and 15% carbohydrates and demonstrated no toxicity to the microcrustacean Artemia salina or the vegetables Brassica oleracea, Solanum gilo, Lactuca sativa L. and Brassica oleracea L. The biosurfactant recovered 95% of motor oil adsorbed to a sand sample, demonstrating considerable potential for use in bioremediation processes, especially in the petroleum industry.

  4. Extracellular aromatic biosurfactant produced by Tsukamurella pseudospumae and T. spumae during growth on n-hexadecane.

    PubMed

    Kügler, Johannes H; Kraft, Axel; Heißler, Stefan; Muhle-Goll, Claudia; Luy, Burkhard; Schwack, Wolfgang; Syldatk, Christoph; Hausmann, Rudolf

    2015-10-10

    Biosurfactants are surface-active agents produced by microorganisms and show increasing significance in various industrial applications. A great variety of these secondary metabolites are described to occur within actinomycetes, amongst trehalose lipids and oligosaccharide lipids produced by the family Tsukamurellaceae. This study reports on the production of not yet described compounds with surface active behavior by non-pathogenic Tsukamurella pseudospumae and Tsukamurella spumae during growth on hydrophobic carbon sources. Extracts of the purified compounds differ in terms of structure and performance properties to other biosurfactants described within their family. Infrared and nuclear magnetic resonance spectroscopic analysis revealed the presence of aromatic moieties within the surfactant produced, which to date is only known to occur within phenolic glycolipids of some mycobateria. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.

    PubMed

    Sharma, Deepak; Ansari, Mohammad Javed; Al-Ghamdi, Ahmad; Adgaba, Nuru; Khan, Khalid Ali; Pruthi, Vikas; Al-Waili, Noori

    2015-11-01

    Among 348 microbial strains isolated from petroleum hydrocarbon-contaminated soil, five were selected for their ability to produce biosurfactant based on battery of screening assay including hemolytic activity, surface tension reduction, drop collapse assay, emulsification activity, and cell surface hydrophobicity studies. Of these, bacterial isolate DSVP20 was identified as Pseudomonas aeruginosa (NCBI GenBank accession no. GQ865644) based on biochemical characterization and the 16S rDNA analysis, and it was found to be a potential candidate for biosurfactant production. Maximum biosurfactant production recorded by P. aeruginosa DSVP20 was 6.7 g/l after 72 h at 150 rpm and at a temperature of 30 °C. Chromatographic analysis and high-performance liquid chromatography-mass spectrometry (HPLC-MS) revealed that it was a glycolipid in nature which was further confirmed by nuclear magnetic resonance (NMR) spectroscopy. Bioremediation studies using purified biosurfactant showed that P. aeruginosa DSVP20 has the ability to degrade eicosane (97%), pristane (75%), and fluoranthene (47%) when studied at different time intervals for a total of 7 days. The results of this study showed that the P. aeruginosa DSVP20 and/or biosurfactant produced by this isolate have the potential role in bioremediation of petroleum hydrocarbon-contaminated soil.

  6. Production and Biomedical Applications of Probiotic Biosurfactants.

    PubMed

    Fariq, Anila; Saeed, Ayesha

    2016-04-01

    Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants.

  7. Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72.

    PubMed

    Monteiro, Andrea S; Miranda, Tatiana T; Lula, Ivana; Denadai, Ângelo M L; Sinisterra, Rubén D; Santoro, Marcelo M; Santos, Vera L

    2011-06-01

    This study evaluated the effects of glycolipid-type biosurfactant produced by Trichosporon montevideense CLOA72 in the formation of biofilms in polystyrene plate surfaces by Candida albicans CC isolated from the apical tooth canal. Biofilm formation was reduced up to 87.4% with use of biosurfactant at 16 mg/ml concentration. It has been suggested that the interaction with the cell or polystyrene plate surface could ultimately be responsible for these actions. Therefore, the interaction of C. albicans CC cells with the biosurfactant, as well as the corresponding thermodynamic parameters, have been determined by isothermal titration calorimetry and zeta potential measurements. This process is endothermic (((int)H°=+1284±5 cal/mg OD(600)) occurring with a high increase of entropy (T((int)S°=+10635 cal/mg OD(600)). The caloric energy rate data released during the titulation indicates saturation of the cell-biosurfactant at 1.28 mg/ml OD(600). Also, the zeta potential of the cell surface was monitored as a function of the biosurfactant concentration added to cell suspension showing partial neutralization of net surface charge, since the value of zeta potential ranged from -16 mV to -6 mV during the titration. The changes of cell surface characteristics can contribute to the inhibition of initial adherence of cells of C. albicans in surface. The CMC of the purified biosurfactant produced from T. montevideense CLOA72 is 2.2 mg/ml, as determined both by ITC dilution experiments and by surface tension measurements. This biomolecule did not presented any cytotoxic effect in HEK 293A cell line at concentrations of 0.25-1 mg/ml. This study suggests a possible application of the referred biosurfactant in inhibiting the formation of biofilms on plastic surfaces by C. albicans.

  8. Pentaerythritol as the core of multivalent glycolipids: synthesis of a glycolipid with three SO3Lea ligands.

    PubMed

    Xue, Jie; Zhu, Junmin; Marchant, Roger E; Guo, Zhongwu

    2005-08-18

    A glycolipid containing three SO(3)Le(a) ligands was synthesized with pentaerythritol as the core. The glycolipid was used to prepare glycoliposomes that showed stability similar to that of DSPC liposomes without glycolipid. The easily prepared derivatives of pentaerythritol proved to be useful scaffolds for multivalent displaying of carbohydrates in the form of glycolipids and clustered glycoliposomes. [structure: see text

  9. Dehydration resistance of liposomes containing trehalose glycolipids

    NASA Astrophysics Data System (ADS)

    Nyberg, Kendra; Goulding, Morgan; Parthasarathy, Raghuveer

    2010-03-01

    The pathogen, Mycobacterium tuberculosis, has an unusual outer membrane containing trehalose glycolipids that may contribute to its ability to survive freezing and dehydration. Based on our recent discovery that trehalose glycolipids confer dehydration resistance to supported lipid monolayers (Biophys. J. 94: 4718-4724 (2008); Langmuir 25: 5193-5198, (2009)), we hypothesized that liposomes containing synthetic trehalose glycolipids may be dehydration-resistant as well. To test this, we measured the leakage of encapsulated fluorophores and larger macromolecular cargo from such liposomes subject to freeze drying. Both leakage assays and size measurements show that the liposomes are dehydration-resistant. In addition to demonstrating a possibly technologically useful encapsulation platform, our results corroborate the view that encapsulation in a trehalose-glycolipid-rich membrane is a biophysically viable route to protection of mycobacteria from environmental stresses.

  10. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant.

    PubMed

    Varjani, Sunita J; Upasani, Vivek N

    2017-05-01

    Surfactants are one of the most versatile group of chemicals used in various industrial processes. Their market is competitive, and manufacturers will have to expand surfactant production in ecofriendly and cost effective manner. Increasing interest in biosurfactants led to an intense research for environment friendly and cost-efficient production of biosurfactant. Structural diversity and functional properties of biosurfactants make them an attractive group of compounds for potential use in wide variety of industrial, environmental and biotechnological applications. Screening methods make task easier to obtain potential biosurfactant producing microorganisms. Variety of purification and analytical methods are available for biosurfactant structural characterization. This review aims to compile information on types and properties of biosurfactant, microbial screening methods as well as biosynthesis, extraction, purification and structural characterization of biosurfactant using rhamnolipid as a model biosurfactant. It also describes factors affecting rhamnolipid production. It gives an overview of oil recovery using biosurfactant from Pseudomonas aeruginosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Environmental Applications of Biosurfactants: Recent Advances

    PubMed Central

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A.; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-01

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies. PMID:21340005

  12. Biosurfactants for microbubble preparation and application.

    PubMed

    Xu, Qingyi; Nakajima, Mitsutoshi; Liu, Zengshe; Shiina, Takeo

    2011-01-17

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular imaging, wastewater treatment, and aerobic fermentation are presented. Several studies on the preparation, characterization and applications of biosurfactant-based microbubbles are reviewed.

  13. Environmental applications of biosurfactants: recent advances.

    PubMed

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna A; Piotrowska-Seget, Zofia; Cameotra, Swaranjit Singh

    2011-01-18

    Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with these pollutants is the use of biosurfactants and biosurfactant-producing microorganisms. The diversity of biosurfactants makes them an attractive group of compounds for potential use in a wide variety of industrial and biotechnological applications. The purpose of this review is to provide a comprehensive overview of advances in the applications of biosurfactants and biosurfactant-producing microorganisms in hydrocarbon and metal remediation technologies.

  14. Biosurfactants for Microbubble Preparation and Application

    PubMed Central

    Xu, Qingyi; Nakajima, Mitsutoshi; Liu, Zengshe; Shiina, Takeo

    2011-01-01

    Biosurfactants can be classified by their chemical composition and their origin. This review briefly describes various classes of biosurfactants based on their origin and introduces a few of the most widely used biosurfactants. The current status and future trends in biosurfactant production are discussed, with an emphasis on those derived from plants. Following a brief introduction of the properties of microbubbles, recent progress in the application of microbubble technology to molecular imaging, wastewater treatment, and aerobic fermentation are presented. Several studies on the preparation, characterization and applications of biosurfactant-based microbubbles are reviewed. PMID:21339998

  15. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    NASA Astrophysics Data System (ADS)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  16. DGDG and Glycolipids in Plants and Algae.

    PubMed

    Kalisch, Barbara; Dörmann, Peter; Hölzl, Georg

    2016-01-01

    Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).

  17. Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea.

    PubMed

    Konishi, Masaaki; Fukuoka, Tokuma; Nagahama, Takahiko; Morita, Tomotake; Imura, Tomohiro; Kitamoto, Dai; Hatada, Yuji

    2010-08-01

    We describe a detailed structure determination of biosurfactant produced by Pseudozyma hubeiensis SY62, which was newly isolated from Calyptogena soyoae (deep-sea cold-seep clam, Shirouri-gai) at 1156 m in Sagami bay. P. hubeiensis SY62 was taxonomically slightly different from the P. hubeiensis type strain, which produces biosurfactants. Glycolipid production by the strain was also slightly different from those of previously reported strains. BS productivity was estimated to be around 30 g/l from the weight of the crude extract. At least five different spots of glycolipid biosurfactants (BSs) were detected by TLC. Results of nuclear magnetic resonance spectroscopies indicated the major product, namely MEL-C (4-O-[4'-O-acetyl-2',3'-di-O-alka(e)noil-beta-d-mannopyranosyl]-d-erythritol), as a promising BS. By further structural determination, the major fatty acids of MEL-C were estimated to be saturated C(6), C(10), and C(12) acids, which were shorter than those of previously reported MEL-C. Furthermore, (1)H-NMR spectra implied the presence of C(2) acids as acyl groups. According to surface tension determination, the novel MEL-C showed larger critical micelle concentration (1.1x10(-5) M) than conventional MEL-C which bound C(10) and C(12) acids (9.1x10(-6) M). From these results, shorter fatty acids would confer hydrophilicity onto the novel MEL-C.

  18. Accelerated in vivo wound healing evaluation of microbial glycolipid containing ointment as a transdermal substitute.

    PubMed

    Gupta, Sonam; Raghuwanshi, Navdeep; Varshney, Ritu; Banat, I M; Srivastava, Amit Kumar; Pruthi, Parul A; Pruthi, Vikas

    2017-10-01

    A potent biosurfactant (BS) producing Bacillus licheniformis SV1 (NCBI GenBank Accession No. KX130852) was isolated from oil contaminated soil sample. Physicochemical investigations (TLC, HPLC, FTIR, GC-MS and NMR) revealed it to be glycolipid in nature. Fibroblast culture assay showed cytocompatibility and increased cell proliferation of 3T3/NIH fibroblast cells treated with this biosurfactant when checked using MTT assay and DAPI fluorescent staining. To evaluate the wound healing potential, BS ointment was formulated and checked for its spreadability and viscosity consistency. In vivo wound healing examination of full thickness skin excision wound rat model demonstrated the prompt re-epithelialization and fibroblast cell proliferation in the early phase while quicker collagen deposition in later phases of wound healing when BS ointment was used. These results validated the potential usage of BS ointment as a transdermal substitute for faster healing of impaired skin wound. Biochemical evaluation also substantiated the highest concentration of hydroxyproline (32.18±0.46, p<0.001) in the BS ointment treated animal tissue samples compared to the control. Hematoxylin-Eosin (H&E) and Masson's Trichrome staining validated the presence of increased amount of collagen fibers and blood vessels in the test animals treated with BS ointment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Biosurfactant production from novel air isolate NITT6L: screening, characterization and optimization of media.

    PubMed

    Vanavil, Balakrishnan; Perumalsamy, Muthiah; Rao, Ambati Seshagiri

    2013-09-28

    In this paper, an air isolate (NITT6L) has been screened based on hemolytic activity, emulsification activity, drop collapsing test, and oil displacement test, as well as lipase activity. It was found that strain NITT6L was able to reduce the surface tension of the medium from 61.5 to 39.83 mN/m and could form stable emulsions with tested vegetable oils. Morphological, biochemical, 16S rRNA sequencing analyses, and fatty acid methyl ester analysis using gas chromatography confirmed that the air isolate under study was Pseudomonas aeruginosa. Characterization of the biosurfactant using agar double diffusion assay revealed that the biosurfactant was anionic in nature, and CTAB-methylene blue assay and Molisch test revealed its glycolipid nature. The FT-IR spectrum confirmed that the crude biosurfactant was a rhamnolipid. Using unoptimized medium containing sucrose as the carbon source, the isolate was found to produce 0.3 mg/ml of rhamnolipid in batch cultivation (shake flask) at 37°C and pH 7. Optimization of the medium components was carried out using design of experiments and the yield of rhamnolipid has been enhanced to 4.6 mg/ml in 72 h of fermentation.

  20. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3

    PubMed Central

    Sharma, Deepansh; Singh Saharan, Baljeet

    2014-01-01

    Lactic acid bacteria (LAB) are ubiquitous and well-known commensal bacteria in the human and animal microflora. LAB are extensively studied and used in a variety of industrial and food fermentations. They are widely used for humans and animals as adjuvants, probiotic formulation, and dietary supplements and in other food fermentation applications. In the present investigation, LAB were isolated from raw milk samples collected from local dairy farms of Haryana, India. Further, the isolates were screened for simultaneous production of biosurfactants and bacteriocins. Biosurfactant produced was found to be a mixture of lipid and sugar similar to glycolipids. The bacteriocin obtained was found to be heat stable (5 min at 100°C). Further, DNA of the strain was extracted and amplified by the 16S rRNA sequencing using universal primers. The isolate Lactobacillus casei MRTL3 was found to be a potent biosurfactant and bacteriocin producer. It seems to have huge potential for food industry as a biopreservative and/or food ingredient. PMID:24669225

  1. EFFECT OF HYDROCARBON PHASE ON INTERFACIAL AND THERMODYNAMIC PROPERTIES OF TWO ANIONIC GLYCOLIPID BIOSURFACTANTS. (R827132)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Antibodies to single glycolipids and glycolipid complexes in Guillain-Barré syndrome subtypes

    PubMed Central

    Shahrizaila, Nortina; Kokubun, Norito; Sawai, Setsu; Umapathi, Thirugnanam; Chan, Yee-Cheun; Kuwabara, Satoshi; Hirata, Koichi

    2014-01-01

    Objective: To comprehensively investigate the relationship between antibodies to single glycolipids and their complexes and Guillain-Barré syndrome subtypes and clinical features. Methods: In acute sera from 199 patients with Guillain-Barré syndrome, immunoglobulin G (IgG) antibodies to glycolipids and ganglioside complexes were tested using ELISA against individual antigens from single glycolipids including gangliosides (LM1, GM1, GM1b, GD1a, GalNAc-GD1a, GD1b, GT1a, GT1b, GQ1b) and a neutral glycolipid, asialo-GM1 (GA1), and antigens from the combination of 2 different glycolipids. Based on serial nerve conduction studies, the electrodiagnoses were as follows: 69 demyelinating subtype, 85 axonal subtypes, and 45 unclassified. Results: Significant associations were detected between acute motor axonal neuropathy subtype and IgG antibodies to GM1, GalNAc-GD1a, GA1, or LM1/GA1 complex. Reversible conduction failure was significantly associated with IgG antibodies to GM1, GalNAc-GD1a, GD1b, or complex of LM1/GA1. No significant association was demonstrated between acute inflammatory demyelinating polyneuropathy and any of the glycolipids or ganglioside complexes. Anti-ganglioside complex antibodies alone were detected in 7 patients (5 axonal subtype). Conclusions: The current study demonstrates that antibodies to single glycolipids and ganglioside complexes are associated with acute motor axonal neuropathy or acute motor conduction block neuropathy but not acute inflammatory demyelinating polyneuropathy. Classification of evidence: This study provides Class II evidence that antibodies to glycolipids are increased in patients with acute motor axonal neuropathy and acute motor conduction block neuropathy but not acute inflammatory demyelinating polyneuropathy. PMID:24920848

  3. Biosurfactant-enhanced soil bioremediation

    SciTech Connect

    Kosaric, N.; Lu, G.; Velikonja, J.

    1995-12-01

    Bioremediation of soil contaminated with organic chemicals is a viable alternative method for clean-up and remedy of hazardous waste sites. The final objective in this approach is to convert the parent toxicant into a readily biodegradable product which is harmless to human health and/or the environment. Biodegradation of hydrocarbons in soil can also efficiently be enhanced by addition or in-situ production of biosufactants. It was generally observed that the degradation time was shortened and particularly the adaptation time for the microbes. More data from our laboratories showed that chlorinated aromatic compounds, such as 2,4-dichlorophenol, a herbicide Metolachlor, as well as naphthalene are degraded faster and more completely when selected biosurfactants are added to the soil. More recent data demonstrated an enhanced biodegradation of heavy hydrocarbons in petrochemical sludges, and in contaminated oil when biosurfactants were present or were added prior to the biodegradation process.

  4. Biochemical, Molecular, and Transcriptional Highlights of the Biosynthesis of an Effective Biosurfactant Produced by Bacillus safensis PHA3, a Petroleum-Dwelling Bacteria

    PubMed Central

    Hanano, Abdulsamie; Shaban, Mouhnad; Almousally, Ibrahem

    2017-01-01

    Petroleum crude oil (PCO)-dwelling microorganisms have exceptional biological capabilities to tolerate the toxicity of petroleum contaminants and are therefore promising emulsifier and/or degraders of PCO. This study describes a set of PCO-inhabiting bacterial species, one of which, identified as Bacillus safensis PHA3, produces an efficient biosurfactant which was characterized as a glycolipid. Fourier transform infrared spectrometer, nuclear magnetic resonance, Thin layer chromatography, HPLC, and GC-MS analysis of the purified biosurfactant revealed that the extracted molecule under investigation is likely a mannolipid molecule with a hydrophilic part as mannose and a hydrophobic part as hexadecanoic acid (C16:0). The data reveal that: (i) PHA3 is a potential producer of biosurfactant (9.8 ± 0.5 mg mL-1); (ii) pre-adding 0.15% of the purified glycolipid enhanced the degradation of PCO by approximately 2.5-fold; (iii) the highest emulsifying activity of biosurfactant was found against the PCO and the lowest was against the naphthalene; (iv) the optimal PCO-emulsifying activity was found at 30–60°C, pH 8 and a high salinity. An orthologous gene encodes a putative β-diglucosyldiacylglycerol synthase (β-DGS) was identified in PHA3 and its transcripts were significantly up-regulated by exogenous PAHs, i.e., pyrene and benzo(e)pyrene but much less by mid-chain n-alkanes (ALKs) and fatty acids. Subsequently, the accumulation of β-DGS transcripts coincided with an optimal growth of bacteria and a maximal accumulation of the biosurfactant. Of particular interest, we found that PHA3 actively catalyzed the degradation of PAHs notably the pyrene and benzo(e)pyrene but was much less effective in the mono-terminal oxidation of ALKs. Such characteristics make Bacillus safensis PHA3 a promising model for enhanced microbial oil recovery and environmental remediation. PMID:28179901

  5. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3.

    PubMed

    Sen, Suparna; Borah, Siddhartha Narayan; Bora, Arijit; Deka, Suresh

    2017-05-30

    Sophorolipids are one of the most promising glycolipid biosurfactants and have been successfully employed in bioremediation and various other industrial sectors. They have also been described to exhibit antimicrobial activity against different bacterial species. Nevertheless, previous literature pertaining to the antifungal activity of sophorolipids are limited indicating the need for further research to explore novel strains with wide antimicrobial activity. A novel yeast strain, Rhodotorula babjevae YS3, was recently isolated from an agricultural field in Assam, Northeast India. This study was primarily emphasized at the characterization and subsequent evaluation of antifungal activity of the sophorolipid biosurfactant produced by R. babjevae YS3. The growth kinetics and biosurfactant production by R. babjevae YS3 was evaluated by cultivation in Bushnell-Haas medium containing glucose (10% w/v) as the sole carbon source. A reduction in the surface tension of the culture medium from 70 to 32.6 mN/m was observed after 24 h. The yield of crude biosurfactant was recorded to be 19.0 g/l which might further increase after optimization of the growth parameters. The biosurfactant was characterized to be a heterogeneous sophorolipid (SL) with both lactonic and acidic forms after TLC, FTIR and LC-MS analyses. The SL exhibited excellent oil spreading and emulsifying activity against crude oil at 38.46 mm(2) and 100% respectively. The CMC was observed to be 130 mg/l. The stability of the SL was evaluated over a wide range of pH (2-10), salinity (2-10% NaCl) and temperature (at 120 °C for time intervals of 30 up to 120 min). The SL was found to retain surface-active properties under the extreme conditions. Additionally, the SL exhibited promising antifungal activity against a considerably broad group of pathogenic fungi viz. Colletotrichum gloeosporioides, Fusarium verticilliodes, Fusarium oxysporum f. sp. pisi, Corynespora cassiicola, and Trichophyton rubrum. The

  6. Selected microbial glycolipids: production, modification and characterization.

    PubMed

    Palme, Olof; Moszyk, Anja; Iphöfer, Dimitri; Lang, Siegmund

    2010-01-01

    This chapter deals with two types of biosurfactants that are not in the spotlight of general research: glycoglycerolipids and oligosaccharide lipids. The main focus is on glycolglycerolipids from marine bacteria like Microbacterium spec. DSM 12583, Micrococcus luteus (Hel 12/2) and Bacillus pumilus strain AAS3 and on oligosaccharide lipids from Tsukamurella spec. DSM 44370 and Nocardia corynebacteroides SM1. General and special structures, microbial producers, production conditions and chemo-enzymatic modifications as well as properties are outlined.

  7. Future perspectives for glycolipid research in medicine.

    PubMed Central

    Cox, Timothy M

    2003-01-01

    Medical interest in glycolipids has been mainly directed to the rare and complex glycosphingolipid storage disorders that are principally caused by unitary deficiencies of lysosomal acid hydrolases. However, glycolipids are critical components of cell membranes and occur within newly described membrane domains known as lipid rafts. Glycolipids are components of important antigen systems and membrane receptors; they participate in intracellular signalling mechanisms and may be presented to the immune system in the context of the novel CD1 molecules present on T lymphocytes. A knowledge of their mechanism of action in the control of cell growth and survival as well as developmental pathways is likely to shed light on the pathogenesis of the glycosphingolipid storage disorders as well as the role of lipid second messengers in controlling cell mobility and in the mobilization of intracellular calcium stores (a biological role widely postulated particularly for the lysosphingolipid metabolite sphingosine 1-phosphate). Other sphingolipid metabolites such as ceramide 1-phosphate may be involved in apoptotic responses and in phagocytosis and synaptic vesicle formation. The extraordinary pharmaceutical success of enzymatic complementation for Gaucher's disease using macrophage-targeted human glucocerebrosidase has focused further commercial interest in other glycolipid storage diseases: the cost of targeted enzyme therapy and its failure to restore lysosomal enzymatic deficiencies in the brain has also stimulated interest in the concept of substrate reduction therapy using diffusible inhibitory molecules. Successful clinical trials of the iminosugar N-butyldeoxynojirimycin in type 1 Gaucher's disease prove the principle of substrate reduction therapy and have attracted attention to this therapeutic method. They will also foster important further experiments into the use of glycolipid synthesis inhibitors for the severe neuronopathic glycosphingolipidoses, for which no

  8. Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant.

    PubMed

    Ndlovu, Thando; Rautenbach, Marina; Vosloo, Johann Arnold; Khan, Sehaam; Khan, Wesaal

    2017-12-01

    Biosurfactants are unique secondary metabolites, synthesised non-ribosomally by certain bacteria, fungi and yeast, with their most promising applications as antimicrobial agents and surfactants in the medical and food industries. Naturally produced glycolipids and lipopeptides are found as a mixture of congeners, which increases their antimicrobial potency. Sensitive analysis techniques, such as liquid chromatography coupled to mass spectrometry, enable the fingerprinting of different biosurfactant congeners within a naturally produced crude extract. Bacillus amyloliquefaciens ST34 and Pseudomonas aeruginosa ST5, isolated from wastewater, were screened for biosurfactant production. Biosurfactant compounds were solvent extracted and characterised using ultra-performance liquid chromatography (UPLC) coupled to electrospray ionisation mass spectrometry (ESI-MS). Results indicated that B. amyloliquefaciens ST34 produced C13-16 surfactin analogues and their identity were confirmed by high resolution ESI-MS and UPLC-MS. In the crude extract obtained from P. aeruginosa ST5, high resolution ESI-MS linked to UPLC-MS confirmed the presence of di- and monorhamnolipid congeners, specifically Rha-Rha-C10-C10 and Rha-C10-C10, Rha-Rha-C8-C10/Rha-Rha-C10-C8 and Rha-C8-C10/Rha-C10-C8, as well as Rha-Rha-C12-C10/Rha-Rha-C10-C12 and Rha-C12-C10/Rha-C10-C12. The crude surfactin and rhamnolipid extracts also retained pronounced antimicrobial activity against a broad spectrum of opportunistic and pathogenic microorganisms, including antibiotic resistant Staphylococcus aureus and Escherichia coli strains and the pathogenic yeast Candida albicans. In addition, the rapid solvent extraction combined with UPLC-MS of the crude samples is a simple and powerful technique to provide fast, sensitive and highly specific data on the characterisation of biosurfactant compounds.

  9. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Analysis of glycolipids by fast atom bombardment mass spectrometry.

    PubMed

    Bosch, M P; Parra, J L; Manresa, M A; Ventura, F; Rivera, J

    1989-12-01

    The positive and negative ion fast atom bombardment (FAB) mass spectra of four glycolipids obtained from microbial cultures are reported. The spectra of the glycolipids in the positive ion mode are characterized by abundant [M + Na]+, [M + Na + matrix]+ and [M + 2Na - H]+ species. In negative FAB conditions the molecules yield [M - H]-. Our understanding of the FAB behaviour of glycolipids in both positive and negative modes has been considerably aided in the structure elucidation, without any derivatization or degradation reaction of the compounds studied. The technique allows unambiguous molecular weight determination of low-microgram amounts of these glycolipids purified from biological sources and provides useful fragmentation information.

  11. Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release

    PubMed Central

    2011-01-01

    Background Biosurfactants have been reported to utilize a number of immiscible substrates and thereby facilitate the biodegradation of panoply of polyaromatic hydrocarbons. Olive oil is one such carbon source which has been explored by many researchers. However, studying the concomitant production of biosurfactant and esterase enzyme in the presence of olive oil in the Bacillus species and its recombinants is a relatively novel approach. Results Bacillus species isolated from endosulfan sprayed cashew plantation soil was cultivated on a number of hydrophobic substrates. Olive oil was found to be the best inducer of biosurfactant activity. The protein associated with the release of the biosurfactant was found to be an esterase. There was a twofold increase in the biosurfactant and esterase activities after the successful cloning of the biosurfactant genes from Bacillus subtilis SK320 into E.coli. Multiple sequence alignment showed regions of similarity and conserved sequences between biosurfactant and esterase genes, further confirming the symbiotic correlation between the two. Biosurfactants produced by Bacillus subtilis SK320 and recombinant strains BioS a, BioS b, BioS c were found to be effective emulsifiers, reducing the surface tension of water from 72 dynes/cm to as low as 30.7 dynes/cm. Conclusion The attributes of enhanced biosurfactant and esterase production by hyper-producing recombinant strains have many utilities from industrial viewpoint. This study for the first time has shown a possible association between biosurfactant production and esterase activity in any Bacillus species. Biosurfactant-esterase complex has been found to have powerful emulsification properties, which shows promising bioremediation, hydrocarbon biodegradation and pharmaceutical applications. PMID:21707984

  12. Candida tropicalis BPU1, a novel isolate from the rumen of the Malabari goat, is a dual producer of biosurfactant and polyhydroxybutyrate.

    PubMed

    Priji, Prakasan; Unni, K N; Sajith, S; Benjamin, Sailas

    2013-03-01

    This unique study reports a new strain (BPU1) of Candida tropicalis isolated from the rumen of the Malabari goat, showing dual production of biosurfactant and polyhydroxybutyrate. C. tropicalis strain BPU1, a facultative anaerobe, was tuned to become an aerobe in specially designed flask, the Benjamin flask. The puffy circular colonies were smooth, white-to-cream in colour, with pseudo-filaments. The strain fermented glucose, sucrose, maltose and dextrose, but not lactose and cellulose. It assimilated (NH4 )2 SO4 , peptone, glycine and arginine, but not NaNO3 , as the nitrogen source. Interestingly, it utilized groundnut oil (up to 0.3%) in a specially designed basal mineral salt medium (BSM). Its capability for dual production of a biosurfactant and a polyhydroxybutyarate (PHB) was explored by various methods from the BSM-oil medium. Extracted biosurfactant from 6 day-old culture was biochemically characterized as a complex of lipid and carbohydrate with an Rf value of 0.88 by thin layer chromatography. Its PHB production was confirmed by specific staining methods with Nile blue sulphate, Sudan black B and Sudan 3. Briefly, this first-ever report gives ample physical evidence for the dual production of a glycolipid (biosurfactant) and PHB by C. tropicalis strain BPU1 on a specially designed medium, which would open up elaborate research on this yeast.

  13. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    PubMed

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  14. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids.

    PubMed

    Bai, Long; McClements, David Julian

    2016-10-01

    Nanoemulsions are used in the food, cosmetics, personal care and pharmaceutical industries to provide desirable optical, textural, stability, and delivery characteristics. In many industrial applications, it is desirable to formulate nanoemulsions using natural ingredients so as to develop label-friendly products. Rhamnolipids are biosurfactants isolated from certain microorganisms using fermentation processes. They are glycolipids that have a polar head consisting of rhamnose units and a non-polar tail consisting of a hydrocarbon chain. In this study, the interfacial characteristics of this natural surfactant at medium chain triglyceride (MCT) oil-water interfaces were characterized, and its ability to form nanoemulsions was compared to that of another natural surfactant (quillaja saponins). The influence of rhamnolipid concentration, homogenization pressure, and oil type on the mean droplet diameter of emulsions produced by microfluidization was determined. Rhamnolipids were highly effective at forming small droplets (d32<0.15μm) at low surfactant-to-oil ratios (SOR<1:10) for MCT oil. Rhamnolipids could also be used to form small droplets using long chain triglyceride oils, such as corn and fish oil. Rhamnolipid-coated droplets were stable to aggregation over a range of pH values (5-9), salt concentrations (<100mM NaCl) and temperatures (20-90°C). However, droplet aggregation was observed at highly acidic (pH 2-4) and high ionic strength (200-500mM NaCl) conditions. These effects were attributed to a reduction in electrostatic repulsion at low pH and high salt levels. Rhamnolipid-coated droplets had a high negative charge at neutral pH that decreased in magnitude with decreasing pH. These results indicate that rhamnolipids are effective natural surfactants that may be able to replace synthetic surfactants in certain commercial applications.

  15. Nitrogen and hydrophosphate affects glycolipids composition in microalgae

    PubMed Central

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L−1 hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L−1 d−1. Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  16. Biosurfactant production by Azotobacter chroococcum isolated from the marine environment.

    PubMed

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2009-01-01

    Preliminary characterization of a biosurfactant-producing Azotobacter chroococcum isolated from marine environment showed maximum biomass and biosurfactant production at 120 and 132 h, respectively, at pH 8.0, 38 degrees C, and 30 per thousand salinity utilizing a 2% carbon substrate. It grew and produced biosurfactant on crude oil, waste motor lubricant oil, and peanut oil cake. Peanut oil cake gave the highest biosurfactant production (4.6 mg/mL) under fermentation conditions. The biosurfactant product emulsified waste motor lubricant oil, crude oil, diesel, kerosene, naphthalene, anthracene, and xylene. Preliminary characterization of the biosurfactant using biochemical, Fourier transform infrared spectroscopy, and mass spectral analysis indicated that the biosurfactant was a lipopeptide with percentage lipid and protein proportion of 31.3:68.7.

  17. Microbial biofilms: biosurfactants as antibiofilm agents.

    PubMed

    Banat, Ibrahim M; De Rienzo, Mayri A Díaz; Quinn, Gerry A

    2014-12-01

    Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.

  18. Marine biosurfactants, II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1.

    PubMed

    Passeri, A; Lang, S; Wagner, F; Wray, V

    1991-01-01

    Within a screening for biosurfactants we could isolate various n-alkanes utilizing marine bacteria which were capable of synthesizing glycolipids. One strain was identified as Arthrobacter sp. EK 1 which produced trehalose lipids. After purification by column and thick layer chromatography the main fraction, an anionic 2,3,4,2'-trehalose tetraester, was obtained. The chain lengths of fatty acids ranged from 8 up to 14, furthermore succinate could be detected. Since the place of substitution of succinate has so far not been cited in literature, a definitive structural elucidation was carried out chemically by hydroboration and by 1H, 2D1H, 13C and 13C-1H correlation NMR measurements. All investigations confirmed the exact position of succinate at C 2 atom of trehalose. After improvement of growth conditions the production of the trehalose tetraester increased up to 4.8 milligrams during a fermentation in 20 l bioreactor under nitrogen limitation.

  19. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances.

    PubMed

    De Almeida, Darne G; Soares Da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Banat, Ibrahim M; Sarubbo, Leonie A

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries.

  20. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances

    PubMed Central

    De Almeida, Darne G.; Soares Da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2016-01-01

    The growing global demand for sustainable technologies that improves the efficiency of petrochemical processes in the oil industry has driven advances in petroleum biotechnology in recent years. Petroleum industry uses substantial amounts of petrochemical-based synthetic surfactants in its activities as mobilizing agents to increase the availability or recovery of hydrocarbons as well as many other applications related to extraction, treatment, cleaning, and transportation. However, biosurfactants have several potential applications for use across the oil processing chain and in the formulations of petrochemical products such as emulsifying/demulsifying agents, anticorrosive, biocides for sulfate-reducing bacteria, fuel formulation, extraction of bitumen from tar sands, and many other innovative applications. Due to their versatility and proven efficiency, biosurfactants are often presented as valuable versatile tools that can transform and modernize petroleum biotechnology in an attempt to provide a true picture of state of the art and directions or use in the oil industry. We believe that biosurfactants are going to have a significant role in many future applications in the oil industries and in this review therefore, we highlight recent important relevant applications, patents disclosures and potential future applications for biosurfactants in petroleum and related industries. PMID:27843439

  1. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes

    SciTech Connect

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer We use MEL-A-containing cationic liposomes for siRNA delivery. Black-Right-Pointing-Pointer MEL-A-containing cationic liposomes can efficiently and rapidly deliver siRNA into the cytoplasm. Black-Right-Pointing-Pointer Rapid delivery of siRNA is due to the membrane fusion between liposomes and plasma membrane. -- Abstract: The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine Trade-Mark-Sign RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic

  2. Interaction of virions with membrane glycolipids

    NASA Astrophysics Data System (ADS)

    Bally, M.; Dimitrievski, K.; Larson, G.; Zhdanov, V. P.; Höök, F.

    2012-04-01

    Cellular membranes contain various lipids including glycolipids (GLs). The hydrophilic head groups of GLs extend from the membrane into the aqueous environment outside the cell where they act as recognition sites for specific interactions. The first steps of interaction of virions with cells often include contacts with GLs. To clarify the details of such contacts, we have used the total internal reflection fluorescence microscopy to explore the interaction of individual unlabelled virus-like particles (or, more specifically, norovirus protein capsids), which are firmly bound to a lipid bilayer, and fluorescent vesicles containing glycosphingolipids (these lipids form a subclass of GLs). The corresponding binding kinetics were earlier found to be kinetically limited, while the detachment kinetics were logarithmic over a wide range of time. Here, the detachment rate is observed to dramatically decrease with increasing concentration of glycosphingolipids from 1% to 8%. This effect has been analytically explained by using a generic model describing the statistics of bonds in the contact area between a virion and a lipid membrane. Among other factors, the model takes the formation of GL domains into account. Our analysis indicates that in the system under consideration, such domains, if present, have a characteristic size smaller than the contact area between the vesicle and the virus-like particle.

  3. Contributions of biosurfactants to natural or induced bioremediation.

    PubMed

    Lawniczak, Lukasz; Marecik, Roman; Chrzanowski, Lukasz

    2013-03-01

    The number of studies dedicated to evaluating the influence of biosurfactants on bioremediation efficiency is constantly growing. Although significant progress regarding the explanation of mechanisms behind biosurfactant-induced effects could be observed, there are still many factors which are not sufficiently elucidated. This corresponds to the fact that although positive influence of biosurfactants is often reported, there are also numerous cases where no or negative effect was observed. This review summarizes the recent finding in the field of biosurfactant-amended bioremediation, focusing mainly on a critical approach towards potential limitations and causes of failure while investigating the effects of biosurfactants on the efficiency of biodegradation and phytoextraction processes. It also provides a summary of successive steps, which should be taken into consideration when designing biosurfactant-related treatment processes.

  4. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization.

    PubMed

    Kundu, Debasree; Hazra, Chinmay; Dandi, Navin; Chaudhari, Ambalal

    2013-11-01

    A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l(-1)) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m(-1) and produced glycolipidic biosurfactants (45 mg l(-1)). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0-10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 (+)) and negligible amount of nitrite ion (NO2 (-)). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate > protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites.

  5. Synthetic glycolipid modification of red blood cell membranes.

    PubMed

    Frame, Tom; Carroll, Tim; Korchagina, Elena; Bovin, Nicolai; Henry, Stephen

    2007-05-01

    Glycolipids have a natural ability to insert into red cell (RBC) membranes. Based on this concept the serology of RBCs modified with synthetic analogs of blood group glycolipids (KODE technology) was developed, which entails making synthetic glycolipid constructs engineered to have specific performance criteria. Such synthetic constructs can be made to express a potentially unlimited range of carbohydrate blood group determinants. Synthetic constructs incorporating A, B, acquired-B, and Le(a) blood group determinants were constructed and used to modify RBCs. Modified cells were assessed by routine serologic methods using a range of commercially available monoclonal antibodies. RBCs modified with different concentrations of synthetic glycolipids were able to give controllable serologic results. Synthetic A and B modified cells were able to be created to represent the serology of "weak" subgroups. Specialized cells such as those bearing synthetic acquired-B antigen reacted as expected, but also exhibited extended features due to the cells bearing only specific antigen. Synthetic Le(a)-modified cells reacted as expected with anti-Le(a) reagents, but unexpectedly, were also able to detect the chemical anti-Le(ab) specificity of serologic monoclonal anti-Le(b) reagents. RBCs can be created to express normal and novel carbohydrate profiles by inserting synthetic glycolipids into them. Such cells will be useful in creating specialized antigen panels and for quality control purposes.

  6. A mouse B16 melanoma mutant deficient in glycolipids.

    PubMed Central

    Ichikawa, S; Nakajo, N; Sakiyama, H; Hirabayashi, Y

    1994-01-01

    Mouse B16 melanoma cell line, GM-95 (formerly designated as MEC-4), deficient in sialyllactosylceramide was examined for its primary defect. Glycolipids from the mutant cells were analyzed by high-performance TLC. No glycolipid was detected in GM-95 cells, even when total lipid from 10(7) cells was analyzed. In contrast, the content of ceramide, a precursor lipid molecule of glycolipids, was normal. Thus, the deficiency of glycolipids was attributed to the first glucosylation step of ceramide. The ceramide glucosyltransferase (EC 2.4.1.80) activity was not detected in GM-95 cells. There was no significant difference of sialyllactosylceramide synthase activity, however, between GM-95 and the parental cells. The deficiency of glycolipids in GM-95 cells was associated with changes of the cellular morphology and growth rate. The parental cells showed irregular shapes and tended to overlap each other. On the other hand, GM-95 cells exhibited an elongated fibroblastic morphology and parallel arrangement. The population-doubling times of GM-95 and the parental cells in serum-free medium were 28 hr and 19 hr, respectively. Images PMID:8146177

  7. Microbial biosurfactants as additives for food industries.

    PubMed

    Campos, Jenyffer Medeiros; Stamford, Tânia Lúcia Montenegro; Sarubbo, Leonie Asfora; de Luna, Juliana Moura; Rufino, Raquel Diniz; Banat, Ibrahim M

    2013-01-01

    Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro-industrial wastes as alternative substrates for their production are discussed. © 2013 American Institute of Chemical Engineers.

  8. CD1 mediated T cell recognition of glycolipids.

    PubMed

    Zajonc, Dirk M; Kronenberg, Mitchell

    2007-10-01

    Specialized subsets of T lymphocytes can distinguish the carbohydrate portions of microbial and self-glycolipids when they are presented by proteins in the CD1 family of antigen presenting molecules. Recent immunochemical and structural analyses indicate that the chemical composition of the presented carbohydrate, together with its precise orientation above the CD1 binding groove, determines if a particular T cell is activated. More recently, however, it has been shown that the lipid backbone of the glycolipid, buried inside the CD1 protein, also can have an impact on T cell activation. While glycolipid recognition is a relatively new category of T cell specificity, the powerful combination of microbial antigen discovery and structural biochemistry has provided great insight into the mechanism of carbohydrate recognition.

  9. Endotoxic Glycolipid from a Heptoseless Mutant of Salmonella minnesota

    PubMed Central

    Kasai, N.; Nowotny, A.

    1967-01-01

    The endotoxin of a heptoseless mutant of Salmonella minnesota R595 was extracted with phenol-water. Most of this material was found distributed in the insoluble fraction of the extract. The results showed that the R595 endotoxin behaved as a lipid rather than as a lipopolysaccharide (LPS). The preparation, although it does not contain O-specific polysaccharides, does contain 2-keto-3-deoxyoctonic acid (KDO), hexosamine, and several other unidentified compounds. Therefore, the term “glycolipid” is used in this paper instead of lipopolysaccharide. The crude glycolipid fraction, which was soluble in a mixture of chloroform-methanol (8:2), was purified by a procedure including fractionation with organic solvents and by different-column chromatographic methods. Although a chromatographic fraction of the glycolipid showed homogeneity in most systems investigated, the presence of contaminants could not be excluded. Chemical analysis of the glycolipids showed the absence of hexoses and heptoses. Constituents which were found were hexosamine, KDO, fatty acids, and phosphorus, which showed a relatively simple chemical composition. Partial acidic hydrolysis of the glycolipid yielded hexosamine-phosphates, as described in “Lipid A” fractions of smooth LPS preparations. Thin-layer chromatography of the partially hydrolyzed glycolipid showed a pattern similar to “Lipid A” fractions of other strains. The biological activity of the glycolipid was at the same level as that of other gram-negative endotoxins. Pyrogenicity, Shwartzman reactivity, and chick embryo ld50 values were as high or higher than those of purified Serratia marcescens endotoxin preparations, but mouse ld50 measurements gave significantly lower results. Images PMID:4965363

  10. Antibodies to heteromeric glycolipid complexes in multifocal motor neuropathy

    PubMed Central

    Galban-Horcajo F, Francesc; Fitzpatrick, Amanda M.; Hutton, Andrew J.; Dunn, Siobhan M.; Kalna, Gabriela; Brennan, Kathryn M.; Rinaldi, Simon; Yu, Robert K.; Goodyear, Carl; Willison, Hugh J.

    2013-01-01

    Background Measurement of anti-GM1 IgM antibodies in multifocal motor neuropathy (MMN) sera is confounded by relatively low sensitivity that limits clinical usefulness. Combinatorial assay methods, in which antibodies reactive to heteromeric complexes of 2 or more glycolipids are being increasingly applied to this area of diagnostic testing. Methods A newly developed combinatorial glycoarray able to identify antibodies to 45 different heteromeric glycolipid complexes and their 10 individual glycolipid components was applied to a randomly selected population of 33 MMN cases and 57 normal or disease controls. Comparison with an enzyme-linked immunosorbent assay (ELISA) was conducted for selected single glycolipids and their complexes. Results By ELISA, 22/33 MMN cases had detectable anti-GM1 IgM antibodies, whereas 19/33 MMN samples were positive for anti-GM1 antibodies by glycoarray. Analysis of variance (ANOVA) revealed that of the 55 possible single glycolipids and their 1:1 complexes, antibodies to the GM1:galactocerebroside (GM1:GalC) complex were most significantly associated with MMN, returning 33/33 MMN samples as positive by glycoarray and 29/33 positive by ELISA. Regression analysis revealed a high correlation in absolute values between ELISA and glycocarray. Receiver operator characteristic (ROC) analysis revealed insignificantly different diagnostic performance between the two methods, although at the lower end of sensitivity, the glycoarray appeared slightly advantageous by identifying antibodies in 4 ELISA-negative samples. Conclusions The use of combinatorial glycoarray or ELISA increased the diagnostic sensitivity of anti-glycolipid antibody testing in this cohort of MMN cases, without significantly affecting specificity, and may be a useful assay modification for routine clinical screening. PMID:22727042

  11. Marine biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea.

    PubMed

    Schulz, D; Passeri, A; Schmidt, M; Lang, S; Wagner, F; Wray, V; Gunkel, W

    1991-01-01

    Three bacterial strains of marine origin were isolated during a screening for biosurfactants among n-alkane degrading microorganisms. One strain-identified as Alcaligenes sp. MM1-produced a novel glucose lipid. In the case of Arthrobacter sp. EK 1 the well-known trehalose tetraester was found as major component. From another pure culture classified as Arthrobacter sp. SI 1, extracellular emulsifying agents with properties indicating high molecular weight substances were detected. Furthermore trehalose corynomycolates were found at up to 2 g/l. The isolated biosurfactants showed good interfacial and emulsifying properties.

  12. Biosurfactants in cosmetic formulations: trends and challenges.

    PubMed

    Vecino, X; Cruz, J M; Moldes, A B; Rodrigues, L R

    2017-01-12

    Cosmetic products play an essential role in everyone's life. People everyday use a large variety of cosmetic products such as soap, shampoo, toothpaste, deodorant, skin care, perfume, make-up, among others. The cosmetic industry encompasses several environmental, social and economic impacts that are being addressed through the search for more efficient manufacturing techniques, the reduction of waste and emissions and the promotion of personal hygiene, contributing to an improvement of public health and at the same time providing employment opportunities. The current trend among consumers is the pursuit for natural ingredients in cosmetic products, as many of these products exhibit equal, better or additional benefits in comparison with the chemical-based products. In this sense, biosurfactants are natural compounds with great potential in the formulation of cosmetic products given by their biodegradability and impact in health. Indeed, many of these biosurfactants could exhibit a "prebiotic" character. This review covers the current state-of-the-art of biosurfactant research for cosmetic purposes and further discusses the future challenges for cosmetic applications.

  13. Human Lysozyme Peptidase Resistance Is Perturbed by the Anionic Glycolipid Biosurfactant Rhamnolipid Produced by the Opportunistic Pathogen Pseudomonas aeruginosa.

    PubMed

    Andersen, Kell K; Vad, Brian S; Scavenius, Carsten; Enghild, Jan J; Otzen, Daniel E

    2017-01-10

    Infection by the opportunistic pathogen Pseudomonas aeruginosa (PA) is accompanied by the secretion of virulence factors such as the secondary metabolite rhamnolipid (RL) as well as an array of bacterial enzymes, including the peptidase elastase. The human immune system tries to counter this via defensive proteins such as lysozyme (HLZ). HLZ targets the bacterial cell wall but may also have other antimicrobial activities. The enzyme contains four disulfide bonds and shows high thermodynamic stability and resistance to proteolytic attack. Here we show that RL promotes HLZ degradation by several unrelated peptidases, including the PA elastase and human peptidases. This occurs although RL does not by itself denature HLZ. Nevertheless, RL binds in a sufficiently high stoichiometry (8:1 RL:HLZ) to neutralize the highly cationic surface of HLZ. The initial cleavage sites agree well with the domain boundaries of HLZ. Thus, binding of RL to native HLZ may be sufficient to allow proteolytic attack at slightly exposed sites on the protein, leading to subsequent degradation. Furthermore, biofilms of RL-producing strains of PA are protected better against high concentrations of HLZ than RL-free PA strains are. We conclude that pathogen-produced RL may weaken host defenses by facilitating degradation of key host proteins.

  14. Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces.

    PubMed

    Yoshida, Shigenobu; Morita, Tomotake; Shinozaki, Yukiko; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Koitabashi, Motoo; Kitamoto, Dai; Kitamoto, Hiroko

    2014-01-01

    The biological function of mannosylerythritol lipids (MELs) towards their producer, Pseudozyma antarctica, on plant surfaces was investigated. MEL-producing wild-type strain and its MEL production-defective mutant strain (ΔPaEMT1) were compared in terms of their phenotypic traits on the surface of plastic plates, onion peels, and fresh leaves of rice and wheat. While wild-type cells adhering on plastic surfaces and onion peels changed morphologically from single cells to elongated ones for a short period of about 4 h and 1 day, respectively, ΔPaEMT1 cells did not. Microscopic observation of both strains grown on plant leaf surfaces verified that the wild type colonized a significantly bigger area than that of ΔPaEMT1. However, when MELs were exogenously added to the mutant cells on plant surfaces, their colonized area became enlarged. High-performance liquid chromatography analysis revealed a secretion of higher amount of MELs in the cell suspension incubated with wheat leaf cuttings compared to that in the suspension without cuttings. Transcriptional analysis by real-time reverse transcriptase PCR verified that the expression of erythritol/mannose transferase gene and MELs transporter gene of P. antarctica increased in the cells inoculated onto wheat leaves at 4, 6, and 8 days of incubation, indicating a potential of P. antarctica to produce MELs on the leaves. These findings demonstrate that MELs produced by P. antarctica on plant surfaces could be expected to play a significant role in fungal morphological development and propagation on plant surfaces.

  15. Biosurfactants as green stabilizers for the biological synthesis of nanoparticles.

    PubMed

    Kiran, G Seghal; Selvin, Joseph; Manilal, Aseer; Sujith, S

    2011-12-01

    Taking into consideration the needs of greener bioprocesses and novel enhancers for synthesis using microbial processes, biosurfactants, and/or biosurfactant producing microbes are emerging as an alternate source for the rapid synthesis of nanoparticles. A microemulsion technique using an oil-water-surfactant mixture was shown to be a promising approach for nanoparticle synthesis. Biosurfactants are natural surfactants derived from microbial origin composed mostly of sugar and fatty acid moieties, they have higher biodegradability, lower toxicity, and excellent biological activities. The biosurfactant mediated process and microbial synthesis of nanoparticles are now emerging as clean, nontoxic, and environmentally acceptable "green chemistry" procedures. The biosurfactant-mediated synthesis is superior to the methods of bacterial- or fungal-mediated nanoparticle synthesis, since biosurfactants reduce the formation of aggregates due to the electrostatic forces of attraction and facilitate a uniform morphology of the nanoparticles. In this review, we highlight the biosurfactant mediated synthesis of nanoparticles with relevant details including a greener bioprocess, sources of biosurfactants, and biological synthesized nanoparticles based on the available literature and laboratory findings.

  16. Biosurfactants: promising bioactive molecules for oral-related health applications.

    PubMed

    Elshikh, Mohamed; Marchant, Roger; Banat, Ibrahim M

    2016-09-01

    Biosurfactants are naturally produced molecules that demonstrate potentially useful properties such as the ability to reduce surface tensions between different phases. Besides having similar properties to their artificial chemical counterparts, they are regarded as environmental friendly, biodegradable and less toxic, which make them desirable candidates for downstream applications. The structure-activity-related properties of the biosurfactants which are directly correlated with potency of the biosurfactants as antimicrobial agents, the ability of the biosurfactants to alter surface energies and their ability to increase bioavailability are particularly what attract researchers to exploit their potential use in the oral-related health applications. Current research into biosurfactant indicates significant future potential for use in cosmetic and therapeutic oral hygiene product formulations and related medical device treatments.

  17. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    PubMed

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature.

  18. Bioactivity of a Novel Glycolipid Produced by a Halophilic Buttiauxella sp. and Improving Submerged Fermentation Using a Response Surface Method.

    PubMed

    Marzban, Abdolrazagh; Ebrahimipour, Gholamhossein; Danesh, Abolghasem

    2016-09-22

    An antimicrobial glycolipid biosurfactant (GBS), extracted and identified from a marine bacterium, was studied to inhibit pathogenic microorganisms. Production of the GBS was optimized using a statistical method, a response surface method (RSM) with a central composite design (CCD) for obtaining maximum yields on a cost-effective substrate, molasses. The GBS-producing bacterium was identified as Buttiauxella Species in terms of biochemical and molecular characteristics. This compound showed a desirable antimicrobial activity against some pathogens such as E. coli, Bacillus subtilis, Bacillus cereus, Candida albicans, Aspergilus niger, Salmonella enterica. The rheological studies described the stability of the GBS at high values in a range of pH (7-8), temperature (20-60) and salinity (0%-3%). The statistical optimization of GBS fermentation was found to be pH 7, temperature 33 °C, Peptone 1%, NaCl 1% and molasses 1%. The potency of the GBS as an effective antimicrobial agent provides evidence for its use against food and human pathogens. Moreover, favorable production of the GBS in the presence of molasses as a cheap substrate and the feasibility of pilot scale fermentation using an RSM method could expand its uses in food, pharmaceutical products and oil industries.

  19. Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil.

    PubMed

    Chen, J; Huang, P T; Zhang, K Y; Ding, F R

    2012-04-01

    To screen and identify biosurfactant producers from petroleum-contaminated soil; to use response surface methodology (RSM) for medium optimization to enhance biosurfactant production; and to study the properties of the newly obtained biosurfactant towards pH, temperature and salinity. We successfully isolated three biosurfactant producers from petroleum-contaminated soil and identified them through 16S rRNA sequence analysis, which exhibit the highest similarities to Acinetobacter beijerinckii (100%), Kocuria marina (99%) and Kineococcus marinus (99%), respectively. A quadratic response model was constructed through RSM designs, leading to a 57·5% increase of the growth-associated biosurfactant production by Acinetobacter sp. YC-X 2 with an optimized medium: beef extract 3·12 g l(-1) ; peptone 20·87 g l(-1) ; NaCl 1·04 g l(-1); and n-hexadecane 1·86 g l(-1). Biosurfactant produced by Acinetobacter sp. YC-X 2 retained its properties during exposure to a wide range of pH values (5-11), high temperatures (up to 121°C) and high salinities [up to 18% (w/v) Na(+) and Ca(2+) ], which was more sensitive to Ca(2+) than Na(+). Two novel biosurfactant producers were isolated from petroleum-contaminated soil. Biosurfactant from Acinetobacter sp. YC-X 2 has good properties to a wide range of pH, high temperature and high salinity, and its production was optimized successfully through RSM. The fact, an increasing demand of high-quality surfactants and the lack of cost-competitive bioprocesses of biosurfactants for commercial utilization, motivates researchers to develop cost-effective strategies for biosurfactant production through isolating new biosurfactant producers with special surface-active properties and optimizing their cultural conditions. Two novel biosurfactant producers in this study will widen our knowledge about this kind of micro-organism. This work is the first application of RSM designs for cultural optimization of biosurfactant produced by Acinetobacter

  20. Biosurfactant production by halotolerant Rhodococcus fascians from Casey Station, Wilkes Land, Antarctica.

    PubMed

    Gesheva, Victoria; Stackebrandt, Erko; Vasileva-Tonkova, Evgenia

    2010-08-01

    Isolate A-3 from Antarctic soil in Casey Station, Wilkes Land, was characterized for growth on hydrocarbons. Use of glucose or kerosene as a sole carbon source in the culture medium favoured biosynthesis of surfactant which, by thin-layer chromatography, indicated the formation of a rhamnose-containing glycolipid. This compound lowered the surface tension at the air/water interface to 27 mN/m as well as inhibited the growth of B. subtilis ATCC 6633 and exhibited hemolytic activity. A highly hydrophobic surface of the cells suggests that uptake occurs via a direct cell-hydrocarbon substrate contact. Strain A-3 is Gram-positive, halotolerant, catalase positive, urease negative and has rod-coccus shape. Its cell walls contained meso-diaminopimelic acid. Phylogenetic analysis based on comparative analysis of 16S rRNA gene sequences revealed that strain A-3 is closely related to Rhodococcus fascians with which it shares 100% sequence similarity. This is the first report on rhamnose-containing biosurfactant production by Rhodococcus fascians isolated from Antarctic soil.

  1. Low molecular weight gelators based on biosurfactants, cellobiose lipids by Cryptococcus humicola.

    PubMed

    Imura, Tomohiro; Kawamura, Daisuke; Ishibashi, Yuko; Morita, Tomotake; Sato, Shun; Fukuoka, Tokuma; Kikkawa, Yoshihiro; Kitamoto, Dai

    2012-01-01

    Cellobiose lipids (CLs) are bolaform glycolipid biosurfactants, which are produced from natural resources by a yeast strain and show fungicidal activity. In this study, the gelation properties of CL in solvents were investigated by several techniques including rheology and atomic force microscopy (AFM). The yeast CL was found to gelate 6 out of 26 solvents. Although it did not provide gels in ethanol or 1, 3-butanediol which are widely used for cosmetic industries, we succeeded in producing gels by mixing ethanol or 1, 3-butanediol with water. AFM observation of the gels on a silicon substrate provided 3D supramolecular structures with an entangled fibrous network. Moreover, it was also found that some of fibrous structures were twisted helical ribbons. This should be due to the cellobiose backbone having several chiral functional groups. The sol-gel phase transition temperatures for gels in mixed ethanol/water and 1, 3-butanediol/water systems were below 100°C, indicating that the gels can be obtained with rather mild preparation conditions. The present CL gels would be useful for novel multifunctional materials applicable to various industries.

  2. Confined organization of Au nanocrystals in glycolipid nanotube hollow cylinders.

    PubMed

    Yang, Bo; Kamiya, Shoko; Yoshida, Kaname; Shimizu, Toshimi

    2004-03-07

    Mild fabrication of anisotropic metal-lipid nanotube (LNT) nanocomposites, in which Au nanoparticles of 3-10 nm wide are organized in a glycolipid nanotube hollow cylinder, has been achieved by filling the internal channel of the LNT with HAuCl(4) aqueous solution by capillary force and subsequent photochemical reduction of [AuCl(4)](-).

  3. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion

    NASA Astrophysics Data System (ADS)

    Schmieg, John; Yang, Guangli; Franck, Richard W.; van Rooijen, Nico; Tsuji, Moriya

    2005-01-01

    It has been shown that dendritic cells (DCs) are able to present glycolipids to natural killer (NK) T cells in vivo. However, the essential role of DCs, as well as the role of other cells in glycolipid presentation, is unknown. Here, we show that DCs are the crucial antigen-presenting cells (APCs) for splenic NK T cells, whereas Kupffer cells are the key APCs for hepatic NK T cells. Both cell types stimulate cytokine production by NK T cells within 2 h of glycolipid administration, but only DCs are involved in the systemic, downstream responses to glycolipid administration. More specifically, CD8+ DCs produce IL-12 in response to glycolipid presentation, which stimulates secondary IFN- production by NK cells in different organs. Different APCs participate in glycolipid presentation to NK T cells in vivo but differ in their involvement in the overall glycolipid response. dendritic cell | Kupffer cell

  4. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at

  5. Biosurfactant Production by Pseudomonas aeruginosa from Renewable Resources.

    PubMed

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2011-01-01

    This study deals with production and characterization of biosurfactant from renewable resources by Pseudomonas aeruginosa. Biosurfactant production was carried out in 3L fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (11.6 mg/ml) and biosurfactant production (8.6 mg/ml) occurred with peanut oil cake at 120 and 132 h respectively. Characterization of the biosurfactant revealed that, it is a lipopeptide with chemical composition of protein (50.2%) and lipid (49.8%). The biosurfactant (1 mg/ml) was able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene, comparatively the emulsification activity was higher than the activity found with Triton X-100 (1 mg/ml). Results obtained in the present study showed the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources. Emulsification activity found with the biosurfactant against different hydrocarbons showed its possible application in bioremediation of environments polluted with various hydrocarbons.

  6. Substrate dependent production of extracellular biosurfactant by a marine bacterium.

    PubMed

    Das, Palashpriya; Mukherjee, Soumen; Sen, Ramkrishna

    2009-01-01

    The potential of a marine microorganism to utilize different carbon substrates for the production of an extracellular biosurfactant was evaluated. Among the several carbon substrates tested for this purpose, production of the crude biosurfactant was found to be highest with glycerol (2.9+/-0.11 g L(-1)) followed by starch (2.5+/-0.11 g L(-1)), glucose (1.16+/-0.11 g L(-1)) and sucrose (0.94+/-0.07 g L(-1)). The crude biosurfactant obtained from glycerol, starch and sucrose media had significantly higher antimicrobial action than those obtained from glucose containing medium. RP-HPLC resolved the crude biosurfactants into several fractions one of which had significant antimicrobial action. The antimicrobial fraction was found in higher concentrations in biosurfactant obtained using glycerol, starch and sucrose as compared to the biosurfactants from glucose medium, thereby explaining higher antimicrobial activity. The carbon substrate was thus found to affect biosurfactant production both in a qualitative and quantitative manner.

  7. Heavy metal removal from sediments by biosurfactants.

    PubMed

    Mulligan, C N; Yong, R N; Gibbs, B F

    2001-07-30

    Batch washing experiments were used to evaluate the feasibility of using biosurfactants for the removal of heavy metals from sediments. Surfactin from Bacillus subtilis, rhamnolipids from Pseudomonas aeruginosa and sophorolipid from Torulopsis bombicola were evaluated using a metal-contaminated sediment (110mg/kg copper and 3300mg/kg zinc). A single washing with 0.5% rhamnolipid removed 65% of the copper and 18% of the zinc, whereas 4% sophorolipid removed 25% of the copper and 60% of the zinc. Surfactin was less effective, removing 15% of the copper and 6% of the zinc. The technique of ultrafiltration and zeta potential measurements were used to determine the mechanism of metal removal by the surfactants. It was then postulated that metal removal by the biosurfactants occurs through sorption of the surfactant on to the soil surface and complexation with the metal, detachment of the metal from the soil into the soil solution and hence association with surfactant micelles. Sequential extraction procedures were used on the sediment to determine the speciation of the heavy metals before and after surfactant washing. The carbonate and oxide fractions accounted for over 90% of the zinc present in the sediments. The organic fraction constituted over 70% of the copper. Sequential extraction of the sediments after washing with the various surfactants indicated that the biosurfactants, rhamnolipid and surfactin could remove the organically-bound copper and that the sophorolipid could remove the carbonate and oxide-bound zinc. Therefore, heavy metal removal from sediments is feasible and further research will be conducted.

  8. Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Baeva, Tatiana A; Kochina, Olesia A; Gein, Sergey V; Chereshnev, Valery A

    2015-12-25

    Actinobacteria of the genus Rhodococcus produce trehalolipid biosurfactants with versatile biochemical properties and low toxicity. In recent years, these biosurfactants are increasingly studied as possible biomedical agents with expressed immunological activities. Applications of trehalolipids from Rhodococcus, predominantly cell-bound, in biomedicine are also attractive because their cost drawback could be less significant for high-value products. The review summarizes recent findings in immunomodulatory activities of trehalolipid biosurfactants from nonpathogenic Rhodococcus and related actinobacteria and compares their biomedical potential with well-known immunomodifying properties of trehalose dimycolates from Mycobacterium tuberculosis. Molecular mechanisms of trehalolipid interactions with immunocompetent cells are also discussed.

  9. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect

    McInerney, J.J.; Han, S.O.; Maudgalya, S.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.; Jackson, B.E.; Stuadt, M.; Frey, W.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  10. Recognition of Microbial Glycolipids by Natural Killer T Cells

    PubMed Central

    Zajonc, Dirk M.; Girardi, Enrico

    2015-01-01

    T cells can recognize microbial antigens when presented by dedicated antigen-presenting molecules. While peptides are presented by classical members of the major histocompatibility complex (MHC) family (MHC I and II), lipids, glycolipids, and lipopeptides can be presented by the non-classical MHC member, CD1. The best studied subset of lipid-reactive T cells are type I natural killer T (iNKT) cells that recognize a variety of different antigens when presented by the non-classical MHCI homolog CD1d. iNKT cells have been shown to be important for the protection against various microbial pathogens, including B. burgdorferi, the causative agents of Lyme disease, and S. pneumoniae, which causes pneumococcal meningitis and community-acquired pneumonia. Both pathogens carry microbial glycolipids that can trigger the T cell antigen receptor (TCR), leading to iNKT cell activation. iNKT cells have an evolutionary conserved TCR alpha chain, yet retain the ability to recognize structurally diverse glycolipids. They do so using a conserved recognition mode, in which the TCR enforces a conserved binding orientation on CD1d. TCR binding is accompanied by structural changes within the TCR binding site of CD1d, as well as the glycolipid antigen itself. In addition to direct recognition of microbial antigens, iNKT cells can also be activated by a combination of cytokines (IL-12/IL-18) and TCR stimulation. Many microbes carry TLR antigens, and microbial infections can lead to TLR activation. The subsequent cytokine response in turn lower the threshold of TCR-mediated iNKT cell activation, especially when weak microbial or even self-antigens are presented during the cause of the infection. In summary, iNKT cells can be directly activated through TCR triggering of strong antigens, while cytokines produced by the innate immune response may be necessary for TCR triggering and iNKT cell activation in the presence of weak antigens. Here, we will review the molecular basis of iNKT cell

  11. Quorum sensing: implications on rhamnolipid biosurfactant production.

    PubMed

    Dusane, Devendra H; Zinjarde, Smita S; Venugopalan, Vayalam P; McLean, Robert J C; Weber, Mary M; Rahman, Pattanathu K S M

    2010-01-01

    Quorum sensing (QS) has received significant attention in the past few decades. QS describes population density dependent cell to cell communication in bacteria using diffusible signal molecules. These signal molecules produced by bacterial cells, regulate various physiological processes important for social behavior and pathogenesis. One such process regulated by quorum sensing molecules is the production of a biosurfactant, rhamnolipid. Rhamnolipids are important microbially derived surface active agents produced by Pseudomonas spp. under the control of two interrelated quorum sensing systems; namely las and rhl. Rhamnolipids possess antibacterial, antifungal and antiviral properties. They are important in motility, cell to cell interactions, cellular differentiation and formation of water channels that are characteristics of Pseudomonas biofilms. Rhamnolipids have biotechnological applications in the uptake of hydrophobic substrates, bioremediation of contaminated soils and polluted waters. Rhamnolipid biosurfactants are biodegradable as compared to chemical surfactants and hence are more preferred in environmental applications. In this review, we examine the biochemical and genetic mechanism of rhamnolipid production by P. aeruginosa and propose the application of QS signal molecules in enhancing the rhamnolipid production.

  12. Biosurfactant-enhanced solubilization of NAPL mixtures.

    PubMed

    McCray, J E; Bai, G; Maier, R M; Brusseau, M L

    2001-03-01

    Remediation of nonaqueous phase liquids (NAPLs) by conventional pump-and-treat methods (i.e., water flushing) is generally considered to be ineffective due to low water solubilities of NAPLs and to mass-transfer constraints. Chemical flushing techniques, such as surfactant flushing, can greatly improve NAPL remediation primarily by increasing the apparent solubility of NAPL contaminants. NAPLs at hazardous waste sites are often complex mixtures. However, the equilibrium and nonequilibrium mass-transfer characteristics between NAPL mixtures and aqueous surfactant solutions are not well understood. This research investigates the equilibrium solubilization behavior of two- and three-component NAPL mixtures (containing akylbenzenes) in biosurfactant solutions. NAPL solubilization is found to be ideal in water (i.e., obeys Raoult's Law), while solubilization in biosurfactant solutions was observed to be nonideal. Specifically, the relatively hydrophobic compounds in the mixture experienced solubility enhancements that were greater than those predicted by ideal enhanced solubilization theory, while the solubility enhancements for the relatively hydrophilic compounds were less than predicted. The degree of nonideality is shown to be a nonlinear function of the NAPL-phase mole fraction. Empirical relationships based on the NAPL-phase mole fraction and/or micelle-aqueous partition coefficients measured in single-component NAPL systems are developed to estimate values for the multicomponent partition coefficients. Empirical relationships that incorporate both the NAPL-phase mole fraction and single-component partition coefficients yield much improved estimates for the multicomponent partition coefficient.

  13. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  14. Phospholipids and Glycolipids of Sterol-requiring Mycoplasma

    PubMed Central

    Smith, Paul F.; Koostra, Walter L.

    1967-01-01

    The phospholipids of Mycoplasma hominis type 2 strain 07 are composed almost entirely of phosphatidyl glycerol. Traces of other glycerophospholipids may exist. No glycolipids are found. The phospholipids of Mycoplasma sp. avian strain J are composed of diphosphatidyl glycerol, which predominates in older cultures, a monoacyl glycerophosphoryl glycerophosphate, which may serve as a precursor of diphosphatidyl glycerol, and phosphatidyl glycerophosphate. This organism also contains cholesteryl glucoside and an unidentified glycolipid which appears to be similar to a monoglucosyl diglyceride. No turnover or radioisotope labeling of the phospholipids occurs during metabolism. This lack of turnover during growth is indicative of a structural role for these glycerophospholipids. A concomitant decrease of monoacyl glycerophosphoryl glycerophosphate and increase of diphosphatidyl glycerol occurs during growth. PMID:6025304

  15. Production of biosurfactant by indigenous isolated bacteria in fermentation system

    NASA Astrophysics Data System (ADS)

    Fooladi, Tayebeh; Hamid, Aidil Bin Abd; Yusoff, Wan Mohtar Wan; Moazami, Nasrin; Shafiee, Zahra

    2013-11-01

    Bacillus pumilus 2IR is a soil isolate bacterium from an Iranian oil field that produces promising yield of biosurfactant in medium E. The production of biosurfactant by strain 2IR has been investigated using different carbon and nitrogen sources. The strain was able to grow and to produce surfactant, reducing the surface tension of the medium from 60mN/m to 31mN/m on glucose after 72 h of cultivation. The strain was able to produce the maximum amount of biosurfactant (0.72 g/l) when potassium nitrate and glucose used as a nitrogen and carbon sources respectively. Production of biosurfactant reaches to highest amount at a C/N ratio of 12.

  16. Oil removal from used sorbents using a biosurfactant.

    PubMed

    Wei, Q F; Mather, R R; Fotheringham, A F

    2005-02-01

    Oil spills impose serious damage on the environment. Mechanical recovery by the help of oil sorbents is one of the most important countermeasures in oil spill response. Most sorbents, however, end up in landfills or in incineration after a single use. These options either produce another source of pollution or increase the oil recovery cost. In this study a biosurfactant was used to clean used oil sorbents. This use of biosurfactants is new. Washing parameters tested included sorbent type, washing time, surfactant dosage and temperature. It was found that with biosurfactant washing more than 95% removal of the oil from sorbents was achieved, depending on the washing conditions. Biosurfactants were found to have considerable potential for recycling the used sorbents.

  17. Biosurfactant's role in bioremediation of NAPL and fermentative production.

    PubMed

    Joshi, Sanket J; Desai, Anjana J

    2010-01-01

    Surfactants and biosurfactants are amphipathic molecules with both hydrophilic and hydrophobic moieties that partition preferentially at the interface between fluid phases that have different degrees of polarity and hydrogen bonding which confers excellent detergency, emulsifying, foaming and dispersing traits, making them most versatile process chemicals. One of the major applications of (bio)surfactants is in environmental bioremediation field. Most synthetic organic compounds present in contaminated soils are only weakly soluble or completely insoluble in water, so they exist in the subsurface as separate liquid phase, often referred as a non-aqueous phase liquids (NAPL), which poses as threat to environment. Several studies have revealed the use of surfactants for remediation; however, several factors limit the use of surfactants in environmental remediation, mainly persistence of surfactants or their metabolites and thus potentially pose an environmental concern. Biosurfactants may provide a more cost-effective approach for subsurface remediation when used alone or in combination with synthetic surfactants. There are several advantages of biosurfactants when compared to chemical surfactants, mainly biodegradability, low toxicity, biocompatibility and ability to be synthesized from renewable feedstock. Despite having many commercially attractive properties and clear advantages compared with their synthetic counterparts, biosurfactants have not yet been employed extensively in industry because of their low yields and relatively high production and recovery costs. However, the use of mutants and recombinant hyperproducing microorganisms along with the use of cheaper raw materials and optimal growth and production conditions and more efficient recovery processes, the production of biosurfactant can be made economically feasible. Therefore, future research aiming for high-level production of biosurfactants must be focused towards the development of appropriate

  18. Gordonia (nocardia) amarae foaming due to biosurfactant production.

    PubMed

    Pagilla, K R; Sood, A; Kim, H

    2002-01-01

    Gordonia amarae, a filamentous actinomycete, commonly found in foaming activated sludge wastewater treatment plants was investigated for its biosurfactant production capability. Soluble acetate and paringly soluble hexadecane were used as carbon sources for G. amarae growth and biosurfactant production in laboratory scale batch reactors. The lowest surface tension (critical micelle concentration, CMC) of the cell-free culture broth was 55 dynes/cm when 1,900 mg/L acetate was used as the sole carbon source. The lowest surface tension was less than 40 dynes/cm when either 1% (v/v) hexadecane or a mixture of 1% (v/v) hexadecane and 0.5% (w/v) acetate was used as the carbon source. The maximum biomass concentration (the stationary phase) was achieved after 4 days when acetate was used along with hexadecane, whereas it took about 8 days to achieve the stationary phase with hexadecane alone. The maximum biosurfactant production was 3 x CMC with hexadecane as the sole carbon source, and it was 5 x CMC with the mixture of hexadecane and acetate. Longer term growth studies (approximately 35 days of culture growth) indicated that G. amarae produces biosurfactant in order to solubilize hexadecane, and that adding acetate improves its biosurfactant production by providing readily degradable substrate for initial biomass growth. This research confirms that the foaming problems in activated sludge containing G. amarae in the activated sludge are due to the biosurfactant production by G. amarae when hydrophobic substrates such as hexadecane are present.

  19. Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons.

    PubMed

    Bordoloi, N K; Konwar, B K

    2009-10-15

    Biosurfactant can make hydrocarbon complexes more mobile with the potential use in oil recovery, pumping of crude oil and in bioremediation of crude oil contaminant. In the investigation, bacterial isolates capable of utilizing poly-cyclic aromatic hydrocarbons like phenanthrene, pyrene and fluorene were used. A gradual decrease of the supplemented hydrocarbons in the culture medium was observed with corresponding increase in bacterial biomass and protein. The medium having the combined application of fluorine and phenanthrene caused better biosurfactant production (0.45 g l(-1)) and (0.38 g l(-1)) by Pseudomonas aeruginosa strains MTCC7815 and MTCC7814. The biosurfactant from MTCC7815 (41.0 microg ml(-1)) and MTCC7812 (26 microg ml(-1)) exhibited higher solubilization of pyrene; whereas, MTCC8165 caused higher solubilization of phenanthrene; and that of MTCC7812 (24.45 microg ml(-1)) and MTCC8163 (24.49 microg ml(-1)) caused more solubilzation of fluorene. Higher solubilization of pyrene and fluorene by the biosurfactant of MTCC7815 and MTCC7812, respectively enhanced their metabolism causing sustained growth. Biosurfactants were found to be lipopeptide and protein-starch-lipid complex in nature and they could reduce the surface tension of pure water (72 m Nm(-1)) to 35 m Nm(-1). The critical micelle concentration (CMC) was also lower than the chemical surfactant sodium dodecyl sulphate (SDS). They differed in quantity and structure. The predominant rhamnolipids present in biosurfactants were Rha-C(8)-C(10) and Rha-C(10)-C(8).

  20. Metagenomics for the discovery of novel biosurfactants of environmental interest from marine ecosystems.

    PubMed

    Jackson, Stephen A; Borchert, Erik; O'Gara, Fergal; Dobson, Alan D W

    2015-06-01

    Research focused on the search for new biosurfactants aims to replace chemical surfactants, which while being cost-effective are ecologically undesirable. Metagenomics can lead to discovery of novel biosurfactants, tackling issues of low production yields. Recent successes include the heterologous production of biosurfactants. The dearth of biosurfactants discovered to date through metagenomics is puzzling given that good screening systems and heterologous host systems are available.

  1. Multiple Roles of Biosurfactants in Biofilms.

    PubMed

    Satputea, Surekha K; Banpurkar, Arun G; Banat, Ibrahim M; Sangshetti, Jaiprakash N; Patil, Rajendra H; Gade, Wasudev N

    2016-01-01

    Microbial growth and biofilms formation are a continuous source of contamination on most surfaces with biological, inanimate, natural or man-made. The use of chemical surfactants in daily practice to control growth, presence or adhesion of microorganisms and ultimately the formation of biofilms and biofouling is therefore becoming essential. Synthetic surfactants are, however, not preferred or ideal and biologically derived surface active biosurfactants (BSs) molecules produced mainly by microorganisms are therefore becoming attractive and sought by many industries. The search for innovative and interesting BS molecules that have effective antimicrobial activities and to use as innovative alternatives to chemical surfactants with added antimicrobial value among many other advantages has been ongoing for some time. This review discusses the various roles of BS molecules in association with biofilm formation. Recent updates on several mechanisms involved in biofilm development and control are presented vide this article.

  2. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    PubMed

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  3. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  4. 40 CFR 180.1245 - Rhamnolipid biosurfactant; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Rhamnolipid biosurfactant; exemption... FOOD Exemptions From Tolerances § 180.1245 Rhamnolipid biosurfactant; exemption from the requirement of... rhamnolipid biosurfactant when used in accordance with good agricultural practices as a fungicide in or on all...

  5. Mosquitocidal Bacillus amyloliquefaciens: dynamics of growth & production of novel pupicidal biosurfactant.

    PubMed

    Geetha, I; Aruna, R; Manonmani, A M

    2014-09-01

    A strain of Bacillus amyloliquefaciens (VCRC B483) producing mosquito larvicidal and pupicidal biosurfactant was isolated from mangrove forest soil. The present study was aimed at studying the kinetics of growth and production of the mosquitocidal biosurfactant by this bacterium. Dynamics of growth, sporulation and production of mosquitocidal biosurfactant were studied by standard microbiological methods. The mosquitocidal biosurfactant was precipitated from the culture supernatant and bioassayed against immature stages of mosquito vectors to determine lethal dose and lethal time. The activity, biological and biochemical properties of the biosurfactant have also been studied. The pupal stages of mosquitoes were found to be more vulnerable to the biosurfactant produced by this bacterium with Anopheles stephensi being the most vulnerable species. The median lethal time (LT 50 ) was found to be 1.23 h when the pupal stages of the above species were exposed to lethal concentration LC 90 (9 µg/ml) dosage of the biosurfactant. Production of biosurfactant was found to increase with incubation time and maximum biomass, maximum quantity of biosurfactant (7.9 mg/ml), maximum biosurfactant activity (6 kBS unit/mg) and maximum mosquitocidal activity (5 µg/ml) were attained by 72 h of growth. The lipopeptide nature of the biosurfactant was confirmed by β-haemolysis, lipase activity, biofilm forming capacity, thermostability and biochemical analysis. The mosquitocidal biosurfactant produced by B. amyloliquefaciens (VCRC B483) may be a prospective alternative molecule for use in mosquito control programmes involving bacterial biopesticides.

  6. Molecular structure and baking performance of individual glycolipid classes from lecithins.

    PubMed

    Selmair, Patrick L; Koehler, Peter

    2009-06-24

    The potential of individual glycolipid classes from lecithins (soybean, rapeseed, and sunflower) in breadmaking was determined in comparison to classical surfactants such as diacetyltartaric acid esters of mono- and diacylglycerides (DATEM), monoacylglycerides, sodium stearoyl-2-lactylate (SSL), and two synthetic glycolipids by means of rheological and baking tests on a microscale. A highly glycolipid-enriched sample containing the entire glycolipid moiety of the lecithin was obtained using an optimized batch procedure with silica gel. This sample was subsequently used to gain individual glycolipid classes through column chromatography on silica gel. The major glycolipid classes in the lecithins, digalactosyl diacylglycerides (1), sterol glucosides (2), acylated sterol glucosides (3), and cerebrosides (4), were identified and characterized. All isolated glycolipid classes displayed excellent baking performance. A better baking activity than that of the classical surfactants was displayed by 1, 3, and 4 and an equivalent baking activity by 2. The same glycolipid classes, except 3, of different lecithin origin showed only slight differences in their baking activities, due to different fatty acid compositions. Furthermore, the glycolipid classes influenced the crumb structure significantly by improving the crumb softness and grain. Interestingly, none of the glycolipid classes showed significant antistaling effect. A direct effect on the overall rheological behavior of the dough was only found for the commercial surfactants. However, the rheological effect seen on gluten isolated from surfactant-containing dough revealed that the surfactants could be divided into two main groups, one of them directly forming and stabilizing liquid film lamellae through adsorption to interfaces and the other indirectly increasing the surface activity of the endogenous lipids in the flour. The results suggest that in wheat dough, glycolipids seem to have an impact on the dough liquor

  7. Biosurfactants and surfactants interacting with membranes and proteins: Same but different?

    PubMed

    Otzen, Daniel E

    2017-04-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. For several decades they have attracted interest as promising alternatives to current petroleum-based surfactants. Aside from their green profile, they have remarkably low critical micelle concentrations, reduce the air/water surface tension to very low levels and are excellent emulsifiers, all of which make them comparable or superior to their synthetic counterparts. These remarkable physical properties derive from their more complex chemical structures in which hydrophilic and hydrophobic regions are not as clearly separated as chemical surfactants but have a more mosaic distribution of polarity as well as branched or circular structures. This allows the lipopeptide surfactin to adopt spherical structures to facilitate dense packing at interfaces. They are also more complex. Glycolipid BS, e.g. rhamnolipids (RL) and sophorolipids, are produced biologically as mixtures which vary in the size and saturation of the hydrophobic region as well as modifications in the hydrophilic headgroup, such as the number of sugar groups and different levels of acetylation, leading to variable surface-active properties. Their amphiphilicity allows RL to insert easily into membranes at sub-cmc concentrations to modulate membrane structure and extract lipopolysaccharides, leading to extensive biofilm remodeling in vivo, sometimes in collaboration with hydrophobic RL precursors. Thanks to their mosaicity, even anionic BS like RL only bind weakly to proteins and show much lower denaturing potency, even supporting membrane protein refolding. Nevertheless, they can promote protein degradation by proteases e.g. by neutralizing positive charges, which together with their biofilm-combating properties makes them very promising detergent surfactants. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.

  8. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids

    PubMed Central

    Daffé, Mamadou; Crick, Dean C.; Jackson, Mary

    2014-01-01

    This chapter summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity and biogenesis of a variety of non-covalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this chapter include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, non-carotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides. PMID:25485178

  9. Biosurfactants: Multifunctional Biomolecules of the 21st Century.

    PubMed

    Santos, Danyelle Khadydja F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2016-03-18

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and "green" products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries.

  10. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    PubMed

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  11. Optimization of biosurfactant-mediated oil extraction from oil sludge.

    PubMed

    Zheng, Chenggang; Wang, Manman; Wang, Yongli; Huang, Zhiyong

    2012-04-01

    Oil extraction from oil sludge with biosurfactant formulas was optimized by a Taguchi orthogonal array design of L16 (4(5)) with five main factors, including biosurfactant type (surfactin, lichenysin, rhamnolipid and emulsan), biosurfactant concentration, pH, salinity and solvent. Oil recoveries obtained with the sixteen batch washing experiments with the selected levels of each factor were processed with Design Expert/SPSS and a specific combination of factors with a predicted oil recovery of 76.81% was obtained. The predicted optimal biosurfactant formula of 2.0g/L rhamnolipid, pH 12.0, 10g/L NaCl, and 5.0g/L n-butanol were validated by a washing experiment that yielded an oil recovery of 74.55%, which was 27.28% higher than the grand average oil recovery of the whole experiment design. Based on the optimum biosurfactant formula, the oil extraction process followed first-order kinetics as the washing rate constant and final oil recovery increased with temperature. These results will be informative and meaningful for the design of oil sludge treatment in industrial application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Biosurfactants: Multifunctional Biomolecules of the 21st Century

    PubMed Central

    Santos, Danyelle Khadydja F.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2016-01-01

    In the era of global industrialisation, the exploration of natural resources has served as a source of experimentation for science and advanced technologies, giving rise to the manufacturing of products with high aggregate value in the world market, such as biosurfactants. Biosurfactants are amphiphilic microbial molecules with hydrophilic and hydrophobic moieties that partition at liquid/liquid, liquid/gas or liquid/solid interfaces. Such characteristics allow these biomolecules to play a key role in emulsification, foam formation, detergency and dispersal, which are desirable qualities in different industries. Biosurfactant production is considered one of the key technologies for development in the 21st century. Besides exerting a strong positive impact on the main global problems, biosurfactant production has considerable importance to the implantation of sustainable industrial processes, such as the use of renewable resources and “green” products. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of bioremediation as well as the petroleum, food processing, health, chemical, agricultural and cosmetic industries. In this paper, we offer an extensive review regarding knowledge accumulated over the years and advances achieved in the incorporation of biomolecules in different industries. PMID:26999123

  13. Possibilities and challenges for biosurfactants use in petroleum industry.

    PubMed

    Perfumo, Amedea; Rancich, Ivo; Banat, Ibrahim M

    2010-01-01

    Biosurfactants are a group of microbial molecules identified by their unique capabilities to interact with hydrocarbons. Emulsification and de-emulsification, dispersion, foaming, wetting and coating are some of the numerous surface activities that biosurfactants can achieve when applied within systems such as immiscible liquid/liquid (e.g., oil/water), solid/ liquid (e.g., rock/oil and rock/water) and gas/liquid. Therefore, the possibilities of exploiting these bioproducts in oil-related sciences are vast and made petroleum industry their largest possible market at present. The role of biosurfactants in enhancing oil recovery from reservoirs is certainly the best known; however they can be effectively applied in many other fields from transportation of crude oil in pipeline to the clean-up of oil storage tanks and even manufacturing of fine petrochemicals. When properly used, biosurfactants are comparable to traditional chemical analogues in terms of performances and offer advantages with regard to environment protection/conservation. This chapter aims at providing an up-to-date overview of biosurfactant roles, applications and possible future uses related to petroleum industry.

  14. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications

    PubMed Central

    Gudiña, Eduardo J.; Teixeira, José A.; Rodrigues, Lígia R.

    2016-01-01

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments. PMID:26901207

  15. Isolation of Biosurfactant Producing Bacteria From Poultry Breast Skin

    PubMed Central

    Ebrahimi, Azizollah; Tashi, Najmeh

    2012-01-01

    Background Biosurfactants are surface-active compounds produced by some microorganisms. Objectives In this study, we collected surface skin samples from breast of poultry (chicken, turkey, and, quail) and screened for biosurfactant-producing bacteria. We also determined the genera of cultured strains. Materials and Methods 33 hemolytic bacterial strains (15, 11, and 7 isolates from chicken, turkey, and quail, respectively) were isolated; oil spreading (OS) and bioemulsifying activities were measured for all isolates. Results Two isolates of chicken (6.06%), three of turkey (9.1%), and three of quail (9.1%) were positive in all examinations (hemolysis, emulsification index (E24) and oil spreading). In total, eight isolates (24.24%) were positive in all examinations, out of them, seven isolates (87.5%) were gram positives, mainly belonged to Bacillus spp., Staphylococcus spp. and Lactobacillus spp. 31 isolates (93.9%) (out of 33 hemolytic isolates) were positive in oil spreading test while only eight isolates (24.24%) were positive in E24 test. Conclusions The results showed that biosurfactant-producing bacteria are distributed in breast skin surface of examined birds. Further investigation about the composition of biosurfactants and phylogenetic determination of biosurfactant producing bacteria is suggested. PMID:24624162

  16. Partial characterization of a biosurfactant extracted from Pseudomonas sp. B0406 that enhances the solubility of pesticides.

    PubMed

    García-Reyes, Selene; Yáñez-Ocampo, Gustavo; Wong-Villarreal, Arnoldo; Rajaretinam, Rajesh Kannan; Thavasimuthu, Citarasu; Patiño, Rodrigo; Ortiz-Hernández, Ma Laura

    2017-08-22

    Biodegradation of some organochlorine and organophosphate pesticides is difficult because of their low solubility in water and, therefore, their low bioavailability. To overcome the hydrophobicity problem and the limited pesticide availability, biosurfactants play a major role. In this study, we evaluated the effect of an extract from Pseudomonas sp. B0406 strain with surfactant properties, on the solubility of two pesticides: endosulfan (ED) and methyl parathion (MP). Such a process was performed in order to increase the aqueous solubility of both pesticides, to increase its availability to microorganisms and to promote their biodegradation. The extract from Pseudomonas sp. B0406 showed a critical micellar concentration of 1.4 g/L and the surface tension at that point was 40.4 mN/m. The preliminary chemical and physical partial characterization of the extract with surfactant properties indicated that it is an anionic glycolipid, which increases the solubility of both pesticides of 0.41 at 0.92 mg/L for ED and of 34.58 at 48.10 mg/L for MP. The results of this study suggest the effectiveness of this extract in improving the solubility of both pesticides ED and MP in water and, therefore, of its potential use to enhance the degradation of these pesticides.

  17. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth.

    PubMed

    Sajna, Kuttuvan Valappil; Sukumaran, Rajeev Kumar; Gottumukkala, Lalitha Devi; Pandey, Ashok

    2015-09-01

    The aim of this work was to evaluate the biosurfactants produced by the yeast Pseudozyma sp. NII 08165 for enhancing the degradation of crude oil by a model hydrocarbon degrading strain, Pseudomonas putida MTCC 1194. Pseudozyma biosurfactants were supplemented at various concentrations to the P. putida culture medium containing crude oil as sole carbon source. Supplementation of the biosurfactants enhanced the degradation of crude oil by P. putida; the maximum degradation of hydrocarbons was observed with a 2.5 mg L(-1) supplementation of biosurfactants. Growth inhibition constant of the Pseudozyma biosurfactants was 11.07 mg L(-1). It was interesting to note that Pseudozyma sp. NII 08165 alone could also degrade diesel and kerosene. Culture broth of Pseudozyma containing biosurfactants resulted up to ∼46% improvement in degradation of C10-C24 alkanes by P. putida. The enhancement in degradation efficiency of the bacterium with the culture broth supplementation was even more pronounced than that with relatively purer biosurfactants.

  18. Myristate exchange in glycolipid A and VSG of African trypanosomes.

    PubMed

    Buxbaum, L U

    1994-02-01

    The variant surface glycoprotein (VSG) of T. brucei is anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor which is unique in that its fatty acids are exclusively myristate (a fourteen carbon saturated fatty acid). We showed that the myristate is added to the GPI precursor in a remodeling reaction involving deacylation and reacylation. We now demonstrate that trypanosomes have a second pathway of myristoylation for GPI anchors that we call "myristate exchange" which is distinct from the fatty acid remodeling pathway. We propose that this is an exchange of [3H]myristate into both sn-1 and sn-2 positions of glycolipid A, which already contains myristate, and have demonstrated this using inhibitors and a variety of other methods. We have partially characterized myristate exchange with respect to specificity and susceptibility to some inhibitors. The apparent Km for myristoyl CoA is 7 nM. This myristate-specific process may represent a proof-reading system to ensure that the fatty acids on VSG are exclusively myristate. Although myristate exchange was first discovered for glycolipid A, we now believe that VSG is the true substrate of this reaction. VSG is efficiently labeled by exchange in the presence of cycloheximide, which prevents anchoring of newly synthesized protein. Although its location is not yet known, we have evidence that exchange does not localize to either the endoplasmic reticulum or the plasma membrane. We will present data indicating that surface VSG may be internalized and undergo myristate exchange.

  19. Tight cohesion between glycolipid membranes results from balanced water-headgroup interactions

    NASA Astrophysics Data System (ADS)

    Kanduč, Matej; Schlaich, Alexander; de Vries, Alex H.; Jouhet, Juliette; Maréchal, Eric; Demé, Bruno; Netz, Roland R.; Schneck, Emanuel

    2017-04-01

    Membrane systems that naturally occur as densely packed membrane stacks contain high amounts of glycolipids whose saccharide headgroups display multiple small electric dipoles in the form of hydroxyl groups. Experimentally, the hydration repulsion between glycolipid membranes is of much shorter range than that between zwitterionic phospholipids whose headgroups are dominated by a single large dipole. Using solvent-explicit molecular dynamics simulations, here we reproduce the experimentally observed, different pressure-versus-distance curves of phospholipid and glycolipid membrane stacks and show that the water uptake into the latter is solely driven by the hydrogen bond balance involved in non-ideal water/sugar mixing. Water structuring effects and lipid configurational perturbations, responsible for the longer-range repulsion between phospholipid membranes, are inoperative for the glycolipids. Our results explain the tight cohesion between glycolipid membranes at their swelling limit, which we here determine by neutron diffraction, and their unique interaction characteristics, which are essential for the biogenesis of photosynthetic membranes.

  20. Tight cohesion between glycolipid membranes results from balanced water-headgroup interactions.

    PubMed

    Kanduč, Matej; Schlaich, Alexander; de Vries, Alex H; Jouhet, Juliette; Maréchal, Eric; Demé, Bruno; Netz, Roland R; Schneck, Emanuel

    2017-04-03

    Membrane systems that naturally occur as densely packed membrane stacks contain high amounts of glycolipids whose saccharide headgroups display multiple small electric dipoles in the form of hydroxyl groups. Experimentally, the hydration repulsion between glycolipid membranes is of much shorter range than that between zwitterionic phospholipids whose headgroups are dominated by a single large dipole. Using solvent-explicit molecular dynamics simulations, here we reproduce the experimentally observed, different pressure-versus-distance curves of phospholipid and glycolipid membrane stacks and show that the water uptake into the latter is solely driven by the hydrogen bond balance involved in non-ideal water/sugar mixing. Water structuring effects and lipid configurational perturbations, responsible for the longer-range repulsion between phospholipid membranes, are inoperative for the glycolipids. Our results explain the tight cohesion between glycolipid membranes at their swelling limit, which we here determine by neutron diffraction, and their unique interaction characteristics, which are essential for the biogenesis of photosynthetic membranes.

  1. Foliar penetration enhanced by biosurfactant rhamnolipid.

    PubMed

    Liu, Haojing; Shao, Bing; Long, Xuwei; Yao, Yang; Meng, Qin

    2016-09-01

    With recent environmental and health concerns, biosurfactants have obtained increasing interest in replacing conventional surfactants for diverse applications. In agriculture, the use of surfactant in stimulating foliar uptake is mainly for wetting leaf surface, resisting deposition/evaporation, enhancing penetration across cuticular membrane (CM) and translocation. This paper aimed to address the improved foliar uptake by rhamnolipid (RL) in comparison with the currently used alkyl polyglucoside (APG). As found, compared with APG at 900mg/L (1×critical micellar concentration, CMC), RL at a much lower concentration of 50mg/L (1×CMC) showed much better wettability and surface activity, indicative of its high effectiveness as surfactants. Its performance on resistance to deposition and evaporation was at least as same as APG. Moreover, RL could significantly improve the penetration of herbicide glyphosate and other two small water-soluble molecules (phenol red and Fe(2+)) across CM at an equivalent efficiency as APG at 1×CMC. Finally, the greatly enhanced herbicidal actitivity of glyphosate on greenhouse plants confirmed that RL and APG could both enhance the foliar uptake including translocation. Overall, RL should be more applicable than APG in agriculture due to its more promising properties on health/environmental friendliness. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake.

    PubMed

    Thavasi, R; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2007-12-01

    Production and characterization of biosurfactant from renewable sources. Biosurfactant production was carried out in 3-l fermentor using waste motor lubricant oil and peanut oil cake. Maximum biomass (9.8 mg ml(-l)) and biosurfactant production (6.4 mg ml(-l)) occurred with peanut oil cake at 120 and 132 h, respectively. Chemical characterization of the biosurfactant revealed that it is a glycolipopeptide with chemical composition of carbohydrate (40%), lipid (27%) and protein (29%). The biosurfactant is able to emulsify waste motor lubricant oil, crude oil, peanut oil, kerosene, diesel, xylene, naphthalene and anthracene; the emulsification activity was comparatively higher than the activity found with Triton X-100. This study indicates the possibility of biosurfactant production using renewable, relatively inexpensive and easily available resources like waste motor lubricant oil and peanut oil cake. Emulsification activity found with the biosurfactant against different hydrocarbons showed the possibility of the application of biosurfactants against diverse hydrocarbon pollution. The data obtained from the study could be useful for large-scale biosurfactant production using economically cheaper substrates. Information obtained in emulsification activity and laboratory-scale experiment on bioremediation inferred that bioremediation of hydrocarbon-polluted sites may be treated with biosurfactants or the bacteria that produces it.

  3. Adaptation of marine plankton to environmental stress by glycolipid accumulation.

    PubMed

    Gašparović, Blaženka; Godrijan, Jelena; Frka, Sanja; Tomažić, Igor; Penezić, Abra; Marić, Daniela; Djakovac, Tamara; Ivančić, Ingrid; Paliaga, Paolo; Lyons, Daniel; Precali, Robert; Tepić, Nataša

    2013-12-01

    A systematic investigation of non-phosphorus containing glycolipids (GL) was conducted in the northern Adriatic Sea during two years at two stations with different nutrient loads. GL concentration varied both spatially and temporally, with values of 1.1-21.5 μg/L and 0.4-44.7 μg/L in the particulate and the dissolved fraction, respectively. The highest concentrations were measured during summer in surface waters and at the more oligotrophic station, where GL yields (% of total lipids) were often higher than 20% and 50% in the particulate and dissolved fractions, respectively. To obtain more insight into factors governing GL accumulation autotrophic plankton community structure (pico-, nano- and microplankton fractions), chlorophyll a, heterotrophic bacteria and nutrient concentrations were measured together with hydrographic parameters and sunlight intensity. During the investigated period smaller autotrophic plankton cells (pico- and followed by nanoplankton) prevailed in abundance over larger cells (microplankton), which were found in large numbers in freshened surface samples. Several major findings resulted from the study. Firstly, during PO4 limitation, particularly at the oligotrophic station, enhanced glycolipid instead of phospholipid accumulation takes place, representing an effective phosphate-conserving mechanism. Secondly, results suggest that at seawater temperatures >19 °C autotrophic plankton considerably accumulate GL, probably to achieve thermal stability. Thirdly, high sunlight intensities seem to influence increased GL accumulation; GL possibly plays a role in cell mechanisms that prevent/mitigate photooxidation. And finally, substantial accumulation of GL detected in the dissolved fraction could be related to the fact that GL do not contain biologically relevant elements, like phosphorus, which makes them an unattractive substrate for enzyme activity. Therefore, substantial portion of CO2 could be removed from the atmosphere in P

  4. Utilization of sophorolipids as biosurfactants for postemergence herbicides

    USDA-ARS?s Scientific Manuscript database

    Sophorolipids are carbohydrate-based, amphiphilic biosurfactants produced by several species of the Starmerella yeast clade. Most sophorolipids are partially acetylated sophorose sugars O-ß-glycosidically linked to 17-L-hydroxy-delta9-octadecenoic acid, where typically the acyl carboxyl group forms...

  5. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene.

    PubMed

    Shin, Kyung-Hee; Ahn, Yeonghee; Kim, Kyoung-Woong

    2005-11-01

    The effect of the biosurfactant rhamnolipid on phenanthrene biodegradation and cell growth of phenanthrene degraders was investigated. To compare the effect of rhamnolipid addition, two bacterial strains, 3Y and 4-3, which were isolated from a diesel-contaminated site in Korea, were selected. Without the biosurfactant, large amounts of phenanthrene were degraded with both strains at neutral pH, with higher rates of phenanthrene degradation when the cell growth was higher. Upon the addition of 240 mg/L rhamnolipid, the phenanthrene degradation and optical density were reduced, with this inhibitory effect similar for both 3Y and 4-3. To explain this inhibition, the cell growths of both strains were monitored with various concentrations of rhamnolipid, which showed significant toxic effects toward strain 3Y, but was nontoxic toward 4-3. Combining the inhibitory and toxicity results with regard to the biodegradation, different mechanisms can be suggested for each strain. In the biodegradation experiments, the toxicity of rhamnolipid itself mainly was responsible for the inhibitory effect in the case of 3Y, whereas the toxicity of solubilized phenanthrene or the increased toxicity of rhamnolipid in the presence of solubilized phenanthrene could have resulted in the inhibitory effect in the case of 4-3. This study demonstrated that the effectiveness of biosurfactant-enhanced biodegradation can be significantly different depending on the strain, and the toxicity of the biosurfactant should be considered as an important factor.

  6. Identification of potential local isolated for biosurfactant production

    NASA Astrophysics Data System (ADS)

    Shafiei, Zahra; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul; Moazami, Nasrin; Hamzah, Ainon; Fooladi, Taybeh

    2013-11-01

    Biosurfactant are amphiphilic molecule that have received increasing attention in recent years because of their role in the growth of microorganisms on water-insoluble hydrophobic materials such as hydrocarbons as well as their commercial potential in the cosmetics, food, oil recovery and agricultural industries. In this study a potential biosurfactant producing strain was isolated from several soil samples of Terengganu oil refinery, Malaysia and selected during preliminary screening using hemolytic activity, oil spreading and drop collapsed technique. Isolates with at least more than one positive response to these three methods were subjected to complementary screening by measuring surface tension reduction as well as emulsification capacity. The biosurfactant produced by isolated 5M was able to reduced surface tension of culture medium from 60 mN/m to30mN/m. The biochemical and morphological characterization, 16SrRNA gene sequencing showed that the isolated 5M belongs to bacillus groups. The maximum production of biosurfactant by Bacillus 5M was observed after 48 h of incubation.

  7. Isolation and characterization of halophilic Archaea able to produce biosurfactants.

    PubMed

    Kebbouche-Gana, S; Gana, M L; Khemili, S; Fazouane-Naimi, F; Bouanane, N A; Penninckx, M; Hacene, H

    2009-05-01

    Halotolerant microorganisms able to live in saline environments offer a multitude of actual or potential applications in various fields of biotechnology. This is why some strains of Halobacteria from an Algerian culture collection were screened for biosurfactant production in a standard medium using the qualitative drop-collapse test and emulsification activity assay. Five of the Halobacteria strains reduced the growth medium surface tension below 40 mN m(-1), and two of them exhibited high emulsion-stabilizing capacity. Diesel oil-in-water emulsions were stabilized over a broad range of conditions, from pH 2 to 11, with up to 35% sodium chloride or up to 25% ethanol in the aqueous phase. Emulsions were stable to three cycles of freezing and thawing. The components of the biosurfactant were determined; it contained sugar, protein and lipid. The two Halobacteria strains with enhanced biosurfactant producers, designated strain A21 and strain D21, were selected to identify by phenotypic, biochemical characteristics and by partial 16S rRNA gene sequencing. The strains have Mg(2+), and salt growth requirements are always above 15% (w/v) salts with an optimal concentration of 15-25%. Analyses of partial 16S rRNA gene sequences of the two strains suggested that they were halophiles belonging to genera of the family Halobacteriaceae, Halovivax (strain A21) and Haloarcula (strain D21). To our knowledge, this is the first report of biosurfactant production at such a high salt concentration.

  8. Biosurfactant technology for remediation of cadmium and lead contaminated soils.

    PubMed

    Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar

    2007-08-01

    This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.

  9. Characterization of biosurfactant-producing strains of fluorescent pseudomonads in a soilless cultivation system.

    PubMed

    Hultberg, Malin; Bergstrand, Karl-Johan; Khalil, Sammar; Alsanius, Beatrix

    2008-08-01

    The use of biosurfactants is a promising alternative in biological control of zoospore-producing plant pathogens. In the present study, biosurfactant production by the indigenous population of fluorescent pseudomonads in a soilless plant cultivation system was studied during the growing season. A total of 600 strains was screened and of these 18.5% were observed to produce biosurfactants. Production of both antibiotics and biosurfactant was uncommon among the isolated strains. A selective effect of the cultivation system filter was observed on the biosurfactant-producing strains and these strains were only occasionally observed after the filter, despite having a significantly higher motility than the nonbiosurfactant-producing strains. The majority of biosurfactant-producing strains were isolated from the filter skin, which suggests that this is a suitable surface for inoculation with biocontrol strains.

  10. Physicochemical Properties of Biosurfactant Produced by Pseudomonas fluorescens Grown on Whey Tofu

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Handayani, D. S.; Marliyana, S. D.; Suratmi, S.

    2017-02-01

    The research aims to examine the physicochemical properties of biosurfactant produced by Pseudomonas fluorescens. Biosurfactant was produced in whey tofu media containing 8 g/L nutrient broth and 5 g/L NaCl which was fermented for 2 days at room temperature. Biosurfactant was identified as rhamnolipids which had critical micelle concentration (CMC) value of 638 mg/L and surface tension of 54 mN/m. The biosurfactant had water in oil (w/o) emulsion type. The biosurfactant was able to decrease the interfacial tension more than 40% for emulsion of water with hexane, pentane, benzene, lubricants or kerosene. The stable emulsions were reached up to 30 days with the E24 value of about 50% when paraffin, toluene, lubricants or palm oil was used as an immiscible compound. Commercial surfactants, such as Triton X-100 and Tween-80 were investigated to compare their emulsification activities and emulsion stabilities with the produced biosurfactant.

  11. Utilization of oleo-chemical industry by-products for biosurfactant production.

    PubMed

    Bhardwaj, Garima; Cameotra, Swaranjit Singh; Chopra, Harish Kumar

    2013-11-21

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc.

  12. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil.

    PubMed

    Thavasi, Rengathavasi; Jayalakshmi, Singaram; Banat, Ibrahim M

    2011-02-01

    Lactobacillus delbrueckii cultured with peanut oil cake as the carbon source yielded 5.35 mg ml(-1) of biosurfactant production. Five sets of microcosm biodegradation experiments were carried out with crude oil as follows: set 1 - bacterial cells+crude oil, set 2 - bacterial cells+crude oil+fertilizer, set 3 - bacterial cells+crude oil+biosurfactant, set 4 - bacterial cells+crude oil+biosurfactant+fertilizer, set 5 - with no bacterial cells, fertilizer and biosurfactant (control). Maximum degradation of crude oil was observed in set 4 (75%). Interestingly, when biosurfactant and bacterial cells were used (set 3), significant oil biodegradation activity occurred and the difference between this treatment and that in set 4 was 7% higher degradation level in microcosm experiments. It is evident from the results that biosurfactants alone is capable of promoting biodegradation to a large extent without added fertilizers.

  13. Utilization of oleo-chemical industry by-products for biosurfactant production

    PubMed Central

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  14. Spray drying as a strategy for biosurfactant recovery, concentration and storage.

    PubMed

    Barcelos, Gisely S; Dias, Lívia C; Fernandes, Péricles L; Fernandes, Rita de Cássi R; Borges, Arnaldo C; Kalks, Karlos Hm; Tótola, Marcos R

    2014-01-01

    The objective of this study was to analyze the use of Spray Drying for concentration and preservation of biosurfactants produced by Bacillus subtilis LBBMA RI4914 isolated from a heavy oil reservoir. Kaolinite and maltodextrin 10DE or 20DE were tested as drying adjuvants. Surface activity of the biosurfactant was analyzed by preparing dilution x surface activity curves of crude biosurfactant, crude biosurfactant plus adjuvants and of the dried products, after their reconstitution in water. The shelf life of the dried products was also evaluated. Spray drying was effective in the recovery and concentration of biosurfactant, while keeping its surface activity. Drying adjuvants were required to obtain a solid product with the desired characteristics. These compounds did not interfere with tensoactive properties of the biosurfactant molecules. The dehydrated product maintained its surfactant properties during storage at room temperature during the evaluation period (120 days), with no detectable loss of activity.

  15. Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application.

    PubMed

    Zarinviarsagh, Mina; Ebrahimipour, Gholamhossein; Sadeghi, Hossein

    2017-09-18

    Alkaline thermostable lipase and biosurfactant producing bacteria are very interested at detergent applications, not only because of their eco-friendly characterize, but alsoproduction lipase and biosurfactant by using cheap materials. Ochrobactrum intermedium strain MZV101 was isolated as washing powder resistant, alkaline thermostable lipase and biosurfactant producing bacterium in order to use at detergent applications. O. intermedium strain MZV101 produces was lipase and biosurfactant in the same media with pH 10 and temperature of 60 °C. Washing test and some detergent compatibility character of lipase enzyme and biosurfactant were assayed. The antimicrobial activity evaluated against various bacteria and fungi. Lipase and biosurfactant produced by O. intermedium strain MZV101 exhibited high stability at pH 10-13 and temperature of 70-90 °C, biosurfactant exhibits good stability at pH 9-13 and thermostability in all range. Both lipase and biosurfactant were found to be stable in the presence of different metal ions, detergents and organic solvents. The lipase enzyme extracted using isopropanol with yield of 69.2% and biosurfactant with ethanol emulsification index value of 70.99% and yield of 9.32 (g/l). The single band protein after through from G-50 Sephadex column on SDS-PAGE was calculated to be 99.42 kDa. Biosurfactant O. intermedium strain MZV101 exhibited good antimicrobial activity against Gram-negative bacteria and against various bacterial pathogens. Based upon washing test biosurfactant and lipase O. intermedium strain MZV101considered being strong oil removal. The results of this study indicate that isolated lipase and biosurfactant with strong oil removal, antimicrobial activity and good stability could be useful for detergent applications.

  16. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    PubMed

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m(-1) and 2.47 ± 0.32 mN m(-1) respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (Sor). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  17. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications.

    PubMed

    Nguyen, Thu T; Sabatini, David A

    2011-02-18

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications.

  18. Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

    PubMed Central

    Nguyen, Thu T.; Sabatini, David A.

    2011-01-01

    Due to their non-toxic nature, biodegradability and production from renewable resources, research has shown an increasing interest in the use of biosurfactants in a wide variety of applications. This paper reviews the characterization of rhamnolipid and sophorolipid biosurfactants based on their hydrophilicity/hydrophobicity and their ability to form microemulsions with a range of oils without additives. The use of the biosurfactants in applications such as detergency and vegetable oil extraction for biodiesel application is also discussed. Rhamnolipid was found to be a hydrophilic surfactant while sophorolipid was found to be very hydrophobic. Therefore, rhamnolipid and sophorolipid biosurfactants in mixtures showed robust performance in these applications. PMID:21541055

  19. Optimization Production of Biosurfactant by Pseudomonas putida Using Crude Palm Oil (CPO) as Substrate

    NASA Astrophysics Data System (ADS)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Lindasari

    2017-07-01

    The production of biosurfactant by Pseudomonas putida has been studied. P. putida FNCC 0071 was grown in the nutrient broth medium supplemented with NaCl and crude palm oil (CPO). The effect of CPO concentration and fermentation time on the biosurfactant production were evaluated. The biosurfactant production was evaluated every 24 h for 10 days by optical density, surface tension and emulsification index. The best culture medium was found to be medium containing 5% v/v of CPO with 5 days of incubation time. The biosurfactant was identified as rhamnolipids.

  20. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil.

    PubMed

    Bezza, Fisseha Andualem; Chirwa, Evans M Nkhalambayausi

    2016-02-01

    The potential for biological treatment of an environment contaminated by complex petrochemical contaminants was evaluated using creosote contaminated soil in ex situ bio-slurry reactors. The efficacy of biosurfactant application and stimulation of in situ biosurfactant production was investigated. The biosurfactant produced was purified and characterised using Fourier transform infrared (FTIR) spectroscopy. Biosurfactant enhanced degradation of PAHs was 86.5% (with addition of biosurfactant) and 57% in controls with no biosurfactant and nutrient amendments after incubation for 45 days. A slight decrease in degradation rate observed in the simultaneous biosurfactant and nutrient, NH4NO3 and KH2PO4, supplemented microcosm can be attributed to preferential microbial consumption of the biosurfactant supplemented. The overall removal of PAHs was determined to be mass transport limited since the dissolution rate caused by the biosurfactant enhanced the bioavailability of the PAHs to the microorganisms. The consortium culture was predominated by the aromatic ring-cleaving species Bacillus stratosphericus, Bacillus subtilis, Bacillus megaterium, and Pseudomonas aeruginosa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery.

    PubMed

    Al-Wahaibi, Yahya; Joshi, Sanket; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Shibulal, Biji

    2014-02-01

    The fermentative production of biosurfactants by Bacillus subtilis strain B30 and the evaluation of biosurfactant based enhanced oil recovery using core-flood were investigated. Different carbon sources (glucose, sucrose, starch, date molasses, cane molasses) were tested to determine the optimal biosurfactant production. The isolate B30 produced a biosurfactant that could reduce the surface tension and interfacial tension to 26.63±0.45 mN/m and 3.79±0.27 mN/m, respectively in less than 12h in both glucose or date molasses based media. A crude biosurfactant concentration of 0.3-0.5 g/l and critical micelle dilution (CMD) values of 1:8 were observed. The biosurfactants gave stable emulsions with wide range of hydrocarbons including light and heavy crude oil. The biosurfactants were partially purified and identified as a mixture of lipopeptides similar to surfactin, using high performance thin layer chromatography and Fourier transform infrared spectroscopy. The biosurfactants were stable over wide range of pH, salinity and temperatures. The crude biosurfactant preparation enhanced light oil recovery by 17-26% and heavy oil recovery by 31% in core-flood studies. The results are indicative of the potential of the strain for the development of ex situ microbial enhanced oil recovery processes using glucose or date molasses based minimal media.

  2. Production and characterization of biosurfactant from marine Streptomyces species B3.

    PubMed

    Khopade, Abhijit; Ren, Biao; Liu, Xiang-Yang; Mahadik, Kakasaheb; Zhang, Lixin; Kokare, Chandrakant

    2012-02-01

    The present study demonstrates the production and properties of a biosurfactant isolated from marine Streptomyces species B3. The production of the biosurfactant was found to be higher in medium containing sucrose and lower in the medium containing glycerol. Yeast extract was the best nitrogen source for the production of the biosurfactant. The isolated biosurfactant reduced the surface tension of water to 29 mN/m. The purified biosurfactant was shown critical micelle concentrations of 110 mg/l. The emulsifying activity and stability of the biosurfactant was investigated at different salinities, pH, and temperature. The biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and salt concentration. The purified biosurfactant was shown strong antimicrobial activity. The biosurfactant was produced from the marine Streptomyces sp. using non-hydrocarbon substrates such as sucrose that was readily available and not required extensive purification procedure. Streptomyces species B3 can be used for microbially enhanced oil recovery process. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery

    PubMed Central

    Joshi, Sanket J.; Al-Wahaibi, Yahya M.; Al-Bahry, Saif N.; Elshafie, Abdulkadir E.; Al-Bemani, Ali S.; Al-Bahri, Asma; Al-Mandhari, Musallam S.

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m−1 and 2.47 ± 0.32 mN m−1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24–26% over residual oil saturation (Sor). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes. PMID:27933041

  4. Characterization of a novel biosurfactant produced by marine hydrocarbon-degrading bacterium Achromobacter sp. HZ01.

    PubMed

    Deng, M-C; Li, J; Hong, Y-H; Xu, X-M; Chen, W-X; Yuan, J-P; Peng, J; Yi, M; Wang, J-H

    2016-04-01

    To purify and characterize the biosurfactants produced by Achromobacter sp. HZ01. After fermentation, one biosurfactant was successfully purified from the fermentation broth of strain HZ01 by centrifugation, extraction using ethyl acetate, silica gel chromatography and reversed phase-high performance liquid chromatography. The critical micelle concentration (CMC) of the biosurfactant and the effects of temperatures, pH and salinities on its stability were determined. Fourier transform infrared spectroscopy, analysis of fatty acids and amino acids and mass spectrometry were used to characterize the biosurfactant. The maximum production yield of the crude biosurfactant reached to 6·84 g l(-1) after incubation for 96 h. Except the favourable adaptability to a wide range of temperatures, pH and salinities, the biosurfactant with a CMC value of 48 mg l(-1) could efficiently emulsify diverse hydrophobic compounds. The chemical formula of this biosurfactant was confirmed to be CH3 -(CH2 )17 -CHO-CH2 -CO-Gly-Gly-Leu-Met-Leu-Leu, in which the oxygen atom of group CHO linked to the last amino acid (Leu), a structure had never been reported before. The purified biosurfactant is a novel cyclic lipopeptide. One novel lipopeptide was purified and characterized. The novel biosurfactant exhibited good potential applications, such as bioremediation. © 2016 The Society for Applied Microbiology.

  5. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy.

    PubMed

    Durrant, L G; Noble, P; Spendlove, I

    2012-02-01

    Research into aberrant glycosylation and over-expression of glycolipids on the surface of the majority of cancers, coupled with a knowledge of glycolipids as functional molecules involved in a number of cellular physiological pathways, has provided a novel area of targets for cancer immunotherapy. This has resulted in the development of a number of vaccines and monoclonal antibodies that are showing promising results in recent clinical trials.

  6. Glycosylation of Glycolipids in Cancer: Basis for Development of Novel Therapeutic Approaches

    PubMed Central

    Daniotti, Jose L.; Vilcaes, Aldo A.; Torres Demichelis, Vanina; Ruggiero, Fernando M.; Rodriguez-Walker, Macarena

    2013-01-01

    Altered networks of gene regulation underlie many pathologies, including cancer. There are several proteins in cancer cells that are turned either on or off, which dramatically alters the metabolism and the overall activity of the cell, with the complex machinery of enzymes involved in the metabolism of glycolipids not being an exception. The aberrant glycosylation of glycolipids on the surface of the majority of cancer cells, associated with increasing evidence about the functional role of these molecules in a number of cellular physiological pathways, has received considerable attention as a convenient immunotherapeutic target for cancer treatment. This has resulted in the development of a substantial number of passive and active immunotherapies, which have shown promising results in clinical trials. More recently, antibodies to glycolipids have also emerged as an attractive tool for the targeted delivery of cytotoxic agents, thereby providing a rationale for future therapeutic interventions in cancer. This review first summarizes the cellular and molecular bases involved in the metabolic pathway and expression of glycolipids, both in normal and tumor cells, paying particular attention to sialosylated glycolipids (gangliosides). The current strategies in the battle against cancer in which glycolipids are key players are then described. PMID:24392350

  7. Application of oil refinery waste in the biosynthesis of glycolipids by yeast.

    PubMed

    Bednarski, Włodzimierz; Adamczak, Marek; Tomasik, Jan; Płaszczyk, Mariusz

    2004-10-01

    Candida antarctica or Candida apicola synthesized surfactants (glycolipids) in the cultivation medium supplemented with oil refinery waste, either with soapstock (from 5.0% to 12.0% v/v) or post-refinery fatty acids (from 2.0% to 5.0% v/v). The efficiency of glycolipids synthesis was determined by the amount of waste supplemented to the medium and was from 7.3 to 13.4 g/l and from 6.6 to 10.5 g/l in the medium supplemented with soapstock and post-refinery fatty acids, respectively. The studied yeast also synthesized glycolipids in the non-supplemented medium however, by the enrichment of medium with the oil refinery waste, a 7.5-8.5-fold greater concentration of glycolipids was obtained in the post-culture liquid then in the medium without addition of oil refinery waste. The yeast synthesized from 6.6 to 10.3 g dry biomass/l and the intra-cellular fat content was from 16.8% to 30.2%. The efficiency of glycolipids synthesis was determined by yeast species, medium acidity and culture period. The surface tension of the post-culture liquid separated from yeast biomass was reduced to 35.6 mN/m, which corresponded to the surface tension obtained at the critical micelle concentration of glycolipids.

  8. Neurobiology and cellular pathogenesis of glycolipid storage diseases.

    PubMed Central

    Walkley, Steven U

    2003-01-01

    Disorders of lysosomal metabolism often involve the accumulation of specific types of glycolipid, particularly gangliosides, because of either degradative failure or other currently unknown mechanisms. Although the precise role of gangliosides in cells remains enigmatic, the presence of specific abnormalities secondary to ganglioside accumulation in lysosomal diseases has suggested important biological functions. Chief among these is the growth of new dendrites on particular classes of mature neurons secondary to an increase in GM2 ganglioside. That GM2 has also been shown to be elevated in normal immature neurons coincident with dendritic sprouting provides a compelling argument that this ganglioside plays a role in dendritic initiation. This discovery has led to the search for other regulators of dendritic differentiation that may in some way be linked to the expression and/or function of GM2 ganglioside. Principal candidates that have emerged include tyrosine kinase receptors, small GTPases and calcium/calmodulin-dependent protein kinase II. Understanding the mechanism underlying ectopic dendritogenesis in lysosomal diseases can be expected to generate significant insight into the control of dendritic plasticity in normal brain. The detrimental aspects of ganglioside accumulation in storage diseases as well as the potential link between gangliosides and dendritogenesis also provide a strong rationale for developing pharmacological means to manipulate ganglioside expression in neurons. PMID:12803923

  9. Baking performance of synthetic glycolipids in comparison to commercial surfactants.

    PubMed

    Selmair, Patrick L; Koehler, Peter

    2008-08-13

    To gain insight into structure-activity relationships of glycolipids in breadmaking monogalactosyl dilinoleylglycerol ( 8) and monogalactosyl monolinoleylglycerol ( 6) were synthesized. Then their functional properties in dough and breadmaking were compared to those of commercial surfactants such as lecithins (from soybean, rapeseed, and sunflower), diacetyltartaric acid esters of monoglycerides (DATEM), monoglycerides, and sodium stearoyl-2-lactylate. Chemical synthesis of the galactolipids consisted of a four-step reaction pathway, yielding amounts of 1-1.5 g suitable for the determination of the functional properties. Variation of the acylation time in the third step provided either the monoacyl ( 6) or the diacyl compound ( 8). The functional properties were determined by means of rheological and baking tests on a microscale (10 g of flour). The synthetic galactolipids both displayed an excellent baking performance, with 6 having by far the best baking activity of all examined surfactants. The baking activities of 8, DATEM, and the monoglycerides were in the same range, whereas sodium stearoyl-2-lactylate was less active. Although the lecithins gained similar maxima in bread volume increases as the synthetic surfactants did, considerably higher concentrations were required to do so. An antistaling effect was found for only 6 and not for 8. However, this effect was weaker than for sodium stearoyl-2-lactylate and the monoglycerides.

  10. Erylusamides: Novel Atypical Glycolipids from Erylus cf. deficiens.

    PubMed

    Gaspar, Helena; Cutignano, Adele; Grauso, Laura; Neng, Nuno; Cachatra, Vasco; Fontana, Angelo; Xavier, Joana; Cerejo, Marta; Vieira, Helena; Santos, Susana

    2016-10-11

    Among marine organisms, sponges are the richest sources of pharmacologically-active compounds. Stemming from a previous lead discovery program that gathered a comprehensive library of organic extracts of marine sponges from the off-shore region of Portugal, crude extracts of Erylus cf. deficiens collected in the Gorringe Bank (Atlantic Ocean) were tested in the innovative high throughput screening (HTS) assay for inhibitors of indoleamine 2,3-dioxygenase (IDO) and showed activity. Bioassay guided fractionation of the dichloromethane extract led to the isolation of four new glycolipids, named erylusamide A-D. The structures of the isolated compounds were established by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and chemical derivatization. The metabolites shared a pentasaccharide moiety constituted by unusual highly acetylated ᴅ-glucose moieties as well as ᴅ-xylose and ᴅ-galactose. The aglycones were unprecedented long chain dihydroxyketo amides. Erylusamides A, B and D differ in the length of the hydrocarbon chain, while erylusamide C is a structural isomer of erylusamide B.

  11. Formation of gold nanoparticles by glycolipids of Lactobacillus casei

    PubMed Central

    Kikuchi, Fumiya; Kato, Yugo; Furihata, Kazuo; Kogure, Toshihiro; Imura, Yuki; Yoshimura, Etsuro; Suzuki, Michio

    2016-01-01

    Gold nanoparticles have particular properties distinct from those of bulk gold crystals, and such nanoparticles are used in various applications in optics, catalysis, and drug delivery. Many reports on microbial synthesis of gold nanoparticles have appeared. However, the molecular details (reduction and dispersion) of such synthesis remain unclear. In the present study, we studied gold nanoparticle synthesis by Lactobacillus casei. A comparison of L. casei components before and after addition of an auric acid solution showed that the level of unsaturated lipids decreased significantly after addition. NMR and mass spectrum analysis showed that the levels of diglycosyldiacylglycerol (DGDG) and triglycosyldiacylglycerol (TGDG) bearing unsaturated fatty acids were much reduced after formation of gold nanoparticles. DGDG purified from L. casei induced the synthesis of gold nanoparticles in vitro. These results suggested that glycolipids, such as DGDG, play important roles in reducing Au(III) to Au(0) and in ensuring that the nanoparticles synthesized remain small in size. Our work will lead to the development of novel, efficient methods by which gold nanoparticles may be produced by, and accumulated within, microorganisms. PMID:27725710

  12. Erylusamides: Novel Atypical Glycolipids from Erylus cf. deficiens

    PubMed Central

    Gaspar, Helena; Cutignano, Adele; Grauso, Laura; Neng, Nuno; Cachatra, Vasco; Fontana, Angelo; Xavier, Joana; Cerejo, Marta; Vieira, Helena; Santos, Susana

    2016-01-01

    Among marine organisms, sponges are the richest sources of pharmacologically-active compounds. Stemming from a previous lead discovery program that gathered a comprehensive library of organic extracts of marine sponges from the off-shore region of Portugal, crude extracts of Erylus cf. deficiens collected in the Gorringe Bank (Atlantic Ocean) were tested in the innovative high throughput screening (HTS) assay for inhibitors of indoleamine 2,3-dioxygenase (IDO) and showed activity. Bioassay guided fractionation of the dichloromethane extract led to the isolation of four new glycolipids, named erylusamide A–D. The structures of the isolated compounds were established by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and chemical derivatization. The metabolites shared a pentasaccharide moiety constituted by unusual highly acetylated d-glucose moieties as well as d-xylose and d-galactose. The aglycones were unprecedented long chain dihydroxyketo amides. Erylusamides A, B and D differ in the length of the hydrocarbon chain, while erylusamide C is a structural isomer of erylusamide B. PMID:27727161

  13. Sulfoglucuronosyl glycolipids as putative antigens for autoimmune inner ear disease.

    PubMed

    Yamawaki, M; Ariga, T; Gao, Y; Tokuda, A; Yu, J S; Sismanis, A; Yu, R K

    1998-04-15

    Autoimmune inner ear disease is diagnosed based on clinical history of fluctuating but progressive sensorineural hearing loss (SNHL) with or without vestibular symptoms occurring over weeks to months. An initial response to steroids or immunosuppressive drugs usually reverses the hearing loss. In search of specific diagnostic and therapeutic markers for autoimmune inner ear diseases, we investigated serum anti-glycolipid antibody activities in these patients by two different methods, HPTLC-immunoblotting and ELISA. We found that 37 out of 74 patients of clinically diagnosed autoimmune inner ear disease (30 of sensorineural hearing loss (SNHL) (group I), 14 of vestibular symptoms only (group II), 30 of Menieres symptoms (with both hearing loss and vestibular symptoms) (group III)) showed positive anti-sulfoglucuronosyl lactosaminyl paragloboside (SGLPG) antibody titers (p < 0.001). On the other hand, anti-sulfoglucuronosyl paragloboside (SGPG) titers were not elevated in these conditions. In contrast, only 3 out of 56 pathological control and 2 out of 28 healthy volunteers had measurable anti-SGLPG antibody titers. We further analyzed the localization of SGLPG in the auditory pathway and found that the antigens existed exclusively in inner ear and the eighth nerve, but not in pons, cerebellum, nor cerebrum. We conclude that the anti-SGLPG antibody represents a novel diagnostic marker for autoimmune inner ear disease and may participate in the pathogenesis of this disease.

  14. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent.

    PubMed

    Díaz De Rienzo, Mayri A; Banat, Ibrahim M; Dolman, Ben; Winterburn, James; Martin, Peter J

    2015-12-25

    Biosurfactants are amphipathic, surface-active molecules of microbial origin which accumulate at interfaces reducing interfacial tension and leading to the formation of aggregated micellular structures in solution. Some biosurfactants have been reported to have antimicrobial properties, the ability to prevent adhesion and to disrupt biofilm formation. We investigated antimicrobial properties and biofilm disruption using sophorolipids at different concentrations. Growth of Gram negative Cupriavidus necator ATCC 17699 and Gram positive Bacillus subtilis BBK006 were inhibited by sophorolipids at concentrations of 5% v/v with a bactericidal effect. Sophorolipids (5% v/v) were also able to disrupt biofilms formed by single and mixed cultures of B. subtilis BBK006 and Staphylococcus aureus ATCC 9144 under static and flow conditions, as was observed by scanning electron microscopy. The results indicated that sophorolipids may be promising compounds for use in biomedical application as adjuvants to other antimicrobial against some pathogens through inhibition of growth and/or biofilm disruption.

  15. Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid.

    PubMed

    Kang, Seok-Whan; Kim, Young-Bum; Shin, Jae-Dong; Kim, Eun-Ki

    2010-03-01

    Effectiveness of a microbial biosurfactant, sophorolipid, was evaluated in washing and biodegradation of model hydrocarbons and crude oil in soil. Thirty percent of 2-methylnaphthalene was effectively washed and solubilized with 10 g/L of sophorolipid with similar or higher efficiency than that of commercial surfactants. Addition of sophorolipid in soil increased biodegradation of model compounds: 2-methylnaphthalene (95% degradation in 2 days), hexadecane (97%, 6 days), and pristane (85%, 6 days). Also, effective biodegradation method of crude oil in soil was observed by the addition of sophorolipid, resulting in 80% biodegradation of saturates and 72% aromatics in 8 weeks. These results showed the potentials of the microbial biosurfactant, sophorolipid, as an effective surfactant for soil washing and as an in situ biodegradation enhancer.

  16. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0

  17. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil.

    PubMed

    de Lima, C J B; Ribeiro, E J; Sérvulo, E F C; Resende, M M; Cardoso, V L

    2009-01-01

    Pseudomonas aeruginosa PACL strain, isolated from oil-contaminated soil taken from a lagoon, was used to investigate the efficiency and magnitude of biosurfactant production, using different waste frying soybean oils, by submerged fermentation in stirred tank reactors of 6 and 10 l capacities. A complete factorial experimental design was used, with the goal of optimizing the aeration rate (0.5, 1.0, and 1.5 vvm) and agitation speed (300, 550, and 800 rpm). Aeration was identified as the primary variable affecting the process, with a maximum rhamnose concentration occurring at an aeration rate of 0.5 vvm. At optimum levels, a maximum rhamnose concentration of 3.3 g/l, an emulsification index of 100%, and a minimum surface tension of 26.0 dynes/cm were achieved. Under these conditions, the biosurfactant production derived from using a mixture of waste frying soybean oil (WFSO) as a carbon source was compared to production when non-used soybean oil (NUSO), or waste soybean oils used to fry specific foods, were used. NUSO produced the highest level of rhamnolipids, although the waste soybean oils also resulted in biosurfactant production of 75-90% of the maximum value. Under ideal conditions, the kinetic behavior and the modeling of the rhamnose production, nutrient consumption, and cellular growth were established. The resulting model predicted data points that corresponded well to the empirical information.

  18. Characterization of glycolipids synthesized in an identified neuron of Aplysia californica.

    PubMed

    Sherbany, A A; Ambron, R T; Schwartz, J H

    1984-07-01

    Because radioactive precursors can be injected directly into the cell body or axon of R2, a giant, identified neuron of the Aplysia abdominal ganglion, it was possible to show that glycolipid is synthesized in the cell body, inserted into membranes along with glycoprotein, and then exported into the axon within organelles that are moved by fast axonal transport. After intrasomatic injection of N-[3H]-acetyl-D-galactosamine, five major 3H-glycolipids were identified using thin layer polysilicic acid glass fiber chromatography. At least two of the lipids are negatively charged. Analysis of 32P-labeled lipid from the abdominal ganglion revealed the presence of 2-aminoethylphosphonate, indicating that these polar substances are sphingophosphonoglycolipids. The major 3H-glycolipids synthesized in R2 are similar to a family of phospholipids isolated from the skin of A. kurodai, previously characterized by Araki et al. (Araki, S., Y. Komai, and M. Satake (1980) Biochem J. 87: 503-510). Since sialic acid is absent in Aplysia as in other invertebrates, these polar glycolipids may function like gangliosides in vertebrates. The polar 3H-glycolipids are synthesized and incorporated into intracytoplasmic membranes solely in the cell body. Direct injection of the labeled sugar into the axon revealed no local synthesis or exchange of glycolipid. Moreover, there was no indication for transfer from glial cells into axoplasm. Although the incorporation of N-[3H]-acetyl-D-galactosamine into glycolipid is not affected by anisomycin, an effective inhibitor of protein synthesis, the export into the axon of membranes containing the newly synthesized lipid is completely blocked by the drug.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Mapping fucosylated epitopes on glycoproteins and glycolipids of Schistosoma mansoni cercariae, adult worms and eggs.

    PubMed

    Robijn, M L M; Wuhrer, M; Kornelis, D; Deelder, A M; Geyer, R; Hokke, C H

    2005-01-01

    The developmental expression of the antigenic fucosylated glycan motifs Fucalpha1-3GalNAcbeta1-4GlcNAc (F-LDN), Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc (F-LDN-F), GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LDN-F), Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis X), and GalNAcbeta1-4(Fucalpha1-2Fucalpha1-3)GlcNAc (LDN-DF) in Schistosoma mansoni cercariae, adult worms and eggs, was surveyed using previously defined anti-carbohydrate monoclonal antibodies (mAbs). Lewis X was found both on glycolipids and glycoproteins, yet with completely different expression patterns during the life-cycle: on glycolipids, Lewis X was mainly found in the cercarial stage, while protein-conjugated Lewis X was mainly present in the egg stage. Also protein-conjugated LDN-F and LDN-DF were most highly expressed in the egg-stage. On glycolipids LDN-DF was found in all three examined stages, whereas LDN-F containing glycolipids were restricted to adult worms and eggs. The motifs F-LDN and F-LDN-F were found both on glycoproteins and glycolipids of the cercarial and egg stage, while in the adult stage, they appeared to occur predominantly on glycolipids. Immunofluorescence assays (IFA) showed that these F-LDN and F-LDN-F containing glycolipids were localized in a yet undefined duct or excretory system of adult worms. Murine infection serum showed major reactivity with this adult worm duct-system, which could be fully inhibited by pre-incubation with keyhole limpet haemocyanin (KLH). Clearly, the use of defined mAbs provides a quick and convenient way to map expression profiles of carbohydrate epitopes.

  20. Establishment of cells exhibiting mutated glycolipid synthesis from mouse thymus by immortalization with SV-40 virus.

    PubMed

    Iwamori, Masao; Iwamori, Yuriko

    2005-11-01

    Immortalization with simian virus-40 and cloning of immortalized cells from mouse thymus were performed to establish cell lines for characterization of the mode of glycolipid expression in the thymic cells. Among the 25 cell lines obtained, three lines with different morphologies were established, that is, epithelial (IMTH-E), fibroblastic (IMTH-F), and asterisk-like (IMTH-I) cells, and their glycolipids, together with those in the thymus, were determined systematically. The major glycolipids in mouse thymus were the globo- and ganglio-series, both of which, were co-expressed in the three cell lines established. However, the mode of modification of the globo- and ganglio-series was distinct for each cell line. As to the globo-series, the structures with the longest carbohydrate chain for IMTH-E, -F, and -I cells were Gb3Cer, Gb4Cer, and Forssman antigen, respectively, having stepwise shorter carbohydrates at the nonreducing termini. Although the acidic glycolipids in IMTH-E cells comprised GM3 and GM2, and their sulfated isomers, IMTH-F and -I cells expressed GMlb and GDlc for the alpha-pathway, and up to GDI a for the a-pathway of ganglio-series glycolipids. GMlb-GalNAc present in the thymus was not detected in IMTH-F and -I cells, probably due to the lower synthetic activity for the metabolic intermediate Gg4Cer. The results indicate that the immortalization technique is useful for obtaining individual cells having unique glycolipid profiles for analysis of the functional significance and metabolism of glycolipids in the thymus.

  1. Microarray screening of Guillain-Barré syndrome sera for antibodies to glycolipid complexes

    PubMed Central

    Halstead, Susan K.; Kalna, Gabriela; Islam, Mohammad B.; Jahan, Israt; Mohammad, Quazi D.; Jacobs, Bart C.; Endtz, Hubert P.; Islam, Zhahirul

    2016-01-01

    Objective: To characterize the patterns of autoantibodies to glycolipid complexes in a large cohort of Guillain-Barré syndrome (GBS) and control samples collected in Bangladesh using a newly developed microarray technique. Methods: Twelve commonly studied glycolipids and lipids, plus their 66 possible heteromeric complexes, totaling 78 antigens, were applied to polyvinylidene fluoride–coated slides using a microarray printer. Arrays were probed with 266 GBS and 579 control sera (2 μL per serum, diluted 1/50) and bound immunoglobulin G detected with secondary antibody. Scanned arrays were subjected to statistical analyses. Results: Measuring antibodies to single targets was 9% less sensitive than to heteromeric complex targets (49.2% vs 58.3%) without significantly affecting specificity (83.9%–85.0%). The optimal screening protocol for GBS sera comprised a panel of 10 glycolipids (4 single glycolipids GM1, GA1, GD1a, GQ1b, and their 6 heteromeric complexes), resulting in an overall assay sensitivity of 64.3% and specificity of 77.1%. Notable heteromeric targets were GM1:GD1a, GM1:GQ1b, and GA1:GD1a, in which exclusive binding to the complex was observed. Conclusions: Rationalizing the screening protocol to capture the enormous diversity of glycolipid complexes can be achieved by miniaturizing the screening platform to a microarray platform, and applying simple bioinformatics to determine optimal sensitivity and specificity of the targets. Glycolipid complexes are an important category of glycolipid antigens in autoimmune neuropathy cases that require specific analytical and bioinformatics methods for optimal detection. PMID:27790627

  2. Characterization of glycolipids synthesized in an identified neuron of Aplysia californica

    SciTech Connect

    Sherbany, A.A.; Ambron, R.T.; Schwartz, J.H.

    1984-07-01

    Because radioactive precursors can be injected directly into the cell body or axon of R2, a giant, identified neuron of the Aplysia abdominal ganglion, it was possible to show that glycolipid is synthesized in the cell body, inserted into membranes along with glycoprotein, and then exported into the axon within organelles that are moved by fast axonal transport. After intrasomatic injection of N-(/sup 3/H)-acetyl-D-galactosamine, five major /sup 3/H-glycolipids were identified using thin layer polysilicic acid glass fiber chromatography. At least two of the lipids are negatively charged. Analysis of /sup 32/P-labeled lipid from the abdominal ganglion revealed the presence of 2-aminoethylphosphonate, indicating that these polar substances are sphingophosphonoglycolipids. The major /sup 3/H-glycolipids synthesized in R2 are similar to a family of phospholipids isolated from the skin of A. kurodai. Since sialic acid is absent in Aplysia as in other invertebrates, these polar glycolipids may function like gangliosides in vertebrates. The polar /sup 3/H-glycolipids are synthesized and incorporated into intracytoplasmic membranes solely in the cell body. Direct injection of the labeled sugar into the axon revealed no local synthesis or exchange of glycolipid. Moreover, there was no indication for transfer from glial cells into axoplasm. Although the incorporation of N-(/sup 3/H)-acetyl-D-galactosamine into glycolipid is not affected by anisomycin, an effective inhibitor of protein synthesis, the export into the axon of membranes containing the newly synthesized lipid is completely blocked by the drug.

  3. Optimization of liquid-liquid extraction of biosurfactants from corn steep liquor.

    PubMed

    Vecino, X; Barbosa-Pereira, L; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-09-01

    In this work, the optimization of the operational conditions for the chloroform-based extraction of surface-active compounds from corn steep liquor (CSL) was carried out and the nutritional properties of the remnant aqueous phase (CSL-less biosurfactant) was evaluated as microbial fermentation medium. The optimal conditions to obtain biosurfactants from CSL were as follows: chloroform/CSL ratio 2 (v/v), 56 °C at extraction times >30 min. At the optima conditions, 100 % of biosurfactant extract can be obtained from CSL, obtaining 12.0 ± 0.5 g of biosurfactant extract/Kg of CSL. The critical micelle concentration (CMC) of the biosurfactant extract was 399.4 mg L(-1). This value is similar to the CMC of cetrimonium bromide (CTAB), a cationic surfactant used in the formulation of nanoparticles. The extraction of biosurfactant can be also carried out at room temperature although in this case, the extraction yield decreased about 15 %. The extraction of surface-active compounds from agroindustrial streams can suppose important advances for the bio-based surfactants industry. Biosurfactants obtained in this work are not only more eco-friendly than chemical detergents but also can be cost competitive with its chemical counterparts. Furthermore, after the extraction of surface-active compounds, CSL-less biosurfactant was found to be suitable as nutritional supplement for lactic acid bacteria, maintaining its nutritional properties in comparison with regular CSL.

  4. Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the solubility and biodegradation of phenanthrene.

    PubMed

    Zhao, Zhenyong; Wong, Jonathan W C

    2009-03-01

    A thermophilic bacterial strain, Acinetobacter calcoaceticus BU03, with a biosurfactant-producing capability, was isolated from petroleum-contaminated soil with an improved procedure which employed the solubilization of polycyclic aromatic hydrocarbons (PAHs), i.e. naphthalene in agar plate, as a selection criterion. Crude biosurfactant was recovered from the culture of BU03 by extraction with n-hexane, and its properties were investigated. Biosurfactants from A. calcoaceticus BU03 constitute a thermo-stable mixture, composed of different agents with surface activities. At their critical micelle concentration (CMC) of 152.4 mg L(-1), the crude biosurfactants produced from A. calcoaceticus BU03 decreased the air-water surface tension to 38.4 mN m(-1). In thermophilic conditions, the emulsifying activity is 2.8 times that of Tween 80. The effects of the biosurfactants produced by A. calcoaceticus on the solubility and biodegradation of PAHs were investigated in batch systems. Biosurfactants produced by A. calcoaceticus BU03 at 25 times their CMC significantly increased the apparent aqueous solubility of phenanthrene (PHE), pyrene (PYR) and benzo(a)pyrene (B[a]P) to 54.3, 6.33 and 2.08 mg L(-1), respectively. In aqueous system, the biosurfactants at concentrations of 0.5 CMC and 1 CMC slightly enhanced the biodegradation of PHE by a consortium of PAH-degrading microrganisms. Results indicate that biosurfactants from A. calcoaceticus BU03 have potential to enhance the removal of PAHs from contaminated sites.

  5. Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production

    USDA-ARS?s Scientific Manuscript database

    Biosurfactants are diverse molecules with numerous biological functions and industrial applications. A variety of environments were examined for biosurfactant-producing bacteria using a versatile new screening method. The utility of an atomized oil assay was assessed for a large number of bacteria...

  6. Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus.

    PubMed

    Moldes, Ana Belén; Paradelo, Remigio; Rubinos, David; Devesa-Rey, Rosa; Cruz, José Manuel; Barral, María Teresa

    2011-09-14

    The utilization of biosurfactants for the bioremediation of contaminated soil is not yet well established, because of the high production cost of biosurfactants. Consequently, it is interesting to look for new biosurfactants that can be produced at a large scale, and it can be employed for the bioremediation of contaminated sites. In this work, biosurfactants from Lactobacillus pentosus growing in hemicellulosic sugars solutions, with a similar composition of sugars found in trimming vine shoot hydrolysates, were employed in the bioremediation of soil contaminated with octane. It was observed that the presence of biosurfactant from L. pentosus accelerated the biodegradation of octane in soil. After 15 days of treatment, biosurfactants from L. pentosus reduced the concentration of octane in the soil to 58.6 and 62.8%, for soil charged with 700 and 70,000 mg/kg of hydrocarbon, respectively, whereas after 30 days of treatment, 76% of octane in soil was biodegraded in both cases. In the absence of biosurfactant and after 15 days of incubation, only 1.2 and 24% of octane was biodegraded in soil charged with 700 and 70,000 mg/kg of octane, respectively. Thus, the use of biosurfactants from L. pentosus, as part of a well-designed bioremediation process, can provide mechanisms to mobilize the target contaminants from the soil surface to make them more available to the microbial population.

  7. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates

    PubMed Central

    Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Luna, Juliana M.; Rufino, Raquel D.; Santos, Valdemir A.; Sarubbo, Leonie A.

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R2 = 0.99833) and biosurfactant yield (R2 = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = −0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm−1 and 4.19 gL−1, respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL−1, respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry. PMID:28223971

  8. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates.

    PubMed

    Almeida, Darne G; Soares da Silva, Rita de Cássia F; Luna, Juliana M; Rufino, Raquel D; Santos, Valdemir A; Sarubbo, Leonie A

    2017-01-01

    Biosurfactant production optimization by Candida tropicalis UCP0996 was studied combining central composite rotational design (CCRD) and response surface methodology (RSM). The factors selected for optimization of the culture conditions were sugarcane molasses, corn steep liquor, waste frying oil concentrations and inoculum size. The response variables were surface tension and biosurfactant yield. All factors studied were important within the ranges investigated. The two empirical forecast models developed through RSM were found to be adequate for describing biosurfactant production with regard to surface tension (R(2) = 0.99833) and biosurfactant yield (R(2) = 0.98927) and a very strong, negative, linear correlation was found between the two response variables studied (r = -0.95). The maximum reduction in surface tension and the highest biosurfactant yield were 29.98 mNm(-1) and 4.19 gL(-1), respectively, which were simultaneously obtained under the optimum conditions of 2.5% waste frying oil, 2.5%, corn steep liquor, 2.5% molasses, and 2% inoculum size. To validate the efficiency of the statistically optimized variables, biosurfactant production was also carried out in 2 and 50 L bioreactors, with yields of 5.87 and 7.36 gL(-1), respectively. Finally, the biosurfactant was applied in motor oil dispersion, reaching up to 75% dispersion. Results demonstrated that the CCRD was suitable for identifying the optimum production conditions and that the new biosurfactant is a promising dispersant for application in the oil industry.

  9. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  10. Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India

    PubMed Central

    Sarafin, Yesurethinam; Donio, Mariathasan Birdilla Selva; Velmurugan, Subramanian; Michaelbabu, Mariavincent; Citarasu, Thavasimuthu

    2014-01-01

    Biosurfactant screening was made among the eight halophilic bacterial genera isolated from Kovalam solar salt works in Kanyakumari of India. After initial screening, Kocuria sp. (Km), Kurthia sp. (Ku) and Halococcus sp. (Hc) were found to have positive biosurfactant activity. Biosurfactant derived from Kocuria sp. emulsified more than 50% of the crude oil, coconut oil, sunflower oil, olive oil and kerosene when compared to the other strains. Further, Kocuria marina BS-15 derived biosurfactant was purified and characterized by TLC, FTIR and GC–MS analysis. The TLC analysis revealed that, the purified biosurfactants belong to the lipopeptide group. The IR spectrum results revealed that functional groups are R2C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 NN, alkenes and N–H. The GC–MS analysis confirmed the compound as Nonanoic acid and Cyclopropane with the retention time of 12.78 and 24.65, respectively. PMID:25473358

  11. Molecular engineering aspects for the production of new and modified biosurfactants.

    PubMed

    Koglin, Alexander; Doetsch, Volker; Bernhard, Frank

    2010-01-01

    Biosurfactants are of considerable industrial value as their high tenside activity in combination with their biocompatibility makes them attractive for many applications. In particular members of the lipopeptide family of biosurfactants contain significant potentials for the pharmaceutical industry due to their intrinsic antibiotic characteristics. The high frequency of lipopeptide (LP) production in common soil microorganisms in combination with the enormous structural diversity of the synthesized biosurfactants has created an abundant natural pool of compounds with potentially interesting properties. Unfortunately, the bioactivity of lipopetides against pathogenic microorganisms is often associated with problematic side effects that restrict or even prevent medically relevant applications. The accumulated knowledge of lipopetide biosynthesis and their frequent structural variations caused by natural genetic rearrangements has therefore motivated numerous approaches in order to manipulate biosurfactant composition and production mechanisms. This chapter will give an overview on current engineering strategies that aim to obtain lipopeptide biosurfactants with redesigned structures and optimized properties.

  12. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource.

    PubMed

    Kiran, George Seghal; Ninawe, Arun Shivanth; Lipton, Anuj Nishanth; Pandian, Vijayalakshmi; Selvin, Joseph

    2016-01-01

    Rhamnolipid-biosurfactants are known to be produced by the genus Pseudomonas, however recent literature reported that rhamnolipids (RLs) are distributed among diverse microbial genera. To integrate the evolutionary implications of rhamnosyl transferase among various groups of microorganisms, a comprehensive comparative motif analysis was performed amongst bacterial producers. Findings on new RL-producing microorganism is helpful from a biotechnological perspective and to replace infective P. aeruginosa strains which ultimately ensure industrially safe production of RLs. Halotolerant biosurfactants are required for efficient bioremediation of marine oil spills. An insight on the exploitation of marine microbes as the potential source of RL biosurfactants is highlighted in the present review. An economic production process, solid-state fermentation using agro-industrial and industrial waste would increase the scope of biosurfactants commercialization. Potential and prospective applications of RL-biosurfactants including hydrocarbon bioremediation, heavy metal removal, antibiofilm activity/biofilm disruption and greener synthesis of nanoparticles are highlighted in this review.

  13. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation

    PubMed Central

    Dadrasnia, Arezoo; Ismail, Salmah

    2015-01-01

    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes. PMID:26295402

  14. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation.

    PubMed

    Dadrasnia, Arezoo; Ismail, Salmah

    2015-08-19

    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes.

  15. Enterogenous bacterial glycolipids are required for the generation of natural killer T cells mediated liver injury

    PubMed Central

    Wei, Yingfeng; Zeng, Benhua; Chen, Jianing; Cui, Guangying; Lu, Chong; Wu, Wei; Yang, Jiezuan; Wei, Hong; Xue, Rufeng; Bai, Li; Chen, Zhi; Li, Lanjuan; Iwabuchi, Kazuya; Uede, Toshimitsu; Van Kaer, Luc; Diao, Hongyan

    2016-01-01

    Glycolipids are potent activator of natural killer T (NKT) cells. The relationship between NKT cells and intestinal bacterial glycolipids in liver disorders remained unclear. We found that, in sharp contrast to specific pathogen-free (SPF) mice, germ-free (GF) mice are resistant to Concanavalin A (ConA)-induced liver injury. ConA treatment failed to trigger the activation of hepatic NKT cells in GF mice. These defects correlated with the sharply reduced levels of CD1d-presented glycolipid antigens in ConA-treated GF mice compared with SPF counterparts. Nevertheless, CD1d expression was similar between these two kinds of mice. The absence of intestinal bacteria did not affect the incidence of αGalCer-induced liver injury in GF mice. Importantly, we found the intestinal bacteria contain glycolipids which can be presented by CD1d and recognized by NKT cells. Furthermore, supplement of killed intestinal bacteria was able to restore ConA-mediated NKT cell activation and liver injury in GF mice. Our results suggest that glycolipid antigens derived from intestinal commensal bacteria are important hepatic NKT cell agonist and these antigens are required for the activation of NKT cells during ConA-induced liver injury. These finding provide a mechanistic explanation for the capacity of intestinal microflora to control liver inflammation. PMID:27821872

  16. Interview: glycolipid antigen presentation by CD1d and the therapeutic potential of NKT cell activation.

    PubMed

    Kronenberg, Mitchell

    2007-01-01

    Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d--the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.

  17. Tight cohesion between glycolipid membranes results from balanced water–headgroup interactions

    PubMed Central

    Kanduč, Matej; Schlaich, Alexander; de Vries, Alex H.; Jouhet, Juliette; Maréchal, Eric; Demé, Bruno; Netz, Roland R.; Schneck, Emanuel

    2017-01-01

    Membrane systems that naturally occur as densely packed membrane stacks contain high amounts of glycolipids whose saccharide headgroups display multiple small electric dipoles in the form of hydroxyl groups. Experimentally, the hydration repulsion between glycolipid membranes is of much shorter range than that between zwitterionic phospholipids whose headgroups are dominated by a single large dipole. Using solvent-explicit molecular dynamics simulations, here we reproduce the experimentally observed, different pressure-versus-distance curves of phospholipid and glycolipid membrane stacks and show that the water uptake into the latter is solely driven by the hydrogen bond balance involved in non-ideal water/sugar mixing. Water structuring effects and lipid configurational perturbations, responsible for the longer-range repulsion between phospholipid membranes, are inoperative for the glycolipids. Our results explain the tight cohesion between glycolipid membranes at their swelling limit, which we here determine by neutron diffraction, and their unique interaction characteristics, which are essential for the biogenesis of photosynthetic membranes. PMID:28367975

  18. Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids.

    PubMed

    Leung, Lisa M; Fondrie, William E; Doi, Yohei; Johnson, J Kristie; Strickland, Dudley K; Ernst, Robert K; Goodlett, David R

    2017-07-25

    Rapid diagnostics that enable identification of infectious agents improve patient outcomes, antimicrobial stewardship, and length of hospital stay. Current methods for pathogen detection in the clinical laboratory include biological culture, nucleic acid amplification, ribosomal protein characterization, and genome sequencing. Pathogen identification from single colonies by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of high abundance proteins is gaining popularity in clinical laboratories. Here, we present a novel and complementary approach that utilizes essential microbial glycolipids as chemical fingerprints for identification of individual bacterial species. Gram-positive and negative bacterial glycolipids were extracted using a single optimized protocol. Extracts of the clinically significant ESKAPE pathogens: E nterococcus faecium, S taphylococcus aureus, K lebsiella pneumoniae, A cinetobacter baumannii, P seudomonas aeruginosa, and E nterobacter spp. were analyzed by MALDI-TOF-MS in negative ion mode to obtain glycolipid mass spectra. A library of glycolipid mass spectra from 50 microbial entries was developed that allowed bacterial speciation of the ESKAPE pathogens, as well as identification of pathogens directly from blood bottles without culture on solid medium and determination of antimicrobial peptide resistance. These results demonstrate that bacterial glycolipid mass spectra represent chemical barcodes that identify pathogens, potentially providing a useful alternative to existing diagnostics.

  19. Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids.

    PubMed

    Baba, T; Toshima, Y; Minamikawa, H; Hato, M; Suzuki, K; Kamo, N

    1999-09-21

    The formability, current-voltage characteristics and stability of the planar lipid bilayer membranes from the synthetic phytanyl-chained glycolipids, 1, 3-di-O-phytanyl-2-O-(beta-glycosyl)glycerols (Glc(Phyt)(2), Mal(N)(Phyt)(2)) were studied. The single bilayer membranes were successfully formed from the glycolipid bearing a maltotriosyl group (Mal(3)(Phyt)(2)) by the folding method among the synthetic glycolipids examined. The membrane conductance of Mal(3)(Phyt)(2) bilayers in 100 mM KCl solution was significantly lower than that of natural phospholipid, soybean phospholipids (SBPL) bilayers, and comparable to that of 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers. From the permeation measurements of lipophilic ions through Mal(3)(Phyt)(2) and DPhPC bilayers, it could be presumed that the carbonyl groups in glycerol backbone of the lipid molecule are not necessarily required for the total dipole potential barrier against cations in Mal(3)(Phyt)(2) bilayer. The stability of Mal(3)(Phyt)(2) bilayers against long-term standing and external electric field change was rather high, compared with SBPL bilayers. Furthermore, a preliminary experiment over the functional incorporation of membrane proteins was demonstrated employing the channel proteins derived from octopus retina microvilli vesicles. The channel proteins were functionally incorporated into Mal(3)(Phyt)(2) bilayers in the presence of a negatively charged glycolipid. From these observations, synthetic phytanyl-chained glycolipid bilayers are promising materials for reconstitution and transport studies of membrane proteins.

  20. Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents.

    PubMed

    Carreño, Leandro J; Saavedra-Ávila, Noemí A; Porcelli, Steven A

    2016-04-01

    Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.

  1. Neutral glycolipid and ganglioside composition of type-1 and type-2 astrocytes from rat cerebral hemisphere.

    PubMed

    Murakami, K; Asou, H; Adachi, T; Takagi, T; Kunimoto, M; Saito, H; Uyemura, K

    1999-02-01

    We reported previously that the major gangliosides in primary mixed-type astrocyte cultures are GM3 and GD3. To obtain more information regarding the exact distribution of glycosphingolipids in different types of astrocytes, we established a line of type-1 astrocytes that are characterized by a Ran-2 positive, broad flat morphology, and by the absence of binding to A2B5 antibodies. We also purified O-2A progenitor cells by immunopanning and cultured them in the presence of 10% newborn calf serum. They differentiated into type-2 astrocytes that were identified by immunostaining for each of GD3, A2B5, and GFAP. Using these cell cultures, we demonstrate that the major gangliosides were GM3 in type-1 astrocytes and GM3 and GD3 in type-2 astrocytes. In addition, a set of neutral glycolipids was identified based on the HP-TLC migration properties of CMH, CDH, CTH, and Glob, but the component distribution of these glycolipids is related to that of glycolipids of astrocytes. A marked increase in the expression of CTH and Glob was shown in type-2 astrocytes. The amount of neutral glycolipid-sugar was higher in the type-2 astrocytes than in the type-1 astrocytes. These results suggest that the increase in the total glycosphingolipid content and the change in the neutral glycolipid composition produced by type-2 astrocytes may be related to their biological functions and the cellular compositions.

  2. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    NASA Astrophysics Data System (ADS)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  3. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents.

    PubMed

    Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S

    2016-01-01

    The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products.

  4. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents

    PubMed Central

    Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N.; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S.

    2016-01-01

    The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products. PMID:26903957

  5. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations

    SciTech Connect

    Wojcik, Roza; Webb, Ian; Deng, Liulin; Garimella, Sandilya; Prost, Spencer; Ibrahim, Yehia; Baker, Erin; Smith, Richard

    2017-01-01

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. The multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.

  6. Invariant NKT cells recognize glycolipids from pathogenic Gram-positive bacteria

    PubMed Central

    Kinjo, Yuki; Illarionov, Petr; Vela, José Luis; Pei, Bo; Girardi, Enrico; Li, Xiangming; Li, Yali; Imamura, Masakazu; Kaneko, Yukihiro; Okawara, Akiko; Miyazaki, Yoshitsugu; Gómez-Velasco, Anaximandro; Rogers, Paul; Dahesh, Samira; Uchiyama, Satoshi; Khurana, Archana; Kawahara, Kazuyoshi; Yesilkaya, Hasan; Andrew, Peter W.; Wong, Chi-Huey; Kawakami, Kazuyoshi; Nizet, Victor; Besra, Gurdyal S.; Tsuji, Moriya; Zajonc, Dirk M.; Kronenberg, Mitchell

    2011-01-01

    Natural killer T (NKT) cells recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell receptor (TCR), but the forces driving TCR conservation have remained uncertain. Here we show that NKT cells recognize diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells are required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is found at a low level in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR, and most important, they extend the range of microbes recognized by this conserved TCR to several clinically important bacteria. PMID:21892173

  7. Phenolic glycolipids of Mycobacterium bovis: new structures and synthesis of a corresponding seroreactive neoglycoprotein.

    PubMed Central

    Chatterjee, D; Bozic, C M; Knisley, C; Cho, S N; Brennan, P J

    1989-01-01

    The glycolipid that characterizes the majority of isolates of Mycobacterium bovis and that has come to be known as M. bovis-identifying lipid is the phenolic glycolipid mycoside B described in the literature by others. However, when mycoside B obtained from M. bovis BCG, field isolates, and infected tissues was examined in detail, it was shown to be different from that described in the literature in some important respects. In particular, the glycosyl substituent is 2-O-methyl-alpha-L-rhamnopyranose rather than 2-O-methyl-beta-D-rhamnopyranose. With this information, a seroreactive neoglycoprotein (neoantigen) containing the 2-O-methyl-alpha-L-rhamnopyranosyl substituent suitable for the serodiagnosis of bovine tuberculosis was synthesized. M. bovis also contains other minor seroreactive phenolic glycolipids, one of which is a deacylated form of mycoside B and another of which contains an alpha-L-rhamnopyranosyl unit rather than 2-O-methyl-alpha-L-rhamnopyranose. Images PMID:2643563

  8. Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications

    PubMed Central

    Garidel, Patrick; Kaconis, Yani; Heinbockel, Lena; Wulf, Matthias; Gerber, Sven; Munk, Ariane; Vill, Volkmar; Brandenburg, Klaus

    2015-01-01

    Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance. PMID:26464591

  9. Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation

    NASA Astrophysics Data System (ADS)

    Velayutham, T. S.; Ng, B. K.; Gan, W. C.; Majid, W. H. Abd.; Hashim, R.; Zahid, N. I.; Chaiprapa, Jitrin

    2014-08-01

    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10-2-106 Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.

  10. Structural Determination and Tryptophan Fluorescence of Heterokaryon Incompatibility C2 Protein (HET-C2), a Fungal Glycolipid Transfer Protein (GLTP), Provide Novel Insights into Glycolipid Specificity and Membrane Interaction by the GLTP Fold*

    PubMed Central

    Kenoth, Roopa; Simanshu, Dhirendra K.; Kamlekar, Ravi Kanth; Pike, Helen M.; Molotkovsky, Julian G.; Benson, Linda M.; Bergen, H. Robert; Prendergast, Franklyn G.; Malinina, Lucy; Venyaminov, Sergei Y.; Patel, Dinshaw J.; Brown, Rhoderick E.

    2010-01-01

    HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 Å) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp66, Asn70, Lys73, Trp109, and His147) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by α-helices and a cooperative thermal unfolding transition of 49 °C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at ∼355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum (∼6 nm) permitting determination of binding affinities. The unique positioning of Trp208 at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi. PMID:20164530

  11. Structural Determination and Tryptophan Fluorescence of Heterokaryon Incompatibility C2 Protein (HET-C2), a Fungal Glycolipid Transfer Protein (GLTP), Provide Novel Insights into Glycolipid Specificity and Membrane Interaction by the GLTP Fold

    SciTech Connect

    Kenoth, Roopa; Simanshu, Dhirendra K.; Kamlekar, Ravi Kanth; Pike, Helen M.; Molotkovsky, Julian G.; Benson, Linda M.; Bergen, III, H. Robert; Prendergast, Franklyn G.; Malinina, Lucy; Venyaminov, Sergei Y.; Patel, Dinshaw J.; Brown, Rhoderick E.

    2010-06-21

    HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 {angstrom}) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp{sup 66}, Asn{sup 70}, Lys{sup 73}, Trp{sup 109}, and His{sup 147}) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by {alpha}-helices and a cooperative thermal unfolding transition of 49 C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at {approx}355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum ({approx}6 nm) permitting determination of binding affinities. The unique positioning of Trp{sup 208} at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi.

  12. Phytosphingosine is a characteristic component of the glycolipids in the vertebrate intestine.

    PubMed

    Nishimura, K

    1987-01-01

    Sphingoids in the intestinal lipids of an agnatha, a chondrichthyes, two osteichthyes, three amphibia, three reptiles and two avian species were analyzed by reversed phase high performance liquid chromatography. The glycolipid fraction of all the samples studied contained 4-D-hydroxysphinganine as the major component together with sphingosine and sphinganine. While the trihydroxy base was not found in their sphingomyelin fraction. The trihydroxy base was considered to be a characteristic component of the intestinal glycolipids for the vertebrates in general. Its concentration in the intestinal tissue had little correlation with the food habitat of the animals.

  13. Structural variation of glycolipids from Meiothermus taiwanensis ATCC BAA-400 under different growth temperatures.

    PubMed

    Yang, Yu-Liang; Yang, Feng-Ling; Huang, Zih-You; Tsai, Yu-Hsuan; Zou, Wei; Wu, Shih-Hsiung

    2010-10-07

    A major glycolipid, alpha-Galf(1-3)-alpha-Galp(1-6)-beta-GlcpNAcyl(1-2)-alpha-Glcp(1-1)-2-acylalkyldiol, is obtained from Meiothermus taiwanensis. This novel glycolipid is found only when the bacterium grows above 62 degrees C, which is significantly different from those from the same bacteria incubated at 55 degrees C. Terminal galactofuranoside and 1,2-alkyldiol lipids replaced galactopyranoside and glycerol lipids, respectively, under increased growth temperature. This variation is likely necessary for bacteria for keeping the stable outer membrane and surviving under extreme environments.

  14. Characterization of Bacteria Isolation of Bacteria from Pinyon Rhizosphere, Producing Biosurfactants from Agro-Industrial Waste.

    PubMed

    2016-01-01

    Two hundred and fifty bacterial strains were isolated from pinyon rhizosphere and screened for biosurfactants production. Among them, six bacterial strains were selected for their potential to produce biosurfactants using two low cost wastes, crude glycerol and lactoserum, as raw material. Both wastes were useful for producing biosurfactants because of their high content in fat and carbohydrates. The six strains were identified by 16S rDNA with an identity percentage higher than 95%, three strains belonged to Enterobacter sp., Pseudomonas aeruginosa, Bacillus pumilus and Rhizobium sp. All strains assayed were able to grow and showed halos around the colonies as evidence of biosurfactants production on Cetyl Trimethyl Ammonium Bromide agar with crude glycerol and lactoserum as substrate. In a mineral salt liquid medium enriched with both wastes, the biosurfactants were produced and collected from free cell medium after 72 h incubation. The biosurfactants produced reduced the surface tension from 69 to 30 mN/m with an emulsification index of diesel at approximately 60%. The results suggest that biosurfactants produced by rhizosphere bacteria from pinyon have promising environmental applications.

  15. Preliminary characterization of biosurfactants produced by microorganisms isolated from refinery wastewaters.

    PubMed

    Yalçin, Emine; Ergene, Aysun

    2010-02-01

    Some bacterial strains isolated from refinery wastewaters were identified as Pseudomonas aeruginosa RWI, Pseudomonas putida RWII, Pseudomonas fluorescens RWIII and Burkholderia cepacia RWIV, and the biosurfactants produced by these strains were coded as BS-I, BS-II, BS-III and BS-IV, respectively. The bacterial strains were characterized by the following biochemical methods: Gram stain, oxidase activity, indol, lactose and growth at 42 degrees C. Biosurfactant production was evaluated by: emulsification activity, surface tension measurement and critical micelle concentration. Chemical characterization of the biosurfactants was done by: FTIR and analysis of carbohydrate, protein and lipid content. The biosurfactants showed good emulsification activity against different hydrocarbon sources. The initial surface tension of culture broth was determined as 67.3 mN/m, and production of BS-I, BS-II, BS-III and BS-IV lowered this value to 35.9, 49.2, 51.6 and 45.7 mN/m, respectively. The critical micelle concentration of the biosurfactants was found to be in the range 10-50 mg/L. From the results of this study it was observed that the refinery wastewaters are a suitable source for isolation of biosurfactant-producing bacteria, but are not a substrate for biosurfactant production.

  16. Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol.

    PubMed

    D'aes, Jolien; De Maeyer, Katrien; Pauwelyn, Ellen; Höfte, Monica

    2010-06-01

    Production of biosurfactants is a common feature in bacteria, and in particular in plant-associated species. These bacteria include many plant beneficial and plant pathogenic Pseudomonas spp., which produce primarily cyclic lipopeptide and rhamnolipid type biosurfactants. Pseudomonas-derived biosurfactants are involved in many important bacterial functions. By modifying surface properties, biosurfactants can influence common traits such as surface motility, biofilm formation and colonization. Biosurfactants can alter the bio-availability of exogenous compounds, such as nutrients, to promote their uptake, and of endogenous metabolites, including phenazine antibiotics, resulting in an enhanced biological activity. Antibiotic activity of biosurfactants towards microbes could play a role in intraspecific competition, self-defence and pathogenesis. In addition, bacterial surfactants can affect plants in different ways, either protecting them from disease, or acting as a toxin in a plant-pathogen interaction. Biosurfactants are involved in the biocontrol activity of an increasing number of Pseudomonas strains. Consequently, further insight into the roles and activities of surfactants produced by bacteria could provide means to optimize the use of biological control as an alternative crop protection strategy.

  17. Effect of biosurfactants on the aqueous solubility of PCE and TCE.

    PubMed

    Albino, John D; Nambi, Indumathi M

    2009-12-01

    The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency of the biosurfactants in solubilizing the chlorinated solvents was compared to that of synthetic surfactants. The Weight Solubilization Ratio (WSR) values for solubilization of PCE and TCE by biosurfactants were very high compared to the values obtained for synthetic surfactants. Surfactin proved to be a better surfactant over rhamnolipid. The WSR of surfactin on solubilization of PCE and TCE were 3.83 and 12.5, respectively, whereas the values obtained for rhamnolipid were 2.06 and 8.36. The solubility of the chlorinated solvents by biosurfactants was considerably affected by the changes in pH. The aqueous solubility of PCE and TCE increased tremendously with decrease in pH. The solubility of biosurfactants was observed to decrease with the pH, favoring partitioning of surfactants into the chlorinated solvents in significant amounts at lower pH. The excessive accumulation of biosurfactants at the interface facilitated interfacial tension reductions resulting in higher solubility of the chlorinated solvents at pH less than 7.

  18. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products.

    PubMed

    Montagnolli, Renato Nallin; Lopes, Paulo Renato Matos; Bidoia, Ederio Dino

    2015-01-01

    Microbial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia. This work aimed to improve petroleum products biodegradation by using a biosurfactant produced by Bacillus subtilis. The produced biosurfactant was added to biodegradation assays containing crude oil, diesel, and kerosene. Biodegradation was monitored by a respirometric technique capable of evaluating CO₂ production in an aerobic simulated wastewater environment. The biosurfactant yielded optimal surface tension reduction (30.9 mN m(-1)) and emulsification results (46.90% with kerosene). Biodegradation successfully occurred and different profiles were observed for each substance. Precise mathematical modeling of biosurfactant effects on petroleum degradation profile was designed, hence allowing long-term kinetics prediction. Assays containing biosurfactant yielded a higher overall CO₂ output. Higher emulsification and an enhanced CO2 production dataset on assays containing biosurfactants was observed, especially in crude oil and kerosene.

  19. Utilization of banana peel as a novel substrate for biosurfactant production by Halobacteriaceae archaeon AS65.

    PubMed

    Chooklin, Chanika Saenge; Maneerat, Suppasil; Saimmai, Atipan

    2014-05-01

    In this study, biosurfactant-producing bacteria was evaluated for biosurfactant production by using banana peel as a sole carbon source. From the 71 strains screened, Halobacteriaceae archaeon AS65 produced the highest biosurfactant activity. The highest biosurfactant production (5.30 g/l) was obtained when the cells were grown on a minimal salt medium containing 35 % (w/v) banana peel and 1 g/l commercial monosodium glutamate at 30 °C and 200 rpm after 54 h of cultivation. The biosurfactant obtained by extraction with ethyl acetate showed high surface tension reduction (25.5 mN/m), a small critical micelle concentration value (10 mg/l), thermal and pH stability with respect to surface tension reduction and emulsification activity, and a high level of salt tolerance. The biosurfactant obtained was confirmed as a lipopeptide by using a biochemical test FT-IR, NMR, and mass spectrometry. The crude biosurfactant showed a broad spectrum of antimicrobial activity and had the ability to emulsify oil, enhance PAHs solubility, and oil bioremediation.

  20. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance).

    PubMed

    Hassanshahian, Mehdi

    2014-09-15

    Biosurfactants are surface active materials that are produced by some microorganisms. These molecules increase biodegradation of insoluble pollutants. In this study sediments and seawater samples were collected from the coastline of Bushehr provenance in the Persian Gulf and their biosurfactant producing bacteria were isolated. Biosurfactant producing bacteria were isolated by using an enrichment method in Bushnell-Hass medium with diesel oil as the sole carbon source. Five screening tests were used for selection of Biosurfactant producing bacteria: hemolysis in blood agar, oil spreading, drop collapse, emulsification activity and Bacterial Adhesion to Hydrocarbon test (BATH). These bacteria were identified using biochemical and molecular methods. Eighty different colonies were isolated from the collected samples. The most biosurfactant producing isolates related to petrochemical plants of Khark Island. Fourteen biosurfactant producing bacteria were selected between these isolates and 7 isolates were screened as these were predominant producers that belong to Shewanella alga, Shewanella upenei, Vibrio furnissii, Gallaecimonas pentaromativorans, Brevibacterium epidermidis, Psychrobacter namhaensis and Pseudomonas fluorescens. The largest clear zone diameters in oil spreading were observed for G. pentaromativorans strain O15. Also, this strain has the best emulsification activity and reduction of surface tension, suggesting it is the best of thee isolated strains. The results of this study confirmed that there is high diversity of biosurfactant producing bacteria in marine ecosystem of Iran and by application of these bacteria in petrochemical waste water environmental problems can be assisted.

  1. Utilization of sludge palm oil as a novel substrate for biosurfactant production.

    PubMed

    Wan Nawawi, Wan Mohd Fazli; Jamal, Parveen; Alam, Md Zahangir

    2010-12-01

    This paper introduces sludge palm oil (SPO) as a novel substrate for biosurfactant production by liquid state fermentation. Potential strains of microorganism were isolated from various hydrocarbon-based sources at palm oil mill and screened for biosurfactant production with the help of drop collapse method and surface tension activity. Out of 22 isolates of microorganism, the strain S02 showed the highest bacterial growth with a surface tension of 36.2 mN/m and was therefore, selected as a potential biosurfactant producing microorganism. Plackett-Burman experimental design was employed to determine the important nutritional requirement for biosurfactant production by the selected strain under controlled conditions. Six out of 11 factors of the production medium were found to significantly affect the biosurfactant production. K(2)HPO(4) had a direct proportional correlation with the biosurfactant production while sucrose, glucose, FeSO(4), MgSO(4), and NaNO(3) showed inversely proportional relationship with biosurfactant production in the selected experimental range.

  2. Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus.

    PubMed

    Moldes, Ana Belén; Torrado, Ana María; Barral, María Teresa; Domínguez, José Manuel

    2007-05-30

    The cost of biosurfactant production may be significantly decreased by using inexpensive carbon substrates like agricultural residues. However, scarce information can be found in the literature about the utilization of lignocellulosic residues for obtaining biosurfactants. Usually agricultural residues are field burned, producing various toxic compounds to the atmosphere; so, as an interesting alternative to the traditional field burning of this kind of residue, this work proposes the utilization of agricultural wastes (barley bran, trimming vine shoots, corn cobs, and Eucalyptus globulus chips) for simultaneous lactic acid and biosurfactant production. Previous to this biotechnological process, lignocellulosic residues were hydrolyzed, using H2SO4, under selected conditions and neutralized with CaCO3. Following, Lactobacillus pentosus was employed for the fermentation of hemicellulosic hydrolyzates after nutrient supplementation. Biosurfactants were measured by taking into account the surface tension reduction. The highest value of reduction (21.3 units) was found when using hemicellulosic sugar hydrolyzates obtained from trimming vine shoots, corresponding to 0.71 g of biosurfactant per g of biomass and 25.6 g of lactic acid/L. On the contrary, barley bran husk hydrolyzates only produced 0.28 g of biosurfactant per g of biomass and 33.2 g of lactic acid/L. The differences between biosurfactant production can be attributed to the different compositions of the hydrolyzates.

  3. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution.

    PubMed

    Decesaro, Andressa; Machado, Thaís Strieder; Cappellaro, Ângela Carolina; Reinehr, Christian Oliveira; Thomé, Antônio; Colla, Luciane Maria

    2017-08-16

    Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil.

  4. Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei.

    PubMed

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2010-03-01

    In this study, the crude biosurfactant produced by a Lactobacillus paracasei strain isolated in a Portuguese dairy industry was characterized. The minimum surface tension (41.8mN/m) and the critical micelle concentration (2.5mg/ml) obtained were found to be similar to the values previously reported for biosurfactants isolated from other lactobacilli. The biosurfactant was found to be stable to pH changes over a range from 6 to 10, being more effective at pH 7, and showed no loss of surface activity after incubation at 60 degrees C for 120h. Although the biosurfactant chemical composition has not been determined yet, a fraction was isolated through acidic precipitation, which exhibited higher surface activity as compared with the crude biosurfactant. Furthermore, this isolated biosurfactant showed antimicrobial and anti-adhesive activities against several pathogenic microorganisms. In addition, L. paracasei exhibited a strong autoaggregating phenotype, which was maintained after washing and resuspending the cells in PBS, meaning that this attribute must be related to cell surface components and not to excreted factors. The autoaggregation ability exhibited by this strain, together with the antimicrobial and anti-adhesive properties observed for this biosurfactant opens the possibility for its use as an effective probiotic strain.

  5. Rapid screening of surfactant and biosurfactant surface cleaning performance.

    PubMed

    Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J

    2009-08-01

    Surface Plasmon Resonance (SPR) and rubisco protein stain were used as tools to screen the effectiveness of detergent formulations in cleaning a protein stain from solid surfaces. Surfactant and biosurfactant-based formulations, with and without added protease, were screened for cleaning performance. Enzyme-free detergent formulations at 1500 ppm total surfactant were insufficient to cause complete surface cleaning, despite the high concentration of surfactant. The cleaning performance of a "home-made" formulation containing 2 ppm subtilisin A (SA) and 2 ppm sodium dodecyl benzyl sulphonate (SDOBS) was as efficient as the best amongst the three enzyme-free 1500 ppm formulations. The cleaning performance of 2 ppm SA in the absence of SDOBS was less effective than the combined formulation, even though 2 ppm SDOBS alone did not cause any protein removal. The observed synergistic performance was attributed to the cooperative mechanisms (chemical and physical attack) by which these two agents act on a rubisco stain. Replacing SDOBS in the enzyme-surfactant formulation with the same amount of surfactin biosurfactant (2 ppm) gave the best rubisco removal of all formulations examined in this study, irrespective of the surface chemistry underlying the protein film. It was found that 75% and 80% of immobilised rubisco stain could be removed from hydrophobic and hydrophilic surfaces, respectively, by the biosurfactant-SA formulation (compared with 60% and 65%, respectively, using the SDOBS-SA formulation). Our results suggest that it may be possible to generate fully renewable biochemical-based cleaning formulations that have superior cleaning performance to existing technologies. In developing optimised formulations, there is a pressing need for chip-based tools similar to that developed in this research.

  6. In Situ Biosurfactant Production by Bacillus Strains Injected into a Limestone Petroleum Reservoir▿

    PubMed Central

    Youssef, N.; Simpson, D. R.; Duncan, K. E.; McInerney, M. J.; Folmsbee, M.; Fincher, T.; Knapp, R. M.

    2007-01-01

    Biosurfactant-mediated oil recovery may be an economic approach for recovery of significant amounts of oil entrapped in reservoirs, but evidence that biosurfactants can be produced in situ at concentrations needed to mobilize oil is lacking. We tested whether two Bacillus strains that produce lipopeptide biosurfactants can metabolize and produce their biosurfactants in an oil reservoir. Five wells that produce from the same Viola limestone formation were used. Two wells received an inoculum (a mixture of Bacillus strain RS-1 and Bacillus subtilis subsp. spizizenii NRRL B-23049) and nutrients (glucose, sodium nitrate, and trace metals), two wells received just nutrients, and one well received only formation water. Results showed in situ metabolism and biosurfactant production. The average concentration of lipopeptide biosurfactant in the produced fluids of the inoculated wells was about 90 mg/liter. This concentration is approximately nine times the minimum concentration required to mobilize entrapped oil from sandstone cores. Carbon dioxide, acetate, lactate, ethanol, and 2,3-butanediol were detected in the produced fluids of the inoculated wells. Only CO2 and ethanol were detected in the produced fluids of the nutrient-only-treated wells. Microbiological and molecular data showed that the microorganisms injected into the formation were retrieved in the produced fluids of the inoculated wells. We provide essential data for modeling microbial oil recovery processes in situ, including growth rates (0.06 ± 0.01 h−1), carbon balances (107% ± 34%), biosurfactant production rates (0.02 ± 0.001 h−1), and biosurfactant yields (0.015 ± 0.001 mol biosurfactant/mol glucose). The data demonstrate the technical feasibility of microbial processes for oil recovery. PMID:17172458

  7. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals.

  8. BIODEGRADATION OF PETROLEUM-WASTE BY BIOSURFACTANT-PRODUCING BACTERIA

    SciTech Connect

    Brigmon, R; Grazyna A. Plaza, G; Kamlesh Jangid, K; Krystyna Lukasik, K; Grzegorz Nalecz-Jawecki, G; Topher Berry, T

    2007-05-16

    The degradation of petroleum waste by mixed bacterial cultures which produce biosurfactants: Ralstonia pickettii SRS (BP-20), Alcaligenes piechaudii SRS (CZOR L-1B), Bacillus subtilis (1'- 1a), Bacillus sp. (T-1) and Bacillus sp. (T'-1) was investigated. The total petroleum hydrocarbons were degraded substantially (91 %) by the mixed bacterial culture in 30 days (reaching up to 29 % in the first 72 h). Similarly, the toxicity of the biodegraded petroleum waste decreased 3 times after 30 days as compared to raw petroleum waste. Thus, the mixed bacterial strains effectively clean-up the petroleum waste and they can be used in other bioremediation processes.

  9. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  10. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    SciTech Connect

    McInerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, Jr., D.P.; Sharma, P.K.; Jackson, B.E.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  11. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  12. Dissolution Coupled Biodegradation of Pce by Inducing In-Situ Biosurfactant Production Under Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Dominic, J.; Nambi, I. M.

    2013-12-01

    Biosurfactants have proven to enhance the bioavailability and thereby elevate the rate of degradation of Light Non Aqueous Phase Liquids (LNAPLs) such as crude oil and petroleum derivatives. In spite of their superior characteristics, use of these biomolecules for remediation of Dense Non Aqueous Phase Liquids (DNAPLs) such as chlorinated solvents is still not clearly understood. In this present study, we have investigated the fate of tetrachloroethylene (PCE) by inducing in-situ biosurfactants production, a sustainable option which hypothesizes increase in bioavailability of LNAPLs. In order to understand the effect of biosurfactants on dissolution and biodegradation under the inducement of in-situ biosurfactant production, batch experiments were conducted in pure liquid media. The individual influence of each process such as biosurfactant production, dissolution of PCE and biodegradation of PCE were studied separately for getting insights on the synergistic effect of each process on the fate of PCE. Finally the dissolution coupled biodegradation of non aqueous phase PCE was studied in conditions where biosurfactant production was induced by nitrate limitation. The effect of biosurfactants was differentiated by repeating the same experiments were the biosurfactant production was retarded. The overall effect of in-situ biosurfactant production process was evaluated by use of a mathematical model. The process of microbial growth, biosurfactant production, dissolution and biodegradation of PCE were translated as ordinary differential equations. The modelling exercise was mainly performed to get insight on the combined effects of various processes that determine the concentration of PCE in its aqueous and non-aqueous phases. Model simulated profiles of PCE with the kinetic coefficients evaluated earlier from individual experiments were compared with parameters fitted for observations in experiments with dissolution coupled biodegradation process using optimization

  13. Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

    2005-08-15

    The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic

  14. Specific surface modification of the acetylene-linked glycolipid vesicle by click chemistry.

    PubMed

    Ito, Hidehiro; Kamachi, Toshiaki; Yashima, Eiji

    2012-06-07

    A novel glycolipid with a terminal acetylene was synthesized and used to prepare unilamellar vesicles. Using these vesicles, a convenient method was developed for the specific modification of the vesicle surface using the photoresponsive copper complex [Cu(OH(2))(cage)] as the catalyst for a click reaction.

  15. A study on partially biodegradable microparticles as carriers of active glycolipids.

    PubMed

    López-Donaire, M L; Fernández-Gutiérrez, M; Parra-Cáceres, J; Vázquez-Lasa, B; García-Alvarez, I; Fernández-Mayoralas, A; Román, J San

    2010-04-01

    This paper describes a study on the preparation and characterisation of partially biodegradable microparticles of poly(epsilon-caprolactone)/poly(ethyl methacrylate) (PCL/PEMA) as carriers of synthetic glycolipids with antimitotic activity against brain tumour cells. Microparticles prepared by suspension polymerisation of methacrylate in the presence of already polymerised PCL showed a predominantly spherical but complex morphology, with segregation of PCL micro/nano-domains towards the surface. Small diameter discs were prepared by compression moulding of blends of microparticles and the active principle under mild conditions. The in vitro behaviour of the discs and release of the glycolipid were studied in different simulated fluid models. Ingress of fluids increased with increasing hydrophobicity of the medium. Release of the glycolipid was sustained in all fluids, the most prolonged profile being in human synovial fluid and phosphate-buffered saline modified with 20 vol.% dioxane. Slow disintegration of the discs and partial degradation of the microparticles was evident in accelerated studies. The antimitotic activity of glycolipid released from the discs was proved against a human glioblastoma line. This activity, along with selectivity against human fibroblasts, could be controlled by the amount of drug charged in the disc.

  16. Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography-flame ionization detection.

    PubMed

    Gašparović, Blaženka; Kazazić, Snježana P; Cvitešić, Ana; Penezić, Abra; Frka, Sanja

    2015-08-28

    We demonstrate improved power of Iatroscan thin layer chromatography/flame ionization detection (TLC-FID) technique for analysis of complex marine lipid mixture by developing protocol for the separation and analysis of glycolipids including sulfoquinovosyldiacylglycerols (SQDG), monogalactosyldiacylglycerols (MGDG) and digalactosyldiacylglycerols (DGDG). We have modified the common protocol used so far for the analysis of lipid classes by replacing the elution step which uses pure acetone for the elution of acetone mobile polar lipids, with the elution step containing chloroform-acetone (72:28, v:v) for separation of MGDG and DGDG. To separate SQDG from the complex lipid matrix we introduced solvent mixture acetone-chloroform-methanol-formic acid (33:33:33:0.6, v:v:v:v). Quantification of glycolipid classes was performed after calibration with glycolipid standards for the masses between 0.2 and 2.7-5.0μg. With this new protocol we have successfully separated three glycolipids from the complex particulate lipid mixture of the seawater samples. Such an approach extends the power of existing protocol for the analysis of lipids which altogether ensure detection and quantification of 18 lipid classes what was demonstrated on seawater samples. This enables to gain a very broad system overview of the particularly complex environments as are seas, oceans and freshwaters. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Identification of a variant surface glycoprotein (VSG) glycolipid precursor in Trypanosoma brucei

    SciTech Connect

    Krakow, J.; Hereld, D.; Hart, G.; Englund, P.

    1986-05-01

    The VSG coat protein of T. brucei has a glycolipid covalently attached to its C terminus which anchors it to the cell membrane. Compositional analyses of VSG, reported by several laboratories, indicate that the glycolipid contains myristic acid, glycerol, phosphate, inositol, several sugars, and ethanolamine. This glycolipid is found on the VSG polypeptide within 1 minute after translation, suggesting that prior to incorporation, it may exist in the cell as a preformed precursor. The authors have isolated a molecule which has properties consistent with being a VSG lipid precursor: it is highly polar and can be labelled by (/sup 3/H)myristate but not by (/sup 3/H)palmitate. It reaches steady-state during continuous labelling and shows rapid turnover in pulse-chase experiments, suggesting that it is a metabolic intermediate rather than an end product. When treated with HNO/sub 2/ it liberates phophatidylinositol, as does VSG, and, like VSG, releases dimyristylglycerol when treated with purified endogenous phospholipase C from trypanosomes. These data provide strong evidence that the glycolipid is a preformed precursor which is transferred to the VSG polypeptide en bloc.

  18. SYNTHESIS OF GLYCOPROTEIN, GLYCOLIPID, PROTEIN, AND LIPID IN SYNCHRONIZED L5178Y CELLS

    PubMed Central

    Bosmann, H. Bruce; Winston, R. Alan

    1970-01-01

    Synthesis of four macromolecular classes found in membranes—glycoprotein, glycolipid, protein, and lipid—was measured as a function of time of the cell cycle in synchronized L5178Y cells. Incorporation of leucine, choline, fucose, glucosamine, or thymidine into the cells, protein, nucleic acid, or lipid was measured by pulse-labeling for ½ hr at ½ hr intervals after release from the mitotic block. The amount of protein, lipid, glycoprotein, or glycolipid released or secreted into the medium by the L5178Y cells was also measured as a function of time of the cell cycle. Cellular protein was found to be synthesized throughout the cell cycle, with the highest synthesis occurring in the S period; synthesis was depressed in the M period. Cellular glycoprotein was synthesized at approximately the same times as protein, except that the rates of glycoprotein synthesis in the S period relative to other periods were much greater than for protein. Secreted protein was synthesized throughout the cell cycle without any general pattern, except that secretion was elevated in the late S and G2 periods. Secreted glycoprotein was similar to secreted protein. Cellular lipid and cellular glycolipid were synthesized almost exclusively in the G2 and M periods; there was no synthesis in the G1 and S periods. Release or secretion of glycolipid and lipid also occurred in the G2 and M periods. PMID:5458998

  19. Lewis phenotype of erythrocytes and Leb-active glycolipid in serum of pregnant women.

    PubMed

    Hammar, L; Månsson, S; Rohr, T; Chester, M A; Ginsburg, V; Lundblad, A; Zopf, D

    1981-01-01

    In an attempt to provide an explanation for the previously reported effect of pregnancy on the Lewis phenotype of erythrocytes, the level of Leb-active glycolipid in serum was compared with the reactions of erythrocytes, using samples obtained from 73 nonpregnant women, 74 women at the time of delivery, and 2 women at weekly intervals during their pregnancy. In this Swedish population, the frequency of the Le(a--b-) blood group increased from 11% in nonpregnant women to 36% in women at the time of delivery. Among Le(a--b+) women of all ABO groups, those who were A1 most often became (Leb-) during pregnancy. The change in phenotype occurred as early as the 24th week of gestation; the Leb antigen was again detectable within 6 weeks after delivery. The concentration of Leb glycolipid in serum, as measured by radioimmunoassay, decreased only slightly during pregnancy. The repartition of glycolipids, secondary to the increased ratio of lipoprotein to red cell mass that occurs during pregnancy, may account for the relative lack of Lewis glycolipid on erythrocytes.

  20. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations.

    PubMed

    Wojcik, Roza; Webb, Ian K; Deng, Liulin; Garimella, Sandilya V B; Prost, Spencer A; Ibrahim, Yehia M; Baker, Erin S; Smith, Richard D

    2017-01-18

    Understanding the biological roles and mechanisms of lipids and glycolipids is challenging due to the vast number of possible isomers that may exist. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid presence and changes. However, difficulties in distinguishing the many structural isomers, due to the distinct lipid acyl chain positions, double bond locations or specific glycan types, inhibit the delineation and assignment of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations by applying traveling waves in a serpentine multi-pass Structures for Lossless Ion Manipulations (SLIM) platform to enhance the separation of selected lipid and glycolipid isomers. The multi-pass arrangement allowed the investigation of paths ranging from ~16 m (one pass) to ~60 m (four passes) for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer-specific biological activities and disease processes.

  1. Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations

    PubMed Central

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin; Garimella, Sandilya V. B.; Prost, Spencer A.; Ibrahim, Yehia M.; Baker, Erin S.; Smith, Richard D.

    2017-01-01

    Understanding the biological roles and mechanisms of lipids and glycolipids is challenging due to the vast number of possible isomers that may exist. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid presence and changes. However, difficulties in distinguishing the many structural isomers, due to the distinct lipid acyl chain positions, double bond locations or specific glycan types, inhibit the delineation and assignment of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations by applying traveling waves in a serpentine multi-pass Structures for Lossless Ion Manipulations (SLIM) platform to enhance the separation of selected lipid and glycolipid isomers. The multi-pass arrangement allowed the investigation of paths ranging from ~16 m (one pass) to ~60 m (four passes) for the distinction of lipids and glycolipids with extremely small structural differences. These ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer-specific biological activities and disease processes. PMID:28106768

  2. Structure of a New Glycolipid from the Mycobacterium avium-Mycobacterium intracellulare Complex

    PubMed Central

    Watanabe, Motoko; Ohta, Akihiro; Sasaki, Shun-ichi; Minnikin, David E.

    1999-01-01

    From the lipid fraction of a freeze-dried cell mass of a strain of the Mycobacterium avium-Mycobacterium intracellulare complex, a new glycolipid was isolated and was characterized as 5-mycoloyl-α-arabinofuranosyl (1→1′)-glycerol, mainly on the basis of nuclear magnetic resonance spectroscopy studies. PMID:10094713

  3. Biosynthesis and derivatization of microbial glycolipids and their potential application in tribology

    USDA-ARS?s Scientific Manuscript database

    Microbial-produced glycolipids are biobased products with immense potential for commercial applications. Advances in the production process have led to the lowering of production cost and the appearance of commercial products in niche markets. The ability to manipulate the molecular structure by f...

  4. Occurrence of Biosurfactant Producing Bacillus spp. in Diverse Habitats

    PubMed Central

    Joshi, Sanket J.; Suthar, Harish; Yadav, Amit Kumar; Hingurao, Krushi; Nerurkar, Anuradha

    2013-01-01

    Diversity among biosurfactant producing Bacillus spp. from diverse habitats was studied among 77 isolates. Cluster analysis based on phenotypic characteristics using unweighted pair-group method with arithmetic averages (UPGMAs) method was performed. Bacillus isolates possessing high surface tension activity and five reference strains were subjected to amplified 16S rDNA restriction analysis (ARDRA). A correlation between the phenotypic and genotypic characterization of Bacillus spp. is explored. Most of the oil reservoir isolates showing high surface activity clustered with B. licheniformis and B. subtilis, the hot water spring isolates clustered in two ingroups, while the petroleum contaminated soil isolates were randomly distributed in all the three ingroups. Present work revealed that diversity exists in distribution of Bacillus spp. from thermal and hydrocarbon containing habitats where majority of organisms belonged to B. licheniformis and B. subtilis group. Isolate B. licheniformis TT42 produced biosurfactant which reduced the surface tension of water from 72 mNm−1 to 28 mNm−1, and 0.05 mNm−1 interfacial tension against crude oil at 80°C. This isolate clustered with B. subtilis and B. licheniformis group on the basis of ARDRA. These findings increase the possibility of exploiting the Bacillus spp. from different habitats and their possible use in oil recovery. PMID:25969778

  5. Lactic Acid and Biosurfactants Production from Residual Cellulose Films.

    PubMed

    Portilla Rivera, Oscar Manuel; Arzate Martínez, Guillermo; Jarquín Enríquez, Lorenzo; Vázquez Landaverde, Pedro Alberto; Domínguez González, José Manuel

    2015-11-01

    The increasing amounts of residual cellulose films generated as wastes all over the world represent a big scale problem for the meat industry regarding to environmental and economic issues. The use of residual cellulose films as a feedstock of glucose-containing solutions by acid hydrolysis and further fermentation into lactic acid and biosurfactants was evaluated as a method to diminish and revalorize these wastes. Under a treatment consisting in sulfuric acid 6% (v/v); reaction time 2 h; solid liquid ratio 9 g of film/100 mL of acid solution, and temperature 130 °C, 35 g/L of glucose and 49% of solubilized film was obtained. From five lactic acid strains, Lactobacillus plantarum was the most suitable for metabolizing the glucose generated. The process was scaled up under optimized conditions in a 2-L bioreactor, producing 3.4 g/L of biomass, 18 g/L of lactic acid, and 15 units of surface tension reduction of a buffer phosphate solution. Around 50% of the cellulose was degraded by the treatment applied, and the liqueurs generated were useful for an efficient production of lactic acid and biosurfactants using L. plantarum. Lactobacillus bacteria can efficiently utilize glucose from cellulose films hydrolysis without the need of clarification of the liqueurs.

  6. Oxygen-controlled Biosurfactant Production in a Bench Scale Bioreactor

    NASA Astrophysics Data System (ADS)

    de Kronemberger, Frederico Araujo; Anna, Lidia Maria Melo Santa; Fernandes, Ana Carolina Loureiro Brito; de Menezes, Reginaldo Ramos; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mg02/gdw h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mg02/gdw h. The carbon source consumption is linear during the whole process.

  7. Methods for investigating biosurfactants and bioemulsifiers: a review.

    PubMed

    Satpute, Surekha K; Banpurkar, Arun G; Dhakephalkar, Prashant K; Banat, Ibrahim M; Chopade, Balu A

    2010-06-01

    Microorganisms produce biosurfactant (BS)/bioemulsifier (BE) with wide structural and functional diversity which consequently results in the adoption of different techniques to investigate these diverse amphiphilic molecules. This review aims to compile information on different microbial screening methods, surface active products extraction procedures, and analytical terminologies used in this field. Different methods for screening microbial culture broth or cell biomass for surface active compounds production are also presented and their possible advantages and disadvantages highlighted. In addition, the most common methods for purification, detection, and structure determination for a wide range of BS and BE are introduced. Simple techniques such as precipitation using acetone, ammonium sulphate, solvent extraction, ultrafiltration, ion exchange, dialysis, ultrafiltration, lyophilization, isoelectric focusing (IEF), and thin layer chromatography (TLC) are described. Other more elaborate techniques including high pressure liquid chromatography (HPLC), infra red (IR), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and fast atom bombardment mass spectroscopy (FAB-MS), protein digestion and amino acid sequencing are also elucidated. Various experimental strategies including static light scattering and hydrodynamic characterization for micelles have been discussed. A combination of various analytical methods are often essential in this area of research and a numbers of trials and errors to isolate, purify and characterize various surface active agents are required. This review introduces the various methodologies that are indispensable for studying biosurfactants and bioemulsifiers.

  8. Oxygen-controlled biosurfactant production in a bench scale bioreactor.

    PubMed

    Kronemberger, Frederico de Araujo; Santa Anna, Lidia Maria Melo; Fernandes, Ana Carolina Loureiro Brito; Menezes, Reginaldo Ramos de; Borges, Cristiano Piacsek; Freire, Denise Maria Guimarães

    2008-03-01

    Rhamnolipids have been pointed out as promising biosurfactants. The most studied microorganisms for the aerobic production of these molecules are the bacteria of the genus Pseudomonas. The aim of this work was to produce a rhamnolipid-type biosurfactant in a bench-scale bioreactor by one strain of Pseudomonas aeruginosa isolated from oil environments. To study the microorganism growth and production dependency on oxygen, a nondispersive oxygenation device was developed, and a programmable logic controller (PLC) was used to set the dissolved oxygen (DO) concentration. Using the data stored in a computer and the predetermined characteristics of the oxygenation device, it was possible to evaluate the oxygen uptake rate (OUR) and the specific OUR (SOUR) of this microorganism. These rates, obtained for some different DO concentrations, were then compared to the bacterial growth, to the carbon source consumption, and to the rhamnolipid and other virulence factors production. The SOUR presented an initial value of about 60.0 mgO(2)/g(DW) h. Then, when the exponential growth phase begins, there is a rise in this rate. After that, the SOUR reduces to about 20.0 mgO(2)/g(DW) h. The carbon source consumption is linear during the whole process.

  9. Purification and some properties of the glycolipid transfer protein from pig brain.

    PubMed

    Abe, A; Sasaki, T

    1985-09-15

    A glycolipid-specific lipid transfer protein has been purified to apparent homogeneity from pig brain post-mitochondrial supernatant. The purified protein was obtained after about 6,000-fold purification at a yield of 19%. Evidence for the homogeneity of the purified protein includes the following: (i) a single band in acidic gel electrophoresis, in sodium dodecyl sulfate-gel electrophoresis, (ii) a single band in analytical gel isoelectric focusing, (iii) exact correspondence between the glycolipid transfer activity and stained protein absorbance in the acidic gel electrophoresis, and (iv) coincidence between the transfer activity and protein absorption at 280 nm in gel filtration through Ultrogel AcA 54. The protein has an isoelectric point of about 8.3 and a molecular weight of 22,000, as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A molecular weight of 15,000 was calculated from AcA 54 gel filtration. The amino acid composition has been determined. The protein binds [3H]galactosylceramide but not [3H]phosphatidylcholine. Under the conditions used, 1 mol of the transfer protein bound about 0.13 mol of [3H]galactosylceramide. The glycolipid transfer protein-[3H]galactosylceramide complex was isolated by a Sephadex G-75 chromatography. An incubation of the complex with liposomes resulted in the transfer of [3H]galactosylceramide from the complex to the acceptor liposomes. The result indicates that the complex functions as an intermediate in the glycolipid transfer reaction. The protein facilitates the transfer of [3H]galactosylceramide from donor liposomes to acceptor liposomes lacking in glycolipid as well as to acceptor liposomes containing galactosylceramide.

  10. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    PubMed

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  11. Iminosugars Inhibit Dengue Virus Production via Inhibition of ER Alpha-Glucosidases—Not Glycolipid Processing Enzymes

    PubMed Central

    Sayce, Andrew C.; Alonzi, Dominic S.; Killingbeck, Sarah S.; Tyrrell, Beatrice E.; Hill, Michelle L.; Caputo, Alessandro T.; Iwaki, Ren; Kinami, Kyoko; Ide, Daisuke; Kiappes, J. L.; Beatty, P. Robert; Kato, Atsushi; Harris, Eva; Dwek, Raymond A.; Miller, Joanna L.; Zitzmann, Nicole

    2016-01-01

    It has long been thought that iminosugar antiviral activity is a function of inhibition of endoplasmic reticulum-resident α-glucosidases, and on this basis, many iminosugars have been investigated as therapeutic agents for treatment of infection by a diverse spectrum of viruses, including dengue virus (DENV). However, iminosugars are glycomimetics possessing a nitrogen atom in place of the endocyclic oxygen atom, and the ubiquity of glycans in host metabolism suggests that multiple pathways can be targeted via iminosugar treatment. Successful treatment of patients with glycolipid processing defects using iminosugars highlights the clinical exploitation of iminosugar inhibition of enzymes other than ER α-glucosidases. Evidence correlating antiviral activity with successful inhibition of ER glucosidases together with the exclusion of alternative mechanisms of action of iminosugars in the context of DENV infection is limited. Celgosivir, a bicyclic iminosugar evaluated in phase Ib clinical trials as a therapeutic for the treatment of DENV infection, was confirmed to be antiviral in a lethal mouse model of antibody-enhanced DENV infection. In this study we provide the first evidence of the antiviral activity of celgosivir in primary human macrophages in vitro, in which it inhibits DENV secretion with an EC50 of 5 μM. We further demonstrate that monocyclic glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. By comparison to bicyclic glucose-mimicking iminosugars which inhibit glycoprotein processing but do not inhibit glycolipid processing and galactose-mimicking iminosugars which do not inhibit glycoprotein processing but do inhibit glycolipid processing, we demonstrate that inhibition of endoplasmic reticulum-resident α-glucosidases, not glycolipid processing, is responsible for iminosugar antiviral activity against DENV. Our data suggest that

  12. Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80

    PubMed Central

    Wang, Cindy; Mahrous, Engy A.; Lee, Richard E.; Vestling, Martha M.; Takayama, Kuni

    2011-01-01

    The addition of polyoxyethylene sorbitan monooleate (Tween 80) to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria) converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, 1H-NMR, and 13C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C36:2-corynomycolate-6′-polyoxyethylenate and series-2B glycolipid is trehalose 6-C36:2-corynomycolate-6′-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity. PMID:21490808

  13. Novel Polyoxyethylene-Containing Glycolipids Are Synthesized in Corynebacterium matruchotii and Mycobacterium smegmatis Cultured in the Presence of Tween 80.

    PubMed

    Wang, Cindy; Mahrous, Engy A; Lee, Richard E; Vestling, Martha M; Takayama, Kuni

    2011-01-01

    The addition of polyoxyethylene sorbitan monooleate (Tween 80) to a culture of mycobacteria greatly influences cell permeability and sensitivity to antibiotics but very little is known regarding the underlying mechanism. Here we show that Corynebacterium matruchotii (surrogate of mycobacteria) converts Tween 80 to a structural series of polyoxyethylenic acids which are then used to form novel series-2A and series-2B glycolipids. Minor series-3 glycolipids were also synthesized. The polyoxyethylenic acids replaced corynomycolic acids in the cell wall. Correspondingly the trehalose dicorynomycolate content was reduced. MALDI mass spectrometry, MS-MS, (1)H-NMR, and (13)C-NMR were used to characterize the series-2 glycolipids. Series-2A glycolipid is trehalose 6-C(36:2)-corynomycolate-6'-polyoxyethylenate and series-2B glycolipid is trehalose 6-C(36:2)-corynomycolate-6'-furan ring-containing polyoxyethylenate. Mycobacterium smegmatis grown in the presence of Tween 80 also synthesizes series-2 type glycolipids. The synthesis of these novel glycolipids in corynebacteria and mycobacteria should result in gross changes in the cell wall permeability and drug sensitivity.

  14. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.

    PubMed

    Mnif, Inès; Mnif, Sami; Sahnoun, Rihab; Maktouf, Sameh; Ayedi, Younes; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-10-01

    Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil.

  15. Isolation and selection of new biosurfactant producing bacteria from degraded palm kernel cake under liquid state fermentation.

    PubMed

    Jamal, Parveen; Mir, Shajrat; Alam, Md Zahangir; Wan Nawawi, Wan M Fazli

    2014-01-01

    Biosurfactants are surface-active compounds produced by different microorganisms. The aim of this study was to introduce palm kernel cake (PKC) as a novel substrate for biosurfactant production using a potent bacterial strain under liquid state fermentation. This study was primarily based on the isolation and identification of biosurfactant-producing bacteria that could utilize palm kernel cake as a new major substrate. Potential bacterial strains were isolated from degraded PKC and screened for biosurfactant production with the help of the drop collapse assay and by analyzing the surface tension activity. From the screened isolates, a new strain, SM03, showed the best and most consistent results, and was therefore selected as the most potent biosurfactant-producing bacterial strain. The new strain was identified as Providencia alcalifaciens SM03 using the Gen III MicroPlate Biolog Microbial Identification System. The yield of the produced biosurfactant was 8.3 g/L.

  16. Wastewater treatment enhancement by applying a lipopeptide biosurfactant to a lignocellulosic biocomposite.

    PubMed

    Perez-Ameneiro, M; Vecino, X; Cruz, J M; Moldes, A B

    2015-10-20

    In this work, a natural lipopeptide biosurfactant obtained from corn steep liquor was included in the formulation of a lignocellulosic biocomposite used for the treatment of wastewater. The results obtained indicate that the dye sorption capacity of the hydrogel containing hydrolysed vineyard pruning waste can be significantly promoted via surfactant modification using natural detergents. The elimination of dye compounds and the removal of sulphates were increased around 10% and 62%, respectively, when the biocomposite modified with biosurfactant was used. This outcome can be intrinsically related to the rougher, rounder, more compact and better-emulsified sphere achieved after the addition of the lipopeptide biosurfactant. The bioadsorption process followed a pseudo-second order kinetic model and both intraparticle diffusion and liquid film diffusion were involved in the bioadsorption mechanism. Therefore, the utilisation of biosurfactants shows great potential in the formulation of eco-friendly adsorbents for environmental application.

  17. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil.

    PubMed

    Lai, Chin-Chi; Huang, Yi-Chien; Wei, Yu-Hong; Chang, Jo-Shu

    2009-08-15

    A screening method was developed to evaluate the oil removal capability of biosurfactants for oil-contaminated soils collected from a heavy oil-polluted site. The ability of removing total petroleum hydrocarbon (TPH) from soil by two biosurfactants was identified and compared with that of synthetic surfactants. The results show that biosurfactants exhibited much higher TPH removal efficiency than the synthetic ones examined. By using 0.2 mass% of rhamnolipids, surfactin, Tween 80, and Triton X-100, the TPH removal for the soil contaminated with ca. 3,000 mg TPH/kg dry soil was 23%, 14%, 6%, and 4%, respectively, while removal efficiency increased to 63%, 62%, 40%, and 35%, respectively, for the soil contaminated with ca. 9000 mg TPH/kg dry soil. The TPH removal efficiency also increased with an increase in biosurfactant concentration (from 0 to 0.2 mass%) but it did not vary significantly for the contact time of 1 and 7 days.

  18. Application of biosurfactant from Sphingobacterium spiritivorum AS43 in the biodegradation of used lubricating oil.

    PubMed

    Noparat, Pongsak; Maneerat, Suppasil; Saimmai, Atipan

    2014-04-01

    This study aimed at investigating the application of biosurfactant from Sphingobacterium spiritivorum AS43 using molasses as a substrate and fertilizer to enhance the biodegradation of used lubricating oil (ULO). The cell surface hydrophobicity of bacteria, the emulsification activity, and the biodegradation efficiency of ULO were measured. The bacterial adhesion in the hydrocarbon test was used to denote the cell surface hydrophobicity of the used bacterial species. The results indicate a strong correlation between cell surface hydrophobicity, emulsification activity, and the degree of ULO biodegradation. The maximum degradation of ULO (62 %) was observed when either 1.5 % (w/v) of biosurfactant or fertilizer was added. The results also revealed that biosurfactants alone are capable of promoting biodegradation to a large extent without added fertilizer. The data indicate the potential for biosurfactant production by using low-cost substrate for application in the bioremediation of soils contaminated with petroleum hydrocarbons or oils.

  19. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    SciTech Connect

    M.J. McInerney; R.M. Knapp; D.P. Nagle, Jr.; Kathleen Duncan; N. Youssef; M.J. Folmsbee; S. Maudgakya

    2003-06-26

    Biosurfactants enhance hydrocarbon biodegradation by increasing apparent aqueous solubility or affecting the association of the cell with poorly soluble hydrocarbon. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. One pore volume of cell-free culture fluid with 900 mg/l of the biosurfactant, 10 mM 2,3-butanediol and 1000 mg/l of partially hydrolyzed polyacrylamide polymer mobilized 82% of the residual hydrocarbon. Consistent with the high residual oil recoveries, we found that the bio-surfactant lowered the interfacial tension (IFT) between oil and water by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. The lipopeptide biosurfactant system may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Previously, we reported that Proteose peptone was necessary for anaerobic growth and biosurfactant production by B. mojavensis JF-2. The data gathered from crude purification of the growth-enhancing factor in Proteose peptone suggested that it consisted of nucleic acids; however, nucleic acid bases, nucleotides or nucleosides did not replace the requirement for Proteose Peptone. Further studies revealed that salmon sperm DNA, herring sperm DNA, Echerichia coli DNA and synthetic DNA replaced the requirement for Proteose peptone. In addition to DNA, amino acids and nitrate were required for anaerobic growth and vitamins further improved growth. We now have a defined medium that can be used to manipulate growth and biosurfactant

  20. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm.

    PubMed

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mall, Gangotri; Panda, Himadri Tanaya; Sukla, Lala Behari; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2013-11-01

    Biosurfactants are amphiphilic molecules having hydrophobic and hydrophilic moieties produced by various microorganisms. These molecules trigger the reduction of surface tension or interfacial tension in liquids. A biosurfactant-producing halophile was isolated from Lake Chilika, a brackish water lake of Odisha, India (19°41'39″N, 85°18'24″E). The halophile was identified as Bacillus tequilensis CH by biochemical tests and 16S rRNA gene sequencing and assigned accession no. KC851857 by GenBank. The biosurfactant produced by B. tequilensis CH was partially characterized as a lipopeptide using thin-layer chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance techniques. The minimum effective concentration of a biosurfactant for inhibition of pathogenic biofilm (Escherichia coli and Streptococcus mutans) on hydrophilic and hydrophobic surfaces was found to be 50 μg ml(-1). This finding has potential for a variety of applications.

  1. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    PubMed Central

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  2. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    PubMed

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m(-1), with the critical micelle concentration (CMC) of 56 mg L(-1). FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  3. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology.

    PubMed

    Ebadipour, N; Lotfabad, T Bagheri; Yaghmaei, S; RoostaAzad, R

    2016-01-01

    Biosurfactants are surface-active compounds capable of reducing surface tension and interfacial tension. Biosurfactants are produced by various microorganisms. They are promising replacements for chemical surfactants because of biodegradability, nontoxicity, and their ability to be produced from renewable sources. However, a major obstacle in producing biosurfactants at the industrial level is the lack of cost-effectiveness. In the present study, by using corn steep liquor (CSL) as a low-cost agricultural waste, not only is the production cost reduced but a higher production yield is also achieved. Moreover, a response surface methodology (RSM) approach through the Box-Behnken method was applied to optimize the biosurfactant production level. The results found that biosurfactant production was improved around 2.3 times at optimum condition when the CSL was at a concentration of 1.88 mL/L and yeast extract was reduced to 25 times less than what was used in a basic soybean oil medium (SOM). The predicted and experimental values of responses were in reasonable agreement with each other (Pred-R(2) = 0.86 and adj-R(2) = 0.94). Optimization led to a drop in raw material price per unit of biosurfactant from $47 to $12/kg. Moreover, the biosurfactant product at a concentration of 84 mg/L could lower the surface tension of twice-distilled water from 72 mN/m to less than 28 mN/m and emulsify an equal volume of kerosene by an emulsification index of (E24) 68% in a two-phase mixture. These capabilities made these biosurfactants applicable in microbial enhanced oil recovery (MEOR), hydrocarbon remediation, and all other petroleum industry surfactant applications.

  4. Production of Biosurfactants by Pseudomonas Species for Application in the Petroleum Industry.

    PubMed

    Silva, Maria Aparecida M; Silva, Aline F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A

    2017-02-01

      The production of surfactants by microorganisms has become an attractive option in the treatment of oil-contaminated environments because biosurfactants are biodegradable and less toxic than synthetic surfactants, although production costs remain high. With the aim of reducing the cost of biosurfactant production, three strains of Pseudomonas (designated P1, P2, and P3) were cultivated in a low-cost medium containing molasses and corn steep liquor as substrates. Following the selection of the best producer (P3), a rotational central composite design (RCCD) was used to determine the influence of substrates concentration on surface tension and biosurfactant yield. The biosurfactant reduced the surface tension of water to 27.5 mN/m, and its CMC was determined to be 600 mg/L. The yield was 4.0 g/L. The biosurfactant demonstrated applicability under specific environmental conditions and was able to remove 80 to 90% of motor oil adsorbed to sand. The properties of the biosurfactant suggest its potential application in bioremediation of hydrophobic pollutants.

  5. Structural analysis of bacteriorhodopsin solubilized by lipid-like phosphocholine biosurfactants with varying micelle concentrations.

    PubMed

    Wang, Xiaoqiang; Huang, Haihong; Sun, Chenghao; Huang, Fang

    2015-01-01

    Surfactants that can provide a more natural substitute for lipid bilayers are important in the purification and in vitro study of membrane proteins. Here we investigate the structural response of a model membrane protein, bacteriorhodopsin (BR), to phosphocholine biosurfactants. Phosphocholine biosurfactants are a type of biomimetic amphiphile that are similar to phospholipids, in which membrane proteins are commonly embedded. Multiple spectroscopic and zeta potential measurements are employed to characterize the conformational change, secondary and tertiary structure, oligomeric status, surface charge distribution and the structural stability of BR solubilized with phosphocholine biosurfactants of varying tail length. The process of phosphocholine micelle formation is found to facilitate the solubilization of BR, and for long-chain phosphocholines, concentrations much higher than their critical micelle concentrations achieve good solubilization. Phosphocholine biosurfactants are shown to be mild compared with the ionic surfactant SDS or CTAB, and tend to preserve membrane protein structure during solubilization, especially at low micelle concentrations, by virtue of their phospholipid-like zwitterionic head groups. The increase of alkyl chain length is shown to obviously enhance the capability of phosphocholine biosurfactants to stabilize BR. The underlying mechanism for the favorable actions of phosphocholine biosurfactant is also discussed.

  6. Characterization of biosurfactants from indigenous soil bacteria recovered from oil contaminated sites.

    PubMed

    Kumar, Govind; Kumar, Rajesh; Sharma, Anita

    2015-09-01

    Three bacterial isolates (G1, G2 and G3) characterized as Pseudomonas plecoglossicida, Lysinibacillus fusiformis and Bacillus safensis were recovered from contaminated soil of oil refinery. These bacterial isolates produced biosurfactants in MSM medium in stationary phase. Biosurfactants were characterized on the basis of their emulsifying properties with petrol, diesel, mobil oil and petrol engine oil. Reduction in surface tension (below 40 mN m(-1)) and blood hemolysis were also included in biosurfactants characterization. Emulsification indices of G1, G2 and G3 were in the range of 98.82, 23.53 and 58.82 for petrol; 29.411,1.05 and 70.588 for diesel; 35.31, 2.93 and 17.60 for mobil oil and 35.284, 58.82 and 17.647 for petrol engine oil respectively. Dry weight of the extracted biosurfactant was 4.6, 1.4 and 2.4 g I(-1) for G1, G2 and G3 respectively. Structural analysis of the biosurfactants by Fourier Transform Infrared Spectroscopy (FTIR) revealed significant differences in the bonding pattern of individual biosurfactant.

  7. Biosurfactant Production by Cultivation of Bacillus atrophaeus ATCC 9372 in Semidefined Glucose/Casein-Based Media

    NASA Astrophysics Data System (ADS)

    Das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Vessoni Penna, Thereza Christina; Converti, Attilio

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35°C for 24 h on glucose- and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B max=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  8. Biosurfactant production by cultivation of Bacillus atrophaeus ATCC 9372 in semidefined glucose/casein-based media.

    PubMed

    das Neves, Luiz Carlos Martins; de Oliveira, Kátia Silva; Kobayashi, Márcio Junji; Penna, Thereza Christina Vessoni; Converti, Attilio

    2007-04-01

    Biosurfactants are proteins with detergent, emulsifier, and antimicrobial actions that have potential application in environmental applications such as the treatment of organic pollutants and oil recovery. Bacillus atrophaeus strains are nonpathogenic and are suitable source of biosurfactants, among which is surfactin. The aim of this work is to establish a culture medium composition able to stimulate biosurfactants production by B. atrophaeus ATCC 9372. Batch cultivations were carried out in a rotary shaker at 150 rpm and 35 degrees C for 24 h on glucose-and/or casein-based semidefined culture media also containing sodium chloride, dibasic sodium phosphate, and soy flour. The addition of 14.0 g/L glucose in a culture medium containing 10.0 g/L of casein resulted in 17 times higher biosurfactant production (B(max)=635.0 mg/L). Besides, the simultaneous presence of digested casein (10.0 g/L), digested soy flour (3.0 g/L), and glucose (18.0 g/L) in the medium was responsible for a diauxic effect during cell growth. Once the diauxie started, the average biosurfactants concentration was 16.8% less than that observed before this phenomenon. The capability of B. atrophaeus strain to adapt its own metabolism to use several nutrients as energy sources and to preserve high levels of biosurfactants in the medium during the stationary phase is a promising feature for its possible application in biological treatments.

  9. Screening of biosurfactant-producing bacteria from offshore oil and gas platforms in North Atlantic Canada.

    PubMed

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Song, Xing; Zhu, Zhiwen; Cao, Tong

    2015-05-01

    From offshore oil and gas platforms in North Atlantic Canada, crude oil, formation water, drilling mud, treated produced water and seawater samples were collected for screening potential biosurfactant producers. In total, 59 biosurfactant producers belong to 4 genera, namely, Bacillus, Rhodococcus, Halomonas, and Pseudomonas were identified and characterized. Phytogenetic trees based on 16S ribosomal deoxyribonucleic acid (16S rDNA) were constructed with isolated strains plus their closely related strains and isolated strains with biosurfactant producers in the literature, respectively. The distributions of the isolates were site and medium specific. The richness, diversity, and evenness of biosurfactant producer communities in oil and gas platform samples have been analyzed. Diverse isolates were found with featured properties such as effective reduction of surface tension, producing biosurfactants at high rate and stabilization of water-in-oil or oil-in-water emulsion. The producers and their corresponding biosurfactants had promising potential in applications such as offshore oil spill control, enhancing oil recovery and soil washing treatment of petroleum hydrocarbon-contaminated sites.

  10. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens

    PubMed Central

    Shokouhfard, Maliheh; Kermanshahi, Rouha Kasra; Shahandashti, Roya Vahedi; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2015-01-01

    Objective(s): Serratia marcescens is one of the nosocomial pathogen with the ability to form biofilm which is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356 was selected as a probiotic strain for biosurfactant production. Anti-adhesive activities was determined by pre-coating and co- incubating methods in 96-well culture plates. Results: The FTIR analysis of derived biosurfactant revealed the composition as protein component. Due to the release of such biosurfactants, L. acidophilus was able to interfere with the adhesion and biofilm formation of the S. marcescens strains. In co-incubation method, this biosurfactant in 2.5 mg/ml concentration showed anti-adhesive activity against all tested strains of S. marcescens (P<0.05). Conclusion: Our results show that the anti-adhesive properties of L. acidophilus biosurfactant has the potential to be used against microorganisms responsible for infections in the urinary, vaginal and gastrointestinal tracts, as well as skin, making it a suitable alternative to conventional antibiotics. PMID:26730335

  11. Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2

    PubMed Central

    Hu, Xiaoke; Wang, Caixia; Wang, Peng

    2015-01-01

    A biosurfactant-producing bacterium, designated 3B-2, was isolated from marine sediment and identified as Vibrio sp. by 16S rRNA gene sequencing. The culture medium composition was optimized to increase the capability of 3B-2 for producing biosurfactant. The produced biosurfactant was characterized in terms of protein concentration, surface tension, and oil-displacement efficiency. The optimal medium for biosurfactant production contained: 0.5% lactose, 1.1% yeast extract, 2% sodium chloride, and 0.1% disodium hydrogen phosphate. Under optimal conditions (28°C), the surface tension of crude biosurfactant could be reduced to 41 from 71.5 mN/m (water), while its protein concentration was increased to up to 6.5 g/L and the oil displacement efficiency was improved dramatically at 6.5 cm. Two glycoprotein fractions with the molecular masses of 22 and 40 kDa were purified from the biosurfactant, which held great potential for applications in microbial enhanced oil recovery and bioremediation. PMID:26441908

  12. Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol.

    PubMed

    Saikia, Rashmi Rekha; Deka, Suresh; Deka, Manab; Sarma, Hemen

    2012-08-01

    A biosurfactant producing Pseudomonas aeruginosa RS29 (identified on the basis of 16S rDNA analysis) with good foaming and emulsification properties has been isolated from crude oil contaminated sites. Optimization of different environmental factors was carried out with an objective to achieve maximum production of biosurfactant. Production of biosurfactant was estimated in terms of surface tension reduction and emulsification (E24) index. It was recorded that the isolated strain produced highest biosurfactant after 48 h of incubation at 37.5 °C, with a pH range of 7-8 and at salinity <0.8% (w/v). Ammonium nitrate used in the experiment was the best nitrogen source for the growth of biomass of P. aeruginosa RS29. On the other hand sodium and potassium nitrate enhanced the production of biosurfactant (Surface tension, 26.3 and 26.4 mN/m and E24 index, 80 and 79% respectively). The CMC of the biosurfactant was 90 mg/l. Maximum biomass (6.30 g/l) and biosurfactant production (0.80 g/l) were recorded at an optimal C/N ratio of 12.5. Biochemical analysis and FTIR spectra confirmed that the biosurfactant was rhamnolipid in nature. GC-MS analysis revealed the presence of C(8) and C(10) fatty acid components in the purified biosurfactant.

  13. Partial characterization of biosurfactant from Lactobacillus pentosus and comparison with sodium dodecyl sulphate for the bioremediation of hydrocarbon contaminated soil.

    PubMed

    Moldes, A B; Paradelo, R; Vecino, X; Cruz, J M; Gudiña, E; Rodrigues, L; Teixeira, J A; Domínguez, J M; Barral, M T

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2-CH3 and C-O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg(-1) of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment.

  14. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    PubMed Central

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  15. Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier.

    PubMed

    Vecino, Xanel; Barbosa-Pereira, Letricia; Devesa-Rey, Rosa; Cruz, José M; Moldes, Ana B

    2015-01-01

    There is currently much interest in the use of natural biosurfactants and bioemulsifiers, mainly in the cosmetic, pharmaceutical and food industries. However, there are no studies on the optimization of the extraction conditions of cell-bound biosurfactants. In this work, a biosurfactant with emulsifier properties was extracted from Lactobacillus pentosus cells, under different extraction conditions, and characterized. During extraction, the most influential independent variable, concerning the emulsifying capacity of biosurfactant, was the operation time, followed by temperature and salt concentration. Biosurfactant from L. pentosus was evaluated by Fourier transform infrared spectroscopy and the composition of fatty acids was analyzed by gas chromatography-mass spectrometry. The hydrophobic chain of the biosurfactant from L. pentosus comprises 548 g kg(-1) linoelaidic acid (C18:2), 221 g kg(-1) oleic or elaidic acid (C18:1), 136 g kg(-1) palmitic acid (C16) and 95 g kg(-1) stearic acid (C18). In addition, emulsions of water and rosemary oil were stabilized with a biosurfactant produced by L. pentosus and compared with emulsions stabilized with polysorbate 20. The optimum extraction conditions of biosurfactant were achieved at 45 °C at 120 min and using 9 g kg(-1) of salt. In all the assays biosurfactant from L. pentosus yielded more stable emulsions and higher emulsion volumes than polysorbate 20. © 2014 Society of Chemical Industry.

  16. Advances in utilization of renewable substrates for biosurfactant production

    PubMed Central

    2011-01-01

    Biosurfactants are amphiphilic molecules that have both hydrophilic and hydrophobic moieties which partition preferentially at the interfaces such as liquid/liquid, gas/liquid or solid/liquid interfaces. Such characteristics enable emulsifying, foaming, detergency and dispersing properties. Their low toxicity and environmental friendly nature and the wide range of potential industrial applications in bioremediation, health care, oil and food processing industries makes them a highly sought after group of chemical compounds. Interest in them has also been encouraged because of the potential advantages they offer over their synthetic counterparts in many fields spanning environmental, food, biomedical, petrochemical and other industrial applications. Their large scale production and application however are currently restricted by the high cost of production and by the limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and latest advances in the search for cost effective renewable agro industrial alternative substrates for their production. PMID:21906330

  17. Evaluation of a lipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities

    PubMed Central

    Cao, Xiao-Hong; Liao, Zhen-Yu; Wang, Chun-Ling; Yang, Wen-Yan; Lu, Mei-Fang

    2009-01-01

    A lipopeptide biosurfactant produced by Bacillus natto TK-1 has a strong surface activity. The biosurfactant was found to be an anti-adhesive agent against several bacterial strains, and also showed a broad spectrum of antimicrobial activity. The biosurfactant induced a significant reduction in tumor cells viability in a dose-dependent manner. PMID:24031375

  18. Immunochemical studies of trehalose-containing major glycolipid from Tsukamurella pulmonis.

    PubMed

    Paściak, Mariola; Kaczyński, Zbigniew; Lindner, Buko; Holst, Otto; Gamian, Andrzej

    2010-07-19

    The chemical structure of the major glycolipid present in the chloroform-methanol extract of bacterial biomass of Tsukamurella pulmonis is reported. This compound was purified by TLC and HPLC. The sugar analysis revealed only glucose. Detailed chemical analyses, NMR, and MALDI FT-ICR-mass spectrometric studies identified 2,3-di-O-acyl-alpha-d-glucopyranosyl-(1-->1)-alpha-d-glucopyranose as the final structure. Short branched fatty acids (4:0 or 5:0) were linked to C-3 and saturated, mono, and diunsaturated 18:0, 18:1, 18:2, 20:1, 20:2, and 20:0 to C-2 of the same glucose residue. ELISA tests revealed the weak cross-reactivity of the glycolipid with rabbit antisera against cells of T. paurometabola, Rhodococcus wratislaviensis, and Nocardiopsis dassonvillei. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus.

    PubMed Central

    Pask-Hughes, R A; Shaw, N

    1982-01-01

    The lipids of Thermus aquaticus YT1, Thermus thermophilus HB8, Thermus sp. strains H and J (from Icelandic hot springs), and Thermus sp. strain NH (from domestic hot water) have been investigated. Each strain contained two major components, a glycolipid and a glycophospholipid, which have been isolated and analyzed. All of the strains contained as the principal component (41 to 57% of total lipid) a diacyldiglycosyl-(N-acyl)glycosaminylglucosylglycerol, but the five glycolipids differed in carbohydrate composition. The glycophospholipid appeared to be identical in each strain and contained an N-acylglucosamine residue. The principal fatty acids were C15 and C17 branched-chain compounds. This unique polar lipid composition should be of value in the classification of other thermophiles in the genus Thermus. The exceptionally high carbohydrate content of the lipids of these extreme thermophiles may be of significance in relation to the molecular basis of thermophily. PMID:7054151

  20. Near-field scanning optical microscopy detects nanoscale glycolipid domains in the plasma membrane.

    PubMed

    Abulrob, A; Lu, Z; Brunette, E; Pulla, D; Stanimirovic, D; Johnston, L J

    2008-11-01

    The localization of asialo-GM1 in ordered membrane raft domains in HeLa cells has been examined using a combination of membrane fractionation and fluorescence imaging. The glycolipid is enriched in Triton X-100 insoluble membrane fractions that contain high concentrations of cholesterol and caveolin-1 but is also found in detergent soluble membrane fractions. Near-field fluorescence microscopy shows that a fraction of the asialo-GM1 is localized in small nanoscale clusters that have an upper limit for the average diameter of approximately 90 nm and are partially colocalized with caveolae membrane domains. In addition to clusters, a diffuse, non-clustered population of asialo-GM1 is observed and is hypothesized to correspond to glycolipid isolated in detergent soluble membrane fractions.

  1. Membrane Glycolipids Content Variety in Gastrointestinal Tumors and Transplantable Hepatomas in Mice

    PubMed Central

    Lv, Jun; Lv, Can Qun; Wang, Bo-Liang; Mei, Ping; Xu, Lei

    2016-01-01

    Background The aim of this study was to investigate the variety of plasma contents of membrane glycolipids in 65 gastrointestinal tumors and 31 transplant hepatomas in mice. Material/Methods The experimental model was a transplantable murine hepatoma. Experimental mice were divided into 3 groups. Results The LSA and TSA content in the 2 groups were significantly difference (p<0.01), and were significantly lower in the therapeutic group than in the control group (p<0.01). Conclusions These results indicate that membrane glycolipids index LSA and TSA are sensitive markers in gastrointestinal tumors. In the transplanted hepatomas in mice, they may be considered as ancillary indicators for judging the therapeutic effect of hepatoma. PMID:27554918

  2. Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum.

    PubMed

    Tsukatani, Yusuke; Mizoguchi, Tadashi; Thweatt, Jennifer; Tank, Marcus; Bryant, Donald A; Tamiaki, Hitoshi

    2016-06-01

    Chlorosomes are large and efficient light-harvesting organelles in green photosynthetic bacteria, and they characteristically contain large numbers of bacteriochlorophyll c, d, or e molecules. Self-aggregated bacteriochlorophyll pigments are surrounded by a monolayer envelope membrane comprised of glycolipids and Csm proteins. Here, we analyzed glycolipid compositions of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum mutants lacking one, two, or three Csm proteins by HPLC equipped with an evaporative light-scattering detector. The ratio of monogalactosyldiacylglyceride (MGDG) to rhamnosylgalactosyldiacylglyceride (RGDG) was smaller in chlorosomes from mutants lacking two or three proteins in CsmC/D/H motif family than in chlorosomes from the wild-type, whereas chlorosomes lacking CsmIJ showed relatively less RGDG than MGDG. The results suggest that the CsmC, CsmD, CsmH, and other chlorosome proteins are involved in organizing MGDG and RGDG and thereby affect the size and shape of the chlorosome.

  3. The isolation and partial characterization of the glycolipids of BP8/C3H ascites-sarcoma cells

    PubMed Central

    Gray, G. M.

    1965-01-01

    1. The total lipid was extracted from BP8/C3H ascites-sarcoma cells with acetone, light petroleum, pyridine and chloroform–methanol successively. Each extract was treated with mild alkali. The alkali-stable lipids from the pyridine and chloroform–methanol extracts, which included the glycolipids, were fractionated on silicic acid and silica gel G columns. 2. The total yield of glycolipid was about 60 mg./100 g. dry wt. of tumour cells, about 0·4% of the total lipid. Four classes of glycolipid were isolated and characterized as ceramide monohexoside (G1), ceramide dihexoside (G2), ceramide trihexoside (G3) and ceramide hexosaminyltrihexoside (G4). 3. G1, G2, G3 and G4 constituted 55, 21, 9 and 15% of the total glycolipid respectively. 4. G1 was a mixture of ceramide glucoside (70%) and ceramide galactoside. 5. The general structures of the oligosaccharide moieties of G2, G3 and G4 were elucidated by partial acid hydrolysis of the glycolipids with water-soluble polystyrenesulphonic acid. G2 was mostly ceramidelactoside with about 10% of ceramide galactosylgalactoside. G3 and G4 were probably a ceramide digalactosylglucoside and a ceramide N-acetylgalactosaminylgalactosylgalactosylglucoside respectively. 6. The fatty acid compositions of the glycolipids were very similar; lignoceric acid and nervonic acid were the major components and all contained monohydroxy acids in proportions varying from 10 to 25% of the total acids. PMID:14342256

  4. Antibody responses to glycolipid-borne carbohydrates require CD4+ T cells but not CD1 or NKT cells.

    PubMed

    Christiansen, Dale; Vaughan, Hilary A; Milland, Julie; Miland, Julie; Dodge, Natalie; Mouhtouris, Effie; Smyth, Mark J; Godfrey, Dale I; Sandrin, Mauro S

    2011-05-01

    Naturally occurring anti-carbohydrate antibodies play a major role in both the innate and adaptive immune responses. To elicit an anti-carbohydrate immune response, glycoproteins can be processed to glycopeptides and presented by the classical antigen-presenting molecules, major histocompatibility complex (MHC) Class I and II. In contrast, much less is known about the mechanism(s) for anti-carbohydrate responses to glycolipids, although it is generally considered that the CD1 family of cell surface proteins presents glycolipids to T cells or natural killer T (NKT) cells. Using model carbohydrate systems (isogloboside 3 and B blood group antigen), we examined the anti-carbohydrate response on glycolipids using both antibody neutralisation and knockout mouse-based experiments. These studies showed that CD4(+) T cells were required to generate antibodies to the carbohydrates expressed on glycolipids, and unexpectedly, these antibody responses were CD1d and NKT cell independent. They also did not require peptide help. These data provide new insight into glycolipid antigen recognition by the immune system and indicate the existence of a previously unrecognised population of glycolipid antigen-specific, CD1-independent, CD4(+) T cells.

  5. Accumulation of Novel Glycolipids and Ornithine Lipids in Mesorhizobium loti under Phosphate Deprivation

    PubMed Central

    Diercks, Hannah; Semeniuk, Adrian; Gisch, Nicolas; Moll, Hermann; Duda, Katarzyna A.

    2014-01-01

    Glycolipids are found mainly in photosynthetic organisms (plants, algae, and cyanobacteria), Gram-positive bacteria, and a few other bacterial phyla. They serve as membrane lipids and play a role under phosphate deprivation as surrogates for phospholipids. Mesorhizobium loti accumulates different di- and triglycosyl diacylglycerols, synthesized by the processive glycosyltransferase Pgt-Ml, and two so far unknown glycolipids, which were identified in this study by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy as O-methyl-digalactosyl diacylglycerol (Me-DGD) and glucuronosyl diacylglycerol (GlcAD). Me-DGD is a novel glycolipid, whose synthesis depends on Pgt-Ml activity and the involvement of an unknown methyltransferase, while GlcAD is formed by a novel glycosyltransferase encoded by the open reading frame (ORF) mlr2668, using UDP-glucuronic acid as a sugar donor. Deletion mutants lacking GlcAD are not impaired in growth. Our data suggest that the different glycolipids in Mesorhizobium can mutually replace each other. This may be an adaptation mechanism to enhance the competitiveness in natural environments. A further nonphospholipid in Mesorhizobium was identified as a hydroxylated form of an ornithine lipid with the additional hydroxy group linked to the amide-bound fatty acid, introduced by the hydroxylase OlsD. The presence of this lipid has not been reported for rhizobia yet. The hydroxy group is placed on the C-2 position of the acyl chain as determined by NMR spectroscopy. Furthermore, the isolated ornithine lipids contained up to 80 to 90% d-configured ornithine, a stereoform so far undescribed in bacteria. PMID:25404698

  6. Human glycolipid transfer protein (GLTP) genes: organization, transcriptional status and evolution

    PubMed Central

    Zou, Xianqiong; Chung, Taeowan; Lin, Xin; Malakhova, Margarita L; Pike, Helen M; Brown, Rhoderick E

    2008-01-01

    Background Glycolipid transfer protein is the prototypical and founding member of the new GLTP superfamily distinguished by a novel conformational fold and glycolipid binding motif. The present investigation provides the first insights into the organization, transcriptional status, phylogenetic/evolutionary relationships of GLTP genes. Results In human cells, single-copy GLTP genes were found in chromosomes 11 and 12. The gene at locus 11p15.1 exhibited several features of a potentially active retrogene, including a highly homologous (~94%), full-length coding sequence containing all key amino acid residues involved in glycolipid liganding. To establish the transcriptional activity of each human GLTP gene, in silico EST evaluations, RT-PCR amplifications of GLTP transcript(s), and methylation analyses of regulator CpG islands were performed using various human cells. Active transcription was found for 12q24.11 GLTP but 11p15.1 GLTP was transcriptionally silent. Heterologous expression and purification of the GLTP paralogs showed glycolipid intermembrane transfer activity only for 12q24.11 GLTP. Phylogenetic/evolutionary analyses indicated that the 5-exon/4-intron organizational pattern and encoded sequence of 12q24.11 GLTP were highly conserved in therian mammals and other vertebrates. Orthologs of the intronless GLTP gene were observed in primates but not in rodentiates, carnivorates, cetartiodactylates, or didelphimorphiates, consistent with recent evolutionary development. Conclusion The results identify and characterize the gene responsible for GLTP expression in humans and provide the first evidence for the existence of a GLTP pseudogene, while demonstrating the rigorous approach needed to unequivocally distinguish transcriptionally-active retrogenes from silent pseudogenes. The results also rectify errors in the Ensembl database regarding the organizational structure of the actively transcribed GLTP gene in Pan troglodytes and establish the intronless GLTP as

  7. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    PubMed

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  8. Scale up and application of biosurfactant from Bacillus subtilis in Enhanced Oil recovery.

    PubMed

    Amani, Hossein; Mehrnia, Mohammad Reza; Sarrafzadeh, Mohammad Hossein; Haghighi, Manouchehr; Soudi, Mohammad Reza

    2010-09-01

    There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y(p/x)), biosurfactant on sucrose (Y(p/s)), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g(-1), 0.18 g g(-1), and 0.03 g l(-1) h(-1), respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y(x/s), Y(p/x), Y(p/s), and Y of 0.42 g g(-1), 0.595 g g(-1), 0.25 g g(-1), and 0.057 g l(-1) h(-1), respectively. The biosurfactant maximum production, 2.5 g l(-1), was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K(L)a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s(-1), respectively. Comparison of K(L)a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K(L) a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.

  9. Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: A potential antagonist against Fusarium oxysporum.

    PubMed

    Deepak, R; Jayapradha, R

    2015-03-01

    The aims of the study were to evaluate the effects of a biosurfactant obtained from a novel Bacillus thuringiensis on Fusarium oxysporum to determine the morphological changes in the structure of the fungi and its biofilm in the presence of the biosurfactant and to evaluate the toxicity of the biosurfactant on HEp-2 human epithelial cell lines. The strain was screened and isolated from petroleum contaminated soil based on the E24 emulsification index. The biosurfactant was produced on glycerol, extracted using chloroform:methanol system and purified using HPLC. The purified fraction showing both surface activity (emulsification and oil-spread activity) and anti-fusarial activity (agar well diffusion method) was studied using FT-IR and MALDI-TOF MS, respectively. The minimum inhibitory concentration (MIC) and the biofilm inhibitory concentration (BIC) were determined using dilution method. The effect of biosurfactant on the morphology of Fusarium oxysporum was monitored using light microscopy and confocal laser scanning microscopy (for biofilm). The purified surfactant showed the presence of functional groups like that of surfactin in the FT-IR spectra and MALDI-TOF MS estimated the molecular weight as 700Da. The MIC and BIC were estimated to be 0.05 and 0.5mg/mL, respectively. The molecule was also non-toxic to HEp-2 cell lines at 10× MIC. A non-toxic and effective anti-Fusarium biosurfactant, that is both safe for human use and to the environment, has been characterized. The growth and metabolite production using glycerol (major byproduct of biodiesel and soap industries) also adds up to the efficiency and ecofriendly nature of this biosurfactant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Production and partial characterization of biosurfactant produced by Streptomyces sp. R1.

    PubMed

    Zambry, Nor Syafirah; Ayoib, Adilah; Md Noh, Nur Asshifa; Yahya, Ahmad Ramli Mohd

    2017-04-07

    The present study focused on developing a wild-type actinomycete isolate as a model for a non-pathogenic filamentous producer of biosurfactants. A total of 33 actinomycetes isolates were screened and their extracellular biosurfactants production was evaluated using olive oil as the main substrate. Out of 33 isolates, 32 showed positive results in the oil spreading technique (OST). All isolates showed good emulsification activity (E24) ranging from 84.1 to 95.8%. Based on OST and E24 values, isolate R1 was selected for further investigation in biosurfactant production in an agitated submerged fermentation. Phenotypic and genotypic analyses tentatively identified isolate R1 as a member of the Streptomyces genus. A submerged cultivation of Streptomyces sp. R1 was carried out in a 3-L stirred-tank bioreactor. The influence of impeller tip speed on volumetric oxygen transfer coefficient (k L a), growth, cell morphology and biosurfactant production was observed. It was found that the maximum biosurfactant production, indicated by the lowest surface tension measurement (40.5 ± 0.05 dynes/cm) was obtained at highest k L a value (50.94 h(-1)) regardless of agitation speed. The partially purified biosurfactant was obtained at a concentration of 7.19 g L(-1), characterized as a lipopeptide biosurfactant and was found to be stable over a wide range of temperature (20-121 °C), pH (2-12) and salinity [5-20% (w/v) of NaCl].

  11. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria

    PubMed Central

    Bauersachs, Thorsten; Speelman, Eveline N.; Hopmans, Ellen C.; Reichart, Gert-Jan; Schouten, Stefan; Damsté, Jaap S. Sinninghe

    2010-01-01

    N2-fixing cyanobacteria play an essential role in sustaining primary productivity in contemporary oceans and freshwater systems. However, the significance of N2-fixing cyanobacteria in past nitrogen cycling is difficult to establish as their preservation potential is relatively poor and specific biological markers are presently lacking. Heterocystous N2-fixing cyanobacteria synthesize unique long-chain glycolipids in the cell envelope covering the heterocyst cell to protect the oxygen-sensitive nitrogenase enzyme. We found that these heterocyst glycolipids are remarkably well preserved in (ancient) lacustrine and marine sediments, unambiguously indicating the (past) presence of N2-fixing heterocystous cyanobacteria. Analysis of Pleistocene sediments of the eastern Mediterranean Sea showed that heterocystous cyanobacteria, likely as epiphytes in symbiosis with planktonic diatoms, were particularly abundant during deposition of sapropels. Eocene Arctic Ocean sediments deposited at a time of large Azolla blooms contained glycolipids typical for heterocystous cyanobacteria presently living in symbiosis with the freshwater fern Azolla, indicating that this symbiosis already existed in that time. Our study thus suggests that heterocystous cyanobacteria played a major role in adding “new” fixed nitrogen to surface waters in past stratified oceans. PMID:20966349

  12. Lipid and glycolipid isomer analyses using ultra-high resolution ion mobility spectrometry separations

    DOE PAGES

    Wojcik, Roza; Webb, Ian K.; Deng, Liulin; ...

    2017-01-18

    Understanding the biological mechanisms related to lipids and glycolipids is challenging due to the vast number of possible isomers. Mass spectrometry (MS) measurements are currently the dominant approach for studying and providing detailed information on lipid and glycolipid structures. However, difficulties in distinguishing many structural isomers (e.g. distinct acyl chain positions, double bond locations, as well as glycan isomers) inhibit the understanding of their biological roles. Here we utilized ultra-high resolution ion mobility spectrometry (IMS) separations based upon the use of traveling waves in a serpentine long path length multi-pass Structures for Lossless Manipulations (SLIM) to enhance isomer resolution. Themore » multi-pass arrangement allowed separations ranging from ~16 m (1 pass) to ~470 m (32 passes) to be investigated for the distinction of lipids and glycolipids with extremely small structural differences. Lastly, these ultra-high resolution SLIM IMS-MS analyses provide a foundation for exploring and better understanding isomer specific biological and disease processes.« less

  13. Mechanisms for glycolipid antigen-driven cytokine polarization by Valpha14i NKT cells.

    PubMed

    Sullivan, Barbara A; Nagarajan, Niranjana A; Wingender, Gerhard; Wang, Jing; Scott, Iain; Tsuji, Moriya; Franck, Richard W; Porcelli, Steven A; Zajonc, Dirk M; Kronenberg, Mitchell

    2010-01-01

    Certain glycolipid Ags for Valpha14i NKT cells can direct the overall cytokine balance of the immune response. Th2-biasing OCH has a lower TCR avidity than the most potent agonist known, alpha-galactosylceramide. Although the CD1d-exposed portions of OCH and alpha-galactosylceramide are identical, structural analysis indicates that there are subtle CD1d conformational differences due to differences in the buried lipid portion of these two Ags, likely accounting for the difference in antigenic potency. Th1-biasing C-glycoside/CD1d has even weaker TCR interactions than OCH/CD1d. Despite this, C-glycoside caused a greater downstream activation of NK cells to produce IFN-gamma, accounting for its promotion of Th1 responses. We found that this difference correlated with the finding that C-glycoside/CD1d complexes survive much longer in vivo. Therefore, we suggest that the pharmacokinetic properties of glycolipids are a major determinant of cytokine skewing, suggesting a pathway for designing therapeutic glycolipids for modulating invariant NKT cell responses.

  14. Carbohydrate specificity of the recognition of diverse glycolipids by natural killer T cells.

    PubMed

    Zajonc, Dirk M; Kronenberg, Mitchell

    2009-07-01

    Most T lymphocytes recognize peptide antigens bound to or presented by molecules encoded in the major histocompatibility complex (MHC). The CD1 family of antigen-presenting molecules is related to the MHC-encoded molecules, but CD1 proteins present lipid antigens, mostly glycolipids. Here we review T-lymphocyte recognition of glycolipids, with particular emphasis on the subpopulation known as natural killer T (NKT) cells. NKT cells influence many immune responses, they have a T-cell antigen receptor (TCR) that is restricted in diversity, and they share properties with cells of the innate immune system. NKT cells recognize antigens presented by CD1d with hexose sugars in alpha-linkage to lipids, although other, related antigens are known. The hydrophobic alkyl chains are buried in the CD1d groove, with the carbohydrate exposed for TCR recognition, together with the surface of the CD1d molecule. Therefore, understanding the biochemical basis for antigen recognition by NKT cells requires an understanding of how the trimolecular complex of CD1d, glycolipid, and the TCR is formed, which is in part a problem of carbohydrate recognition by the TCR. Recent investigations from our laboratories as well as studies from other groups have provided important information on the structural basis for NKT-cell specificity.

  15. Toll-Like Receptor 2 and Mincle Cooperatively Sense Corynebacterial Cell Wall Glycolipids.

    PubMed

    Schick, Judith; Etschel, Philipp; Bailo, Rebeca; Ott, Lisa; Bhatt, Apoorva; Lepenies, Bernd; Kirschning, Carsten; Burkovski, Andreas; Lang, Roland

    2017-07-01

    Nontoxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans cause invasive disease in humans and animals. Host sensing of corynebacteria is largely uncharacterized, albeit the recognition of lipoglycans by Toll-like receptor 2 (TLR2) appears to be important for macrophage activation by corynebacteria. The members of the order Corynebacterineae (e.g., mycobacteria, nocardia, and rhodococci) share a glycolipid-rich cell wall dominated by mycolic acids (termed corynomycolic acids in corynebacteria). The mycolic acid-containing cord factor of mycobacteria, trehalose dimycolate, activates the C-type lectin receptor (CLR) Mincle. Here, we show that glycolipid extracts from the cell walls of several pathogenic and nonpathogenic Corynebacterium strains directly bound to recombinant Mincle in vitro Macrophages deficient in Mincle or its adapter protein Fc receptor gamma chain (FcRγ) produced severely reduced amounts of granulocyte colony-stimulating factor (G-CSF) and of nitric oxide (NO) upon challenge with corynebacterial glycolipids. Consistently, cell wall extracts of a particular C. diphtheriae strain (DSM43989) lacking mycolic acid esters neither bound Mincle nor activated macrophages. Furthermore, TLR2 but not TLR4 was critical for sensing of cell wall extracts and whole corynebacteria. The upregulation of Mincle expression upon encountering corynebacteria required TLR2. Thus, macrophage activation by the corynebacterial cell wall relies on TLR2-driven robust Mincle expression and the cooperative action of both receptors. Copyright © 2017 American Society for Microbiology.

  16. Fusaroside, a unique glycolipid from Fusarium sp., an endophytic fungus isolated from Melia azedarach.

    PubMed

    Yang, Sheng-Xiang; Wang, Hong-Peng; Gao, Jin-Ming; Zhang, Qiang; Laatsch, Hartmut; Kuang, Yi

    2012-01-28

    Fusaroside (1), a unique trehalose-containing glycolipid composed of the 4-hydroxyl group of a trehalose unit attached to the carboxylic carbon of a long-chain fatty acid, was isolated from the organic extract of fermentation broths of an endophytic fungus, Fusarium sp. LN-11 isolated from the leaves of Melia azedarach. Six known compounds, phalluside (2), (9R*,10R*,7E)-6, 9,10-trihydroxyoctadec-7-enoic acid (3), porrigenic acid (4), (9Z)-2,3-dihydroxypropyl octadeca-9-enoate (5), cerevisterol (6) and ergokonin B (7), were also isolated from this fungus. The glycolipid contains a rare branched long-chain fatty acid (C(20:4)) with a conjugated diene moiety and a conjugated ketone moiety. The structure of the new compound 1 was elucidated by spectroscopic methods (1D and 2D NMR experiments, MS) and chemical degradations. The metabolites 1-5 were shown to have moderate to weak active against the brine shrimp larvae. To our knowledge, this is the first report of isolation of the first representative of a new family of glycolipids from natural sources.

  17. Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology.

    PubMed

    Mnif, Inès; Besbes, Souheil; Ellouze-Ghorbel, Raoudha; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2013-09-01

    Statistically based experimental designs were applied to Bacillus subtilis SPB1 biosurfactant extraction. The extracted biosurfactant was tested as an additive in dough formulation. The Plackett-Burman screening method showed that methanol volume, agitation speed and operating temperature affect biosurfactant extraction. The effect was studied and adjusted using response surface methodology. The optimal values were identified as 5 mL methanol, 180 rpm and 25 °C, yielding predicted responses of 2.1 ± 0.06 for the purification factor and 87.47% ± 1.58 for the retention yield. Study of the incorporation of purified lipopeptide powder into the dough preparation in comparison with a commercial surfactant - soya lecithin - reveal that SPB1 biosurfactant significantly improves the textural properties of dough (hardness, springiness, cohesion and adhesion) especially at 0.5 g kg⁻¹. At the same concentration (0.5 g kg⁻¹), the effect of SPB1 biosurfactant was more pronounced than that of soya lecithin. Also, this biosurfactant considerably enhanced the gas retention capacity in the course of fermentation. These results show that SPB1 biosurfactant could be of great interest in the bread-making industry. A method for preparative extraction of lipopeptide biosurfactant with methanol as the extraction solvent has been effectively established. © 2013 Society of Chemical Industry.

  18. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.

    PubMed

    Rivardo, F; Turner, R J; Allegrone, G; Ceri, H; Martinotti, M G

    2009-06-01

    In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26-30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.

  19. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration.

    PubMed

    Ghribi, Dhouha; Ellouze-Chaabouni, Semia

    2011-01-01

    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate substrate as a carbon source; among carbohydrates, glucose enhanced the best surfactin production. The optimum glucose concentration was 40 g/L. Higher amount of biosurfactants was obtained using 5 g/L of urea as organic nitrogen source and applying C/N ratio of 7 with ammonium chloride as inorganic nitrogen source. The highest amount of biosurfactants was recorded with the addition of 2% kerosene. Moreover, it was shown, using an automated full-controlled 2.6 L fermenter, that aeration of the medium, which affected strongly the growth regulated biosurfactants synthesis by the producing cell. So that, low or high aerations lead to a decrease of biosurfactants synthesis yields. It was found that when using dissolved oxygen saturation of the medium at 30%, biosurfactants production reached 4.92 g/L.

  20. The effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on model bacterial strains and isolates from industrial wastewater.

    PubMed

    Vasileva-Tonkova, Evgenia; Sotirova, Anna; Galabova, Danka

    2011-02-01

    In this study, the effect of rhamnolipid biosurfactant produced by Pseudomonas fluorescens on bacterial strains, laboratory strains, and isolates from industrial wastewater was investigated. It was shown that biosurfactant, depending on the concentration, has a neutral or detrimental effect on the growth and protein release of model Gram (+) strain Bacillus subtilis 168. The growth and protein release of model Gram (-) strain Pseudomonas aeruginosa 1390 was not influenced by the presence of biosurfactant in the medium. Rhamnolipid biosurfactant at the used concentrations supported the growth of some slow growing on hexadecane bacterial isolates, members of the microbial community. Changes in cell surface hydrophobicity and permeability of some Gram (+) and Gram (-) isolates in the presence of rhamnolipid biosurfactant were followed in experiments in vitro. It was found that bacterial cells treated with biosurfactant became more or less hydrophobic than untreated cells depending on individual characteristics and abilities of the strains. For all treated strains, an increase in the amount of released protein was observed with increasing the amount of biosurfactant, probably due to increased cell permeability as a result of changes in the organization of cell surface structures. The results obtained could contribute to clarify the relationships between members of the microbial community as well as suggest the efficiency of surface properties of rhamnolipid biosurfactant from Pseudomonas fluorescens making it potentially applicable in bioremediation of hydrocarbon-polluted environments.

  1. Candida lipolytica UCP0988 Biosurfactant: Potential as a Bioremediation Agent and in Formulating a Commercial Related Product

    PubMed Central

    Santos, Danyelle K. F.; Resende, Ana H. M.; de Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Rufino, Raquel D.; Luna, Juliana M.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2017-01-01

    The aim of the present study was to investigate the potential application of the biosurfactant from Candida lipolytica grown in low-cost substrates, which has previously been produced and characterized under optimized conditions as an adjunct material to enhance the remediation processes of hydrophobic pollutants and heavy metals generated by the oil industry and propose the formulation of a safe and stable remediation agent. In tests carried out with seawater, the crude biosurfactant demonstrated 80% oil spreading efficiency. The dispersion rate was 50% for the biosurfactant at a concentration twice that of the CMC. The biosurfactant removed 70% of motor oil from contaminated cotton cloth in detergency tests. The crude biosurfactant also removed 30–40% of Cu and Pb from standard sand, while the isolated biosurfactant removed ~30% of the heavy metals. The conductivity of solutions containing Cd and Pb was sharply reduced after biosurfactants' addition. A product was prepared through adding 0.2% potassium sorbate as preservative and tested over 120 days. The formulated biosurfactant was analyzed for emulsification and surface tension under different pH values, temperatures, and salt concentrations and tested for toxicity against the fish Poecilia vivipara. The results showed that the formulation had no toxicity and did not cause significant changes in the tensoactive capacity of the biomolecule while maintaining activity demonstrating suitability for potential future commercial product formulation. PMID:28507538

  2. Involvement of phenazines and biosurfactants in biocontrol of Pythium myriotylum root rot on cocoyam by Pseudomonas sp. CMR12A

    USDA-ARS?s Scientific Manuscript database

    Pseudomonas sp. CMR12a was isolated from the rhizosphere of the tropical tuber crop cocoyam and produces both phenazines and cyclic lipopeptide (CLP) biosurfactants. CMR12a was shown to be an efficient biocontrol agent of P. myriotylum on cocoyam. To assess the importance of phenazine and biosurfact...

  3. Influence of biosurfactants on mass transfer, biodegradation, and transport of mixed wastes in multiphase systems: Final report

    SciTech Connect

    Miller, R.M., Brusseau, M.L.

    1997-01-17

    The overall results of this project suggest that is situ treatment with biosurfactants has the potential to be an effective,economical, and nontoxic remediation technology. Specifically, we have demonstrated that a rhamnolipid biosurfactant may be used to increase the apparent solubility and biodegradation rate of organic compounds.

  4. Design, synthesis, and functional activity of labeled CD1d glycolipid agonists.

    PubMed

    Jervis, Peter J; Polzella, Paolo; Wojno, Justyna; Jukes, John-Paul; Ghadbane, Hemza; Garcia Diaz, Yoel R; Besra, Gurdyal S; Cerundolo, Vincenzo; Cox, Liam R

    2013-04-17

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR-α-GalCer-CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR-glycolipid-CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for attaching

  5. Dataset on potential large scale production of biosurfactant using Bacillus sp.

    PubMed

    Heryani, Hesty; Putra, Meilana Dharma

    2017-08-01

    Surfactants are very important in industry. The cost of commercial surfactant production is still high and the surfactant demand is constantly increasing. Microbial production of surfactant known as biosurfactant shows commercial potency. Utilization of Bacillus sp. strain on glucose fermentation for biosurfactant production was then studied. This type of microbe was isolated from soil contaminated with palm oil. The selection of the strain was based on its ability to form emulsifying zone around the colony and its capability to grow compared with those for commercial bacteria of Bacillus pumilus JCM 2508. The results showed a potentially promising strain with high biosurfactant yields and low surface tension. For further scale-up development, the microbe performance in a fermentor was compared with those in a flask and a proposed model to predict the kinetic profiles of cell mass, biosurfactant and surface tension were also described. The data presented here are related to the research article entitled "Kinetic study and modeling of biosurfactant production using Bacillus sp." (Heryani and Putra, 2017) [1].

  6. The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants.

    PubMed

    Pawlowska, Agnieszka; Sznajder, Izabela; Sadowski, Zygmunt

    2017-07-01

    Colloidal particles have an ability to sorb heavy metals, metalloids, and organic compounds (e.g. biosurfactants) present in soil and groundwater. The pH and ionic strength changes may promote release of such particles causing potential contaminant transport. Therefore, it is very important to know how a colloid particle-mineral particle and colloid-mineral-biosurfactant system behaves in the natural environment. They can have negative impact on the environment and human health. This study highlighted the influence of biosurfactants produced by Pseudomonas aeruginosa on the transport of colloidal hematite (α-Fe2O3) through porous bed (materials collected from the Szklary and Zloty Stok solid waste heaps from Lower Silesia, Poland). Experiments were conducted using column set in two variants: colloid solution with porous bed and porous bed with adsorbed biosurfactants, in the ionic strengths of 5 × 10(-4) and 5 × 10(-3) M KCl. The zeta potential of mineral materials and colloidal hematite, before and after adsorption of biosurfactant, was determined. Obtained results showed that reduction in ionic strength facilitates colloidal hematite transport through the porous bed. The mobility of colloidal hematite was higher when the rhamnolipid adsorbed on the surface of mineral grain.

  7. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate.

    PubMed

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  8. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses.

    PubMed

    Colla, Luciane Maria; Rizzardi, Juliana; Pinto, Marta Heidtmann; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2010-11-01

    Lipases and biosurfactants are compounds produced by microorganisms generally involved in the metabolization of oil substrates. However, the relationship between the production of lipases and biosurfactants has not been established yet. Therefore, this study aimed to evaluate the correlation between production of lipases and biosurfactants by submerged (SmgB) and solid-state bioprocess (SSB) using Aspergillus spp., which were isolated from a soil contaminated by diesel oil. SSB had the highest production of lipases, with lipolytic activities of 25.22U, while SmgB had 4.52U. The production of biosurfactants was not observed in the SSB. In the SmgB, correlation coefficients of 91% and 87% were obtained between lipolytic activity and oil in water and water in oil emulsifying activities, respectively. A correlation of 84% was obtained between lipolytic activity and reduction of surface tension in the culture medium. The surface tension decreased from 50 to 28mNm(-1) indicating that biosurfactants were produced in the culture medium.

  9. Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus.

    PubMed

    Portilla-Rivera, O; Torrado, A; Domínguez, J M; Moldes, A B

    2008-09-10

    Lactobacillus pentosus grown on sugars from agricultural residues produces biosurfactants with emulsifying properties that could facilitate the bioremediation of hydrocarbon contaminated sites. The biosurfactans obtained after growing L. pentosus cells on distilled grape marc hydrolyzates gave values of relative emulsion volume (EV) close to 50%, being stable after 72 h when gasoline or kerosene were employed. These EV values were higher than those achieved using commercial surfactin (14.1% for gasoline and 27.2% for kerosene). Moreover, assays carried out with kerosene showed that L. pentosus produced biosurfactants from distilled grape marc hydrolyzates with the highest stabilizing capacity value (ES) to maintain the emulsion (99%) followed by biosurfactants produced from hazelnut shell hydrolyzates (97%). These data are comparable with those obtained using sodium dodecyl sulfate, SDS (87.7%), whereas surfactin only gave an ES value of 65.4%. Consequently, this work shows that utilization of low-cost feedstock agricultural residues as substrates for producing biosurfactants/bioemulsifiers is possible thus removing obstacles for the wide-scale industrial application of biosurfactants/bioemulsifiers.

  10. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation.

    PubMed

    Chakraborty, Samrat; Ghosh, Mandakini; Chakraborti, Srijita; Jana, Sougata; Sen, Kalyan Kumar; Kokare, Chandrakant; Zhang, Lixin

    2015-08-01

    This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 μg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability.

  11. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice.

    PubMed

    de Oliveira, Darlane Wellen Freitas; França, Italo Waldimiro Lima; Félix, Anne Kamilly Nogueira; Martins, João Jeferson Lima; Giro, Maria Estela Aparecida; Melo, Vânia Maria M; Gonçalves, Luciana Rocha Barros

    2013-01-01

    In this work a low cost medium for the production of a biosurfactant by Bacillus subtilis LAMI005 and the kinetics of surfactin production considering the effect of initial substrate concentration were investigated. First, cashew apple juice supplementation for optimal production of biosurfactant by B. subtilis LAMI005 was studied. The medium formulated with clarified cashew apple juice and distilled water, supplemented with 1.0 g/L of (NH(4))(2)SO(4), proved to be the best among the nutrients evaluated. The crude biosurfactant had the ability to decrease the surface tension of water to 30 dyne/cm, with a critical micelle concentration (CMC) of 63.0 mg/L. Emulsification experiments indicated that this biosurfactant effectively emulsified kerosene (IE(24)=67%) and soybean oil (IE(24)=64%). Furthermore, the emulsion stability was always very high. It was shown by biochemical analysis, IR spectra, that there is no qualitative differences in the composition of the crude biosurfactant from a standard sample of surfactin from B. subtilis. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    PubMed Central

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  13. Bioremediation of multi-metal contaminated soil using biosurfactant - a novel approach.

    PubMed

    Juwarkar, Asha A; Dubey, Kirti V; Nair, Anupa; Singh, Sanjeev Kumar

    2008-03-01

    An unconventional nutrient medium, distillery spent wash (1:3) diluted) was used to produce di-rhamnolipid biosurfactant by Pseudomonas aeruginosa strain BS2. This research further assessed the potential of the biosurfactant as a washing agent for metal removal from multimetal contaminated soil (Cr-940 ppm; Pb-900 ppm; Cd-430 ppm; Ni-880 ppm; Cu-480 ppm). Out of the treatments of contaminated soil with tap water and rhamnolipid biosurfactant, the latter was found to be potent in mobilization of metal and decontamination of contaminated soil. Within 36 hours of leaching study, di-rhamnolipid as compared to tap water facilitated 13 folds higher removal of Cr from the heavy metal spiked soil whereas removal of Pb and Cu was 9-10 and 14 folds higher respectively. Leaching of Cd and Ni was 25 folds higher from the spiked soil. This shows that leaching behavior of biosurfactant was different for different metals. The use of wastewater for production of biosurfactant and its efficient use in metal removal make it a strong applicant for bioremediation.

  14. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1.

    PubMed

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L; Rahman, Pattanathu K S M; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l(-1)). Specifically, the low molecular weight compounds, i.e., C10-C14 were completely degraded, while C15-C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment.

  15. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    PubMed Central

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol. PMID:24031810

  16. Thermodynamic and structural changes associated with the interaction of a dirhamnolipid biosurfactant with bovine serum albumin.

    PubMed

    Sánchez, Marina; Aranda, Francisco J; Espuny, María J; Marqués, Ana; Teruel, José A; Manresa, Angeles; Ortiz, Antonio

    2008-06-01

    The interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with bovine serum albumin was studied by means of various physical techniques. Binding of the biosurfactant to bovine serum albumin was first characterized by isothermal titration calorimetry, showing that one or two molecules of dirhamnolipid, in the monomer state, bound to one molecule of the protein with high affinity. These results were confirmed by surface tension measurements in the absence and presence of bovine serum albumin. As seen by differential scanning calorimetry, dirhamnolipid shifted the temperature of the thermal unfolding of bovine serum albumin toward higher values, thus increasing the stability of the protein on heating. The impact of dirhamnolipid on the structure of the native protein was low, since most of the secondary structure remained unaffected upon interaction with the biosurfactant, as shown by FTIR spectroscopy. However, 2D correlation infrared spectroscopy indicated that the sequence of temperature-induced structural changes in native bovine serum albumin was modified by the presence of the biosurfactant. The consequences of these results in relation to possible applications of these dirhamnolipid biosurfactants for protein studies are discussed.

  17. Comparing the effect of biosurfactant and chemical surfactant on bubble hydrodynamics in a flotation column.

    PubMed

    Wang, Huanran; Yang, Jingjing; Lei, Shaomin; Wang, Xinbing

    2013-01-01

    Bubble hydrodynamics is fundamental to the performance of the flotation process widely used in the separation industry. To compare the effect of biosurfactants and chemical synthetic surfactants on bubble hydrodynamics in the flotation process, the motion of a single bubble and the size distribution of bubble swarms in various surfactants (rhamnolipid, tea saponin and Triton X-100) solutions were observed directly using a high-speed video camera in a laboratory scale flotation column. Bubble trajectory, dimensions, velocity and size distribution were then determined through image analysis. The results indicated that the addition of biosurfactants had the same significant effects on bubble motion and size distribution as chemosynthetic surfactants. The biosurfactant effect on bubble behavior was also found to depend on their type and concentration. In general, the effect of tea saponin was stronger than another biosurfactant (rhamnolipid) used in the present study. The present findings implied that some biosurfactants like tea saponin can replace chemosynthetic surfactants in controlling bubble behavior in flotation operation. This will contribute to promoting the use of green environmentally friendly flotation agents in the separation industry.

  18. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates.

    PubMed Central

    Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J

    1996-01-01

    In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394

  19. Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation.

    PubMed

    Jain, Rakeshkumar M; Mody, Kalpana; Joshi, Nidhi; Mishra, Avinash; Jha, Bhavanath

    2013-11-01

    The potential of an alkaliphilic bacterium Klebsiella sp. strain RJ-03, to utilize different unconventional carbon sources for the production of biosurfactant was evaluated. The biosurfactant produced using corn powder, potato peel powder, Madhuca indica and sugarcane bagasse containing medium, exhibited significantly higher viscosity and maximum reduction in surface tension as compared to other substrates. Among several carbon substrates tested, production of biosurfactant was found to be the highest with corn powder (15.40 ± 0.21 g/l) as compared to others. The comparative chemical characterization of purified biosurfactant was done using advance analytical tools such as NMR, FT-IR, SEM, GPC, MALDI TOF-TOF MS, GC-MS, TG and DSC. Analyses indicated variation in the functional groups, monosaccharide composition, molecular mass, thermostability. Higher yield with cheaper raw materials, noteworthy stress tolerance of CP-biosurfactant toward pH and salt as well as compatibility with chemical surfactants and detergents revealed its potential for commercialization and application in bioremediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Potential production of biosurfactants under electric field supplied to clayey soil

    SciTech Connect

    Ju, L.; Elektorowicz, M.

    1999-07-01

    The possibility of the introduction of nutrients and bacteria into clayey soil using electrokinetic methodology makes bioremediation more popular. However, biodegradation of polynuclear aromatic hydrocarbons (PAHs) is limited by their low solubility. The potential production of biosurfactants in clayey soil under the electric field was presented in this study. The electrokinetic cell tests were carried out to investigate the production of biosurfactants in the contaminated soil and soil without contaminants. The results showed that there was 1.5 times higher production in the soil contaminated by phenanthrene than that without it. In the middle of the electrokinetic cell, there are more biosurfactants produced than at the anode and the cathode areas. It was observed that there was migration of micelles with the electromigration and electroosmosis. In spite of the anionic properties of biosurfactant, the movement of the micelle was only partially directed to the anode. It was also observed that the electroosmosic flow transported micelles to the cathode. The results suggested the possibility of production of biosurfactants under the electric field and uniform distribution in the subsoil. The results could find a direct applicability in the enhanced remediation of PAH-contaminated sites.

  1. Characterization of biosurfactants produced by Lactobacillus spp. and their activity against oral streptococci biofilm.

    PubMed

    Ciandrini, Eleonora; Campana, Raffaella; Casettari, Luca; Perinelli, Diego R; Fagioli, Laura; Manti, Anita; Palmieri, Giovanni Filippo; Papa, Stefano; Baffone, Wally

    2016-08-01

    Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.

  2. Effects of Au/Fe and Fe nanoparticles on Serratia bacterial growth and production of biosurfactant.

    PubMed

    Liu, Jia; Vipulanandan, Cumaraswamy

    2013-10-01

    The overall objective of this study was to compare the effects of Au/Fe and Fe nanoparticles on the growth and performance of Serratia Jl0300. The nanoparticle effect was quantified not only by the bacterial growth on agar plate after 1 hour interaction with the nanoparticles, but also by its production of a biosurfactant from used vegetable oil. The nanoparticles were prepared using the foam method. The concentrations of the nanoparticles used for the bacterial interaction study were varied from 1 mg/L to 1 g/L. The test results showed that the effect of nanoparticles on the bacterial growth and biosurfactant production varied with nanoparticle type, concentrations, and interaction time with the bacteria. Au/Fe nanoparticles didn't show toxicity to Serratia after short time (1 h) exposure, while during 8 days fermentation Au/Fe nanoparticles inhibited the growth of Serratia as well as the biosurfactant production when the concentration of the nanoparticles was higher than 10mg/L. Fe nanoparticles showed inhibition effects to bacterial growth both after short time and long time interaction with Serratia, as well as to biosurfactant production when its concentration was higher than 100 mg/L. Based on the trends observed in this study, analytical models have been developed to predict the bacterial growth and biosurfactant production with varying concentrations of nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed.

    PubMed

    Singh, Durgesh Narain; Tripathi, Anil Kumar

    2013-01-01

    A strain of Pseudomonas stutzeri was isolated form an enrichment of perchlorate reducing bacteria from the formation water collected from an Indian coalbed which solubilized coal and produced copious amount of biosurfactant when coal was added to the medium. It produced maximum biosurfactant with lignite coal followed by olive oil and soybean oil which was able to emulsify several aromatic hydrocarbons including kerosene oil, diesel oil, hexane, toluene etc. Haemolytic test, growth inhibition of Bacillus subtilis and FTIR analysis showed rhamnolipid nature of the biosurfactant. The stability of the coal induced biosurfactant in pH range of 4-8 and up to 25% NaCl concentration and 100 °C temperature suggests that due to its ability to produce biosurfactant and solubilize coal P. stutzeri may be useful in the coalbed for in situ biotransformation of coal into methane and in the bioremediation of PAHs from oil contaminated sites including marine environments.

  4. Biosurfactant activity, heavy metal tolerance and characterization of Joostella strain A8 from the Mediterranean polychaete Megalomma claparedei (Gravier, 1906).

    PubMed

    Rizzo, Carmen; Michaud, Luigi; Graziano, Marco; De Domenico, Emilio; Syldatk, Christoph; Hausmann, Rudolf; Lo Giudice, Angelina

    2015-08-01

    The effect of heavy metals on the activity of biosurfactants produced by Joostella strain A8 from the polychaete Megalomma claparedei was investigated. Biosurfactant activity was first improved by evaluating the influence of abiotic parameters. Higher E(24) indices were achieved at 25 °C in mineral salt medium supplemented with 2 % glucose, 3 % sodium chloride (w/v) and 0.1 % ammonium chloride (w/v). Considerable surface tension reduction was never recorded. Heavy metal tolerance was preliminarily assayed by plate diffusion method resulting in the order of toxicity Cd > Cu > Zn. The activity of biosurfactants was then evaluated in the presence of heavy metals at different concentrations in liquid cultures that were incubated under optimal conditions for biosurfactant activity. The production of stable emulsions resulted generally higher in the presence of metals. These findings suggest that biosurfactant production could represent a bacterial adaptive strategy to defend cells from a stress condition derived from heavy metals in the bulk environment.

  5. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    PubMed

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P < 0.05) total aerobic count in biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage.

  6. The interaction of boron with glycolipids is required to increase tolerance to stresses in Anabaena PCC 7120.

    PubMed

    Abreu, Isidro; Orús, Isabel; Bolaños, Luis; Bonilla, Ildefonso

    2014-10-01

    Boron (B) is an essential nutrient for heterocystous cyanobacteria growing under diazotrophic conditions. Under B-deficient conditions, the heterocyst envelope is highly disorganized, and the glycolipid layer is predominantly lost. Therefore, we examined whether B is implicated in the regulation of synthesis or processing and/or stability of glycolipids in Anabaena PCC 7120. RT-PCR analysis indicated that the expression of hglE was not significantly changed under B deficiency, suggesting that the synthesis of glycolipids during heterocyst formation was not compromised. In contrast, the overexpression of devB and hepA, encoding a glycolipid and a carbohydrate transporter, respectively, results in the instability of the envelope under B-deficient conditions. The capacity of borate to bind and stabilize molecules is considered the basis of any B biological function. Using a borate-binding-specific resin and thin layer chromatography, we detected the glycolipids that interact with B. Several heterocyst-specific glycolipids were detected as putative B ligands, suggesting a role for B in stabilizing the heterocyst envelope. Moreover, the glycolipids of Anabaena growing in non-diazotrophic conditions were also detected as putative B ligands. Although B is not essential for Anabaena under non-N2-fixing conditions, the presence of this micronutrient increased the tolerance of Anabaena to detergent treatment, salinity and hyperosmotic conditions. Taken together, the results of the present experiment suggest a beneficial role for B in environmental adaptation. Furthermore, we discuss the nutrient requirement for living organisms growing in nature and not under laboratory conditions.

  7. Tissue-specific loss of fucosylated glycolipids in mice with targeted deletion of alpha(1,2)fucosyltransferase genes.

    PubMed Central

    Iwamori, Masao; Domino, Steven E

    2004-01-01

    Glycolipids in epithelial tissues of the gastrointestinal tract act as receptors for enteric bacteria and are implicated in the activation of the intestinal immune system. To clarify the genes involved in the fucosylation of the major glycolipids, substrate glycolipids and fucosylated products were measured in tissues of wild-type and mutant mice lacking alpha(1,2)fucosyltransferase genes FUT1 or FUT2. Quantitative determination was performed by TLC-immunostaining for GA1 (Gg4Cer), FGA1 (fucosyl GA1), GM1 (II3NeuAc-Gg4Cer), FGM1 (fucosyl GM1), and Forssman glycolipids. Both FGM1 and FGA1 completely disappeared from the antrum, cecum, and colon of FUT2-null mice, but not those of FUT1-null and wild-type mice. Precursor glycolipids, GM1 and GA1, accumulated in tissues of FUT2-null mice, indicating that the FUT2-encoded enzyme preferentially participates in the fucosylation of GA1 and GM1 in these tissues. Female reproductive organs were similarly found to utilize FUT2 for the fucosylation of glycolipids FGA1 (uterus and cervix), and FGM1 (ovary), due to their absence in FUT2-null mice. In FUT1-null mice FGA1 was lost from the pancreas, but was present in wild-type and FUT2-null mice, indicating that FUT1 is essential for fucosylation of GA1 in the pancreas. Ulex europaeus agglutinin-I lectin histochemistry for alpha(1,2)fucose residues confirmed the absence of alpha(1,2)fucose residues from the apical surface of pancreatic acinar glands of FUT1-null mice. Ileum, epididymis, and testis retained specific fucosylated glycolipids, irrespective of targeted deletion of either gene, indicating either compensation for or redundancy of the alpha(1,2)fucosyltransferase genes in these tissues. PMID:14967068

  8. Evaluation of biosurfactant obtained from Lactobacillus pentosus as foaming agent in froth flotation.

    PubMed

    Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2013-10-15

    This study analyzes the kinetics of sediment sorption on two chemical surfactants (Tween 20 and SDS) and a biotechnologically produced surfactant (obtained from Lactobacillus pentosus). Biosurfactants were produced by fermentation of hemicellulosic sugars from vineyard pruning waste supplied as a substrate to L. pentosus. Results obtained showed that almost no SDS was adsorbed onto the sediments, whereas Tween 20 and biosurfactants from L. pentosus were absorbed after a few minutes. Kinetic models revealed that adsorption of surfactant onto riverbed sediments is governed not only by an intra-particle diffusion model (evaluated by the Weber and Morris model), but also by surface reaction models (evaluated by first, second, third order equations and Elovich equation), showing the best fit when employing the Elovich model. The adsorption properties showed by biosurfactant from L. pentosus onto sediments present it as a potential foaming agent in froth flotation.

  9. The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant.

    PubMed

    Rivardo, Fabrizio; Martinotti, Maria Giovanna; Turner, Raymond Joseph; Ceri, Howard

    2010-03-01

    Biological contamination of surfaces, both in industry and in health care, plays an important role as a potential vector of disease transmission. Metals have been described to be effective antibiofilm agents, and the efficacy of silver ions as a disinfectant has been known for centuries. The activity of AgNO3 combined with the lipopeptide biosurfactant V9T14 has been studied against a preformed Escherichia coli biofilm on the Calgary Biofilm Device. Results indicated that the activity of silver can be synergistically enhanced by the presence of V9T14, both allowing for a reduction in the quantity of silver used and for greater antimicrobial activity. The concentration of silver needed to obtain this reduction in the silver-biosurfactant solution was from 129- to 258-fold less than the concentration of silver alone. To our knowledge, this is the first time that a synergistic interaction between a lipopeptide biosurfactant and silver has been observed.

  10. Optimizing Carbon/Nitrogen Ratio for Biosurfactant Production by a Bacillus subtilis Strain

    NASA Astrophysics Data System (ADS)

    Fonseca, R. R.; Silva, A. J. R.; de Franca, F. P.; Cardoso, V. L.; Sérvulo, E. F. C.

    A Bacillus subtilis strain isolated from contaminated soil from a refinery has been screened for biosurfactant production in crystal sugar (sucrose) with different nitrogen sources (NaNO3' (NH4)2SO4' urea, and residual brewery yeast). The highest reduction in surface tension was achieved with a 48-h fermentation of crystal sugar and ammonium nitrate. Optimization of carbon/nitrogen ratio (3,9, and 15) and agitation rate (50, 150, and 250 rpm) for biosurfactant production was carried out using complete factorial design and response surface analysis. The condition of C/N 3 and 250 rpm allowed the maximum increase in surface activity of biosurfactant. A suitable model has been developed, having presented great accordance experimental data. Preliminary characterization of the bioproduct suggested it to be a lipopeptide with some isomers differing from those of a commercial surfactin.

  11. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills

    PubMed Central

    Silva, Rita de Cássia F. S.; Almeida, Darne G.; Rufino, Raquel D.; Luna, Juliana M.; Santos, Valdemir A.; Sarubbo, Leonie Asfora

    2014-01-01

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills. PMID:25029542

  12. Applications of biosurfactants in the petroleum industry and the remediation of oil spills.

    PubMed

    de Cássia F S Silva, Rita; Almeida, Darne G; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie Asfora

    2014-07-15

    Petroleum hydrocarbons are important energy resources. However, petroleum is also a major pollutant of the environment. Contamination by oil and oil products has caused serious harm, and increasing attention has been paid to the development and implementation of innovative technologies for the removal of these contaminants. Biosurfactants have been extensively used in the remediation of water and soil, as well as in the main stages of the oil production chain, such as extraction, transportation, and storage. This diversity of applications is mainly due to advantages such as biodegradability, low toxicity and better functionality under extreme conditions in comparison to synthetic counterparts. Moreover, biosurfactants can be obtained with the use of agro-industrial waste as substrate, which helps reduce overall production costs. The present review describes the potential applications of biosurfactants in the oil industry and the remediation of environmental pollution caused by oil spills.

  13. Production of Biosurfactant by Pseudomonas aeruginosa Grown on Cashew Apple Juice

    NASA Astrophysics Data System (ADS)

    Rocha, Maria V. P.; Souza, Maria C. M.; Benedicto, Sofia C. L.; Bezerra, Márcio S.; Macedo, Gorete R.; Saavedra Pinto, Gustavo A.; Gonçalves, Luciana R. B.

    In this work, the ability of biosurfactant production by Pseudomonas aeruginosa in batch cultivation using cashew apple juice (CAJ) and mineral media was evaluated. P. aeruginosa was cultivated in CAJ, which was supplemented with peptone (5.0 g/L) and nutritive broth. All fermentation assays were performed in Erlenmeyer flasks containing 300 mL, incubated at 30°C and 150 rpm. Cell growth (biomass and cell density), pH, and superficial tension were monitored vs time. Surface tension was reduced by 10.58 and 41% when P. aeruginosa was cultivated in nutrient broth and CAJ supplemented with peptone, respectively. These results indicated that CAJ is an adequate medium for growth and biosurfactant production. Best results of biosurfactant production were obtained when CAJ was supplemented with peptone.

  14. Supporting data for identification of biosurfactant-producing bacteria isolated from agro-food industrial effluent.

    PubMed

    Fulazzaky, Mohamad Ali; Abdullah, Shakila; Salim, Mohd Razman

    2016-06-01

    The goal of this study was to identify the biosurfactant-producing bacteria isolated from agro-food industrial effluet. The identification of the potential bacterial strain using a polymerase chain reaction of the 16S rRNA gene analysis was closely related to Serratia marcescens with its recorded strain of SA30 "Fundamentals of mass transfer and kinetics for biosorption of oil and grease from agro-food industrial effluent by Serratia marcescens SA30" (Fulazzaky et al., 2015) [1]; however, many biochemical tests have not been published yet. The biochemical tests of biosurfactant production, haemolytic assay and cell surface hydrophobicity were performed to investigate the beneficial strain of biosurfactant-producing bacteria. Here we do share data collected from the biochemical tests to get a better understanding of the use of Serratia marcescens SA30 to degrade oil, which contributes the technical features of strengthening the biological treatment of oil-contaminated wastewater in tropical environments.

  15. Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses.

    PubMed

    Nikolopoulou, Maria; Kalogerakis, Nicolas

    2008-11-01

    Many research studies have demonstrated the feasibility and efficacy of fertilization with nitrogen and phosphorus to combat oil spills in marine environments. Rapid dilution of water-soluble nutrients can be overcome by oleophilic formulations that retain optimal nutrient concentrations at the oil-water interface where biodegradation occurs. Previous work has demonstrated that biodegradation processes are enhanced by the addition of lipophilic fertilizers of natural origin (uric acid and lecithin). In this work, we examined the effectiveness of these nutrients in combination with biosurfactants (rhamnolipids) and molasses (source of C and vitamins) to enhance the biodegradation by naturally occurring microorganisms. It was found that the use of biosurfactants resulted in an increased removal of petroleum hydrocarbons (96% removal of C19-C34 n-alkanes within a period of 18 days) as well as in a reduction of the lag phase (almost 80% removal was achieved within the first week of biosurfactant application).

  16. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.

    PubMed

    Zhang, Junhui; Xue, Quanhong; Gao, Hui; Lai, Hangxian; Wang, Ping

    2016-10-03

    Lipopeptides are known as promising microbial surfactants and have been successfully used in enhancing oil recovery in extreme environmental conditions. A biosurfactant-producing strain, Bacillus atrophaeus 5-2a, was recently isolated from an oil-contaminated soil in the Ansai oilfield, Northwest China. In this study, we evaluated the crude oil removal efficiency of lipopeptide biosurfactants produced by B. atrophaeus 5-2a and their feasibility for use in microbial enhanced oil recovery. The production of biosurfactants by B. atrophaeus 5-2a was tested in culture media containing eight carbon sources and nitrogen sources. The production of a crude biosurfactant was 0.77 g L(-1) and its surface tension was 26.52 ± 0.057 mN m(-1) in a basal medium containing brown sugar (carbon source) and urea (nitrogen source). The biosurfactants produced by the strain 5-2a demonstrated excellent oil spreading activity and created a stable emulsion with paraffin oil. The stability of the biosurfactants was assessed under a wide range of environmental conditions, including temperature (up to 120 °C), pH (2-13), and salinity (0-50 %, w/v). The biosurfactants were found to retain surface-active properties under the extreme conditions. Additionally, the biosurfactants were successful in a test to simulate microbial enhanced oil recovery, removing 90.0 and 93.9 % of crude oil adsorbed on sand and filter paper, respectively. Fourier transform infrared spectroscopy showed that the biosurfactants were a mixture of lipopeptides, which are powerful biosurfactants commonly produced by Bacillus species. The study highlights the usefulness of optimization of carbon and nitrogen sources and their effects on the biosurfactants production and further emphasizes on the potential of lipopeptide biosurfactants produced by B. atrophaeus 5-2a for crude oil removal. The favorable properties of the lipopeptide biosurfactants make them good candidates for application in the bioremediation of oil

  17. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens.

    PubMed

    Arora, Pooja; Baena, Andres; Yu, Karl O A; Saini, Neeraj K; Kharkwal, Shalu S; Goldberg, Michael F; Kunnath-Velayudhan, Shajo; Carreño, Leandro J; Venkataswamy, Manjunatha M; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R; Jervis, Peter J; Veerapen, Natacha; Besra, Gurdyal S; Porcelli, Steven A

    2014-01-16

    Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α(+) DEC-205(+) dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α(+) dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses.

  18. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2

    SciTech Connect

    Drage, Michael G.; Tsai, Han-Chun; Pecora, Nicole D.; Cheng, Tan-Yun; Arida, Ahmad R.; Shukla, Supriya; Rojas, Roxana E.; Seshadri, Chetan; Moody, D. Branch; Boom, W. Henry; Sacchettini, James C.; Harding, Clifford V.

    2010-09-27

    Knockout of lprG results in decreased virulence of Mycobacterium tuberculosis (MTB) in mice. MTB lipoprotein LprG has TLR2 agonist activity, which is thought to be dependent on its N-terminal triacylation. Unexpectedly, here we find that nonacylated LprG retains TLR2 activity. Moreover, we show LprG association with triacylated glycolipid TLR2 agonists lipoarabinomannan, lipomannan and phosphatidylinositol mannosides (which share core structures). Binding of triacylated species was specific to LprG (not LprA) and increased LprG TLR2 agonist activity; conversely, association of glycolipids with LprG enhanced their recognition by TLR2. The crystal structure of LprG in complex with phosphatidylinositol mannoside revealed a hydrophobic pocket that accommodates the three alkyl chains of the ligand. In conclusion, we demonstrate a glycolipid binding function of LprG that enhances recognition of triacylated MTB glycolipids by TLR2 and may affect glycolipid assembly or transport for bacterial cell wall biogenesis.

  19. A Single Subset of Dendritic Cells Controls the Cytokine Bias of Natural Killer T Cell Responses to Diverse Glycolipid Antigens

    PubMed Central

    Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.

    2014-01-01

    Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610

  20. Beneficial effect of dietary wheat glycolipids on cecum short-chain fatty acid and secondary bile acid profiles in mice.

    PubMed

    Sugawara, T; Miyazawa, T

    2001-08-01

    In the present study, to explore the beneficial effect of dietary galactoglycerolipids on the lower digestive tract environment, male BALB/c mice were fed a 5% wheat glycolipid, fiber-free diet, or the standard AIN diet for 3 wk. The wheat glycolipid composition was digalactosyldiacylglycerol 51.6%, ceramide monohexoside 6.6%, acylated sterylglucoside 3.4%, and other lipids 22.2%, (mostly phospholipids). Cecum and colon weights and colonic crypt depth were significantly greater in the glycolipid-diet mice relative to groups fed the other two diets. Furthermore, in the cecum, propionate. butyrate, and total short-chain fatty acids, concentrations were significantly greater in the glycolipid-diet mice than others were, and correlated with the observed increased lower digestive tract (cecum and colon) weights and colonic crypt depth. The cecal lithocholic acid/deoxycholic acid ratio, a risk index for colorectal cancer, was significantly lower in the glycolipid-diet mice than in the other two dietary groups. These results suggest that the dietary supplementation of plant-source galactoglycerolipids may contribute to improving the lower digestive tract environment.

  1. High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves

    PubMed Central

    Burch, Adrien Y.; Do, Paulina T.; Sbodio, Adrian; Suslow, Trevor V.

    2016-01-01

    ABSTRACT To better characterize the bacterial community members capable of biosurfactant production on leaves, we distinguished culturable biosurfactant-producing bacteria from nonproducers and used community sequencing to compare the composition of these distinct cultured populations with that from DNA directly recovered from leaves. Communities on spinach, romaine, and head lettuce leaves were compared with communities from adjacent samples of soil and irrigation source water. Soil communities were poorly described by culturing, with recovery of cultured representatives from only 21% of the prevalent operational taxonomic units (OTUs) (>0.2% reads) identified. The dominant biosurfactant producers cultured from soil included bacilli and pseudomonads. In contrast, the cultured communities from leaves are highly representative of the culture-independent communities, with over 85% of the prevalent OTUs recovered. The dominant taxa of surfactant producers from leaves were pseudomonads as well as members of the infrequently studied genus Chryseobacterium. The proportions of bacteria cultured from head lettuce and romaine leaves that produce biosurfactants were directly correlated with the culture-independent proportion of pseudomonads in a given sample, whereas spinach harbored a wider diversity of biosurfactant producers. A subset of the culturable bacteria in irrigation water also became enriched on romaine leaves that were irrigated overhead. Although our study was designed to identify surfactant producers on plants, we also provide evidence that most bacteria in some habitats, such as agronomic plant surfaces, are culturable, and these communities can be readily investigated and described by more classical culturing methods. IMPORTANCE The importance of biosurfactant production to the bacteria that live on waxy leaf surfaces as well as their ability to be accurately assessed using culture-based methodologies was determined by interrogating epiphytic populations by

  2. Production of biosurfactant from a new and promising strain of Pseudomonas aeruginosa PA1.

    PubMed

    Santa Anna, L M; Sebastian, G V; Pereira, N; Alves, T L; Menezes, E P; Freire, D M

    2001-01-01

    The Pseudomonas aeruginosa PA1 strain, isolated from the water of oil production in Sergipe, Northeast Brazil, was evaluated as a potential rhamnolipid type of biosurfactant producer. The production of biosurfactants was investigated using different carbon sources (n-hexadecane, paraffin oil, glycerol, and babassu oil) and inoculum concentrations (0.0016-0.008 g/L). The best results were obtained with glycerol as the substrate and an initial cell concentration of 0.004 g/L. A C:N ratio of 22.8 led to the greatest production of rhamnolipids (1700 mg/L) and efficiency (1.18 g of rhamnolipid/g of dry wt).

  3. Bacterial biosurfactants, and their role in microbial enhanced oil recovery (MEOR).

    PubMed

    Khire, J M

    2010-01-01

    Surfactants are chemically synthesized surface-active compounds widely used for large number of applications in various industries. During last few years there is increase demand of biological surface-active compounds or biosurfactants which are produced by large number of microorganisms as they exert biodegradability, low toxicity and widespread application compared to chemical surfactants. They can be used as emulsifiers, de-emulsifiers, wetting agents, spreading agents, foaming agents, functional food ingredients and detergents. Various experiments at laboratory scale on sand-pack columns and field trials have successfully indicated effectiveness of biosurfactants in microbial enhanced oil recovery (MEOR).

  4. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives

  5. [Antiadhesive potencial of Rhodococcus erythropolis IMB Ac-5017 biosurfactants].

    PubMed

    Pirog, T P; Gritsenko, N A; Konon, A D; Shevchuk, T A; Iutinskaia, G A

    2014-01-01

    The effect of Rhodococcus erythropolis IMB Ac-5017 biosurfactants (surface-active substances, SAS) with different degree of purification on attachment of bacteria (Escherichia coli IEM-1, Bacillus subtilis BT-2, Proteus vulgaris BT-1, Staphylococcus aureus BMC-1, Pseudomonas aeruginosa P-55, Enterobacter cloacae AC-22, Erwinia aroidaeae B-433), yeasts (Candida albicans D-6) and fungi (Aspergillus niger P-3, Fusarium culmorum T-7) to the abiotic surfaces (glass, plastic, ceramics, steel, linoleum) was studied. The dependence of microorganisms adhesion on degree of SAS purification (supernatant, purified SAS solution), SAS concentration (0,04-1,25 mg/ml), type of surface and test-cultures was established. The adhesion of majority investigated bacterial cells after treatment of abiotic surfaces with supernatant of cultural liquid with SAS concentration 0,06-0,25 mg/ml was on the average 20-45, yeasts C. albicans D-6--30-75% and was less than that purified SAS solution with the same concentration. Higher antiadhesive activity of supernatant as compared to purified SAS solution testifies to possibility of exception of the expensive stage of isolation and purification at obtaining of preparations with antiadhesive properties.

  6. Cost effective technologies and renewable substrates for biosurfactants' production.

    PubMed

    Banat, Ibrahim M; Satpute, Surekha K; Cameotra, Swaranjit S; Patil, Rajendra; Nyayanit, Narendra V

    2014-01-01

    Diverse types of microbial surface active amphiphilic molecules are produced by a range of microbial communities. The extraordinary properties of biosurfactant/bioemulsifier (BS/BE) as surface active products allows them to have key roles in various field of applications such as bioremediation, biodegradation, enhanced oil recovery, pharmaceutics, food processing among many others. This leads to a vast number of potential applications of these BS/BE in different industrial sectors. Despite the huge number of reports and patents describing BS and BE applications and advantages, commercialization of these compounds remain difficult, costly and to a large extent irregular. This is mainly due to the usage of chemically synthesized media for growing producing microorganism and in turn the production of preferred quality products. It is important to note that although a number of developments have taken place in the field of BS industries, large scale production remains economically challenging for many types of these products. This is mainly due to the huge monetary difference between the investment and achievable productivity from the commercial point of view. This review discusses low cost, renewable raw substrates, and fermentation technology in BS/BE production processes and their role in reducing the production cost.

  7. Analysis of rhamnolipid biosurfactants by methylene blue complexation.

    PubMed

    Pinzon, Neissa M; Ju, Lu-Kwang

    2009-04-01

    Rhamnolipids, produced by Pseudomonas aeruginosa, represent an important group of biosurfactants having various industrial, environmental, and medical applications. Current methods for rhamnolipid quantification involve the use of strong hazardous acids/chemicals, indirect measurement of the concentration of sugar moiety, or require the availability of expensive equipment (HPLC-MS). A safer, easier method that measures the whole rhamnolipid molecules would significantly enhance strain selection, metabolic engineering, and process development for economical rhamnolipid production. A semi-quantitative method was reported earlier to differentiate between the rhamnolipid-producing and non-producing strains using agar plates containing methylene blue and cetyl trimethylammonium bromide (CTAB). In this study, a rapid and simple method for rhamnolipid analysis was developed by systematically investigating the complexation of rhamnolipids and methylene blue, with and without the presence of CTAB. The method relies on measuring the absorbance (at 638 nm) of the rhamnolipid-methylene blue complex that partitions into the chloroform phase. With P. aeruginosa fermentation samples, the applicability of this method was verified by comparison of the analysis results with those obtained from the commonly used anthrone reaction technique.

  8. Removal of Mercury by Foam Fractionation Using Surfactin, a Biosurfactant

    PubMed Central

    Chen, Hau-Ren; Chen, Chien-Cheng; Reddy, A. Satyanarayana; Chen, Chien-Yen; Li, Wun Rong; Tseng, Min-Jen; Liu, Hung-Tsan; Pan, Wei; Maity, Jyoti Prakash; Atla, Shashi B.

    2011-01-01

    The separation of mercury ions from artificially contaminated water by the foam fractionation process using a biosurfactant (surfactin) and chemical surfactants (SDS and Tween-80) was investigated in this study. Parameters such as surfactant and mercury concentration, pH, foam volume, and digestion time were varied and their effects on the efficiency of mercury removal were investigated. The recovery efficiency of mercury ions was highly sensitive to the concentration of the surfactant. The highest mercury ion recovery by surfactin was obtained using a surfactin concentration of 10 × CMC, while recovery using SDS required < 10 × CMC and Tween-80 >10 × CMC. However, the enrichment of mercury ions in the foam was superior with surfactin, the mercury enrichment value corresponding to the highest metal recovery (10.4%) by surfactin being 1.53. Dilute solutions (2-mg L−1 Hg2+) resulted in better separation (36.4%), while concentrated solutions (100 mg L−1) enabled only a 2.3% recovery using surfactin. An increase in the digestion time of the metal solution with surfactin yielded better separation as compared with a freshly-prepared solution, and an increase in the airflow rate increased bubble production, resulting in higher metal recovery but low enrichment. Basic solutions yielded higher mercury separation as compared with acidic solutions due to the precipitation of surfactin under acidic conditions. PMID:22174661

  9. The anionic biosurfactant rhamnolipid does not denature industrial enzymes.

    PubMed

    Madsen, Jens K; Pihl, Rasmus; Møller, Anders H; Madsen, Anne T; Otzen, Daniel E; Andersen, Kell K

    2015-01-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL) and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS) on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ), the phospholipase Lecitase Ultra® (LT) and the α-amylase Stainzyme® (SZ). Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction toward the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the enzyme well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries) to SZ. Furthermore, all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant enzymes. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications.

  10. Interaction of the Lipopeptide Biosurfactant Lichenysin with Phosphatidylcholine Model Membranes.

    PubMed

    Coronel, Jonathan R; Marqués, Ana; Manresa, Ángeles; Aranda, Francisco J; Teruel, José A; Ortiz, Antonio

    2017-09-26

    Lichenysins produced by Bacillus licheniformis are anionic lipopeptide biosurfactants with cytotoxic, antimicrobial, and hemolytic activities that possess enormous potential for chemical and biological applications. Through the use of physical techniques such as differential scanning calorimetry, small- and wide-angle X-ray diffraction, and Fourier-transform infrared spectroscopy as well as molecular dynamics simulations, we report on the interaction of Lichenysin with synthetic phosphatidylcholines differing in hydrocarbon chain length. Lichenysin alters the thermotropic phase behavior of phosphatidylcholines, displaying fluid-phase immiscibility and showing a preferential partitioning into fluid domains. The interlamellar repeat distance of dipalmitoylphosphatidylcholine (DPPC) is modified, affecting both the phospholipid palisade and the lipid/water interface, which also experiences a strong dehydration. Molecular dynamics confirms that Lichenysin is capable of interacting both with the hydrophobic portion of DPPC and with the polar headgroup region, which is of particular relevance to explain much of its properties. The results presented here help to establish a molecular basis for the Lichenysin-induced perturbation of model and biological membranes previously described in the literature.

  11. Boolean Models of Biosurfactants Production in Pseudomonas fluorescens

    PubMed Central

    Richard, Adrien; Rossignol, Gaelle; Comet, Jean-Paul; Bernot, Gilles; Guespin-Michel, Jannine; Merieau, Annabelle

    2012-01-01

    Cyclolipopeptides (CLPs) are biosurfactants produced by numerous Pseudomonas fluorescens strains. CLP production is known to be regulated at least by the GacA/GacS two-component pathway, but the full regulatory network is yet largely unknown. In the clinical strain MFN1032, CLP production is abolished by a mutation in the phospholipase C gene () and not restored by complementation. Their production is also subject to phenotypic variation. We used a modelling approach with Boolean networks, which takes into account all these observations concerning CLP production without any assumption on the topology of the considered network. Intensive computation yielded numerous models that satisfy these properties. All models minimizing the number of components point to a bistability in CLP production, which requires the presence of a yet unknown key self-inducible regulator. Furthermore, all suggest that a set of yet unexplained phenotypic variants might also be due to this epigenetic switch. The simplest of these Boolean networks was used to propose a biological regulatory network for CLP production. This modelling approach has allowed a possible regulation to be unravelled and an unusual behaviour of CLP production in P. fluorescens to be explained. PMID:22303435

  12. The anionic biosurfactant rhamnolipid does not denature industrial enzymes

    PubMed Central

    Madsen, Jens K.; Pihl, Rasmus; Møller, Anders H.; Madsen, Anne T.; Otzen, Daniel E.; Andersen, Kell K.

    2015-01-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. Their combination of useful properties and sustainable production make them promising industrial alternatives to petrochemical and oleochemical surfactants. Here we compare the impact of the anionic BS rhamnolipid (RL) and the conventional/synthetic anionic surfactant sodium dodecyl sulfate (SDS) on the structure and stability of three different commercially used enzymes, namely the cellulase Carezyme® (CZ), the phospholipase Lecitase Ultra® (LT) and the α-amylase Stainzyme® (SZ). Our data reveal a fundamental difference in their mode of interaction. SDS shows great diversity of interaction toward the different enzymes. It efficiently unfolds both LT and CZ, but LT is unfolded by SDS through formation of SDS clusters on the enzyme well below the cmc, while CZ is only unfolded by bulk micelles and on average binds significantly less SDS than LT. SDS binds with even lower stoichiometry to SZ and leads to an increase in thermal stability. In contrast, RL does not affect the tertiary or secondary structure of any enzyme at room temperature, has little impact on thermal stability and only binds detectably (but at low stoichiometries) to SZ. Furthermore, all enzymes maintain activity at both monomeric and micellar concentrations of RL. We conclude that RL, despite its anionic charge, is a surfactant that does not compromise the structural integrity of industrially relevant enzymes. This makes RL a promising alternative to current synthetic anionic surfactants in a wide range of commercial applications. PMID:25941516

  13. Antibodies to glycolipids activate complement and promote proteinuria in passive Heymann nephritis.

    PubMed

    Susani, M; Schulze, M; Exner, M; Kerjaschki, D

    1994-04-01

    Passive Heymann nephritis is an experimental rat model of human membranous nephropathy induced by injection of antisera against crude renal cortical fractions such as Fx1A or rat tubular microvilli. This results in the formation of subepithelial immune deposits, the activation of the C5b-9 membrane attack complex of complement, and severe proteinuria. While the formation of immune deposits is attributed to in situ immune complex formation with antibodies specific for the gp330-Heymann nephritis antigenic complex (HNAC), activation of complement and proteinuria appear to be caused by at least one additional antibody species present in anti-Fx1A sera. We have separated by affinity absorption polyspecific antisera against Fx1A and rat microvilli into one IgG fraction directed specifically against microvillar proteins (anti-Fx1A-prot) and another IgG fraction specific for glycolipids (ant-Fx1A-lip) of tubular microvilli. When injected into rats, the anti-Fx1A-prot fraction induced immune deposits but failed to activate complement or produce proteinuria, similar to results obtained with affinity-purified anti-gp330 IgG. When the antibodies of the anti-Fx1A-lip fraction were injected alone they did not bind to glomeruli. By contrast, when the IgGs specific for the Fx1A-prot fraction (or for gp330-HNAC) were combined with those directed against the Fx1A-lip glycolipid preparation, immune deposits were formed, in situ complement activation was observed, and also proteinuria was induced. It is concluded that within anti-Fx1A and anti-microvillar sera there are at least two IgG fractions of relevance for the development of PHN: one directed against the gp330-HNAC complex which is responsible for the development of immune deposits, and a second specific for glycolipid antigen(s) which activate(s) the complement cascade.

  14. Synthesis and antigenicity of BBGL-2 glycolipids of Borrelia burgdorferi, the causative agent of Lyme disease

    PubMed Central

    Pozsgay, Vince; Kubler-Kielb, Joanna; Coxon, Bruce; Marques, Adriana; Robbins, John B.; Schneerson, Rachel

    2011-01-01

    Borrelia burgdorferi is the etiological agent for Lyme disease (LD), the most common vector borne disease in the United States. There is no human vaccine against LD currently available. Our approach to a vaccine is based on its surface-exposed glycolipids. One group of these glycolipids termed BBGL-2 consists of 1,2-di-O-acyl-3-O-(α-D-galactopyranosyl)-sn-glycerol congeners having palmitic, oleic, stearic, linoleic, and myristic acids. In order to delineate the immunodominant region(s) of the BBGL-2 components, we embarked on a synthetic project to provide available structurally defined, homogeneous analogs of BBGL-2 that might help identify the best vaccine candidate. The antigenicity of the synthetic glycolipids was examined by dot-blot analysis using mice sera obtained by immunization with killed B. burgdorferi cells, with native BBGL-2 in complete Freund's adjuvant, as well as sera obtained from patients with Lyme disease. We found that the presence of two acyl groups in the glycerol moiety was essential for antigenicity. At least one of these groups must be an oleoyl moiety. Neither the anomeric configuration of the galactose nor the configuration of the glycerol at C-2 was a decisive factor. Based on these findings we designed an `unnatural' BBGL-2 analog having the structure 3-O-(β-D-galactopyranosyl)-1,2-di-O-oleoyl-DL-glycerol which is easier and less expensive to synthesize than the other BBGL-2 congeners prepared in this study. This substance proved to be antigenic and is considered a candidate vaccine for Lyme disease. PMID:21601180

  15. Design, Synthesis, and Functional Activity of Labeled CD1d Glycolipid Agonists

    PubMed Central

    2013-01-01

    Invariant natural killer T cells (iNKT cells) are restricted by CD1d molecules and activated upon CD1d-mediated presentation of glycolipids to T cell receptors (TCRs) located on the surface of the cell. Because the cytokine response profile is governed by the structure of the glycolipid, we sought a method for labeling various glycolipids to study their in vivo behavior. The prototypical CD1d agonist, α-galactosyl ceramide (α-GalCer) 1, instigates a powerful immune response and the generation of a wide range of cytokines when it is presented to iNKT cell TCRs by CD1d molecules. Analysis of crystal structures of the TCR−α-GalCer–CD1d ternary complex identified the α-methylene unit in the fatty acid side chain, and more specifically the pro-S hydrogen at this position, as a site for incorporating a label. We postulated that modifying the glycolipid in this way would exert a minimal impact on the TCR–glycolipid–CD1d ternary complex, allowing the labeled molecule to function as a good mimic for the CD1d agonist under investigation. To test this hypothesis, the synthesis of a biotinylated version of the CD1d agonist threitol ceramide (ThrCer) was targeted. Both diastereoisomers, epimeric at the label tethering site, were prepared, and functional experiments confirmed the importance of substituting the pro-S, and not the pro-R, hydrogen with the label for optimal activity. Significantly, functional experiments revealed that biotinylated ThrCer (S)-10 displayed behavior comparable to that of ThrCer 5 itself and also confirmed that the biotin residue is available for streptavidin and antibiotin antibody recognition. A second CD1d agonist, namely α-GalCer C20:2 4, was modified in a similar way, this time with a fluorescent label. The labeled α-GalCer C20:2 analogue (11) again displayed functional behavior comparable to that of its unlabeled substrate, supporting the notion that the α-methylene unit in the fatty acid amide chain should be a suitable site for

  16. Plasma-dependent chemotaxis of macrophages toward BCG cell walls and the mycobacterial glycolipid P3.

    PubMed

    Kelly, M T

    1977-01-01

    BCG cell walls, associated with oil droplets in the form of emulsions in saline, generate macrophage chemotactic activity from fresh guinea pig plasma. Serum and heat-inactivated plasma were inactive, suggesting involvement of complement or fibrinogen-derived chemotactic factors. Suspensions of cell walls and oil droplets each generated chemotactic activity from plasma, and the activity of the cell wall vaccine was due to the additive effects of these two components. A mycobacterial glycolipid (P3), which is a constituent of BCG cell walls, also had plasma-dependent chemotactic activity. The results suggest that macrophage chemotaxis may be an important part of the immunopotentiating activity of these mycobacterial products.

  17. Production and structure elucidation of di- and oligosaccharide lipids (biosurfactants) from Tsukamurella sp. nov.

    PubMed

    Vollbrecht, E; Heckmann, R; Wray, V; Nimtz, M; Lang, S

    1998-11-01

    The bacterium Tsukamurella sp. nov., isolated from soil, was found to produce novel glycolipids when grown on sunflower oil as the sole carbon source. The glycolipids were isolated by chromatography on silica columns and their structures elucidated using a combination of multidimensional NMR and MS techniques. The three main components are 2,3-di-O-acyl-alpha-D-glucopyranosyl-(1-1)-alpha-D-glucopyranose, 2,3-di-O-acyl-beta-D-glucopyranosyl-(1-2)-4,6-di-O-acyl-alpha-D- glucopyranosyl-(1-1)-alpha-D-glucopyranose and 2,3-di-O-acyl-beta-D-glucopyranosyl-(1-2)-beta-D-galactopyranosyl- (1-6)-4,6-di-O-acyl-alpha-D-glucopyranosyl-(1-1)-alpha-D- glucopyranosyl which are linked to fatty acids varying in chain length from C4 to C18. The glycolipids are mainly extracellular but are also found attached to the cell walls. During the cultivation the composition of the glycolipids changed from disaccharide- to tri- and tetrasaccharide lipids. The glycolipids show good surface-active behaviour and have antimicrobial properties.

  18. Combinatorial effect of Bacillus amyloliquefaciens AG1 biosurfactant and Bacillus thuringiensis Vip3Aa16 toxin on Spodoptera littoralis larvae.

    PubMed

    Ben Khedher, Saoussen; Boukedi, Hanen; Dammak, Mariam; Kilani-Feki, Olfa; Sellami-Boudawara, Tahya; Abdelkefi-Mesrati, Lobna; Tounsi, Slim

    2017-03-01

    Spodoptera littoralis, one of the most serious and destructive agricultural pests in the world, is very susceptible to Vip3 toxin. In order to develop a new efficient bioinsecticide and to prevent the development of resistance by the target pest, insecticidal activity of biosurfactant produced by Bacillus amyloliquefaciens AG1 was evaluated against S. littoralis. Bioassays revealed the susceptibility of the first instar larvae of this pest to AG1 biosurfactant with an LC50 of 245ng/cm(2). Moreover, the histopathology examination of the larval midgut treated by AG1 biosurfactant showed vacuolization, necrosis and disintegration of the basement membrane. Binding experiments revealed that the AG1 biosurfactant recognized three putative receptors located in the brush border membrane vesicles of S. littoralis with sizes of 91, 72 and 64kDa. Competition assays using biotinylated metabolites indicated that AG1 biosurfactant and Vip3Aa16 toxin did not compete for the same S. littoralis receptors. When combined, AG1 biosurfactant and Vip3Aa16 showed an additive effect against S. littoralis larvae. These findings suggested that B. amyloliquefaciens AG1 biosurfactant could be a promising biocontrol agent to eradicate S. littoralis and to prevent resistance development by this pest.

  19. Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design.

    PubMed

    Roldán-Carrillo, T; Martínez-García, X; Zapata-Peñasco, I; Castorena-Cortés, G; Reyes-Avila, J; Mayol-Castillo, M; Olguín-Lora, P

    2011-09-01

    The strain SmSA, identified as Serratia marcescens and known as a biosurfactant producer, was isolated from hydrocarbon contaminated soil from Veracruz, México. The interactions among the C/N, C/Mg and C/Fe ratios have not been examined for this microorganism. In this work was evaluated the effect of these nutrients at three levels using a mineral medium with glucose as the carbon source. A Box-Behnken experimental design was utilised to maximise biosurfactant production, which was assessed by oil spreading and surface tension tests. The treatment with C/N=5, C/Fe=26,000 and C/Mg=30 showed the best result since the surface tension was reduced to 30 mN m(-1). The multiple regression and response surface analyses indicated that the interaction between C/N and C/Mg had the utmost effect on the reduction of surface tension and biosurfactant production. The conditions of the best treatment were used to scale up biosurfactant production in a 3L bioreactor giving a yield of 4.1 gL(-1) of pure biosurfactant. It was found that the biosurfactant was mainly produced in the exponential phase and decreased the surface tension to 31 mN m(-1). The contact between the biosurfactant with heavy oil (15° API) increased its displacement from 9.3 to 18 cm.

  20. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    PubMed

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant.

  1. Combined effects of DOM and biosurfactant enhanced biodegradation of polycylic armotic hydrocarbons (PAHs) in soil-water systems.

    PubMed

    Yu, Hui; Huang, Guo-He; Xiao, Huining; Wang, Lei; Chen, Wei

    2014-09-01

    This study systematically investigated the interactive effects of dissolved organic matter (DOM) and biosurfactant (rhamnolipid) on the biodegradation of phenanthrene (PHE) and pyrene (PYR) in soil-water systems. The degradations of two polycyclic aromatic hydrocarbons (PAHs) were fitted well with first order kinetic model and the degradation rates were in proportion to the concentration of biosurfactant. In addition, the degradation enhancement of PHE was higher than that of PYR. The addition of soil DOM itself at an environmental level would inhibit the biodegradation of PAHs. However, in the system with co-existence of DOM and biosurfactant, the degradation of PAHs was higher than that in only biosurfactant addition system, which may be attributed to the formation of DOM-biosurfactant complex micelles. Furthermore, under the combined conditions, the degradation of PAH increased with the biosurfactant concentration, and the soil DOM added system showed slightly higher degradation than the compost DOM added system, indicating that the chemical structure and composition of DOM would also affect the bioavailability of PAHs. The study result may broaden knowledge of biosurfactant enhanced bioremediation of PAHs contaminated soil and groundwater.

  2. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1.

    PubMed

    Sriram, Muthu Irulappan; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Gracerosepat, Raja; Srisakthi, Kandasamy; Gurunathan, Sangiliyandi

    2011-07-01

    Biosurfactants are worthful microbial amphiphilic molecules with efficient surface-active and biological properties applicable to several industries and processes. Among them lipopeptides represent a class of microbial surfactants with increasing scientific, therapeutic and biotechnological interests. A heavy metal tolerant Bacillus strain has been isolated and the biofilm inhibition and antimicrobial activity of biosurfactant produced by the strain have been studied. Biosurfactant production was confirmed by the conventional screening methods including hemolytic activity, drop collapsing test, oil displacement test, emulsification and lipase production assays. The biosurfactant produced by this strain was a lipopeptide and exhibited strong surface activity. The biosurfactant has been characterized using FTIR, TLC and HPLC. The minimum active dose of this biosurfactant when compared with the other chemical surfactants was found as 0.150±0.06 μg. The critical micelle concentration was found to be 45 mg/l. The biosurfactant was found to be stable and active over a wide range of pH, temperature and NaCl concentration. It was also able to emulsify a wide range of hydrocarbons and oils thereby extending its application for the bioremediation of oil contaminated sites. The biosurfactant exhibited significant reduction in biofilm formation by pathogens and showed potent antimicrobial activity against various gram positive, gram negative bacteria and fungi. Agar diffusion assay for heavy metal resistance showed that the isolate was resistant to ferrous, lead and zinc. Considering the biofilm inhibition and antimicrobial property of biosurfactant, it can be utilized as a potential therapeutic molecule for numerous microbial infections. The heavy metal resistance of the strain can also be harnessed as an invaluable biological tool for in situ bioremediation.

  3. Carbohydrates act as receptors for the periodontitis-associated bacterium Porphyromonas gingivalis: a study of bacterial binding to glycolipids.

    PubMed

    Hellström, Ulrika; Hallberg, Eva C; Sandros, Jens; Rydberg, Lennart; Bäcker, Annika E

    2004-06-01

    In this study we show for the first time the use of carbohydrate chains on glycolipids as receptors for the periodontitis-associated bacterium Porphyromonas gingivalis. Previous studies have shown that this bacterium has the ability to adhere to and invade the epithelial lining of the dental pocket. Which receptor(s) the adhesin of P. gingivalis exploit in the adhesion to epithelial cells has not been shown. Therefore, the binding preferences of this specific bacterium to structures of carbohydrate origin from more than 120 different acid and nonacid glycolipid fractions were studied. The bacteria were labeled externally with (35)S and used in a chromatogram binding assay. To enable detection of carbohydrate receptor structures for P. gingivalis, the bacterium was exposed to a large number of purified total glycolipid fractions from a variety of organs from different species and different histo-blood groups. P. gingivalis showed a preference for fractions of human and pig origin for adhesion. Both nonacid and acid glycolipids were used by the bacterium, and a preference for shorter sugar chains was noticed. Bacterial binding to human acid glycolipid fractions was mainly obtained in the region of the chromatograms where sulfated carbohydrate chains usually are found. However, the binding pattern to nonacid glycolipid fractions suggests a core chain of lactose bound to the ceramide part as a tentative receptor structure. The carbohydrate binding of the bacterium might act as a first step in the bacterial invasion process of the dental pocket epithelium, subsequently leading to damage to periodontal tissue and tooth loss.

  4. Agro-Industrial Wastes for Production of Biosurfactant by Bacillus subtilis ANR 88 and Its Application in Synthesis of Silver and Gold Nanoparticles

    PubMed Central

    Rane, Ashwini N.; Baikar, Vishakha V.; Ravi Kumar, D. V.; Deopurkar, Rajendra L.

    2017-01-01

    Biosurfactants, surface-active amphiphilic compounds, despite having a wide range of applications, have a high cost of production, which severely restricts their use. For cheaper production of biosurfactant, we investigated the potential of the indigenously isolated biosurfactant producing organism, Bacillus subtilis ANR 88, to grow on different cheap carbon sources (molasses, whey, and extracts of potato peels, orange peels, banana peels, and bagasse). We found that, B. subtilis ANR 88 used significant amounts of total sugar to produce cell biomass and biosurfactant. The biosurfactant production in minimal medium containing glucose as sole source of carbon was 0.207 g/l and the same with molasses as carbon source was 0.241 g/l. With whey as carbon source, isolate failed to produce biosurfactant. Amongst the extracts of the agro-wastes, the extracts of bagasse and orange peels gave 0.127 and 0.089 g/l of biosurfactant respectively. One-variable-at-a-time (OVAT) studies carried out to optimize the production of biosurfactant by B. subtilis ANR 88 resulted into maximum biosurfactant yield of 0.513 g/l in medium: molasses 4%, ammonium ferric citrate 0.25%, pH 7. Plackett–Burman design based statistical method for optimization increased the production of biosurfactant to 0.746 g/l, which is 3.6-fold of that produced on glucose. The biosurfactant produced by B. subtilis ANR 88 was analyzed by Fourier Transform Infrared Spectroscopy (FT-IR); it showed that the biosurfactant contained alkyl as well as peptide groups. The biosurfactant of B. subtilis ANR 88 was found effective in the synthesis of silver as well as gold nanoparticles in the total absence of conventional chemical reducing agents. Interestingly, nanoparticles produced were almost uniform in their size and shapes i.e., spherical silver (4–18 nm) and hexagonal gold nanoparticles (40–60 nm), as evident in TEM images. PMID:28392783

  5. Agro-Industrial Wastes for Production of Biosurfactant by Bacillus subtilis ANR 88 and Its Application in Synthesis of Silver and Gold Nanoparticles.

    PubMed

    Rane, Ashwini N; Baikar, Vishakha V; Ravi Kumar, V; Deopurkar, Rajendra L

    2017-01-01

    Biosurfactants, surface-active amphiphilic compounds, despite having a wide range of applications, have a high cost of production, which severely restricts their use. For cheaper production of biosurfactant, we investigated the potential of the indigenously isolated biosurfactant producing organism, Bacillus subtilis ANR 88, to grow on different cheap carbon sources (molasses, whey, and extracts of potato peels, orange peels, banana peels, and bagasse). We found that, B. subtilis ANR 88 used significant amounts of total sugar to produce cell biomass and biosurfactant. The biosurfactant production in minimal medium containing glucose as sole source of carbon was 0.207 g/l and the same with molasses as carbon source was 0.241 g/l. With whey as carbon source, isolate failed to produce biosurfactant. Amongst the extracts of the agro-wastes, the extracts of bagasse and orange peels gave 0.127 and 0.089 g/l of biosurfactant respectively. One-variable-at-a-time (OVAT) studies carried out to optimize the production of biosurfactant by B. subtilis ANR 88 resulted into maximum biosurfactant yield of 0.513 g/l in medium: molasses 4%, ammonium ferric citrate 0.25%, pH 7. Plackett-Burman design based statistical method for optimization increased the production of biosurfactant to 0.746 g/l, which is 3.6-fold of that produced on glucose. The biosurfactant produced by B. subtilis ANR 88 was analyzed by Fourier Transform Infrared Spectroscopy (FT-IR); it showed that the biosurfactant contained alkyl as well as peptide groups. The biosurfactant of B. subtilis ANR 88 was found effective in the synthesis of silver as well as gold nanoparticles in the total absence of conventional chemical reducing agents. Interestingly, nanoparticles produced were almost uniform in their size and shapes i.e., spherical silver (4-18 nm) and hexagonal gold nanoparticles (40-60 nm), as evident in TEM images.

  6. Sinularioside, a triacetylated glycolipid from the Indonesian soft coral Sinularia sp., is an inhibitor of NO release.

    PubMed

    Putra, Masteria Yunovilsa; Ianaro, Angela; Panza, Elisabetta; Bavestrello, Giorgio; Cerrano, Carlo; Fattorusso, Ernesto; Taglialatela-Scafati, Orazio

    2012-04-15

    Chemical analysis of the Indonesian soft coral Sinularia sp. (order Alcyonacea, family Alcyoniidae) afforded a known glucosylcerebroside of the sarcoehrenoside-type and sinularioside (2), a new naturally triacetylated glycolipid containing two α-D-arabinopyranosyl residues and a myristyl alcohol unit. Their complete stereostructures were solved by interpretation of MS and NMR data along with CD analysis of degradation products. Sinularioside proved to moderately inhibit LPS-induced NO release, providing interesting clues into the poorly understood structure-activity relationships for anti-inflammatory glycolipids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Major surface antigen, P30, of Toxoplasma gondii is anchored by a glycolipid

    SciTech Connect

    Nagel, S.D.; Boothroyd, J.C.

    1989-04-05

    P30, the major surface antigen of the parasitic protozoan Toxoplasma gondii, can be specifically labeled with (/sup 3/H)palmitic acid and with myo-(2-/sup 3/H)inositol. The fatty acid label can be released by treatment of P30 with phosphatidylinositol-specific phospholipase C (PI-PLC). Such treatment exposes an immunological cross-reacting determinant first described on Trypanosoma brucei variant surface glycoprotein. PI-PLC cleavage of intact parasites metabolically labeled with (/sup 35/S)methionine results in the release of intact P30 polypeptide in a form which migrates faster in polyacrylamide gel electrophoresis. These results argue that P30 is anchored by a glycolipid. Results from thin layer chromatography analysis of purified (/sup 3/H) palmitate-labeled P30 treated with PI-PLC, together with susceptibility to mild alkali hydrolysis and to cleavage with phospholipase A2, suggest that the glycolipid anchor of T. gondii P30 includes a 1,2-diacylglycerol moiety.

  8. Alteration of glycolipids in ras-transfected NIH 3T3 cells

    SciTech Connect

    Matyas, G.R.; Aaronson, S.A.; Brady, R.O.; Fishman, P.H.

    1987-09-01

    Glycosphingolipid alterations upon viral transformation are well documented. Transformation of mouse 3T3 cells with murine sarcoma viruses results in marked decreases in the levels of gangliosides GM1 and GD1a and an increase in gangliotriaosylceramide. The transforming oncogenes of these viruses have been identified as members of the ras gene family. The authors analyzed NIH 3T3 cells transfected with human H-, K- and N-ras oncogenes for their glycolipid composition and expression of cell surface gangliosides. Using conventional thin-layer chromatographic analysis, they found that the level of GM3 was increased and that of GD1a was slightly decreased or unchanged, and GM1 was present but not in quantifiable levels. Cell surface levels of GM1 were determined by /sup 125/I-labeled cholera toxin binding to intact cells. GD1a was determined by cholera toxin binding to cells treated with sialidase prior to toxin binding. All ras-transfected cells had decreased levels of surface GM1 and GD1 as compared to logarithmically growing normal NIH 3T3 cells. Levels of GM1 and, to a lesser extent, GD1a increased as the latter cells became confluent. Using a monoclonal antibody assay, they found that gangliotriaosylceramide was present in all ras-transfected cells studied but not in logarithmically growing untransfected cells. These results indicated that ras oncogenes derived form human tumors are capable of inducing alterations in glycolipid composition.

  9. Hydration and molecular motions in synthetic phytanyl-chained glycolipid vesicle membranes.

    PubMed Central

    Baba, T; Minamikawa, H; Hato, M; Handa, T

    2001-01-01

    Proton permeation rates across membranes of a synthetic branch-chained glycolipid, 1,3-di-O-phytanyl-2-O-(beta-D-maltotriosyl)glycerol (Mal3(Phyt)2) as well as a branch-chained phospholipid, diphytanoylphosphatidylcholine (DPhPC) were lower than those of straight-chained lipids such as egg yolk phosphatidylcholine (EPC) by a factor of approximately 4 at pH 7.0 and 25 degrees C. To examine whether degrees of water penetration and molecular motions in Mal3(Phyt)2 membranes can account for the lower permeability, nanosecond time-resolved fluorescence spectroscopy was applied to various membranes of branch-chained lipids (Mal3(Phyt)2, DPhPC, and a tetraether lipid from an extremely thermoacidophilic archaeon Thermoplasma acidophilum), as well as straight-chained lipids (EPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and digalactosyldiacylglycerol (DGDG)) using several fluorescent lipids. Degrees of hydration of glycolipids, Mal3(Phyt)2, and DGDG were lower than those of phospholipids, EPC, POPC, and DPhPC at the membrane-water interfaces. DPhPC showed the highest hydration among the lipids examined. Meanwhile, rotational and lateral diffusive motions of the fluorescent phospholipid in branch-chained lipid membranes were more restricted than those in straight-chained ones. The results suggest that the restricted motion of chain segments rather than the lower hydration accounts for the lower proton permeability of branch-chained lipid membranes. PMID:11721000

  10. Extension of the GLYCAM06 Biomolecular Force Field to Lipids, Lipid Bilayers and Glycolipids.

    PubMed

    Tessier, Matthew B; Demarco, Mari L; Yongye, Austin B; Woods, Robert J

    2008-01-01

    GLYCAM06 is a generalisable biomolecular force field that is extendible to diverse molecular classes in the spirit of a small-molecule force field. Here we report parameters for lipids, lipid bilayers and glycolipids for use with GLYCAM06. Only three lipid-specific atom types have been introduced, in keeping with the general philosophy of transferable parameter development. Bond stretching, angle bending, and torsional force constants were derived by fitting to quantum mechanical data for a collection of minimal molecular fragments and related small molecules. Partial atomic charges were computed by fitting to ensemble-averaged quantum-computed molecular electrostatic potentials.In addition to reproducing quantum mechanical internal rotational energies and experimental valence geometries for an array of small molecules, condensed-phase simulations employing the new parameters are shown to reproduce the bulk physical properties of a DMPC lipid bilayer. The new parameters allow for molecular dynamics simulations of complex systems containing lipids, lipid bilayers, glycolipids, and carbohydrates, using an internally consistent force field. By combining the AMBER parameters for proteins with the GLYCAM06 parameters, it is also possible to simulate protein-lipid complexes and proteins in biologically relevant membrane-like environments.

  11. Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility

    PubMed Central

    Yildiz, Yildiz; Matern, Heidrun; Thompson, Bonne; Allegood, Jeremy C.; Warren, Rebekkah L.; Ramirez, Denise M.O.; Hammer, Robert E.; Hamra, F. Kent; Matern, Siegfried; Russell, David W.

    2006-01-01

    β-Glucosidase 2 (GBA2) is a resident enzyme of the endoplasmic reticulum thought to play a role in the metabolism of bile acid–glucose conjugates. To gain insight into the biological function of this enzyme and its substrates, we generated mice deficient in GBA2 and found that these animals had normal bile acid metabolism. Knockout males exhibited impaired fertility. Microscopic examination of sperm revealed large round heads (globozoospermia), abnormal acrosomes, and defective mobility. Glycolipids, identified as glucosylceramides by mass spectrometry, accumulated in the testes, brains, and livers of the knockout mice but did not cause obvious neurological symptoms, organomegaly, or a reduction in lifespan. Recombinant GBA2 hydrolyzed glucosylceramide to glucose and ceramide; the same reaction catalyzed by the β-glucosidase acid 1 (GBA1) defective in subjects with the Gaucher’s form of lysosomal storage disease. We conclude that GBA2 is a glucosylceramidase whose loss causes accumulation of glycolipids and an endoplasmic reticulum storage disease. PMID:17080196

  12. Biophysical Effects of a Polymeric Biosurfactant in Candida krusei and Candida albicans Cells.

    PubMed

    Ferreira, Gabriella Freitas; Dos Santos Pinto, Bruna Lorrana; Souza, Eliene Batista; Viana, José Lima; Zagmignan, Adrielle; Dos Santos, Julliana Ribeiro Alves; Santos, Áquila Rodrigues Costa; Tavares, Priscila Batista; Denadai, Ângelo Márcio Leite; Monteiro, Andrea Souza

    2016-12-01

    This study evaluated the effects of a polymeric biosurfactant produced by Trichosporon montevideense CLOA72 in the adhesion of Candida albicans and Candida krusei cells to human buccal epithelial cells and its interference in biofilm formation by these strains. The biofilm inhibition by biosurfactant (25 mg/mL) in C. krusei and C. albicans in polystyrene was reduced up to 79.5 and 85 %, respectively. In addition, the zeta potential and hydrodynamic diameter of the yeasts altered as a function of the biosurfactant concentration added to the cell suspension. The changes in the cell surface characteristics and the interface modification can contribute to the inhibition of the initial adherence of yeasts cells to the surface. In addition, the analyses of the biofilm matrix and planktonic cell surfaces demonstrated differences in carbohydrate and protein concentrations for the two studied strains, which may contribute to the modulation of cell adhesion or consolidation of biofilms, especially in C. krusei. This study suggests a possible application of the of CLOA72 biosurfactant in inhibiting the adhesion and formation of biofilms on biological surfaces by yeasts of the Candida genus.

  13. Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm.

    PubMed

    Rivardo, Fabrizio; Martinotti, Maria Giovanna; Turner, Raymond Joseph; Ceri, Howard

    2011-04-01

    Biofilms are microcolonies of microbes adherent to biotic and abiotic surfaces, often responsible for chronic infections and medical device contamination. Escherichia coli is one of the prevalent pathogens involved in uropathogenic infections and contamination of catheters. A biosurfactant produced by Bacillus licheniformis V9T14 was tested alone and in association with various antibiotics against a mature 24-h uropathogenic E. coli CFT073 biofilm. Biofilm was grown on polystyrene pegs of a Calgary Biofilm Device, providing a tool to evaluate the efficacy of antimicrobial agents. Antibiotics tested were ampicillin, cefazolin, ceftriaxone, ciprofloxacin, piperacillin, tobramycin and trimethoprim/sulfamethoxazole (19:1). Biosurfactant alone at the concentrations tested was not able to remove the adherent cells of the pre-formed biofilm. However, the difference between the effect of antibiotic alone and in combination with the biosurfactant was significant and exceeded 1log(10) (90%) reduction in most cases. Results of this study indicate that V9T14 biosurfactant in association with antibiotics leads to a synergistic increase in the efficacy of antibiotics in biofilm killing, and in some combinations leads to total eradication of E. coli CFT073 biofilm. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  14. Structural characterization of novel sophorolipid biosurfactants from a newly-identified species of Candida yeast

    USDA-ARS?s Scientific Manuscript database

    The sophorolipids are a group of O-acylsophorose-based biosurfactants produced by several yeasts of the Starmerella clade. The known sophorolipids are typically partially acetylated 2-O-ß-D-glucopyranosyl-D-glucopyranose (sophorose) ß-O-glycosidically-linked to 17-L-hydroxy-delta-9-octadecenoic aci...

  15. Effects of biosurfactants on the viability and proliferation of human breast cancer cells.

    PubMed

    Duarte, Cristina; Gudiña, Eduardo J; Lima, Cristovao F; Rodrigues, Ligia R

    2014-01-01

    Biosurfactants are molecules with surface activity produced by microorganisms that can be used in many biomedical applications. The anti-tumour potential of these molecules is being studied, although results are still scarce and few data are available regarding the mechanisms underlying such activity. In this work, the anti-tumour activity of a surfactin produced by Bacillus subtilis 573 and a glycoprotein (BioEG) produced by Lactobacillus paracasei subsp. paracasei A20 was evaluated. Both biosurfactants were tested against two breast cancer cell lines, T47D and MDA-MB-231, and a non-tumour fibroblast cell line (MC-3 T3-E1), specifically regarding cell viability and proliferation. Surfactin was found to decrease viability of both breast cancer cell lines studied. A 24 h exposure to 0.05 g l(-1) surfactin led to inhibition of cell proliferation as shown by cell cycle arrest at G1 phase. Similarly, exposure of cells to 0.15 g l(-1) BioEG for 48 h decreased cancer cells' viability, without affecting normal fibroblasts. Moreover, BioEG induced the cell cycle arrest at G1 for both breast cancer cell lines. The biosurfactant BioEG was shown to be more active than surfactin against the studied breast cancer cells. The results gathered in this work are very promising regarding the biosurfactants potential for breast cancer treatment and encourage further work with the BioEG glycoprotein.

  16. Characterization of a Soybean Oil-based Biosurfactant and Evaluation of its Ability to Form Microbubbles

    USDA-ARS?s Scientific Manuscript database

    This paper characterizes the physio-chemical properties of the soybean oil (SBO)-based polymeric surfactant, Palozengs R-004 (hereafter referred to as R-004). The surface activity of R-004 is comparable to the reported activities of biosurfactants produced by microorganisms and higher than some of ...

  17. Biosurfactant production by a CO2 sequestering Bacillus sp. strain ISTS2.

    PubMed

    Sundaram, Smita; Thakur, Indu Shekhar

    2015-01-01

    A chemolithotrophic bacterium, Bacillus sp. strain ISTS2, produced biosurfactant when enriched in the chemostat in presence of sodium bicarbonate as carbon source was evaluated for carbon dioxide (CO2) sequestration and biosurfactant production. CO2 sequestration efficiency of the bacterium was determined by enzymatic activity of carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Biosurfactant production ability at 100 mM NHCO3 and 5% CO2 was screened by surface and interfacial tension measurement, emulsification stability test, hydrophobicity test, contact angle measurement, bacterial adhesion to hydrocarbon and purified by silica gel column (60-120 mesh). Thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) showed that the crude biosurfactant of ISTS2 were composed of lipopeptides and free fatty acids (FA) and its hydrophobic fraction contained five kinds of fatty acids (FA) with chain lengths of C14-C19. Thus Bacillus sp. strain IST2 can be used as a cleaner bioprocess for the utilization of industrial CO2 as alternate substrate.

  18. Screening of biosurfactant producers from petroleum hydrocarbon contaminated sources in cold marine environments.

    PubMed

    Cai, Qinhong; Zhang, Baiyu; Chen, Bing; Zhu, Zhiwen; Lin, Weiyun; Cao, Tong

    2014-09-15

    An overview of literature about isolating biosurfactant producers from marine sources indicated no such producers have been reported form North Atlantic Canada. Water and sediment samples were taken from petroleum hydrocarbon contaminated coastal and offshore areas in this region. Either n-hexadecane or diesel was used as the sole carbon source for the screening. A modified colony-based oil drop collapsing test was used to cover sessile biosurfactant producers. Fifty-five biosurfactant producers belong to genera of Alcanivorax, Exiguobacterium, Halomonas, Rhodococcus, Bacillus, Acinetobacter, Pseudomonas, and Streptomyces were isolated. The first three genera were established after 1980s with interesting characteristics and limited relevant publications. Some of the 55 isolated strains were found with properties such as greatly reducing surface tension, stabilizing emulsion and producing flocculant. Isolates P6-4P and P1-5P were selected to demonstrate the performance of biosurfactant production, and were found to reduce the surface tension of water to as low as 28 dynes/cm.

  19. Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925

    PubMed Central

    2011-01-01

    Accidental oil spills and waste disposal are important sources for environmental pollution. We investigated the biodegradation of alkanes by Pseudomonas aeruginosa ATCC 55925 in relation to a rhamnolipid surfactant produced by the same bacterial strain. Results showed that the linear C11-C21 compounds in a heating oil sample degraded from 6% to 100%, whereas the iso-alkanes tended to be recalcitrant unless they were exposed to the biosurfactant; under such condition total biodegradation was achieved. Only the biodegradation of the commercial C12-C19 alkanes could be demonstrated, ranging from 23% to 100%, depending on the experimental conditions. Pristane (a C19 branched alkane) only biodegraded when present alone with the biosurfactant and when included in an artificial mixture even without the biosurfactant. In all cases the biosurfactant significantly enhanced biodegradation. The electron scanning microscopy showed that cells depicted several adaptations to growth on hydrocarbons, such as biopolymeric spheres with embedded cells distributed over different layers on the spherical surfaces and cells linked to each other by extracellular appendages. Electron transmission microscopy revealed transparent inclusions, which were associated with hydrocarbon based-culture cells. These patterns of hydrocarbon biodegradation and cell adaptations depended on the substrate bioavailability, type and length of hydrocarbon. PMID:21906343

  20. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.

    PubMed

    Kavynifard, Amirarsalan; Ebrahimipour, Gholamhossein; Ghasempour, Alireza

    2016-05-01

    The aim of this study was isolation and characterization of a crude oil degrader and biosurfactant-producing bacterium, along with optimization of conditions for crude oil degradation. Among 11 isolates, 5 were able to emulsify crude oil in Minimal Salt Medium (MSM) among which one isolate, named KA1, showed the highest potency for growth rate and biodegradation. The isolate was identified as Dietzia cinnamea KA1 using morphological and biochemical characteristics and 16S rRNA gene sequencing. The optimal conditions were 510 mM NaCl, pH 9.0, 35 °C, and minimal requirement of 46.5 mM NH4 Cl and 2.10 mM NaH2 PO4 . Gravimetric test and Gas chromatography-Mass spectroscopy technique (GC-MS) showed that Dietzia cinnamea KA1 was able to utilize and degrade 95.7% of the crude oil after 5 days, under the optimal conditions. The isolate was able to grow and produce biosurfactant when cultured in MSM supplemented with crude oil, glycerol or whey as the sole carbon sources, but bacterial growth was occurred using molasses with no biosurfactant production. This is the first report of biosurfactant production by D. cinnamea using crude oil, glycerol and whey and the first study to report a species of Dietzia degrading a wide range of hydrocarbons in a short time.

  1. Screening of novel microorganisms for biosurfactant and biocontrol activity against Phytophthora infestans.

    PubMed

    Tomar, Sonica; Singh, B P; Lal, Mehi; Ma, Khan; Hussain, Touseef; Sharma, Sanjeev; Kaushik, S K; Kumar, Satish

    2014-09-01

    In the present study, 95 isolates of bacteria were tested for their biosurfactant as well as biocontrol activity against Phytophthora infestans. The results revealed that only 15.8% isolates showed biosurfactant activity. The emulsification index ranged from 0-68% and 24.2% isolates showed positive reaction for biosurfactant properties. In emulsification assay and oil spreading test, 18.95% and 5.26% isolates, respectively scored positive for biosurfactant production. Among all, only five isolates were found effective against P. infestans, for biocontrol properties. Pseudomonas aeruginosa-1 showed 62.22% inhibition zone after 72 hrs while P. aeruginosa-3 showed 46.42%. Forty-eight hrs old culture supernatants were highly effective in food-poisoning test, tuber slice test and detached leaf method against P. infestans. In whole potato plant test, bacterial cell based formulation, culture supernatant and bacterial cell suspension of P. aeruginosa-1 showed 10.42%, 9.94% and 17.96% diseases severity respectively, as against 53.96% in control. This isolate holds promise as biological control agent against P. infestans in field.

  2. The influence of vegetable oils on biosurfactant production by Serratia marcescens.

    PubMed

    Ferraz, Cristina; De Araújo, Alvaro A; Pastore, Glaucia M

    2002-01-01

    The production of biosurfactant, a surface-active compound, by two Serratia marcescensstrains was tested on minimal culture medium supplemented with vegetable oils, considering that it is well known that these compounds stimulate biosurfactant production. The vegetable oils tested included soybean, olive, castor, sunflower, and coconut fat. The results showed a decrease in surface tension of the culture medium without oil from 64.54 to 29.57, with a critical micelle dilution (CMD(-1)) and CMD(-2) of 41.77 and 68.92 mN/m, respectively. Sunflower oil gave the best results (29.75 mN/m) with a CMD(-1) and CMD-2 of 36.69 and 51.41 mN/m, respectively. Sunflower oil contains about 60% of linoleic acid. The addition of linoleic acid decreased the surface tension from 53.70 to 28.39, with a CMD(-1) of 29.72 and CMD(-2) of 37.97, suggesting that this fatty acid stimulates the biosurfactant production by the LB006 strain. In addition, the crude precipitate surfactant reduced the surface tension of water from 72.00 to 28.70 mN/m. These results suggest that the sunflower oil's linoleic acid was responsible for the increase in biosurfactant production by the LB006 strain.

  3. Halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery

    SciTech Connect

    Jenneman, G.E.; McInerney, M.J.; Knapp, R.M.; Clark, J.B.; Feero, J.M.; Revus, D.E.; Menzie, D.E.

    1983-01-01

    A biosurfactant-producing Bacillus licheniformis was isolated from oil-field injection water with properties potentially useful for in situ enhanced oil recovery. Conventional miscible flooding procedures use expensive synthetic detergents such as petroleum sulfonates that precipitate in high NaCl brines and adsorb to rock surfaces. The Bacillus sp. produced a biosurfactant when grown at 40 C in a sucrose mineral salts medium containing 5% NaCl. The biosurfactant was produced during the log phase of growth in the presence or absence of either crude oil or hexadecane. The surface tension of a 5% NaCl solution decreased from 74.0 mN/m to 27 mN/m when the surfactant was added. Interfacial tension of a 5% NaCl brine/octane mixture was as low as 0.43 mN/m when measured by a spinning drop tensiometer. The surfactant was extracted by acid precipitation at a pH of 2.0. The extracted surfactant exhibited optimal surface tension-lowering ability in 4-5% NaCl solutions between pH's of 6.0 to 10.0. The addition of calcium up to 340 mg/liter and incubation temperatures up to 100 C did not alter appreciably the surfactant activity. Mobilization of crude oil and oil bank formation occurred in a sandpack column after addition of the biosurfactant. 16 references, 1 figure, 2 tables.

  4. Utilization of Paneer Whey Waste for Cost-Effective Production of Rhamnolipid Biosurfactant.

    PubMed

    Patowary, Rupshikha; Patowary, Kaustuvmani; Kalita, Mohan Chandra; Deka, Suresh

    2016-10-01

    The present study aimed at isolating rhamnolipid biosurfactant-producing bacteria that could utilize paneer whey, an abundant waste source as sole medium for the production purpose. Pseudomonas aeruginosa strain, SR17, was isolated from hydrocarbon-contaminated soil that could efficiently utilize paneer whey for rhamnolipid production and reduce surface tension of the medium from 52 to 26.5 mN/m. The yield of biosurfactant obtained was 2.7 g/l, upgraded to 4.8 g/l when supplemented with 2 % glucose and mineral salts. Biochemical, FTIR, and LC-MS analysis revealed that extracted biosurfactant is a combination of both mono and di-rhamnolipid congeners. The critical micelle concentration (CMC) was measured to be 110 mg/l. Emulsification activity of the biosurfactant against n-hexadecane, olive oil, kerosene, diesel oil, engine oil, and crude oil were found to be 83, 88, 81, 92, 86, and 100 %, respectively. The rhamnolipid was detected to be non-toxic against mouse fibroblastic cell line L292.

  5. Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach.

    PubMed

    Pal, Moumita P; Vaidya, Bhalchandra K; Desai, Kiran M; Joshi, Renuka M; Nene, Sanjay N; Kulkarni, Bhaskar D

    2009-05-01

    This paper entails a comprehensive study on production of a biosurfactant from Rhodococcus erythropolis MTCC 2794. Two optimization techniques--(1) artificial neural network (ANN) coupled with genetic algorithm (GA) and (2) response surface methodology (RSM)--were used for media optimization in order to enhance the biosurfactant yield by Rhodococcus erythropolis MTCC 2794. ANN and RSM models were developed, incorporating the quantity of four medium components (sucrose, yeast extract, meat peptone, and toluene) as independent input variables and biosurfactant yield [calculated in terms of percent emulsification index (% EI(24))] as output variable. ANN-GA and RSM were compared for their predictive and generalization ability using a separate data set of 16 experiments, for which the average quadratic errors were approximately 3 and approximately 6%, respectively. ANN-GA was found to be more accurate and consistent in predicting optimized conditions and maximum yield than RSM. For the ANN-GA model, the values of correlation coefficient and average quadratic error were approximately 0.99 and approximately 3%, respectively. It was also shown that ANN-based models could be used accurately for sensitivity analysis. ANN-GA-optimized media gave about a 3.5-fold enhancement in biosurfactant yield.

  6. Surface forces and properties of foam films from rhamnolipid biosurfactants.

    PubMed

    Cohen, R; Exerowa, D

    2007-10-31

    Foam films are considered as a convenient model to study the interaction behaviour and surface properties of microbial rhamnolipid type biosurfactants. The Scheludko-Exerowa microinterferometric methodology of film thickness measurements is employed for experimental studies of microscopic foam films formed from aqueous solutions of a single rhamnolipid Rh1 (with one rhamnosyl head group) and of mixtures of rhamnolipid surfactants Rh1 and Rh2 (with two rhamnosyl head groups) at ratios Rh2/Rh1=1.2 and Rh2/Rh1=0.69. The measurements of the equilibrium thickness (h) of the obtained films as a function of surfactant concentration (Cs) and electrolyte (NaCl) concentration (C el) determine the conditions for obtaining common, common black and Newton black films. The saturation values of the diffuse electric layer potential phi 0 approximately 60 mV for the Rh1.2 and phi 0 approximately 94 mV for the Rh0.69 common films conform the ionic character of the rhamnolipids. The h(C el) curves of the rhamnolipid foam films and the directly measured disjoining pressure (Pi(h)) isotherms indicate the ranges of action of the DLVO and non-DLVO surface forces. The obtained foam film parameters allow their practical use in ecology and in various technological processes where rhamnolipid surfactants are used. Experiments with model lung surfactant (Infasurf) foam films with rhamnolipid added outline a perspective for the potential application of the foam film for investigating the effect of rhamnolipids on human alveoli.

  7. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants.

    PubMed

    López, Carmen; Cruz-Izquierdo, Alvaro; Picó, Enrique A; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J; Serra, Juan L

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale.

  8. Magnetic biocatalysts and their uses to obtain biodiesel and biosurfactants

    PubMed Central

    López, Carmen; Cruz-Izquierdo, Álvaro; Picó, Enrique A.; García-Bárcena, Teresa; Villarroel, Noelia; Llama, María J.; Serra, Juan L.

    2014-01-01

    Nanobiocatalysis, as the synergistic combination of nanotechnology and biocatalysis, is rapidly emerging as a new frontier of biotechnology. The use of immobilized enzymes in industrial applications often presents advantages over their soluble counterparts, mainly in view of stability, reusability and simpler operational processing. Because of their singular properties, such as biocompatibility, large and modifiable surface and easy recovery, iron oxide magnetic nanoparticles (MNPs) are attractive super-paramagnetic materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field. Cross-linked enzyme aggregates (CLEAs) have several benefits in the context of industrial applications since they can be cheaply and easily prepared from unpurified enzyme extracts and show improved storage and operational stability against denaturation by heat and organic solvents. In this work, by using the aforementioned advantages of MNPs of magnetite and CLEAs, we prepared two robust magnetically-separable types of nanobiocatalysts by binding either soluble enzyme onto the surface of MNPs functionalized with amino groups or by cross-linking aggregates of enzyme among them and to MNPs to obtain magnetic CLEAs. For this purpose the lipase B of Candida antarctica (CALB) was used. The hydrolytic and biosynthetic activities of the resulting magnetic nanobiocatalysts were assessed in aqueous and organic media. Thus, the hydrolysis of triglycerides and the transesterification reactions to synthesize biodiesel and biosurfactants were studied using magnetic CLEAs of CALB. The efficiency and easy performance of this magnetic biocatalysis validates this proof of concept and sets the basis for the application of magnetic CLEAs at industrial scale. PMID:25207271

  9. Effect of bio-surfactant on municipal solid waste composting process.

    PubMed

    Xi, Bei-Dou; Liu, Hong-Liang; Huang, G H; Zhang, Bai-Yu; Qin, Xiao-Sheng

    2005-01-01

    Bio-surfactant is a new type of surfactant that is produced in microbial metabolism. Adding bio-surfactant during composting process, especially to those contain some toxic substances, has been proved to be a promising way. In this study, Strains III (2), a bacterial with high activity to produce bio-surfactant, were isolated firstly. Following comparison experiments with and without adding Strains III (2), namely Run 1 and Run R, were conducted, respectively. The experimental results showed that, by adding Strains III (2), the surface tension could reduce from 46.5 mN/m to 39.8 mN/m and the corresponding time to maintain the surface tension under 50 mN/ m could prolong from 60 h to 90 h. The oxygen uptake rate and total accumulated oxygen consumption with Stains III (2) were both higher than those without Strains III (2), while the accumulation of H2S in outlet gas was reduced to around 50% of Run R. Moreover, two additional experiments were also carried out to examine the effects of strains coming from different systems. One is adding Strains III (2) with a dose of 0.4% (Run 2), and the other is seedling commercial Strains at the same conditions, the composting experiments showed that: Run 2 was more effective than Run 3, because the commercial Strains can be suppressed significantly in a complex composting system with different pH, high temperature and some of metals. The bio-surfactant was also added into the solid waste, which contained some toxic substances, the corresponding results showed that the remove rate of Hg and sodium pentachlorophenolate (PCP-Na) could be improved highly. Thus, the microenvironment, reactionrate and composting quality could be enhanced effectively by adding bio-surfactant to the composting process.

  10. Production of Lipopeptide Biosurfactant by a Marine Nesterenkonia sp. and Its Application in Food Industry

    PubMed Central

    Kiran, George S.; Priyadharsini, Sethu; Sajayan, Arya; Priyadharsini, Gopal B.; Poulose, Navya; Selvin, Joseph

    2017-01-01

    Biosurfactants are smart biomolecules which have wide spread application in medicines, processed foods, cosmetics as well as in bioremediation. In food industry, biosurfactants are used as emulsion stabilizing agents, antiadhesives, and antimicrobial/antibiofilm agents. Nowadays biosurfactant demands in industries has increased tremendously and therefore new bacterial strains are being explored for large scale production of biosurfactants. In this study, an actinobacterial strain MSA31 was isolated from a marine sponge Fasciospongia cavernosa which showed high activity in biosurfactant screening assays such as drop collapsing, oil displacement, lipase and emulsification. Lipopeptide produced by MSA31 was found to be thermostable which was evident in differential scanning calorimetry analysis. The spectral data obtained in the Fourier transform infrared spectroscopy showed the presence of aliphatic groups combined with peptide moiety which is a characteristic feature of lipopeptides. The stability index of lipopeptide MSA31 revealed “halo-alkali and thermal tolerant biosurfactant” which can be used in the food industry. Microtiter plate assay showed 125 μg/ml of lipopeptide was effective in reducing the biofilm formation activity of pathogenic multidrug resistant Staphylococcus aureus. The confocal laser scanning microscopic images provided further evidences that lipopeptide MSA31 was an effective antibiofilm agent. The antioxidant activity of lipopeptide MSA31 may be due to the presence of unsaturated fatty acid present in the molecule. The brine shrimp cytotoxicity assay showed lipopeptide MSA31 was non-toxic and can be used as food additives. Incorporation of lipopeptide MSA31 in muffin showed improved organoleptic qualities compared to positive and negative control. This study provides a valuable input for this lipopeptide to be used in food industry as an effective emulsifier, with good antioxidant activity and as a protective agent against S. aureus. PMID

  11. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil.

    PubMed

    Liu, Boqun; Liu, Jinpeng; Ju, Meiting; Li, Xiaojing; Yu, Qilin

    2016-06-15

    In our previous research, a petroleum degrading bacteria strain Bacillus licheniformis Y-1 was obtained in Dagang Oilfield which had the capability of producing biosurfactant. This biosurfactant was isolated and purified in this work. The biosurfactant produced by strain Y-1 had the capability to decrease the surface tension of water from 74.66 to 27.26mN/m, with the critical micelle concentration (CMC) of 40mg/L. The biosurfactant performed not only excellent stabilities against pH, temperature and salinity, but also great emulsifying activities to different kinds of oil, especially the crude oil. According to the results of FT-IR spectrum and (1)H NMR spectrum detection, the surfactant was determined to be a cyclic lipopeptide. Furthermore, through the addition of surfactant, the effect of petroleum contaminated soil remediation by fungi got a significant improvement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10.

    PubMed

    Gandhimathi, R; Seghal Kiran, G; Hema, T A; Selvin, Joseph; Rajeetha Raviji, T; Shanmughapriya, S

    2009-10-01

    A sponge-associated marine actinomycetes Nocardiopsis alba MSA10 was screened and evaluated for the production of biosurfactant. Biosurfactant production was confirmed by conventional screening methods including hemolytic activity, drop collapsing test, oil displacement method, lipase production and emulsification index. The active compound was extracted with three solvents including ethyl acetate, diethyl ether and dichloromethane. The diethyl ether extract was fractionated by TLC and semi-preparative HPLC to isolate the pure compound. In TLC, a single discrete spot was obtained with the R (f) 0.60 and it was extrapolated as valine. Based on the chemical characterization, the active compound was partially confirmed as lipopeptide. The optimum production was attained at pH 7, temperature 30 degrees C, and 1% salinity with glucose and peptone supplementation as carbon and nitrogen sources, respectively. Considering the biosurfactant production potential of N. alba, the strain could be developed for large-scale production of lipopeptide biosurfactant.

  13. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.

    PubMed

    Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy

    2015-12-01

    A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    PubMed

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % < Ydeg|(wastes) and YP/S|(wastes) > YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products.

  15. Biosurfactant production by the crude oil degrading Stenotrophomonas sp. B-2: chemical characterization, biological activities and environmental applications.

    PubMed

    Gargouri, Boutheina; Contreras, María Del Mar; Ammar, Sonda; Segura-Carretero, Antonio; Bouaziz, Mohamed

    2017-02-01

    In this work, biosurfactant-producing microorganisms were isolated from hydrocarbon-contaminated water collected from Tunisian oilfield. After enrichment and isolation, different bacterial strains were preliminary studied for their biosurfactant/bioemulsifier properties when using crude oil as the unique carbon source. In particular, the isolate strain B-2, a Gram-negative, rod-shaped bacterium, efficiently emulsified crude oil. The extracellular biosurfactant product from this strain presented an emulsification activity above 70% and a hydrophobicity of 71%. In addition, a diameter of 6 cm was observed in the oil displacement test. The characterization of B-2 strain using 16S rDNA sequencing enables us to find a high degree of similarity with various members of the genus Stenotrophomonas (with a percentage of similarity of 99%). The emulsification activity of Stenotrophomonas biosurfactant B-2 was maintained in a wide range of pH (2 to 6), temperature (4 to 55 °C), and salinity (0 to 50 g L(-1)) conditions. It also enhanced the solubility of phenanthrene in water and could be used in the re-mobilization of hydrocarbon-contaminated environment. In addition, this biosurfactant exhibited antimicrobial and antioxidant properties. Infrared spectroscopy suggested potential lipidic and peptidic moieties, and mass spectrometry-based analyses showed that the biosurfactant contains mainly cyclic peptidic structures belonging to the class of diketopiperazines. Therefore, the B-2 strain is a promising biosurfactant-producing microorganism and its derived biosurfactant presents a wide range of industrial applications.

  16. The Drosophila melanogaster brainiac protein is a glycolipid-specific beta 1,3N-acetylglucosaminyltransferase.

    PubMed

    Müller, Reto; Altmann, Friedrich; Zhou, Dapeng; Hennet, Thierry

    2002-09-06

    Mutations at the Drosophila melanogaster brainiac locus lead to defective formation of the follicular epithelium during oogenesis and to neural hyperplasia. The brainiac gene encodes a type II transmembrane protein structurally similar to mammalian beta1,3-glycosyltransferases. We have cloned the brainiac gene from D. melanogaster genomic DNA and expressed it as a FLAG-tagged recombinant protein in Sf9 insect cells. Glycosyltransferase assays showed that brainiac is capable of transferring N-acetylglucosamine (GlcNAc) to beta-linked mannose (Man), with a marked preference for the disaccharide Man(beta1,4)Glc, the core of arthro-series glycolipids. The activity of brainiac toward arthro-series glycolipids was confirmed by showing that the enzyme efficiently utilized glycolipids from insects as acceptors whereas it did not with glycolipids from mammalian cells. Methylation analysis of the brainiac reaction product revealed a beta1,3 linkage between GlcNAc and Man, proving that brainiac is a beta1,3GlcNAc-transferase. Human beta1,3GlcNAc-transferases structurally related to brainiac were unable to transfer GlcNAc to Man(beta1,4)Glc-based acceptor substrates and failed to rescue a homozygous lethal brainiac allele, indicating that these proteins are paralogous and not orthologous to brainiac.

  17. The glycolipids from the non-capsulated strain of Pneumococcus I-192R, A.T.C.C. 12213

    PubMed Central

    Brundish, D. E.; Shaw, N.; Baddiley, J.

    1965-01-01

    1. The total lipid was extracted from the non-capsulated strain of Pneumococcus I–192R, A.T.C.C. 12213, with chloroform–methanol mixtures. Two glycolipids were isolated by chromatography on silicic acid and DEAE-cellulose (acetate form). 2. The major glycolipid was obtained pure in a yield of 640mg./34g. dry wt. of cells and represents about 34% of the total lipid. It contained galactose, glucose, glycerol and fatty acid ester residues in the proportions 1:1:1:2, and yielded on saponification a crystalline non-reducing glycoside. 3. The structure of the glycoside was shown to be O-α-d-galactopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-d-glycerol. The fatty acids obtained on saponification were identified by gas–liquid partition chromatography of their methyl esters. 4. The minor glycolipid was obtained as a 1:1 (w/w) mixture with the major component, but after saponification the two glycosides were separated by paper chromatography. Evidence was obtained for the structure of the glycoside derived from the minor glycolipid as 1-O-α-d-glucosylglycerol. 5. A general method is described for determining the stereochemistry of the glycerol moiety in 1-linked glycerol glycosides. PMID:16749097

  18. Antibodies to glycolipids activate complement and promote proteinuria in passive Heymann nephritis.

    PubMed Central

    Susani, M.; Schulze, M.; Exner, M.; Kerjaschki, D.

    1994-01-01

    Passive Heymann nephritis is an experimental rat model of human membranous nephropathy induced by injection of antisera against crude renal cortical fractions such as Fx1A or rat tubular microvilli. This results in the formation of subepithelial immune deposits, the activation of the C5b-9 membrane attack complex of complement, and severe proteinuria. While the formation of immune deposits is attributed to in situ immune complex formation with antibodies specific for the gp330-Heymann nephritis antigenic complex (HNAC), activation of complement and proteinuria appear to be caused by at least one additional antibody species present in anti-Fx1A sera. We have separated by affinity absorption polyspecific antisera against Fx1A and rat microvilli into one IgG fraction directed specifically against microvillar proteins (anti-Fx1A-prot) and another IgG fraction specific for glycolipids (ant-Fx1A-lip) of tubular microvilli. When injected into rats, the anti-Fx1A-prot fraction induced immune deposits but failed to activate complement or produce proteinuria, similar to results obtained with affinity-purified anti-gp330 IgG. When the antibodies of the anti-Fx1A-lip fraction were injected alone they did not bind to glomeruli. By contrast, when the IgGs specific for the Fx1A-prot fraction (or for gp330-HNAC) were combined with those directed against the Fx1A-lip glycolipid preparation, immune deposits were formed, in situ complement activation was observed, and also proteinuria was induced. It is concluded that within anti-Fx1A and anti-microvillar sera there are at least two IgG fractions of relevance for the development of PHN: one directed against the gp330-HNAC complex which is responsible for the development of immune deposits, and a second specific for glycolipid antigen(s) which activate(s) the complement cascade. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:8160779

  19. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil.

    PubMed

    Pornsunthorntawee, Orathai; Wongpanit, Panya; Chavadej, Sumaeth; Abe, Masahiko; Rujiravanit, Ratana

    2008-04-01

    Pseudomonas aeruginosa strain SP4, isolated from petroleum-contaminated soil in Thailand, was used to produce a biosurfactant from a nutrient broth with palm oil as the carbon source. The key components of the crude biosurfactant were fractionated by using HPLC-ELSD technique. With the use of ATR-FTIR spectroscopy, in combination with (1)H NMR and MS analyses, chemical structures of the fractionated components of the crude biosurfactant were identified as rhamnolipid species. When compared to synthetic surfactants, including Pluronic F-68, which is a triblock nonionic surfactant containing poly(ethylene oxide) and poly(propylene oxide), and sodium dodecyl sulfate, the crude biosurfactant showed comparable physicochemical properties, in terms of the surface activities. The crude biosurfactant reduced the surface tension of pure water to 29.0 mN/m with a critical micelle concentration of approximately 200 mg/l, and it exhibited good thermal and pH stability. The crude biosurfactant also formed stable water-in-oil microemulsions with crude oil and various types of vegetable oils, but not with short-chain hydrocarbons.

  20. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant.

    PubMed

    Varjani, Sunita J; Upasani, Vivek N

    2016-12-01

    The present research work was undertaken with a mandate to study carbon spectrum utilization and structural characterization of biosurfactant produced by indigenous Pseudomonas aeruginosa NCIM 5514, which showed unique properties to utilize a large number of carbon sources effectively for production of biosurfactant, although glucose was the best carbon substrate. In Bushnell-Hass medium supplemented with glucose (1%, w/v), 3.178±0.071g/l biosurfactant was produced by this isolate in 96h. The biosurfactant produced showed surface tension and emulsification activity values from 29.14±0.05 to 62.29±0.13mN/m and 88.50±1.96 to 15.40±0.91%, respectively. Toluene showed highest emulsification activity followed by kerosene. However, kerosene exhibited emulsion stability for 30days. Biosurfactant was characterized as a mixture of di-rhamnolipid (Rha-Rha-C10-C14:1) and mono-rhamnolipid (Rha-C8-C10) by FTIR, ESI-MS and LC-MS techniques. High biosurfactant yield opens up doors for the isolate to find utility in various industries.

  1. A Novel Biosurfactant Produced by Aureobasidium pullulans L3-GPY from a Tiger Lily Wild Flower, Lilium lancifolium Thunb.

    PubMed Central

    Kim, Jong Shik; Lee, In Kyoung; Yun, Bong Sik

    2015-01-01

    Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m). These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications. PMID:25849549

  2. Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil.

    PubMed

    Kumar, Arthala Praveen; Janardhan, Avilala; Viswanath, Buddolla; Monika, Kallubai; Jung, Jin-Young; Narasimha, Golla

    2016-06-01

    A Gram-positive bacterium was isolated from mangrove soil and was identified as Bacillus licheniformis (KC710973). The potential of a mangrove microorganism to utilize different natural waste carbon substrates for biosurfactant production and biodegradation of hydrocarbons was evaluated. Among several substrates used in the present study, orange peel was found to be best substrate of biosurfactant yield with 1.796 g/L and emulsification activity of 75.17 % against diesel. Fourier transform infrared spectroscopy analysis of biosurfactant compound revealed that the isolated biosurfactant is in lipopeptide nature. The (1)H-NMR of the extracted biosurfactant from B. licheniformis has a doublet signal at 0.8-0.9 ppm corresponding to six hydrogen atoms suggests the presence of a terminal isopropyl group. The spectra showed two main regions corresponding to resonance of α-carbon protons (3.5-5.5 ppm) and side-chain protons (0.25-3.0 ppm). All the data suggests that the fatty acid residue is from lipopeptide. From the biodegradation studies, it concluded that the biosurfactant produced by B. licheniformis further can add to its value as an ecofriendly and biodegradable product.

  3. Assessment of the antidiabetic and antilipidemic properties of Bacillus subtilis SPB1 biosurfactant in alloxan-induced diabetic rats.

    PubMed

    Zouari, Raida; Ben Abdallah-Kolsi, Rihab; Hamden, Khaled; Feki, Abdelfattah El; Chaabouni, Khansa; Makni-Ayadi, Fatma; Sallemi, Fahima; Ellouze-Chaabouni, Semia; Ghribi-Aydi, Dhouha

    2015-11-01

    The present study aimed to scrutinize the potential of Bacillus subtilis SPB1biosurfactant, orally administered, for preventing diabetic complications in rats. The findings revealed that, Bacillus subtilis biosurfactant was an effective reducer of α-amylase activity in the plasma. Moreover, this supplement helped protect the β-cells from death and damage. Both the inhibitory action of SPB1 biosurfactant on α-amylase and the protection of the pancreas' β-cells lead to a decrease of the blood glucose levels, consequently antihyperglycemic effect. Interestingly, this lipopeptide biosurfactant modulated key enzyme related to hyperlipidemia as lipase; which leads to the regulation of the lipid profile in serum by the delay in the absorption of LDL-cholesterol and triglycerides, and a significant increase in HDL-cholesterol. Histological analyses also showed that it exerted a protective action on the pancreases and efficiently preserved the liver-kidney functions of diabetic rats, evidenced by significant decreases in aspartate transaminase, alanine transaminase, gamma-glytamyl transpeptidase and lactate deshydrogenase activities in the plasma, as well as in the creatinine and urea contents. Overall, the present study demonstrated that the hypoglycemic and antilipidemic activities exhibited by Bacillus subtilis biosurfactant were effective enough to alleviate induced diabetes in experimental rats. Therefore, SPB1biosurfactant could be considered as a potential strong candidate for the treatment and prevention of diabetes.

  4. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.

    PubMed

    Lin, Weijia; Guo, Chuling; Zhang, Hui; Liang, Xujun; Wei, Yanfu; Lu, Guining; Dang, Zhi

    2016-04-01

    Electrokinetic-microbial remediation (EMR) has emerged as a promising option for the removal of polycyclic aromatic hydrocarbons (PAHs) from contaminated soils. The aim of this study was to enhance degradation of phenanthrene (Phe)-contaminated soils using EMR combined with biosurfactants. The electrokinetic (EK) remediation, combined with Phe-degrading Sphingomonas sp. GY2B, and biosurfactant obtained by fermentation of Pseudomonas sp. MZ01, degraded Phe in the soil with an efficiency of up to 65.1 % at the anode, 49.9 % at the cathode after 5 days of the treatment. The presence of biosurfactants, electricity, and a neutral electrolyte stimulated the growth of the degrading bacteria as shown by a rapid increase in microbial biomass with time. The electrical conductivity and pH changed little during the course of the treatment, which benefitted the growth of microorganisms and the remediation of Phe-contaminated soil. The EMR system with the addition of biosurfactant had the highest Phe removal, demonstrating the biosurfactant may enhance the bioavailability of Phe and the interaction with the microorganism. This study suggests that the EMR combined with biosurfactants can be used to enhance in situ bioremediation of PAH-contaminated soils.

  5. Mobilization and co-transport of pyrene in the presence of Pseudomonas aeruginosa UG2 biosurfactants in sandy soil columns

    SciTech Connect

    Lafrance, P.; Lapointe, M.

    1998-12-31

    Washing technologies are currently applied for the remediation of contaminated soils. The efficiency of biosurfactants produced by Pseudomonas aeruginosa strains to mobilize some hydrocarbons sorbed on soils has already been demonstrated. However, few studies have been made to define optimal procedures for the injection of these rhamnolipids in soil. This study examines (1) the efficiency of the biosurfactants produced by P. aeruginosa UG2 to mobilize pyrene from a contaminated sandy loam as compared to that of sodium dodecyl sulfate (SDS); (2) the injection procedures that might affect the efficiency of pyrene mobilization using UG2 biosurfactants; and (3) the co-transport of UG2 biosurfactants and pyrene. Based on the experimental results, it would be advantageous to use a high UG2 biosurfactant concentration, a high pore water velocity, and possibly a flow interruption of more than 15 h in order to reduce the injected volume and the duration of the treatment required. The 0.25% UG2 biosurfactant concentration greatly enhanced pyrene transport and could facilitate contaminant recovery.

  6. Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Canet, Isabelle; Sancelme, Martine; Wirgot, Nolwenn; Deguillaume, Laurent; Delort, Anne-Marie

    2016-09-01

    A total of 480 microorganisms collected from 39 clouds sampled at the Puy de Dôme station (alt. 1465 m; 45°46'19'' N, 2°57'52'' E; Massif Central, France) were isolated and identified. This unique collection was screened for biosurfactant (surfactants of microbial origin) production by measuring the surface tension (σ) of the crude extracts, comprising the supernatants of the pure cultures, using the pendant drop technique. The results showed that 41 % of the tested strains were active producers (σ < 55 mN m-1), with 7 % being extremely active (σ < 30 mN m-1). The most efficient biosurfactant producers (σ < 45 mN m-1) belong to a few bacterial genera (Pseudomonas and Xanthomonas) from the Υ-Proteobacteria class (78 %) and a yeast genus (Udeniomyces) from the Basidiomycota phylum (11 %). Some Bacillus strains from the Firmicutes phylum were also active but represented a small fraction of the collected population. Strains from the Actinobacteria phylum in the collection examined in the present study showed moderate biosurfactant production (45<σ < 55 mN m-1). Pseudomonas (Υ-Proteobacteria), the most frequently detected genus in clouds, with some species issued from the phyllosphere, was the dominant group for the production of biosurfactants. We observed some correlations between the chemical composition of cloud water and the presence of biosurfactant-producing microorganisms, suggesting the "biogeography" of this production. Moreover, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.

  7. Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa.

    PubMed

    Thavasi, Rengathavasi; Jayalakshmi, Singaram; Banat, Ibrahim M

    2011-01-01

    This study was conducted to investigate the effects of fertilizers and biosurfactants on biodegradation of crude oil by three marine bacterial isolates; Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Five sets of experiments were carried out in shake flask and microcosm conditions with crude oil as follows: Set 1-only bacterial cells added (no fertilizer and biosurfactant), Set 2-with additional fertilizer only, Set 3-with additional biosurfactant only, Set 4-with added biosurfactant+fertilizer, Set 5-with no bacterial cells added (control), all the above experimental sets were incubated for 168 h. The biosurfactant+fertilizer added Set 4, resulted in maximum crude oil degradation within shake flask and microcosm conditions. Among the three bacterial isolates, P. aeruginosa and biosurfactant produced by this strain resulted in maximum crude oil degradation compared to the other two bacterial strains investigated. Interestingly, when biosurfactant and bacterial cells were used (Set 3), significant oil biodegradation activity occurred and the difference between this treatment and that in Set 4 with added fertilizer+biosurfactant were only 4-5% higher degradation level in shake flask and 3.2-7% in microcosm experiments for all three bacterial strains used. It is concluded that, biosurfactants alone capable of promoting biodegradation to a large extent without added fertilizers, which will reduce the cost of bioremediation process and minimizes the dilution or wash away problems encountered when water soluble fertilizers used during bioremediation of aquatic environments.

  8. Nanomapping of CD1d-glycolipid complexes on THP1 cells by using simultaneous topography and recognition imaging.

    PubMed

    Duman, Memed; Chtcheglova, Lilia A; Zhu, Rong; Bozna, Bianca L; Polzella, Paolo; Cerundolo, Vicenzo; Hinterdorfer, Peter

    2013-09-01

    CD1d molecule, a monomorphic major histocompatibility complex class I-like molecule, presents different types of glycolipids to invariant natural killer T (iNKT) cells that play an important role in immunity to infection and tumors, as well as in regulating autoimmunity. Here, we present simultaneous topography and recognition imaging (TREC) analysis to detect density, distribution and localization of single CD1d molecules on THP1 cells that were loaded with different glycolipids. TREC was conducted using magnetically coated atomic force microscopy tips functionalized with a biotinylated iNKT cell receptor (TCR). The recognition map revealed binding sites visible as dark spots, resulting from oscillation amplitude reduction during specific binding between iNKT TCR and the CD1d-glycolipid complex. THP1 cells were pulsed with three different glycolipids (α-GalCer, C20 and OCH12) for 4 and 16 hr. Whereas CD1d-α-GalCer and CD1d-C20:2 complexes on cellular membrane formed smaller microdomains up to ~10 000 nm(2) (dimension area), OCH12 loaded CD1d complexes presented larger clusters with a dimension up to ~30 000 nm(2). Moreover, the smallest size of recognition spots was about 25 nm, corresponding to a single CD1d binding site. TREC successfully revealed the distribution and localization of CD1d-glycolipid complexes on THP1 cell with single molecule resolution under physiological conditions.

  9. Convenient and rapid removal of detergent from glycolipids in detergent-resistant membrane microdomains.

    PubMed

    Suzuki, Yusuke; Kabayama, Kazuya

    2012-03-01

    Although detergents are often essential in protocols, they are usually incompatible with further biochemical analysis. There are several methods for detergent removal, but the procedures are complicated or suffer from sample loss. Here, we describe a convenient and rapid method for detergent removal from sialic acid-containing glycosphingolipids (gangliosides) and neutral glycolipids in detergent-resistant membrane (DRM) microdomain. It is based on selective detergent extraction, in which the sample is dried on a glass tube, followed by washing with organic solvent. We investigated 18 organic solvents and used high performance thin-layer chromatography (HPTLC) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) to confirm that dichloroethane (DCE) was the most suitable solvent and completely removed the nonionic detergent Triton X-100. Furthermore, DCE extraction effectively removed interference caused by other nonionic, zwitterionic, or ionic detergents in MALDI-QIT-TOF MS analysis.

  10. Pivotal surfaces in inverse hexagonal and cubic phases of phospholipids and glycolipids.

    PubMed

    Marsh, Derek

    2011-03-01

    Data on the location and dimensions of the pivotal surfaces in inverse hexagonal (H(II)) and inverse cubic (Q(II)) phases of phospholipids and glycolipids are reviewed. This includes the H(II) phases of dioleoyl phosphatidylethanolamine, 2:1 mol/mol mixtures of saturated fatty acids with the corresponding diacyl phosphatidylcholine, and glucosyl didodecylglycerol, and also the Q(II)(230/G) gyroid inverse cubic phases of monooleoylglycerol and glucosyl didodecylglycerol. Data from the inverse cubic phases are largely compatible with those from inverse hexagonal H(II)-phases. The pivotal plane is located in the hydrophobic region, relatively close to the polar-apolar interface. The area per lipid at the pivotal plane is similar in size to lipid cross-sectional areas found in the fluid lamellar phase (L(α)) of lipid bilayers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Convenient and rapid removal of detergent from glycolipids in detergent-resistant membrane microdomains

    PubMed Central

    Suzuki, Yusuke; Kabayama, Kazuya

    2012-01-01

    Although detergents are often essential in protocols, they are usually incompatible with further biochemical analysis. There are several methods for detergent removal, but the procedures are complicated or suffer from sample loss. Here, we describe a convenient and rapid method for detergent removal from sialic acid-containing glycosphingolipids (gangliosides) and neutral glycolipids in detergent-resistant membrane (DRM) microdomain. It is based on selective detergent extraction, in which the sample is dried on a glass tube, followed by washing with organic solvent. We investigated 18 organic solvents and used high performance thin-layer chromatography (HPTLC) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS) to confirm that dichloroethane (DCE) was the most suitable solvent and completely removed the nonionic detergent Triton X-100. Furthermore, DCE extraction effectively removed interference caused by other nonionic, zwitterionic, or ionic detergents in MALDI-QIT-TOF MS analysis. PMID:22217704

  12. Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells.

    PubMed

    Kinjo, Yuki; Pei, Bo; Bufali, Simone; Raju, Ravinder; Richardson, Stewart K; Imamura, Masakazu; Fujio, Masakazu; Wu, Douglass; Khurana, Archana; Kawahara, Kazuyoshi; Wong, Chi-Huey; Howell, Amy R; Seeberger, Peter H; Kronenberg, Mitchell

    2008-07-21

    Mouse natural killer T (NKT) cells expressing an invariant T cell antigen receptor (TCR) recognize glycosphingolipids (GSLs) from Sphingomonas bacteria. The synthetic antigens previously tested, however, were designed to closely resemble the potent synthetic agonist alpha-galactosyl ceramide (alphaGalCer), which contains a monosaccharide and a C18:0 sphingosine lipid. Some Sphingomonas bacteria, however, also have oligosaccharide-containing GSLs, and they normally synthesize several GSLs with different sphingosine chains including one with a cyclopropyl ring-containing C21:0 (C21cycl) sphingosine. Here we studied the stimulation of NKT cells with synthetic GSL antigens containing natural tetrasaccharide sugars, or the C21cycl sphingosine. Our results indicate that there is a great degree of variability in the antigenic potency of different natural Sphingomonas glycolipids, with the C21cycl sphingosine having intermediate potency and the oligosaccharide-containing antigens exhibiting limited or no stimulatory capacity.

  13. Testing for anti-glycolipid IgM antibodies in chronic immune-mediated demyelinating neuropathies.

    PubMed

    Nobile-Orazio, Eduardo; Giannotta, Claudia

    2011-06-01

    Antibodies to several nerve antigens have been reported in patients with chronic immune-mediated demyelinating neuropathies including chronic inflammatory demyelinating polyradiculoneuropathy, multifocal motor neuropathy, and IgM paraproteinemic demyelinating polyneuropathy. The association of some reactivities with specific neuropathies, such as IgM antibodies to the myelin-associated glycoprotein in neuropathy associated with IgM monoclonal gammopathy, permitted to cast some light in their pathogenetic mechanisms and introduced new useful tools in their diagnosis. Other antibodies have been variably associated with other forms of neuropathy or with neuropathy itself, casting some doubts on their diagnostic relevance in the workout of these neuropathies. This is particularly true for IgM antibodies to glycolipids, including ganglioside and sulfatides, whose possible role in immune-mediated neuropathies is still debated and will be here reviewed. © 2011 Peripheral Nerve Society.

  14. T cell receptor recognition of CD1b presenting a mycobacterial glycolipid

    PubMed Central

    Gras, Stephanie; Van Rhijn, Ildiko; Shahine, Adam; Cheng, Tan-Yun; Bhati, Mugdha; Tan, Li Lynn; Halim, Hanim; Tuttle, Kathryn D.; Gapin, Laurent; Le Nours, Jérôme; Moody, D. Branch; Rossjohn, Jamie

    2016-01-01

    CD1 proteins present microbial lipids to T cells. Germline-encoded mycolyl lipid-reactive (GEM) T cells with conserved αβ T cell receptors (TCRs) recognize CD1b presenting mycobacterial mycolates. As the molecular basis underpinning TCR recognition of CD1b remains unknown, here we determine the structure of a GEM TCR bound to CD1b presenting glucose-6-O-monomycolate (GMM). The GEM TCR docks centrally above CD1b, whereby the conserved TCR α-chain extensively contacts CD1b and GMM. Through mutagenesis and study of T cells from tuberculosis patients, we identify a consensus CD1b footprint of TCRs present among GEM T cells. Using both the TCR α- and β-chains as tweezers to surround and grip the glucose moiety of GMM, GEM TCRs create a highly specific mechanism for recognizing this mycobacterial glycolipid. PMID:27807341

  15. Th1-skewed tissue responses to a mycolyl glycolipid in mycobacteria-infected rhesus macaques

    SciTech Connect

    Morita, Daisuke; Miyamoto, Ayumi; Hattori, Yuki; Komori, Takaya; Nakamura, Takashi; Igarashi, Tatsuhiko; Harashima, Hideyoshi; Sugita, Masahiko

    2013-11-08

    Highlights: •Glucose monomycolate (GMM) is a marker glycolipid for active tuberculosis. •Tissue responses to GMM involved up-regulation of Th1-attracting chemokines. •Th1-skewed local responses were mounted at the GMM-injected tissue. -- Abstract: Trehalose 6,6′-dimycolate (TDM) is a major glycolipid of the cell wall of mycobacteria with remarkable adjuvant functions. To avoid detection by the host innate immune system, invading mycobacteria down-regulate the expression of TDM by utilizing host-derived glucose as a competitive substrate for their mycolyltransferases; however, this enzymatic reaction results in the concomitant biosynthesis of glucose monomycolate (GMM) which is recognized by the acquired immune system. GMM-specific, CD1-restricted T cell responses have been detected in the peripheral blood of infected human subjects and monkeys as well as in secondary lymphoid organs of small animals, such as guinea pigs and human CD1-transgenic mice. Nevertheless, it remains to be determined how tissues respond at the site where GMM is produced. Here we found that rhesus macaques vaccinated with Mycobacterium bovis bacillus Calmette–Guerin mounted a chemokine response in GMM-challenged skin that was favorable for recruiting T helper (Th)1 T cells. Indeed, the expression of interferon-γ, but not Th2 or Th17 cytokines, was prominent in the GMM-injected tissue. The GMM-elicited tissue response was also associated with the expression of monocyte/macrophage-attracting CC chemokines, such as CCL2, CCL4 and CCL8. Furthermore, the skin response to GMM involved the up-regulated expression of granulysin and perforin. Given that GMM is produced primarily by pathogenic mycobacteria proliferating within the host, the Th1-skewed tissue response to GMM may function efficiently at the site of infection.

  16. Enterococcus faecalis Glycolipids Modulate Lipoprotein-Content of the Bacterial Cell Membrane and Host Immune Response

    PubMed Central

    Otto, Andreas; Sava, Irina G.; Wobser, Dominique; Bao, Yinyin; Hese, Katrin; Broszat, Melanie; Henneke, Philipp; Becher, Dörte; Huebner, Johannes

    2015-01-01

    In this study, we investigated the impact of the cell membrane composition of E. faecalis on its recognition by the host immune system. To this end, we employed an E. faecalis deletion mutant (ΔbgsA) that does not synthesize the major cell membrane glycolipid diglycosyl-diacylglycerol (DGlcDAG). Proteomic analysis revealed that 13 of a total of 21 upregulated surface-associated proteins of E. faecalis ΔbgsA were lipoproteins. This led to a total lipoprotein content in the cell membrane of 35.8% in ΔbgsA compared to only 9.4% in wild-type bacteria. Increased lipoprotein content strongly affected the recognition of ΔbgsA by mouse macrophages in vitro with an increased stimulation of TNF-α production by heat-fixed bacteria and secreted antigens. Inactivation of the prolipoprotein diacylglycerol transferase (lgt) in ΔbgsA abrogated TNF-α induction by a ΔbgsA_lgt double mutant indicating that lipoproteins mediate increased activation of mouse macrophages by ΔbgsA. Heat-fixed ΔbgsA bacteria, culture supernatant, or cell membrane lipid extract activated transfected HEK cells in a TLR2-dependent fashion; the same was not true of wild-type bacteria. In mice infected intraperitoneally with a sublethal dose of E. faecalis we observed a 70% greater mortality in mice infected with ΔbgsA compared with wild-type-infected mice. Increased mortality due to ΔbgsA infection was associated with elevated plasma levels of the inflammatory cytokines TNF-α, IL-6 and MIP-2. In summary, our results provide evidence that an E. faecalis mutant lacking its major bilayer forming glycolipid DGlcDAG upregulates lipoprotein expression leading to increased activation of the host innate immune system and virulence in vivo. PMID:26172831

  17. Soluble human TLR2 ectodomain binds diacylglycerol from microbial lipopeptides and glycolipids

    PubMed Central

    Jiménez-Dalmaroni, Maximiliano J; Radcliffe, Catherine M; Harvey, David J; Wormald, Mark R; Verdino, Petra; Ainge, Gary D; Larsen, David S; Painter, Gavin F; Ulevitch, Richard; Beutler, Bruce; Rudd, Pauline M; Dwek, Raymond A; Wilson, Ian A

    2015-01-01

    Toll-like receptors (TLRs) are key innate immune receptors that recognize conserved features of biological molecules that are found in microbes. In particular, TLR2 has been reported to be activated by different kinds of microbial ligands. To advance our understanding of the interaction of TLR2 with its ligands, the recombinant human TLR2 ectodomain (hTLR2ED) was expressed using a baculovirus/insect cell expression system, and its biochemical as well as ligand binding properties were investigated. The hTLR2ED binds synthetic bacterial and mycoplasmal lipopeptides, lipoteichoic acid (LTA) from Staphylococcus aureus, and synthetic lipoarabinomannan precursors from Mycobacterium at extracellular physiological conditions, in the absence of its co-receptors TLR1 and TLR6. We also determined that lipopeptides and glycolipids cannot bind simultaneously to hTLR2ED and that the phosphatidyl inositol mannoside 2 (Pim2) is the minimal lipoarabinomannan structure for binding to hTLR2ED. Binding of hTLR2ED to Pim4, which contains a diacylglycerol group with one of its acyl chain containing 19 carbon atoms, indicates that hTLR2ED can bind ligands with acyl chains longer than 16 carbon atoms. In summary, our data indicate that diacylglycerol is the ligand moiety of microbial glycolipids and lipoproteins that bind to hTLR2ED and that both types of ligands bind to the same binding site of hTLR2ED. The design of novel inhibitors of TLR2, based on their ability to bind to TLR2 but not activate the TLR2 signaling pathway, may lead to the development of novel treatments for septic shock caused by Gram- positive bacteria. PMID:24591200

  18. Expression and Characterization of a Mycoplasma genitalium Glycosyltransferase in Membrane Glycolipid Biosynthesis

    PubMed Central

    Andrés, Eduardo; Martínez, Núria; Planas, Antoni

    2011-01-01

    Mycoplasmas contain glycoglycerolipids in their plasma membrane as key structural components involved in bilayer properties and stability. A membrane-associated glycosyltransferase (GT), GT MG517, has been identified in Mycoplasma genitalium, which sequentially produces monoglycosyl- and diglycosyldiacylglycerols. When recombinantly expressed in Escherichia coli, the enzyme was functional in vivo and yielded membrane glycolipids from which Glcβ1,6GlcβDAG was identified as the main product. A chaperone co-expression system and extraction with CHAPS detergent afforded soluble protein that was purified by affinity chromatography. GT MG517 transfers glucosyl and galactosyl residues from UDP-Glc and UDP-Gal to dioleoylglycerol (DOG) acceptor to form the corresponding β-glycosyl-DOG, which then acts as acceptor to give β-diglycosyl-DOG products. The enzyme (GT2 family) follows Michaelis-Menten kinetics. kcat is about 5-fold higher for UDP-Gal with either DOG or monoglucosyldioleoylglycerol acceptors, but it shows better binding for UDP-Glc than UDP-Gal, as reflected by the lower Km, which results in similar kcat/Km values for both donors. Although sequentially adding glycosyl residues with β-1,6 connectivity, the first glycosyltransferase activity (to DOG) is about 1 order of magnitude higher than the second (to monoglucosyldioleoylglycerol). Because the ratio between the non-bilayer-forming monoglycosyldiacylglycerols and the bilayer-prone diglycosyldiacylglycerols contributes to regulate the properties of the plasma membrane, both synthase activities are probably regulated. Dioleoylphosphatidylglycerol (anionic phospholipid) activates the enzyme, kcat linearly increasing with dioleoylphosphatidylglycerol concentration. GT MG517 is shown to be encoded by an essential gene, and the addition of GT inhibitors results in cell growth inhibition. It is proposed that glycolipid synthases are potential targets for drug discovery against infections by mycoplasmas. PMID

  19. Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection.

    PubMed

    Sugawara, T; Miyazawa, T

    1999-11-01

    Glycolipids from edible plant sources were accurately quantified by silica-based, normal-phase high-performance liquid chromatography using an evaporative light-scattering detector. Five major glycolipid classes (acylated steryl glucoside, steryl glucoside, ceramide monohexoside, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol) were separated and determined with a binary gradient system consisting of chloroform and methanol/water (95:5, vol/vol) without any interference from other lipid classes and pigments. The described method was applied to 48 edible plants available in Japan including cereals, legumes, vegetables, and fruits. Examined plant species contained glycolipids in wide concentration ranges, such as 5-645 mg/100 g tissue.

  20. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65.

    PubMed

    Morais, I M C; Cordeiro, A L; Teixeira, G S; Domingues, V S; Nardi, R M D; Monteiro, A S; Alves, R J; Siqueira, E P; Santos, V L

    2017-09-19

    Lactobacillus species produce biosurfactants that can contribute to the bacteria's ability to prevent microbial infections associated with urogenital and gastrointestinal tracts and the skin. Here, we described the biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. The biosurfactants produced by L. jensenii P6A and L. gasseri P65 reduced the water surface tension from 72 to 43.2 mN m(-1) and 42.5 mN m(-1) as their concentration increased up to the critical micelle concentration (CMC) values of 7.1 and 8.58 mg mL(-1), respectively. Maximum emulsifying activity was obtained at concentrations of 1 and 5 mg mL(-1) for the P6A and P65 strains, respectively. The Fourier transform infrared spectroscopy data revealed that the biomolecules consist of a mixture of carbohydrates, lipids and proteins. The gas chromatography-mass spectrum analysis of L. jensenii P6A biosurfactant showed a major peak for 14-methypentadecanoic acid, which was the main fatty acid present in the biomolecule; conversely, eicosanoic acid dominated the biosurfactant produced by L. gasseri P65. Although both biosurfactants contain different percentages of the sugars galactose, glucose and ribose; rhamnose was only detected in the biomolecule produced by L. jensenii P6A. Emulsifying activities were stable after a 60-min incubation at 100 °C, at pH 2-10, and after the addition of potassium chloride and sodium bicarbonate, but not in the presence of sodium chloride. The biomolecules showed antimicrobial activity against clinical isolates of Escherichia coli and Candida albicans, with MIC values of 16 µg mL(-1), and against Staphylococcus saprophyticus, Enterobacter aerogenes and Klebsiella pneumoniae at 128 µg mL(-1). The biosurfactants also disrupted preformed biofilms of microorganisms at varying concentrations, being more efficient against E. aerogenes (64%) (P6A biosurfactant), and E. coli (46.4%) and S

  1. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    PubMed Central

    Sharma, Deepak; Ansari, Mohammad Javed; Gupta, Sonam; Al Ghamdi, Ahmad; Pruthi, Parul; Pruthi, Vikas

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a

  2. Biosurfactant assisted recovery of the C5-C11 hydrocarbon fraction from oily sludge using biosurfactant producing consortium culture of bacteria.

    PubMed

    Nkhalambayausi Chirwa, Evans M; Mampholo, Chidinyane T; Fayemiwo, Oluwademilade M; Bezza, Fisseha A

    2017-03-10

    A biosurfactant producing culture of bacteria was isolated from an automobile engine oil dump site which was later used as an inoculum in batch and continuous flow oil recovery from oily sludge. Initially, an emulsion of oily sludge was prepared by mixing 5% m/v solids: 21% v/v bituminous sludge: 77% v/v water. The isolated cultures were added to vessels with stable emulsions to facilitate the separation of oil droplets from the sludge matrix. In batches with live cultures, up to 35% oil recovery was achieved after incubation for 10 days. Further investigations were conducted in a semi-continuous feed, fed-batch plug flow reactor (FB-PFR) system. Up to 99.7% was achieved in the FB-PFR after operation for 10 days, much higher than the recovery achieved in the pure batch systems where only 35% oil was recovered after incubation for 10 days. The improved performance in the FB-PFR was attributed to differential separation of particles under variable velocity along the reactor. The culture in the reactor was predominated by Klebsiellae, Enterobacteriaceae and Bacilli throughout the experiment. A crude biosurfactant produced by the cultures was partially purified and analyzed using the liquid chromatograph coupled to a tandem mass spectrometer (LC-MS/MS) which showed that the molecular structure of the biosurfactant produced closely matched the structure of lipopeptides identified in earlier studies. This process is aimed at recovering useful oil from oily waste sludge with the added advantage of degrading aromatic organic impurities in the oil to produce a cleaner oil product. The further advantage of the FB-PFR system was that, the bacteria discharged together with effluent sludge residue further degraded chemical oxygen demand (COD) in the treated sludge thereby reducing the polluting potential of the final disposed sludge.

  3. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J

    2012-09-01

    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  4. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2.

    PubMed

    Sharma, Suman; Singh, Partapbir; Raj, Mayil; Chadha, Bhupinder Singh; Saini, Harvinder Singh

    2009-11-15

    The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal gamma-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, beta-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.

  5. Laccase bioelectrocatalyst at a steroid-type biosurfactant-modified carbon nanotube interface.

    PubMed

    Tominaga, Masato; Sasaki, Aiko; Togami, Makoto

    2015-01-01

    Achieving oxygen reduction at high positive potentials with fast heterogeneous electron transfer is desirable for the biocathode of fuel cells based on enzymes. Here, we present an effective interface for obtaining direct electron transfer from a laccase (Lac)-based cathode for O2 reduction, starting from a potential very close to the redox equilibrium potential of the oxygen/water couple. The interface between Lac and single-walled carbon nanotubes was improved by modification with the steroid biosurfactant sodium cholate. The heterogeneous electron-transfer rate between the type-1 Cu site of Lac and the modified electrode was determined to be 3000 s(-1). The electron-transfer rate was sensitive to the side chain of the steroid biosurfactant, and the rate decreased more than 10-fold when sodium deoxycholate was used as the side chain.

  6. Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Korshunova, Irina O; Stukova, Galina I; Krivoruchko, Anastasiya V

    2016-03-01

    This study evaluated the effects of a trehalolipid biosurfactant produced by Rhodococcus ruber IEGM 231 on the bacterial adhesion and biofilm formation on the surface of polystyrene microplates. The adhesion of Gram-positive (Arthrobacter simplex, Bacillus subtilis, Brevibacterium linens, Corynebacterium glutamicum, Micrococcus luteus) and Gram-negative (Escherichia coli, Pseudomonas fluorescencens) bacteria correlated differently with the cell hydrophobicity and surface charge. In particular, exponentially growing bacterial cells with increased hydrophobicities adhered stronger to polystyrene compared to more hydrophilic stationary phase cells. Also, a moderate correlation (0.56) was found between zeta potential and adhesion values of actively growing bacteria, suggesting that less negatively charged cells adhered stronger to polystyrene. Efficient biosurfactant concentrations (10-100 mg/L) were determined, which selectively inhibited (up to 76 %) the adhesion of tested bacterial cultures, however without inhibiting their growth. The biosurfactant was more active against growing bacteria rather than resting cells, thus showing high biofilm-preventing properties. Contact angle measurements revealed more hydrophilic surface of the biosurfactant-covered polystyrene compared to bare polystyrene, which allowed less adhesion of hydrophobic bacteria. Furthermore, surface free-energy calculations showed a decrease in the Wan der Waals (γ(LW)) component and an increase in the acid-based (γ(AB)) component caused by the biosurfactant coating of polysterene. However, our results suggested that the biosurfactant inhibited the adhesion of bacteria independently on their surface charges. AFM scanning revealed three-type biosurfactant structures (micelles, cord-like assemblies and large vesicles) formed on glass, depending on concentrations used, that could lead to diverse anti-adhesive effects against different bacterial species.

  7. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    PubMed

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL(-1). The biosurfactant exhibited a maximum emulsification activity (E24) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca(2+) ions to the biosurfactant solution. The oil recovery efficiency of Ca(2+) conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca(2+) concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL(-1) was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560.

    PubMed

    Domingos, Daniela Ferreira; de Faria, Andreia Fonseca; de Souza Galaverna, Renan; Eberlin, Marcos Nogueira; Greenfield, Paul; Zucchi, Tiago Domingues; Melo, Itamar Soares; Tran-Dinh, Nai; Midgley, David; de Oliveira, Valéria Maia

    2015-04-01

    Many Bacillus species can produce biosurfactant, although most of the studies on lipopeptide production by this genus have been focused on Bacillus subtilis. Surfactants are broadly used in pharmaceutical, food and petroleum industry, and biological surfactant shows some advantages over the chemical surfactants, such as less toxicity, production from renewable, cheaper feedstocks and development of novel recombinant hyperproducer strains. This study is aimed to unveil the biosurfactant metabolic pathway and chemical composition in Bacillus safensis strain CCMA-560. The whole genome of the CCMA-560 strain was previously sequenced, and with the aid of bioinformatics tools, its biosurfactant metabolic pathway was compared to other pathways of closely related species. Fourier transform infrared (FTIR) and high-resolution TOF mass spectrometry (MS) were used to characterize the biosurfactant molecule. B. safensis CCMA-560 metabolic pathway is similar to other Bacillus species; however, some differences in amino acid incorporation were observed, and chemical analyses corroborated the genetic results. The strain CCMA-560 harbours two genes flanked by srfAC and srfAD not present in other Bacillus spp., which can be involved in the production of the analogue gramicidin. FTIR and MS showed that B. safensis CCMA-560 produces a mixture of at least four lipopeptides with seven amino acids incorporated and a fatty acid chain with 14 carbons, which makes this molecule similar to the biosurfactant of Bacillus pumilus, namely, pumilacidin. This is the first report on the biosurfactant production by B. safensis, encompassing the investigation of the metabolic pathway and chemical characterization of the biosurfactant molecule.

  9. Production and characterization of microbial biosurfactants for potential use in oil-spill remediation.

    PubMed

    Marti, M E; Colonna, W J; Patra, P; Zhang, H; Green, C; Reznik, G; Pynn, M; Jarrell, K; Nyman, J A; Somasundaran, P; Glatz, C E; Lamsal, B P

    2014-02-05

    Two biosurfactants, surfactin and fatty acyl-glutamate, were produced from genetically-modified strains of Bacillus subtilis on 2% glucose and mineral salts media in shake-flasks and bioreactors. Biosurfactant synthesis ceased when the main carbohydrate source was completely depleted. Surfactin titers were ∼30-fold higher than fatty acyl-glutamate in the same medium. When bacteria were grown in large aerated bioreactors, biosurfactants mostly partitioned to the foam fraction, which was recovered. Dispersion effectiveness of surfactin and fatty acyl-glutamate was evaluated by measuring the critical micelle concentration (CMC) and dispersant-to-oil ratio (DOR). The CMC values for surfactin and fatty acyl-glutamate in double deionized distilled water were 0.015 and 0.10 g/L, respectively. However, CMC values were higher, 0.02 and 0.4 g/L for surfactin and fatty acyl-glutamate, respectively, in 12 parts per thousand Instant Ocean®[corrected].sea salt, which has been partly attributed to saline-induced conformational changes in the solvated ionic species of the biosurfactants. The DORs for surfactin and fatty acyl-glutamate were 1:96 and 1:12, respectively, in water. In Instant Ocean® solutions containing 12 ppt sea salt, these decreased to 1:30 and 1:4, respectively, suggesting reduction in oil dispersing efficiency of both surfactants in saline. Surfactant toxicities were assessed using the Gulf killifish, Fundulus grandis, which is common in estuarine habitats of the Gulf of Mexico. Surfactin was 10-fold more toxic than fatty acyl-glutamate. A commercial surfactant, sodium laurel sulfate, had intermediate toxicity. Raising the salinity from 5 to 25 ppt increased the toxicity of all three surfactants; however, the increase was the lowest for fatty acyl-glutamate.

  10. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    PubMed Central

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-01-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter. PMID:26869357

  11. Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation.

    PubMed

    Zhou, Mei-Fang; Yuan, Xing-Zhong; Zhong, Hua; Liu, Zhi-Feng; Li, Hui; Jiang, Li-Li; Zeng, Guang-Ming

    2011-05-01

    The effects of two biosurfactants, tea saponin (TS) and rhamnolipid (RL), on the production of laccase and the degradation of phenol by P. simplicissimum were investigated in solid-state fermentation consisting of rice straw, rice bran, and sawdust. Firstly, the effects of phenol on the fermentation process were studied in the absence of surfactants. Then, a phenol concentration of 3 mg/g in the fermentation was selected for detailed research with the addition of biosurfactants. The results showed that TS and RL at different concentrations had stimulative effects on the enzyme activity of laccase. The highest laccase activities during the fermentation were enhanced by 163.7%, 68.2%, and 23.3% by TS at concentrations of 0.02%, 0.06%, and 0.10%, respectively. As a result of the enhanced laccase activity, the efficiency of phenol degradation was also improved by both biosurfactants. RL caused a significant increase of fungal biomass in the early stage of the fermentation, while TS had an inhibitory effect in the whole process. These results indicated that RL could mitigate the negative effects of phenol on fungal growth and consequently improve laccase production and phenol degradation. TS was potentially applicable to phenol-polluted solid-state fermentation.

  12. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community.

    PubMed

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-06-08

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library.

  13. Investigation of the release of PAHs from artificially contaminated sediments using cyclolipopeptidic biosurfactants.

    PubMed

    Portet-Koltalo, F; Ammami, M T; Benamar, A; Wang, H; Le Derf, F; Duclairoir-Poc, C

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) can be preponderant in contaminated sediments and understanding how they are sorbed in the different mineral and organic fractions of the sediment is critical for effective removal strategies. For this purpose, a mixture of seven PAHs was studied at the sediment/water interface and sorption isotherms were obtained. The influence of various factors on the sorption behavior of PAHs was evaluated, such as the nature of minerals, pH, ionic strength and amount of organic matter. Afterwards, the release of PAHs from the sediment by surfactants was investigated. The effectiveness of sodium dodecyl sulfate (SDS) was compared to natural biosurfactants, of cyclolipopeptidic typ