NASA Astrophysics Data System (ADS)
Rožman, Marko
2016-01-01
Glycosphingolipid fragmentation behavior was investigated by combining results from analysis of a series of negative ion tandem mass spectra and molecular modeling. Fragmentation patterns extracted from 75 tandem mass spectra of mainly acidic glycosphingolipid species (gangliosides) suggest prominent cleavage of the glycosidic bonds with retention of the glycosidic oxygen atom by the species formed from the reducing end (B and Y ion formation). Dominant product ions arise from dissociation of sialic acids glycosidic bonds whereas product ions resulting from cleavage of other glycosidic bonds are less abundant. Potential energy surfaces and unimolecular reaction rates of several low-energy fragmentation pathways leading to cleavage of glycosidic bonds were estimated in order to explain observed dissociation patterns. Glycosidic bond cleavage in both neutral (unsubstituted glycosyl group) and acidic glycosphingolipids was the outcome of the charge-directed intramolecular nucleophilic substitution (SN2) mechanism. According to the suggested mechanism, the nucleophile in a form of carboxylate or oxyanion attacks the carbon at position one of the sugar ring, simultaneously breaking the glycosidic bond and yielding an epoxide. For gangliosides, unimolecular reaction rates suggest that dominant product ions related to the cleavage of sialic acid glycosidic bonds are formed via direct dissociation channels. On the other hand, low abundant product ions related to the dissociation of other glycosidic bonds are more likely to be the result of sequential dissociation. Although results from this study mainly contribute to the understanding of glycosphingolipid fragmentation chemistry, some mechanistic findings regarding cleavage of the glycosidic bond may be applicable to other glycoconjugates.
Electron attachment-induced DNA single-strand breaks at the pyrimidine sites
Gu, Jiande; Wang, Jing; Leszczynski, Jerzy
2010-01-01
To elucidate the contribution of pyrimidine in DNA strand breaks caused by low-energy electrons (LEEs), theoretical investigations of the LEE attachment-induced C3′–O3′, and C5′–O5′ σ bond as well as N-glycosidic bond breaking of 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate were performed using the B3LYP/DZP++ approach. The base-centered radical anions are electronically stable enough to assure that either the C–O or glycosidic bond breaking processes might compete with the electron detachment and yield corresponding radical fragments and anions. In the gas phase, the computed glycosidic bond breaking activation energy (24.1 kcal/mol) excludes the base release pathway. The low-energy barrier for the C3′–O3′ σ bond cleavage process (∼6.0 kcal/mol for both cytidine and thymidine) suggests that this reaction pathway is the most favorable one as compared to other possible pathways. On the other hand, the relatively low activation energy barrier (∼14 kcal/mol) for the C5′–O5′ σ bond cleavage process indicates that this bond breaking pathway could be possible, especially when the incident electrons have relatively high energy (a few electronvolts). The presence of the polarizable medium greatly increases the activation energies of either C–O σ bond cleavage processes or the N-glycosidic bond breaking process. The only possible pathway that dominates the LEE-induced DNA single strands in the presence of the polarizable surroundings (such as in an aqueous solution) is the C3′–O3′ σ bond cleavage (the relatively low activation energy barrier, ∼13.4 kcal/mol, has been predicted through a polarizable continuum model investigation). The qualitative agreement between the ratio for the bond breaks of C5′–O5′, C3′–O3′ and N-glycosidic bonds observed in the experiment of oligonucleotide tetramer CGAT and the theoretical sequence of the bond breaking reaction pathways have been found. This consistency between the theoretical predictions and the experimental observations provides strong supportive evidences for the base-centered radical anion mechanism of the LEE-induced single-strand bond breaking around the pyrimidine sites of the DNA single strands. PMID:20430827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhaskaran, Renjith; Sarma, Manabendra, E-mail: msarma@iitg.ernet.in
2014-09-14
Low energy electron (LEE) induced cytosine base release in a selected pyrimidine nucleotide, viz., 2′-deoxycytidine-3′-monophosphate is investigated using ab initio electronic structure methods and time dependent quantum mechanical calculations. It has been noted that the cytosine base scission is comparatively difficult process than the 3′ C–O bond cleavage from the lowest π{sup *} shape resonance in energy region <1 eV. This is mainly due to the high activation energy barrier associated with the electron transfer from the π{sup *} orbital of the base to the σ{sup *} orbital of the glycosidic N–C bond. In addition, the metastable state formed aftermore » impinging LEE (0–1 eV) has very short lifetime (10 fs) which may decay in either of the two competing auto-detachment or dissociation process simultaneously. On the other hand, the selected N–C mode may cleave to form the cytosine base anion at higher energy regions (>2 eV) via tunneling of the glycosidic bond. Resonance states generated within this energy regime will exist for a duration of ∼35–55 fs. Comparison of salient features of the two dissociation events, i.e., 3′ C–O single strand break and glycosidic N–C bond cleavage in 3′-dCMPH molecule are also provided.« less
Identifying the Tautomeric Form of a Deoxyguanosine-Estrogen Quinone Intermediate.
Stack, Douglas E
2015-09-10
Mechanistic insights into the reaction of an estrogen o-quinone with deoxyguanosine has been further investigated using high level density functional calculations in addition to the use of 4-hyroxycatecholestrone (4-OHE₁) regioselectivity labeled with deuterium at the C1-position. Calculations using the M06-2X functional with large basis sets indicate the tautomeric form of an estrogen-DNA adduct present when glycosidic bonds cleavage occurs is comprised of an aromatic A ring structure. This tautomeric form was further verified by use of deuterium labelling of the catechol precursor use to form the estrogen o-quinone. Regioselective deuterium labelling at the C1-position of the estrogen A ring allows discrimination between two tautomeric forms of a reaction intermediate either of which could be present during glycosidic bond cleavage. HPLC-MS analysis indicates a reactive intermediate with a m/z of 552.22 consistent with a tautomeric form containing no deuterium. This intermediate is consistent with a reaction mechanism that involves: (1) proton assisted Michael addition; (2) re-aromatization of the estrogen A ring; and (3) glycosidic bond cleavage to form the known estrogen-DNA adduct, 4-OHE₁-1-N7Gua.
Yamagaki, Tohru; Watanabe, Takehiro; Tanaka, Masaki; Sugahara, Kohtaro
2014-01-01
Negative-ion matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra and tandem mass spectra of flavonoid mono-O-glycosides showed the irregular signals that were 1 and/or 2 Da smaller than the parent deprotonated molecules ([M - H](-)) and the sugar-unit lost fragment ions ([M - Sugar - H](-)). The 1 and/or 2 Da mass shifts are generated with the removing of a neutral hydrogen radical (H*), and/or with the homolytic cleavage of the glycosidic bond, such as [M - H* - H](-), [M - Sugar - H* - H](-), and [M - Sugar - 2H* - H](-). It was revealed that the hydrogen radical removes from the phenolic hydroxy groups on the flavonoids, not from the sugar moiety, because the flavonoid backbones themselves absorb the laser. The glycosyl positions depend on the extent of the hydrogen radical removals and that of the homolytic cleavage of the glycosidic bonds. Flavonoid mono-glycoside isomers were distinguished according to their TOF MS and tandem mass spectra.
A comparison of flavonoid glycosides by electrospray tandem mass spectrometry
NASA Astrophysics Data System (ADS)
March, Raymond E.; Lewars, Errol G.; Stadey, Christopher J.; Miao, Xiu-Sheng; Zhao, Xiaoming; Metcalfe, Chris D.
2006-01-01
A comparison is presented of product ion mass spectra of protonated and deprotonated molecules of kaempferol-3-O-glucoside, quercitin-3-O-glucoside (isoquercitrin), quercitin-3-O-galactoside (hyperoin), apigenin-7-O-glucoside, luteolin-7-O-glucoside, genistein-7-O-glucoside, naringenin-7-O-glucoside (prunin), luteolin-4'-O-glucoside, luteolin-6-C-glucoside (homoorientin, known also as isoorientin), apigenin-8-C-glucoside (vitexin), and luteolin-8-C-glucoside (orientin) together with the product ion mass spectrum of deprotonated kaempferol-7-O-glucoside. All isomeric ions were distinguishable on the basis of their product ion mass spectra. For protonated 3-O-, 7-O-, and 4'-O-glycosides at a collision energy of 46-47 eV, homolytic cleavage of the O-glycosidic bond yielded aglycon Y+ ions, whereas in deprotonated 3-O-, 7-O-, and 4'-O-glycosides, heterolytic and homolytic cleavage of the O-glycosidic bond yielded radical aglycon (Y-H)- and aglycon (Y-) ions. In each case, fragmentation of either the glycan or the aglycon or both was observed. For 6-C- and 8-C-glycosides at a collision energy of 46-47 eV, fragmentation was restricted almost exclusively to the glycan. For luteolin-6-C-glucoside, the integrity of the aglycon structure is preserved at the expense of the glycan for which some 30 fragmentations were observed. Breakdown curves were determined as a function of collision energy for protonated and deprotonated luteolin-6-C-glucoside. An attempt has been made to rationalize the product ion mass spectra derived from C-O- and C-C-luteolin glucosides in terms of computed structures that indicate significant intramolecular hydrogen bonding and rotation of the B-ring to form a coplanar luteolin structure. It is proposed that protonated and deprotonated luteolin-6-C-glucoside may afford examples of cooperative interactive bonding that plays a major role in directing fragmentation.
Lenz, Stefan A P; Kohout, Johnathan D; Wetmore, Stacey D
2016-12-22
Despite the inherent stability of glycosidic linkages in nucleic acids that connect the nucleobases to sugar-phosphate backbones, cleavage of these bonds is often essential for organism survival. The current study uses DFT (B3LYP) to provide a fundamental understanding of the hydrolytic deglycosylation of the natural RNA nucleosides (A, C, G, and U), offers a comparison to DNA hydrolysis, and examines the effects of acid, base, or simultaneous acid-base catalysis on RNA deglycosylation. By initially examining HCOO - ···H 2 O mediated deglycosylation, the barriers for RNA hydrolysis were determined to be 30-38 kJ mol -1 higher than the corresponding DNA barriers, indicating that the 2'-OH group stabilizes the glycosidic bond. Although the presence of HCOO - as the base (i.e., to activate the water nucleophile) reduces the barrier for uncatalyzed RNA hydrolysis (i.e., unactivated H 2 O nucleophile) by ∼15-20 kJ mol -1 , the extreme of base catalysis as modeled using a fully deprotonated water molecule (i.e., OH - nucleophile) decreases the uncatalyzed barriers by up to 65 kJ mol -1 . Acid catalysis was subsequently examined by selectively protonating the hydrogen-bond acceptor sites of the RNA nucleobases, which results in an up to ∼80 kJ mol -1 barrier reduction relative to the corresponding uncatalyzed pathway. Interestingly, the nucleobase proton acceptor sites that result in the greatest barrier reductions match sites typically targeted in enzyme-catalyzed reactions. Nevertheless, simultaneous acid and base catalysis is the most beneficial way to enhance the reactivity of the glycosidic bonds in RNA, with the individual effects of each catalytic approach being weakened, additive, or synergistic depending on the strength of the base (i.e., degree of water nucleophile activation), the nucleobase, and the hydrogen-bonding acceptor site on the nucleobase. Together, the current contribution provides a greater understanding of the reactivity of the glycosidic bond in natural RNA nucleosides, and has fundamental implications for the function of RNA-targeting enzymes.
Cationized Carbohydrate Gas-Phase Fragmentation Chemistry
NASA Astrophysics Data System (ADS)
Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.
2017-04-01
We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.
NASA Astrophysics Data System (ADS)
Konda, Chiharu; Londry, Frank A.; Bendiak, Brad; Xia, Yu
2014-08-01
A systematic approach is described that can pinpoint the stereo-structures (sugar identity, anomeric configuration, and location) of individual sugar units within linear oligosaccharides. Using a highly modified mass spectrometer, dissociation of linear oligosaccharides in the gas phase was optimized along multiple-stage tandem dissociation pathways (MSn, n = 4 or 5). The instrument was a hybrid triple quadrupole/linear ion trap mass spectrometer capable of high-efficiency bidirectional ion transfer between quadrupole arrays. Different types of collision-induced dissociation (CID), either on-resonance ion trap or beam-type CID could be utilized at any given stage of dissociation, enabling either glycosidic bond cleavages or cross-ring cleavages to be maximized when wanted. The approach first involves optimizing the isolation of disaccharide units as an ordered set of overlapping substructures via glycosidic bond cleavages during early stages of MSn, with explicit intent to minimize cross-ring cleavages. Subsequently, cross-ring cleavages were optimized for individual disaccharides to yield key diagnostic product ions ( m/ z 221). Finally, fingerprint patterns that establish stereochemistry and anomeric configuration were obtained from the diagnostic ions via CID. Model linear oligosaccharides were derivatized at the reducing end, allowing overlapping ladders of disaccharides to be isolated from MSn. High confidence stereo-structural determination was achieved by matching MSn CID of the diagnostic ions to synthetic standards via a spectral matching algorithm. Using this MSn ( n = 4 or 5) approach, the stereo-structures, anomeric configurations, and locations of three individual sugar units within two pentasaccharides were successfully determined.
ERIC Educational Resources Information Center
Periyannan, Gopal R.; Lawrence, Barbara A.; Egan, Annie E.
2015-01-01
A [superscript 1]H NMR spectroscopy-based laboratory experiment explores mono- and disaccharide structural chemistry, and the enzyme-substrate specificity of glycosidic bond cleavage by ß-glucosidase towards cellobiose (ß-linked gluco-disaccharide) and maltose (a-linked gluco-disaccharide). Structural differences between cellobiose, maltose, and…
Jiang, Yang; Xue, Ying; Zeng, Yi
2018-02-15
Using the microsolvated model that involves explicit water molecules and implicit solvent in the optimization, two proposed dissociative hydrolysis mechanisms of 2',3'-didehydro-2',3'-dideoxyguanosine (d4G) have been first investigated by means of M06-2X(CPCM, water)/6-31++G(d,p) method. The glycosidic bond dissociation for the generation of the oxacarbenium ion intermediate is the rate-determining step (RDS). The subsequent nucleophilic water attack from different side of the oxacarbenium ion intermediate gives either the α-product [(2S,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] or β-product [(2R,5S)-5-(hydroxymethyl)-2,5-dihydrofuran-2-ol] and is thus referred to as α-path (inversion) and β-path (retention). Two to five explicit water molecules (n = 2-5) are considered in the microsolvated model, and n = 3 or 4 is the smallest model capable of minimizing the activation energy for α-path and β-path, respectively. Our theoretical results suggest that α-path (n = 3) is more kinetically favorable with lower free energy barrier (RDS) of 27.7 kcal mol -1 , in contrast to that of 30.7 kcal mol -1 for the β-path (n = 4). The kinetic preference of the α-path is rationalized by NBO analysis. Whereas thte β-path is more thermodynamically favorable over the α-path, where the formation of β-product and α-product are exergonic and endergonic, respectively, providing theoretical support for the experimental observation that the β-cleavage product was the major one after sufficient reaction time. Comparisons of d4G with analogous cyclo-d4G and dG from kinetic free energy barriers and thermodynamic heterolytic dissociation energies were also carried out. Our kinetic and thermodynamic results manifest that the order of glycosidic bond stability should be d4G < cyclo-d4G < dG, which agrees well with the reported experimental stability order of d4G compounds and analogues and gives further understanding on the influence of 6-cyclopropylamino and unsaturated ribose to the glycosidic bond instability of d4G.
Fibriansah, Guntur; Gliubich, Francesca I; Thunnissen, Andy-Mark W H
2012-11-13
The lytic transglycosylase MltE from Escherichia coli is a periplasmic, outer membrane-attached enzyme that cleaves the β-1,4-glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine residues in the cell wall peptidoglycan, producing 1,6-anhydromuropeptides. Here we report three crystal structures of MltE: in a substrate-free state, in a binary complex with chitopentaose, and in a ternary complex with the glycopeptide inhibitor bulgecin A and the murodipeptide N-acetylglucosaminyl-N-acetylmuramyl-l-Ala-d-Glu. The substrate-bound structures allowed a detailed analysis of the saccharide-binding interactions in six subsites of the peptidoglycan-binding groove (subsites -4 to +2) and, combined with site-directed mutagenesis analysis, confirmed the role of Glu64 as catalytic acid/base. The structures permitted the precise modeling of a short glycan strand of eight saccharide residues, providing evidence for two additional subsites (+3 and +4) and revealing the productive conformational state of the substrate at subsites -1 and +1, where the glycosidic bond is cleaved. Full accessibility of the peptidoglycan-binding groove and preferential binding of an N-acetylmuramic acid residue in a (4)C(1) chair conformation at subsite +2 explain why MltE shows only endo- and no exo-specific activity toward glycan strands. The results further indicate that catalysis of glycosidic bond cleavage by MltE proceeds via distortion toward a sofa-like conformation of the N-acetylmuramic acid sugar ring at subsite -1 and by anchimeric assistance of the sugar's N-acetyl group, as shown previously for the lytic transglycosylases Slt70 and MltB.
Asakawa, Daiki
2013-01-01
The matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) of peptides and glycans was studied using an oxidizing chemical, 5-nitrosalicylic acid (5-NSA) as the matrix. The use of 5-NSA for the MALDI-ISD of peptides and glycans promoted fragmentation pathways involving “hydrogen-deficient” radical precursors. Hydrogen abstraction from peptides resulted in the production of a “hydrogen-deficient” peptide radical that contained a radical site on the amide nitrogen in the peptide backbone with subsequent radical-induced cleavage at the Cα–C bonds. Cleavage at the Cα–C bond leads to the production of an a•/x fragment pair and the radical a• ions then undergo further hydrogen abstraction to form a ions after Cα–C bond cleavage. Since the Pro residue does not contain a nitrogen-centered radical site, Cα–C bond cleavage does not occur at this site. Alternatively, the specific cleavage of CO−N bonds leads to a b•/y fragment pair at Xxx−Pro which occurs via hydrogen abstraction from the Cα−H in the Pro residue. In contrast, “hydrogen-deficient” glycan radicals were generated by hydrogen abstraction from hydroxyl groups in glycans. Both glycosidic and cross-ring cleavages occurred as the result of the degradation of “hydrogen-deficient” glycan radicals. Cross-ring cleavage ions are potentially useful in linkage analysis, one of the most critical steps in the characterization of glycans. Moreover, isobaric glycans could be distinguished by structure specific ISD ions, and the molar ratio of glycan isomers in a mixture can be estimated from their fragment ions abundance ratios. MALDI-ISD with 5-NSA could be a useful method for the sequencing of peptides including the location of post-translational modifications, identification and semi-quantitative analysis of mixtures of glycan isomers. PMID:24860709
Quéméner, Bernard; Désiré, Cédric; Debrauwer, Laurent; Rathahao, Estelle
2003-01-17
The off-line coupling of high-performance anion-exchange chromatography to electrospray ion trap mass spectrometry (ESI-IT-MS) is described. Two sets of isocratic conditions were optimised for the semi-preparative purification of oligogalacturonates of degree of polymerisation from 4 to 6 by monitoring eluates with either pulsed amperometric detection or evaporative light scattering detection in the presence of an online Dionex Carbohydrate Membrane Desalter (CMD). In these conditions, purified oligogalacturonate solutions were suitable, without further desalting steps, for infusion ESI-IT-MS experiments. This paper provides some interesting features of positive and negative ESI-IT-multiple MS (MSn) of these acidic oligosaccharides. The spectra acquired in both ion modes show characteristic fragments resulting from glycosidic bond and cross-ring cleavages. Under negative ionization conditions, the fragmentation of the singly-charged [M-H]- ions, as well as the Ci-, and Zi-, fragment ions through sequential MSn experiments, was always dominated by product ions from C- and Z-type glycosidic cleavages. All spectra also displayed 0.2 A-type cross-ring cleavage ions which carry linkage information. Collision-induced dissociation (CID) spectra of sodium-cationized species obtained under positive ionization conditions were more complex. Successive MSn experiments also led to the 0.2 A-type cross-ring cleavage ions observed together with B- and Y-type ions. The presence of the 0.2 A ion series was related to Mr 60 (C2H4O2) losses. Combined with the absence of the Mr 30 (CH2O) and the Mr 90 (C3H6O3) ions, these ions were indicative of 1-4 type glycosidic linkage.
Arabyan, Narine; Huang, Bihua C; Weimer, Bart C
2017-05-18
Amylases catalyze the cleavage of α-d-1,4 and α-d-1,6-glycosidic bonds in starch and related carbohydrates. Amylases are widely distributed in nature and are important in carbohydrate metabolism. This is the release of four single and two double deletions in Salmonella enterica serovar Typhimurium LT2 that are important for glycan degradation during infection. Copyright © 2017 Arabyan et al.
Blackbody infrared radiative dissociation of protonated oligosaccharides.
Fentabil, Messele A; Daneshfar, Rambod; Kitova, Elena N; Klassen, John S
2011-12-01
The dissociation pathways, kinetics, and energetics of protonated oligosaccharides in the gas phase were investigated using blackbody infrared radiative dissociation (BIRD). Time-resolved BIRD measurements were performed on singly protonated ions of cellohexaose (Cel(6)), which is composed of β-(1→4)-linked glucopyranose rings, and five malto-oligosaccharides (Mal(x), where x=4-8), which are composed of α-(1→4)-linked glucopyranose units. At the temperatures investigated (85-160 °C), the oligosaccharides dissociate at the glycosidic linkages or by the loss of a water molecule to produce B- or Y-type ions. The Y ions dissociate to smaller Y or B ions, while the B ions yield exclusively smaller B ions. The sequential loss of water molecules from the smallest B ions (B(1) and B(2)) also occurs. Rate constants for dissociation of the protonated oligosaccharides and the corresponding Arrhenius activation parameters (E(a) and A) were determined. The E(a) and A-factors measured for protonated Mal(x) (x>4) are indistinguishable within error (~19 kcal mol(-1), 10(10) s(-1)), which is consistent with the ions being in the rapid energy exchange limit. In contrast, the Arrhenius parameters for protonated Cel(6) (24 kcal mol(-1), 10(12) s(-1)) are significantly larger. These results indicate that both the energy and entropy changes associated with the glycosidic bond cleavage are sensitive to the anomeric configuration. Based on the results of this study, it is proposed that formation of B and Y ions occurs through a common dissociation mechanism, with the position of the proton establishing whether a B or Y ion is formed upon glycosidic bond cleavage. © American Society for Mass Spectrometry, 2011
NASA Astrophysics Data System (ADS)
Sleno, Lekha; Campagna-Slater, Valerie; Volmer, Dietrich A.
2006-09-01
Fragmentation pathways of doxorubicin, a common cancer therapy agent, and three closely related analogs (epirubicin, daunorubicin, idarubicin) were compared using electrospray ionization with tandem mass spectrometry. This class of antibiotics with anti-tumour activity has important structural features, with a tetracyclic aromatic, polyketide portion, which is glycosylated with an amino sugar in order to exhibit its biological activity. Collision-induced dissociation spectra revealed very similar product ions for each analog, however, important differences were seen in the relative abundances and the ease at which certain fragments were formed. Fragment ions observed included those from cleavage of the glycosidic bond, loss of the side chain from the aglycone moiety, water losses and loss of a methyl radical. Following cleavage of the glycosidic bond, the charge can either reside on the aglycone portion or the sugar moiety, and each of these primary fragments undergoes several secondary dissociation pathways, depending on the collision energy. By ramping the collision voltage, we were able to correlate the changes in fragmentation behavior with small alterations in the structure of the precursor ion. The detailed study of the fragmentation behavior of doxorubicin was supported by accurate mass measurements, using an electrospray-time of flight instrument, as well as MS3 data from a quadrupole-linear ion trap mass spectrometer. Computational studies were also performed to help explain the role of certain functional groups in the fragmentation reactions.
Bashir, Sajid; Giannakopulos, Anastassios E; Derrick, Peter J; Critchley, Peter; Bottrill, Andrew; Padley, Henry J
2004-01-01
In the first part of this study fragmentation patterns from a range of dextran oligomers (containing 4-20 anhydroglucose units) were compared in three different methods of analysis coupled with matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry. Collision-induced-dissociation (CID), prompt in-source decay (ISD) and post-source decay (PSD) all caused cleavage of the glycosidic bonds. Both CID and to a lesser extent ISD caused further cleavage of pyranose rings of the individual sugar residues. There was very little cleavage of pyranose rings detected in the PSD spectrum. Derivatisation of the reducing end-groups of the oligodextrans with 1-phenyl-3-methyl-5-pyrazolone (PMP) restricted cleavage in the MALDI mass spectrometer to the non-reducing end, and further it enabled the saccharides to be separated by HPLC so that a single chain length could be examined as a standard. Maltoheptaose was also used as a standard. In the second part of the study prompt ISD-MALDI mass spectrometry was used to compare the fragmentation of three oligoglucans, dextran, maltodextrin and gamma cyclodextrin, that have different linkages and different secondary structure. The results showed that the degree of fragmentation correlated with the degree of freedom in the saccharide chains in solution determined by NMR. Dextran the most random conformation was fragmented most whereas there was little evidence of any fragments, not even glycosidic bond breakage from cyclodextrin, even when the laser power was increased considerably. The fragmentation pattern of maltodextrin was intermediate. The patterns of fragmentation produced by MALDI mass spectrometry, particularly where standards are available to calibrate the spectrum and the energy of the laser is controlled, can be used to predict the type of linkage present.
Bayat, Parisa; Lesage, Denis; Cole, Richard B
2018-05-29
The dissolution mechanism of oligosaccharides in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl), a solvent used for cellulose dissolution, and the capabilities of low-energy collision induced dissociation (low-energy CID), collision induced dissociation (CID) and higher-energy collision dissociation (HCD) for structural analysis of carbohydrates were investigated. Comparing the spectra obtained using three techniques shows that, generally, when working with mono-lithiated sugars, CID spectra provide more structurally informative fragments, and glycosidic bond cleavage is the main pathway. However, when working with di-lithiated sugars, HCD spectra can be more informative providing predominately cross-ring cleavage fragments. This is because HCD is a non-resonant activation technique and it allows a higher amount of energy to be deposited in a short time, giving access to more endothermic decomposition pathways as well as consecutive fragmentations. The difference in preferred dissociation pathways of mono-lithiated and di-lithiated sugars indicates that the presence of the second lithium strongly influences the relative rate constants for cross-ring cleavages (rearrangement) vs. direct glycosidic bond cleavages, and disfavors the latter. Regarding the dissolution mechanism of sugars in DMAc/LiCl, CID and HCD experiments on di-lithiated and tri-lithiated sugars reveal that intensities of product ions containing two Li + or three Li + , respectively, are higher than those bearing only one Li + . In addition, comparing the fragmentation spectra (both HCD and CID) of LiCl adducted lithiated sugar and NaCl adducted sodiated sugar shows that while, in the latter case, loss of NaCl is dominant, in the former case, loss of HCl occurs preferentially. The compiled evidence implies that there is a strong and direct interaction between lithium and the saccharide during the dissolution process in the DMAc/LiCl solvent system. This article is protected by copyright. All rights reserved.
Butler, William T
2008-01-01
In this brief review, I recount events and scientific endeavors in which I have been privileged to participate. The descriptive information includes discovery and characterization of hydroxylysine glycosides from collagen, isolation of dentin sialoprotein (DSP), investigations on dentin phosphoprotein (DPP), and the discovery of a single gene for both DSP and DPP that requires posttranslational proteolytic cleavage of the parent DSPP molecule to generate the two fragments. Finally, I address our unexpected finding of fragments of DMP1 in bone extracts. These fragments are from the NH2-terminal (37 kDa) and COOH-terminal (57 kDa) regions of DMP1. Our studies showed that, similar to DSPP, DMP1 is proteolytically processed by cleavages at X-Asp bonds.
Distinct hydroxy-radical-induced damage of 3'-uridine monophosphate in RNA: a theoretical study.
Zhang, Ru bo; Eriksson, Leif A
2009-01-01
RNA strand scission and base release in 3'-uridine monophosphate (UMP), induced by OH radical addition to uracil, is studied at the DFT B3LYP/6-31+G(d,p) level in the gas phase and in solution. In particular, the mechanism of hydrogen-atom transfer subsequent to radical formation, from C2' on the sugar to the C6 site on the base, is explored. The barriers of (C2'-)H2'(a) abstraction by the C6 radical site range from 11.2 to 20.0 kcal mol(-1) in the gas phase and 14.1 to 21.0 kcal mol(-1) in aqueous solution, indicating that the local surrounding governs the hydrogen-abstraction reaction in a stereoselective way. The calculated N1-C1' (N1-glycosidic bond) and beta-phosphate bond strengths show that homolytic and heterolytic bond-breaking processes are largely favored in each case, respectively. The barrier for beta-phosphate bond rupture is approximately 3.2-4.0 kcal mol(-1) and is preferred by 8-12 kcal mol(-1) over N1-glycosidic bond cleavage in both the gas phase and solution. The beta-phosphate bond-rupture reactions are exothermal in the gas phase and solution, whereas N1-C1' bond-rupture reactions require both solvation and thermal corrections at 298 K to be energetically favored. The presence of the ribose 2'-OH group and its formation of low-barrier hydrogen bonds with oxygen atoms of the 3'-phosphate linkage are highly important for hydrogen transfer and the subsequent bond-breakage reactions.
The fate of H atom adducts to 3'-uridine monophosphate.
Wang, Ran; Zhang, Ru Bo; Eriksson, Leif A
2010-07-29
The stabilities of the adducts deriving from H free radical addition to the O2, O4, and C5 positions of 3'-uridine monophosphate (3'UMP) are studied by the hybrid density functional B3LYP approach. Upon H atom addition at the O2 position, a concerted low-barrier proton-transfer process will initially occur, followed by the potential ruptures of the N-glycosidic or beta-phosphate bonds. The rupture barriers are strongly influenced by the rotational configuration of the phosphate group at the 3' terminal, and are influenced by bulk solvation effects. The O4-H adduct has the highest thermal stability, as the localization of the unpaired electron does not enable cleavage of either the C1'-N1 or the C3'-O(P) bonds. For the most stable adduct, with H atom added to the C5 position, the rate-controlled step is the H2'a abstraction by the C6 radical site, after which the subsequent strand rupture reactions proceed with low barriers. The main unpaired electron densities are presented for the transient species. Combined with previous results, it is concluded that the H atom adducts are more facile to drive the strand scission rather than N-glycosidic bond ruptures within the nucleic acid bases.
NASA Astrophysics Data System (ADS)
Ben Said, Ridha; Hamed, Arafa I.; Essalah, Khaled; Al-Ayed, Abdullah S.; Boughdiri, Salima; Tangour, Bahoueddine; Kowalczyk, Mariusz; Moldoch, Jaroslaw; Mahalel, Usama A.; Olezek, Wolesow; Stochmal, Anna
2017-10-01
Medemia argun is an ancient endemic palm growing in Nubian Desert of Egypt and Sudan. Liquid chromatography coupled with mass spectrometry in negative ion mode (LC/ESI-MS) has proved to be a potent tool for rapid identification and characterization of complex phytochemicals in male racemes of M. argun. A total of seven compounds were tentatively identified comprising of two C-glycoside acetophenones, along with the known compounds one stilbene derivative and four known flavonol derivatives from 40% methanolic portion. The product ions of acetophenone derivatives [M-H]- were shown to be cross-ring cleavages of the hexoside moiety [M-(90/120)-H]- characteristic for C-glycoside linkage. The position of Csbnd C-linkage was elucidated by DFT study using the Fukui functions and descriptors. The results revealed that hexose was conjugated with aglycones at C3 or C5. In addition, the theoretical antioxidant activity of compounds 6 and 7 was evaluated by using Bond Dissociation Enthalpy (BDE).
Gregg, Katie J; Suits, Michael D L; Deng, Lehua; Vocadlo, David J; Boraston, Alisdair B
2015-10-16
O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
A DNA enzyme with N-glycosylase activity
NASA Technical Reports Server (NTRS)
Sheppard, T. L.; Ordoukhanian, P.; Joyce, G. F.
2000-01-01
In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 10(6)-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of the reaction was confirmed by analysis of the cleavage products by using HPLC and mass spectrometry. The isolation and characterization of an N-glycosylase DNA enzyme demonstrates that single-stranded DNA, like RNA and proteins, can form a complex tertiary structure and catalyze a difficult biochemical transformation. This DNA enzyme provides a new approach for the site-specific cleavage of DNA molecules.
A general synthesis of C8-arylpurine phosphoramidites.
Vongsutilers, Vorasit; Daft, Jonathan R; Shaughnessy, Kevin H; Gannett, Peter M
2009-09-02
A general scheme for the synthesis of C8-arylpurine phosphoramidites has been developed. C8-Arylation of C8-bromo-2'-deoxyguanosine is the key step and has been achieved through the use of a Suzuki coupling. Since the coupling reaction is conducted under aqueous conditions, it is unnecessary to protect and then deprotect the hydroxyl groups, thus saving several steps and improving overall yields. Once the C8-arylgroup is introduced, the glycosidic bond becomes very sensitive to acid catalyzed cleavage. Protection of the amino groups as the corresponding N,N-dimethylformamidine derivative improves stability of the derivatives. Synthetic C8-arylpurines were successfully used to prepare synthetic oligonucleotides.
Bahrami, Yadollah; Franco, Christopher M. M.
2015-01-01
Sea cucumbers produce numerous compounds with a wide range of chemical structural diversity. Among these, saponins are the most diverse and include sulfated, non-sulfated, acetylated and methylated congeners with different aglycone and sugar moieties. In this study, MALDI and ESI tandem mass spectrometry, in the positive ion mode, were used to elucidate the structure of new saponins extracted from the viscera of H. lessoni. Fragmentation of the aglycone provided structural information on the presence of the acetyl group. The presence of the O-acetyl group was confirmed by observing the mass transition of 60 u corresponding to the loss of a molecule of acetic acid. Ion fingerprints from the glycosidic cleavage provided information on the mass of the aglycone (core), and the sequence and type of monosaccharides that constitute the sugar moiety. The tandem mass spectra of the saponin precursor ions [M + Na]+ provided a wealth of detailed structural information on the glycosidic bond cleavages. As a result, and in conjunction with existing literature, we characterized the structure of five new acetylated saponins, Lessoniosides A–E, along with two non-acetylated saponins Lessoniosides F and G at m/z 1477.7, which are promising candidates for future drug development. The presented strategy allows a rapid, reliable and complete analysis of native saponins. PMID:25603350
Blackbody infrared radiative dissociation of oligonucleotide anions.
Klassen, J S; Schnier, P D; Williams, E R
1998-11-01
The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [d(A)7(2-), d(AATTAAT)2-, d(TTAATTA)2-, and d(CCGGCCG)2-] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5') phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)7(2-), d(AATTAAT)2-, and d(TTAATTA)2- has an average activation energy (Ea) of approximately 1.0 eV and a preexponential factor (A) of 10(10) s-1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2-. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 +/- 0.03 eV and A = 10(13.3 +/- 0.3) s-1. No loss of thymine was observed for mixed adenine-thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)7(2-) over a 600 s reaction delay at 207 degrees C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors < or = 10(13) s-1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction.
Blackbody Infrared Radiative Dissociation of Oligonucleotide Anions
Klassen, John S.; Schnier, Paul D.; Williams, Evan R.
2005-01-01
The dissociation kinetics of a series of doubly deprotonated oligonucleotide 7-mers [ d(A)72-, d(AATTAAT)2−, d(TTAATTA)2−, and d(CCGGCCG)2−] were measured using blackbody infrared radiative dissociation in a Fourier-transform mass spectrometer. The oligonucleotides dissociate first by cleavage at the glycosidic bond leading to the loss of a neutral nucleobase, followed by cleavage at the adjacent (5′) phosphodiester bond to produce structurally informative a-base and w type ions. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained for the loss of base. The measured Arrhenius parameters are dependent on the identity of the nucleobase. The process involving the loss of an adenine base from the dianions, d(A)72-, d(AATTAAT)2−, and d(TTAATTA)2− has an average activation energy (Ea) of ~1.0 eV and a preexponential factor (A) of 1010 s−1. Both guanine and cytosine base loss occurs for d(CCGGCCG)2−. The average Arrhenius parameters for the loss of cytosine and guanine are Ea = 1.32 ± 0.03 eV and A = 1013.3±0.3 s−1. No loss of thymine was observed for mixed adenine–thymine oligonucleotides. Neither base loss nor any other fragmentation reactions occur for d(T)72- over a 600 s reaction delay at 207 °C, a temperature close to the upper limit accessible with our instrument. The Arrhenius parameters indicate that the preferred cleavage sites for mixed oligonucleotides of similar mass-to-charge ratio will be strongly dependent on the internal energy of the precursor ions. At low internal energies (effective temperatures below 475 K), loss of adenine and subsequent cleavage of the adjacent phosphoester bonds will dominate, whereas at higher energies, preferential cleavage at C and G residues will occur. The magnitude of the A factors ≤1013 s−1 measured for the loss of the three nucleobases (A, G, and C) is indicative of an entropically neutral or disfavored process as the rate limiting step for this reaction. PMID:9794082
Hehemann, Jan-Hendrik; Smyth, Leo; Yadav, Anuj; Vocadlo, David J.; Boraston, Alisdair B.
2012-01-01
Agars are abundant polysaccharides from marine red algae, and their chemical structure consists of alternating d-galactose and 3,6-anhydro-l-galactose residues, the latter of which are presumed to make the polymer recalcitrant to degradation by most terrestrial bacteria. Here we study a family 117 glycoside hydrolase (BpGH117) encoded within a recently discovered locus from the human gut bacterium Bacteroides plebeius. Consistent with this locus being involved in agarocolloid degradation, we show that BpGH117 is an exo-acting 3,6-anhydro-α-(1,3)-l-galactosidase that removes the 3,6-anhydrogalactose from the non-reducing end of neoagaro-oligosaccharides. A Michaelis complex of BpGH117 with neoagarobiose reveals the distortion of the constrained 3,6-anhydro-l-galactose into a conformation that favors catalysis. Furthermore, this complex, supported by analysis of site-directed mutants, provides evidence for an organization of the active site and positioning of the catalytic residues that are consistent with an inverting mechanism of catalysis and suggests that a histidine residue acts as the general acid. This latter feature differs from the vast majority of glycoside hydrolases, which use a carboxylic acid, highlighting the alternative strategies that enzymes may utilize in catalyzing the cleavage of glycosidic bonds. PMID:22393053
Ardèvol, Albert; Biarnés, Xevi; Planas, Antoni; Rovira, Carme
2010-11-17
The mechanism of glycosidic bond cleavage by glycosidases involves substrate ring distortions in the Michaelis complex that favor catalysis. Retaining β-mannosidases bind the substrate in a (1)S(5) conformation, and recent experiments have proposed an unusual substrate conformational pathway ((1)S(5) → B(2,5) → (O)S(2)) for the hydrolysis reaction. By means of Car-Parrinello metadynamics simulations, we have obtained the conformational free-energy surface (FES) of a β-d-mannopyranose molecule associated with the ideal Stoddart conformational diagram. We have found that (1)S(5) is among the most stable conformers and simultaneously is the most preactivated conformation in terms of elongation/shortening of the C1-O1/C1-O5 bonds, C1-O1 orientation, and charge development at the anomeric carbon. Analysis of the computed FES gives support to the proposed (1)S(5) → B(2,5) → (O)S(2) catalytic itinerary, showing that the degree of preactivation of the substrate in glycoside hydrolases (GHs) is related to the properties of an isolated sugar ring. We introduce a simple preactivation index integrating several structural, electronic, and energetic properties that can be used to predict the conformation of the substrate in the Michaelis complex of any GH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Tasuku; Saikawa, Kyo; Kim, Seonah
2014-04-25
Graphical abstract: - Highlights: • HypBA1 β-L-arabinofuranosidase belongs to glycoside hydrolase family 127. • Crystal structure of HypBA1 was determined. • HypBA1 consists of a catalytic barrel and two additional β-sandwich domains. • The active site contains a Zn{sup 2+} coordinated by glutamate and three cysteines. • A possible reaction mechanism involving cysteine as the nucleophile is proposed. - Abstract: Enzymes acting on β-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of β-L-arabinofuranosyl oligosaccharides in plant cells. Recently, a β-L-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system ofmore » hydroxyproline-linked β-L-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and β-L-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional β-sandwich domains, with one β-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn{sup 2+} coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the β-L-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.« less
Nikitin, D; Choukourov, A; Titov, V; Kuzmicheva, L; Lipatova, I; Mezina, E; Aleksandriiskii, V; Shelemin, A; Khalakhan, I; Slavinska, D; Biederman, H
2016-12-10
Atmospheric air plasma treatment of chitosan solutions leads to degradation of chitosan molecules by OH radicals and is accompanied by a predominant cleavage of glycosidic linkages and by a decrease of the molecular weight. The degradation proceeds via first order kinetics with the rate constant of (5.73±0.22)×10(-6)s(-1) and the energetic yield of chitosan bond scission of (2.4±0.2)×10(-8)mol/J. Products of degradation together with intact chitosan molecules adsorb and form coatings on polypropylene foils immersed into the solution that is being plasma treated. The plasma treatment results in strong binding of chitosan to polypropylene due to the formation of covalent bonds between the activated polymer surface and chitosan molecules. Plasma-driven crosslinking is responsible for the accumulation of compressive stress which leads to the development of buckling instabilities in the chitosan coatings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu
2017-01-01
More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304
Yokosuka, Akihito; Sano, Tomoe; Hashimoto, Ken; Sakagami, Hiroshi; Mimaki, Yoshihiro
2009-12-01
Three new triterpene glycosides (1-3), together with eight known triterpene glycosides (4-11), were isolated from the whole plant of Anemone hupehensis var. japonica (Ranunculaceae). The structures of the new compounds were determined on the basis of spectroscopic analysis and the results of hydrolytic cleavage experiments. The isolated compounds were evaluated for their cytotoxic activities against HL-60 human leukemia cells, HSC-2 human oral squamous carcinoma cells, HSC-4 human oral squamous carcinoma cells, and A549 human lung adenocarcinoma cells.
Ryan, Sinéad M.; Fitzgerald, Gerald F.; van Sinderen, Douwe
2005-01-01
An operon involved in fructooligosaccharide breakdown was identified in the genome of Bifidobacterium breve UCC2003. This 2.6-kb transcriptional unit was comprised of three genes that encoded a putative permease, a conserved hypothetical protein, and a β-fructofuranosidase. Active transcription of the operon was observed when B. breve UCC2003 was grown on sucrose or Actilight, while transcription appeared to be repressed when the organism was grown on glucose, fructose, a combination of glucose and sucrose, or a combination of fructose and sucrose. The β-fructofuranosidase encoded by this operon was purified and biochemically characterized. The optimum pH and temperature for catalytic activity were determined to be pH 6.0 and 37°C, respectively, and there was a dependence on bivalent cations, particularly manganese. The Km and Vmax values for sucrose hydrolysis were determined to be 25 ± 2 mM and 24 ± 3 μmol min−1 mg−1, respectively. Interestingly, the enzyme was shown to specifically catalyze cleavage of the β(2-1) glycosidic bond between glucose and its neighboring fructose moiety in sucrose and other fructooligosaccharides with a relatively low degree of polymerization, and there was no detectable activity towards the β(2-1) glycosidic bond between two fructose moieties within the same substrate. To our knowledge, such an enzymatic activity has not previously been described in bifidobacteria or other gram-positive bacteria. PMID:16000751
Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms.
Saito, Minoru; Okazaki, Isao
2009-12-01
The Psi and Phi torsion angles around glycosidic bonds in a glycoside chain are the most important determinants of the conformation of a glycoside chain. We determined force-field parameters for Psi and Phi torsion angles around a glycosidic bond bridged by a sulfur atom, as well as a bond bridged by an oxygen atom as a preparation for the next study, i.e., molecular dynamics free energy calculations for protein-sugar and protein-inhibitor complexes. First, we extracted the Psi or Phi torsion energy component from a quantum mechanics (QM) total energy by subtracting all the molecular mechanics (MM) force-field components except for the Psi or Phi torsion angle. The Psi and Phi energy components extracted (hereafter called "the remaining energy components") were calculated for simple sugar models and plotted as functions of the Psi and Phi angles. The remaining energy component curves of Psi and Phi were well represented by the torsion force-field functions consisting of four and three cosine functions, respectively. To confirm the reliability of the force-field parameters and to confirm its compatibility with other force-fields, we calculated adiabatic potential curves as functions of Psi and Phi for the model glycosides by adopting the Psi and Phi force-field parameters obtained and by energetically optimizing other degrees of freedom. The MM potential energy curves obtained for Psi and Phi well represented the QM adiabatic curves and also these curves' differences with regard to the glycosidic oxygen and sulfur atoms. Our Psi and Phi force-fields of glycosidic oxygen gave MM potential energy curves that more closely represented the respective QM curves than did those of the recently developed GLYCAM force-field. (c) 2009 Wiley Periodicals, Inc.
A coarse-grained model for synergistic action of multiple enzymes on cellulose
Asztalos, Andrea; Daniels, Marcus; Sethi, Anurag; ...
2012-08-01
In this study, degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing -1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, -glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose,more » several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. As a result, we present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. In conclusion, our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures the endo-exo synergism of cellulase enzyme cocktails. This model constitutes a critical step towards testing hypotheses and understanding approaches for maximizing synergy and substrate properties with a goal of cost effective enzymatic hydrolysis.« less
Qi, Lian-Wen; Chen, Chun-Yun; Li, Ping
2009-10-01
A fast liquid chromatography method with diode-array detection (DAD) and time-of-flight mass spectrometry (TOF-MS) has been developed for analysis of constituents in Flos Lonicerae Japonicae (FLJ), a traditional Chinese medicine derived from the flower bud of Lonicera japonica. The chromatographic analytical time decreased to 25 min without sacrificing resolution using a column packed with 1.8-microm porous particles (4.6 x 50 mm), three times faster than the performance of conventional 5.0-microm columns (4.6 x 150 mm). Four major groups of compounds previously isolated from FLJ were structurally characterized by DAD-TOF-MS: iridoid glycosides showed maximum UV absorption at 240 nm; phenolic acids at 217, 242, and 326 nm; flavonoids at 255 and 355 nm; while saponins had no absorption. In electrospray ionization (ESI)-TOF-MS experiments, elimination of a glucose unit (162 Da), and successive losses of H(2)O, CH(3)OH and CO, were generally observed in iridoid glycosides; saponins were characterized by a series of identical aglycone ions; phenolic acids typically generated a base peak at [M-H-caffeoyl](-) by loss of a caffeic acid unit (162 Da) and several marked quinic acid moiety ions; cleavage of the glycosidic bond (loss of 162 or 308 Da), subsequent losses of H(2)O, CO, RDA and C-ring fragmentation were the most possible fragmentation pathways for flavonoids. By accurate mass measurements within 4 ppm error for each molecular ion and subsequent fragment ions, as well as the 'full mass spectral' information of TOF-MS, a total of 41 compounds including 13 iridoid glycosides, 11 phenolic acids, 7 saponins, and 10 flavonoids were identified in a methanolic extract of FLJ. Copyright (c) 2009 John Wiley & Sons, Ltd.
Advantages of a distant cellulase catalytic base.
Burgin, Tucker; Ståhlberg, Jerry; Mayes, Heather B
2018-03-30
The inverting glycoside hydrolase Trichoderma reesei ( Hypocrea jecorina ) Cel6A is a promising candidate for protein engineering for more economical production of biofuels. Until recently, its catalytic mechanism had been uncertain: The best candidate residue to serve as a catalytic base, Asp-175, is farther from the glycosidic cleavage site than in other glycoside hydrolase enzymes. Recent unbiased transition path sampling simulations revealed the hydrolytic mechanism for this more distant base, employing a water wire; however, it is not clear why the enzyme employs a more distant catalytic base, a highly conserved feature among homologs across different kingdoms. In this work, we describe molecular dynamics simulations designed to uncover how a base with a longer side chain, as in a D175E mutant, affects procession and active site alignment in the Michaelis complex. We show that the hydrogen bond network is tuned to the shorter aspartate side chain, and that a longer glutamate side chain inhibits procession as well as being less likely to adopt a catalytically productive conformation. Furthermore, we draw comparisons between the active site in Trichoderma reesei Cel6A and another inverting, processive cellulase to deduce the contribution of the water wire to the overall enzyme function, revealing that the more distant catalytic base enhances product release. Our results can inform efforts in the study and design of enzymes by demonstrating how counterintuitive sacrifices in chemical reactivity can have worthwhile benefits for other steps in the catalytic cycle. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Lioe, Hadi; Laskin, Julia; Reid, Gavin E; O'Hair, Richard A J
2007-10-25
The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes are much slower compared to amide bond cleavage, explaining why these selective bond cleavages are not observed if fragmentation is performed under mobile proton conditions. This study further affirms that fragmentation of peptide ions in the gas phase are predominantly governed by entropic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, Vladimir I.; Lashkov, Alexander A.; Gabdoulkhakov, Azat G.
2007-10-01
S. typhimurium uridine phosphorylase has been isolated and crystallized in the presence of ligand. Uridine phosphorylase (UPh; EC 2.4.2.3) is a member of the pyrimidine nucleoside phosphorylase family of enzymes which catalyzes the phosphorolytic cleavage of the C—N glycoside bond of uridine, with the formation of ribose 1-phosphate and uracil. This enzyme has been shown to be important in the activation and catabolism of fluoropyrimidines. Modulation of its enzymatic activity may affect the therapeutic efficacy of chemotherapeutic agents. The structural investigation of the bacterial uridine phosphorylases, both unliganded and complexed with substrate/product analogues and inhibitors, may help in understanding themore » catalytic mechanism of the phosphorolytic cleavage of uridine. Salmonella typhimurium uridine phosphorylase has been crystallized with 2,2′-anhydrouridine. X-ray diffraction data were collected to 2.15 Å. Preliminary analysis of the diffraction data indicates that the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.52, b = 123.98, c = 133.52 Å. The solvent content is 45.51%, assuming the presence of one hexamer molecule per asymmetric unit.« less
Upreti, Mani; Dubois, Grant; Prakash, Indra
2012-04-05
The structure activity relationship between the C₁₆-C₁₇ methylene double bond on the aglycone of steviol glycosides and the corresponding impact on their sweet taste has been reported here for the first time. It has been observed that converting stevioside and rebaudioside A to their corresponding ketones by switching the doubly bonded methylene on C-17 for a ketone group actually removes the sweet taste properties of these molecules completely. Regenerating the original molecules tends to restore the sweet taste of both the steviol glycosides. Thus this C₁₆-C₁₇ methylene double bond in rebaudioside A and stevioside can be regarded as a pharmacophore essential for the sweetness property of these molecules.
Es-Safi, Nour-Eddine; Kerhoas, Lucien; Ducrot, Paul-Henri
2007-01-01
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds. Copyright (c) 2007 John Wiley & Sons, Ltd.
Atrous, Hager; Benbettaieb, Nasreddine; Hosni, Faouzi; Danthine, Sabine; Blecker, Christophe; Attia, Hamadi; Ghorbel, Dorra
2015-09-01
Wheat starch was treated by different γ-radiation doses (3, 5, 10, 20, 35 and 50 kGy). The effects of γ-radiation on structural, thermal, physicochemical, morphological and rheological properties of wheat starch were studied. The presence of free radicals after γ-radiation treatment, which number decreased with time was confirmed. Structural analysis revealed decreases in the intensities of the O-H and C-H stretches and glycosidic linkages indicating the depolymerization of amylose and probably amylopectin into shorter chain molecules, but showed that γ-radiation treatment did not affect the crystalline structure. Differential scanning calorimetric (DSC) thermograms showed the absence of significant differences in the gelatinization temperatures, as well as the corresponding transition enthalpies since the DSC parameters are related to the crystalline ordering within the granules. Apparent amylose content decreased linearly with increasing irradiation dose leading to an increase in water solubility index. An increase in the swelling power was observed after irradiation treatment until 20 kGy, followed by a rapid decrease at higher doses. Microscopic observations showed that the effect of γ-radiation was more visible on starch pastes than on starch granules. Rheological properties of the starch pastes decreased with increasing irradiation dose as a result of glycosidic bond cleavage. Copyright © 2015 Elsevier B.V. All rights reserved.
Relaxation processes in disaccharide sugar glasses
NASA Astrophysics Data System (ADS)
Hwang, Yoon-Hwae; Kwon, Hyun-Joung; Seo, Jeong-Ah; Shin, Dong-Myeong; Ha, Ji-Hye; Kim, Hyung-Kook
2013-02-01
We represented relaxation processes of disaccharide sugars (anhydrous trehalose and maltose) in supercooled and glassy states by using several spectroscopy techniques which include a broadband dielectric loss spectroscopy, photon correlation spectroscopy and X-ray diffraction (Retvield analysis) methods which are powerful tools to measure the dynamics in glass forming materials. In a dielectric loss spectroscopy study, we found that anhydrous trehalose and maltose glasses have an extra relaxation process besides α-, JG β- and γ-relaxations which could be related to a unique property of glycoside bond in disaccharides. In photon correlation spectroscopy study, we found an interesting compressed exponential relaxation at temperatures above 140°C. The q-1 dependence of its relaxation time corresponds to an ultraslow ballistic motion due to the local structure rearrangements. In the same temperature range, we found the glycosidic bond structure changes in trehalose molecule from the Raman and the Retvield X-ray diffraction measurements indicating that the observed compressed exponential relaxation in supercooled liquid trehalose could be resulted in the glycosidic bond structure change. Therefore, the overall results from this study might support the fact that the superior bioprotection ability of disaccharide sugar glasses might originate from this unique relaxation process of glycosidic bond.
Chemical synthesis of benzamide riboside.
Krohn, K; Dörner, H; Zukowski, M
2002-04-01
The C-glycosidic nicotinamide riboside analogue (1) was prepared by reaction of ribonolactone 16 with the lithiated 2-oxazoline 13 followed by triethylsilane reduction of the hemiacetal 17 to the tetrahydrofurane 18. Cleavage of the oxazoline group in 20 to the acid 21, conversion of the acid chloride 22 to the amide 23, and hydrogenative debenzylation afforded the benzamide riboside 1. Phosphorylation of the acetonide 26 and acid-catalyzed cleavage of the resulting ketal yielded the pseudonucleotide 27.
Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng
2017-09-13
Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.
Sang-aroon, Wichien; Amornkitbamrung, Vittaya; Ruangpornvisuti, Vithaya
2013-12-01
In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway. In all reaction pathways, cleavage of the peptide bond at the amino-side occurred less preferentially than at the carboxy-side. The overall reaction rate constants of peptide bond cleavage of the Asp residue at the carboxy-side for the assisted system were, in increasing order: concerted < step-wise < cyclic intermediate.
NASA Astrophysics Data System (ADS)
Chiantore, Oscar; Riedo, Chiara; Scalarone, Dominique
2009-07-01
Plant gums are complex polysaccharides used in the field of cultural heritage especially as binding media. Classification of polysaccharides may be achieved on the basis of monosaccharides composition after cleavage of glycosidic bond. Characterization of plant gums in works of art is complicated by the necessity of to use a method minimally invasive and requiring a small mount of sample. Pyrolisys is an useful method to obtain polysaccharides decomposition and generally pyrolysis products can be identified by the use of gas chromatography-mass spectrometry. This paper describes a method where two plant gums, arabic and tragacanth, were pyrolized in presence of silylating agents (HMDS e BSTFA alone and with TMCS as catalyst) using an on-line Py-GC/MS apparatus. Some characteristic trimethylsilyl derivatives of monosaccharides were identified on the basis of mass spectra. The presence of characteristic pyrolysis products of sugars allows to distinguish the two gums.
Degradation chemistry of gemcitabine hydrochloride, a new antitumor agent.
Anliker, S L; McClure, M S; Britton, T C; Stephan, E A; Maple, S R; Cooke, G G
1994-05-01
The anti-tumor agent gemcitabine hydrochloride, a beta-difluoronucleoside, is remarkably stable in the solid state. In 0.1 N HCI solution at 40 degrees C, deamination of gemcitabine occurs, yielding its uridine analogue. Approximately 86% of the initial gemcitabine remains after 4 weeks under these conditions. Cleavage of the N-glycosidic bond of gemcitabine or conversion to its alpha-anomer in 0.1 N HCI solution is not observed over a 4-week period. However, this work has shown that gemcitabine hydrochloride anomerizes in 0.1 N NaOH at 40 degrees C. Approximately 72% of the initial gemcitabine remains after 4 weeks under the basic conditions used. Uridine hydrolysis products are also formed under these conditions. The anormerization reaction, which is unusual under basic conditions, has been confirmed by characterization of the chromatographically isolated alpha-anomer by NMR and mass spectrometry. A mechanism involving an acyclic intermediate is proposed.
Chen, Yue; Sakaki, Shigeyoshi
2017-04-03
The recently reported high reactivity of the Mo-Mo quintuple bond of Mo 2 (N ∧ N) 2 (1) {N ∧ N = μ-κ 2 -CH[N(2,6-iPr 2 C 6 H 3 )] 2 } in the H-H σ-bond cleavage was investigated. DFT calculations disclosed that the H-H σ-bond cleavage by 1 occurs with nearly no barrier to afford the cis-dihydride species followed by cis-trans isomerization to form the trans-dihydride product, which is consistent with the experimental result. The O-H and C-H bond cleavages by 1 were computationally predicted to occur with moderate (ΔG° ⧧ = 9.0 kcal/mol) and acceptable activation energies (ΔG° ⧧ = 22.5 kcal/mol), respectively, suggesting that the Mo-Mo quintuple bond can be applied to various σ-bond cleavages. In these σ-bond cleavage reactions, the charge-transfer (CT Mo→XH ) from the Mo-Mo quintuple bond to the X-H (X = H, C, or O) bond and that (CT XH→Mo ) from the X-H bond to the Mo-Mo bond play crucial roles. Though the HOMO (dδ-MO) of 1 is at lower energy and the LUMO + 2 (dδ*-MO) of 1 is at higher energy than those of RhCl(PMe 3 ) 2 (LUMO and LUMO + 1 of 1 are not frontier MO), the H-H σ-bond cleavage by 1 more easily occurs than that by the Rh complex. Hence, the frontier MO energies are not the reason for the high reactivity of 1. The high reactivity of 1 arises from the polarization of dδ-type MOs of the Mo-Mo quintuple bond in the transition state. Such a polarized electronic structure enhances the bonding overlap between the dδ-MO of the Mo-Mo bond and the σ*-antibonding MO of the X-H bond to facilitate the CT Mo→XH and reduce the exchange repulsion between the Mo-Mo bond and the X-H bond. This polarized electronic structure of the transition state is similar to that of a frustrated Lewis pair. The easy polarization of the dδ-type MOs is one of the advantages of the metal-metal multiple bond, because such polarization is impossible in the mononuclear metal complex.
Westereng, Bjørge; Arntzen, Magnus Ø; Agger, Jane Wittrup; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H
2017-01-01
Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging. The changes in physicochemical properties that are associated with oxidation need to be considered when choosing analytical approaches. C1 oxidation leads to a sugar that is no longer reducing but instead has an acidic functionality, whereas C4 oxidation leads to products that are inherently labile at high and low pH and that exist in a keto-gemdiol equilibrium that is strongly shifted toward the gemdiol in aqueous solutions. Partial degradation of C4-oxidized products leads to the formation of native products, which could explain why some authors claim to have observed glycoside hydrolase activity for LPMOs. Notably, apparent glycoside hydrolase activity may also be due to small amounts of contaminating glycoside hydrolases since these normally have much higher catalytic rates than LPMOs. The low catalytic turnover rates of LPMOs necessitate the use of sensitive product detection methods, which limits the analytical possibilities considerably. Modern liquid chromatography and mass spectrometry have become essential tools for evaluating LPMO activity, and this chapter provides an overview of available methods together with a few novel tools. The methods described constitute a suite of techniques for analyzing oxidized carbohydrate products, which can be applied to LPMOs as well as other carbohydrate-active redox enzymes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, D.; Macauley, M; Vocadlo, D
2009-01-01
Endo-?-d-glucosaminidases from family 85 of glycoside hydrolases (GH85 endohexosaminidases) act to cleave the glycosidic linkage between the two N-acetylglucosamine units that make up the chitobiose core of N-glycans. Endohexosaminidase D (Endo-D), produced by Streptococcus pneumoniae, is believed to contribute to the virulence of this organism by playing a role in the deglycosylation of IgG antibodies. Endohexosaminidases have received significant attention for this reason and, moreover, because they are powerful tools for chemoenzymatic synthesis of proteins having defined glycoforms. Here we describe mechanistic and structural studies of the catalytic domain (SpGH85) of Endo-D that provide compelling support for GH85 enzymes usingmore » a catalytic mechanism involving substrate-assisted catalysis. Furthermore, the structure of SpGH85 in complex with the mechanism-based competitive inhibitor NAG-thiazoline (Kd = 28 ?m) provides a coherent rationale for previous mutagenesis studies of Endo-D and other related GH85 enzymes. We also find GH85, GH56, and GH18 enzymes have a similar configuration of catalytic residues. Notably, GH85 enzymes have an asparagine in place of the aspartate residue found in these other families of glycosidases. We propose that this residue, as the imidic acid tautomer, acts analogously to the key catalytic aspartate of GH56 and GH18 enzymes. This topographically conserved arrangement of the asparagine residue and a conserved glutamic acid, coupled with previous kinetic studies, suggests these enzymes may use an unusual proton shuttle to coordinate effective general acid and base catalysis to aid cleavage of the glycosidic bond. These results collectively provide a blueprint that may be used to facilitate protein engineering of these enzymes to improve their function as biocatalysts for synthesizing glycoproteins having defined glycoforms and also may serve as a guide for generating inhibitors of GH85 enzymes.« less
Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R Ogorzalek; Julian, Ryan R; Loo, Joseph A
2015-11-15
The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.
Unusual enzymatic glycoside cleavage mechanisms.
Jongkees, Seino A K; Withers, Stephen G
2014-01-21
Over the sixty years since Koshland initially formulated the classical mechanisms for retaining and inverting glycosidases, researchers have assembled a large body of supporting evidence and have documented variations of these mechanisms. Recently, however, researchers have uncovered a number of completely distinct mechanisms for enzymatic cleavage of glycosides involving elimination and/or hydration steps. In family GH4 and GH109 glycosidases, the reaction proceeds via transient NAD(+)-mediated oxidation at C3, thereby acidifying the proton at C2 and allowing for elimination across the C1-C2 bond. Subsequent Michael-type addition of water followed by reduction at C3 generates the hydrolyzed product. Enzymes employing this mechanism can hydrolyze thioglycosides as well as both anomers of activated substrates. Sialidases employ a conventional retaining mechanism in which a tyrosine functions as the nucleophile, but in some cases researchers have observed off-path elimination end products. These reactions occur via the normal covalent intermediate, but instead of an attack by water on the anomeric center, the catalytic acid/base residue abstracts an adjacent proton. These enzymes can also catalyze hydration of the enol ether via the reverse pathway. Reactions of α-(1,4)-glucan lyases also proceed through a covalent intermediate with subsequent abstraction of an adjacent proton to give elimination. However, in this case, the departing carboxylate "nucleophile" serves as the base in a concerted but asynchronous syn-elimination process. These enzymes perform only elimination reactions. Polysaccharide lyases, which act on uronic acid-containing substrates, also catalyze only elimination reactions. Substrate binding neutralizes the charge on the carboxylate, which allows for abstraction of the proton on C5 and leads to an elimination reaction via an E1cb mechanism. These enzymes can also cleave thioglycosides, albeit slowly. The unsaturated product of polysaccharide lyases can then serve as a substrate for a hydration reaction carried out by unsaturated glucuronyl hydrolases. This hydration is initiated by protonation at C4 and proceeds in a Markovnikov fashion rather than undergoing a Michael-type addition, giving a hemiketal at C5. This hemiketal then undergoes a rearrangement that results in cleavage of the anomeric bond. These enzymes can also hydrolyze thioglycosides efficiently and slowly turn over substrates with inverted anomeric configuration. The mechanisms discussed in this Account proceed through transition states that involve either positive or negative charges, unlike the exclusively cationic transition states of the classical Koshland retaining and inverting glycosidases. In addition, the distribution of this charge throughout the substrate can vary substantially. The nature of these mechanisms and their transition states means that any inhibitors or inactivators of these unusual enzymes probably differ from those presently used for Koshland retaining or inverting glycosidases.
Microbial cleavage of organic C-S bonds
Kilbane, J.J. II.
1994-10-25
A microbial process is described for selective cleavage of organic C-S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials. Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C-S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.
Microbial cleavage of organic C-S bonds
Kilbane, II, John J.
1994-01-01
A microbial process for selective cleavage of organic C--S bonds which may be used for reducing the sulfur content of sulfur-containing organic carbonaceous materials, Microorganisms of Rhodococcus rhodochrous and Bacillus sphaericus have been found which have the ability of selective cleavage of organic C--S bonds. Particularly preferred microorganisms are Rhodococcus rhodochrous strain ATCC 53968 and Bacillus sphaericus strain ATCC 53969 and their derivatives.
Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi
2018-02-16
A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structual Effects of Cytidine 2^' Ribose Modifications as Determined by Irmpd Action Spectroscopy
NASA Astrophysics Data System (ADS)
Hamlow, Lucas; He, Chenchen; Fan, Lin; Wu, Ranran; Yang, Bo; Rodgers, M. T.; Berden, Giel; Oomens, J.
2015-06-01
Modified nucleosides, both naturally occurring and synthetic play an important role in understanding and manipulating RNA and DNA. Naturally occurring modified nucleosides are commonly found in functionally important regions of RNA and also affect antibiotic resistance or sensitivity. Synthetic modifications of nucleosides such as fluorinated and arabinosyl nucleosides have found uses as anti-virals and chemotherapy agents. Understanding the effect that modifications have on structure and glycosidic bond stability may lend insight into the functions of these modified nucleosides. Modifications such as the naturally occurring 2^'-O-methylation and the synthetic 2^'-fluorination are believed to help stabilize the nucleoside through the glycosidic bond stability and intramolecular hydrogen bonding. Changing the sugar from ribose to arabinose alters the stereochemistry at the 2^' position and thus shifts the 3D orientation of the 2^'-hydroxyl group, which also affects intramolecular hydrogen bonding and glycosidic bond stability. The structures of 2^'-deoxy-2^'-fluorocytidine, 2^'-O-methylcytidine and cytosine arabinoside are examined in the current work by measuring the infrared spectra in the IR fingerprint region using infrared multiple photon dissociation (IRMPD) action spectroscopy. The structures accessed in the experiments were determined via comparison of the measured IRMPD action spectra to the theoretical linear IR spectra determined by density functional theory and molecular modeling for the stable low-energy structures. Although glycosidic bond stability cannot be quantitatively determined from this data, complementary TCID studies will establish the effect of these modifications. Comparison of these modified nucleosides with their RNA and DNA analogues will help elucidate differences in their intrinsic chemistry.
Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N
2016-11-16
Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.
Checler, F; Vincent, J P; Kitabgi, P
1983-08-01
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.
Xylose Migration During Tandem Mass Spectrometry of N-Linked Glycans
NASA Astrophysics Data System (ADS)
Hecht, Elizabeth S.; Loziuk, Philip L.; Muddiman, David C.
2017-04-01
Understanding the rearrangement of gas-phase ions via tandem mass spectrometry is critical to improving manual and automated interpretation of complex datasets. N-glycan analysis may be carried out under collision induced (CID) or higher energy collision dissociation (HCD), which favors cleavage at the glycosidic bond. However, fucose migration has been observed in tandem MS, leading to the formation of new bonds over four saccharide units away. In the following work, we report the second instance of saccharide migration ever to occur for N-glycans. Using horseradish peroxidase as a standard, the beta-1,2 xylose was observed to migrate from a hexose to a glucosamine residue on the (Xyl)Man3GlcNac2 glycan. This investigation was followed up in a complex N-linked glycan mixture derived from stem differentiating xylem tissue, and the rearranged product ion was observed for 75% of the glycans. Rearrangement was not favored in isomeric glycans with a core or antennae fucose and unobserved in glycans predicted to have a permanent core-fucose modification. As the first empirical observation of this rearrangement, this work warrants dissemination so it may be searched in de novo sequencing glycan workflows.
Ab Initio energetics of SiO bond cleavage.
Hühn, Carolin; Erlebach, Andreas; Mey, Dorothea; Wondraczek, Lothar; Sierka, Marek
2017-10-15
A multilevel approach that combines high-level ab initio quantum chemical methods applied to a molecular model of a single, strain-free SiOSi bridge has been used to derive accurate energetics for SiO bond cleavage. The calculated SiO bond dissociation energy and the activation energy for water-assisted SiO bond cleavage of 624 and 163 kJ mol -1 , respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H 2 O-assisted SiO bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero-point vibrational contribution is in the range of -5 to 19 kJ mol -1 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Perić-Hassler, Lovorka; Hansen, Halvor S; Baron, Riccardo; Hünenberger, Philippe H
2010-08-16
Explicit-solvent molecular dynamics (MD) simulations of the 11 glucose-based disaccharides in water at 300K and 1bar are reported. The simulations were carried out with the GROMOS 45A4 force-field and the sampling along the glycosidic dihedral angles phi and psi was artificially enhanced using the local elevation umbrella sampling (LEUS) method. The trajectories are analyzed in terms of free-energy maps, stable and metastable conformational states (relative free energies and estimated transition timescales), intramolecular H-bonds, single molecule configurational entropies, and agreement with experimental data. All disaccharides considered are found to be characterized either by a single stable (overwhelmingly populated) state ((1-->n)-linked disaccharides with n=1, 2, 3, or 4) or by two stable (comparably populated and differing in the third glycosidic dihedral angle omega ; gg or gt) states with a low interconversion barrier ((1-->6)-linked disaccharides). Metastable (anti-phi or anti-psi) states are also identified with relative free energies in the range of 8-22 kJ mol(-1). The 11 compounds can be classified into four families: (i) the alpha(1-->1)alpha-linked disaccharide trehalose (axial-axial linkage) presents no metastable state, the lowest configurational entropy, and no intramolecular H-bonds; (ii) the four alpha(1-->n)-linked disaccharides (n=1, 2, 3, or 4; axial-equatorial linkage) present one metastable (anti-psi) state, an intermediate configurational entropy, and two alternative intramolecular H-bonds; (iii) the four beta(1-->n)-linked disaccharides (n=1, 2, 3, or 4; equatorial-equatorial linkage) present two metastable (anti-phi and anti-psi) states, an intermediate configurational entropy, and one intramolecular H-bond; (iv) the two (1-->6)-linked disaccharides (additional glycosidic dihedral angle) present no (isomaltose) or a pair of (gentiobiose) metastable (anti-phi) states, the highest configurational entropy, and no intramolecular H-bonds. The observed conformational preferences appear to be dictated by four main driving forces (ring conformational preferences, exo-anomeric effect, steric constraints, and possible presence of a third glycosidic dihedral angle), leaving a secondary role to intramolecular H-bonding and specific solvation effects. In spite of the weak conformational driving force attributed to solvent-exposed H-bonds in water (highly polar protic solvent), intramolecular H-bonds may still have a significant influence on the physico-chemical properties of the disaccharide by decreasing its hydrophilicity. Along with previous work, the results also complete the suggestion of a spectrum of approximate transition timescales for carbohydrates up to the disaccharide level, namely: approximately 30 ps (hydroxyl groups), approximately 1 ns (free lactol group, free hydroxymethyl groups, glycosidic dihedral angleomega in (1-->6)-linked disaccharides), approximately 10 ns to 2 micros (ring conformation, glycosidic dihedral angles phi and psi). The calculated average values of the glycosidic torsional angles agree well with the available experimental data, providing validation for the force-field and simulation methodology employed. Copyright 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravit, Nancy G.; Schmidt, Katherine A.
The patent application relates to isolated polypeptides that specifically cleave non-glycosidic ether bonds between lignins or derivatives thereof and saccharides, and to cDNAs encoding the polypeptides. The patent application also relates to nucleic acid constructs, expression vectors and host cells comprising the cDNAs, as well as methods of producing and using the isolated polypeptides for treating pulp and biomass to increase soluble saccharide yield and enrich lignin fractions.
NASA Astrophysics Data System (ADS)
Satoh, Tetsuya; Miura, Masahiro
Aromatic compounds having oxygen-containing substituents such as phenols, phenyl ketones, benzyl alcohols, and benzoic acids undergo regioselective arylation and vinylation via C-H bond cleavage in the presence of transition-metal catalysts. The latter two substrates are also arylated and vinylated via C-C bond cleavage accompanied by liberation of ketones and CO2, respectively. Coordination of their anionic oxygen to the metal center is the key to activate the inert bonds effectively and regioselectively. The recent progress of these oxygen-directed reactions is summarized herein.
Wu, Jun; Yi, Yang-Hua; Tang, Hai-Feng; Wu, Hou-Ming; Zhou, Zhen-Rong
2007-01-01
Two new triterpene glycosides, hillasides A (1) and B (2), were isolated from the sea cucumber H. hilla Lesson, together with one known glycoside holothuria B (3). Their structures were deduced by extensive spectral analysis and chemical evidences. The presence of conjugated double bonds [22E,24-diene] in the aglycone of 1 is a rare structural feature among sea cucumber glycosides. The two glycosides showed significant cytotoxicity against eight human tumour cell lines (A-549, MCF-7, IA9, CAKI-1, PC-3, KB, KB-VIN and HCT-8) with IC(50) in the range of 0.1-3.8 microg/ml.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Changjun; Sun, Junming; Brown, Heather M.
Aqueous-phase hydrodeoxygenation of sugar and sugar-derived molecules can be used to produce a range of alkanes and oxygenates. In this paper, we have identified the reaction intermediates and reaction chemistry for the aqueous-phase hydrodeoxygenation of sorbitol over a bifunctional catalyst (Pt/SiO2–Al2O3) that contains both metal (Pt) and acid (SiO2–Al2O3) sites. A wide variety of reactions occur in this process including Csingle bondC bond cleavage, Csingle bondO bond cleavage, and hydrogenation reactions. The key Csingle bondC bond cleavage reactions include: retro-aldol condensation and decarbonylation, which both occur on metal catalytic sites. Dehydration is the key Csingle bondO bond cleavage reaction andmore » occurs on acid catalytic sites. Sorbitol initially undergoes dehydration and ring closure to produce cyclic C6 molecules or retro-aldol condensation reactions to produce primarily C3 polyols. Isosorbide is the major final product from sorbitol dehydration. Isosorbide then undergoes ring opening hydrogenation reactions and a dehydration/hydrogenation step to form 1,2,6-hexanetriol. The hexanetriol is then converted into hexanol and hexane by dehydration/hydrogenation. Smaller oxygenates are produced by Csingle bondC bond cleavage. These smaller oxygenates undergo dehydration/hydrogenation reactions to produce alkanes from C1–C5. The results from this paper suggest that hydrodeoxygenation chemistry can be tuned to make a wide variety of products from biomass-derived oxygenates.« less
Theoretical studies of damage to 3'-uridine monophosphate induced by electron attachment.
Zhang, Ru Bo; Zhang, Ke; Eriksson, Leif A
2008-01-01
Low-energy electrons (LEE) are well known to induce nucleic acid damage. However, the damage mechanisms related to charge state and structural features remain to be explored in detail. In the present work, we have investigated the N1-glycosidic and C3'-O(P) bond ruptures of 3'-UMP (UMP=uridine monophosphate) and the protonated form 3'-UMPH with -1 and zero charge, respectively, based on hybrid density functional theory (DFT) B3 LYP together with the 6-31+G(d,p) basis set. The glycosidic bond breakage reactions of the 3'UMP and 3'UMPH electron adducts are exothermic in both cases, with barrier heights of 19-20 kcal mol(-1) upon inclusion of bulk solvation. The effects of the charge state on the phosphate group are marginal, but the C2'-OH group destabilizes the transition structure of glycosidic bond rupture of 3'-UMPH in the gas phase by approximately 5.0 kcal mol(-1). This is in contrast with the C3'-O(P) bond ruptures induced by LEE in which the charge state on the phosphate influences the barrier heights and reaction energies considerably. The barrier towards C3'-O(P) bond dissociation in the 3'UMP electron adduct is higher in the gas phase than the one corresponding to glycosidic bond rupture and is dramatically influenced by the C2'-OH group and bulk salvation, which decreases the barrier to 14.7 kcal mol(-1). For the C3'-O(P) bond rupture of the 3'UMPH electron adduct, the reaction is exothermic and the barrier is even lower, 8.2 kcal mol(-1), which is in agreement with recent results for 3'-dTMPH and 5'-dTMPH (dTMPH=deoxythymidine monophosphate). Both the Mulliken atomic charges and unpaired-spin distribution play significant roles in the reactions.
ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen
Tiedt, Oliver; Mergelsberg, Mario; Boll, Kerstin; Müller, Michael; Adrian, Lorenz; Jehmlich, Nico; von Bergen, Martin
2016-01-01
ABSTRACT Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA. PMID:27507824
Alkylpurine glycosylase D employs DNA sculpting as a strategy to extrude and excise damaged bases.
Kossmann, Bradley; Ivanov, Ivaylo
2014-07-01
Alkylpurine glycosylase D (AlkD) exhibits a unique base excision strategy. Instead of interacting directly with the lesion, the enzyme engages the non-lesion DNA strand. AlkD induces flipping of the alkylated and opposing base accompanied by DNA stack compression. Since this strategy leaves the alkylated base solvent exposed, the means to achieve enzymatic cleavage had remained unclear. We determined a minimum energy path for flipping out a 3-methyl adenine by AlkD and computed a potential of mean force along this path to delineate the energetics of base extrusion. We show that AlkD acts as a scaffold to stabilize three distinct DNA conformations, including the final extruded state. These states are almost equivalent in free energy and separated by low barriers. Thus, AlkD acts by sculpting the global DNA conformation to achieve lesion expulsion from DNA. N-glycosidic bond scission is then facilitated by a backbone phosphate group proximal to the alkylated base.
In vitro selection of functional nucleic acids
NASA Technical Reports Server (NTRS)
Wilson, D. S.; Szostak, J. W.
1999-01-01
In vitro selection allows rare functional RNA or DNA molecules to be isolated from pools of over 10(15) different sequences. This approach has been used to identify RNA and DNA ligands for numerous small molecules, and recent three-dimensional structure solutions have revealed the basis for ligand recognition in several cases. By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified. Selection experiments have also been carried out to identify ribozymes that catalyze a variety of chemical transformations, including RNA cleavage, ligation, and synthesis, as well as alkylation and acyl-transfer reactions and N-glycosidic and peptide bond formation. The existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis. New in vitro protein selection techniques should allow for a direct comparison of the frequency of ligand binding and catalytic structures in pools of random sequence polynucleotides versus polypeptides.
Zhao, Yongyu; Bordwell, Frederick G.
1996-09-20
Cleavage of radical anions, HA(*)(-), have been considered to give either H(*) + A(-) (path a) or H(-) + A(*) (path b), and factors determining the preferred mode of cleavage have been discussed. It is conceivable that cleavage to give a proton and a radical dianion, HA(*)(-) right harpoon over left harpoon H(+) + A(*)(2)(-) (path c), might also be feasible. A method, based on a thermodynamic cycle, to estimate the bond dissociation free energy (BDFE) by path c has been devised. Comparison of the BDFEs for cleavage of the radical anions derived from 24 nitroaromatic OH, SH, NH, and CH acids by paths a, b, c has shown that path c is favored thermodynamically.
Mo(CO)/sub 6/-promoted reductive cleavage of the carbon-sulfur bond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luh, T.Y.; Wong, C.S.
1985-12-13
In order to study the reductive cleavage of carbon-sulfur bonds by Mo(CO/sub 6/, various organosulfur compounds are reacted with Mo(CO)/sub 6/ in THF. Results of these experiments demonstrate that benzylic-, aryl-, or ..cap alpha..-acyl-activated carbon-sulfur bonds are reduced by treatment with Mo(CO)/sub 6/. 1 table.
Method for metabolizing carbazole in petroleum
Kayser, Kevin J.; Kilbane, II, John J.
2005-09-13
A method for selective cleavage of C--N bonds genes that encode for at least one enzyme suitable for conversion of carbazole to 2-aminobiphenyl-2,3-diol are combined with a gene encoding an amidase suitable for selectively cleaving a C--N bond in 2-aminobiphenyl-2,3-diol, forming an operon that encodes for cleavage of both C--N bonds of said carbazole. The operon is inserted into a host culture which, in turn, is contacted with the carbazole, resulting in selective cleavage of both C--N bonds of the carbazole. Also disclosed is a new microorganism that expresses a carbazole degradation trait constitutively and a method for degrading carbazole employing this microorganism.
Facile scission of isonitrile carbon–nitrogen triple bond using a diborane(4) reagent
Asakawa, Hiroki; Lee, Ka-Ho; Lin, Zhenyang; Yamashita, Makoto
2014-01-01
Transition metal reagents and catalysts are generally effective to cleave all three bonds (one σ and two π) in a triple bond despite its high bonding energy. Recently, chemistry of single-bond cleavage by using main-group element compounds is rapidly being developed in the absence of transition metals. However, the cleavage of a triple bond using non-transition-metal compounds is less explored. Here we report that an unsymmetrical diborane(4) compound could react with carbon monoxide and tert-butyl isonitrile at room temperature. In the latter case, the carbon–nitrogen triple bond was completely cleaved in the absence of transition metal as confirmed by X-ray crystallographic analysis, 13C NMR spectroscopy with 13C labelling and DFT calculations. The DFT calculations also revealed the detailed reaction mechanism and indicated that the key for the carbon–nitrogen triple-bond cleavage could be attributed to the presence of nucleophilic nitrogen atom in one of the intermediates. PMID:24967910
Li, Feifei; Meier, Katlyn K; Cranswick, Matthew A; Chakrabarti, Mrinmoy; Van Heuvelen, Katherine M; Münck, Eckard; Que, Lawrence
2011-05-18
We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted. © 2011 American Chemical Society
Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II
The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been themore » focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.« less
Kim, Seonah; Ståhlberg, Jerry; Sandgren, Mats; Paton, Robert S.; Beckham, Gregg T.
2014-01-01
Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass depolymerization. To date, several features of copper binding to LPMOs have been elucidated, but the identity of the reactive oxygen species and the key steps in the oxidative mechanism have not been elucidated. Here, density functional theory calculations are used with an enzyme active site model to identify the reactive oxygen species and compare two hypothesized reaction pathways in LPMOs for hydrogen abstraction and polysaccharide hydroxylation; namely, a mechanism that employs a η1-superoxo intermediate, which abstracts a substrate hydrogen and a hydroperoxo species is responsible for substrate hydroxylation, and a mechanism wherein a copper-oxyl radical abstracts a hydrogen and subsequently hydroxylates the substrate via an oxygen-rebound mechanism. The results predict that oxygen binds end-on (η1) to copper, and that a copper-oxyl–mediated, oxygen-rebound mechanism is energetically preferred. The N-terminal histidine methylation is also examined, which is thought to modify the structure and reactivity of the enzyme. Density functional theory calculations suggest that this posttranslational modification has only a minor effect on the LPMO active site structure or reactivity for the examined steps. Overall, this study suggests the steps in the LPMO mechanism for oxidative cleavage of glycosidic bonds. PMID:24344312
Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K
2017-03-17
A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O 2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O 2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav
2016-04-12
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity.
KOMARNYTSKY, SLAVKO; ESPOSITO, DEBORA; POULEV, ALEXANDER; RASKIN, ILYA
2013-01-01
A group of bioactive steroidal glycosides (pregnanes) with anorectic activity in animals was isolated from several genera of milkweeds including Hoodia and Asclepias. In this study, we investigated the effects, structure-activity relationships, and mechanism of action of pregnane glycosides on steroidogenesis in human adrenocortical H295R cells. Administration of pregnane glycosides for 24 h suppressed the basal and forskolin-stimulated release of androstenedione, corticosterone, and cortisone from H295R cells. The conversion of progesterone to 11-deoxycorticosterone and 17-hydroxyprogesterone to either androstenedione or 11-deoxycortisol was most strongly affected, with 12-cinnamoyl-, benzoyl-, and tigloyl-containing pregnanes showing the highest activity. Incubation of pregnane glycosides for 24 h had no effect on mRNA transcripts of CYP11A1, CYP21A1, CYP11B1 cytochrome enzymes and steroidogenic acute regulatory protein (StaR) protein, yet resulted in twofold decrease in HSD3B1 mRNA levels. At the same time, pregnane glycosides had no effect on the CYP1, 2, or 3 drug and steroid metabolism enzymes and showed weak Na+/K+ ATPase and glucocorticoid receptor binding. Taken together, these data suggest that pregnane glycosides specifically suppress steroidogenesis through strong inhibition of 11β-hydroxylase and steroid 17-alpha-monooxygenase, and weak inhibition of cytochrome P450 side chain cleavage enzyme and 21β-hydroxylase, but not 3β-hydroxysteroid dehydrogenase/isomerase. PMID:23065845
Metal-organic framework catalysts for selective cleavage of aryl-ether bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.; Stavila, Vitalie
The present invention relates to methods of employing a metal-organic framework (MOF) as a catalyst for cleaving chemical bonds. In particular instances, the MOF results in selective bond cleavage that results in hydrogenolyzis. Furthermore, the MOF catalyst can be reused in multiple cycles. Such MOF-based catalysts can be useful, e.g., to convert biomass components.
Ba, Jing; Zhang, Na; Yao, Lijuan; Ma, Ning; Wang, Chunhong
2014-11-15
Rebaudioside A (RA) and stevioside (SS) are the primary effective glycoside components in Stevia Rebaudiana. The RA glycoside is sweeter, and it tastes similarly to sucrose. Because extracts with a high RA content can be used as natural sweeteners for food additives approved by the FAO and FDA, RA should generate high market demand. In this study, an efficient method for separating RA was established based on the synergistic multi-hydrogen bonding interaction between a polymeric adsorbent and the RA glycoside. To overcome the destruction of the hydrophobic affinity required for the selective adsorption of RA, an innovative non-aqueous environment was established for adsorption and separation. To this end, an initial polymeric adsorbent composed of a glycidyl methacrylate and trimethylolpropane trimethacrylate (GMA-co-TMPTMA) copolymer matrix was synthesized, and polyethylene polyamine was employed as a functional reagent designed to react with the epoxy group on GME-co-TMPTMA to form a highly selective macroporous adsorbent. The effects of the different functional reagents and the solvent polarity on the adsorption selectivity for RA and SS, respectively, were investigated. Matching the structure of the polyethylene polyamine and sugar ligand on the glycoside molecule was essential in ensuring that the maximum synergistic interaction between adsorbent and adsorbate would be achieved. Moreover, the hydrogen-bonding force was observed to increase when the polarity of the adsorption solvent decreased. Therefore, among the synthesized macroporous polymeric adsorbents, the GTN4 adsorbent-bonding tetraethylenepentamine functional group provided the best separation in an n-butyl alcohol solution. Under the optimized gradient elution conditions, RA and SS can be effectively separated, and the contents of RA and SS increased from 33.5% and 51.5% in the initial crude extract to 95.4% and 78.2% after separation, respectively. Compared to conventional methods, the adsorption-desorption process is more advanced due to its procedural simplicity, low cost and adaptability for industrial production. Copyright © 2014 Elsevier B.V. All rights reserved.
Ethylene decomposition over Pt(100): A mechanism study from first principle calculation
NASA Astrophysics Data System (ADS)
Wang, Yuchun; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua
2016-12-01
First principle based density functional theory was used to calculate the complete step-by-step decomposition network of ethylene (C2H4) over Pt(100) as a model for understanding the carbon deposition of olefin hydrocarbon over transition metal surface. We discussed the structural and energetic properties of all the Csbnd H and Csbnd C bond cleavage reactions in order to fully understand the formation pathway of carbon monomer. It is easier for Csbnd H bond cleavage reactions to take place, as the activation barrier of these reactions is relatively lower than that of Csbnd C bond cleavage as a whole. However, vinyl (CH2CH) is likely to be the precursor of Csbnd C bond scission, as the activation barrier of Csbnd C bond cleavage reaction of CH2CH is much lower than that of CH2CH dehydrogenation and the reaction is exothermic by 0.15 eV. CC was another form of depositional carbon on Pt(100), as it is easy to form but difficult to decompose. Finally we proposed six possible routes of carbon monomer formation.
Norberg, Oscar; Wu, Bin; Thota, Niranjan; Ge, Jian-Tao; Fauquet, Germain; Saur, Ann-Kathrin; Aastrup, Teodor; Dong, Hai; Yan, Mingdi; Ramström, Olof
2017-11-27
The role of sulfur in glycosidic bonds has been evaluated using quartz crystal microbalance methodology. Synthetic routes towards α1-2- and α1-6-linked dimannosides with S- or O-glycosidic bonds have been developed, and the recognition properties assessed in competition binding assays with the cognate lectin concanavalin A. Mannose-presenting QCM sensors were produced using photoinitiated, nitrene-mediated immobilization methods, and the subsequent binding study was performed in an automated flow-through instrumentation, and correlated with data from isothermal titration calorimetry. The recorded K d -values corresponded well with reported binding affinities for the O-linked dimannosides with affinities for the α1-2-linked dimannosides in the lower micromolar range. The S-linked analogs showed slightly disparate effects, where the α1-6-linked analog showed weaker affinity than the O-linked dimannoside, as well as positive apparent cooperativity, whereas the α1-2-analog displayed very similar binding compared to the O-linked structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Condensed tannins: A novel rearrangement of procyanidins and prodelphinidins in thiolytic cleavage
G. Wayne McGraw; Jan P. Steynberg; Richard W. Hemingway
1993-01-01
Conditions commonly used for the thiolytic cleavage of interflavanoid bonds of condensed tannins also result in cleavage of the C4 to C10 bond of flavan units. Subsequenet lectrophilic attack of the C4 carbocation on the C2' or C6' of the B-ring, and loss of phloroglucinol (the A-ring), result in the formation of a mixture of 1,3-dithiobenzyl-2,4,s,6-...
Robb, Melissa; Robb, Craig S.; Higgins, Melanie A.; Hobbs, Joanne K.; Paton, James C.; Boraston, Alisdair B.
2015-01-01
An important facet of the interaction between the pathogen Streptococcus pneumoniae (pneumococcus) and its human host is the ability of this bacterium to process host glycans. To achieve cleavage of the glycosidic bonds in host glycans, S. pneumoniae deploys a wide array of glycoside hydrolases. Here, we identify and characterize a new family 20 glycoside hydrolase, GH20C, from S. pneumoniae. Recombinant GH20C possessed the ability to hydrolyze the β-linkages joining either N-acetylglucosamine or N-acetylgalactosamine to a wide variety of aglycon residues, thus revealing this enzyme to be a generalist N-acetylhexosaminidase in vitro. X-ray crystal structures were determined for GH20C in a ligand-free form, in complex with the N-acetylglucosamine and N-acetylgalactosamine products of catalysis and in complex with both gluco- and galacto-configured inhibitors O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc), O-(2-acetamido-2-deoxy-d-galactopyranosylidene)amino N-phenyl carbamate (GalPUGNAc), N-acetyl-d-glucosamine-thiazoline (NGT), and N-acetyl-d-galactosamine-thiazoline (GalNGT) at resolutions from 1.84 to 2.7 Å. These structures showed N-acetylglucosamine and N-acetylgalactosamine to be recognized via identical sets of molecular interactions. Although the same sets of interaction were maintained with the gluco- and galacto-configured inhibitors, the inhibition constants suggested preferred recognition of the axial O4 when an aglycon moiety was present (Ki for PUGNAc > GalPUGNAc) but preferred recognition of an equatorial O4 when the aglycon was absent (Ki for GalNGT > NGT). Overall, this study reveals GH20C to be another tool that is unique in the arsenal of S. pneumoniae and that it may implement the effort of the bacterium to utilize and/or destroy the wide array of host glycans that it may encounter. PMID:26491009
Chaturvedula, Venkata Sai Prakash; Prakash, Indra
2013-01-01
Catalytic hydrogenation of the exocyclic double bond present between C16 and C17 carbons of the four ent-kaurane diterpene glycosides namely rebaudioside A, rebaudioside B, rebaudioside C, and rebaudioside D isolated from Stevia rebaudiana has been carried out using Pt/C, Pd(OH)2, Rh/C, Raney Ni, PtO2, and 5% Pd/BaCO3 to their corresponding dihydro derivatives with 17α and 17β methyl group isomers. Reactions were performed using the above-mentioned catalysts with the solvents methanol, water, and ethanol/water (8:2) under various conditions. Synthesis of reduced steviol glycosides was performed using straightforward chemistry and their structures were characterized on the basis of 1D and 2D NMR spectral data, including a comparison with reported spectral data. PMID:23896597
Gardner, Qurra-tul-Ann Afza; Younas, Hooria; Akhtar, Muhammad
2013-01-01
Human M-proinsulin was cleaved by trypsin at the R(31)R(32)-E(33) and K(64)R(65)-G(66) bonds (B/C and C/A junctions), showing the same cleavage specificity as exhibited by prohormone convertases 1 and 2 respectively. Buffalo/bovine M-proinsulin was also cleaved by trypsin at the K(59)R(60)-G(61) bond but at the B/C junction cleavage occurred at the R(31)R(32)-E(33) as well as the R(31)-R(32)E(33) bond. Thus, the human isoform in the native state, with a 31 residue connecting C-peptide, seems to have a unique structure around the B/C and C/A junctions and cleavage at these sites is predominantly governed by the structure of the proinsulin itself. In the case of both the proinsulin species the cleavage at the B/C junction was preferred (65%) over that at the C/A junction (35%) supporting the earlier suggestion of the presence of some form of secondary structure at the C/A junction. Proinsulin and its derivatives, as natural substrates for trypsin, were used and mass spectrometric analysis showed that the k(cat.)/K(m) values for the cleavage were most favourable for the scission of the bonds at the two junctions (1.02±0.08×10(5)s(-1)M(-1)) and the cleavage of the K(29)-T(30) bond of M-insulin-RR (1.3±0.07×10(5)s(-1)M(-1)). However, the K(29)-T(30) bond in M-insulin, insulin as well as M-proinsulin was shielded from attack by trypsin (k(cat.)/K(m) values around 1000s(-1)M(-1)). Hence, as the biosynthetic path follows the sequence; proinsulin→insulin-RR→insulin, the K(29)-T(30) bond becomes shielded, exposed then shielded again respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
McNary, Christopher P.; Armentrout, P. B.
2017-09-01
Threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer was performed on protonated hydrazine and its perdeuterated variant. The dominant dissociation pathways observed were endothermic homolytic and heterolytic cleavages of the N-N bond. The data were analyzed using a statistical model after accounting for internal and kinetic energy distributions, multiple collisions, and kinetic shifts to obtain 0 K bond dissociation energies. Comparison with literature thermochemistry demonstrates that both channels behave non-adiabatically. Heterolytic bond cleavage yields NH2+ + NH3 products, but the NH2+ fragment is in the spin-restricted excited 1A1 state and not in the spin-forbidden ground 3B1 state, whereas homolytic bond cleavage leads to dissociation to the NH3+ + NH2 product asymptote with NH2 in its excited 2A1 state rather than the energetically favored 2B1 state. The rationale for the non-adiabatic behavior observed in the homolytic bond cleavage is revealed by detailed theoretical calculations of the relevant potential energy surfaces and the relevant occupied valence molecular orbitals. These calculations suggest that the non-adiabatic behavior results from conservation of the σ and π character of the binding and lone pair electrons on the nitrogen atoms.
Lee, Brady D.; Apel, William A.; Sheridan, Peter P.; ...
2018-04-16
Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.
Xue, Zhenzhen; Yang, Bin
2016-07-29
Phenylethanoid glycosides (PhGs) are widely distributed in traditional Chinese medicines as well as in other medicinal plants, and they were characterized by a phenethyl alcohol (C₆-C₂) moiety attached to a β-glucopyranose/β-allopyranose via a glycosidic bond. The outstanding activity of PhGs in diverse diseases proves their importance in medicinal chemistry research. This review summarizes new findings on PhGs over the past 10 years, concerning the new structures, their bioactivities, including neuroprotective, anti-inflammatory, antioxidant, antibacterial and antivirus, cytotoxic, immunomodulatory, and enzyme inhibitory effects, and pharmacokinetic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Brady D.; Apel, William A.; Sheridan, Peter P.
Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Here, experiments were performed to understand the effect of monosaccharides on gene expression during growth on the polysaccharide, WAX.
Cho, Dae Won; Parthasarathi, Ramakrishnan; Pimentel, Adam S; Maestas, Gabriel D; Park, Hea Jung; Yoon, Ung Chan; Dunaway-Mariano, Debra; Gnanakaran, S; Langan, Paul; Mariano, Patrick S
2010-10-01
Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1-C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1-C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1-C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.
Nicolaou, K C; Adsool, Vikrant A; Hale, Christopher R H
2010-04-02
PhI(OAc)(2) in the presence of OsO(4) (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with alpha-hydroxy ketones as byproduct. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO(4) (cat.), 2,6-lutidine, and PhI(OAc)(2).
da Silva, Rodolfo R; Moraes, Marcilio M; Camara, Claudio A G; Ramos, Clécio S
2015-11-01
This present work addresses research on the discovery of new compounds from natural sources. It is based on a study of Mangifera indica leaf metabolism by the Tropidacris collaris grasshopper. We found that the grasshopper hydrolyzed the flavonoid isoquercitrin to quercetin when the O-glycosidic bond was broken and sugar released as a probable energy source for the insect. There was not, however, hydrolysis of the major compound in the leaves, mangiferin, which contains the C-glycosidic bond. All compounds were isolated and their chemical structure determined by UV, IR, MS, 1H and 13C NMR.
Checler, F; Emson, P C; Vincent, J P; Kitabgi, P
1984-11-01
It was shown previously that the tridecapeptide neurotensin is inactivated by rat brain synaptic membranes and that one of the primary inactivating cleavages occurs at the Pro10-Try11 peptide bond, leading to the formation of NT1-10 and NT11-13. The present study was designed to investigate the possibility that this cleavage was catalyzed by proline endopeptidase and/or endopeptidase 24.11 (enkephalinase). Purified rat brain synaptic membranes were found to contain a N-benzyloxycarbonyl-Gly-Pro-4-methyl-coumarinyl-7-amide-hydrolyzin g activity that was markedly inhibited (93%) by the proline endopeptidase inhibitor N-benzyloxycarbonyl-Pro-Prolinal and partially blocked (25%) by an antiproline endopeptidase antiserum. In contrast, the cleavage of neurotensin at the Pro10-Tyr11 bond by synaptic membranes was not affected by N-benzyloxycarbonyl-Pro-Prolinal and the antiserum. When the conversion of NT1-10 to NT1-8 by angiotensin converting enzyme was blocked by captopril and when the processing of NT11-13 by aminopeptidase(s) was inhibited by bestatin, it was found that thiorphan, a potent endopeptidase 24.11 inhibitor, partially decreased the formation of NT1-10 and NT11-13 by synaptic membranes. (1) proline endopeptidase, although it is present in synaptic membranes, is not involved in the cleavage of neurotensin at the Pro10-Tyr11 bond; (2) endopeptidase 24.11 only partially contributes to this cleavage; (3) there exists in rat brain synaptic membranes a peptidase different from proline endopeptidase and endopeptidase 24.11 that is mainly responsible for inactivating neurotensin by cleaving at the Pro10-Tyr11 bond.
Duckstein, Sarina M; Lorenz, Peter; Stintzing, Florian C
2012-01-01
Hamamelis virginiana, known for its high level of tannins and other phenolics is widely used for treatment of dermatological disorders. Although reports on hydroalcoholic and aqueous extracts from Hamamelis leaf and bark exist, knowledge on fermented leaf preparations and the underlying conversion processes are still scant. Aqueous Hamamelis leaf extracts were monitored during fermentation and maturation in order to obtain an insight into the bioconversion of tannins and other phenolics. Aliquots taken during the production period were investigated by HPLC-DAD-MS/MS as well as GC-MS after derivatisation into the corresponding trimethylsilyl compounds. In Hamamelis leaf extracts, the main constituents exhibited changes during the observational period of 6 months. By successive depside bond cleavage, the gallotannins were completely transformed into gallic acid after 1 month. Although not completely, kaempferol and quercetin glycosides were also converted during 6 months to yield their corresponding aglycones. Following C-ring fission, phloroglucinol was formed from the A-ring of both flavonols. The B-ring afforded 3-hydroxybenzoic acid from quercetin and 3,4-dihydroxybenzoic acid as well as 2-(4-hydroxyphenyl)-ethanol from kaempferol. Interestingly, hydroxycinnamic acids remained almost stable in the same time range. The present study broadens the knowledge on conversion processes in aqueous fermented extracts containing tannins, flavonol glycosides and hydroxycinnamic acids. In particular, the analogy between the microbial metabolism of phenolics from fermented Hamamelis extracts, fermented sourdough by heterofermentative lactic acid bacteria or conversion of phenolics by the human microbial flora is indicated. Copyright © 2012 John Wiley & Sons, Ltd.
Expression and Characterization of a Novel Antifungal Exo-β-1,3-glucanase from Chaetomium cupreum.
Jiang, Cheng; Song, Jinzhu; Cong, Hua; Zhang, Junzheng; Yang, Qian
2017-05-01
A novel β-1,3-glucanase gene, designated Ccglu17A, was cloned from the biological control fungus Chaetomium cupreum Ame. Its 1626-bp open reading frame encoded 541 amino acids. The corresponding amino acid sequence showed highest identity (67 %) with a glycoside hydrolase family 17 β-1,3-glucanase from Chaetomium globosum. The recombinant protein Ccglu17A was successfully expressed in Pichia pastoris, and the enzyme was purified to homogeneity with 10.1-fold purification and 47.8 % recovery yield. The protein's molecular mass was approximately 65 kDa, and its maximum activity appeared at pH 5.0 and temperature 45 °C. Heavy metal ions Fe 2+ , Mn 2+ , Cu 2+ , Co 2+ , Ag + , and Hg 2+ had inhibitory effects on Ccglu17A, but Ba 2+ promoted the enzyme's activity. Ccglu17A exhibited high substrate specificity, almost exclusively catalyzing β-1,3-glycosidic bond cleavage in various polysaccharoses to liberate glucose. The enzyme had a Km of 2.84 mg/mL and Vmax of 10.7 μmol glucose/min/mg protein for laminarin degradation under optimal conditions. Ccglu17A was an exoglucanase with transglycosylation activity based on its hydrolytic properties. It showed potential antifungal activity with a degradative effect on cell walls and inhibitory action against the germination of pathogenic fungus. In conclusion, Ccglu17A is the first functional exo-1,3-β-glucanase to be identified from C. cupreum and has potential applicability in industry and agriculture.
[Purine and pyrimidine nucleoside phosphorylases - remarkable enzymes still not fully understood].
Bzowska, Agnieszka
2015-01-01
Purine and pyrimidine nucleoside phosphorylases catalyze the reversible phosphorolytic cleavage of the glycosidic bond of purine and pyrimidine nucleosides, and are key enzymes of the nucleoside salvage pathway. This metabolic route is the less costly alternative to the de novo synthesis of nucleosides and nucleotides, supplying cells with these important building blocks. Interest in nucleoside phosphorylases is not only due to their important role in metabolism of nucleosides and nucleotides, but also due to the potential medical use of the enzymes (all phosphorylases in activating prodrugs - nucleoside and nucleic base analogs, high-molecular mass purine nucleoside phosphorylases in gene therapy of some solid tumors) and their inhibitors (as selective immunosuppressive, anticancer and antiparasitic agents, and preventing inactivation of other nucleoside drugs). Phosphorylases are also convenient tools for efficient enzymatic synthesis of otherwise inaccessible nucleoside analogues. In this paper the contribution of Professor David Shugar and some of his colleagues and coworkers in studies of these remarkable enzymes carried out over nearly 40 years is discussed on the background of global research in this field.
A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni.
Prakash, Indra; Ma, Gil; Bunders, Cynthia; Charan, Romila D; Ramirez, Catherine; Devkota, Krishna P; Snyder, Tara M
2017-01-31
Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX-a novel steviol glycoside-from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation-based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data-of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α-linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog.
Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.
Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika
2016-03-04
Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.
Nicolaou, K. C.; Adsool, Vikrant A.; Hale, Christopher R. H.
2010-01-01
PhI(OAc)2 in the presence of OsO4 (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with α-hydroxy ketones as by-products. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO4 (cat.), 2,6-lutidine, and PhI(OAc)2. PMID:20192259
Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie
2013-03-07
It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.
Loschonsky, Sabrina; Wacker, Tobias; Waltzer, Simon; Giovannini, Pier Paolo; McLeish, Michael J; Andrade, Susana L A; Müller, Michael
2014-12-22
ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the CC bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the CC bond formation, while the ability for CC bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for CC bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides
Chandrasekaran, Vijayanand; Johannes, Eugen; Kobarg, Hauke; Sönnichsen, Frank D; Lindhorst, Thisbe K
2014-01-01
Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated. PMID:25050228
Liu, Renrong; Zhang, Mei; Zhang, Junliang
2011-12-28
A novel, efficient, highly regioselective Sc(OTf)(3)-catalyzed [3+2] cycloaddition of electron-rich alkynes with donor-acceptor oxiranes via highly chemoselective C-C bond cleavage under mild conditions was developed. This journal is © The Royal Society of Chemistry 2011
Jung, Hyung Hoon; Floreancig, Paul E.
2009-01-01
A series of monodeuterated benzylic and allylic ethers were subjected to oxidative carbon–hydrogen bond cleavage to determine the impact of structural variation on intramolecular kinetic isotope effects in DDQ-mediated cyclization reactions. These values are compared to the corresponding intermolecular kinetic isotope effects that were accessed through subjecting mixtures of non-deuterated and dideuterated substrates to the reaction conditions. The results indicate that carbon–hydrogen bond cleavage is rate determining and that a radical cation is most likely a key intermediate in the reaction mechanism. PMID:20640173
Gao, Meng-Xue; Tang, Xi-Yang; Zhang, Feng-Xiang; Yao, Zhi-Hong; Yao, Xin-Sheng; Dai, Yi
2018-04-01
Xian-Ling-Gu-Bao capsule (XLGB), a well-known traditional Chinese medicine prescription, has been used for the prevention and treatment of osteoporosis. The safety and efficacy of XLGB have been confirmed based on the principle of evidence-based medicine. XLGB is usually administered orally, after which its multiple components are brought into contact with intestinal microflora in the alimentary tract and biotransformed. However, investigations on the comprehensive metabolic profile of XLGB are absent. In this study, 12 representative compounds bearing different typical structures (including iridoid glycosides, prenylated flavonol glycosides, prenylated flavonoids, triterpenoid saponins, steroidal saponins, coumarins and monoterpene phenols) were selected and then investigated for their biotransformation in rat intestinal microflora. In addition, the metabolic profile of XLGB in rat intestinal microflora was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. As a result, a total of 87 biotransformation components were identified from incubated solutions of 12 representative compounds and XLGB, which underwent 16 metabolic reactions (including deglycosylation, glycosylation, dehydrogenation, hydrogenation, oxidation, epoxidation, hydroxylation, dehydration, hydration, hydrolysis, methylation, isomerization, cyclization, pyrolysis reaction, amino acid conjugation and nucleophilic addition reaction with NH 3 ). This demonstrated that the deglycosylation reaction by cleavage of the sugar moieties is the main metabolic pathway of a variety of glycosides, including prenylated flavonol glycosides, coumarin glycosides, iridoid glycosides and saponins. In addition, compared with the biotransformation of 12 representative compounds, a different biotransformed fate was observed in the XLGB incubated samples of rat intestinal microflora. It is worth noting that the amino acid conjugation was first discovered in the metabolism of prenylated flavonol glycosides in rat intestinal microflora. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Tan, Yanglan; Polfer, Nicolas C.
2015-02-01
Carbohydrates and their derivatives play important roles in biological systems, but their isomeric heterogeneity also presents a considerable challenge for analytical techniques. Here, a stepwise approach using infrared multiple-photon dissociation (IRMPD) via a tunable CO2 laser (9.2-10.7 μm) was employed to characterize isomeric variants of glucose-based trisaccharides. After the deprotonated trisaccharides were trapped and fragmented to disaccharide C2 fragments in a Fourier transform ion cyclotron resonance (FTICR) cell, a further variable-wavelength infrared irradiation of the C2 ion produced wavelength-dependent dissociation patterns that are represented as heat maps. The photodissociation patterns of these C2 fragments are shown to be strikingly similar to the photodissociation patterns of disaccharides with identical glycosidic bonds. Conversely, the photodissociation patterns of different glycosidic linkages exhibit considerable differences. On the basis of these results, the linkage position and anomericity of glycosidic bonds of disaccharide units in trisaccharides can be systematically differentiated and identified, providing a promising approach to characterize the structures of isomeric oligosaccharides.
Electron Detachment Dissociation (EDD) of Fluorescently Labeled Sialylated Oligosaccharides
Zhou, Wen; Håkansson, Kristina
2012-01-01
We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared to IRMPD. Neutral losses and satellite ions such as C – 2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared to 2-AA labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. PMID:22120881
Cu(II)-catalyzed esterification reaction via aerobic oxidative cleavage of C(CO)-C(alkyl) bonds.
Ma, Ran; He, Liang-Nian; Liu, An-Hua; Song, Qing-Wen
2016-02-04
A novel Cu(II)-catalyzed aerobic oxidative esterification of simple ketones for the synthesis of esters has been developed with wide functional group tolerance. This process is assumed to go through a tandem sequence consisting of α-oxygenation/esterification/nucleophilic addition/C-C bond cleavage and carbon dioxide is released as the only byproduct.
Zhang, Yuewei; Yang, Fengzhi; Zheng, Lianyou; Dang, Qun; Bai, Xu
2014-12-05
A sequence of C-O bond cleavage and redox reactions in oxa-bridged azepines was realized under acid promoted conditions. This protocol provides an atom-economical and straightforward approach to access benzo[b]azepin-5(2H)-ones in high yields. The formal synthesis of tolvaptan was achieved by exploiting this new transformation.
Effect of microwave argon plasma on the glycosidic and hydrogen bonding system of cotton cellulose.
Prabhu, S; Vaideki, K; Anitha, S
2017-01-20
Cotton fabric was processed with microwave (Ar) plasma to alter its hydrophilicity. The process parameters namely microwave power, process gas pressure and processing time were optimized using Box-Behnken method available in the Design Expert software. It was observed that certain combinations of process parameters improved existing hydrophilicity while the other combinations decreased it. ATR-FTIR spectral analysis was used to identify the strain induced in inter chain, intra chain, and inter sheet hydrogen bond and glycosidic covalent bond due to plasma treatment. X-ray diffraction (XRD) studies was used to analyze the effect of plasma on unit cell parameters and degree of crystallinity. Fabric surface etching was identified using FESEM analysis. Thus, it can be concluded that the increase/decrease in the hydrophilicity of the plasma treated fabric was due to these structural and physical changes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanical forces regulate the reactivity of a thioester bond in a bacterial adhesin
Echelman, Daniel J.; Lee, Alex Q.; Fernández, Julio M.
2017-01-01
Bacteria must withstand large mechanical shear forces when adhering to and colonizing hosts. Recent structural studies on a class of Gram-positive bacterial adhesins have revealed an intramolecular Cys-Gln thioester bond that can react with surface-associated ligands to covalently anchor to host surfaces. Two other examples of such internal thioester bonds occur in certain anti-proteases and in the immune complement system, both of which react with the ligand only after the thioester bond is exposed by a proteolytic cleavage. We hypothesized that mechanical forces in bacterial adhesion could regulate thioester reactivity to ligand analogously to such proteolytic gating. Studying the pilus tip adhesin Spy0125 of Streptococcus pyogenes, we developed a single molecule assay to unambiguously resolve the state of the thioester bond. We found that when Spy0125 was in a folded state, its thioester bond could be cleaved with the small-molecule nucleophiles methylamine and histamine, but when Spy0125 was mechanically unfolded and subjected to forces of 50–350 piconewtons, thioester cleavage was no longer observed. For folded Spy0125 without mechanical force exposure, thioester cleavage was in equilibrium with spontaneous thioester reformation, which occurred with a half-life of several minutes. Functionally, this equilibrium reactivity allows thioester-containing adhesins to sample potential substrates without irreversible cleavage and inactivation. We propose that such reversible thioester reactivity would circumvent potential soluble inhibitors, such as histamine released at sites of inflammation, and allow the bacterial adhesin to selectively associate with surface-bound ligands. PMID:28348083
Development and application of bond cleavage reactions in bioorthogonal chemistry.
Li, Jie; Chen, Peng R
2016-03-01
Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.
Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage.
Wu, Xinxin; Zhu, Chen
2018-06-01
Cycloalkanols prove to be privileged precursors for the synthesis of distally substituted alkyl ketones and polycyclic aromatic hydrocarbons (PAHs) by virtue of cleavage of their cyclic C-C bonds. Direct functionalization of cyclobutanols to build up other chemical bonds (e. g., C-F, C-Cl, C-Br, C-N, C-S, C-Se, C-C, etc.) has been achieved by using the ring-opening strategy. Mechanistically, the C-C cleavage of cyclobutanols can be involved in two pathways: (a) transition-metal catalyzed β-carbon elimination; (b) radical-mediated 'radical clock'-type ring opening. The recent advances of our group for the ring-opening functionalization of tertiary cycloalkanols are described in this account. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.
2017-10-01
Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.
Mayfield, Jeffrey A.; Blanc, Béatrice; Rodgers, Kenton R.; Lukat-Rodgers, Gudrun S.; DuBois, Jennifer L.
2015-01-01
Heme-containing chlorite dismutases (Clds) catalyze a highly unusual O–O bond forming reaction. The O–O cleaving reactions of hydrogen peroxide and peracetic acid (PAA) with the Cld from Dechloromonas aromatica (DaCld) were studied to better understand the Cl–O cleavage of the natural substrate and subsequent O–O bond formation. While reactions with H2O2 resulted in slow destruction of the heme, at acidic pH, heterolytic cleavage of the O–O bond of PAA cleanly yielded the ferryl porphyrin cation radical (Compound I). At alkaline pH, the reaction proceeds more rapidly and the first observed intermediate is a ferryl heme. Freezequench EPR confirmed that the latter has an uncoupled protein-based radical, indicating that Compound I is the first intermediate formed at all pH values and that radical migration is faster at alkaline pH. These results suggest by analogy that two-electron Cl–O bond cleavage to yield a ferryl-porphyrin cation radical is the most likely initial step in O–O bond formation from chlorite. PMID:24001266
Zhang, Chun; Feng, Peng; Jiao, Ning
2013-10-09
The Cu-catalyzed novel aerobic oxidative esterification reaction of 1,3-diones for the synthesis of α-ketoesters has been developed. This method combines C-C σ-bond cleavage, dioxygen activation and oxidative C-H bond functionalization, as well as provides a practical, neutral, and mild synthetic approach to α-ketoesters which are important units in many biologically active compounds and useful precursors in a variety of functional group transformations. A plausible radical process is proposed on the basis of mechanistic studies.
Madsen, James A.; Ko, Byoung Joon; Xu, Hua; Iwashkiw, Jeremy A.; Robotham, Scott A.; Shaw, Jared B.; Feldman, Mario F.; Brodbelt, Jennifer S.
2013-01-01
O -glycopeptides are often acidic owing to the frequent occurrence of acidic saccharides in the glycan, rendering traditional proteomic workflows that rely on positive mode tandem mass spectrometry (MS/MS) less effective. In this report, we demonstrate the utility of negative mode ultraviolet photodissociation (UVPD) MS for the characterization of acidic O-linked glycopeptide anions. This method was evaluated for a series of singly- and multiply-deprotonated glycopeptides from the model glycoprotein kappa casein, resulting in production of both peptide and glycan product ions that afforded 100% sequence coverage of the peptide and glycan moieties from a single MS/MS event. The most abundant and frequent peptide sequence ions were a/x-type products, which, importantly, were found to retain the labile glycan modifications. The glycan-specific ions mainly arose from glycosidic bond cleavages (B, Y, C, and Z ions) in addition to some less common cross-ring cleavages. Based on the UVPD fragmentation patterns, an automated database searching strategy (based on the MassMatrix algorithm) was designed that is specific for the analysis of glycopeptide anions by UVPD. This algorithm was used to identify glycopeptides from mixtures of glycosylated and non-glycosylated peptides, sequence both glycan and peptide moieties simultaneously, and pinpoint the correct site(s) of glycosylation. This methodology was applied to uncover novel site-specificity of the O-linked glycosylated OmpA/MotB from the “superbug” A. baumannii to help aid in the elucidation of the functional role that protein glycosylation plays in pathogenesis. PMID:24006841
Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok
2011-02-01
RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Cho, Dae Won; Latham, John A; Park, Hea Jung; Yoon, Ung Chan; Langan, Paul; Dunaway-Mariano, Debra; Mariano, Patrick S
2011-04-15
New types of tetrameric lignin model compounds, which contain the common β-O-4 and β-1 structural subunits found in natural lignins, have been prepared and carbon-carbon bond fragmentation reactions of their cation radicals, formed by photochemical (9,10-dicyanoanthracene) and enzymatic (lignin peroxidase) SET-promoted methods, have been explored. The results show that cation radical intermediates generated from the tetrameric model compounds undergo highly regioselective C-C bond cleavage in their β-1 subunits. The outcomes of these processes suggest that, independent of positive charge and odd-electron distributions, cation radicals of lignins formed by SET to excited states of sensitizers or heme-iron centers in enzymes degrade selectively through bond cleavage reactions in β-1 vs β-O-4 moieties. In addition, the findings made in the enzymatic studies demonstrate that the sterically large tetrameric lignin model compounds undergo lignin peroxidase-catalyzed cleavage via a mechanism involving preliminary formation of an enzyme-substrate complex.
A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni
Prakash, Indra; Ma, Gil; Bunders, Cynthia; Charan, Romila D.; Ramirez, Catherine; Devkota, Krishna P.; Snyder, Tara M.
2017-01-01
Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX—a novel steviol glycoside—from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation—based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data—of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 1→6 α-linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog. PMID:28146121
NASA Astrophysics Data System (ADS)
Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.
2018-02-01
Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.
2018-05-01
Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.
Yurkerwich, Kevin; Quinlivan, Patrick J.; Rong, Yi
2015-01-01
The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg–C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg–C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg–SePh/Hg–X groups rather than metathesis of the Hg–R/Hg–R groups. PMID:26644634
Yurkerwich, Kevin; Quinlivan, Patrick J; Rong, Yi; Parkin, Gerard
2016-01-08
The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg-C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg-C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the 199 Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg-SePh/Hg-X groups rather than metathesis of the Hg-R/Hg-R groups.
Transition Metal-Mediated and -Catalyzed C-F Bond Activation via Fluorine Elimination.
Fujita, Takeshi; Fuchibe, Kohei; Ichikawa, Junji
2018-06-28
Activation of carbon-fluorine (C-F) bonds is an important topic in synthetic organic chemistry recently. Among the methods for C-F bond cleavage, metal mediated and catalyzed β- or α-fluorine elimination proceeds under mild conditions compared with oxidative addition of C-F bond. The β- or α-fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations via these elimination processes (C-F bond cleavage), which are typically preceded by carbon-carbon (or carbon-heteroatom) bond formation, have been remarkably developed as C-F bond activation methods in the past five years. In this minireview, we summarize the applications of transition metal-mediated and -catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective for early studies and from a systematic perspective for recent studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Edge, Albert S B
2003-01-01
The alteration of proteins by post-translational modifications, including phosphorylation, sulphation, processing by proteolysis, lipid attachment and glycosylation, gives rise to a broad range of molecules that can have an identical underlying protein core. An understanding of glycosylation of proteins is important in clarifying the nature of the numerous variants observed and in determining the biological roles of these modifications. Deglycosylation with TFMS (trifluoromethanesulphonic acid) [Edge, Faltynek, Hof, Reichert, and Weber, (1981) Anal. Biochem. 118, 131-137] has been used extensively to remove carbohydrate from glycoproteins, while leaving the protein backbone intact. Glycosylated proteins from animals, plants, fungi and bacteria have been deglycosylated with TFMS, and the most extensively studied types of carbohydrate chains in mammals, the N-linked, O-linked and glycosaminoglycan chains, are all removed by this procedure. The method is based on the finding that linkages between sugars are sensitive to cleavage by TFMS, whereas the peptide bond is stable and is not broken, even with prolonged deglycosylation. The relative susceptibility of individual sugars in glycosidic linkage varies with the substituents at C-2 and the occurrence of amido and acetyl groups, but even the most stable sugars are removed under conditions that are sufficiently mild to prevent scission of peptide bonds. The post-translational modifications of proteins have been shown to be required for diverse biological functions, and selective procedures to remove these modifications play an important role in the elucidation of protein structure and function. PMID:12974674
Tobisu, Mamoru; Imoto, Shinya; Ito, Sana; Chatani, Naoto
2010-07-16
To demonstrate the utility of isocyanides in catalytic C-H bond functionalization reactions, a palladium-catalyzed cyclocoupling reaction of 2-halobiaryls with isocyanides was developed. The reaction afforded an array of fluorenone imine derivatives via the cleavage of a C-H bond at the 2'-position of 2-halobiaryls. The use of 2,6-disubstituted phenyl isocyanide was crucial for this catalytic cyclocoupling reaction to proceed. The reaction was applicable to heterocyclic and vinylic substrates, allowing the construction of a wide range of ring system. The large kinetic isotope effect observed (k(H)/k(D) = 5.3) indicates that C-H bond activation was the turnover-limiting step in this catalysis.
Song, Xian-Rong; Qiu, Yi-Feng; Song, Bo; Hao, Xin-Hua; Han, Ya-Ping; Gao, Pin; Liu, Xue-Yuan; Liang, Yong-Min
2015-02-20
A novel BF3·Et2O-promoted tandem reaction of easily prepared 2-propynolphenols/anilines and trimethylsilyl azide is developed to give C2-alkenylated benzoxazoles and benzimidazoles in moderate to good yields. Most reactions could be accomplished in 30 min at room temperature. This tandem process involves a Csp-Csp2 bond cleavage and a C-N bond formation. Moreover, both tertiary and secondary propargylic alcohols with diverse functional groups were tolerated under the mild conditions.
Verification of RDX Photolysis Mechanism
1999-11-01
which re-addition of HN02 was proposed to yield a hydroxydiazo intermediate that then decomposed to an alcohol . This sequence is shown for...various organic products such as alcohols , or undergo carbon- nitrogen (C-N) bond cleavage (Noller 1965). This reaction is sufficiently quanti...carbon-centered functional group such as the alcohol shown below, or C-N bond cleavage. 42 CERL TR 99/93 N02 N02 No2 ^Nv. N ’ ( ^| H2
Illenberger, Eugen; Meinke, Martina C
2014-08-21
The impact of low energy electrons (0-10 eV) to 1,1,1-trifluoroacetone yields a variety of fragment anions which are formed via dissociative electron attachment (DEA) through three pronounced resonances located at 0.8 eV, near 4 eV, and in the energy range 8-9 eV. The fragment ions arise from different reactions ranging from the direct cleavage of one single or double bond (formation of F(-), CF3(-), O(-), (M-H)(-), and M-F)(-)) to remarkably complex unimolecular reactions associated with substantial geometric and electronic rearrangement in the transitory intermediate (formation of OH(-), FHF(-), (M-HF)(-), CCH(-), and HCCO(-). The ion CCH(-), for example, is formed by an excision of unit from the target molecule through the concerted cleavage of four bonds and recombination to H2O within the neutral component of the reaction.
Stille coupling via C-N bond cleavage
NASA Astrophysics Data System (ADS)
Wang, Dong-Yu; Kawahata, Masatoshi; Yang, Ze-Kun; Miyamoto, Kazunori; Komagawa, Shinsuke; Yamaguchi, Kentaro; Wang, Chao; Uchiyama, Masanobu
2016-09-01
Cross-coupling is a fundamental reaction in the synthesis of functional molecules, and has been widely applied, for example, to phenols, anilines, alcohols, amines and their derivatives. Here we report the Ni-catalysed Stille cross-coupling reaction of quaternary ammonium salts via C-N bond cleavage. Aryl/alkyl-trimethylammonium salts [Ar/R-NMe3]+ react smoothly with arylstannanes in 1:1 molar ratio in the presence of a catalytic amount of commercially available Ni(cod)2 and imidazole ligand together with 3.0 equivalents of CsF, affording the corresponding biaryl with broad functional group compatibility. The reaction pathway, including C-N bond cleavage step, is proposed based on the experimental and computational findings, as well as isolation and single-crystal X-ray diffraction analysis of Ni-containing intermediates. This reaction should be widely applicable for transformation of amines/quaternary ammonium salts into multi-aromatics.
Methods for the determination of intracellular levels of ribose phosphates.
Camici, Marcella; Tozzi, Maria Grazia; Ipata, Piero Luigi
2006-10-31
Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway or stem from the phosphorolytic cleavage of the N-glycosidic bond of ribonucleosides. The two major pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, can be readily interconverted by phosphopentomutase. Ribose-5-phosphate is also the direct precursor of 5-phosphoribosyl-1-pyrophosphate, which is used for both de novo and salvage synthesis of nucleotides. On the other hand, the phosphorolysis of deoxyribonucleosides is the major source of deoxyribose phosphates. While the destiny of the nucleobase stemming from nucleoside phosphorolysis has been extensively investigated, the fate of the sugar moiety has been somehow neglected. However, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. Nevertheless, many aspects of pentose phosphate metabolism, and the possible involvement of these compounds in a number of cellular processes still remain obscure. The comprehension of the role played by pentose phosphates may be greatly facilitated by the knowledge of their steady-state intracellular levels and of their changes in response to variations of intra- and extracellular signals.
Abdullah, Nor Hayati; Thomas, Noel Francis; Sivasothy, Yasodha; Lee, Vannajan Sanghiran; Liew, Sook Yee; Noorbatcha, Ibrahim Ali; Awang, Khalijah
2016-01-01
The mammalian hyaluronidase degrades hyaluronic acid by the cleavage of the β-1,4-glycosidic bond furnishing a tetrasaccharide molecule as the main product which is a highly angiogenic and potent inducer of inflammatory cytokines. Ursolic acid 1, isolated from Prismatomeris tetrandra, was identified as having the potential to develop inhibitors of hyaluronidase. A series of ursolic acid analogues were either synthesized via structure modification of ursolic acid 1 or commercially obtained. The evaluation of the inhibitory activity of these compounds on the hyaluronidase enzyme was conducted. Several structural, topological and quantum chemical descriptors for these compounds were calculated using semi empirical quantum chemical methods. A quantitative structure activity relationship study (QSAR) was performed to correlate these descriptors with the hyaluronidase inhibitory activity. The statistical characteristics provided by the best multi linear model (BML) (R2 = 0.9717, R2cv = 0.9506) indicated satisfactory stability and predictive ability of the developed model. The in silico molecular docking study which was used to determine the binding interactions revealed that the ursolic acid analog 22 had a strong affinity towards human hyaluronidase. PMID:26907251
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Yan; Spong, Marie C.; Nam, Kwangho
2010-09-21
MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding themore » interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.« less
Morning glory resin glycosides as α-glucosidase inhibitors: In vitro and in silico analysis.
Rosas-Ramírez, Daniel; Escandón-Rivera, Sonia; Pereda-Miranda, Rogelio
2018-04-01
Twenty-seven individual resin glycosides from the morning glory family (Convolvulaceae) were evaluated for their α-glucosidase inhibitory potential. Four of these compounds displayed an inhibitory activity comparable to acarbose, which was used as a positive control. Molecular modeling studies performed by docking analysis were accomplished to predict that the active compounds and acarbose bind to the α-1,4-glucosidase enzyme catalytic site of MAL12 from the yeast Saccharomyces cerevisiae through stable hydrogen bonds primarily with the amino acid residues HIS279 and GLN322. Docking studies with the human maltase-glucoamylase (MGAM) also identified binding modes for resin glycosides inside the catalytic site in the proximity of TYR1251. These results postulate that resin glycosides may be a source of phytotherapeutic agents with antihyperglycemic properties for the prophylaxis and treatment of non-insulin-dependent type 2 diabetes mellitus. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tandem MS Analysis of Selenamide-Derivatized Peptide Ions
NASA Astrophysics Data System (ADS)
Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao
2011-09-01
Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se-S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen ( m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se-S cleavage, analogous to the S-S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se-S of the tag to the S-S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se-S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.
Electron detachment dissociation of fluorescently labeled sialylated oligosaccharides.
Zhou, Wen; Håkansson, Kristina
2011-12-01
We explored the application of electron detachment dissociation (EDD) and infrared multiphoton dissociation (IRMPD) tandem mass spectrometry to fluorescently labeled sialylated oligosaccharides. Standard sialylated oligosaccharides and a sialylated N-linked glycan released from human transferrin were investigated. EDD yielded extensive glycosidic cleavages and cross-ring cleavages in all cases studied, consistently providing complementary structural information compared with infrared multiphoton dissociation. Neutral losses and satellite ions such as C-2H ions were also observed following EDD. In addition, we examined the influence of different fluorescent labels. The acidic label 2-aminobenzoic acid (2-AA) enhanced signal abundance in negative-ion mode. However, few cross-ring fragments were observed for 2-AA-labeled oligosaccharides. The neutral label 2-aminobenzamide (2-AB) resulted in more cross-ring cleavages compared with 2-AA-labeled species, but not as extensive fragmentation as for native oligosaccharides, likely resulting from altered negative charge locations from introduction of the fluorescent tag. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harvey, David J
2005-01-01
Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.
Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler, Ludmila; Bragg, Jennifer; Wu, Jiajie
2010-01-01
Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolasemore » genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights gained from Brachypodium will inform translational research studies, with applications for the improvement of cereal crops and bioenergy grasses.« less
Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.
Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S
2009-11-04
(PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.
Xu, Han; Miao, Bei; Zhang, Minhua; Chen, Yifei; Wang, Lichang
2017-10-04
The performance of transition metal catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cells (DEFCs) may be greatly affected by their oxidation. However, the specific effect and catalytic mechanism for EOR of transition metal oxides are still unclear and deserve in-depth exploitation. Copper as a potential anode catalyst can be easily oxidized in air. Thus, in this study, we investigated C-C and C-H bond cleavage reactions of CH x CO (x = 1, 2, 3) species in EOR on Cu 2 O(111) using PBE+U calculations, as well as the specific effect of +U correction on the process of adsorption and reaction on Cu 2 O(111). It was revealed that the catalytic performance of Cu 2 O(111) for EOR was restrained compared with that of Cu(100). Except for the C-H cleavage of CH 2 CO, all the reaction barriers for C-C and C-H cleavage were higher than those on Cu(100). The most probable pathway for CH 3 CO to CHCO on Cu 2 O(111) was the continuous dehydrogenation reaction. Besides, the barrier for C-C bond cleavage increased due to the loss of H atoms in the intermediate. Moreover, by the comparison of the traditional GGA/PBE method and the PBE+U method, it could be concluded that C-C cleavage barriers would be underestimated without +U correction, while C-H cleavage barriers would be overestimated. +U correction was proved to be necessary, and the reaction barriers and the values of the Hubbard U parameter had a proper linear relationship.
Kaur, Sarabjeet; Sharma, Purshotam; Wetmore, Stacey D
2017-11-22
The RNA world hypothesis assumes that RNA was the first informational polymer that originated from prebiotic chemical soup. However, since the reaction of d-ribose with canonical nucleobases (A, C, G and U) fails to yield ribonucleosides (rNs) in substantial amounts, the spontaneous origin of rNs and the subsequent synthesis of RNA remains an unsolved mystery. To this end, it has been suggested that RNA may have evolved from primitive genetic material (preRNA) composed of simpler prebiotic heterocycles that spontaneously form glycosidic bonds with ribose. As an effort toward evaluating this hypothesis, the present study uses density functional theory (DFT) to assess the suitability of barbituric acid (BA) and melamine (MM) to act as prebiotic nucleobases, both of which have recently been shown to spontaneously form a glycosidic bond with ribose and organize into supramolecular assemblies in solution. The significant strength of hydrogen bonds involving BA and MM indicates that such interactions may have played a crucial role in their preferential selection over competing heterocycles that interact solely through stacking interactions from the primordial soup during the early phase of evolution. However, the greater stability of stacked dimers involving BA or MM and the canonical nucleobases compared to those consisting solely of BA and/or MM points towards the possible evolution of intermediate informational polymers consisting of prebiotic and canonical nucleobases, which could have eventually evolved into RNA. Analysis of the associated rNs reveals an anti conformational preference for the biologically-relevant β-anomer of both BA and MM rNs, which will allow complementary WC-like hydrogen bonding that can stabilize preRNA polymers. Large calculated deglycosylation barriers suggest BA rNs containing C-C glycosidic bonds are relevant in challenging prebiotic environments such as volcanic geotherms, while lower barriers indicate the MM rNs containing C-N-C glycosidic linkages may have been more likely synthesized from simple precursors such as urea-ice in icy (polar) regions. Together, our quantum chemical data clarifies the physicochemical interactions and stability of potential prebiotically-relevant constituents of BA and MM polymeric assemblies, and complements information from previous experimental studies to bolster the candidature of these heterocycles as prebiotic nucleobases.
Neurotensin-metabolizing peptidases in rat fundus plasma membranes.
Checler, F; Barelli, H; Kwan, C Y; Kitabgi, P; Vincent, J P
1987-08-01
The mechanisms by which neurotensin (NT) was inactivated by rat fundus plasma membranes were characterized. Primary inactivating cleavages occurred at the Arg8-Arg9, Pro10-Tyr11, and Ile12-Leu13 peptidyl bonds. Hydrolysis at the Arg8-Arg9 bond was fully abolished by the use of N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanine-p- aminobenzoate, a result indicating the involvement at this site of a recently purified soluble metallopeptidase. Hydrolysis of the Pro10-Tyr11 bond was totally resistant to N-benzyloxycarbonyl-prolyl-prolinal and thiorphan, an observation suggesting that the peptidase responsible for this cleavage was different from proline endopeptidase and endopeptidase 24.11 and might correspond to a NT-degrading neutral metallopeptidase recently isolated from rat brain synaptic membranes. The enzyme acting at the Ile12-Leu13 bond has not yet been identified. Secondary cleavages occurring on NT degradation products were mainly generated by bestatin-sensitive aminopeptidases and post-proline dipeptidyl aminopeptidase. The content in NT-metabolizing peptidases present in rat fundus plasma membranes is compared with that previously established for purified rat brain synaptic membranes.
Hirao, Hajime; Li, Feifei; Que, Lawrence; Morokuma, Keiji
2011-01-01
It has recently been shown that the nonheme oxoiron(IV) species supported by the 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane ligand (TMC) can be generated in near-quantitative yield by reacting [FeII(TMC)(OTf)2] with a stoichiometric amount of H2O2 in CH3CN in the presence of 2,6-lutidine (Li, F.; England, J.; Que L., Jr. J. Am. Chem. Soc. 2010, 132, 2134–2135). This finding has major implications for O–O bond cleavage events in both Fenton chemistry and nonheme iron enzymes. To understand the mechanism of this process, especially the intimate details of the O–O bond cleavage step, a series of density functional theory (DFT) calculations and analyses have been carried out. Two distinct reaction paths (A and B) were identified. Path A consists of two principal steps: (1) coordination of H2O2 to Fe(II) and (2) a combination of partial homolytic O–O bond cleavage and proton-coupled electron transfer (PCET). The latter combination renders the rate-limiting O–O cleavage effectively a heterolytic process. Path B proceeds via a simultaneous homolytic O–O bond cleavage of H2O2 and Fe–O bond formation. This is followed by H-abstraction from the resultant Fe(III)–OH species by an •OH radical. Calculations suggest that path B is plausible in the absence of base. However, once 2,6-lutidine is added to the reacting system, the reaction barrier is lowered and more importantly the mechanistic path switches to path A, where 2,6-lutidine plays an essential role as an acid-base catalyst in a manner similar to how the distal histidine or glutamate residue assists in Compound I formation in heme peroxidases. The reaction was found to proceed predominantly on the quintet spin state surface, and a transition to the triplet state, the experimentally known ground state for the TMC-oxoiron(IV) species, occurs in the last stage of the oxoiron(IV) formation process. PMID:21678930
Masuda, Kengo; Sakiyama, Norifumi; Tanaka, Rie; Noguchi, Keiichi; Tanaka, Ken
2011-05-11
It has been established that a cationic rhodium(I)/(R)-H(8)-BINAP or (R)-Segphos complex catalyzes two modes of enantioselective cyclizations of γ-alkynylaldehydes with acyl phosphonates via C-P or C-H bond cleavage. The ligands of the Rh(I) complexes and the substitutents of both γ-alkynylaldehydes and acyl phosphonates control these two different pathways. © 2011 American Chemical Society
C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex.
Man, Wai-Lun; Xie, Jianhui; Pan, Yi; Lam, William W Y; Kwong, Hoi-Ki; Ip, Kwok-Wa; Yiu, Shek-Man; Lau, Kai-Chung; Lau, Tai-Chu
2013-04-17
We report experimental and computational studies of the facile oxidative C-N bond cleavage of anilines by a (salen)ruthenium(VI) nitrido complex. We provide evidence that the initial step involves nucleophilic attack of aniline at the nitrido ligand of the ruthenium complex, which is followed by proton and electron transfer to afford a (salen)ruthenium(II) diazonium intermediate. This intermediate then undergoes unimolecular decomposition to generate benzene and N2.
Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.
Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla
2009-10-07
The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.
Mulani, Shaheen K; Guh, Jih-Hwa; Mong, Kwok-Kong Tony
2014-05-14
A general strategy for the synthesis of phenylethanoid glycosides (PhG) including echinacoside 1, acteoside 2, calceolarioside-A 3 and calceolarioside-B 4 is reported. The strategy features the application of low substrate concentration glycosylation and N-formyl morpholine modulated glycosylation methods for the construction of 1,2-trans β- and α-glycosidic bonds. The reported strategy does not invoke the use of the participatory acyl protecting function, which is incompatible with the ester function present in target PhG compounds. A preliminary study of the anti-proliferation properties of the PhG compounds 1–4 was performed; the acteoside 2 exhibited the best inhibition on the prostatic cancer cell proliferation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Brady D.; Apel, William A.; Sheridan, Peter P.
Background Metabolism of carbon bound in wheat arabinoxylan (WAX) polysaccharides by bacteria requires a number of glycoside hydrolases active toward different bonds between sugars and other molecules. Alicyclobacillus acidocaldarius is a Gram-positive thermoacidophilic bacterium capable of growth on a variety of mono-, di-, oligo-, and polysaccharides. Nineteen proposed glycoside hydrolases have been annotated in the A. acidocaldarius Type Strain ATCC27009/DSM 446 genome. Results Molecular analysis using high-density oligonucleotide microarrays was performed on A. acidocaldarius strain ATCC27009 when growing on WAX. When a culture growing exponentially at the expense of arabinoxylan saccharides was challenged with glucose or xylose, most glycoside hydrolasesmore » were down-regulated. Interestingly, regulation was more intense when xylose was added to the culture than when glucose was added, a clear departure from classical carbon catabolite repression demonstrated by many Gram-positive bacteria. In silico analyses of the regulated glycoside hydrolases, along with the results from the microarray analyses, yielded a potential mechanism for arabinoxylan metabolism by A. acidocaldarius. Glycoside hydrolases expressed by this strain may have broad substrate specificity, and initial hydrolysis is catalyzed by an extracellular xylanase, while subsequent steps are likely performed inside the growing cell. Conclusions Glycoside hydrolases, for the most part, appear to be found in clusters, throughout the A. acidocaldarius genome. Not all of the glycoside hydrolase genes found at loci within these clusters were regulated during the experiment, indicating that a specific subset of the 19 glycoside hydrolase genes found in A. acidocaldarius were used during metabolism of WAX. While specific functions of the glycoside hydrolases was not tested as part of the research discussed, many of the glycoside hydrolases found in the A. acidocaldarius Type Strain appear to have a broader substrate range than represented by the glycoside hydrolase family in which the enzymes were categorized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahba, Haytham M.; Stevenson, Michael J.; Mansour, Ahmed
2017-01-03
The organomercurial lyase MerB has the unique ability to cleave carbon–Hg bonds, and structural studies indicate that three residues in the active site (C96, D99, and C159 in E. coli MerB) play important roles in the carbon–Hg bond cleavage. However, the role of each residue in carbon–metal bond cleavage has not been well-defined. To do so, we have structurally and biophysically characterized the interaction of MerB with a series of organotin and organolead compounds. Studies with two known inhibitors of MerB, dimethyltin (DMT) and triethyltin (TET), reveal that they inhibit by different mechanisms. In both cases the initial binding ismore » to D99, but DMT subsequently binds to C96, which induces a conformation change in the active site. In contrast, diethyltin (DET) is a substrate for MerB and the SnIV product remains bound in the active site in a coordination similar to that of HgII following cleavage of organomercurial compounds. The results with analogous organolead compounds are similar in that trimethyllead (TML) is not cleaved and binds only to D99, whereas diethyllead (DEL) is a substrate and the PbIV product remains bound in the active site. Binding and cleavage is an exothermic reaction, while binding to D99 has negligible net heat flow. These results show that initial binding of organometallic compounds to MerB occurs at D99 followed, in some cases, by cleavage and loss of the organic moieties and binding of the metal ion product to C96, D99, and C159. The N-terminus of MerA is able to extract the bound PbVI but not the bound SnIV. These results suggest that MerB could be utilized for bioremediation applications, but certain organolead and organotin compounds may present an obstacle by inhibiting the enzyme.« less
Gas-phase Reactivity of meta-Benzyne Analogs Toward Small Oligonucleotides of Differing Lengths
NASA Astrophysics Data System (ADS)
Widjaja, Fanny; Max, Joann P.; Jin, Zhicheng; Nash, John J.; Kenttämaa, Hilkka I.
2017-07-01
The gas-phase reactivity of two aromatic carbon-centered σ,σ-biradicals ( meta-benzyne analogs) and a related monoradical towards small oligonucleotides of differing lengths was investigated in a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer coupled with laser-induced acoustic desorption (LIAD). The mono- and biradicals were positively charged to allow for manipulation in the mass spectrometer. The oligonucleotides were evaporated into the gas phase as intact neutral molecules by using LIAD. One of the biradicals was found to be unreactive. The reactive biradical reacts with dinucleoside phosphates and trinucleoside diphosphates mainly by addition to a nucleobase moiety followed by cleavage of the glycosidic bond, leading to a nucleobase radical (e.g., base-H) abstraction. In some instances, after the initial cleavage, the unquenched radical site of the biradical abstracts a hydrogen atom from the neutral fragment, which results in a net nucleobase abstraction. In sharp contrast, the related monoradical mainly undergoes facile hydrogen atom abstraction from the sugar moiety. As the size of the oligonucleotides increases, the rate of hydrogen atom abstraction from the sugar moiety by the monoradical was found to increase due to the presence of more hydrogen atom donor sites, and it is the only reaction observed for tetranucleoside triphosphates. Hence, the monoradical only attacks sugar moieties in these substrates. The biradical also shows significant attack at the sugar moiety for tetranucleoside triphosphates. This drastic change in reactivity indicates that the size of the oligonucleotides plays a key role in the outcome of these reactions. This finding is attributed to more compact conformations in the gas phase for the tetranucleoside triphosphates than for the smaller oligonucleotides, which result from stronger stabilizing interactions between the nucleobases.
Dong, Xue; Zhou, Shiyue; Mechref, Yehia
2016-01-01
Oligosaccharides in milk not only provide nutrition to the infants, but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat and human milk using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat and human milk samples (without isomeric consideration) were 11, 8 and 11 respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by PGC LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using PGC column. Permethylation of the glycan structures facilitated the interpretation of tandem MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. PMID:26959529
Dong, Xue; Zhou, Shiyue; Mechref, Yehia
2016-06-01
Oligosaccharides in milk not only provide nutrition to the infants but also have significant immune biofunctions such as inhibition of pathogen binding to the host cell. The main component in milk oligosaccharides is free oligosaccharides. Since the proteins in milk are highly glycosylated, N-glycans in milk also play an import role. In this study, we investigated the permethylated free oligosaccharides and N-glycans extracted from bovine, goat, and human milks using LC-MS/MS. Quantitation profiles of free oligosaccharides and N-glycans were reported. The number of free oligosaccharides observed in bovine, goat, and human milk samples (without isomeric consideration) were 11, 8, and 11, respectively. Human milk had more complex free oligosaccharides structures than the other two milk samples. Totally 58, 21, and 43 N-glycan structures (without isomeric consideration) were associated with whey proteins extracted from bovine, goat, and human milk samples, respectively. Bovine milk free oligosaccharides and N-glycans from whey proteins were highly sialylated and to a lesser extend fucosylated. Goat and human milk free oligosaccharides and N-glycans from whey proteins were both highly fucosylated. Also, the isomeric glycans in milk samples were determined by porous graphitic carbon LC at elevated temperatures. For example, separation of human milk free oligosaccharide Gal-GlcNAc-(Fuc)-Gal-Glc and Gal-GlcNAc-Gal-Glc-Fuc isomers was achieved using porous graphitic carbon column. Permethylation of the glycan structures facilitated the interpretation of MS/MS. For example, internal cleavage and glycosidic bond cleavage are readily distinguished in the tandem mass spectra of permethylated glycans. This feature resulted in the identification of several isomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons.
Huber, G W; Shabaker, J W; Dumesic, J A
2003-06-27
Hydrogen (H2) was produced by aqueous-phase reforming of biomass-derived oxygenated hydrocarbons at temperatures near 500 kelvin over a tin-promoted Raney-nickel catalyst. The performance of this non-precious metal catalyst compares favorably with that of platinum-based catalysts for production of hydrogen from ethylene glycol, glycerol, and sorbitol. The addition of tin to nickel decreases the rate of methane formation from C-O bond cleavage while maintaining the high rates of C-C bond cleavage required for hydrogen formation.
Yu, Fei; Nguyen, Hien M.
2012-01-01
The stereoselective synthesis of saccharide thioglycosides containing 1,2-cis-2-amino glycosidic linkages is challenging. In addition to the difficulties associated with achieving high α-selectivity in the formation of 1,2-cis-2-amino glycosidic bonds, the glycosylation reaction is hampered by undesired transfer of the anomeric sulfide group from the glycosyl acceptor to the glycosyl donor. Overcoming these obstacles will pave the way for the preparation of oligosaccharides and glycoconjugates bearing the 1,2-cis-2-amino glycosidic linkages because the saccharide thioglycosides obtained can serve as donors for another coupling iteration. This approach streamlines selective deprotection and anomeric derivatization steps prior to the subsequent coupling event. We have developed an efficient approach for the synthesis of highly yielding and α-selective saccharide thioglycosides containing 1,2-cis-2-amino glycosidic bonds, via cationic nickel-catalyzed glycosylation of thioglycoside acceptors bearing the 2-trifluoromethylphenyl aglycon with N-phenyl trifluoroacetimidate donors. The 2-trifluoromethylphenyl group effectively blocks transfer of the anomeric sulfide group from the glycosyl acceptor to the C(2)-benzylidene donor and can be easily installed and activated. The current method also highlights the efficacy of the nickel catalyst selectively activating the C(2)-benzylidene imidate group in the presence of the anomeric sulfide group on the glycosyl acceptors. PMID:22838405
van der Kaaij, R M; Yuan, X-L; Franken, A; Ram, A F J; Punt, P J; van der Maarel, M J E C; Dijkhuizen, L
2007-07-01
In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidylinositol anchored, and some highly conserved amino acids of enzymes in the alpha-amylase family were absent. We expressed two of these enzymes in a suitable A. niger strain and characterized the purified proteins. Both enzymes showed transglycosylation activity on donor substrates with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds and therefore belong to the group of the 4-alpha-glucanotransferases (EC 2.4.1.25). Their reaction products reached a degree of polymerization of at least 30. Maltose and larger maltooligosaccharides were the most efficient acceptor substrates, although AgtA also used small nigerooligosaccharides containing alpha-(1,3)-glycosidic bonds as acceptor substrate. An agtA knockout of A. niger showed an increased susceptibility towards the cell wall-disrupting compound calcofluor white, indicating a cell wall integrity defect in this strain. Homologues of AgtA and AgtB are present in other fungal species with alpha-glucans in their cell walls, but not in yeast species lacking cell wall alpha-glucan. Possible roles for these enzymes in the synthesis and/or maintenance of the fungal cell wall are discussed.
Shan, Junjun; Liu, Jilei; Li, Mengwei; ...
2017-12-29
Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Junjun; Liu, Jilei; Li, Mengwei
Here, NiCu single atom alloy (SAA) nanoparticles supported on silica are reported to catalyze the non-oxidative dehydrogenation of ethanol, selectively to acetaldehyde and hydrogen products by facilitating the C—H bond cleavage. The activity and selectivity of the NiCu SAA catalysts were compared to monometallic copper and to PtCu and PdCu single atom alloys, in a flow reactor at moderate temperatures. In-situ DRIFTS showed that the silica support facilitates the O—H bond cleavage of ethanol to form ethoxy intermediates over all the supported alloy catalysts. However, these remain unreactive up to 250°C for the Cu/SiO 2 monometallic nanoparticles, while in themore » NiCu SAA, acetaldehyde is formed at much lower temperatures, below 150°C. In situ DRIFTS was also used to identify the C—H activation step as the rate determining step of this reaction on all the copper catalysts we examined. The presence of atomically dispersed Ni in Cu significantly lowers the C—H bond activation barrier, whereas Pt and Pd atoms were found less effective. This work provides direct evidence that the C—H bond cleavage is the rate determining step in ethanol dehydrogenation over this type catalyst.« less
Hu, Feng; Lalancette, Roger; Szostak, Michal
2016-04-11
Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the nature of carbon-hydrogen bond activation at rhodium and related reactions.
Jones, William D
2005-06-27
Over the past 20 years, substantial progress has been made in the understanding of the activation of C-H and other strong bonds by reactive metal complexes in low oxidation states. This paper will present an overview of the use of pentamethylcyclopentadienyl and trispyrazolylborate rhodium complexes for the activation of arene and alkane C-H bonds. Insights into bond strengths, kinetic and thermodynamic selectivities, and the nature of the intermediates involved will be reviewed. The role of eta-2 arene complexes will be shown to be critical to the C-H activation reactions. Some information about the fleeting alkane sigma-complexes will also be presented. In addition, use of these complexes with thiophenes has shown the ability to cleave C-S bonds. Mechanistic information has been obtained indicating coordination through sulfur prior to cleavage. Relevant examples of nickel-based C-S cleavage will also be given.
Failure mechanisms in wood joints bonded with urea-formaldehyde adhesives
B.H. River; R.O. Ebewele; G.E. Myers
1994-01-01
Wood joints bonded with urea-formaldehyde (UF) are weakened by cyclic swelling and shrinking. To study the failure mechanisms in UF-bonded joints, specimens were bonded with unmodified, modified (amine), or phenol formaldehyde adhesive and subjected to accelerated aging. Modification of the adhesive properties increased the cleavage fracture toughness and shear...
Electrochemistry-Assisted Top-Down Characterization of Disulfide-Containing Proteins
Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D.; Chen, Hao
2013-01-01
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then online ionized into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs. 73 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs. 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research. PMID:22448817
Electrochemistry-assisted top-down characterization of disulfide-containing proteins.
Zhang, Yun; Cui, Weidong; Zhang, Hao; Dewald, Howard D; Chen, Hao
2012-04-17
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.
Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO
NASA Astrophysics Data System (ADS)
Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.
2001-05-01
The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (<100 K), methanethiol reacts to yield thiolate intermediate bound to Zn 2+ cations. The thiolate is stable to 500 K. Above this temperature, C-S bond cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.
Methyl 3-O-α-l-fucopyranosyl β-d-glucopyranoside tetrahydrate
Eriksson, Lars; Widmalm, Göran
2012-01-01
The title compound, C13H24O10·4H2O, is the methyl glycoside of a disaccharide structural element present in the backbone of the capsular polysaccharide from Klebsiella K1, which contains only three sugars and a substituent in the polysaccharide repeating unit. The conformation of the title disaccharide is described by the glycosidic torsion angles ϕH = 51.1 (1)° and ψH = 25.8 (1)°. In the crystal, a number of O—H⋯O hydrogen bonds link the methyl glycoside and water molecules, forming a three-dimensional network. One water molecule is disordered over two positions with occupancies of 0.748 (4) and 0.252 (4). PMID:23284493
Li, He; Schopfer, Lawrence M; Nachon, Florian; Froment, Marie-Thérèse; Masson, Patrick; Lockridge, Oksana
2007-11-01
Some organophosphorus compounds are toxic because they inhibit acetylcholinesterase (AChE) by phosphylation of the active site serine, forming a stable conjugate: Ser-O-P(O)-(Y)-(XR) (where X can be O, N, or S and Y can be methyl, OR, or SR). The inhibited enzyme can undergo an aging process, during which the X-R moiety is dealkylated by breaking either the P-X or the X-R bond depending on the specific compound, leading to a nonreactivatable enzyme. Aging mechanisms have been studied primarily using AChE. However, some recent studies have indicated that organophosphate-inhibited butyrylcholinesterase (BChE) may age through an alternative pathway. Our work utilized matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry to study the aging mechanism of human BChE inhibited by dichlorvos, echothiophate, diisopropylfluorophosphate (DFP), isomalathion, soman, sarin, cyclohexyl sarin, VX, and VR. Inhibited BChE was aged in the presence of H2O18 to allow incorporation of (18)O, if cleavage was at the P-X bond. Tryptic-peptide organophosphate conjugates were identified through peptide mass mapping. Our results showed no aging of VX- and VR-treated BChE at 25 degrees C, pH 7.0. However, BChE inhibited by dichlorvos, echothiophate, DFP, soman, sarin, and cyclohexyl sarin aged exclusively through O-C bond cleavage, i.e., the classical X-R scission pathway. In contrast, isomalathion aged through both X-R and P-X pathways; the main aged product resulted from P-S bond cleavage and a minor product resulted from O-C and/or S-C bond cleavage.
Reactions involving the heterolytic cleavage of carbon-element σ-bonds by Grignard reagents
NASA Astrophysics Data System (ADS)
Polivin, Yurii N.; Karakhanov, Robert A.; Postnov, Victor N.
1990-03-01
The reactions involving the heterolysis of the C-O, C-C, C-N, C-S, C-Cl, etc. bonds by organomagnesium compounds are examined and the nature of this interesting phenomenon is analysed. On the basis of the analysis of the characteristic features of the cleavage under discussion, it is shown that the heterolysis of the carbon-element bond is, firstly, a general reaction for all classes of organic compounds (provided that two conditions are observed: the substrate molecule must fragment into two stable species — a carbonium ion and an anion — and the strength of the Lewis acid properties should be adequate for the occurrence of the above reaction) and, secondly, the heterolysis of the carbon-element bond is one of the independent pathways in the reactions of the Grignard reagents. The bibliography includes 158 references.
Characterization of Hyaluronan-Degrading Enzymes from Yeasts.
Smirnou, Dzianis; Krčmář, Martin; Kulhánek, Jaromír; Hermannová, Martina; Bobková, Lenka; Franke, Lukáš; Pepeliaev, Stanislav; Velebný, Vladimír
2015-10-01
Hyaluronidases (HAases) from yeasts were characterized for the first time. The study elucidated that hyaluronate 4-glycanohydrolase and hyaluronan (HA) lyase can be produced by yeasts. Six yeasts producing HAases were found through express screening of activities. The extracellular HAases from two of the yeast isolates, Pseudozyma aphidis and Cryptococcus laurentii, were characterized among them. P. aphidis HAase hydrolyzed β-1,4 glycosidic bonds of HA, yielding even-numbered oligosaccharides with N-acetyl-D-glucosamine at the reducing end. C. laurentii produced hyaluronan lyase, which cleaved β-1,4 glycosidic bonds of HA in β-elimination reaction, and the products of HA degradation were different-sized even-numbered oligosaccharides. The shortest detected HA oligomer was dimer. The enzymes' pH and temperature optima were pH 3.0 and 37-45 °C (P. aphidis) and pH 6.0 and 37 °C (C. laurentii), respectively. Both HAases showed good thermostability.
Mahrwald, R
2015-09-21
The aggressive and strong development of organocatalysis provides several protocols for the convenient utilization of the carbonyl function of unprotected carbohydrates in C-C-bond formation processes. These amine-catalyzed mechanisms enable multiple cascade-protocols for the synthesis of a wide range of carbohydrate-derived compound classes. Several, only slightly different protocols, have been developed for the application of 1,3-dicarbonyl compounds in the stereoselective chain-elongation of unprotected carbohydrates and the synthesis of highly functionalized C-glycosides of defined configuration. In addition, C-glycosides can also be accessed by amine-catalyzed reactions with methyl ketones. By a one-pot cascade reaction of isocyanides with unprotected aldoses and amino acids access to defined configured glycopeptide mimetics is achieved. Depending on the reaction conditions different origins to control the installation of configuration during the bond-formation process were observed.
Hellmann, Benjamin J; Kamps, Ina; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W
2010-09-21
The reaction of 2-lithio-1,3,5-trimethyl-1,3,5-triazacyclohexane with YCp(2)Cl leads to the formation of a donor-functionalised mono-anionic amide ligand, 1,3,5-trimethyl-2-(methylamidomethyl)-1,3,5-triazacyclohexane, bonded to the YCp(2) unit. The reaction involves a cleavage of the 1,3,5-triazacyclohexane ring and such a cleavage is also observed in the analogous reaction with (Me(3)C)(2)GaCl, where a MeN[double bond, length as m-dash]CH(-) fragment is formed. No such cleavage occurs in the reaction of the related dilithiated bicyclic bis(3-methyl-1,3-diazacyclohex-1-yl)methane with YCpCl(2).3thf, which affords a mixed lithium-yttrium organyl.
Ren, Hui; Yu, Weiting; Salciccioli, Michael; Chen, Ying; Huang, Yulin; Xiong, Ke; Vlachos, Dionisios G; Chen, Jingguang G
2013-05-01
Which cleavage do you prefer? With a combination of density functional theory (DFT) calculations, surface science studies, and reactor evaluations, Mo(2)C is identified as a highly selective HDO catalyst to selectively convert biomass-derived oxygenates to unsaturated hydrocarbons through selective C-O bond scissions without C-C bond cleavage. This provides high-value HDO products for utilization as feedstocks for chemicals and fuels; this also reduces the overall consumption of H2 . Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Deng-Fu; Zhu, Cheng-Liang; Jia, Zhen-Xin; Xu, Hao
2014-09-24
An iron-catalyzed diastereoselective intermolecular olefin amino-oxygenation reaction is reported, which proceeds via an iron-nitrenoid generated by the N-O bond cleavage of a functionalized hydroxylamine. In this reaction, a bench-stable hydroxylamine derivative is used as the amination reagent and oxidant. This method tolerates a range of synthetically valuable substrates that have been all incompatible with existing amino-oxygenation methods. It can also provide amino alcohol derivatives with regio- and stereochemical arrays complementary to known amino-oxygenation methods.
Ling, Sanliang; Gutowski, Maciej
2016-10-06
Computational results have been reported for 2'-deoxycytidine (dC), its gas phase isomers, tautomers, and their conformers, as well as for the crystalline phase. In addition to the neutral gas phase molecules, we have also considered associated radical anions and cations. The structural calculations were performed at the density functional and MP2 levels of theory. Vertical electron ionization energies and excess electron binding energies were determined using electron propagator theory. The α-anomer proved to be more stable by a fraction of kcal/mol than the biologically relevant canonical β-anomer. The conformational space of canonical dC has been systematically probed. dC in the crystalline phase or DNA structures favors canonical anti conformations. These structures were used in past computational studies to model gas phase characteristics of dC. Our findings indicate, however, that the gas phase dC favors syn conformations. It has repercussions for earlier interpretations of gas phase experimental results based on these computational results. The thermodynamic dominance of syn conformations results from the formation of an intramolecular O5'-H13···O2 hydrogen bond. The IR spectra of the most stable syn and anti canonical conformers differ markedly in the region of frequencies corresponding to NH/OH stretching modes. The MP2 value of deprotonation enthalpy of dC of 1411.7 kJ/mol is in very good agreement with the experimental value of 1409 ± 2.5 kJ/mol. The most stable valence anions are characterized by electron vertical detachment energies (VDE) in the 0.8-1.0 eV range, in good agreement with the experimental VDE of 0.87 eV. The barrier for the glycosidic bond cleavage is significant in the neutral canonical dC, 40.0 kcal/mol, and it is reduced to 22 and 16 kcal/mol for the anionic and cationic radicals of dC, respectively. The cleavage reaction is exothermic by 4 kcal/mol for dC - and endothermic by 7 and 9 kcal/mol for dC + and dC, respectively. We decomposed the crystal cohesive energy into repulsive one-body terms associated with the syn-anti conformational changes, and the attractive intermolecular interaction term. We exposed that the syn-anti conformational changes are very favorable for intermolecular interactions; in particular they make the imino-amino side of the cytosine residue accessible to intermolecular interactions.
Adenosylcobinamide methyl phosphate as a pseudocoenzyme for diol dehydrase.
Ishida, A; Toraya, T
1993-02-16
Adenosylcobinamide methyl phosphate, a novel analog of adenosylcobalamin lacking the nucleotide loop moiety, was synthesized. It did not show detectable coenzymic activity but behaved as a strong competitive inhibitor against AdoCbl with relatively high affinity (Ki = 2.5 microM). When apoenzyme was incubated at 37 degrees C with this analog in the presence of substrate, the Co-C bond of the analog was almost completely and irreversibly cleaved within 10 min, forming an enzyme-bound Co(II)-containing species. The cleavage was not observed in the absence of substrate. The Co-C bond cleavage in the presence of substrate was not catalytic but stoichiometric, implying that the Co-C bond of the analog undergoes activation when the analog binds to the active site of the enzyme. 5'-Deoxyadenosine was the only product derived from the adenosyl group of the analog upon the Co-C bond cleavage. Apoenzyme did not undergo modification during this process. Therefore, it seems likely that adenosylcobinamide methyl phosphate acts as a pseudocoenzyme or a potent suicide coenzyme. Since adenosylcobinamide neither functions as coenzyme nor binds tightly to apoenzyme, it can be concluded that the phosphodiester moiety of the nucleotide loop of adenosylcobalamin is essential for tight binding to apoenzyme and therefore for subsequent activation of the Co-C bond and catalysis. It is also evident that the nucleotide loop is obligatory for the normal progress of catalytic cycle.
A debranching enzyme IsoM of Corallococcus sp. strain EGB with potential in starch processing.
Li, Zhoukun; Ji, Kai; Zhou, Jie; Ye, Xianfeng; Wang, Ting; Luo, Xue; Huang, Yan; Cao, Hui; Cui, Zhongli; Kong, Yi
2017-12-01
Interest in use of resistant starch and maltooligosaccharides as functional foods and biopreservatives has grown in recent years. In this research, a novel debranching enzyme IsoM from Corallococcus sp. strain EGB was identified and expressed in P. pastoris GS115. Sequence alignments showed that IsoM was typical isoamylase with the specific activity up to 70,600U/mg, which belongs to glycoside hydrolase family 13 (GH 13). Enzymatic reaction pattern demonstrated that IsoM has high debranching efficiency against α-1,6-glycosidic bond of branched starch, and exhibited no activity towards α-1,4-glycosidic bond. The potential application of IsoM in starch processing was determined. IsoM was a potential candidate for the production of RS (70.9%) from raw starch, which was comparable with the commercial pullulanase (Promozyme ® D2). IsoM also improved the maltohexaose yield in combination with maltohexaose-producing α-amylase AmyM (KM114206), the maltohexaose yield was improved by 63.3% compared with 21.9% improvement of Promozyme ® D2. The results of RS production and combination with other amylases suggesting that IsoM is a potential candidate for the efficient conversion of starch. Copyright © 2017. Published by Elsevier B.V.
Effects of flexibility of the α2 chain of type I collagen on collagenase cleavage.
Mekkat, Arya; Poppleton, Erik; An, Bo; Visse, Robert; Nagase, Hideaki; Kaplan, David L; Brodsky, Barbara; Lin, Yu-Shan
2018-05-12
Cleavage of collagen by collagenases such as matrix metalloproteinase 1 (MMP-1) is a key step in development, tissue remodeling, and tumor proliferation. The abundant heterotrimeric type I collagen composed of two α1(I) chains and one α2(I) chain is efficiently cleaved by MMP-1 at a unique site in the triple helix, a process which may be initiated by local unfolding within the peptide chains. Atypical homotrimers of the α1(I) chain, found in embryonic and cancer tissues, are very resistant to MMP cleavage. To investigate MMP-1 cleavage, recombinant homotrimers were constructed with sequences from the MMP cleavage regions of human collagen chains inserted into a host bacterial collagen protein system. All triple-helical constructs were cleaved by MMP-1, with α2(I) homotrimers cleaved efficiently at a rate similar to that seen for α1(II) and α1(III) homotrimers, while α1(I) homotrimers were cleaved at a much slower rate. The introduction of destabilizing Gly to Ser mutations within the human collagenase susceptible region of the α2(I) chain did not interfere with MMP-1 cleavage. Molecular dynamics simulations indicated a greater degree of transient hydrogen bond breaking in α2(I) homotrimers compared with α1(I) homotrimers at the MMP-1 cleavage site, and showed an extensive disruption of hydrogen bonding in the presence of a Gly to Ser mutation, consistent with chymotrypsin digestion results. This study indicates that α2(I) homotrimers are susceptible to MMP-1, proves that the presence of an α1(I) chain is not a requirement for α2(I) cleavage, and supports the importance of local unfolding of α2(I) in collagenase cleavage. Copyright © 2018. Published by Elsevier Inc.
Angelov, Angel; Pham, Vu Thuy Trang; Übelacker, Maria; Brady, Silja; Leis, Benedikt; Pill, Nicole; Brolle, Judith; Mechelke, Matthias; Moerch, Matthias; Henrissat, Bernard; Liebl, Wolfgang
2017-12-11
The discovery of novel and robust enzymes for the breakdown of plant biomass bears tremendous potential for the development of sustainable production processes in the rapidly evolving new bioeconomy. By functional screening of a metagenomic library from a volcano soil sample a novel thermostable endo-β-glucanase (EngU) which is unusual with regard to its module architecture and cleavage specificity was identified. Various recombinant EngU variants were characterized. Assignment of EngU to an existing glycoside hydrolase (GH) family was not possible. Two regions of EngU showed weak sequence similarity to proteins of the GH clan GH-A, and acidic residues crucial for catalytic activity of EngU were identified by mutation. Unusual, a carbohydrate-binding module (CBM4) which displayed binding affinity for β-glucan, lichenin and carboxymethyl-cellulose was found as an insertion between these two regions. EngU hydrolyzed β-1,4 linkages in carboxymethyl-cellulose, but displayed its highest activity with mixed linkage (β-1,3-/β-1,4-) glucans such as barley β-glucan and lichenin, where in contrast to characterized lichenases cleavage occurred predominantly at the β-1,3 linkages of C4-substituted glucose residues. EngU and numerous related enzymes with previously unknown function represent a new GH family of biomass-degrading enzymes within the GH-A clan. The name assigned to the new GH family is GH148.
Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Susan K; Gordon, John C; Thorn, David L
2009-01-01
The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress hasmore » been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A), 2-phenoxyethanol (B), and 1,2-diphenyl-2-methoxyethanol (C) (Figure 1). Reaction of (dipic)V{sup V}(O)O{sup i}Pr (1a) or (dipic)V{sup v}(O)OEt (lb) with A, B, or C in acetonitrile yielded new vanadium(V) complexes where the alcohol-ether ligand was bound in a chelating fashion. From the reaction of 1b with pinacol monomethyl ether (A) in acetonitrile solution, (dipic)V{sup v}(O)(pinOMe) (2) (PinOMe = 2,3-dimethyl-3-methoxy-2-butanoxide) was isolated in 61 % yield. Reaction of 1b with 2-phenoxyethanol (B) in acetonitrile gave the new complex (dipic)V{sup v}(O)(OPE) (3) (OPE = 2-phenoxyethoxide), which was isolated in 76% yield. In a similar fashion, 1a reacted with 1,2-diphenyl-2-methoxyethanol (C) to give (dipic)V(O)(DPME) (4) (DPME = 1,2-diphenyl-2-methoxyethoxide), which was isolated in 39% yield. Complexes 2, 3, and 4 were characterized by {sup 1}H NMR and IR spectroscopy, elemental analysis, and X-ray crystallography. Compared to the previously reported vanadium(V) pinacolate complex (dipic)V(O)(pinOH) the X-ray structure of complex 2 reveals a slightly shorter V = O bond, 1.573(2) {angstrom} vs 1.588(2) {angstrom} for the pinOH structure. Complexes 3 and 4 display similar vanadium oxo bond distances of 1.568(2) {angstrom} and 1.576(2) {angstrom}, respectively. All three complexes show longer bonds to the ether-oxygen trans to the oxo (2.388(2) {angstrom} for 2, 2.547(2) {angstrom} for 3, and 2.438(2) {angstrom} for 4) than to the hydroxy-oxygen in the pinOH structure (2.252(2) {angstrom}).« less
NMR and enzymology of modified DNA/protein interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, M.A.
1994-12-31
We have found distinct DNA structure and base dynamics precisely at the TpA cleavage site in the TTTAAA AHA III endonuclease restriction sequence. Hence, the unusual base stacking and mobility found in this sequence may be important to the mechanism of enzymatic cleavage of the phophodiester bond.
UV Photofragmentation Dynamics of Protonated Cystine: Disulfide Bond Rupture.
Soorkia, Satchin; Dehon, Christophe; Kumar, S Sunil; Pedrazzani, Mélanie; Frantzen, Emilie; Lucas, Bruno; Barat, Michel; Fayeton, Jacqueline A; Jouvet, Christophe
2014-04-03
Disulfide bonds (S-S) play a central role in stabilizing the native structure of proteins against denaturation. Experimentally, identification of these linkages in peptide and protein structure characterization remains challenging. UV photodissociation (UVPD) can be a valuable tool in identifying disulfide linkages. Here, the S-S bond acts as a UV chromophore and absorption of one UV photon corresponds to a σ-σ* transition. We have investigated the photodissociation dynamics of protonated cystine, which is a dimer of two cysteines linked by a disulfide bridge, at 263 nm (4.7 eV) using a multicoincidence technique in which fragments coming from the same fragmentation event are detected. Two types of bond cleavages are observed corresponding to the disulfide (S-S) and adjacent C-S bond ruptures. We show that the S-S cleavage leads to three different fragment ions via three different fragmentation mechanisms. The UVPD results are compared to collision-induced dissociation (CID) and electron-induced dissociation (EID) studies.
Characterization of CMPO and its radiolysis products by Direct Infusion ESI-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. S. Groenewold; G. Elias; B. J. Mincher
2012-09-01
Direct infusion electrospray ionization-mass spectrometry (ESI-MS) approaches were developed for rapid identification of octyl,phenyl,(N,N-(diisobutyl)carbamoylmethyl) phosphine oxide (CMPO) and impurity compounds formed during alpha and gamma irradiation experiments. CMPO is an aggressive Lewis base, and produces extremely abundant metal complex ions in the ESI-MS analysis that make identification of low abundance compounds that are less nucleophilic challenging. Radiolysis products were identified using several approaches including restricting ion trapping so as to exclude the abundant natiated CMPO ions, extraction of acidic products using aqueous NaOH, and extraction of basic products using HNO3. These approaches generated protonated, natiated and deprotonated species derived frommore » CMPO degradation products formed via radiolytic cleavages of several different bonds. Cleavages of the amide and methylene-phosphoryl bonds appear to be favored by both forms of irradiation, while alpha irradiation also appears to induce cleavage of the methylene-carbonyl bond. The degradation products observed are formed from recombination of the initially formed radicals with hydrogen, methyl, isopropyl and hydroxyl radicals that are derived either from CMPO, or the dodecane solvent.« less
Yang, Xiaohui; Li, Ning; Lin, Xuliang; Pan, Xuejun; Zhou, Yonghong
2016-11-09
The present study demonstrates that the concentrated lithium bromide (LiBr) solution with acid as catalyst was able to selectively cleave the β-O-4 aryl ether bond and lead to lignin depolymerization under mild conditions (e.g., in 60% LiBr with 0.3 M HCl at 110 °C for 2 h). Four industrial lignins from different pulping and biorefining processes, including softwood kraft lignin (SKL), hardwood kraft lignin (HKL), softwood ethanol organosolv lignin (EOL), and acid corncob lignin (ACL), were treated in the LiBr solution. The molecular weight, functional group, and interunit linkages of the lignins were characterized using GPC, FTIR, and NMR. The results indicated that the β-O-4 aryl ether bonds of the lignins were selectively cleaved, and both LiBr and HCl played crucial roles in catalyzing the cleavage of the ether bonds.
NASA Astrophysics Data System (ADS)
Jiang, Xuan-Feng; Huang, Hui; Chai, Yun-Feng; Lohr, Tracy Lynn; Yu, Shu-Yan; Lai, Wenzhen; Pan, Yuan-Jiang; Delferro, Massimiliano; Marks, Tobin J.
2017-02-01
Developing homogeneous catalysts that convert CS2 and COS pollutants into environmentally benign products is important for both fundamental catalytic research and applied environmental science. Here we report a series of air-stable dimeric Pd complexes that mediate the facile hydrolytic cleavage of both CS2 carbon-sulfur bonds at 25 °C to produce CO2 and trimeric Pd complexes. Oxidation of the trimeric complexes with HNO3 regenerates the dimeric starting complexes with the release of SO2 and NO2. Isotopic labelling confirms that the carbon and oxygen atoms of CO2 originate from CS2 and H2O, respectively, and reaction intermediates were observed by gas-phase and electrospray ionization mass spectrometry, as well as by Fourier transform infrared spectroscopy. We also propose a plausible mechanistic scenario based on the experimentally observed intermediates. The mechanism involves intramolecular attack by a nucleophilic Pd-OH moiety on the carbon atom of coordinated µ-OCS2, which on deprotonation cleaves one C-S bond and simultaneously forms a C-O bond. Coupled C-S cleavage and CO2 release to yield [(bpy)3Pd3(µ3-S)2](NO3)2 (bpy, 2,2‧-bipyridine) provides the thermodynamic driving force for the reaction.
Nucleotides containing variously modified sugars: energetics, structure, and mechanical properties.
Yurenko, Yevgen P; Novotný, Jan; Nikolaienko, Tymofii Yu; Marek, Radek
2016-01-21
The influence of various sugar residue modifications on intrinsic energetic, conformational, and mechanical properties of 2'-deoxyribonucleotide-5'-monophosphates (dNs) was comprehensively investigated using modern quantum chemical approaches. In total, fourteen sugar modifications, including double bonds and heteroatoms (S and N) inside the sugar ring, as well as fluorination in various positions, were analyzed. Among hundreds of possible conformational states of dNs, only two - AI and BI, corresponding to the most biologically significant forms of a double-helical DNA, were considered for each dN. It was established that the most of the studied modifications tend to strongly stabilize either AI or BI conformation of dNs both in the gas phase and in aqueous solution (modelled by implicit solvent models). Therefore, some of these modifications can be used as a tool for reducing structural polymorphism of nucleic acids in solution as well as for designing oligonucleotides with specific structural features. The evaluation of relaxed force constants (RFC) for glycosidic bonds suggests that the majority of the studied modifications of the sugar residue yield increased strengths of glycosidic bonds in dNs, and can therefore be used for designing modified nucleic acids with an increased resistance to abasic lesions. The most significant reinforcement of the glycosidic bond occurs in dNs containing the CF2 group instead of the O4' oxygen and the fluorine atom at the 2'-α-position. The calculation of the RFC and vibrational root-mean-square (VRMS) deviations for conformational degrees of freedom revealed a strong dependence between mechanical properties of dNs and their energetic characteristics. In particular, electronic energies of AI and BI conformers of dNs calculated in vacuo are closely connected with the values of relaxed force constants (RFC) for the δ angle: the higher RFC(δ) values correspond to more energetically favorable conformers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, J.W.; Birken, S.; Pileggi, N.F.
1989-11-28
Crystals suitable for X-ray diffraction studies at moderate resolution have been grown from two forms of human chorionic gonadotropin (hCG): HF-treated hCG and neuraminidase-treated hCG. The enzymatically desialylated form of hCG produced crystals that diffract to 2.8 {angstrom} as compared to the HF-treated hCG crystals that diffract to 3.0 {angstrom}. Although it was assumed that the high and heterogeneous carbohydrate content of the glycoprotein hormones inhibited their crystallization, this report suggests that it is the negatively charged surface sugars and neither the total carbohydrate content nor its heterogeneity which interferes with crystal formation. Chemical deglycosylation resulted in significantly increased proteinmore » degradation during crystal growth. Such peptide bond cleavages were observed to a much lesser extent in the crystals grown from neuraminidase-digested hCG. Sequence analysis of the HF-treated hCG crystals suggested that up to 45% of the molecules within the crystal had an acid-labile peptide bond cleaved. In contrast, the neuraminidase-treated hCG exhibited less than 9% of this type of cleavage. The manner in which hCG was treated prior to crystallization was found to be a very important factor in the extent of peptide bound cleavages occurring during crystal growth. HF treatment of glycoproteins may render glycoproteins more susceptible to peptide bond cleavage during crystal growth.« less
Kinetic Control in the Cleavage of Unsymmetrical Disilanes.
Hevesi, Làszlò; Dehon, Michael; Crutzen, Raphael; Lazarescu-Grigore, Adriana
1997-04-04
A series of 12 phenyl-substituted arylpentamethyldisilanes 1a-l have been synthesized in order to examine the regioselectivity of their nucleophilic Si,Si bond cleavage reactions under Still's conditions (MeLi/HMPA/0 degrees C). It has been found that the sensitivity of these reactions to the electronic effects of the substituents in the phenyl ring could be described by the Hammett-type equation log(k(A)/k(B)) = 0.4334 + 2.421(Sigmasigma); (correlation coefficient R = 0.983). The k(A)/k(B) ratio represents the relative rate of attack at silicon atom A (linked to the aryl ring) or at silicon atom B (away from the aryl ring) of the unsymmetrical disilanes. Thus, the present investigation shows that the earlier belief according to which the nucleophilic cleavage of unsymmetrical disilanes always produces the more stable silyl anionic species (thermodynamic control) should be abandoned, or at least seriously amended: kinetic factors appear to exert a primary influence on the regioselectivity of such reactions. Since the two major kinetic factors (i.e., electrophilic character of and steric hindrance at a given silicon atom) have opposite effects on the orientation of the reaction, it may happen that kinetic and thermodynamic control lead to the same result. For some of the unsymmetrical disilanes studied, the major reaction path was not the Si,Si bond cleavage; instead, Si-aryl bond breaking occurred, producing the corresponding aryl anions.
Simukova, N A; Yakovlev, D Y; Budowsky, E I
1975-01-01
The principal UV-induced (lambda = 2546nm) reaction of N4-hydroxy- and N4methoxycytidines and N6-methoxyadenosine in neutral aqueous solutions is cleavage of the exocyclic N-O bond with the respective formation of cytidine and adenosine. Quantum yields are 2.8x10(-3) and 2.2x10(-3) M/E for the first two compounds and 9.1x10(-3) M/E for N6-methoxyadenosine. PMID:1052542
Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage.
Ackermann, Lutz; Vicente, Rubén; Kapdi, Anant R
2009-01-01
The area of transition-metal-catalyzed direct arylation through cleavage of C-H bonds has undergone rapid development in recent years, and is becoming an increasingly viable alternative to traditional cross-coupling reactions with organometallic reagents. In particular, palladium and ruthenium catalysts have been described that enable the direct arylation of (hetero)arenes with challenging coupling partners--including electrophilic aryl chlorides and tosylates as well as simple arenes in cross-dehydrogenative arylations. Furthermore, less expensive copper, iron, and nickel complexes were recently shown to be effective for economically attractive direct arylations.
Sugiishi, Tsuyuka; Kimura, Akifumi; Nakamura, Hiroyuki
2010-04-21
Substitution reactions of propargylic amines proceed in the presence of copper(I) catalysts. Mechanistic studies showed that C(sp)-C(sp(3)) bond cleavage assisted by nitrogen lone-pair electrons is essential for the reaction, and the resulting iminium intermediates undergo amine exchange, aldehyde exchange, and alkyne addition reactions. Because iminium intermediates are key to aldehyde-alkyne-amine (A(3)) coupling reactions, this transformation is effective not only for reconstruction of propargylic amines but also for chiral induction of racemic compounds in the presence of chiral catalysts.
Reactions in trifluoroacetic acid (CF 3COOH) induced by low energy electron attachment
NASA Astrophysics Data System (ADS)
Langer, Judith; Stano, Michal; Gohlke, Sascha; Foltin, Victor; Matejcik, Stefan; Illenberger, Eugen
2006-02-01
Dissociative electron attachment to trifluoroacetic acid (CF 3COOH) is characterized by an intense low energy shape resonance located near 1 eV and a comparatively weaker core excited resonance located near 7 eV. The shape resonance decomposes into the fragment ions CF 3COO -, CF 2COO -, and CF2-. The underlying reactions include simple bond cleavage but also more complex sequences involving multiple bond cleavages, rearrangement in the precursor ion and formation of new molecules (HF, CO 2). The core excited resonance additionally decomposes into F -, CF3- and probably metastable CO2-.
Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W
1990-10-25
We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65.
Aromatic thiol-mediated cleavage of N-O bonds enables chemical ubiquitylation of folded proteins
NASA Astrophysics Data System (ADS)
Weller, Caroline E.; Dhall, Abhinav; Ding, Feizhi; Linares, Edlaine; Whedon, Samuel D.; Senger, Nicholas A.; Tyson, Elizabeth L.; Bagert, John D.; Li, Xiaosong; Augusto, Ohara; Chatterjee, Champak
2016-09-01
Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N-O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol. Our interrogation of the reaction mechanism suggests a disulfide radical anion as the active species capable of cleaving the N-O bond. The successful semisynthesis of full-length histone H2B modified by the small ubiquitin-like modifier-3 (SUMO-3) protein further demonstrates the generalizability and compatibility of our strategy with folded proteins.
Reductive cleavage of the peptide bond
NASA Technical Reports Server (NTRS)
Holian, J.; Garrison, W. M.
1973-01-01
In many biological research efforts, long chain organic molecules are studied by breaking large molecules into smaller components. Cleavage technique of recent interest is the use of solvated electrons. These are formed when aqueous solutions are bombarded with gamma radiation. Solvated electron is very reactive and can reduce most any species present, even to form free radicals.
Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.
Lavoie, Mathieu; Abou Elela, Sherif
2008-08-19
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.
Sadraei, Seyed I; Reynolds, Michael R; Trant, John F
2017-01-01
Carcinomas express unique carbohydrates, known as tumor-associated carbohydrate antigens (TACAs), on their surface. These are potential targets for anticancer vaccines; however, to date, no such vaccine has reached the clinic. One factor that may complicate the success of this effort is the lability of the glycosidic bond. Acetal-free carbohydrates are analogues that lack the glycosidic linkage by replacing either the endo or exo oxygen with a methylene. This chapter summarizes the seminal syntheses of the mucin TACAs, provides an overview of common techniques for the synthesis of carbasugars and C-glycosides, reviews the syntheses published to date of acetal-free TACA analogues, and provides an overview of their observed biological activity. We conclude by offering a summation of the challenges remaining to the field biologically and the potential that acetal-free TACAs have of answering several basic questions in carbohydrate immunology. © 2017 Elsevier Inc. All rights reserved.
Wang, Se; Wang, Zhuang
2017-11-11
The study of pollution due to combined antibiotics and metals is urgently needed. Photochemical processes are an important transformation pathway for antibiotics in the environment. The mechanisms underlying the effects of metal-ion complexation on the aquatic photochemical transformation of antibiotics in different dissociation forms are crucial problems in science, and beg solutions. Herein, we investigated the mechanisms of direct photolysis of norfloxacin (NOR) in different dissociation forms in water and metal ion Mg 2+ effects using quantum chemical calculations. Results show that different dissociation forms of NOR had different maximum electronic absorbance wavelengths (NOR 2+ < NOR⁰ < NOR⁺) and showed different photolysis reactivity. Analysis of transition states (TS) and reaction activation energies ( E a ) indicated NOR⁺ generally underwent loss of the piperazine ring (C10-N13 bond cleavage) and damage to piperazine ring (N13-C14 bond cleavage). For NOR 2+ , the main direct photolysis pathways were de-ethylation (N7-C8 bond cleavage) and decarboxylation (C2-C5 bond cleavage). Furthermore, the presence of Mg 2+ changed the order of the wavelength at maximum electronic absorbance (NOR⁺-Mg 2+ < NOR⁰-Mg 2+ < NOR 2+ -Mg 2+ ) and increased the intensities of absorbance peaks of all three dissociation species of NOR, implying that Mg 2+ played an important role in the direct photolysis of NOR⁰, NOR⁺, and NOR 2+ . The calculated TS results indicated that the presence of Mg 2+ increased E a for most direct photolysis pathways of NOR, while it decreased E a for some direct photolysis pathways such as the loss of the piperazine ring and the damage of the piperazine ring of NOR⁰ and the defluorination of NOR⁺.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seongmin; Verdine, Gregory L.; Harvard)
2010-01-14
Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases havemore » been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.« less
Another heritage from the RNA world: self-excision of intron sequence from nuclear pre-tRNAs.
Weber, U; Beier, H; Gross, H J
1996-06-15
The intervening sequences of nuclear tRNA precursors are known to be excised by tRNA splicing endonuclease. We show here that a T7 transcript corresponding to a pre-tRNA(Tyr) from Arabidopsis thaliana has a highly specific activity for autolytic intron excision. Self-cleavage occurs precisely at the authentic 3'-splice site and at the phosphodiester bond one nucleotide downstream of the authentic 5'-splice site. The reaction results in fragments with 2',3'-cyclic phosphate and 5'-OH termini. It is resistant to proteinase K and/or SDS treatment and is not inhibited by added tRNA. The self-cleavage depends on Mg2+ and is stimulated by spermine and Triton X-100. A set of sequence variants at the cleavage sites has been analysed for autolytic intron excision and, in parallel, for enzymatic in vitro splicing in wheat germ S23 extract. Single-stranded loops are a prerequisite for both reactions. Self-cleavage not only occurs at pyrimidine-A but also at U-U bonds. Since intron self-excision is only about five times slower than the enzymatic intron excision in a wheat germ S23 extract, we propose that the splicing endonuclease may function by improving the preciseness and efficiency of an inherent pre-tRNA self-cleavage activity.
Nanomechanical Sensing of Biological Interfacial Interactions
NASA Astrophysics Data System (ADS)
Du, Wenjian
Cellulose is the most abundant biopolymer on earth. Cellulase is an enzyme capable of converting insoluble cellulose into soluble sugars. Cellulosic biofuel produced from such fermentable simple sugars is a promising substitute as an energy source. However, its economic feasibility is limited by the low efficiency of the enzymatic hydrolysis of cellulose by cellulase. Cellulose is insoluble and resistant to enzymatic degradation, not only because the beta-1,4-glycosidic bonds are strong covalent bonds, but also because cellulose microfibrils are packed into tightly bound, crystalline lattices. Enzymatic hydrolysis of cellulose by cellulase involves three steps--initial binding, decrystallization, and hydrolytic cleavage. Currently, the mechanism for the decrystallization has not yet been elucidated, though it is speculated to be the rate-limiting step of the overall enzymatic activity. The major technical challenge limiting the understanding of the decrystallization is the lack of an effective experimental approach capable of examining the decrystallization, an interfacial enzymatic activity on solid substrates. The work presented develops a nanomechanical sensing approach to investigate both the decrystallization and enzymatic hydrolytic cleavage of cellulose. The first experimental evidence of the decrystallization is obtained by comparing the results from native cellulase and non-hydrolytic cellulase. Surface topography has been applied to examine the activities of native cellulase and non-hydrolytic cellulase on cellulose substrate. The study demonstrates additional experimental evidence of the decrystallization in the hydrolysis of cellulose. By combining simulation and monitoring technology, the current study also investigates the structural changes of cellulose at a molecular level. In particular, the study employs cellulose nanoparticles with a bilayer structure on mica sheets. By comparing results from a molecular dynamic simulation and the distance between cellulose layers monitored by means of the atomic force microscopy (AFM), the current study shows that water molecules can efficiently reduce the energy required for separating two layers of cellulose bilayers during hydration of cellulose bilayer nanoparticles. The findings of the study contribute to explicating the mechanism of cellulose the decrystallization, a free-energetically unfavorable process, through enzymatic hydrolysis of cellulase. The study also investigates the application of a cell-based microcantilever sensor to monitor the real-time ligand-induced response of living cells. These nanomechanical approaches offer unique perspectives on the interfacial activities of biological molecules.
Mechanistic Insights into Ring Cleavage and Contraction of Benzene over a Titanium Hydride Cluster.
Kang, Xiaohui; Luo, Gen; Luo, Lun; Hu, Shaowei; Luo, Yi; Hou, Zhaomin
2016-09-14
Carbon-carbon bond cleavage of benzene by transition metals is of great fundamental interest and practical importance, as this transformation is involved in the production of fuels and other important chemicals in the industrial hydrocracking of naphtha on solid catalysts. Although this transformation is thought to rely on cooperation of multiple metal sites, molecular-level information on the reaction mechanism has remained scarce to date. Here, we report the DFT studies of the ring cleavage and contraction of benzene by a molecular trinuclear titanium hydride cluster. Our studies suggest that the reaction is initiated by benzene coordination, followed by H2 release, C6H6 hydrometalation, repeated C-C and C-H bond cleavage and formation to give a MeC5H4 unit, and insertion of a Ti atom into the MeC5H4 unit with release of H2 to give a metallacycle product. The C-C bond cleavage and ring contraction of toluene can also occur in a similar fashion, though some details are different due to the presence of the methyl substituent. Obviously, the facile release of H2 from the metal hydride cluster to provide electrons and to alter the charge population at the metal centers, in combination with the flexible metal-hydride connections and dynamic redox behavior of the trimetallic framework, has enabled this unusual transformation to occur. This work has not only provided unprecedented insights into the activation and transformation of benzene over a multimetallic framework but it may also offer help in the design of new molecular catalysts for the activation and transformation of inactive aromatics.
Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections.
Mydock-McGrane, Laurel; Cusumano, Zachary; Han, Zhenfu; Binkley, Jana; Kostakioti, Maria; Hannan, Thomas; Pinkner, Jerome S; Klein, Roger; Kalas, Vasilios; Crowley, Jan; Rath, Nigam P; Hultgren, Scott J; Janetka, James W
2016-10-27
Gram-negative uropathogenic Escherichia coli (UPEC) bacteria are a causative pathogen of urinary tract infections (UTIs). Previously developed antivirulence inhibitors of the type 1 pilus adhesin, FimH, demonstrated oral activity in animal models of UTI but were found to have limited compound exposure due to the metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose that compounds having the O-glycosidic bond replaced with carbon linkages had improved stability and inhibitory activity against FimH. We report on the design, synthesis, and in vivo evaluation of this promising new class of carbon-linked C-mannosides that show improved pharmacokinetic (PK) properties relative to O-mannosides. Interestingly, we found that FimH binding is stereospecifically modulated by hydroxyl substitution on the methylene linker, where the R-hydroxy isomer has a 60-fold increase in potency. This new class of C-mannoside antagonists have significantly increased compound exposure and, as a result, enhanced efficacy in mouse models of acute and chronic UTI.
Yang, Hua-Qing; Fu, Hong-Quan; Su, Ben-Fang; Xiang, Bo; Xu, Qian-Qian; Hu, Chang-Wei
2015-11-25
The catalytic mechanism of 2NO + 2CO → N2 + 2CO2 on Rh4 cluster has been systematically investigated on the ground and first excited states at the B3LYP/6-311+G(2d),SDD level. For the overall reaction of 2NO + 2CO → N2 + 2CO2, the main reaction pathways take place on the facet site rather than the edge site of the Rh4 cluster. The turnover frequency (TOF) determining transition states are characteristic of the second N-O bond cleavage with rate constant k4 = 1.403 × 10(11) exp (-181 203/RT) and the N-N bond formation for the intermediate N2O formation with rate constant k2 = 3.762 × 10(12) exp (-207 817/RT). The TOF-determining intermediates of (3)N(b)Rh4NO and (3)N(b)Rh4O(b)(NO) are associated with the nitrogen-atom molecular complex, which is in agreement with the experimental observation of surface nitrogen. On the facet site of Rh4 cluster, the formation of CO2 stems solely from the recombination of CO and O atom, while N2 originates partly from the recombination of two N atoms and partly from the decomposition of N2O. For the N-O bond cleavage or the synchronous N-O bond cleavage and C-O bond formation, the neutral Rh4 cluster exhibits better catalytic performance than the cationic Rh4(+) cluster. Alternatively, for N-N bond formation, the cationic Rh4(+) cluster possesses better catalytic performance than the neutral Rh4 cluster.
Ning, Ping; Song, Xin; Li, Kai; Wang, Chi; Tang, Lihong; Sun, Xin
2017-10-31
The competitive adsorption and reaction mechanism for the catalytic hydrolysis of carbonyl sulphide (COS) and carbon disulphide (CS 2 ) over Fe 2 O 3 cluster was investigated. Compared with experimental results, the theoretical study was used to further investigate the competitive adsorption and effect of H 2 S in the hydrolysis reaction of COS and CS 2 . Experimental results showed that Fe 2 O 3 cluster enhanced the catalytic hydrolysis effect. Meanwhile, H 2 S was not conducive to the hydrolysis of COS and CS 2 . Theoretical calculations indicated that the order of competitive adsorption on Fe 2 O 3 is as follows: H 2 O (strong) >CS 2 (medium) >COS (weak). In the hydrolysis process, the C=S bond cleavage occurs easier than C=O bond cleavage. The hydrolysis reaction is initiated via the migration of an H-atom, which triggers C=S bond cleavage and S-H bond formation. Additionally, we find the first step of CS 2 hydrolysis to be rate limiting. The presence of H 2 S increases the reaction energy barrier, which is not favourable for COS hydrolysis. Fe 2 O 3 can greatly decrease the maximum energy barrier, which decreases the minimum energy required for hydrolysis, making it relatively facile to occur. In general, the theoretical results were consistent with experimental results, which proved that the theoretical study was reliable.
Rhenium-Promoted C-C Bond-Cleavage Reactions of Internal Propargyl Alcohols.
Lee, Kui Fun; Bai, Wei; Sung, Herman H Y; Williams, Ian D; Lin, Zhenyang; Jia, Guochen
2018-06-07
The first examples of C-C bond cleavage reactions of internal propargyl alcohols to give vinylidene complexes are described. Treatment of [Re(dppm) 3 ]I with RC≡CC(OH)R'R'' (R=aryl, alkyl; C(OH)R'R''=C(OH)Ph 2, C(OH)Me 2 , C(OH)HPh, C(OH)H 2 ) produced the vinylidene complexes ReI(=C=CHR)(dppm) 2 with the elimination of C(O)R'R''. Computational studies support that the reactions proceed through a β-alkynyl elimination of alkoxide intermediates Re{OC(R')(R'')C≡CR}(dppm) 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ator, M.A.; Stubbe, J.; Spector, T.
1986-03-15
Isotope effects of 2.5, 2.1, and 1.0 were measured on the conversion of (3'-3H)ADP, (3'-H)UDP, and (5-3H) UDP to the corresponding 2'-deoxynucleotides by herpes simplex virus type 1 ribonucleotide reductase. These results indicate that the reduction of either purine or pyrimidine nucleotides requires cleavage of the 3' carbon-hydrogen bond of the substrate. The substrate analogs 2'-chloro-2'-deoxyuridine 5'-diphosphate (ClUDP), 2'-deoxy-2'-fluorouridine 5'-diphosphate, and 2'-azido-2'-deoxyuridine 5'-diphosphate were time-dependent inactivators of the herpes simplex virus type 1 ribonucleotide reductase. Incubation of (3'-3H)ClUDP with the enzyme was accompanied by time-dependent release of 3H to the solvent. Reaction of (beta-32P)ClUDP with the reductase resulted in themore » production of inorganic pyrophosphate. These results are consistent with the enzyme-mediated cleavage of the 3' carbon-hydrogen bond of ClUDP and the subsequent conversion of the nucleotide to 2-methylene-3(2H)furanone, as previously reported with the Escherichia coli ribonucleotide reductase.« less
Trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110)
NASA Astrophysics Data System (ADS)
Kelly, D.; Weinberg, W. H.
1996-07-01
We have employed molecular beam techniques to investigate the molecular trapping and trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110) at low beam translational energies, Ei≤5 kcal/mol, and surface temperatures, Ts, from 85 to 1200 K. For Ts=85 K, C3H8 is molecularly adsorbed on Ir(110) with a trapping probability, ξ, equal to 0.94 at Ei=1.6 kcal/mol and ξ=0.86 at Ei=5 kcal/mol. At Ei=1.9 kcal/mol and Ts=85 K, ξ of C3D8 is equal to 0.93. From 150 K to approximately 700 K, the initial probabilities of dissociative chemisorption of propane decrease with increasing Ts. For Ts from 700 to 1200 K, however, the initial probability of dissociative chemisorption maintains the essentially constant value of 0.16. These observations are explained within the context of a kinetic model which includes both C-H (C-D) and C-C bond cleavage. Below 450 K propane chemisorption on Ir(110) arises essentially solely from C-H (C-D) bond cleavage, an unactivated mechanism (with respect to a gas-phase energy zero) for this system, which accounts for the decrease in initial probabilities of chemisorption with increasing Ts. With increasing Ts, however, C-C bond cleavage, the activation energy of which is greater than the desorption energy of physically adsorbed propane, increasingly contributes to the measured probability of dissociative chemisorption. The activation energies, referenced to the bottom of the physically adsorbed molecular well, for C-H and C-C bond cleavage for C3H8 on Ir(110) are found to be Er,CH=5.3±0.3 kcal/mol and Er,CC=9.9±0.6 kcal/mol, respectively. The activation energies for C-D and C-C bond cleavage for C3D8 on Ir(110) are 6.3±0.3 kcal/mol and 10.5±0.6 kcal/mol, respectively. The desorption activation energy of propane from Ir(110) is approximately 9.5 kcal/mol. These activation energies are compared to activation energies determined recently for ethane and propane adsorption on Ir(111), Ru(001), and Pt(110)-(1×2), and ethane activation on Ir(110).
DFT study on the interaction of TiO2 (001) surface with HCHO molecules
NASA Astrophysics Data System (ADS)
Wu, Guofei; Zhao, Cuihua; Guo, Changqing; Chen, Jianhua; Zhang, Yibing; Li, Yuqiong
2018-01-01
The interactions of formaldehyde (HCHO) molecule with TiO2 (001) surface were studied using density functional theory calculations. HCHO molecules are dissociated by the cleavage of Csbnd H bonds after adsorption on TiO2 surface. The strong interactions between HCHO melecules and TiO2 surface are largely attributed to the bonding of hydrogen of HCHO and oxygen of TiO2 surface, which is mainly from the hybridization of the H 1s, O 2p and O 2s. The newly formed Hsbnd O bonds cause the structure changes of TiO2 surface, and lead to the cleavage of Osbnd Ti bond of TiO2 surface. The Csbnd O bond that the dissociated remains of HCHO and newly formed Hsbnd O bond can be oxidized to form carbon dioxide and water in subsequent action by oxygen from the atomosphere. The charges transfer from HCHO to TiO2 surface, and the sum amount of the charges transferred from four HCHO molecules to TiO2 surface is bigger than that from one HCHO molecule to TiO2 surface due to the combined interaction of four HCHO molecules with TiO2 surface.
Covalent bond force profile and cleavage in a single polymer chain
NASA Astrophysics Data System (ADS)
Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges
2000-08-01
We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.
Iodine versus Bromine Functionalization for Bottom-Up Graphene Nanoribbon Growth: Role of Diffusion
Bronner, Christopher; Marangoni, Tomas; Rizzo, Daniel J.; ...
2017-08-08
Deterministic bottom-up approaches for synthesizing atomically well-defined graphene nanoribbons (GNRs) largely rely on the surface-catalyzed activation of selected labile bonds in a molecular precursor followed by step-growth polymerization and cyclodehydrogenation. While the majority of successful GNR precursors rely on the homolytic cleavage of thermally labile C–Br bonds, the introduction of weaker C–I bonds provides access to monomers that can be polymerized at significantly lower temperatures, thus helping to increase the flexibility of the GNR synthesis process. Scanning tunneling microscopy imaging of molecular precursors, activated intermediates, and polymers resulting from stepwise thermal annealing of both Br and I substituted precursors formore » chevron GNRs reveals that the polymerization of both precursors proceeds at similar temperatures on Au(111). Finally, this surprising observation is consistent with diffusion-controlled polymerization of the surface-stabilized radical intermediates that emerge from homolytic cleavage of either the C–Br or the C–I bonds.« less
An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo.
Lozano-Torres, Beatriz; Galiana, Irene; Rovira, Miguel; Garrido, Eva; Chaib, Selim; Bernardos, Andrea; Muñoz-Espín, Daniel; Serrano, Manuel; Martínez-Máñez, Ramón; Sancenón, Félix
2017-07-05
A naphthalimide-based two-photon probe (AHGa) for the detection of cell senescence is designed. The probe contains a naphthalimide core, an l-histidine methyl ester linker, and an acetylated galactose bonded to one of the aromatic nitrogen atoms of the l-histidine through a hydrolyzable N-glycosidic bond. Probe AHGa is transformed into AH in senescent cells resulting in an enhanced fluorescent emission intensity. In vivo detection of senescence is validated in mice bearing tumor xenografts treated with senescence-inducing chemotherapy.
Yamazaki, Kaoru; Niitsu, Naoyuki; Nakamura, Kosuke; Kanno, Manabu; Kono, Hirohiko
2012-11-26
We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons.
Qi, Zisong; Yu, Songjie; Li, Xingwei
2016-02-19
The synthesis of N-unprotected indoles has been realized via Rh(III)-catalyzed C-H activation/annulation of imidamides with α-diazo β-ketoesters. The reaction occurs with the release of an amide coproduct, which originates from both the imidamide and the diazo as a result of C═N cleavage of the imidamide and C-C(acyl) cleavage of the diazo. A rhodacyclic intermediate has been isolated and a plausible mechanism has been proposed.
Thomas, Sajesh P; Satheeshkumar, K; Mugesh, Govindasamy; Guru Row, T N
2015-04-27
Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se⋅⋅⋅O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se⋅⋅⋅O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se⋅⋅⋅O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se⋅⋅⋅O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetics of acid-catalyzed cleavage of procyanindins
Richard W. Hemingway; Gerald W. McGraw
1983-01-01
Comparison of the rates of cleavage of isomeric procyanidin dimers in the presence of excess phenylmethane thiol and acetic acid showed that compounds with a C(4)-C(8) interflavanoid bond were cleaved more rapidly than their C(4)-C(6) linked isomers, that 2,3-cis isomers with an axial flavan substituent were cleaved more-rapidly than a 2,3-...
Targeting allosteric disulphide bonds in cancer.
Hogg, Philip J
2013-06-01
Protein action in nature is generally controlled by the amount of protein produced and by chemical modification of the protein, and both are often perturbed in cancer. The amino acid side chains and the peptide and disulphide bonds that bind the polypeptide backbone can be post-translationally modified. Post-translational cleavage or the formation of disulphide bonds are now being identified in cancer-related proteins and it is timely to consider how these allosteric bonds could be targeted for new therapies.
Forging C-C Bonds Through Decarbonylation of Aryl Ketones.
Somerville, Rosie J; Martin, Ruben
2017-06-06
The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W
1990-01-01
We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65. PMID:2235481
Structural insights into the catalytic mechanism of a family 18 exo-chitinase
van Aalten, D. M. F.; Komander, D.; Synstad, B.; Gåseidnes, S.; Peter, M. G.; Eijsink, V. G. H.
2001-01-01
Chitinase B (ChiB) from Serratia marcescens is a family 18 exo-chitinase whose catalytic domain has a TIM-barrel fold with a tunnel-shaped active site. We have solved structures of three ChiB complexes that reveal details of substrate binding, substrate-assisted catalysis, and product displacement. The structure of an inactive ChiB mutant (E144Q) complexed with a pentameric substrate (binding in subsites −2 to +3) shows closure of the “roof” of the active site tunnel. It also shows that the sugar in the −1 position is distorted to a boat conformation, thus providing structural evidence in support of a previously proposed catalytic mechanism. The structures of the active enzyme complexed to allosamidin (an analogue of a proposed reaction intermediate) and of the active enzyme soaked with pentameric substrate show events after cleavage of the glycosidic bond. The latter structure shows reopening of the roof of the active site tunnel and enzyme-assisted product displacement in the +1 and +2 sites, allowing a water molecule to approach the reaction center. Catalysis is accompanied by correlated structural changes in the core of the TIM barrel that involve conserved polar residues whose functions were hitherto unknown. These changes simultaneously contribute to stabilization of the reaction intermediate and alternation of the pKa of the catalytic acid during the catalytic cycle. PMID:11481469
Quéméner, Bernard; Désiré, Cédric; Lahaye, Marc; Debrauwer, Laurent; Negroni, Luc
2003-01-01
The off-line coupling of high-performance anion-exchange chromatography (HPAEC) to electrospray ionisation/ion trap mass spectrometry (ESI-ITMS) is described. The Dionex carbohydrate membrane desalter (CMD) has been assessed as an on-line chromatographic desalting system to remove the high sodium concentration necessary for the HPAEC separation of partially methyl-esterified oligogalacturonides. The developed HPAEC configuration proved to be suitable for indirect coupling with ESI-ITMS. This paper provides some interesting features of positive- and negative-ion multistage tandem mass spectrometry (MS(n)) analysis of these acidic oligosaccharides. The spectra acquired in both negative- and positive-ion modes show characteristic fragment ions resulting from glycosidic bond and cross-ring cleavages. Some new mass spectrometric fragmentation routes are also described. The positive-ion mode gave more complex spectra but was as informative as the negative-ion mode. ESI-ITMS was revealed to be, as previously reported from direct use on an unseparated enzymatic digest, a powerful sequencing technique for the determination of linkage type and the methyl ester distribution of partially methyl-esterified oligogalacturonides. Moreover, unlike matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS), it gives valuable information on the elution behaviour of these oligomers in relation to their structure, namely the HPAEC co-elution of isomeric structures.
Structural and Mechanistic Insights into C-P Bond Hydrolysis by Phosphonoacetate Hydrolase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vinayak; Borisova, Svetlana A.; Metcalf, William W.
2011-12-22
Bacteria have evolved pathways to metabolize phosphonates as a nutrient source for phosphorus. In Sinorhizobium meliloti 1021, 2-aminoethylphosphonate is catabolized to phosphonoacetate, which is converted to acetate and inorganic phosphate by phosphonoacetate hydrolase (PhnA). Here we present detailed biochemical and structural characterization of PhnA that provides insights into the mechanism of C-P bond cleavage. The 1.35 {angstrom} resolution crystal structure reveals a catalytic core similar to those of alkaline phosphatases and nucleotide pyrophosphatases but with notable differences, such as a longer metal-metal distance. Detailed structure-guided analysis of active site residues and four additional cocrystal structures with phosphonoacetate substrate, acetate, phosphonoformatemore » inhibitor, and a covalently bound transition state mimic provide insight into active site features that may facilitate cleavage of the C-P bond. These studies expand upon the array of reactions that can be catalyzed by enzymes of the alkaline phosphatase superfamily.« less
Nucleic acids, proteins, and chirality
NASA Technical Reports Server (NTRS)
Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.
1984-01-01
The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.
Zheng, Xinxin; Guo, Rui
2018-01-01
We report a rhodium-catalyzed asymmetric formal intermolecular [4 + 2] cycloaddition reaction of 2-alkylenecyclobutanols with α,β-unsaturated cyclic ketones leading to synthetically useful trans-bicyclic molecules. Three consecutive stereogenic centers are formed in a highly enantio- and diastereoselective manner. Stepwise C–C bond cleavage and annulation are likely involved in the reaction pathway. Here, iPr-Duphos is the viable chiral ligand that promotes excellent enantio-control. PMID:29675233
Theoretical study of the alkaline hydrolysis of an aza-β-lactam derivative of clavulanic acid
NASA Astrophysics Data System (ADS)
Garcías, Rafael C.; Coll, Miguel; Donoso, Josefa; Muñoz, Francisco
2003-04-01
DFT calculations based on the hybrid functional B3LYP/6-31+G * were used to study the alkaline hydrolysis of an aza-clavulanic acid, which results from the substitution of the carbon atom at position 6 in clavulanic acid by a nitrogen atom. The presence of the nitrogen atom endows the compound with special properties; in fact, once formed, the tetrahedral intermediate can evolve with cleavage of the N 4-C 7 or N 6-C 7 bond, which obviously leads to different reaction products. These differential bond cleavages may play a central role in the inactivation of β-lactamases, so the compound may be a powerful inactivator of these enzymes.
Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei
2016-09-19
Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.
2013-12-01
Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. Themore » observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.« less
Klvaňa, Martin; Bren, Urban; Florián, Jan
2016-12-29
Human X-family DNA polymerases β (Polβ) and λ (Polλ) catalyze the nucleotidyl-transfer reaction in the base excision repair pathway of the cellular DNA damage response. Using empirical valence bond and free-energy perturbation simulations, we explore the feasibility of various mechanisms for the deprotonation of the 3'-OH group of the primer DNA strand, and the subsequent formation and cleavage of P-O bonds in four Polβ, two truncated Polλ (tPolλ), and two tPolλ Loop1 mutant (tPolλΔL1) systems differing in the initial X-ray crystal structure and nascent base pair. The average calculated activation free energies of 14, 18, and 22 kcal mol -1 for Polβ, tPolλ, and tPolλΔL1, respectively, reproduce the trend in the observed catalytic rate constants. The most feasible reaction pathway consists of two successive steps: specific base (SB) proton transfer followed by rate-limiting concerted formation and cleavage of the P-O bonds. We identify linear free-energy relationships (LFERs) which show that the differences in the overall activation and reaction free energies among the eight studied systems are determined by the reaction free energy of the SB proton transfer. We discuss the implications of the LFERs and suggest pK a of the 3'-OH group as a predictor of the catalytic rate of X-family DNA polymerases.
Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiayue; Lu, Lu; Zhao, Chen
2014-03-01
Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO 2, the selective hydrogenolysis dominates for cleaving the C aliphatic-O bond. Catalyzed by themore » dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO 2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.« less
2016-01-01
Human X-family DNA polymerases β (Polβ) and λ (Polλ) catalyze the nucleotidyl-transfer reaction in the base excision repair pathway of the cellular DNA damage response. Using empirical valence bond and free-energy perturbation simulations, we explore the feasibility of various mechanisms for the deprotonation of the 3′-OH group of the primer DNA strand, and the subsequent formation and cleavage of P–O bonds in four Polβ, two truncated Polλ (tPolλ), and two tPolλ Loop1 mutant (tPolλΔL1) systems differing in the initial X-ray crystal structure and nascent base pair. The average calculated activation free energies of 14, 18, and 22 kcal mol–1 for Polβ, tPolλ, and tPolλΔL1, respectively, reproduce the trend in the observed catalytic rate constants. The most feasible reaction pathway consists of two successive steps: specific base (SB) proton transfer followed by rate-limiting concerted formation and cleavage of the P–O bonds. We identify linear free-energy relationships (LFERs) which show that the differences in the overall activation and reaction free energies among the eight studied systems are determined by the reaction free energy of the SB proton transfer. We discuss the implications of the LFERs and suggest pKa of the 3′-OH group as a predictor of the catalytic rate of X-family DNA polymerases. PMID:27992186
Dielectric studies on mobility of the glycosidic linkage in seven disaccharides.
Kaminski, K; Kaminska, E; Wlodarczyk, P; Pawlus, S; Kimla, D; Kasprzycka, A; Paluch, M; Ziolo, J; Szeja, W; Ngai, K L
2008-10-09
Isobaric dielectric relaxation measurements were performed on seven chosen disaccharides. For five of them, i.e., sucrose, maltose, trehalose, lactulose, and leucrose, we were able to observe the temperature evolution of the structural relaxation process. In the case of the other disaccharides studied (lactose and cellobiose), it was impossible to obtain such information because of the large contribution of the dc conductivity and polarization of the capacitor plates to the imaginary and real part of the complex permittivity, respectively. On the other hand, in the glassy state, two secondary relaxations have been identified in the dielectric spectra of all investigated carbohydrates. The faster one (gamma) is a common characteristic feature of the entire sugar family (mono-, di-, oligo-, and polysaccharide). The molecular origin of this process is still not unambiguously identified but is expected to involve intramolecular degrees of freedom as inferred from insensitivity of its relaxation time to pressure found in some monosaccharides (fructose and ribose). The slower one (labeled beta) was recently identified to be intermolecular in origin (i.e., a Johari-Goldstein (JG) beta-relaxation), involving twisting motion of the monosugar rings around the glycosidic bond. The activation energies and dielectric strengths for the beta-relaxation determined herein provide us valuable information about the flexibility of the glycosidic bond and the mobility of this particular linkage in the disaccharides studied. In turn, this information is essential for the control of the diffusivity of drugs or water entrapped in the sugar matrix.
Takayama, Mitsuo
2012-01-01
The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx–Asp/Asn and Gly–Xxx, were identified from the discontinuous intense peak of c′-ions originating from specific cleavage at N–Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c′-ions originating from N–Cα bond cleavage at Xxx–Asp/Asn and Gly–Xxx residues, but also C-terminal side complement z′-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX. PMID:24349908
Takayama, Mitsuo
2012-01-01
The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.
Specificity and kinetics of haloalkane dehalogenase.
Schanstra, J P; Kingma, J; Janssen, D B
1996-06-21
Haloalkane dehalogenase converts halogenated alkanes to their corresponding alcohols. The active site is buried inside the protein and lined with hydrophobic residues. The reaction proceeds via a covalent substrate-enzyme complex. This paper describes a steady-state and pre-steady-state kinetic analysis of the conversion of a number of substrates of the dehalogenase. The kinetic mechanism for the "natural" substrate 1,2-dichloroethane and for the brominated analog and nematocide 1,2-dibromoethane are given. In general, brominated substrates had a lower Km, but a similar kcat than the chlorinated analogs. The rate of C-Br bond cleavage was higher than the rate of C-Cl bond cleavage, which is in agreement with the leaving group abilities of these halogens. The lower Km for brominated compounds therefore originates both from the higher rate of C-Br bond cleavage and from a lower Ks for bromo-compounds. However, the rate-determining step in the conversion (kcat) of 1, 2-dibromoethane and 1,2-dichloroethane was found to be release of the charged halide ion out of the active site cavity, explaining the different Km but similar kcat values for these compounds. The study provides a basis for the analysis of rate-determining steps in the hydrolysis of various environmentally important substrates.
Activation of carbon-hydrogen bonds and dihydrogen by 1,2-CH-addition across metal-heteroatom bonds.
Webb, Joanna R; Burgess, Samantha A; Cundari, Thomas R; Gunnoe, T Brent
2013-12-28
The controlled conversion of hydrocarbons to functionalized products requires selective C-H bond cleavage. This perspective provides an overview of 1,2-CH-addition of hydrocarbons across d(0) transition metal imido complexes and compares and contrasts these to examples of analogous reactions that involve later transition metal amide, hydroxide and alkoxide complexes with d(6) and d(8) metals.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; Fahmey, M. A.; Hawash, M. A.; El-Habeeb, Abeer A.
2007-06-01
The buspirone drug is usually present as hydrochloride form of general formula C 21H 31N 5O 2·HCl, and of molecular weight (MW) = 421.96. It is an analgesic anxiolytic drug, which does not cause sedative or depression of central nervous system. In the present work it is investigated using electron impact mass spectral (EI-MS) fragmentation at 70 eV, in comparison with thermal analyses (TA) measurements (TG/DTG and DTA) and molecular orbital calculation (MOC). Semi-empirical MO calculation, PM3 procedure, has been carried out on buspirone both as neutral molecule (in TA) and the corresponding positively charged species (in MS). The calculated MOC parameters include bond length, bond order, particle charge distribution on different atoms and heats of formation. The fragmentation pathways of buspirone in EI-MS lead to the formation of important primary and secondary fragment ions. The mechanism of formation of some important daughter ions can be illuminated from comparing with that obtained using electrospray ESIMS/MS mode mass spectrometer through the accurate mass measurement determination. The losses of the intermediate aliphatic part (CH 2) 4 due to cleavage of N-C bond from both sides is the primary cleavage in both techniques (MS and TA). The PM3 provides a base for fine distinction among sites of initial bond cleavage and subsequent fragmentation of drug molecule in both TA and MS techniques; consequently the choice of the correct pathway of such fragmentation knowing this structural session of bonds can be used to decide the active sites of this drug responsible for its chemical, biological and medical reactivity.
NASA Astrophysics Data System (ADS)
Zhang, Riguang; Liu, Zhixue; Ling, Lixia; Wang, Baojun
2015-10-01
The perfect and defective surfaces of anatase TiO2 including (1 0 1) and (0 0 1) surfaces have been chosen to probe into the effect of anatase TiO2 surface structure on the behavior of ethanol adsorption and initial dissociation step. Here, the results are obtained by density functional theory (DFT) calculation together with the periodic slab model. Our results show that the surface structure of anatase TiO2 can obviously affect the behavior of ethanol adsorption and the catalytic activity of its initial dissociation step; firstly, on the perfect and defective surfaces of anatase (1 0 1), ethanol dominantly exists in the form of molecule adsorption; however, ethanol is the dissociative adsorption on the hydroxylated anatase (0 0 1), and the coexistences of molecular and dissociation adsorption modes on the perfect anatase (0 0 1). On the other hand, the initial dissociation step of ethanol with molecule adsorption prefers to begin with its O-H bond cleavage leading to CH3CH2O and H species rather than the cleavage of its α-C-H, β-C-H, C-C and C-O bonds, namely, the preferable O-H bond cleavage for the initial dissociation step of ethanol is independent of the surface structure of anatase TiO2; however, the corresponding catalytic activity of ethanol initial dissociation step with the O-H bond cleavage on different anatase TiO2 surfaces is in the following order: hydroxylated (0 0 1) > perfect (0 0 1) > defective (1 0 1) > perfect (1 0 1), suggesting that the catalytic activity for the initial dissociation step of ethanol is sensitive to the surface structure of anatase TiO2, and the hydroxylated (0 0 1) is the most favorable surface. Among these surfaces, the most favorable product for the initial dissociation step of ethanol is CH3CH2O species.
Deciphering the chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase.
Wang, Wen-Juan; Wei, Wen-Jie; Liao, Rong-Zhen
2018-06-13
The reaction mechanism and chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase (2,4-QueD) have been investigated using the QM/MM approach. The protonation state of the Glu74 residue, a first-shell ligand of Ni, has been considered to be either neutral or deprotonated. QM/MM calculations predict that Glu74 must be deprotonated to rationalize the chemoselectivity and steer the 2,4-dioxygenolytic cleavage of quercetin, which harvests the experimentally-observed product, 2-protocatechuoylphloroglucinol carboxylic acid, coupled with the release of carbon monoxide. If the enzyme has a neutral Glu74 residue, the undesired 2,3-dioxygenolytic cleavage of quercetin becomes the dominant pathway, leading to the formation of α-keto acid. The calculations suggest that the reaction takes place via three major steps: (1) attack of the superoxide on the C2 of the substrate pyrone ring to generate a NiII-peroxide intermediate; (2) formation of the second C-O bond between C4 and the peroxide to produce a peroxide bridge; (3) simultaneous cleavage of the C2-C3, C3-C4, and O1-O2 bonds with the formation of 2-protocatechuoylphloroglucinol carboxylic acid and carbon monoxide. The third step was found to be rate-limiting, with a barrier of 17.4 kcal mol-1, which is in very good agreement with the experimental kinetic data. For the second C-O bond formation, an alternative pathway is that the peroxide attacks the C3 of the substrate pyrone ring, leading to the formation of a four-membered ring intermediate, which then undergoes concerted C2-C3 and O1-O2 bond cleavages to produce an α-keto acid. This pathway is associated with a barrier of 30.6 kcal mol-1, which is much higher than the major pathway. When Glu74 is protonated, the 2,3-dioxygenolytic pathway, however, has a lower barrier (21.8 kcal mol-1) than the 2,4-dioxygenolytic pathway.
[Cleavage of DNA fragments induced by UV nanosecond laser excitation at 193 nm].
Vtiurina, N N; Grokhovskiĭ, S L; Filimonov, I V; Medvedkov, O I; Nechipurenko, D Iu; Vasil'ev, S A; Nechipurenko, Iu D
2011-01-01
The cleavage of dsDNA fragments in aqueous solution after irradiation with UV laser pulses at 193 nm has been studied. Samples were investigated using polyacrylamide gel electrophoresis. The intensity of damage of particular phosphodiester bond after hot alkali treatment was shown to depend on the base pair sequence. It was established that the probability of cleavage is twice higher for sites of DNA containing two or more successively running guanine residues. A possible mechanism of damage to the DNA molecule connected with the migration of holes along the helix is discussed.
USDA-ARS?s Scientific Manuscript database
Phytosterols (plant sterols) occur in the cells of all plants. They are important structural components that stabilize the biological membranes of plants. Sterols can occur in the “free” unbound form or they can be covalently bound via an ester or glycosidic bond. Since our previous 2002 review o...
USDA-ARS?s Scientific Manuscript database
New cellobiose Phi-H/Si-H maps are rapidly generated using a mixed basis set DFT method, found to achieve a high level of confidence while reducing computer resources dramatically. Relaxed iso-potential maps are made for different conformational states of cellobiose, showing how glycosidic bond dihe...
Pyrolytic sugars from cellulosic biomass.
Kuzhiyil, Najeeb; Dalluge, Dustin; Bai, Xianglan; Kim, Kwang Ho; Brown, Robert C
2012-11-01
Depolymerization of cellulose offers the prospect of inexpensive sugars from biomass. Breaking the glycosidic bonds of cellulose to liberate glucose has usually been pursued by acid or enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily the anhydrosugar levoglucosan (LG) whereas the presence of naturally occurring alkali and alkaline earth metals (AAEMs) in biomass strongly catalyzes ring-breaking reactions that favor formation of light oxygenates. Here, we show a method of significantly increasing the yield of sugars from biomass by purely thermal means through infusion of certain mineral acids (phosphoric and sulfuric acid) into the biomass to convert the AAEMs into thermally stable salts (particularly potassium sulfates and phosphates). These salts not only passivate AAEMs that normally catalyze fragmentation of pyranose rings, but also buffer the system at pH levels that favor glycosidic bond breakage. It appears that AAEM passivation contributes to 80 % of the enhancement in LG yield while the buffering effect of the acid salts contributes to the balance of the enhancement. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ruthes, Andrea Caroline; Smiderle, Fhernanda Ribeiro; Iacomini, Marcello
2015-03-06
D-Glucans from edible mushrooms present diversified chemical structures. The most common type consists of a backbone of β-D-glucose (1→3)-linked frequently branched at O-6 by β-D-glucose residues as side chains. However it is possible to distinguish α-, β- and mixed D-glucans. Further discrimination could be made on the basis of glycosidic bond position in a pyranoid ring, distribution of specific glycosidic bonds along the chain, branching and molecular weight. The present manuscript reviews the processes of extraction, purification and chemical characterization of D-glucans, such as NMR studies, methylation analysis, Smith degradation, and some other methodologies employed in carbohydrate chemistry characterization. In addition, these polysaccharides are important because they can provide many therapeutic benefits related to their biological activity in animals and humans, either immunostimulatory activity, inhibiting tumor growth, as well as exerting antinociceptive and anti-inflammatory action, among others, which are usually attached to their structure, molecular weight and degree of branching. Copyright © 2014 Elsevier Ltd. All rights reserved.
The RNA-induced silencing complex is a Mg2+-dependent endonuclease.
Schwarz, Dianne S; Tomari, Yukihide; Zamore, Phillip D
2004-05-04
In the Drosophila and mammalian RNA interference (RNAi) pathways, target RNA destruction is catalyzed by the siRNA-guided, RNA-induced silencing complex (RISC). RISC has been proposed to be an siRNA-directed endonuclease, catalyzing cleavage of a single phosphodiester bond on the RNA target. Although 5' cleavage products are readily detected for RNAi in vitro, only 3' cleavage products have been observed in vivo. Proof that RISC acts as an endonuclease requires detection of both 5' and 3' cleavage products in a single experimental system. Here, we show that siRNA-programmed RISC generates both 5' and 3' cleavage products in vitro; cleavage requires Mg(2+), but not Ca(2+), and the cleavage product termini suggest a role for Mg(2+) in catalysis. Moreover, a single phosphorothioate in place of the scissile phosphate blocks cleavage; the phosphorothioate effect can be rescued by the thiophilic cation Mn(2+), but not by Ca(2+) or Mg(2+). We propose that during catalysis, a Mg(2+) ion is bound to the RNA substrate through a nonbridging oxygen of the scissile phosphate. The mechanism of endonucleolytic cleavage is not consistent with the mechanisms of the previously identified RISC nuclease, Tudor-SN. Thus, the RISC-component that mediates endonucleolytic cleavage of the target RNA remains to be identified.
Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee
2017-04-06
Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.
Wan, Qun; Parks, Jerry M; Hanson, B Leif; Fisher, Suzanne Zoe; Ostermann, Andreas; Schrader, Tobias E; Graham, David E; Coates, Leighton; Langan, Paul; Kovalevsky, Andrey
2015-10-06
Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD=pH+0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen.
Bahrami, Yadollah; Franco, Christopher M. M.
2016-01-01
Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ7(8) or Δ9(11) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190
Wan, Qun; Parks, Jerry M.; Hanson, B. Leif; Fisher, Suzanne Zoe; Ostermann, Andreas; Schrader, Tobias E.; Graham, David E.; Coates, Leighton; Langan, Paul; Kovalevsky, Andrey
2015-01-01
Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen. PMID:26392527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Qun; Parks, Jerry M.; Hanson, B. Leif
Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pK a values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. Themore » general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pK a values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pK a of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. Lastly, these findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen.« less
Wan, Qun; Parks, Jerry M.; Hanson, B. Leif; ...
2015-09-21
Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pK a values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD = pH + 0.4) values. Themore » general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pK a values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pK a of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. Lastly, these findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen.« less
Ureshino, Tomonari; Yoshida, Takuya; Kuninobu, Yoichiro; Takai, Kazuhiko
2010-10-20
The rhodium-catalyzed synthesis of silafluorenes from biphenylhydrosilanes is described. This highly efficient reaction proceeds via both Si-H and C-H bond activation, producing only H(2) as a side product. Using this method, a ladder-type bis-silicon-bridged p-terphenyl could also be synthesized.
Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf
2017-11-20
By using computational chemistry it has been shown that the adsorption of ether molecules on Si(001) under ultrahigh vacuum conditions can be understood with classical concepts of organic chemistry. Detailed analysis of the two-step reaction mechanism-1) formation of a dative bond between the ether oxygen atom and a Lewis acidic surface atom and 2) nucleophilic attack of a nearby Lewis basic surface atom-shows that it mirrors acid-catalyzed ether cleavage in solution. The O-Si dative bond is the strongest of its kind, and the reactivity in step 2 defies the Bell-Evans-Polanyi principle. Electron rearrangement during C-O bond cleavage has been visualized with a newly developed method for analyzing bonding, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular S N 2 reactions. Our findings illustrate how surface science and molecular chemistry can mutually benefit from each other and unexpected insight can be gained. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silylene-Nickel Promoted Cleavage of B-O Bonds: From Catechol Borane to the Hydroborylene Ligand.
Hadlington, Terrance J; Szilvási, Tibor; Driess, Matthias
2017-06-19
The first 16 valence electron [bis(NHC)](silylene)Ni 0 complex 1, [( TMS L)ClSi:→Ni(NHC) 2 ], bearing the acyclic amido-chlorosilylene ( TMS L)ClSi: ( TMS L=N(SiMe 3 )Dipp; Dipp=2,6-Pr i 2 C 6 H 4 ) and two NHC ligands (N-heterocyclic carbene=:C[(Pr i )NC(Me)] 2 ) was synthesized in high yield and structurally characterized. Compound 1 is capable of facile dihydrogen activation under ambient conditions to give the corresponding HSi-NiH complex 2. Most notably, 1 reacts with catechol borane to afford the unprecedented hydroborylene-coordinated (chloro)(silyl)nickel(II) complex 3, {[cat( TMS L)Si](Cl)Ni←:BH(NHC) 2 }, via the cleavage of two B-O bonds and simultaneous formation of two Si-O bonds. The mechanism for the formation of 3 was rationalized by means of DFT calculations, which highlight the powerful synergistic effects of the Si:→Ni moiety in the breaking of incredibly strong B-O bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zucker, M; Seligsohn, U; Yeheskel, A; Mor-Cohen, R
2016-11-01
Essentials Reduction of three disulfide bonds in factor (F) XI enhances chromogenic substrate cleavage. We measured FXI activity upon reduction and identified a bond involved in the enhanced activity. Reduction of FXI augments FIX cleavage, probably by faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is responsible for FXI enhanced activation upon its reduction. Background Reduction of factor (F) XI by protein disulfide isomerase (PDI) has been shown to enhance the ability of FXI to cleave its chromogenic substrate. Three disulfide bonds in FXI (Cys118-Cys147, Cys362-Cys482, and Cys321-Cys321) are involved in this augmented activation. Objectives To characterize the mechanisms by which PDI enhances FXI activity. Methods FXI activity was measured following PDI reduction. Thiols that were exposed in FXI after PDI reduction were labeled with 3-(N-maleimidopropionyl)-biocytin (MPB) and detected with avidin. The rate of conversion of FXI to activated FXI (FXIa) following thrombin activation was assessed with western blotting. FXI molecules harboring mutations that disrupt the three disulfide bonds (C147S, C321S, and C482S) were expressed in cells. The antigenicity of secreted FXI was measured with ELISA, and its activity was assessed by the use of a chromogenic substrate. The effect of disulfide bond reduction was analyzed by the use of molecular dynamics. Results Reduction of FXI by PDI enhanced cleavage of both its chromogenic substrate, S2366, and its physiologic substrate, FIX, and resulted in opening of the Cys362-Cys482 bond. The rate of conversion of FXI to FXIa was increased following its reduction by PDI. C482S-FXI showed enhanced activity as compared with both wild-type FXI and C321S-FXI. MD showed that disruption of the Cys362-Cys482 bond leads to a broader thrombin-binding site in FXI. Conclusions Reduction of FXI by PDI enhances its ability to cleave FIX, probably by causing faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is involved in enhancing FXI activation following its reduction, possibly by increasing thrombin accessibility to FXI. © 2016 International Society on Thrombosis and Haemostasis.
Naziga, Emmanuel B; Schweizer, Frank; Wetmore, Stacey D
2012-01-19
Glycosylation is a frequent post-translational modification of proteins that has been shown to influence protein structure and function. Glycosylation of hydroxyproline occurs widely in plants, but is absent in humans and animals. Previous experimental studies on model amides have indicated that α/β-galactosylation of 4R-hydroxyproline (Hyp) has no measurable effect on prolyl amide isomerization, while a 7% increase in the trans isomer population, as well as a 25-50% increase in the isomerization rate, was observed for the 4S stereoisomer (hyp). In this work, molecular dynamics simulations in explicit water and implicit solvent DFT optimizations are used to examine the structure of the hydroxyproline-O-galactosyl linkage and the effect of glycosylation on the structure and cis/trans isomerization of the peptide backbone. The calculations show two major minima with respect to the glycosidic linkage in all compounds. The C(γ)-exo puckering observed in 4R compounds projects the sugar away from the peptide backbone, while a twisted C(γ)-endo/C(β)-exo pucker in the 4S compounds brings the peptide and sugar rings together and leads to an intramolecular hydrogen-bonding interaction that is sometimes bridged by a water molecule. This hydrogen bond changes the conformation of the peptide backbone, inducing a favorable n → π* interaction between the oxygen lone pair from the prolyl N-terminal amide and the C═O, which explains the observed increase in trans isomer population in α/β-galactosylated 4S-hydroxyproline. Our results provide the first molecular level information about this important glycosidic linkage, as well as provide an explanation for the previously observed increase in trans isomer population in 4S-hyp compounds. Moreover, this study provides evidence that sugar-mediated long-range hydrogen bonding between hydroxyl groups and the carbonyl peptide backbone can modify the properties of N-terminal prolyl cis/trans isomerization in peptides.
Faponle, Abayomi S; Quesne, Matthew G; Sastri, Chivukula V; Banse, Frédéric; de Visser, Sam P
2015-01-01
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O–O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C–O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O–O bond, whereas a heterolytic O–O bond breaking in heme iron(III)–hydroperoxo is found. PMID:25399782
Zhang, Rong-Rong; Tian, Hai-Yan; Tan, Ya-Fang; Chung, Tse-Yu; Sun, Xiao-Hui; Xia, Xue; Ye, Wen-Cai; Middleton, David A; Fedosova, Natalya; Esmann, Mikael; Tzen, Jason T C; Jiang, Ren-Wang
2014-11-28
Five new cardenolide lactates (1–5) and one new dioxane double linked cardenolide glycoside (17) along with 15 known compounds (6–16 and 18–21) were isolated from the ornamental milkweed Asclepias curassavica. Their structures were elucidated by extensive spectroscopic methods (IR, UV, MS, 1D- and 2D-NMR). The molecular structures and absolute configurations of 1–3 and 17 were further confirmed by single-crystal X-ray diffraction analysis. Simultaneous isolation of dioxane double linked cardenolide glycosides (17–21) and cardenolide lactates (1–5) provided unique chemotaxonomic markers for this genus. Compounds 1–21 were evaluated for the inhibitory activities against DU145 prostate cancer cells. The dioxane double linked cardenolide glycosides showed the most potent cytotoxic effect followed by normal cardenolides and cardenolide lactates, while the C21 steroids were non-cytotoxic. Enzymatic assay established a correlation between the cytotoxic effects in DU145 cancer cells and the Ki for the inhibition of Na(+),K(+)-ATPase. Molecular docking analysis revealed relatively strong H-bond interactions between the bottom of the binding cavity and compounds 18 or 20, and explained why the dioxane double linked cardenolide glycosides possessed higher inhibitory potency on Na(+),K(+)-ATPase than the cardenolide lactate.
Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim
2014-01-01
The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. PMID:25057464
Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Meng; Gutiérrez, Oliver Y.; Camaioni, Donald M.
Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.
Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning
2014-10-22
The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.
Cleavage of an amide bond by a ribozyme
NASA Technical Reports Server (NTRS)
Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)
1995-01-01
A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.
Dolle, Ashwini B; Jagadeesh, Narasimhappagari; Bhaumik, Suman; Prakash, Sunita; Biswal, Himansu S; Gowd, Konkallu Hanumae
2018-06-15
The modes of cleavage of lanthionine/methyllanthionine bridges under electron transfer dissociation (ETD) were investigated using synthetic and natural lantipeptides. Knowledge of the mass spectrometric fragmentation of lanthionine/methyllanthionine bridges may assist in the development of analytical methods for the rapid discovery of new lantibiotics. The present study strengthens the advantage of ETD in the characterization of posttranslational modifications of peptides and proteins. Synthetic and natural lantipeptides were obtained by desulfurization of peptide disulfides and cyanogen bromide digestion of the lantibiotic nisin, respectively. These peptides were subjected to electrospray ionization collision-induced dissociation tandem mass spectrometry (CID-MS/MS) and ETD-MS/MS using an HCT ultra ETDII ion trap mass spectrometer. MS 3 CID was performed on the desired product ions to prove cleavage of the lanthionine/methyllanthionine bridge during ETD-MS/MS. ETD has advantages over CID in the cleavage of the side chain of lanthionine/methyllanthionine bridges. The cleavage of the N-Cα backbone peptide bond followed by C-terminal side chain of the lanthionine bridge results in formation of c •+ and z + ions. Cleavage at the preceding peptide bond to the C-terminal side chain of lanthionine/methyllanthionine bridges yields specific fragments with the cysteine/methylcysteine thiyl radical and dehydroalanine. ETD successfully cleaves the lanthionine/methyllanthionine bridges of synthetic and natural lantipeptides. Diagnostic fragment ions of ETD cleavage of lanthionine/methyllanthionine bridges are the N-terminal cysteine/methylcysteine thiyl radical and C-terminal dehydroalanine. Detection of the cysteine/methylcysteine thiyl radical and dehydroalanine in combined ETD-CID-MS may be used for the rapid identification of lantipeptide natural products. Copyright © 2018 John Wiley & Sons, Ltd.
Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M
2017-08-15
The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.
The logic of automated glycan assembly.
Seeberger, Peter H
2015-05-19
Carbohydrates are the most abundant biopolymers on earth and part of every living creature. Glycans are essential as materials for nutrition and for information transfer in biological processes. To date, in few cases a detailed correlation between glycan structure and glycan function has been established. A molecular understanding of glycan function will require pure glycans for biological, immunological, and structural studies. Given the immense structural complexity of glycans found in living organisms and the lack of amplification methods or expression systems, chemical synthesis is the only means to access usable quantities of pure glycan molecules. While the solid-phase synthesis of DNA and peptides has become routine for decades, access to glycans has been technically difficult, time-consuming and confined to a few expert laboratories. In this Account, the development of a comprehensive approach to the automated synthesis of all classes of mammalian glycans, including glycosaminoglycans and glycosylphosphatidyl inositol (GPI) anchors, as well as bacterial and plant carbohydrates is described. A conceptual advance concerning the logic of glycan assembly was required in order to enable automated execution of the synthetic process. Based on the central glycosidic bond forming reaction, a general concept for the protecting groups and leaving groups has been developed. Building blocks that can be procured on large scale, are stable for prolonged periods of time, but upon activation result in high yields and selectivities were identified. A coupling-capping and deprotection cycle was invented that can be executed by an automated synthesis instrument. Straightforward postsynthetic protocols for cleavage from the solid support as well as purification of conjugation-ready oligosaccharides have been established. Introduction of methods to install selectively a wide variety of glycosidic linkages has enabled the rapid assembly of linear and branched oligo- and polysaccharides as large as 30-mers. Fast, reliable access to defined glycans that are ready for conjugation has given rise to glycan arrays, glycan probes, and synthetic glycoconjugate vaccines. While an ever increasing variety of glycans are accessible by automated synthesis, further methodological advances in carbohydrate chemistry are needed to make all possible glycans found in nature. These tools begin to fundamentally impact the medical but also materials aspects of the glycosciences.
A general strategy for stereoselective glycosylations.
Kim, Jin-Hwan; Yang, Hai; Park, Jin; Boons, Geert-Jan
2005-08-31
The principal challenge that the synthesis of oligosaccharides of biological importance presents is the development of a general approach for the stereoselective introduction of a glycosidic linkage. It is shown here that a (1S)-phenyl-2-(phenylsulfanyl)ethyl moiety at C-2 of a glycosyl donor can perform neighboring group participation to give a quasi-stable anomeric sulfonium ion. Due to steric and electronic factors, the sulfonium ion is formed as a trans-decalin ring system. Displacement of the sulfonium ion by a hydroxyl leads to the stereoselective formation of alpha-glycosides. NMR experiments were employed to show convincingly the presence of the beta-linked sulfonium ion intermediate. The (1S)-phenyl-2-(phenylsulfanyl)ethyl moiety could be introduced by reaction of a sugar alcohol with acetic acid (1S)-phenyl-2-(phenylsulfanyl)ethyl ester in the presence of BF(3)-OEt(2). Furthermore, it could be removed by conversion into acetate by treatment with BF(3)-OEt(2) in acetic anhydride. The introduction as well as the cleavage reaction proceeds through the formation of an intermediate episulfonium ion. The use of the new methodology in combination with traditional neighboring group participation by esters to introduce beta-glycosides makes it possible, for the first time, to synthesize a wide variety of oligosaccharides by routine procedures. The latter was demonstrated by the synthesis of the Galili trisaccharide, which has been identified as an epitope that can trigger acute rejections in xeno-transplantations, by the one-pot two-step glycosylation sequence.
Ishida, Takuya; Fushinobu, Shinya; Kawai, Rie; Kitaoka, Motomitsu; Igarashi, Kiyohiko; Samejima, Masahiro
2009-01-01
Glycoside hydrolase family 55 consists of β-1,3-glucanases mainly from filamentous fungi. A β-1,3-glucanase (Lam55A) from the Basidiomycete Phanerochaete chrysosporium hydrolyzes β-1,3-glucans in the exo-mode with inversion of anomeric configuration and produces gentiobiose in addition to glucose from β-1,3/1,6-glucans. Here we report the crystal structure of Lam55A, establishing the three-dimensional structure of a member of glycoside hydrolase 55 for the first time. Lam55A has two β-helical domains in a single polypeptide chain. These two domains are separated by a long linker region but are positioned side by side, and the overall structure resembles a rib cage. In the complex, a gluconolactone molecule is bound at the bottom of a pocket between the two β-helical domains. Based on the position of the gluconolactone molecule, Glu-633 appears to be the catalytic acid, whereas the catalytic base residue could not be identified. The substrate binding pocket appears to be able to accept a gentiobiose unit near the cleavage site, and a long cleft runs from the pocket, in accordance with the activity of this enzyme toward various β-1,3-glucan oligosaccharides. In conclusion, we provide important features of the substrate-binding site at the interface of the two β-helical domains, demonstrating an unexpected variety of carbohydrate binding modes. PMID:19193645
The use of neutron scattering to determine the functional structure of glycoside hydrolase.
Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko
2016-10-01
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yu, W. F.; Tung, C. S.; Wang, H.; Tasayco, M. L.
2000-01-01
Inspection of high resolution three-dimensional (3D) structures from the protein database reveals an increasing number of cis-Xaa-Pro and cis-Xaa-Yaa peptide bonds. However, we are still far from being able to predict whether these bonds will remain cis upon single-site substitution of Pro or Yaa and/or cleavage of a peptide bond close to it in the sequence. We have chosen oxidized Escherichia coli thioredoxin (Trx), a member of the Trx superfamily with a single alpha/beta domain and cis P76 to determine the effect of single-site substitution and/or cleavage on this isomer. Standard two-dimensional (2D) NMR analysis were performed on cleaved Trx (1-73/74-108) and its P76A variant. Analysis of the NOE connectivities indicates remarkable similarity between the secondary and supersecondary structure of the noncovalent complexes and Trx. Analysis of the 2D version of the HCCH-TOCSY and HMQC-NOESY-HMQC and 13C-filtered HMQC-NOESY spectra of cleaved Trx with uniformly 13C-labeled 175 and P76 shows surprising conservation of both cis P76 and packing of 175 against W31. A similar NMR analysis of its P76A variant provides no evidence for cis A76 and shows only subtle local changes in both the packing of 175 and the interstrand connectivities between its most protected hydrophobic strands (beta2 and beta4). Indeed, a molecular simulation model for the trans P76A variant of Trx shows only subtle local changes around the substitution site. In conclusion, cleavage of R73 is insufficient to provoke cis/trans isomerization of P76, but cleavage and single-site substitution (P76A) favors the trans isomer. PMID:10739243
Burns, Brendan P.; Mendz, George L.; Hazell, Stuart L.
1998-01-01
The mechanism of resistance to N-phosphonoacetyl-l-aspartate (PALA), a potent inhibitor of aspartate carbamoyltransferase (which catalyzes the first committed step of de novo pyrimidine biosynthesis), in Helicobacter pylori was investigated. At a 1 mM concentration, PALA had no effects on the growth and viability of H. pylori. The inhibitor was taken up by H. pylori cells and the transport was saturable, with a Km of 14.8 mM and a Vmax of 19.1 nmol min−1 μl of cell water−1. By 31P nuclear magnetic resonance (NMR) spectroscopy, both PALA and phosphonoacetate were shown to have been metabolized in all isolates of H. pylori studied. A main metabolic end product was identified as inorganic phosphate, suggesting the presence of an enzyme activity which cleaved the carbon-phosphorus (C-P) bonds. The kinetics of phosphonate group cleavage was saturable, and there was no evidence for substrate inhibition at higher concentrations of either compound. C-P bond cleavage activity was temperature dependent, and the activity was lost in the presence of the metal chelator EDTA. Other cleavages of PALA were observed by 1H NMR spectroscopy, with succinate and malate released as main products. These metabolic products were also formed when N-acetyl-l-aspartate was incubated with H. pylori lysates, suggesting the action of an aspartase. Studies of the cellular location of these enzymes revealed that the C-P bond cleavage activity was localized in the soluble fraction and that the aspartase activity appeared in the membrane-associated fraction. The results suggested that the two H. pylori enzymes transformed the inhibitor into noncytotoxic products, thus providing the bacterium with a mechanism of resistance to PALA toxicity which appears to be unique. PMID:9791105
Umehara, K; Kudo, S; Hirao, Y; Morita, S; Uchida, M; Odomi, M; Miyamoto, G
2000-08-01
The metabolism of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045), a new potent biguanide antiseptic, was investigated using rat and dog liver preparations to elucidate the mechanism of OPB-2045 metabolite formation, in which the octyl side chain is reduced to four, five, or six carbon atoms. Chemical structures of metabolites were characterized by 1H NMR, fast atom bombardment/mass spectrometry, and liquid chromatography/electrospray ionization-tandem mass spectrometry. Three main metabolites were observed during incubation of OPB-2045 with rat liver S9: 2-octanol (M-1), 3-octanol (M-2), and 4-octanol (M-3). In the incubation of OPB-2045 with dog liver S9, eight metabolites were observed, seven of which being M-1, M-2, M-3, 2-octanone (M-4), threo-2,3-octandiol (M-5), erythro-2,3-octandiol (M-6), and 1,2-octandiol (M-7). M-5 and M-6 were further biotransformed to a ketol derivative and C-C bond cleavage metabolite (hexanoic acid derivative), an in vivo end product, in the incubation with dog liver microsomes. The reactions required NADPH as a cofactor and were significantly inhibited by the various inhibitors of cytochrome P450 (i.e., CO, n-octylamine, SKF 525-A, metyrapone, and alpha-naphthoflavone). The results indicate that the degraded products of OPB-2045 are produced by C-C bond cleavage after monohydroxylation, dihydroxylation, and ketol formation at the site of the octyl side chain with possible involvement of cytochrome P450 systems. This aliphatic C-C bond cleavage by sequential oxidative reactions may play an important role in the metabolism of other drugs or endogenous compounds that possess aliphatic chains.
Bond dissociation enthalpies of a pinoresinol lignin model compound
Thomas Elder
2014-01-01
ABSTRACT: The pinoresinol unit is one of the principal interunit linkages in lignin. As such, its chemistry and properties are of major importance in understanding the behavior or the polymer. This work examines the homolytic cleavage of the pinoresinol system, representing the initial step in thermal degradation. The bond dissociation enthalpy of this reaction has...
Chemical Stress Cracking of Acrylic Fibers.
1982-05-01
stress, high fiber permeability, moderate fibe orientation, and water- plasticization . The proposed mechanism for bond cleava e involves cyclization of...tensile stress, high fiber permeability, moderate fiber orientation, and water- plasticization . The proposed mechanism for bond cleavage involves...chemical composition, plasticization , and other factors. It will be shown that the etching behavior does not reflect underlying hetero- geneities in the
USDA-ARS?s Scientific Manuscript database
Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by ß-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high ...
Brines, Lisa M.; Coggins, Michael K.; Poon, Penny Chaau Yan; Toledo, Santiago; Kaminsky, Werner; Kirk, Martin L.
2015-01-01
Understanding the metal ion properties that favor O−H bond formation versus cleavage should facilitate the development of catalysts tailored to promote a specific reaction, e.g., C−H activation or H2O oxidation. The first step in H2O oxidation involves the endothermic cleavage of a strong O−H bond (BDFE = 122.7 kcal/mol), promoted by binding the H2O to a metal ion, and by coupling electron transfer to proton transfer (PCET). This study focuses on details regarding how a metal ion’s electronic structure and ligand environment can tune the energetics of M(HO−H) bond cleavage. The synthesis and characterization of an Fe(II)−H2O complex, 1, that undergoes PCET in H2O to afford a rare example of a monomeric Fe(III)−OH, 7, is described. High-spin 7 is also reproducibly generated via the addition of H2O to {[FeIII(OMe2N4(tren))]2-(µ-O)}2+ (8). The O−H bond BDFE of Fe(II)−H2O (1) (68.6 kcal/mol) is calculated using linear fits to its Pourbaix diagram and shown to be 54.1 kcal/mol less than that of H2O and 10.9 kcal/mol less than that of [Fe(II)(H2O)6]2+. The O−H bond of 1 is noticeably weaker than the majority of reported Mn+(HxO−H) (M = Mn, Fe; n+ = 2+, 3+; x = 0, 1) complexes. Consistent with their relative BDFEs, Fe(II)−H2O (1) is found to donate a H atom to TEMPO•, whereas the majority of previously reported Mn+−O(H) complexes, including [MnIII(SMe2N4(tren))(OH)]+ (2), have been shown to abstract H atoms from TEMPOH. Factors responsible for the weaker O−H bond of 1, such as differences in the electron-donating properties of the ligand, metal ion Lewis acidity, and electronic structure, are discussed. PMID:25611075
PERFILS: a program for the quantitative treatment of footprinting data.
Salas, X; Portugal, J
1993-10-01
PERFILS, a computer program written in Borland TurboPascal, performs quantitative analysis of footprinting experiments using any IBM PC or compatible microcomputer. The program uses the height of the bands obtained from densitometric scanning of footprinting autoradiographs to calculate a differential cleavage plot. Such a plot displays, on a logarithmic scale, the difference of susceptibility of a DNA fragment to DNase I, or any other cleaving agent, in the presence of any ligand versus the sequence. PERFILS calculates the fractional cleavage values for control and ligand, giving a table of values for each internucleotidic bond and rendering the differential cleavage plot in only a few seconds.
Dano, Meisa; Elmeranta, Marjukka; Hodgson, David R W; Jaakkola, Juho; Korhonen, Heidi; Mikkola, Satu
2015-12-01
Cleavage of five different nucleoside diphosphosugars has been studied in the presence of Cu(2+) and Zn(2+) complexes. The results show that metal ion catalysts promote the cleavage via intramolecular transesterification whenever a neighbouring HO group can adopt a cis-orientation with respect to the phosphate. The HO group attacks the phosphate and two monophosphate products are formed. If such a nucleophile is not available, Cu(2+) complexes are able to promote a nucleophilic attack of an external nucleophile, e.g. a water molecule or metal ion coordinated HO ligand, on phosphate. With the Zn(2+) complex, this was not observed.
Perfluorinated Ligands in Organometallic Chemistry
1989-12-12
C49t00ooVER ,or C M’ AD"OV’~mDecember 12) 199IFinal 1/1/86 to 8/31/89C smuS. FUNOING NUMgIERS cJ Perfluorinated Ligands in Organometallic Chemistry 612...compounds, stabilized by tridentate perfluorinated ligands. Dinuclear rhodium complexes of OFCOT undergo a selective C-F bond activation reaction...hexafluorocyclooctatrieneyne ligand. Stereospecific cleavage of a fluorinated C-C bond,#-bond in perfluorocyclopropene by platinum and iridium complexes has been achieved
NASA Astrophysics Data System (ADS)
Lyon, Yana A.; Beran, Gregory; Julian, Ryan R.
2017-07-01
Traditional electron-transfer dissociation (ETD) experiments operate through a complex combination of hydrogen abundant and hydrogen deficient fragmentation pathways, yielding c and z ions, side-chain losses, and disulfide bond scission. Herein, a novel dissociation pathway is reported, yielding homolytic cleavage of carbon-iodine bonds via electronic excitation. This observation is very similar to photodissociation experiments where homolytic cleavage of carbon-iodine bonds has been utilized previously, but ETD activation can be performed without addition of a laser to the mass spectrometer. Both loss of iodine and loss of hydrogen iodide are observed, with the abundance of the latter product being greatly enhanced for some peptides after additional collisional activation. These observations suggest a novel ETD fragmentation pathway involving temporary storage of the electron in a charge-reduced arginine side chain. Subsequent collisional activation of the peptide radical produced by loss of HI yields spectra dominated by radical-directed dissociation, which can be usefully employed for identification of peptide isomers, including epimers.
Research on ribosome-inactivating proteins from angiospermae to gymnospermae and cryptogamia
Liu, Wang-Yi
2017-01-01
Ribosome-inactivating Proteins (RIPs) are a group of cytotoxin proteins that usually contain a RNA N-glycosidase domain, which irreversibly inactivates ribosome, thus inhibiting protein synthesis. During the past 14 years (1990-2004), the studies conducted in our laboratory had been focusing on the structure and enzymatic mechanism of several PIPs. Herein, we briefly described a summary of the studies conducted mainly in our laboratory on RIPs from angiospermae to gymnospermae and cryptogamia as follows. (1) Cinnamomin is a novel type II RIP isolated from mature seeds of camphor tree. Like ricin, it specifically removes the adenine at A4324 in rat liver 28S rRNA. We systematically studied this low-toxic RIP in term of its enzymatic mechanism, the primary and crystal structure and the nucleotide sequence of its gene, the genetic expression, and its physiological role in the seed cell and the toxicity to human cancer cells and insect larvae. The cleavage of supercoiled double-stranded DNA was its intrinsic property of cinnamomin A-chain, its N- and C-terminal regions were found to be required for deadenylation of rRNA and also necessary for deadenylation of supercoiled double-stranded circular DNA. These results strongly excluded the possibility that cleavage of supercoiled DNA was due to nuclease contamination. (2) Trichosanthin, an abortifacient protein, was purified from the Chinese medicinal herb, Tian-hua-fen, obtained from root tubers of Chinese trichosanthes plant. We proved that trichosanthin was a RNA N-glycosidase, inactivating eukaryotic ribosome by hydrolyzing the N-C glycosidic bond of the adenose at site 4324 in rat 28S rRNA, and inhibited protein synthesis in vitro. (3) A unique Biota orientalis RNase (RNase Bo) was extracted from the mature seeds of the cypress cypress tree (Oriental arborvita), which was gymnospermae plant. It cleaved only a specific phosphodiester bond between C4453 and A4454 of 28S RNA in rat ribosomes, producing a small RNA-fragment (S-fragment), thus inhibiting protein synthesis and belonging to RNase-like RIP, similar to α-sarcin, a special RIP. (4) Lamjapin, the first RIP purified from kelp, the marine cryptogamia algal plant, was shown to be the first single-chained RNA N-glycosidase from marine plant to date. It hydrolyzed rat ribosomal 28S RNA to produce meanly a rather smaller RNA, shorter than the diagnostic R-fragment under the restricted condition. The significance of existence of type I RIP in the lower marine algal plant was briefly discussed. PMID:29312524
Leaving Group Ability Observably Affects Transition State Structure in a Single Enzyme Active Site.
Roston, Daniel; Demapan, Darren; Cui, Qiang
2016-06-15
A reaction's transition state (TS) structure plays a critical role in determining reactivity and has important implications for the design of catalysts, drugs, and other applications. Here, we explore TS structure in the enzyme alkaline phosphatase using hybrid Quantum Mechanics/Molecular Mechanics simulations. We find that minor perturbations to the substrate have major effects on TS structure and the way the enzyme stabilizes the TS. Substrates with good leaving groups (LGs) have little cleavage of the phosphorus-LG bond at the TS, while substrates with poor LGs have substantial cleavage of that bond. The results predict nonlinear free energy relationships for a single rate-determining step, and substantial differences in kinetic isotope effects for different substrates; both trends were observed in previous experimental studies, although the original interpretations differed from the present model. Moreover, due to different degrees of phosphorus-LG bond cleavage at the TS for different substrates, the LG is stabilized by different interactions at the TS: while a poor LG is directly stabilized by an active site zinc ion, a good LG is mainly stabilized by active site water molecules. Our results demonstrate the considerable plasticity of TS structure and stabilization in enzymes. Furthermore, perturbations to reactivity that probe TS structure experimentally (i.e., substituent effects) may substantially perturb the TS they aim to probe, and thus classical experimental approaches such as free energy relations should be interpreted with care.
Cao, Jun
2015-06-28
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π(*) transition induces a cleavage of the C-N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π(*) excitation of the imine chromophore results in a cleavage of the C-C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N-O bond cleavages on both S1((1)ππ(*)) and S2((1)nNπ(*)) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
NASA Astrophysics Data System (ADS)
Cao, Jun
2015-06-01
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π* transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π* excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed into 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S1(1ππ*) and S2(1nNπ*) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.
Structure and photochemistry of a saccharyl thiotetrazole.
Ismael, A; Borba, A; Henriques, M S C; Paixão, J A; Fausto, R; Cristiano, M L S
2015-01-02
The molecular structure and photochemistry of 5-thiosaccharyl-1-methyltetrazole (TSMT) were studied by means of matrix-isolation FTIR spectroscopy, X-ray crystallography, and theoretical calculations. The calculations predicted two conformers of TSMT that differ in energy by more than 15 kJ mol(-1). The infrared spectrum of TSMT isolated in solid argon was fully assigned on the basis of the spectrum calculated (O3LYP/6-311++G(3df,3pd)) for the most stable conformer. In the crystal, TSMT molecules were found to assume the same conformation as for the isolated molecule, with each molecule forming four hydrogen bonds with three neighboring molecules, leading to a network of TSMT oligomers. Upon UV (λ = 265 nm) irradiation of the matrix-isolated TSMT, two photodegradation pathways were observed, both arising from cleavage of the tetrazolyl ring. Pathway a involves cleavage of the N1-N2 and N3-N4 bonds with extrusion of N2, leading to photostable diazirine and thiocarbodiimide derivatives. The photostability of the photoproduced diazirine under the conditions used precluded its rearrangement to the nitrile imine, as reported for 5-phenyltetrazole by Bégué et al. ( J. Am. Chem. Soc. 2012 , 134 , 5339 ). Pathway b involves cleavage of the C5-N1 and N4-N3 bonds, leading to a thiocyanate and methyl azide, the latter undergoing subsequent fragmentation to give CNH.
Photochemical transformation of azoxystrobin in aqueous solutions.
Boudina, A; Emmelin, C; Baaliouamer, A; Païssé, O; Chovelon, J M
2007-07-01
The photochemical behaviour of azoxystrobin fungicide (AZX) in water was studied under laboratory conditions. Photodegradation was initiated using a solar simulator (xenon arc lamp) or a jacketed Pyrex reaction cell equipped with a 125 W, high-pressure mercury lamp. HPLC/MS analysis (APCI and ESI in positive and negative modes) was used to identify AZX photoproducts. The calculated polychromatic quantum efficiencies (phi) of AZX at pH 4.5, 7 and 9 were 5.42 x 10(-3), 3.47 x 10(-3) and 3.06 x 10(-3) (degraded molecules per absorbed photon), respectively. The relatively narrow range of values indicates the stability of AZX with respect to photodegradation in the studied pH range. Results from the HPLC/MS analysis suggest that the phototransformation of AZX proceeds via multiple, parallel reaction pathways including: (1) photo-isomerization (E-->Z), (2) photo-hydrolysis of the methyl ester and of the nitrile group, (3) cleavage of the acrylate double bond, (4) photohydrolytic ether cleavage between the aromatic ring giving phenol, and (5) oxidative cleavage of the acrylate double bond.
Xue, Xiaoguang; Wu, Jin; Ricklin, Daniel; Forneris, Federico; Di Crescenzio, Patrizia; Schmidt, Christoph Q; Granneman, Joke; Sharp, Thomas H; Lambris, John D; Gros, Piet
2017-08-01
The complement system labels microbes and host debris for clearance. Degradation of surface-bound C3b is pivotal to direct immune responses and protect host cells. How the serine protease factor I (FI), assisted by regulators, cleaves either two or three distant peptide bonds in the CUB domain of C3b remains unclear. We present a crystal structure of C3b in complex with FI and regulator factor H (FH; domains 1-4 with 19-20). FI binds C3b-FH between FH domains 2 and 3 and a reoriented C3b C-terminal domain and docks onto the first scissile bond, while stabilizing its catalytic domain for proteolytic activity. One cleavage in C3b does not affect its overall structure, whereas two cleavages unfold CUB and dislodge the thioester-containing domain (TED), affecting binding of regulators and thereby determining the number of cleavages. These data explain how FI generates late-stage opsonins iC3b or C3dg in a context-dependent manner, to react to foreign, danger or healthy self signals.
METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II
The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will bemore » to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectively cleaving the second C-N bond in carbazole has not yet been identified, but enrichment culture experiments have recently succeeded in isolating a bacterial culture that is a likely candidate and may possess a suitable enzyme. Research in the near future will verify if a suitable enzyme for the cleavage of the second C-N bond in carbazole has indeed been found, then the genes encoding a suitable enzyme will be identified, cloned, and sequenced. Ultimately genes encoding enzymes for selective cleavage of both C-N bonds in carbazole will be assembled into a new metabolic pathway and the ability of the resulting bacterial culture to remove nitrogen from petroleum will be determined.« less
Basavappa, R.; Syed, R.; Flore, O.; Icenogle, J. P.; Filman, D. J.; Hogle, J. M.
1994-01-01
The crystal structure of the P1/Mahoney poliovirus empty capsid has been determined at 2.9 A resolution. The empty capsids differ from mature virions in that they lack the viral RNA and have yet to undergo a stabilizing maturation cleavage of VP0 to yield the mature capsid proteins VP4 and VP2. The outer surface and the bulk of the protein shell are very similar to those of the mature virion. The major differences between the 2 structures are focused in a network formed by the N-terminal extensions of the capsid proteins on the inner surface of the shell. In the empty capsids, the entire N-terminal extension of VP1, as well as portions corresponding to VP4 and the N-terminal extension of VP2, are disordered, and many stabilizing interactions that are present in the mature virion are missing. In the empty capsid, the VP0 scissile bond is located some 20 A away from the positions in the mature virion of the termini generated by VP0 cleavage. The scissile bond is located on the rim of a trefoil-shaped depression in the inner surface of the shell that is highly reminiscent of an RNA binding site in bean pod mottle virus. The structure suggests plausible (and ultimately testable) models for the initiation of encapsidation, for the RNA-dependent autocatalytic cleavage of VP0, and for the role of the cleavage in establishing the ordered N-terminal network and in generating stable virions. PMID:7849583
Heo, Jinsol; Kim, Se Hyeuk
2013-01-01
Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669
Cholecystokinin-converting enzymes in brain.
Malesci, A; Straus, E; Yalow, R S
1980-01-01
Crude extracts of porcine cerebral cortical tissue convert cholecystokinin (CCK) to its COOH-terminal fragments, the dodecapeptide (CCK-12) and the octapeptide (CCK-8). The Sephadex G-75 void volume eluate of the crude extract cleaves the arginine-isoleucine bond and effects conversion only to CCK-12; the Sephadex G-50 void volume eluate of the same extract cleaves the arginine-aspartate bond as well, so that both CCK-12 and CCK-8 are end products. Thus, there are at least two enzymes; the one involved in the conversion to CCK-12 is of larger molecular radius than the other. The Km for the cleavage of CCK at the arginine-isoleucine bond by the Sephadex G-75 void volume eluate enzyme is 1.1 X 10(-6) M; the Km for trypsin cleavage of the same bond is 4.7 x 10(-6) M. The lower Vmax for the brain enzyme (1.5 x 10(-11) mol/min per g of extract) compared with trypsin (66 x 10(-11) mol/min per g of trypsin) simply reflects the lesser degree of purify of the brain extract than of the highly purified trypsin. Images PMID:6987659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, B.
1994-05-01
In work prior to the inception of this project, the authors observed that mixtures of phenolic materials and polyalkoxyaromatic molecules were appreciably more effective in catalyzing the decompositions of di-2-naphthyl ether and of di-1-naphthyl sulfide in tetralin solutions at 450{degrees}C than were the phenols by themselves, even though the polyalkoxyaromatic molecules, in the absence of phenolic co- catalysts, show essentially no catalytic activity. This was of appreciable interest in coal research because dinapthyl ether and dinapthyl sulfide have been employed as model compounds for coals in studies aimed at cleaving ether and sulfide bonds similar to those in coals. Themore » authors proposed (R. K. Sharma, K. P. Raman, and B. Miller) that the mixed catalysts used in these studies catalyze cleavages of ether and sulfide bonds by means of a mechanism involving electron transfer from the polyalkoxyaromatics to the substrates, which are activated as electron acceptors by hydrogen bonding to phenols. Since phenols themselves are electron donors, they also proposed that the well known effects of phenols in catalyzing the conversion of coals are due to similar electron transfer mechanisms.« less
Takayama, Mitsuo; Osaka, Issey; Sakakura, Motoshi
2012-01-01
The susceptibility of the N-Cα bond of the peptide backbone to specific cleavage by in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) was studied from the standpoint of the secondary structure of three proteins. A naphthalene derivative, 5-amino-1-naphtol (5,1-ANL), was used as the matrix. The resulting c'-ions, which originate from the cleavage at N-Cα bonds in flexible secondary structures such as turn and bend, and are free from intra-molecular hydrogen-bonded α-helix structure, gave relatively intense peaks. Furthermore, ISD spectra of the proteins showed that the N-Cα bonds of specific amino acid residues, namely Gly-Xxx, Xxx-Asp, and Xxx-Asn, were more susceptible to MALDI-ISD than other amino acid residues. This is in agreement with the observation that Gly, Asp and Asn residues usually located in turns, rather than α-helix. The results obtained indicate that protein molecules embedded into the matrix crystal in the MALDI experiments maintain their secondary structures as determined by X-ray crystallography, and that MALDI-ISD has the capability for providing information concerning the secondary structure of protein.
Aghajari, N.; Feller, G.; Gerday, C.; Haser, R.
1998-01-01
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase. PMID:9541387
Anthracycline-Formaldehyde Conjugates and Their Targeted Prodrugs
NASA Astrophysics Data System (ADS)
Koch, Tad H.; Barthel, Benjamin L.; Kalet, Brian T.; Rudnicki, Daniel L.; Post, Glen C.; Burkhart, David J.
The sequence of research leading to a proposal for anthracycline cross-linking of DNA is presented. The clinical anthracycline antitumor drugs are anthraquinones, and as such are redox active. Their redox chemistry leads to induction of oxidative stress and drug metabolites. An intermediate in reductive glycosidic cleavage is a quinone methide, once proposed as an alkylating agent of DNA. Subsequent research now implicates formaldehyde as a mediator of anthracycline-DNA cross-linking. The cross-link at 5'-GC-3' sites consists of a covalent linkage from the amino group of the anthracycline to the 2-amino group of the G-base through a methylene from formaldehyde, hydrogen bonding from the 9-OH to the G-base on the opposing strand, and hydrophobic interactions through intercalation of the anthraquinone. The combination of these interactions has been described as a virtual cross-link of DNA. The origin of the formaldehyde in vivo remains a mystery. In vitro, doxorubicin reacts with formaldehyde to give firstly a monomeric oxazolidine, doxazolidine, and secondly a dimeric oxazolidine, doxoform. Doxorubicin reacts with formaldehyde in the presence of salicylamide to give the N-Mannich base conjugate, doxsaliform. Doxsaliform is several fold more active in tumor cell growth inhibition than doxorubicin, but doxazolidine and doxoform are orders of magnitude more active than doxorubicin. Exploratory research on the potential for doxsaliform and doxazolidine as targeted cytotoxins is presented. A promising lead design is pentyl PABC-Doxaz, targeted to a carboxylesterase enzyme overexpressed in liver cancer cells and/or colon cancer cells.
Chelation-assisted carbon-hydrogen and carbon-carbon bond activation by transition metal catalysts.
Jun, Chul-Ho; Moon, Choong Woon; Lee, Dae-Yon
2002-06-03
Herein we describe the chelation-assisted C-H and C-C bond activation of carbonyl compounds by Rh1 catalysts. Hydroacylation of olefins was accomplished by utilizing 2-amino-3-picoline as a chelation auxiliary. The same strategy was employed for the C-C bond activation of unstrained ketones. Allylamine 24 was devised as a synthon of formaldehyde. Hydroiminoacylation of alkynes with allylamine 24 was applied to the alkyne cleavage by the aid of cyclohexylamine.
Peng, Shiyong; Liu, Suna; Zhang, Sai; Cao, Shengyu; Sun, Jiangtao
2015-10-16
Polyheteroaromatic compounds are potential optoelectronic conjugated materials due to their electro- and photochemical properties. Transition-metal-catalyzed multiple C-H activation and sequential oxidative annulation allows rapidly assembling of those compounds from readily available starting materials. A rhodium-catalyzed cascade oxidative annulation of β-enamino esters or 4-aminocoumarins with internal alkynes is described to access those compounds, featuring multiple C-H/N-H bond cleavages and sequential C-C/C-N bond formations in one pot.
Thornton, Peter; Sevalle, Jean; Deery, Michael J; Fraser, Graham; Zhou, Ye; Ståhl, Sara; Franssen, Elske H; Dodd, Roger B; Qamar, Seema; Gomez Perez-Nievas, Beatriz; Nicol, Louise Sc; Eketjäll, Susanna; Revell, Jefferson; Jones, Clare; Billinton, Andrew; St George-Hyslop, Peter H; Chessell, Iain; Crowther, Damian C
2017-10-01
We have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding. Peptidomimetic protease inhibitors highlighted a possible cleavage site, and mass spectrometry confirmed that shedding occurred predominantly at the H157-S158 peptide bond for both wild-type and H157Y human TREM2 and for the wild-type murine orthologue. Crucially, we also show that the Alzheimer's disease-associated H157Y TREM2 variant was shed more rapidly than wild type from HEK293 cells, possibly by a novel, batimastat- and ADAM10-siRNA-independent, sheddase activity. These insights offer new therapeutic targets for modulating the innate immune response in Alzheimer's and other neurological diseases. © 2017 MedImmune Ltd. Published under the terms of the CC BY 4.0 license.
METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane III
The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will bemore » to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage pathway. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum.« less
Hughes, Stephen R; Qureshi, Nasib; López-Núñez, Juan Carlos; Jones, Marjorie A; Jarodsky, Joshua M; Galindo-Leva, Luz Ángela; Lindquist, Mitchell R
2017-04-01
Inulins are polysaccharides that belong to an important class of carbohydrates known as fructans and are used by many plants as a means of storing energy. Inulins contain 20 to several thousand fructose units joined by β-2,1 glycosidic bonds, typically with a terminal glucose unit. Plants with high concentrations of inulin include: agave, asparagus, coffee, chicory, dahlia, dandelion, garlic, globe artichoke, Jerusalem artichoke, jicama, onion, wild yam, and yacón. To utilize inulin as its carbon and energy source directly, a microorganism requires an extracellular inulinase to hydrolyze the glycosidic bonds to release fermentable monosaccharides. Inulinase is produced by many microorganisms, including species of Aspergillus, Kluyveromyces, Penicillium, and Pseudomonas. We review various inulinase-producing microorganisms and inulin feedstocks with potential for industrial application as well as biotechnological efforts underway to develop sustainable practices for the disposal of residues from processing inulin-containing crops. A multi-stage biorefinery concept is proposed to convert cellulosic and inulin-containing waste produced at crop processing operations to valuable biofuels and bioproducts using Kluyveromyces marxianus, Yarrowia lipolytica, Rhodotorula glutinis, and Saccharomyces cerevisiae as well as thermochemical treatments.
Ogata, Makoto; Kameshima, Yumiko; Hattori, Takeshi; Michishita, Kousuke; Suzuki, Tomohiro; Kawagishi, Hirokazu; Totani, Kazuhide; Hiratake, Jun; Usui, Taichi
2010-12-10
Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters. Copyright © 2010 Elsevier Ltd. All rights reserved.
Paul, Souvik Kumar; Chakraborty, Saikat
2018-04-01
Sunn hemp fibre - a cellulose-rich crystalline non-food energy crop, containing 75.6% cellulose, 10.05% hemicellulose, 10.32% lignin, with high crystallinity (80.17%) and degree of polymerization (650) - is identified as a new non-food substrate for lignocellulosic biofuel production. Microwave irradiation is employed to rapidly rupture the cellulose's glycosidic bonds and enhance glucose yield to 78.7% at 160 °C in only 46 min. The reactants - long-chain cellulose, ionic liquid, transition metal catalyst, and water - form a polar supramolecular complex that rotates under the microwave's alternating polarity and rapidly dissipates the electromagnetic energy through molecular collisions, thus accelerating glycosidic bond breakage. In 46 min, 1 kg of Sunn hemp fibres containing 756 g of cellulose produces 595 g of glucose at 160 °C, and 203 g of hydroxymethyl furfural (furanic biofuel precursor) at 180 °C. Yeast mediated glucose fermentation produces 75.6% bioethanol yield at 30 °C, and the ionic liquid is recycled for cost-effectiveness. Copyright © 2018 Elsevier Ltd. All rights reserved.
Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.
Gervay-Hague, Jacquelyn
2016-01-19
Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive that even highly functionalized aglycon acceptors add. Following the coupling event, the TMS ethers are readily removed by methanolysis, and since all of the byproducts are volatile, multiple reactions can be performed in a single reaction vessel without isolation of intermediates. In this fashion, per-O-TMS monosaccharides can be converted to biologically relevant α-linked glycolipids in one pot. The stereochemical outcome of these reactions can also be switched to β-glycoside formation by addition of silver to chelate the iodide, thus favoring SN2 displacement of the α-iodide. While iodides derived from benzyl and silyl ether-protected oligosaccharides are susceptible to interglycosidic bond cleavage when treated with TMSI, the introduction of a single acetate protecting group prevents this unwanted side reaction. Partial acetylation of armed glycosyl iodides also attenuates HI elimination side reactions. Conversely, fully acetylated glycosyl iodides are deactivated and require metal catalysis in order for glycosidation to occur. Recent findings indicate that I2 activation of per-O-acetylated mono-, di-, and trisaccharides promotes glycosidation of cyclic ethers to give β-linked iodoalkyl glycoconjugates in one step. Products of these reactions have been converted into multivalent carbohydrate displays. With these synthetic pathways elucidated, chemical reactivity can be exquisitely controlled by the judicious selection of protecting groups to achieve high stereocontrol in step-economical processes.
Zhang, Lilan; Zhao, Puya; Chen, Chun-Chi; Huang, Chun-Hsiang; Ko, Tzu-Ping; Zheng, Yingying; Guo, Rey-Ting
2014-07-01
β-1,3-1,4-Glucanases catalyze the specific hydrolysis of internal β-1,4-glycosidic bonds adjacent to the 3-O-substituted glucose residues in mixed-linked β-glucans. The thermophilic glycoside hydrolase CtGlu16A from Clostridium thermocellum exhibits superior thermal profiles, high specific activity and broad pH adaptability. Here, the catalytic domain of CtGlu16A was expressed in Escherichia coli, purified and crystallized in the trigonal space group P3121, with unit-cell parameters a=b=74.5, c=182.9 Å, by the sitting-drop vapour-diffusion method and diffracted to 1.95 Å resolution. The crystal contains two protein molecules in an asymmetric unit. Further structural determination and refinement are in progress.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
2002-01-01
The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (deltaG) were estimated for four types of reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (deltaG < -3.5 kcal/mol), reversible (deltaG between +/-3.5 kcal/mol), or unfavorable (deltaG > +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the functional group class (i.e., oxidation state) of participating groups that in turn is contingent on prior reactions and precursors in the synthetic pathway.
NASA Astrophysics Data System (ADS)
Weber, Arthur L.
2002-08-01
The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies (ΔG) were estimated for four types of reactions of biochemical importance - carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed (1) that generally when carbon-carbon bond cleavage involves groups from different functional group classes (i.e., carboxylic acids, carbonyl groups, alcohols, and hydrocarbons), the transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) that the energy of carbon-carbon bond transformation is primarily determined by the functional group class of the group that changes oxidation state in the reaction (i.e., the functional group class of the group that donates the shared electron-pair during cleavage, or that accepts the incipient shared electron-pair during synthesis). In contrast, the energy of hydrogen transfer between carbon groups is determined by the functional group class of both the hydrogen-donor group and the hydrogen-acceptor group. From these and other observations we concluded that the chemistry involved in the origin of metabolism (and to a lesser degree modern metabolism) was strongly constrained by (1) the limited redox-based transformation energy of organic substrates that is readily dissipated in a few energetically favorable irreversible reactions; (2) the energy dominance of a few transformation half-reactions that determines whether carbon-carbon bond transformation (cleavage or synthesis) is energetically favorable (ΔG < -3.5 kcal/mol), reversible (ΔG between +/-3.5 kcal/mol), or unfavorable (ΔG > +3.5 kcal/mol); and (3) the dependence of carbon group transformation energy on the functional group class (i.e., oxidation state) of participating groups that in turn is contingent on prior reactions and precursors in the synthetic pathway.
Untergehrer, Monika; Bücherl, Daniel; Wittmann, Hans-Joachim; Strasser, Andrea; Heilmann, Jörg; Jürgenliemk, Guido
2015-08-01
Flavonoid glycosides are extensively metabolized to glucuronidated compounds after oral intake. Recently, a cleavage of quercetin glucuronides by β-glucuronidase has been found. To characterize the deglucuronidation reaction and its structural prerequisites among the flavonoid subtypes more precisely, four flavonol glucuronides with varying glucuronidation positions, five flavone 7-O-glucuronides with varying A- and B-ring substitution as well as one flavanone- and one isoflavone-7-O-glucuronide were analyzed in a human monocytic cell line. Investigation of the deglucuronidation rates by HPLC revealed a significant influence of the glucuronidation position on enzyme activity for flavonols. Across the flavonoid subtypes, the C-ring saturation also showed a significant influence on deglucuronidation, whereas A- and B-ring variations within the flavone-7-O-glucuronides did not affect the enzymes' activity. Results were compared to computational binding studies on human β-glucuronidase. Additionally, molecular modeling and dynamic studies were performed to obtain detailed insight into the binding and cleavage mode of the substrate at the active site of the human β-glucuronidase. Georg Thieme Verlag KG Stuttgart · New York.
Li, Xianwei; Xu, Yanli; Wu, Wanqing; Jiang, Chang; Qi, Chaorong; Jiang, Huanfeng
2014-06-23
A regio- and stereoselective synthesis of sulfones and thioethers by means of Cu(I)-catalyzed aerobic oxidative N-S bond cleavage of sulfonyl hydrazides, followed by cross-coupling reactions with alkenes and aromatic compounds to form the C sp 2-S bond, is described herein. N2 and H2O are the byproducts of this transformation, thus offering an environmentally benign process with a wide range of potential applications in organic synthesis and medicinal chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.; Fonda, Mark (Technical Monitor)
2001-01-01
The thermodynamics of organic chemistry under mild aqueous conditions was examined in order to begin to understand its influence on the structure and operation of metabolism and its antecedents. Free energies were estimated for four types reactions of biochemical importance carbon-carbon bond cleavage and synthesis, hydrogen transfer between carbon groups, dehydration of alcohol groups, and aldo-keto isomerization. The energies were calculated for mainly aliphatic groups composed of carbon, hydrogen, and oxygen. The energy values showed that (1) when carbon-carbon bond cleavage involves two different types of functional groups, transfer of the shared electron-pair to the more reduced carbon group is energetically favored over transfer to the more oxidized carbon group, and (2) the energy of carbon-carbon bond transformation is strongly dependent on the type of functional group that donates the shared electron-pair during cleavage, and the group that accepts the shared electron-pair during synthesis, and (3) the energetics of C-C bond transformation is determined primarily by the half-reaction energies of the couples: carbonyl/carboxylic acid, carboxylic acid/carbon dioxide, alcohol/carbonyl, and hydrocarbon/alcohol. The energy of hydrogen-transfer between carbon groups was found to depend on the functional group class of both the hydrogen-donor and hydrogen-acceptor. From these and other observations we concluded that the chemistry of the origin of metabolism (and to a lesser degree modem metabolism) is strongly constrained by the (1) limited disproportionation energy of organic substrates that can be dissipated in a few irreversible reactions, (2) the energy-dominance of few half-reaction couples in carbon-carbon bond transformation that establishes whether a chemical reaction is energetically irreversible, reversible or unfeasible, and (3) the dependence of the transformation-energy on the oxidation state of carbon groups (functional group type) which is contingent on prior reactions in the synthetic pathway.
Adams, Richard D; Dhull, Poonam; Tedder, Jonathan D
2018-06-14
The reaction of Re 2 (CO) 8 (μ-C 6 H 5 )(μ-H) (1) with thiophene in CH 2 Cl 2 at 40 °C yielded the new compound Re 2 (CO) 8 (μ-η 2 -SC 4 H 3 )(μ-H) (2), which contains a bridging σ-π-coordinated thienyl ligand formed by the activation of the C-H bond at the 2 position of the thiophene. Compound 2 exhibits dynamical activity on the NMR time scale involving rearrangements of the bridging thienyl ligand. The reaction of compound 2 with a second 1 equiv of 1 at 45 °C yielded the doubly metalated product [Re 2 (CO) 8 (μ-H)] 2 (μ-η 2 -2,3-μ-η 2 -4,5-C 4 H 2 S) (3), formed by the activation of the C-H bond at the 5 position of the thienyl ligand in 2. Heating 3 in a hexane solvent to reflux transformed it into the ring-opened compound Re(CO) 4 [μ-η 5 -η 2 -SCC(H)C(H)C(H)][Re(CO) 3 ][Re 2 (CO) 8 (μ-H)] (4) by the loss of one CO ligand. Compound 4 contains a doubly metalated 1-thiapentadienyl ligand formed by the cleavage of one of the C-S bonds. When heated to reflux (125 °C) in an octane solvent in the presence of H 2 O, the new compound Re(CO) 4 [η 5 -μ-η 2 -SC(H)C(H)C(H)C(H)]Re(CO) 3 (5) was obtained by cleavage of the Re 2 (CO) 8 (μ-H) group from 4 with formation of the known coproduct [Re(CO) 3 (μ 3 -OH)] 4 . All new products were characterized by single-crystal X-ray diffraction analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Pintos, Delfina; Voss, Johannes; Jensen, Anker D.
Herein we describe the C–O cleavage of phenol and cyclohexanol over Rh(111) and Rh(211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C–O bond cleavage of cyclohexanol is easier than that of phenol and that Rh(211) is more active than Rh(111) for both reactions. This indicates that phenol will react mainly following a pathway of initial hydrogenation to cyclohexanol followed by hydrodeoxygenation to cyclohexane. In conclusion, we show that there is a general relationship between the transition state and the final state of both C–O cleavage reactions,more » and that this relationship is the same for Rh(111) and Rh(211).« less
Sun, Xun; Qian, Meng-Dan; Guan, Shan-Shan; Shan, Ya-Ming; Dong, Ying; Zhang, Hao; Wang, Song; Han, Wei-Wei
2017-02-01
Cel7A from Rasamsonia emersonii is one of the processive endocellulases classified under family 7 glycoside hydrolase. Molecular dynamics simulations were carried out to obtain the optimized sliding and hydrolyzing conformations, in which the reducing ends of sugar chains are located on different sites. Hydrogen bonds are investigated to clarify the interactions between protein and substrate in either conformation. Nine hydrogen bonding interactions are identified in the sliding conformation, and six similar interactions are also found correspondingly in the hydrolyzing conformation. In addition, four strong hydrophobic interactions are also determined. The domain cross-correlation map analysis shows movement correlation of protein including autocorrelation between residues. The root mean square fluctuations analysis represents the various flexibilities of different fragment in the two conformations. Comparing the two conformations reveals the water-supply mechanism of selective hydrolysis of cellulose in Cel7A. The mechanism can be described as follow. When the reducing end of substrate slides from the unhydrolyzing site (sliding conformation) to the hydrolyzing site (hydrolyzing conformation), His225 is pushed down and rotated, the rotation leads to the movement of Glu209 with the interstrand hydrogen bonding in β-sheet. It further makes Asp211 close to the hydrolysis center and provides a water molecule bounding on its carboxyl in the previous unhydrolyzing site. After the hydrolysis takes place and the product is excluded from the enzyme, the Asp211 comes back to its initial position. In summary, Asp211 acts as an elevator to transport outer water molecules into the hydrolysis site for every other glycosidic bond. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Prokofev, I. I.; Lashkov, A. A.; Gabdulkhakov, A. G.; Balaev, V. V.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.
2016-11-01
In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2'-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokofev, I. I.; Lashkov, A. A., E-mail: alashkov83@gmail.com; Gabdulkhakov, A. G.
In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data,more » supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2′-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation.« less
Pluvinage, Benjamin; Fillo, Alexander; Massel, Patricia; Boraston, Alisdair B
2017-09-05
Family 81 glycoside hydrolases (GHs), which are known to cleave β-1,3-glucans, are found in archaea, bacteria, eukaryotes, and viruses. Here we examine the structural and functional features of the GH81 catalytic module, BhGH81, from the Bacillus halodurans protein BH0236 to probe the molecular basis of β-1,3-glucan recognition and cleavage. BhGH81 displayed activity on laminarin, curdlan, and pachyman, but not scleroglucan; the enzyme also cleaved β-1,3-glucooligosaccharides as small as β-1,3-glucotriose. The crystal structures of BhGH81 in complex with various β-1,3-glucooligosaccharides revealed distorted sugars in the -1 catalytic subsite and an arrangement consistent with an inverting catalytic mechanism having a proposed conformational itinerary of 2 S 0 → 2,5 B ‡ → 5 S 1 . Notably, the architecture of the catalytic site, location of an adjacent ancillary β-1,3-glucan binding site, and the surface properties of the enzyme indicate the likely ability to recognize the double and/or triple-helical quaternary structures adopted by β-1,3-glucans. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manolopoulou, Marika; Guo, Qing; Malito, Enrico
Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in itsmore » initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jun, E-mail: caojunbnu@mail.bnu.edu.cn
2015-06-28
In the present work, the combined electronic structure calculations and dynamics simulations have been performed to explore photocleavages of 2-formyl-2H-azirine and isoxazole in the gas phase and the subsequent rearrangement reactions. The carbonyl n → π{sup *} transition induces a cleavage of the C—N single bond of 2-formyl-2H-azirine to yield β-formylvinylnitrene in open-shell singlet state. However, the n → π{sup *} excitation of the imine chromophore results in a cleavage of the C—C single bond, producing a nitrile ylide intermediate through an internal conversion to the ground state. β-formylvinylnitrene and nitrile ylide with the carbonyl group are easily transformed intomore » 2-formyl-2H-azirine and oxazole, respectively. The N—O bond cleavages on both S{sub 1}({sup 1}ππ{sup *}) and S{sub 2}({sup 1}n{sub N}π{sup *}) of isoxazole are ultrafast processes, and they give products of 2-formyl-2H-azirine, 3-formylketenimine, HCN + CHCHO, and HCO + CHCHN. Both 2H-azirines and ketenimines were suggested to be formed from the triplet vinylnitrenes by intersystem crossing in the previous studies. However, our calculations show that the singlet β-formylvinylnitrene is responsible for the formation of 2-formyl-2H-azirine and 3-formylketenimine, and the singlet vinylnitrenes can play a key role in the photoinduced reactions of both 2H-azirines and isoxazoles.« less
Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayes, Heather B.; Knott, Brandon C.; Crowley, Michael F.
In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase ( TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleavingmore » the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2S O ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bing; Kognole, Abhishek A.; Wu, Miao
Lytic polysaccharide monooxygenases (LPMOs) are a group of recently discovered enzymes that play important roles in the decomposition of recalcitrant polysaccharides. Here, we report the biochemical, structural, and computational characterization of an LPMO from the white-rot fungus Heterobasidion irregulare (HiLPMO9B). This enzyme oxidizes cellulose at the C1 carbon of glycosidic linkages. The crystal structure of HiLPMO9B was determined at 2.1 A resolution using X-ray crystallography. Unlike the majority of the currently available C1-specific LPMO structures, the HiLPMO9B structure contains an extended L2 loop, connecting ..beta..-strands ..beta..2 and ..beta..3 of the ..beta..-sandwich structure. Molecular dynamics (MD) simulations suggest roles for bothmore » aromatic and acidic residues in the substrate binding of HiLPMO9B, with the main contribution from the residues located on the extended region of the L2 loop (Tyr20) and the LC loop (Asp205, Tyr207, and Glu210). Asp205 and Glu210 were found to be involved in the hydrogen bonding with the hydroxyl group of the C6 carbon of glucose moieties directly or via a water molecule. Two different binding orientations were observed over the course of the MD simulations. In each orientation, the active-site copper of this LPMO preferentially skewed toward the pyranose C1 of the glycosidic linkage over the targeted glycosidic bond. This study provides additional insight into cellulose binding by C1-specific LPMOs, giving a molecular-level picture of active site substrate interactions.« less
Iglesias-Fernández, Javier; Raich, Lluís; Ardèvol, Albert; Rovira, Carme
2015-02-01
Unraveling the conformational catalytic itinerary of glycoside hydrolases (GHs) is a growing topic of interest in glycobiology, with major impact in the design of GH inhibitors. β-xylanases are responsible for the hydrolysis of glycosidic bonds in β-xylans, a group of hemicelluloses of high biotechnological interest that are found in plant cell walls. The precise conformations followed by the substrate during catalysis in β-xylanases have not been unambiguously resolved, with three different pathways being proposed from structural analyses. In this work, we compute the conformational free energy landscape (FEL) of β-xylose to predict the most likely catalytic itineraries followed by β-xylanases. The calculations are performed by means of ab initio metadynamics, using the Cremer-Pople puckering coordinates as collective variables. The computed FEL supports only two of the previously proposed itineraries, 2 S O → [ 2,5 B] ǂ → 5 S 1 and 1 S 3 → [ 4 H 3 ] ǂ → 4 C 1 , which clearly appear in low energy regions of the FEL. Consistently, 2 S O and 1 S 3 are conformations preactivated for catalysis in terms of free energy/anomeric charge and bond distances. The results however exclude the O E → [ O S 2 ] ǂ → B 2,5 itinerary that has been recently proposed for a family 11 xylanase. Classical and ab initio QM/MM molecular dynamics simulations reveal that, in this case, the observed O E conformation has been enforced by enzyme mutation. These results add a word of caution on using modified enzymes to inform on catalytic conformational itineraries of glycoside hydrolases.
Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases
Mayes, Heather B.; Knott, Brandon C.; Crowley, Michael F.; ...
2016-06-01
In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase ( TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleavingmore » the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2S O ring configuration as it reaches its binding site. Lastly, this work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.« less
Iglesias-Fernández, Javier; Raich, Lluís; Ardèvol, Albert
2015-01-01
Unraveling the conformational catalytic itinerary of glycoside hydrolases (GHs) is a growing topic of interest in glycobiology, with major impact in the design of GH inhibitors. β-xylanases are responsible for the hydrolysis of glycosidic bonds in β-xylans, a group of hemicelluloses of high biotechnological interest that are found in plant cell walls. The precise conformations followed by the substrate during catalysis in β-xylanases have not been unambiguously resolved, with three different pathways being proposed from structural analyses. In this work, we compute the conformational free energy landscape (FEL) of β-xylose to predict the most likely catalytic itineraries followed by β-xylanases. The calculations are performed by means of ab initio metadynamics, using the Cremer–Pople puckering coordinates as collective variables. The computed FEL supports only two of the previously proposed itineraries, 2SO → [2,5B]ǂ → 5S1 and 1S3 → [4H3]ǂ → 4C1, which clearly appear in low energy regions of the FEL. Consistently, 2SO and 1S3 are conformations preactivated for catalysis in terms of free energy/anomeric charge and bond distances. The results however exclude the OE → [OS2]ǂ → B2,5 itinerary that has been recently proposed for a family 11 xylanase. Classical and ab initio QM/MM molecular dynamics simulations reveal that, in this case, the observed OE conformation has been enforced by enzyme mutation. These results add a word of caution on using modified enzymes to inform on catalytic conformational itineraries of glycoside hydrolases. PMID:29560204
Li, Hui; Wallace, Adam F; Sun, Mingjing; Reardon, Patrick; Jaisi, Deb P
2018-02-06
Glyphosate is the active ingredient of the common herbicide Roundup. The increasing presence of glyphosate and its byproducts has raised concerns about its potential impact on the environment and human health. In this research, we investigated abiotic pathways of glyphosate degradation as catalyzed by birnessite under aerobic and neutral pH conditions to determine whether certain pathways have the potential to generate less harmful intermediate products. Nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) were utilized to identify and quantify reaction products, and density functional theory (DFT) calculations were used to investigate the bond critical point (BCP) properties of the C-N bond in glyphosate and Mn(IV)-complexed glyphosate. We found that sarcosine, the commonly recognized precursor to glycine, was not present at detectable levels in any of our experiments despite the fact that its half-life (∼13.6 h) was greater than our sampling intervals. Abiotic degradation of glyphosate largely followed the glycine pathway rather than the AMPA (aminomethylphosphonic acid) pathway. Preferential cleavage of the phosphonate adjacent C-N bond to form glycine directly was also supported by our BCP analysis, which revealed that this C-N bond was disproportionately affected by the interaction of glyphosate with Mn(IV). Overall, these results provide useful insights into the potential pathways through which glyphosate may degrade via relatively benign intermediates.
2011-01-01
Background Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production. Results The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis. Conclusions Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole body termite extracts evidenced their ability to cleave all types of glycosidic bonds present in plant polysaccharides. The comprehensive proteomic analysis, revealed a complete collection of hydrolytic enzymes including cellulases (GH1, GH3, GH5, GH7, GH9 and CBM 6), hemicellulases (GH2, GH10, GH11, GH16, GH43 and CBM 27) and pectinases (GH28 and GH29). PMID:22081966
Sulzenbacher, G; Driguez, H; Henrissat, B; Schülein, M; Davies, G J
1996-12-03
Endoglucanase I (EG I) is a cellulase, from glycosyl hydrolase family 7, which cleaves the beta-1,4 linkages of cellulose with overall retention of configuration. The structure of the EG I from Fusarium oxysproum, complexed to a nonhydrolyzable thiooligosaccharide substrate analogue, has been determined by X-ray crystallography at a resolution of 2.7 A utilizing the 4-fold noncrystallographic symmetry present in the asymmetric unit. The electron density map clearly reveals the presence of three glucosyl units of the inhibitor, consistent with the known number of sugar-binding subsites, located at the active site of the enzyme in the -2, -1, and +1 subsites, i.e., actually spanning the point of enzymatic cleavage. The pyranose ring at the point of potential enzymatic cleavage is clearly distorted from the standard 4C1 chair as was originally suggested for beta-retaining enzymes by Phillips [Ford, L.O., Johnson, L.N., Machin, P. A., Phillips, D.C., & Tijan, T. (1974) J. Mol. Biol, 88, 349-371]. The distortion observed goes beyond the "sofa" conformation observed in previous studies and results in a conformation whose salient feature is the resulting quasi-axial orientation for the glycosidic bond and leaving group, as predicted by stereoelectronic theory. An almost identical conformation has recently been observed in a complex of chitobiase with its unhydrolyzed substrate [Tews, I., Perrakis, A., Oppenheim, A., Dauter, Z., Wilson, K. S., & Vorgias, C. E. (1996) Nat. Struct. Biol. 3, 638-648]. The striking similarity between these two complexes extends beyond the almost identical pyranose ring distortion. The overlap of the two respective sugars places the enzymatic nucleophile of endoglucanase I in coincidence with the C2 acetamido oxygen of N-acetylglucosamine in the catalytic site of the chitobiase, substantiating the involvement of this group in the catalytic mechanism of chitobiase and related chitinolytic enzymes. The endoglucanase I complex with the thiosaccharide substrate analogue clearly illustrates the potential of nonhydrolyzable sulfur-linked oligosaccharides in the elucidation of substrate binding and catalysis by glycosyl hydrolases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shaoguang; Appel, Aaron M.; Bullock, R. Morris
Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled over nearly four orders of magnitude at 25 °C, from 2.1 × 103 s-1 to ≥107 s-1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to Frustrated Lewis Pairs. The H-H bond cleavage is enabled by the basic amine in the secondmore » coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable temperature 1H, 15N and 2-D 1H-1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7, and show a linear correlation with the logarithm of the exchange rates. Thus the exchange dynamics are controlled through the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.« less
NASA Astrophysics Data System (ADS)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo
2018-04-01
The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.
Frawley, Keara G.; Bakst, Ian; Sypek, John T.; ...
2018-04-10
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
Chain registry and load-dependent conformational dynamics of collagen.
Teng, Xiaojing; Hwang, Wonmuk
2014-08-11
Degradation of fibrillar collagen is critical for tissue maintenance. Yet, understanding collagen catabolism has been challenging partly due to a lack of atomistic picture for its load-dependent conformational dynamics, as both mechanical load and local unfolding of collagen affect its cleavage by matrix metalloproteinase (MMP). We use molecular dynamics simulation to find the most cleavage-prone arrangement of α chains in a collagen triple helix and find amino acids that modulate stability of the MMP cleavage domain depending on the chain registry within the molecule. The native-like state is mechanically inhomogeneous, where the cleavage site interfaces a stiff region and a locally unfolded and flexible region along the molecule. In contrast, a triple helix made of the stable glycine-proline-hydroxyproline motif is uniformly flexible and is dynamically stabilized by short-lived, low-occupancy hydrogen bonds. These results provide an atomistic basis for the mechanics, conformation, and stability of collagen that affect catabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frawley, Keara G.; Bakst, Ian; Sypek, John T.
In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less
NASA Astrophysics Data System (ADS)
Kim, Dong Young; Park, Hosang; Choi, Woon Ih; Roy, Basab; Seo, Jinah; Park, Insun; Kim, Jin Hae; Park, Jong Hwan; Kang, Yoon-Sok; Koh, Meiten
2017-07-01
Tris(trimethylsilyl) phosphite (P(OSi(CH3)3)3) is a multifunctional electrolyte additive for scavenging HF and forming a cathode electrolyte interphase (CEI). Systematic analysis of the HF reaction pathways and redox potentials of P(OSi(CH3)3)3, OP(OSi(CH3)3)3, P(OSiF3)3, and OP(OSiF3)3, and their reaction products, using ab initio calculations allowed us to elucidate the operating mechanism of P(OSi(CH3)3)3 and verify the rules that determine its HF reaction pathways and electrochemical stability. While Osbnd Si cleavage is the predominant HF scavenging pathway for P(OSi(CH3)3)3, Osbnd P cleavage is stabilized by replacing CH3 with an electron-withdrawing group. Thus, P(OSiF3)3 scavenges HF mainly through Osbnd P cleavage to produce PF3, which has high oxidation stability. However, the Osbnd Si cleavage pathway produces P(OSi(CH3)3)2OH, P(OSi(CH3)3) (OH)2, and P(OH)3 sequentially, along with Si(CH3)3F. These PO3 systems, which are oxidized earlier than carbonate solutions and form tightly bonded units following oxidation, act as seed units for compact CEI growth. Moreover, the HF scavenging ability of PO3 systems is maintained during oxidation until all Osbnd Si bonds are broken. As a strategy for developing additives with enhanced functionality, modifying P(OSi(CH3)3)3 by replacing CH3 with an electron-donating group to exclusively utilize the Osbnd Si cleavage pathway for HF scavenging is recommended.
Ananvoranich, S; Lafontaine, D A; Perreault, J P
1999-01-01
Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway. PMID:10037808
Heterobimetallic Ti/Co Complexes That Promote Catalytic N-N Bond Cleavage.
Wu, Bing; Gramigna, Kathryn M; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2015-11-16
Treatment of the tris(phosphinoamide) titanium precursor ClTi(XylNP(i)Pr2)3 (1) with CoI2 leads to the heterobimetallic complex (η(2)-(i)Pr2PNXyl)Ti(XylNP(i)Pr2)2(μ-Cl)CoI (2). One-electron reduction of 2 affords (η(2)-(i)Pr2PNXyl)Ti(XylNP(i)Pr2)2CoI (3), which can be reduced by another electron under dinitrogen to generate the reduced diamagnetic complex (THF)Ti(XylNP(i)Pr2)3CoN2 (4). The removal of the dinitrogen ligand from 4 under vacuum affords (THF)Ti(XylNP(i)Pr2)3Co (5), which features a Ti-Co triple bond. Treatment of 4 with hydrazine or methyl hydrazine results in N-N bond cleavage and affords the new diamagnetic complexes (L)Ti(XylNP(i)Pr2)3CoN2 (L = NH3 (6), MeNH2 (7)). Complexes 4, 5, and 6 have been shown to catalyze the disproportionation of hydrazine into ammonia and dinitrogen gas through a mechanism involving a diazene intermediate.
An Unusual Carbon-Carbon Bond Cleavage Reaction During Phosphinothricin Biosynthesis
Cicchillo, Robert M.; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T.; Li, Gongyong; Nair, Satish K.; van der Donk, Wilfred A.; Metcalf, William W.
2010-01-01
Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture1. One such compound, phosphinothricin tripeptide (PTT), contains the unusual amino acid phosphinothricin (PT) attached to two alanine residues (Fig. 1). Synthetic PT (glufosinate) is a component of two top-selling herbicides (Basta® and Liberty®), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during PTT biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP) (Fig. 1)2. Reported here are the in vitro reconstitution of this unprecedented C(sp3)-C(sp3) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-heme iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalyzed by the 2-His-1-carboxylate mononuclear non-heme iron family of enzymes. PMID:19516340
Individual breathing reactions measured in hemoglobin by hydrogen exchange methods.
Englander, S W; Calhoun, D B; Englander, J J; Kallenbach, N R; Liem, R K; Malin, E L; Mandal, C; Rogero, J R
1980-01-01
Protein hydrogen exchange is generally believed to register some aspects of internal protein dynamics, but the kind of motion at work is not clear. Experiments are being done to identify the determinants of protein hydrogen exchange and to distinguish between local unfolding and accessibility-penetration mechanisms. Results with small molecules, polynucleotides, and proteins demonstrate that solvent accessibility is by no means sufficient for fast exchange. H-exchange slowing is quite generally connected with intramolecular H-bonding, and the exchange process depends pivotally on transient H-bond cleavage. At least in alpha-helical structures, the cooperative aspect of H-bond cleavage must be expressed in local unfolding reactions. Results obtained by use of a difference hydrogen exchange method appear to provide a direct measurement of transient, cooperative, local unfolding reactions in hemoglobin. The reality of these supposed coherent breathing units is being tested by using the difference H-exchange approach to tritium label the units one at a time and then attempting to locate the tritium by fragmenting the protein, separating the fragments, and testing them for label. Early results demonstrate the feasibility of this approach. PMID:7248462
Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase
Abergel, Rebecca J.; de Jong, Wibe A.; Deblonde, Gauthier J. -P.; ...
2017-10-11
Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U 6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidence d by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theorymore » (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Here, combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.« less
ERIC Educational Resources Information Center
Herdman, Chelsea; Diop, Lamine; Dickman, Michael
2013-01-01
Carbohydrate analysis is an excellent way to expose second-year biochemistry majors to the subtlety and nuance of sugar chemistry. In one, 3-h practical period, students must identify an unknown mono- or disaccharide from a collection of three hexoses (glucose, galactose, and mannose), two pentoses (ribose and arabinose), and three disaccharides…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei
Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevantmore » step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H-insertion steps in the aqueous phase, unlike those in the vapor phase, during the hydrogenation of acetic acid on Ru clusters.« less
A novel pyrimidine tetrad contributing to stabilize tetramolecular G-quadruplex structures.
Esposito, V; Pepe, A; Filosa, R; Mayol, L; Virgilio, A; Galeone, A
2016-03-14
G-quadruplex structures formed by oligodeoxyribonucleotides TGGU(NH2)GGT (AM, U(NH2) = 5-amino-2'-deoxyuridine), TGGU(Br)GGT (BR, U(Br) = 5-bromo-2'-deoxyuridine) and TGGTGGT (TH) have been investigated through circular dichroism, nuclear magnetic resonance, gel electrophoresis and molecular modeling techniques. Collected data indicate that all 7-mer oligonucleotides form tetramolecular parallel G-quadruplex structures with all residues adopting anti glycosidic bonds. In the case of AM, data suggest the occurrence of a novel U(NH2)-tetrad characterized by eight hydrogen bonds that stabilizes the G-quadruplex structure more efficiently than U(Br)- and T-tetrads.
Jacques, Benoit; Coinçon, Mathieu; Sygusch, Jurgen
2018-03-28
Crystal structures of two bacterial metal (Zn) dependent D-fructose 1,6-bisphosphate (FBP) aldolases in complex with substrate, analogues, and triose-P reaction products were determined to 1.5-2.0 Å resolution. The ligand complexes cryotrapped in native or mutant H. pylori aldolase crystals enabled a novel mechanistic description of FBP C 3 -C 4 bond cleavage. The reaction mechanism uses active site remodelling during the catalytic cycle implicating relocation of the Zn cofactor that is mediated by conformational changes of active site loops. Substrate binding initiates conformational changes, triggered upon P 1 -phosphate binding, which liberates the Zn chelating His180, allowing it to act as a general base for the proton abstraction at the FBP C 4 -hydroxyl group. A second zinc chelating His83 hydrogen bonds the substrate C 4 - hydroxyl group and assists cleavage by stabilizing the developing negative charge during proton abstraction. Cleavage is concerted with relocation of the metal cofactor from an interior to a surface exposed site, thereby stabilizing the nascent enediolate form. Conserved residue Glu142 is essential for protonation of the enediolate form, prior to product release. A D-tagatose 1,6-bisphosphate enzymatic complex reveals how His180 mediated proton abstraction controls stereospecificity of the cleavage reaction. Recognition and discrimination of the reaction products, dihydroxyacetone-P and D-glyceraldehyde-3-P, occurs via charged hydrogen bonds between hydroxyl groups of the triose-Ps and conserved residues, Asp82 and Asp255, respectively, and are crucial aspects of the enzyme's role in gluconeogenesis. Conformational changes in mobile loops β5-α7 and β6-α8 (containing catalytic residues Glu142 and His180, respectively) drive active site remodelling enabling the relocation of the metal cofactor. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
van Loo, Bert; Schober, Markus; Valkov, Eugene; Heberlein, Magdalena; Bornberg-Bauer, Erich; Faber, Kurt; Hyvönen, Marko; Hollfelder, Florian
2018-03-30
Hydrolysis of organic sulfate esters proceeds by two distinct mechanisms, water attacking at either sulfur (S-O bond cleavage) or carbon (C-O bond cleavage). In primary and secondary alkyl sulfates, attack at carbon is favored, whereas in aromatic sulfates and sulfated sugars, attack at sulfur is preferred. This mechanistic distinction is mirrored in the classification of enzymes that catalyze sulfate ester hydrolysis: arylsulfatases (ASs) catalyze S-O cleavage in sulfate sugars and arylsulfates, and alkyl sulfatases break the C-O bond of alkyl sulfates. Sinorhizobium meliloti choline sulfatase (SmCS) efficiently catalyzes the hydrolysis of alkyl sulfate choline-O-sulfate (k cat /K M =4.8×10 3 s -1 M -1 ) as well as arylsulfate 4-nitrophenyl sulfate (k cat /K M =12s -1 M -1 ). Its 2.8-Å resolution X-ray structure shows a buried, largely hydrophobic active site in which a conserved glutamate (Glu386) plays a role in recognition of the quaternary ammonium group of the choline substrate. SmCS structurally resembles members of the alkaline phosphatase superfamily, being most closely related to dimeric ASs and tetrameric phosphonate monoester hydrolases. Although >70% of the amino acids between protomers align structurally (RMSDs 1.79-1.99Å), the oligomeric structures show distinctly different packing and protomer-protomer interfaces. The latter also play an important role in active site formation. Mutagenesis of the conserved active site residues typical for ASs, H 2 18 O-labeling studies and the observation of catalytically promiscuous behavior toward phosphoesters confirm the close relation to alkaline phosphatase superfamily members and suggest that SmCS is an AS that catalyzes S-O cleavage in alkyl sulfate esters with extreme catalytic proficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
The dehydroalanine effect in the fragmentation of ions derived from polypeptides
Pilo, Alice L.; Peng, Zhou; McLuckey, Scott A.
2016-01-01
The fragmentation of peptides and proteins upon collision-induced dissociation (CID) is highly dependent on sequence and ion type (e.g. protonated, deprotonated, sodiated, odd electron, etc.). Some amino acids, for example aspartic acid and proline, have been found to enhance certain cleavages along the backbone. Here, we show that peptides and proteins containing dehydroalanine, a non-proteinogenic amino acid with an unsaturated side-chain, undergo enhanced cleavage of the N—Cα bond of the dehydroalanine residue to generate c- and z-ions. Because these fragment ion types are not commonly observed upon activation of positively charged even-electron species, they can be used to identify dehydroalanine residues and localize them within the peptide or protein chain. While dehydroalanine can be generated in solution, it can also be generated in the gas phase upon CID of various species. Oxidized S-alkyl cysteine residues generate dehydroalanine upon activation via highly efficient loss of the alkyl sulfenic acid. Asymmetric cleavage of disulfide bonds upon collisional activation of systems with limited proton mobility also generates dehydroalanine. Furthermore, we show that gas-phase ion/ion reactions can be used to facilitate the generation of dehydroalanine residues via, for example, oxidation of S-alkyl cysteine residues and conversion of multiply-protonated peptides to radical cations. In the latter case, loss of radical side-chains to generate dehydroalanine from some amino acids gives rise to the possibility for residue-specific backbone cleavage of polypeptide ions. PMID:27484024
Zhang, Liangyi; Reilly, James P.
2009-01-01
157 nm photodissociation of N-linked glycopeptides was investigated in MALDI tandem time-of-flight (TOF) and linear ion trap mass spectrometers. Singly-charged glycopeptides yielded abundant peptide and glycan fragments. The peptide fragments included a series of x-, y-, v- and w- ions with the glycan remaining intact. These provide information about the peptide sequence and the glycosylation site. In addition to glycosidic fragments, abundant cross-ring glycan fragments that are not observed in low-energy CID were detected. These fragments provide insight into the glycan sequence and linkages. Doubly-charged glycopeptides generated by nanospray in the linear ion trap mass spectrometer also yielded peptide and glycan fragments. However, the former were dominated by low-energy fragments such as b- and y- type ions while glycan was primarily cleaved at glycosidic bonds. PMID:19113943
Transition metal catalyzed manipulation of non-polar carbon–hydrogen bonds for synthetic purpose
MURAI, Shinji
2011-01-01
The direct addition of ortho C–H bonds in various aromatic compounds such as ketones, esters, imines, imidates, nitriles, and aldehydes to olefins and acetylenes can be achieved with the aid of transition metal catalysts. The ruthenium catalyzed reaction is usually highly efficient and useful as a general synthetic method. The coordination to the metal center by a heteroatom in a directing group such as carbonyl and imino groups in aromatic compounds is the key step in this process. Mechanistically, the reductive elimination to form a C–C bond is the rate-determining step, while the C–H bond cleavage step is not. PMID:21558759
Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu
2009-01-01
Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.
Using ambient ozone for assignment of double bond position in unsaturated lipids.
Ellis, Shane R; Hughes, Jessica R; Mitchell, Todd W; in het Panhuis, Marc; Blanksby, Stephen J
2012-03-07
Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.
Kwong, M. Y.; Harris, R. J.
1994-01-01
Under favorable conditions, Asp or Asn residues can undergo rearrangement to a succinimide (cyclic imide), which may also serve as an intermediate for deamidation and/or isoaspartate formation. Direct identification of such succinimides by peptide mapping is hampered by their lability at neutral and alkaline pH. We determined that incubation in 2 M hydroxylamine, 0.2 M Tris buffer, pH 9, for 2 h at 45 degrees C will specifically cleave on the C-terminal side of succinimides without cleavage at Asn-Gly bonds; yields are typically approximately 50%. N-terminal sequence analysis can then be used to identify an internal sequence generated by cleavage of the succinimide, hence identifying the succinimide site. PMID:8142891
NASA Astrophysics Data System (ADS)
Yang, Jianlei; Wang, Guofeng; Jiao, Xueyan; Gu, Yibin; Liu, Qing; Li, You
2018-05-01
Spark plasma sintering (SPS) technology was used to current-assisted bond extruded Ti-22Al-25Nb alloy. The effects of bonding temperature (920-980 °C) and bonding time (10-30 min) on the microstructure evolution and shear strength of this alloy were investigated systematically. The temperature distribution in the specimen during the current-assisted bonding process was also analyzed by numerical simulation. It is noted that the highest temperature was obtained at the bonding interface. As the bonding temperature and bonding time increased, the voids in the interface shrank increasingly until they vanished. A complete metallurgical bonding interface could be produced at 960 °C/20 min/10 MPa, exhibiting the highest shear strength of 269.3 MPa. In addition, the shear strength of the bonded specimen depended on its interfacial microstructure. With increased bonding temperature, the fracture mode transformed from the intergranular fracture at the bonding interface to the cleavage fracture in the substrate.
Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.
2017-08-14
An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less
New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials.
Baloch, Marya; Ben Youcef, Hicham; Li, Chunmei; Garcia-Calvo, Oihane; Rodriguez, Lide M; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel
2016-11-23
Two new cathode materials based on redox organosulfur polymers were synthesized and investigated for rechargeable lithium batteries as a proof-of-concept study. These cathodes offered good cycling performance owing to the absence of polysulfide solubility, which plagues Li/S systems. Herein, an aliphatic polyamine or a conjugated polyazomethine was used as the base to tether the redox-active species. The activity comes from the cleavage and formation of S-S or N-S bonds, which is made possible by the rigid conjugated backbone. The synthesized polymers were characterized through FTIR spectroscopy and thermogravimetric analysis (TGA). Galvanostatic measurements were performed to evaluate the discharge/charge cycles and characterize the performance of the lithium-based cells, which displayed initial discharge capacities of approximately 300 mA h g -1 at C/5 over 100 cycles with approximately 98 % Coulombic efficiency. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.
An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units.We demonstrate that the newmethod correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated withmore » π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.« less
Vinkovic, M; Dunn, G; Wood, G E; Husain, J; Wood, S P; Gill, R
2015-09-01
The interaction of momordin, a type 1 ribosome-inactivating protein from Momordica charantia, with NADP(+) and NADPH has been investigated by X-ray diffraction analysis of complexes generated by co-crystallization and crystal soaking. It is known that the proteins of this family readily cleave the adenine-ribose bond of adenosine and related nucleotides in the crystal, leaving the product, adenine, bound to the enzyme active site. Surprisingly, the nicotinamide-ribose bond of oxidized NADP(+) is cleaved, leaving nicotinamide bound in the active site in the same position but in a slightly different orientation to that of the five-membered ring of adenine. No binding or cleavage of NADPH was observed at pH 7.4 in these experiments. These observations are in accord with current views of the enzyme mechanism and may contribute to ongoing searches for effective inhibitors.
Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
Lu, Qian-Qian; Yu, Hai-Zhu; Fu, Yao
2016-03-18
The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine-ligated aluminum hydride complex (PDI(2-))Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O-H bond cleavage of HCOOH promoted by aluminum-ligand cooperation, followed by HCOOH-assisted Al-H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex ((H,H) PDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β-hydride elimination of ((H,H) PDI)Al(OOCH)3 to produce CO2, and the formed ((H,H) PDI)Al(OOCH)2 H mediates HCOOH to release H2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu
2006-09-18
A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.
Replication of N[superscript 2],3-Ethenoguanine by DNA Polymerases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Linlin; Christov, Plamen P.; Kozekov, Ivan D.
2014-10-02
The unstable DNA adduct N2,3-ethenoguanine, a product of both exposure to the carcinogen vinyl chloride and of oxidative stress, was built into an oligonucleotide, using an isostere strategy to stabilize the glycosidic bond. This modification was then used to examine the cause of mutations by DNA polymerases, in terms of both the biochemistry of the lesion and a structure of the lesion within a polymerase.
Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea
2017-01-01
We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.
New Approaches to the Synthesis of Novel Organosilanes.
1983-10-01
through" electrode composed of RVC ( reticulated vitreous carbon ), a highly conductive sponge of carbonized material. Both of these flow systems...effective in promoting silicon- carbon bond cleavage and reformation to give cyclic and cage compounds readily and in good yields: (tA*3-9)(CŖ). n 2-S...silicon to carbon bonds and has broad based applications in research and industrial labs. The increase in reaction rate and yield with ultrasonic waves
Sattelle, Benedict M.; Shakeri, Javad; Roberts, Ian S.; Almond, Andrew
2010-01-01
The glycosaminoglycan chondroitin sulfate is essential in human health and disease but exactly how sulfation dictates its 3D-strucutre at the atomic level is unclear. To address this, we have purified homogenous oligosaccharides of unsulfated chondroitin (with and without 15N-enrichment) and analysed them by high-field NMR to make a comparison published chondroitin sulfate and hyaluronan 3D-structures. The result is the first full assignment of the tetrasaccharide and an experimental 3D-model of the hexasaccharide (PDB code 2KQO). In common with hyaluronan, we confirm that the amide proton is not involved in strong, persistent inter-residue hydrogen bonds. However, in contrast to hyaluronan, a hydrogen bond is not inferred between the hexosamine OH-4 and the glucuronic acid O5 atoms across the β(1→3) glycosidic linkage. The unsulfated chondroitin bond geometry differs slightly from hyaluronan by rotation about the β(1→3) ψ dihedral (as previously predicted by simulation), while the β(1→4) linkage is unaffected. Furthermore, comparison shows that this glycosidic linkage geometry is similar in chondroitin-4-sulfate. We therefore hypothesise that both hexosamine OH-4 and OH-6 atoms are solvent exposed in chondroitin, explaining why it is amenable to sulfation and hyaluronan is not, and also that 4-sulfation has little effect on backbone conformation. Our conclusions exemplify the value of the 3D-model presented here and progress our understanding of glycosaminoglycan molecular properties. PMID:20022001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baglia, Regina A.; Krest, Courtney M.; Yang, Tzuhsiung
The addition of Lewis or Brönsted acids (LA = Zn(OTf) 2, B(C 6F 5) 3, HBAr F, TFA) to the high-valent manganese–oxo complex Mn V(O)(TBP 8Cz) results in the stabilization of a valence tautomer Mn IV(O-LA)(TBP 8Cz •+). The Zn II and B(C 6F 5) 3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn–N avemore » = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn–O bond length is elongated compared to the Mn V(O) starting material (Mn–O = 1.55 Å). The reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H substrates was examined, and it was found that H • abstraction from C–H bonds occurs in a 1:1 stoichiometry, giving a Mn IV complex and the dehydrogenated organic product. The rates of C–H cleavage are accelerated for the Mn IV(O-LA)(TBP 8Cz •+) valence tautomer as compared to the MnV(O) valence tautomer when LA = Zn II, B(C 6F 5) 3, and HBArF, whereas for LA = TFA, the C–H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of k H/ k D = 25–27 was observed for LA = B(C 6F 5) 3 and HBAr F, indicating that H-atom transfer (HAT) is the rate-limiting step in the C–H cleavage reaction and implicating a potential tunneling mechanism for HAT. Furthermore, the reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex Mn IV(O–H)(tpfc •+) recently reported.« less
Baglia, Regina A.; Krest, Courtney M.; Yang, Tzuhsiung; ...
2016-09-30
The addition of Lewis or Brönsted acids (LA = Zn(OTf) 2, B(C 6F 5) 3, HBAr F, TFA) to the high-valent manganese–oxo complex Mn V(O)(TBP 8Cz) results in the stabilization of a valence tautomer Mn IV(O-LA)(TBP 8Cz •+). The Zn II and B(C 6F 5) 3 complexes were characterized by manganese K-edge X-ray absorption spectroscopy (XAS). The position of the edge energies and the intensities of the pre-edge (1s to 3d) peaks confirm that the Mn ion is in the +4 oxidation state. Fitting of the extended X-ray absorption fine structure (EXAFS) region reveals 4 N/O ligands at Mn–N avemore » = 1.89 Å and a fifth N/O ligand at 1.61 Å, corresponding to the terminal oxo ligand. This Mn–O bond length is elongated compared to the Mn V(O) starting material (Mn–O = 1.55 Å). The reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H substrates was examined, and it was found that H • abstraction from C–H bonds occurs in a 1:1 stoichiometry, giving a Mn IV complex and the dehydrogenated organic product. The rates of C–H cleavage are accelerated for the Mn IV(O-LA)(TBP 8Cz •+) valence tautomer as compared to the MnV(O) valence tautomer when LA = Zn II, B(C 6F 5) 3, and HBArF, whereas for LA = TFA, the C–H cleavage rate is slightly slower than when compared to MnV(O). A large, nonclassical kinetic isotope effect of k H/ k D = 25–27 was observed for LA = B(C 6F 5) 3 and HBAr F, indicating that H-atom transfer (HAT) is the rate-limiting step in the C–H cleavage reaction and implicating a potential tunneling mechanism for HAT. Furthermore, the reactivity of Mn IV(O-LA)(TBP 8Cz •+) toward C–H bonds depends on the strength of the Lewis acid. The HAT reactivity is compared with the analogous corrole complex Mn IV(O–H)(tpfc •+) recently reported.« less
Hafsa, Jawhar; Chaouch, Mohamed Aymen; Charfeddine, Bassem; Rihouey, Christophe; Limem, Khalifa; Le Cerf, Didier; Rouatbi, Sonia; Majdoub, Hatem
2017-12-01
Recently, low-molecular-weight hyaluronic acid (LMWHA) has been reported to have novel features, such as free radical scavenging activities, antioxidant activities and dietary supplements. In this study, hyaluronic acid (HA) was extracted from rooster comb and LMWHA was obtained by ultrasonic degradation in order to assess their antioxidant and antiglycation activities. Molecular weight (Mw) and the content of glucuronic acid (GlcA) were used as the index for comparison of the effect of ultrasonic treatment. The effects on the structure were determined by ultraviolet (UV) spectra and Fourier transform infrared spectra (FTIR). The antioxidant activity was determined by three analytical assays (DPPH, NO and TBARS), and the inhibitory effect against glycated-BSA was also assessed. The GlcA content of HA and LMWHA was estimated at about 48.6% and 47.3%, respectively. The results demonstrate that ultrasonic irradiation decreases the Mw (1090-181 kDa) and intrinsic viscosity (1550-473 mL/g), which indicate the cleavage of the glycosidic bonds. The FTIR and UV spectra did not significantly change before and after degradation. The IC 50 value of HA and LWMHA was 1.43, 0.76 and 0.36 mg/mL and 1.20, 0.89 and 0.17 mg/mL toward DPPH, NO and TBARS, respectively. Likewise LMWHA exhibited significant inhibitory effects on the AGEs formation than HA. The results demonstrated that the ultrasonic irradiation did not damage and change the chemical structure of HA after degradation; furthermore, decreasing Mw and viscosity of LMWHA after degradation may enhance the antioxidant and antiglycation activity.
Saha, Sourav; Mukherjee, Tulika; Chowdhury, Sayan; Mishra, Amartya; Chowdhury, Somenath Roy; Jaisankar, Parasuraman; Mukhopadhyay, Sibabrata; Majumder, Hemanta K
2013-12-15
Lignans are diphenyl propanoids with vast range of biological activities. The present study provides an important insight into the anti-leishmanial activities of two lignan glycosides, viz. lyoniside and saracoside. These compounds inhibit catalytic activities of topoisomerase IB (LdTopIB) of Leishmania donovani in non-competitive manner and stabilize the LdTopIB mediated cleavage complex formation both in vitro and in Leishmania promastigotes and subsequently inhibit the religation of cleaved strand. These two compounds not only poison LdTopIB but also can interact with the free enzyme LdTopIB. We have also shown that lyoniside and saracoside are cytotoxic to promastigotes and intracellular amastigotes. The protein-DNA complex formation leads to double strand breaks in DNA which ultimately triggers apoptosis-like cell death in the parasite. Along with their cytotoxicity towards sodium antimony gluconate (SAG) sensitive AG83 strain, their ability to kill SAG resistant GE1 strain makes these two compounds potential anti-leishmanial candidates. Not only they effectively kill L. donovani amastigotes inside macrophages in vitro, lyoniside and saracoside demonstrated strong anti-leishmanial efficacies in BALB/c mice model of leishmaniasis. Treatment with these lignan glycosides produce nitric oxide and reactive oxygen species which result in almost complete clearance of the liver and splenic parasite burden. These compounds do not inhibit human topoisomerase IB upto 200μM concentrations and had poor cytotoxic effect on uninfected cultured murine peritoneal macrophages upto 100μM concentrations. Taken together it can be concluded that these compounds can be developed into excellent therapeutic agent against deadly disease leishmaniasis. Copyright © 2013 Elsevier Inc. All rights reserved.
Triterpene glycosides from the tubers of Anemone coronaria.
Mimaki, Yoshihiro; Watanabe, Kazuki; Matsuo, Yukiko; Sakagami, Hiroshi
2009-07-01
Six new triterpene glycosides (1-6), together with 11 known ones (7-17), have been isolated from a glycoside-enriched fraction prepared from the tubers of Anemone coronaria L. (Ranunculaceae). On the basis of extensive spectroscopic analysis, including 2D NMR data, and the results of hydrolytic cleavage, the structures of 1-6 were determined to be 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta,23-dihydroxyolean-12-en-28-oic acid (1), 3beta-[(O-beta-D-glucopyranosyl-(1-->3)-O-alpha-L-rhamnopyranosyl-(1-->2)-O-[beta-D-glucopyranosyl-(1-->4)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid (2), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-12-en-28-oic acid O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (3), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta,23-dihydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (4), 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-2beta-hydroxyolean-12-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (5), and 3beta-[(O-beta-D-glucopyranosyl-(1-->4)-O-[alpha-L-rhamnopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)oxy]-23-hydroxyolean-18-en-28-oic acid O-alpha-L-rhamnopyranosyl-(1-->4)-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl ester (6), respectively. Furthermore, the isolated compounds were evaluated for their cytotoxic activity against HSC-2 cells.
Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L.; Rao, V. Ashutosh
2016-01-01
We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2 kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5 Angstrom from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. PMID:26872685
Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh
2016-05-01
We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction. Published by Elsevier Inc.
Microbial biotransformation of bioactive flavonoids.
Cao, Hui; Chen, Xiaoqing; Jassbi, Amir Reza; Xiao, Jianbo
2015-01-01
The bioactive flavonoids are considered as the most important phytochemicals in food, which exert a wide range of biological benefits for human being. Microbial biotransformation strategies for production of flavonoids have attracted considerable interest because they allow yielding novel flavonoids, which do not exist in nature. In this review, we summarize the existing knowledge on the production and biotransformation of flavonoids by various microbes. The main reactions during microbial biotransformation are hydroxylation, dehydroxylation, O-methylation, O-demethylation, glycosylation, deglycosylation, dehydrogenation, hydrogenation, C ring cleavage of the benzo-γ-pyrone system, cyclization, and carbonyl reduction. Cunninghamella, Penicillium, and Aspergillus strains are very popular to biotransform flavonoids and they can perform almost all the reactions with excellent yields. Aspergillus niger is one of the most applied microorganisms in the flavonoids' biotransformation; for example, A. niger can transfer flavanone to flavan-4-ol, 2'-hydroxydihydrochalcone, flavone, 3-hydroxyflavone, 6-hydroxyflavanone, and 4'-hydroxyflavanone. The hydroxylation of flavones by microbes usually happens on the ortho position of hydroxyl group on the A ring and C-4' position of the B ring and microbes commonly hydroxylate flavonols at the C-8 position. The microorganisms tend to hydroxylate flavanones at the C-5, 6, and 4' positions; however, for prenylated flavanones, dihydroxylation often takes place on the C4α=C5α double bond on the prenyl group (the side chain of A ring). Isoflavones are usually hydroxylated at the C-3' position of the B ring by microorganisms. The microbes convert flavonoids to their 7-O-glycosides and 3-O-glycosides (when flavonoids have a hydroxyl moiety at the C-3 position). The demethylation of multimethoxyl flavonoids by microbes tends to happen at the C-3' and C-4' positions of the B ring. Multimethoxyl flavanones and isoflavone are demethylated at the C-7 and C-4' positions. The O-methylation of flavonols happens at the C-3' and C-4' and microorganisms O-methylate flavones at the C-6 position and the O-methylation of flavanones, usually took place on the hydroxyl groups of the A ring. The prenyl flavanones were cyclized at the prenyl side chain to form a new five-member ring attached to the A ring. Chalcones were regioselectively cyclized to flavanones. Hydrogenation of flavonoids was only reported on transformation of chalcones to dihydrochalcones. The dehydrogenation of flavanoids to flavonoids was not comprehensively studied. Copyright © 2014 Elsevier Inc. All rights reserved.
Bu, Yifan; Cui, Yinglu; Peng, Ying; Hu, Meirong; Tian, Yu'e; Tao, Yong; Wu, Bian
2018-04-01
Xylanases, which cleave the β-1,4-glycosidic bond between xylose residues to release xylooligosaccharides (XOS), are widely used as food additives, animal feeds, and pulp bleaching agents. However, the thermally unstable nature of xylanases would hamper their industrial application. In this study, we used in silico design in a glycoside hydrolase family (GH) 11 xylanase to stabilize the enzyme. A combination of the best mutations increased the apparent melting temperature by 14 °C and significantly enhanced thermostability and thermoactivation. The variant also showed an upward-shifted optimal temperature for catalysis without compromising its activity at low temperatures. Moreover, a 10-fold higher XOS production yield was obtained at 70 °C, which compensated the low yield obtained with the wild-type enzyme. Collectively, the variant constructed by the computational strategy can be used as an efficient biocatalyst for XOS production at industrially viable conditions.
Small-angle scattering study of Aspergillus awamori glycoprotein glucoamylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, A. E., E-mail: schmidt@omrb.pnpi.spb.ru; Shvetsov, A. V.; Kuklin, A. I.
2016-01-15
Glucoamylase from fungus Aspergillus awamori is glycoside hydrolase that catalyzes the hydrolysis of α-1,4- and α-1,6-glucosidic bonds in glucose polymers and oligomers. This glycoprotein consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated polypeptide chain. The conformation of the linker, the relative arrangement of the domains, and the structure of the full-length enzyme are unknown. The structure of the recombinant glucoamylase GA1 was studied by molecular modelling and small-angle neutron scattering (SANS) methods. The experimental SANS data provide evidence that glucoamylase exists as a monomer in solution and contains a glycoside component, which makes a substantialmore » contribution to the scattering. The model of full-length glucoamylase, which was calculated without taking into account the effect of glycosylation, is consistent with the experimental data and has a radius of gyration of 33.4 ± 0.6 Å.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Qing; Manolopoulou, Marika; Bian, Yao
2010-02-11
Insulin-degrading enzyme (IDE) is involved in the clearance of many bioactive peptide substrates, including insulin and amyloid-{beta}, peptides vital to the development of diabetes and Alzheimer's disease, respectively. IDE can also rapidly degrade hormones that are held together by intramolecular disulfide bond(s) without their reduction. Furthermore, IDE exhibits a remarkable ability to preferentially degrade structurally similar peptides such as the selective degradation of insulin-like growth factor (IGF)-II and transforming growth factor-{alpha} (TGF-{alpha}) over IGF-I and epidermal growth factor, respectively. Here, we used high-accuracy mass spectrometry to identify the cleavage sites of human IGF-II, TGF-{alpha}, amylin, reduced amylin, and amyloid-{beta} bymore » human IDE. We also determined the structures of human IDE-IGF-II and IDE-TGF-{alpha} at 2.3 {angstrom} and IDE-amylin at 2.9 {angstrom}. We found that IDE cleaves its substrates at multiple sites in a biased stochastic manner. Furthermore, the presence of a disulfide bond in amylin allows IDE to cut at an additional site in the middle of the peptide (amino acids 18-19). Our amylin-bound IDE structure offers insight into how the structural constraint from a disulfide bond in amylin can alter IDE cleavage sites. Together with NMR structures of amylin and the IGF and epidermal growth factor families, our work also reveals the structural basis of how the high dipole moment of substrates complements the charge distribution of the IDE catalytic chamber for the substrate selectivity. In addition, we show how the ability of substrates to properly anchor their N-terminus to the exosite of IDE and undergo a conformational switch upon binding to the catalytic chamber of IDE can also contribute to the selective degradation of structurally related growth factors.« less
Tittmann, Kai
2014-12-01
Nature has evolved different strategies for the reversible cleavage of ketose phosphosugars as essential metabolic reactions in all domains of life. Prominent examples are the Schiff-base forming class I FBP and F6P aldolase as well as transaldolase, which all exploit an active center lysine to reversibly cleave the C3-C4 bond of fructose-1,6-bisphosphate or fructose-6-phosphate to give two 3-carbon products (aldolase), or to shuttle 3-carbon units between various phosphosugars (transaldolase). In contrast, transketolase and phosphoketolase make use of the bioorganic cofactor thiamin diphosphate to cleave the preceding C2-C3 bond of ketose phosphates. While transketolase catalyzes the reversible transfer of 2-carbon ketol fragments in a reaction analogous to that of transaldolase, phosphoketolase forms acetyl phosphate as final product in a reaction that comprises ketol cleavage, dehydration and phosphorolysis. In this review, common and divergent catalytic principles of these enzymes will be discussed, mostly, but not exclusively, on the basis of crystallographic snapshots of catalysis. These studies in combination with mutagenesis and kinetic analysis not only delineated the stereochemical course of substrate binding and processing, but also identified key catalytic players acting at the various stages of the reaction. The structural basis for the different chemical fates and lifetimes of the central enamine intermediates in all five enzymes will be particularly discussed, in addition to the mechanisms of substrate cleavage, dehydration and ring-opening reactions of cyclic substrates. The observation of covalent enzymatic intermediates in hyperreactive conformations such as Schiff-bases with twisted double-bond linkages in transaldolase and physically distorted substrate-thiamin conjugates with elongated substrate bonds to be cleaved in transketolase, which probably epitomize a canonical feature of enzyme catalysis, will be also highlighted. Copyright © 2014 Elsevier Inc. All rights reserved.
Natural macromolecules with protective and antitumor activity.
Cioanca, Oana; Trifan, Adriana; Mircea, Cornelia; Dragos, Scripcariu; Hancianu, Monica
2018-04-24
This review summarizes the literature data regarding plant lectins and as novel drug sources in prevention or treatment of cancer. Moreover, such compounds have been described as natural toxins that possess different biological activities (cytotoxic, antitumor, antimutagenic and anticarcinogenic properties). This activity depends greatly on their structure and affinity. Most of the mushroom heterosides are known as β-glucans with β-(1→3)-glycosidic bonds. It is thought that their conformation, bonds, molecular size can modulate the immune response by triggering different receptors. The mechanism on normal and tumor cells of various plant and mushroom polysaccharides and lectins is briefly presented in this paper. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiayue; Zhao, Chen; Mei, Donghai
2014-01-01
A novel route for cleaving the C-O aryl ether bonds of p-substituted H-, CH 3-, and OH- diphenyl ethers has been explored over Ni/SiO 2 catalysts at very mild conditions. The C-O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of H 2 pressure from 0 to 10 MPa indicate that the rate-determining step is the C-O bond cleavage on Ni. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing H 2 pressure. In contrast tomore » diphenyl ether, hydrogenolysis is the exclusive route for cleaving an ether C-O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and HOC 6H 4O* (adsorbed), which is then cleaved to phenol (C 6H 5O* with added H*) and H 2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to HOC 6H 4O* is less favorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three aryl ethers with Ni/SiO 2 in water followed the order 4,4'-dihydroxydiphenyl ether (69 h -1) > diphenyl ether (26 h -1) > di-p-tolyl ether (1.3 h -1), in line with the increasing apparent activation energies, ranging from 93 kJ∙mol -1 (4,4'-dihydroxydiphenyl ether) < diphenyl ether (98 kJ∙mol -1) to di-p-tolyl ether (105 kJ∙mol -1). D.M. thanks the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
On the Reaction Mechanism of Acetaldehyde Decomposition on Mo(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Karim, Ayman M.; Wang, Yong
2012-02-16
The strong Mo-O bond strength provides promising reactivity of Mo-based catalysts for the deoxygenation of biomass-derived oxygenates. Combining the novel dimer saddle point searching method with periodic spin-polarized density functional theory calculations, we investigated the reaction pathways of a acetaldehyde decomposition on the clean Mo(110) surface. Two reaction pathways were identified, a selective deoxygenation and a nonselective fragmentation pathways. We found that acetaldehyde preferentially adsorbs at the pseudo 3-fold hollow site in the η2(C,O) configuration on Mo(110). Among four possible bond (β-C-H, γ-C-H, C-O and C-C) cleavages, the initial decomposition of the adsorbed acetaldehyde produces either ethylidene via the C-Omore » bond scission or acetyl via the β-C-H bond scission while the C-C and the γ-C-H bond cleavages of acetaldehyde leading to the formation of methyl (and formyl) and formylmethyl are unlikely. Further dehydrogenations of ethylidene into either ethylidyne or vinyl are competing and very facile with low activation barriers of 0.24 and 0.31 eV, respectively. Concurrently, the formed acetyl would deoxygenate into ethylidyne via the C-O cleavage rather than breaking the C-C or the C-H bonds. The selective deoxygenation of acetaldehyde forming ethylene is inhibited by relatively weaker hydrogenation capability of the Mo(110) surface. Instead, the nonselective pathway via vinyl and vinylidene dehydrogenations to ethynyl as the final hydrocarbon fragment is kinetically favorable. On the other hand, the strong interaction between ethylene and the Mo(110) surface also leads to ethylene decomposition instead of desorption into the gas phase. This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). This work was financially supported by the National Advanced Biofuels Consortium (NABC). Computing time was granted by a user project (emsl42292) at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). The EMSL is a U.S. Department of Energy (DOE) national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and supported by the DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less
NASA Astrophysics Data System (ADS)
Yamaguchi, Kizashi; Shoji, Mitsuo; Isobe, Hiroshi; Yamanaka, Shusuke; Kawakami, Takashi; Yamada, Satoru; Katouda, Michio; Nakajima, Takahito
2018-03-01
Possible mechanisms for water cleavage in oxygen evolving complex (OEC) of photosystem II (PSII) have been investigated based on broken-symmetry (BS) hybrid DFT (HDFT)/def2 TZVP calculations in combination with available XRD, XFEL, EXAFS, XES and EPR results. The BS HDFT and the experimental results have provided basic concepts for understanding of chemical bonds of the CaMn4O5 cluster in the catalytic site of OEC of PSII for elucidation of the mechanism of photosynthetic water cleavage. Scope and applicability of the hybrid DFT (HDFT) methods have been examined in relation to relative stabilities of possible nine intermediates such as Mn-hydroxide, Mn-oxo, Mn-peroxo, Mn-superoxo, etc., in order to understand the O-O (O-OH) bond formation in the S3 and/or S4 states of OEC of PSII. The relative stabilities among these intermediates are variable, depending on the weight of the Hartree-Fock exchange term of HDFT. The Mn-hydroxide, Mn-oxo and Mn-superoxo intermediates are found to be preferable in the weak, intermediate and strong electron correlation regimes, respectively. Recent different serial femtosecond X-ray (SFX) results in the S3 state are investigated based on the proposed basic concepts under the assumption of different water-insertion steps for water cleavage in the Kok cycle. The observation of water insertion in the S3 state is compatible with previous large-scale QM/MM results and previous theoretical proposal for the chemical equilibrium mechanism in the S3 state . On the other hand, the no detection of water insertion in the S3 state based on other SFX results is consistent with previous proposal of the O-OH (or O-O) bond formation in the S4 state . Radical coupling and non-adiabatic one-electron transfer (NA-OET) mechanisms for the OO-bond formation are examined using the energy diagrams by QM calculations and by QM(UB3LYP)/MM calculations . Possible reaction pathways for the O-O and O-OH bond formations are also investigated based on two water-inlet pathways for oxygen evolution in OEC of PSII. Future perspectives are discussed in relation to post HDFT calculations of the energy diagrams for elucidation of the mechanism of water oxidation in OEC of PSII.
Challand, Martin R.; Martins, Filipa T.; Roach, Peter L.
2010-01-01
Thiazole synthase in Escherichia coli is an αβ heterodimer of ThiG and ThiH. ThiH is a tyrosine lyase that cleaves the Cα–Cβ bond of tyrosine, generating p-cresol as a by-product, to form dehydroglycine. This reactive intermediate acts as one of three substrates for the thiazole cyclization reaction catalyzed by ThiG. ThiH is a radical S-adenosylmethionine (AdoMet) enzyme that utilizes a [4Fe-4S]+ cluster to reductively cleave AdoMet, forming methionine and a 5′-deoxyadenosyl radical. Analysis of the time-dependent formation of the reaction products 5′-deoxyadenosine (DOA) and p-cresol has demonstrated catalytic behavior of the tyrosine lyase. The kinetics of product formation showed a pre-steady state burst phase, and the involvement of DOA in product inhibition was identified by the addition of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase to activity assays. This hydrolyzed the DOA and changed the rate-determining step but, in addition, substantially increased the uncoupled turnover of AdoMet. Addition of glyoxylate and ammonium inhibited the tyrosine cleavage reaction, but the reductive cleavage of AdoMet continued in an uncoupled manner. Tyrosine analogues were incubated with ThiGH, which showed a strong preference for phenolic substrates. 4-Hydroxyphenylpropionic acid analogues allowed uncoupled AdoMet cleavage but did not result in further reaction (Cα–Cβ bond cleavage). The results of the substrate analogue studies and the product inhibition can be explained by a mechanistic hypothesis involving two reaction pathways, a product-forming pathway and a futile cycle. PMID:19923213
Sutton, Kristin A; Black, Paul J; Mercer, Kermit R; Garman, Elspeth F; Owen, Robin L; Snell, Edward H; Bernhard, William A
2013-12-01
Electron paramagnetic resonance (EPR) and online UV-visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV-visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5-0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.
The chemical structure of macromolecular fractions of a sulfur-rich oil
NASA Astrophysics Data System (ADS)
Richnow, Hans H.; Jenisch, Angela; Michaelis, Walter
1993-06-01
A selective stepwise chemical degradation has been developed for structural studies of highmolecularweight (HMW) fractions of sulfur-rich oils. The degradation steps are: (i) desulfurization (ii) cleavage of oxygen-carbon bonds (iii) oxidation of aromatic structural units. After each step, the remaining macromolecular matter was subjected to the subsequent reaction. This degradation scheme was applied to the asphaltene, the resin and a macromolecular fraction of low polarity (LPMF) of the Rozel Point oil. Total amounts of degraded low-molecular-weight compounds increased progressively in the order asphaltene < resin < LPMF. Desulfurization yielded mainly phytane, steranes and triterpanes. Oxygen-carbon bond cleavage resulted in hydrocarbon fractions predominated by n-alkanes and acyclic isoprenoids. The oxidation step afforded high amounts of linear carboxylic acids in the range of C 11 to C 33. The released compounds provide a more complete picture of the molecular structure of the oil fractions than previously available. Labelling experiments with deuterium atoms allowed to characterize the site of bonding and the type of linkage for the released compounds. Evidence is presented that subunits of the macromolecular network are attached simultaneously by oxygen and sulfur (n-alkanes, hopanes) or by sulfur and aromatic units ( n-alkanes, steranes).
Shankar, Ravi; Jain, Archana; Kociok-Köhn, Gabriele; Mahon, Mary F; Molloy, Kieran C
2010-05-17
Hydrolysis of the mixed-ligand dimethyltin(ethoxy)ethanesulfonate, [Me(2)Sn(OEt)(OSO(2)Et)](n) (1a) in moist hexane proceeds via disproportionation and partial cleavage of Sn-C and S-C bonds to afford a novel oxo-/hydroxo- organotin cluster of the composition [(Me(2)Sn)(MeSn)(4)(OSO(2)Et)(2)(OH)(4)(O)(2)(SO(3))(2)] (1) bearing both mono- and dimethyltin fragments and in situ generated sulfite (SO(3)(2-)) anion in the structural framework. On the other hand, similar reactions with analogous mixed ligand diorganotin precursors, [R(2)Sn(OR(1))(OSO(2)R(1))](n) (R = n-Bu, R(1) = Et (2a); R = Et, R(1) = Me (3a)), result in the formation of tetranuclear diorganotin clusters, [{(n-Bu(2)Sn)(2)(OH)(OSO(2)Et)}O](2) (2) and [(Et(2)Sn)(4)(OH)(O)(2)(OSO(2)Me)(3)] (3), respectively. The activation of the Sn-C or S-C bond is not observed in these cases. These findings provide a preliminary insight into the unusual reactivity of 1a under hydrolytic conditions.
Amide-Directed Photoredox Catalyzed C-C Bond Formation at Unactivated sp3 C-H Bonds
Chu, John C. K.; Rovis, Tomislav
2017-01-01
Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds allow scientists to access molecules which would otherwise be inaccessible and to develop more efficient syntheses of complex molecules.1,2 Herein we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for the selective C-C bond formation at single C-H bonds in molecules that contain a multitude of seemingly indifferentiable such bonds. Selectivity arises through a relayed photoredox catalyzed oxidation of an N-H bond. We anticipate our findings to serve as a starting point for functionalization at inert C-H bonds through a hydrogen atom transfer strategy. PMID:27732580
Furusawa, Takuma; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Tanimoto, Hiroki; Kakiuchi, Kiyomi
2016-08-19
Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C-H/C-I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C-H bond cleavage but, rather, the oxidative addition of the C-I bond to a Rh(I) center. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins
2013-10-01
acids. These sites constitute a variable environment, with the effect of mutations largely isolated to effects on interactions with the P4 side chain. 2...desires to cut. We observe, however, sequence-specific cleavage is much more subtle, depending upon how side chain interactions influence not only...first five substrate amino acids on the acyl side of the scissile bond (denoted P1 through P5, numbering from the scissile bond toward the N-terminus
Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins
2012-10-14
effect of mutations largely isolated to effects on interactions with the P4 side chain. 2) Most mutations at some sites (e.g. 126, 128) decrease...to cut. We observe, however, sequence-specific cleavage is much more subtle, depending upon how side chain interactions influence not only ground...five substrate amino acids on the acyl side of the scissile bond (denoted P1 through P5, numbering from the scissile bond toward the N-terminus of the
Bonded half planes containing an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Aksogan, O.
1973-01-01
The plane elastostatic problem for two bonded half planes containing an arbitrarily oriented crack in the neighborhood of the interface is considered. Using Mellin transforms, the problem is formulated as a system of singular integral equations. The equations are solved for various crack orientations, material combinations, and external loads. The numerical results given include the stress intensity factors, tHe strain energy release rates, and tHe probable cleavage angles giving the direction of crack propagation.
Shimodaira, Shingo; Asano, Yuki; Arai, Kenta; Iwaoka, Michio
2017-10-24
Selenoglutathione (GSeH) is a selenium analogue of naturally abundant glutathione (GSH). In this study, this water-soluble small tripeptide was synthesized in a high yield (up to 98%) as an oxidized diselenide form, i.e., GSeSeG (1), by liquid-phase peptide synthesis (LPPS). Obtained 1 was applied to the investigation of the glutathione peroxidase (GPx)-like catalytic cycle. The important intermediates, i.e., GSe - and GSeSG, besides GSeO 2 H were characterized by 77 Se NMR spectroscopy. Thiol exchange of GSeSG with various thiols, such as cysteine and dithiothreitol, was found to promote the conversion to GSe - significantly. In addition, disproportionation of GSeSR to 1 and RSSR, which would be initiated by heterolytic cleavage of the Se-S bond and catalyzed by the generated selenolate, was observed. On the basis of these redox behaviors, it was proposed that the heterolytic cleavage of the Se-S bond can be facilitated by the interaction between the Se atom and an amino or aromatic group, which is present at the GPx active site. On the other hand, when a catalytic amount of 1 was reacted with scrambled 4S species of RNase A in the presence of NADPH and glutathione reductase, native protein was efficiently regenerated, suggesting a potential use of 1 to repair misfolded proteins through reduction of the non-native SS bonds.
Asymmetric Synthesis of Apratoxin E.
Mao, Zhuo-Ya; Si, Chang-Mei; Liu, Yi-Wen; Dong, Han-Qing; Wei, Bang-Guo; Lin, Guo-Qiang
2016-10-21
An efficient method for asymmetric synthesis of apratoxin E 2 is described in this report. The chiral lactone 8, recycled from the degradation of saponin glycosides, was utilized to prepare the non-peptide fragment 6. In addition to this "from nature to nature" strategy, olefin cross-metathesis (CM) was applied as an alternative approach for the formation of the double bond. Moreover, pentafluorophenyl diphenylphosphinate was found to be an efficient condensation reagent for the macrocyclization.
NASA Astrophysics Data System (ADS)
Osada, Mitsumasa; Toyoshima, Katsunori; Mizutani, Takakazu; Minami, Kimitaka; Watanabe, Masaru; Adschiri, Tadafumi; Arai, Kunio
2003-03-01
UV-visible spectra of quinoline was measured in sub- and supercritical water (25 °C
Guo, Xunmin; Liu, Zheyun; Song, Qinhua; Wang, Lijuan; Zhong, Dongping
2015-02-26
Many biomimetic chemical systems for repair of UV-damaged DNA showed very low repair efficiency, and the molecular origin is still unknown. Here, we report our systematic characterization of the repair dynamics of a model compound of indole-thymine dimer adduct in three solvents with different polarity. By resolving all elementary steps including three electron-transfer processes and two bond-breaking and bond-formation dynamics with femtosecond resolution, we observed the slow electron injection in 580 ps in water, 4 ns in acetonitrile, and 1.38 ns in dioxane, the fast back electron transfer without repair in 120, 150, and 180 ps, and the slow bond splitting in 550 ps, 1.9 ns, and 4.5 ns, respectively. The dimer bond cleavage is clearly accelerated by the solvent polarity. By comparing with the biological repair machine photolyase with a slow back electron transfer (2.4 ns) and a fast bond cleavage (90 ps), the low repair efficiency in the biomimetic system is mainly determined by the fast back electron transfer and slow bond breakage. We also found that the model system exists in a dynamic heterogeneous C-clamped conformation, leading to a stretched dynamic behavior. In water, we even identified another stacked form with ultrafast cyclic electron transfer, significantly reducing the repair efficiency. Thus, the comparison of the repair efficiency in different solvents is complicated and should be cautious, and only the dynamics by resolving all elementary steps can finally determine the total repair efficiency. Finally, we use the Marcus electron-transfer theory to analyze all electron-transfer reactions and rationalize all observed electron-transfer dynamics.
NASA Astrophysics Data System (ADS)
Chen, Wen; Gamache, Eric; Rosenman, David J.; Xie, Jian; Lopez, Maria M.; Li, Yue-Ming; Wang, Chunyu
2014-01-01
The high Aβ42/Aβ40 production ratio is a hallmark of familial Alzheimer’s disease, which can be caused by mutations in the amyloid precursor protein (APP). The C-terminus of Aβ is generated by γ-secretase cleavage within the transmembrane domain of APP (APPTM), a process that is primed by an initial ɛ-cleavage at either T48 or L49, resulting in subsequent production of Aβ42 or Aβ40, respectively. Here we solve the dimer structures of wild-type APPTM (AAPTM WT) and mutant APPTM (FAD mutants V44M) with solution NMR. The right-handed APPTM helical dimer is mediated by GXXXA motif. From the NMR structural and dynamic data, we show that the V44M and V44A mutations can selectively expose the T48 site by weakening helical hydrogen bonds and increasing hydrogen-deuterium exchange rate (kex). We propose a structural model in which FAD mutations (V44M and V44A) can open the T48 site γ-secretase for the initial ɛ-cleavage, and consequently shift cleavage preference towards Aβ42.
Čabart, Pavel; Jin, Huiyan; Li, Liangtao; Kaplan, Craig D
2014-01-01
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn2+ stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF. PMID:25764335
Zhao, F; Stein, D J; Paborji, M; Cash, P W; Root, B J; Wei, Z; Knupp, C J
2001-01-01
BMS-196843 (Oncostatin M) is a therapeutic recombinant protein in development. Scale-up process changes led to unexpected instability of the bulk drug substance solution during storage. A product with an apparent higher MW than the parent protein was observed by the size-exclusion chromatography (SEC). This study was aimed to fully characterize the product and to identify a solution to stabilize the protein. SEC, SDS-PAGE, tryptic mapping, and N-terminal sequencing were performed to characterize the unknown product. The effect of pH, temperature, bulk concentration, and immobilized trypsin inhibitor on the degradation rate was studied to elucidate the mechanism and to identify stabilization strategies. Despite the apparent high MW indicated initially by SEC, the unknown was characterized to be a degradation product resulted from a backbone cleavage between residues Arg145-Gly146. The resulting fragments from the backbone cleavage were, however, still linked through an intramolecular disulfide bond. Thus, the final product had a more open structure with an increased hydrodynamic radius compared to the parent protein, which explains the initial SEC results. The site-specific backbone cleavage was suspected to be catalyzed by trypsin-like protease impurities in the bulk solution. The bulk drug substance solution was subsequently treated with immobilized soybean trypsin inhibitor, and the degradation rate was significantly reduced. Furthermore, increasing the solution pH from 5 to 8 led to an increase in the degradation rate, which was consistent with the expected pH dependency of trypsin activity. In addition, the effect of bulk concentration also supported the involvement of protease impurities rather than a spontaneous peptide bond hydrolysis reaction. Trace trypsin-like protease impurities led to an unusual site-specific backbone cleavage of BMS-196854. The proteolytic degradation can be minimized by treating the bulk solution with immobilized soybean trypsin inhibitor and/or controlling the solution pH and storage temperature.
Rogerson, Fraser M; Stanton, Heather; East, Charlotte J; Golub, Suzanne B; Tutolo, Leonie; Farmer, Pamela J; Fosang, Amanda J
2008-06-01
To characterize aggrecan catabolism and the overall phenotype in mice deficient in both ADAMTS-4 and ADAMTS-5 (TS-4/TS-5 Delta-cat) activity. Femoral head cartilage from the joints of TS-4/TS-5 Delta-cat mice and wild-type mice were cultured in vitro, and aggrecan catabolism was stimulated with either interleukin-1alpha (IL-1alpha) or retinoic acid. Total aggrecan release was measured, and aggrecanase activity was examined by Western blotting using neoepitope antibodies for detecting cleavage at EGE 373-374 ALG, SELE 1279-1280 GRG, FREEE 1467-1468 GLG, and AQE 1572-1573 AGEG. Aggrecan catabolism in vivo was examined by Western blotting of cartilage that had been extracted immediately ex vivo. TS-4/TS-5 Delta-cat mice were viable, fertile, and phenotypically normal. TS-4/TS-5 Delta-cat cartilage explants did not release aggrecan in response to IL-1alpha, and there was no detectable increase in aggrecanase neoepitopes. TS-4/TS-5 Delta-cat cartilage explants released aggrecan in response to retinoic acid. There was no retinoic acid-stimulated cleavage at either EGE 373-374 ALG or AQE 1572-1573 AGEG. There was a low level of cleavage at SELE 1279-1280 GRG and major cleavage at FREEE 1467-1468 GLG. Ex vivo, cleavage at FREEE 1467-1468 GLG was substantially reduced, but still present, in TS-4/TS-5 Delta-cat mouse cartilage compared with wild-type mouse cartilage. An aggrecanase other than ADAMTS-4 and ADAMTS-5 is expressed in mouse cartilage and is up-regulated by retinoic acid but not IL-1alpha. The novel aggrecanase appears to have different substrate specificity from either ADAMTS-4 or ADAMTS-5, cleaving E-G bonds but not E-A bonds. Neither ADAMTS-4 nor ADAMTS-5 is required for normal skeletal development or aggrecan turnover in cartilage.
NASA Astrophysics Data System (ADS)
Cheong, Youngjoo; Shim, Gyuchang; Kang, Dongil; Kim, Yangmee
1999-02-01
The conformational details of Man( α1,6)Man( α)OMe are investigated through NMR spectroscopy in conjunction with molecular modeling. The lowest energy structure (M1) in the adiabatic energy map calculated with a dielectric constant of 50 has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=180°. The other low energy structure (M2) has glycosidic dihedral angles of φ=-60°, ψ=180° and ω=-60°. Molecular dynamics simulations and NMR experiments prove that Man( α1,6)Man( α)OMe in the free form exists with conformational averaging of M1 and M2 conformers predominantly. Molecular dynamics simulations of the pea lectin-carbohydrate complex with explicit water molecules starting from the X-ray crystallographic structure of pea lectin show that the protein-carbohydrate interaction centers mainly on the hydrogen bonds and van der Waals interactions between protein and carbohydrate. From the molecular dynamics simulation, it is found that the M1 structure can bind to pea lectin better than the M2 structure. The origin of this selectivity is the water- mediated hydrogen bond interactions between the remote mannose and the binding site of pea lectin as well as the direct hydrogen bond interaction between the terminal mannose and pea lectin. Extensive networks of interactions in the carbohydrate binding site and the metal binding site are important in maintaining the carbohydrate binding properties of pea lectin. Especially, the predominant factors of mannose binding specificity of pea lectin are the hydrogen bond interactions between the 4th hydroxyl groups of the terminal sugar ring and the side chains of Asp-81 and Asn-125 in the carbohydrate binding site, and the additional interactions between these side chains of Asp-81 and Asn-125 and the calcium ion in the metal binding site of pea lectin.
All-Atom Internal Coordinate Mechanics (ICM) Force Field for Hexopyranoses and Glycoproteins.
Arnautova, Yelena A; Abagyan, Ruben; Totrov, Maxim
2015-05-12
We present an extension of the all-atom internal-coordinate force field, ICMFF, that allows for simulation of heterogeneous systems including hexopyranose saccharides and glycan chains in addition to proteins. A library of standard glycan geometries containing α- and β-anomers of the most common hexapyranoses, i.e., d-galactose, d-glucose, d-mannose, d-xylose, l-fucose, N -acetylglucosamine, N -acetylgalactosamine, sialic, and glucuronic acids, is created based on the analysis of the saccharide structures reported in the Cambridge Structural Database. The new force field parameters include molecular electrostatic potential-derived partial atomic charges and the torsional parameters derived from quantum mechanical data for a collection of minimal molecular fragments and related molecules. The ϕ/ψ torsional parameters for different types of glycosidic linkages are developed using model compounds containing the key atoms in the full carbohydrates, i.e., glycosidic-linked tetrahydropyran-cyclohexane dimers. Target data for parameter optimization include two-dimensional energy surfaces corresponding to the ϕ/ψ glycosidic dihedral angles in the disaccharide analogues, as determined by quantum mechanical MP2/6-31G** single-point energies on HF/6-31G** optimized structures. To achieve better agreement with the observed geometries of glycosidic linkages, the bond angles at the O-linkage atoms are added to the internal variable set and the corresponding bond bending energy term is parametrized using quantum mechanical data. The resulting force field is validated on glycan chains of 1-12 residues from a set of high-resolution X-ray glycoprotein structures based on heavy atom root-mean-square deviations of the lowest-energy glycan conformations generated by the biased probability Monte Carlo (BPMC) molecular mechanics simulations from the native structures. The appropriate BPMC distributions for monosaccharide-monosaccharide and protein-glycan linkages are derived from the extensive analysis of conformational properties of glycoprotein structures reported in the Protein Data Bank. Use of the BPMC search leads to significant improvements in sampling efficiency for glycan simulations. Moreover, good agreement with the X-ray glycoprotein structures is achieved for all glycan chain lengths. Thus, average/median RMSDs are 0.81/0.68 Å for one-residue glycans and 1.32/1.47 Å for three-residue glycans. RMSD from the native structure for the lowest-energy conformation of the 12-residue glycan chain (PDB ID 3og2) is 1.53 Å. Additionally, results obtained for free short oligosaccharides using the new force field are in line with the available experimental data, i.e., the most populated conformations in solution are predicted to be the lowest energy ones. The newly developed parameters allow for the accurate modeling of linear and branched hexopyranose glycosides in heterogeneous systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vermaas, Josh V.; Crowley, Michael F.; Beckham, Gregg T.
In nature, polysaccharide glycosidic bonds are cleaved by hydrolytic enzymes for a vast array of biological functions. Recently, a new class of enzymes that utilize an oxidative mechanism to cleave glycosidic linkages was discovered; these enzymes are called lytic polysaccharide monooxygenases (LPMO). These oxidative enzymes are synergistic with cocktails of hydrolytic enzymes and are thought to act primarily on crystalline regions, in turn providing new sites of productive attachment and detachment for processive hydrolytic enzymes. In the case of cellulose, the homopolymer of ..beta..-1,4-d-glucose, enzymatic oxidation occurs at either the reducing end or the nonreducing end of glucose, depending onmore » enzymatic specificity, and results in the generation of oxidized chemical substituents at polymer chain ends. LPMO oxidation of cellulose is thought to produce either a lactone at the reducing end of glucose that can spontaneously or enzymatically convert to aldonic acid or 4-keto-aldose at the nonreducing end that may further oxidize to a geminal diol. Here, we use molecular simulation to examine the effect of oxidation on the structure of crystalline cellulose. The simulations highlight variations in behaviors depending on the chemical identity of the oxidized species and its location within the cellulose fibril, as different oxidized species introduce steric effects that disrupt local crystallinity and in some cases reduce the work needed for polymer decrystallization. Reducing-end oxidations are easiest to decrystallize when located at the end of the fibril, whereas nonreducing end oxidations readily decrystallize from internal cleavage sites despite their lower solvent accessibility. The differential in decrystallization free energy suggests a molecular mechanism consistent with experimentally observed LPMO/cellobiohydrolase synergy. Additionally, the soluble oxidized cellobiose products released by hydrolytic cellulases may bind to the active sites of cellulases with different affinities relative to cellobiose itself, which potentially affects hydrolytic turnover through product inhibition. To examine the effect of oxidation on cello-oligomer binding, we use thermodynamic integration to compute the relative change in binding free energy between the hydrolyzed and oxidized products in the active site of Family 7 and Family 6 processive glycoside hydrolases, Trichoderma reesei Cel7A and Cel6A, which are key industrial cellulases and commonly used model systems for fungal cellulases. Our results suggest that the equilibrium between the two reducing end oxidized products, favoring the linear aldonic acid, may increase product inhibition, which would in turn reduce processive substrate turnover. In the case of LMPO action at the nonreducing end, oxidation appears to lower affinity with the nonreducing end specific cellulase, reducing product inhibition and potentially promoting processive cellulose turnover. Overall, this suggests that oxidation of recalcitrant polysaccharides by LPMOs accelerates degradation not only by increasing the concentration of chain termini but also by reducing decrystallization work, and that product inhibition may be somewhat reduced as a result.« less
Nakamura, Akihiko; Ishida, Takuya; Kusaka, Katsuhiro; Yamada, Taro; Fushinobu, Shinya; Tanaka, Ichiro; Kaneko, Satoshi; Ohta, Kazunori; Tanaka, Hiroaki; Inaka, Koji; Higuchi, Yoshiki; Niimura, Nobuo; Samejima, Masahiro; Igarashi, Kiyohiko
2015-08-01
Hydrolysis of carbohydrates is a major bioreaction in nature, catalyzed by glycoside hydrolases (GHs). We used neutron diffraction and high-resolution x-ray diffraction analyses to investigate the hydrogen bond network in inverting cellulase PcCel45A, which is an endoglucanase belonging to subfamily C of GH family 45, isolated from the basidiomycete Phanerochaete chrysosporium. Examination of the enzyme and enzyme-ligand structures indicates a key role of multiple tautomerizations of asparagine residues and peptide bonds, which are finally connected to the other catalytic residue via typical side-chain hydrogen bonds, in forming the "Newton's cradle"-like proton relay pathway of the catalytic cycle. Amide-imidic acid tautomerization of asparagine has not been taken into account in recent molecular dynamics simulations of not only cellulases but also general enzyme catalysis, and it may be necessary to reconsider our interpretation of many enzymatic reactions.
Simon, E S; Papoulias, P G; Andrews, P C
2013-07-30
In protein studies that employ tandem mass spectrometry the manipulation of protonated peptide fragmentation through exclusive dissociation pathways may be preferred in some applications over the comprehensive amide backbone fragmentation that is typically observed. In this study, we characterized the selective cleavage of the side-chain Cζ-Nε bond of peptides with ortho-hydroxybenzyl-aminated lysine residues. Internal lysyl residues of representative peptides were derivatized via reductive amination with ortho-hydroxybenzaldehyde. The modified peptides were analyzed using collision-induced dissociation (CID) on an Orbitrap tandem mass spectrometer. Theoretical calculations using computational methods (density functional theory) were performed to investigate the potential dissociation mechanisms for the Cζ-Nε bond of the derivatized lysyl residue resulting in the formation of the observed product ions. Tandem mass spectra of the derivatized peptide ions exhibit product peaks corresponding to selective cleavage of the side-chain Cζ-Nε bond that links the derivative to lysine. The ortho-hydroxybenzyl derivative is released either as a neutral moiety [C7H6O1] or as a carbocation [C7H7O1](+) through competing pathways (retro-Michael versus Carbocation Elimination (CCE), respectively). The calculated transition state activation barriers indicate that the retro-Michael pathway is kinetically favored over CCE and both are favored over amide cleavage. The application of ortho-hydroxybenzyl amination is a promising peptide derivatization scheme for promoting selective dissociation pathways in the tandem mass spectrometry of protonated peptides. This can be implemented in the rational development of peptide reactive reagents for applications that may benefit from selective fragmentation paths (including crosslinking or MRM reagents). Copyright © 2013 John Wiley & Sons, Ltd.
Zhu, Wenyou; Liu, Yongjun; Zhang, Rui
2015-01-01
Hydroxynitrile lyases (HNLs) catalyze the conversion of chiral cyanohydrins to hydrocyanic acid (HCN) and aldehyde or ketone. Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) is the first R-selective HNL enzyme containing an α/β-hydrolases fold. In this article, the catalytic mechanism of AtHNL was theoretically studied by using QM/MM approach based on the recently obtained crystal structure in 2012. Two computational models were constructed, and two possible reaction pathways were considered. In Path A, the calculation results indicate that the proton transfer from the hydroxyl group of cyanohydrin occurs firstly, and then the cleavage of C1-C2 bond and the rotation of the generated cyanide ion (CN(-)) follow, afterwards, CN(-) abstracts a proton from His236 via Ser81. The C1-C2 bond cleavage and the protonation of CN(-) correspond to comparable free energy barriers (12.1 vs. 12.2 kcal mol(-1)), suggesting that both of the two processes contribute a lot to rate-limiting. In Path B, the deprotonation of the hydroxyl group of cyanohydrin and the cleavage of C1-C2 bond take place in a concerted manner, which corresponds to the highest free energy barrier of 13.2 kcal mol(-1). The free energy barriers of Path A and B are very similar and basically agree well with the experimental value of HbHNL, a similar enzyme of AtHNL. Therefore, both of the two pathways are possible. In the reaction, the catalytic triad (His236, Ser81, and Asp208) acts as the general acid/base, and the generated CN(-) is stabilized by the hydroxyl group of Ser81 and the main-chain NH-groups of Ala13 and Phe82. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nagoshi, Keishiro; Yamakoshi, Mariko; Sakamoto, Kenya; Takayama, Mitsuo
2018-04-01
Radical-driven dissociation (RDD) of hydrogen-deficient peptide ions [M - H + H]·+ has been examined using matrix-assisted laser dissociation/ionization in-source decay mass spectrometry (MALDI-ISD MS) with the hydrogen-abstracting matrices 4-nitro-1-naphthol (4,1-NNL) and 5-nitrosalicylic acid (5-NSA). The preferential fragment ions observed in the ISD spectra include N-terminal [a] + ions and C-terminal [x]+, [y + 2]+, and [w]+ ions which imply that β-carbon (Cβ)-centered radical peptide ions [M - Hβ + H]·+ are predominantly produced in MALDI conditions. RDD reactions from the peptide ions [M - Hβ + H]·+ successfully explains the fact that both [a]+ and [x]+ ions arising from cleavage at the Cα-C bond of the backbone of Gly-Xxx residues are missing from the ISD spectra. Furthermore, the formation of [a]+ ions originating from the cleavage of Cα-C bond of deuterated Ala(d3)-Xxx residues indicates that the [a]+ ions are produced from the peptide ions [M - Hβ + H]·+ generated by deuteron-abstraction from Ala(d3) residues. It is suggested that from the standpoint of hydrogen abstraction via direct interactions between the nitro group of matrix and hydrogen of peptides, the generation of the peptide radical ions [M - Hβ + H]·+ is more favorable than that of the α-carbon (Cα)-centered radical ions [M - Hα + H]·+ and the amide nitrogen-centered radical ions [M - HN + H]·+, while ab initio calculations indicate that the formation of [M - Hα + H]·+ is energetically most favorable. [Figure not available: see fulltext.
Decomposition of amino diazeniumdiolates (NONOates): molecular mechanisms.
Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V
2014-12-01
Although diazeniumdiolates (X[N(O)NO](-)) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO](-), where R=N(C2H5)2 (1), N(C3H4NH2)2 (2), or N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO](-) group with the apparent pKa and decomposition rate constants of 4.6 and 1 s(-1) for 1; 3.5 and 0.083 s(-1) for 2; and 3.8 and 0.0033 s(-1) for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~10(-7), for 1) undergoes the NN heterolytic bond cleavage (kd~10(7) s(-1) for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH<2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO](-) group. Copyright © 2014 Elsevier Inc. All rights reserved.
Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms
Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.
2014-08-23
Although diazeniumdiolates (X[N(O)NO] -) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R 2N[N(O)NO] -, where R = —N(C 2H 5) 2(1), —N(C 3H 4NH 2) 2(2), or —N(C 2H 4NH 2) 2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO] - group with the apparent pKa and decomposition ratemore » constants of 4.6 and 1 s -1 for 1; 3.5 and 0.083 s -1 for 2; and 3.8 and 0.0033 s -1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R 2N(H)N(O)NO tautomer (population ~ 10 -7, for 1) undergoes the N—N heterolytic bond cleavage (k d ~ 107 s -1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO] - group.« less
Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.
Ackermann, Lutz
2014-02-18
To improve the atom- and step-economy of organic syntheses, researchers would like to capitalize upon the chemistry of otherwise inert carbon-hydrogen (C-H) bonds. During the past decade, remarkable progress in organometallic chemistry has set the stage for the development of increasingly viable metal catalysts for C-H bond activation reactions. Among these methods, oxidative C-H bond functionalizations are particularly attractive because they avoid the use of prefunctionalized starting materials. For example, oxidative annulations that involve sequential C-H and heteroatom-H bond cleavages allow for the modular assembly of regioselectively decorated heterocycles. These structures serve as key scaffolds for natural products, functional materials, crop protecting agents, and drugs. While other researchers have devised rhodium or palladium complexes for oxidative alkyne annulations, my laboratory has focused on the application of significantly less expensive, yet highly selective ruthenium complexes. This Account summarizes the evolution of versatile ruthenium(II) complexes for annulations of alkynes via C-H/N-H, C-H/O-H, or C-H/N-O bond cleavages. To achieve selective C-H bond functionalizations, we needed to understand the detailed mechanism of the crucial C-H bond metalation with ruthenium(II) complexes and particularly the importance of carboxylate assistance in this process. As a consequence, our recent efforts have resulted in widely applicable methods for the versatile preparation of differently decorated arenes and heteroarenes, providing access to among others isoquinolones, 2-pyridones, isoquinolines, indoles, pyrroles, or α-pyrones. Most of these reactions used Cu(OAc)2·H2O, which not only acted as the oxidant but also served as the essential source of acetate for the carboxylate-assisted ruthenation manifold. Notably, the ruthenium(II)-catalyzed oxidative annulations also occurred under an ambient atmosphere of air with cocatalytic amounts of Cu(OAc)2·H2O. Moreover, substrates displaying N-O bonds served as "internal oxidants" for the syntheses of isoquinolones and isoquinolines. Detailed experimental mechanistic studies have provided strong support for a catalytic cycle that relies on initial carboxylate-assisted C-H bond ruthenation, followed by coordinative insertion of the alkyne, reductive elimination, and reoxidation of the thus formed ruthenium(0) complex.
Garcia-Pintos, Delfina; Voss, Johannes; Jensen, Anker D.; ...
2016-07-22
Herein we describe the C–O cleavage of phenol and cyclohexanol over Rh(111) and Rh(211) surfaces using density functional theory calculations. Our analysis is complemented by a microkinetic model of the reactions, which indicates that the C–O bond cleavage of cyclohexanol is easier than that of phenol and that Rh(211) is more active than Rh(111) for both reactions. This indicates that phenol will react mainly following a pathway of initial hydrogenation to cyclohexanol followed by hydrodeoxygenation to cyclohexane. In conclusion, we show that there is a general relationship between the transition state and the final state of both C–O cleavage reactions,more » and that this relationship is the same for Rh(111) and Rh(211).« less
NASA Astrophysics Data System (ADS)
Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu
2017-06-01
Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. [Figure not available: see fulltext.
Frandsen, Kristian E H; Poulsen, Jens Christian Navarro; Tovborg, Morten; Johansen, Katja S; Lo Leggio, Leila
2017-01-01
Lytic polysaccharide monooxygenases (LPMOs) are a class of copper-dependent enzymes discovered within the last ten years. They oxidatively cleave polysaccharides (chitin, lignocellulose, hemicellulose and starch-derived), presumably making recalcitrant substrates accessible to glycoside hydrolases. Recently, the first crystal structure of an LPMO-substrate complex was reported, giving insights into the interaction of LPMOs with β-linked substrates (Frandsen et al., 2016). The LPMOs acting on α-linked glycosidic bonds (family AA13) display binding surfaces that are quite different from those of LPMOs that act on β-linked glycosidic bonds (families AA9-AA11), as revealed from the first determined structure (Lo Leggio et al., 2015), and thus presumably the AA13s interact with their substrate in a distinct fashion. Here, several new structures of the same AA13 enzyme, Aspergillus oryzae AA13, are presented. Crystals obtained in the presence of high zinc-ion concentrations were used, as they can be obtained more reproducibly than those used to refine the deposited copper-containing structure. One structure with an ordered zinc-bound active site was solved at 1.65 Å resolution, and three structures from crystals soaked with maltooligosaccharides in solutions devoid of zinc ions were solved at resolutions of up to 1.10 Å. Despite similar unit-cell parameters, small rearrangements in the crystal packing occur when the crystals are depleted of zinc ions, resulting in a more occluded substrate-binding surface. In two of the three structures maltooligosaccharide ligands are bound, but not at the active site. Two of the structures presented show a His-ligand conformation that is incompatible with metal-ion binding. In one of these structures this conformation is the principal one (80% occupancy), giving a rare atomic resolution view of a substantially misfolded enzyme that is presumably rendered inactive.
Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2017-09-01
Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.
Han, Xun; Floreancig, Paul E
2014-10-06
Spiroacetals can be formed through a one-pot sequence of a hetero-Diels-Alder reaction, an oxidative carbon-hydrogen bond cleavage, and an acid treatment. This convergent approach expedites access to a complex molecular subunit which is present in numerous biologically active structures. The utility of the protocol is demonstrated through its application to a brief synthesis of the actin-binding cytotoxin bistramide A. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2016-02-02
Bartlett, Nigel G. J. Richards, Robert W. Molt, Alison M. Lecher. Facile Csp2 Csp2 bond cleavage in oxalic acid -derived radicals: Implications for...sway a strong bond link in oxalate can be broken by manganese containing enzymes. The intermediate steps involved the formation of either a radical or...catalysis by oxalate decarboxylase, Journal of the American Chemical Society, (03 2015): 3248. doi: 10.1021/ja510666r Erik Deumens, Victor F. Lotrich
An In Situ Directing Group Strategy for Chiral Anion Phase-Transfer Fluorination of Allylic Alcohols
2015-01-01
An enantioselective fluorination of allylic alcohols under chiral anion phase-transfer conditions is reported. The in situ generation of a directing group proved crucial for achieving effective enantiocontrol. In the presence of such a directing group, a range of acyclic substrates underwent fluorination to afford highly enantioenriched α-fluoro homoallylic alcohols. Mechanistic studies suggest that this transformation proceeds through a concerted enantiodetermining transition state involving both C–F bond formation and C–H bond cleavage. PMID:25203796
Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface.
Ryu, Ja-Hyoung; Park, Soojin; Kim, Bokyung; Klaikherd, Akamol; Russell, Thomas P; Thayumanavan, S
2009-07-29
We have prepared functionalized nanoporous thin films from a polystyrene-block-polyethylene oxide block copolymer, which was made cleavable due to the intervening disulfide bond. The cleavage reaction of the disulfide bond leaves behind free thiol groups inside the nanopores of polystyrene thin film. This nanoporous thin film can be used as a template for generating gold nanoring structures. This strategy can provide a facile method to form a highly ordered array of biopolymer or metal-polymer composite structures.
The electronic structure of oriented poly[2-methoxy-5-(2'-ethyl-hexyloxy)- 1,4-phenylene-vinylene
NASA Astrophysics Data System (ADS)
Chambers, D. K.; Karanam, S.; Qi, D.; Selmic, S.; Losovyj, Y. B.; Rosa, L. G.; Dowben, P. A.
2005-02-01
Poly[2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) adopts a preferential orientation on indium tin oxide. Although the basic building block of this polymer provides a negligible overall point-group symmetry, the polymer MEH-PPV packs with sufficient order to exhibit band structure. The polymer is fragile with bond cleavage evident following both argon-ion impact and ultraviolet radiation, but annealing leads to the restoration of much of the bond order.
SEA domain autoproteolysis accelerated by conformational strain: energetic aspects.
Sandberg, Anders; Johansson, Denny G A; Macao, Bertil; Härd, Torleif
2008-04-04
A subclass of proteins with the SEA (sea urchin sperm protein, enterokinase, and agrin) domain fold exists as heterodimers generated by autoproteolytic cleavage within a characteristic G(-1)S+1VVV sequence. Autoproteolysis occurs by a nucleophilic attack of the serine hydroxyl on the vicinal glycine carbonyl followed by an N-->O acyl shift and hydrolysis of the resulting ester. The reaction has been suggested to be accelerated by the straining of the scissile peptide bond upon protein folding. In an accompanying article, we report the mechanism; in this article, we provide further key evidence and account for the energetics of coupled protein folding and autoproteolysis. Cleavage of the GPR116 domain and that of the MUC1 SEA domain occur with half-life (t((1/2))) values of 12 and 18 min, respectively, with lowering of the free energy of the activation barrier by approximately 10 kcal mol(-1) compared with uncatalyzed hydrolysis. The free energies of unfolding of the GPR116 and MUC1 SEA domains were measured to approximately 11 and approximately 15 kcal mol(-1), respectively, but approximately 7 kcal mol(-1) of conformational energy is partitioned as strain over the scissile peptide bond in the precursor to catalyze autoproteolysis by substrate destabilization. A straining energy of approximately 7 kcal mol(-1) was measured by using both a pre-equilibrium model to analyze stability and cleavage kinetics data obtained with the GPR116 SEA domain destabilized by core mutations or urea addition, as well as the difference in thermodynamic stabilities of the MUC1 SEA precursor mutant S1098A (with a G(-1)A+1VVV motif) and the wild-type protein. The results imply that cleavage by N-->O acyl shift alone would proceed with a t((1/2)) of approximately 2.3 years, which is too slow to be biochemically effective. A subsequent review of structural data on other self-cleaving proteins suggests that conformational strain of the scissile peptide bond may be a common mechanism of autoproteolysis.
Positions of disulfide bonds in rye (Secale cereale) seed chitinase-a.
Yamagami, T; Funatsu, G; Ishiguro, M
2000-06-01
The positions of disulfide bonds of rye seed chitinase-a (RSC-a) were identified by the isolation of disulfide-containing peptides produced with enzymatic and/or chemical cleavages of RSC-a, followed by sequencing them. An unequivocal assignment of disulfide bonds in this enzyme was as follows: Cys3-Cysl8, Cys12-Cys24, Cys15-Cys42, Cys17-Cys31, and Cys35-Cys39 in the chitin-binding domain (CB domain), Cys82-Cys144, Cys156-Cys164, and Cys282-Cys295 in the catalytic domain (Cat domain), and Cys263 was a free form.
Complete structure of the polysaccharide from Streptococcus sanguis J22
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abeygunawardana, C.; Bush, C.A.; Cisar, J.O.
1990-01-09
The cell wall polysaccharides of certain oral streptococci such as Streptococcus sanguis strains 34 and J22, although immunologically distinct, act as receptors for the fimbrial lectins of Actinomyces viscosus T14V. The authors report the complete covalent structure of the polysaccharide from S. sanguis J22 which is composed of a heptasaccharide subunit linked by phosphodiester bonds. The repeating subunit, which contains {alpha}-GalNAc, {alpha}-rhamnose, {beta}-rhamnose, {beta}-glucose, and {beta}-galactose all in the pyranoside form and {beta}-galactofuranose, is compared with the previously published structure of the polysaccharide from strain 34. The structure has been determined almost exclusively by high-resolution nuclear magnetic resonance methods. Themore » {sup 1}H and {sup 13}C NMR spectra of the polysaccharides from both strains 34 and J22 have been completely assigned. The stereochemistry of pyranosides was assigned from J{sub H-H} values determined from phase-sensitive COSY spectra, and acetamido sugars were assigned by correlation of the resonances of the amide {sup 1}H with the sugar ring protons. The {sup 13}C spectra were assigned by {sup 1}H-detected multiple-quantum correlation (HMQC) spectra, and the assignments were confirmed by {sup 1}H-detected multiple-bond correlation (HMBC) spectra. The positions of the glycosidic linkages were assigned by detection of three-bond {sup 1}H-{sup 13}C correlation across the glycosidic linkage in the HMBC spectra. The positions of the phosphodiester linkages were determined by splittings observed in the {sup 13}C resonances due to {sup 31}P coupling and also by {sup 1}H-detected {sup 31}P correlation spectroscopy.« less
Far-UV photochemical bond cleavage of n-amyl nitrite: bypassing a repulsive surface.
Minitti, Michael P; Zhang, Yao; Rosenberg, Martin; Brogaard, Rasmus Y; Deb, Sanghamitra; Sølling, Theis I; Weber, Peter M
2012-01-19
We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.
Snapshots of C-S Cleavage in Egt2 Reveals Substrate Specificity and Reaction Mechanism.
Irani, Seema; Naowarojna, Nathchar; Tang, Yang; Kathuria, Karan R; Wang, Shu; Dhembi, Anxhela; Lee, Norman; Yan, Wupeng; Lyu, Huijue; Costello, Catherine E; Liu, Pinghua; Zhang, Yan Jessie
2018-05-17
Sulfur incorporation in the biosynthesis of ergothioneine, a histidine thiol derivative, differs from other well-characterized transsulfurations. A combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation and a subsequent pyridoxal 5'-phosphate (PLP)-mediated C-S lyase reaction leads to the net transfer of a sulfur atom from a cysteine to a histidine. In this study, we structurally and mechanistically characterized a PLP-dependent C-S lyase Egt2, which mediates the sulfoxide C-S bond cleavage in ergothioneine biosynthesis. A cation-π interaction between substrate and enzyme accounts for Egt2's preference of sulfoxide over thioether as a substrate. Using mutagenesis and structural biology, we captured three distinct states of the Egt2 C-S lyase reaction cycle, including a labile sulfenic intermediate captured in Egt2 crystals. Chemical trapping and high-resolution mass spectrometry were used to confirm the involvement of the sulfenic acid intermediate in Egt2 catalysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Yingying; Fan, Honglei; Meng, Qinglei; Zhang, Zhaofu; Yang, Guanying; Han, Buxing
2017-08-03
We explored the oxidation reactions of lignin model compounds directly induced by ionic liquids under metal-free conditions. In this work, it was found that ionic liquid 1-octyl-3-methylimidazolium acetate as a solvent could promote the aerobic oxidation of lignin model compound 2-phenoxyacetophenone (1) and the yields of phenol and benzoic acid from 1 could be as high as 96% and 86%, respectively. A possible reaction pathway was proposed based on a series of control experiments. An acetate anion from the ionic liquid attacked the hydrogen from the β-carbon thereby inducing the cleavage of the C-O bond of the aromatic ether. Furthermore, it was found that 2-(2-methoxyphenoxy)-1-phenylethanone (4) with a methoxyl group could also be transformed into aromatic products in this simple reaction system and the yields of phenol and benzoic acid from 4 could be as high as 98% and 85%, respectively. This work provides a simple way for efficient transformation of lignin model compounds.
Husarcíková, Jana; Voß, Hauke; Domínguez de María, Pablo; Schallmey, Anett
2018-05-04
Lignin is the major aromatic biopolymer in nature, and it is considered a valuable feedstock for the future supply of aromatics. Hence, its valorisation in biorefineries is of high importance, and various chemical and enzymatic approaches for lignin depolymerisation have been reported. Among the enzymes known to act on lignin, β-etherases offer the possibility for a selective cleavage of the β-O-4 aryl ether bonds present in lignin. These enzymes, together with glutathione lyases, catalyse a reductive, glutathione-dependent ether bond cleavage displaying high stereospecificity. β-Etherases and glutathione lyases both belong to the superfamily of glutathione transferases, and several structures have been solved recently. Additionally, different approaches for their application in lignin valorisation have been reported in the last years. This review gives an overview on the current knowledge on β-etherases and glutathione lyases, their biochemical and structural features, and critically discusses their potential for application in biorefineries.
Oxidation of aniline aerofloat in flotation wastewater by sodium hypochlorite solution.
Lin, Weixiong; Tian, Jing; Ren, Jie; Xu, Pingting; Dai, Yongkang; Sun, Shuiyu; Wu, Chun
2016-01-01
Aniline aerofloat (dianilinodithiophosphoric acid (C6H5NH)2PSSH) is a widely used phosphorodithioic organic flotation collector that contains aniline groups and dithiophosphate groups. In the present study, sodium hypochlorite solution was used to oxidize aniline aerofloat. The effect of operational parameters and optimum oxidation conditions on aniline aerofloat was studied, and the oxidation pathway of aniline aerofloat was proposed by analyzing its main oxidation intermediates. The results showed that NaOCl concentration had a significant influence on aniline aerofloat oxidation and at 100 mg/L aniline aerofloat, 84.54% was removed under the following optimal conditions: NaOCl concentration = 1.25 g/L, pH = 4, and reaction time = 60 min. The main reaction of aniline aerofloat by NaOCl included N-P bond cleavage, aniline group oxidation, aniline group chlorination, and dithiophosphate group oxidation. The initial reaction was the N-P bond cleavage and the anilines and dithiophosphate was further oxidized to other intermediates by five parallel reaction pathways.
Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng
2014-02-24
An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Chenjie; Ding, Weiwei; Shen, Tao; Tang, Chenglun; Sun, Chenguo; Xu, Shichao; Chen, Yong; Wu, Jinglan; Ying, Hanjie
2015-05-22
A series of metallo-deuteroporphyrins derived from hemin were prepared as models of the cytochrome P450 enzyme. With the aid of the highly active Co(II) deuteroporphyrin complex, the catalytic oxidation system was applied for the oxidation of several lignin model compounds, and high yields of monomeric products were obtained under mild reaction conditions. It was found that the modified cobalt deuteroporphyrin that has no substituents at the meso sites but does have the disulfide linkage in the propionate side chains at the β sites exhibited much higher activity and stability than the synthetic tetraphenylporphyrin. The changes in the propionate side chains can divert the reactivity of cobalt deuteroporphyrins from the typical CC bond cleavage to CO bond cleavage. Furthermore, this novel oxidative system can convert enzymolysis lignin into depolymerized products including a significant portion of well-defined aromatic monomers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Ruiquan; Wang, Lei; Li, Qibo; Liao, Min; Yang, Zhikun; Huang, Yun; Lv, Cong; Zheng, Bing; Zhong, Jiangchun; Bian, Qinghua; Wang, Min; Liu, Shangzhong
2017-04-01
Chrysogeside B, a natural cerebroside, was efficiently synthesized from commercial feedstocks. The bioassays showed that compounds 4, 5 and 6 exhibited enhanced biological activities compared Chrysogeside B. Further studies revealed that free hydroxyl groups and glycosidic bond have significant impact on the antimicrobial activities. The synthesis of Chrysogeside B and analogues designed to allow identification of the features of this glycolipid required for recognition by tested bacteria and Hela cells is described.
Hydrogen bonding in the neutron structure of the mononucleotide 5'-UMP disodium salt
NASA Astrophysics Data System (ADS)
Chitra, R.; Ranjan-Choudhury, R.; Ramanadham, M.
Disodium uridine 5'-monophosphate heptahydrate (5'-UMPNa2), Na2[C9H11N2O9P].7H2O, crystallises in space group C2221 with a=22.985, b=8.911 and c=19.494Å. A neutron beam of λ=1.216Å was used; Z=8 and V=3992.75Å3. Data consisted of 1785 unique reflections. Na ions were connected to the main molecule through water molecules and sugar oxygens. One of the Na ions occupied a special position, and the other at a general position was partially disordered. The uracil base was planar, and had anti conformation about the glycosidic bond. The sugar had C(2') endo conformation and was gauche-gauche.
The preparation and application of white graphene
NASA Astrophysics Data System (ADS)
Zhou, Chenghong
2014-12-01
In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.
Narula, Gagandeep; Tse-Dinh, Yuk-Ching
2012-01-01
Bacterial and archaeal topoisomerase I display selectivity for a cytosine base 4 nt upstream from the DNA cleavage site. Recently, the solved crystal structure of Escherichia coli topoisomerase I covalently linked to a single-stranded oligonucleotide revealed that R169 and R173 interact with the cytosine base at the −4 position via hydrogen bonds while the phenol ring of Y177 wedges between the bases at the −4 and the −5 position. Substituting R169 to alanine changed the selectivity of the enzyme for the base at the −4 position from a cytosine to an adenine. The R173A mutant displayed similar sequence selectivity as the wild-type enzyme, but weaker cleavage and relaxation activity. Mutation of Y177 to serine or alanine rendered the enzyme inactive. Although mutation of each of these residues led to different outcomes, R169, R173 and Y177 work together to interact with a cytosine base at the −4 position to facilitate DNA cleavage. These strictly conserved residues might act after initial substrate binding as a Molecular Ruler to form a protein–DNA complex with the scissile phosphate positioned at the active site for optimal DNA cleavage by the tyrosine hydroxyl nucleophile to facilitate DNA cleavage in the reaction pathway. PMID:22833607
Structural Snapshots of Heparin Depolymerization by Heparin Lyase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Young-Hyun; Garron, Marie-Line; Kim, Hye-Yeon
2010-01-12
Heparin lyase I (heparinase I) specifically depolymerizes heparin, cleaving the glycosidic linkage next to iduronic acid. Here, we show the crystal structures of heparinase I from Bacteroides thetaiotaomicron at various stages of the reaction with heparin oligosaccharides before and just after cleavage and product disaccharide. The heparinase I structure is comprised of a {beta}-jellyroll domain harboring a long and deep substrate binding groove and an unusual thumb-resembling extension. This thumb, decorated with many basic residues, is of particular importance in activity especially on short heparin oligosaccharides. Unexpected structural similarity of the active site to that of heparinase II with anmore » ({alpha}/{alpha}){sub 6} fold is observed. Mutational studies and kinetic analysis of this enzyme provide insights into the catalytic mechanism, the substrate recognition, and processivity.« less
Structural basis for activation of the complement system by component C4 cleavage
Kidmose, Rune T.; Laursen, Nick S.; Dobó, József; Kjaer, Troels R.; Sirotkina, Sofia; Yatime, Laure; Sottrup-Jensen, Lars; Thiel, Steffen; Gál, Péter; Andersen, Gregers R.
2012-01-01
An essential aspect of innate immunity is recognition of molecular patterns on the surface of pathogens or altered self through the lectin and classical pathways, two of the three well-established activation pathways of the complement system. This recognition causes activation of the MASP-2 or the C1s serine proteases followed by cleavage of the protein C4. Here we present the crystal structures of the 203-kDa human C4 and the 245-kDa C4⋅MASP-2 substrate⋅enzyme complex. When C4 binds to MASP-2, substantial conformational changes in C4 are induced, and its scissile bond region becomes ordered and inserted into the protease catalytic site in a manner canonical to serine proteases. In MASP-2, an exosite located within the CCP domains recognizes the C4 C345C domain 60 Å from the scissile bond. Mutations in C4 and MASP-2 residues at the C345C–CCP interface inhibit the intermolecular interaction and C4 cleavage. The possible assembly of the huge in vivo enzyme–substrate complex consisting of glycan-bound mannan-binding lectin, MASP-2, and C4 is discussed. Our own and prior functional data suggest that C1s in the classical pathway of complement activated by, e.g., antigen–antibody complexes, also recognizes the C4 C345C domain through a CCP exosite. Our results provide a unified structural framework for understanding the early and essential step of C4 cleavage in the elimination of pathogens and altered self through two major pathways of complement activation. PMID:22949645
Anglada, Josep M; Crehuet, Ramon; Adhikari, Sarju; Francisco, Joseph S; Xia, Yu
2018-02-14
Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH 3 , -NH 2 , -C(O)OH, -CN, and -NO 2 ). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H 2 O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH 3 SSH being the most reactive species found in this study (overall rate constant: 4.55 × 10 12 M -1 s -1 ). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...
2017-10-22
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Switching "on" and "off" the adhesion in stimuli-responsive elastomers.
Kaiser, S; Radl, S V; Manhart, J; Ayalur-Karunakaran, S; Griesser, T; Moser, A; Ganser, C; Teichert, C; Kern, W; Schlögl, S
2018-03-28
The present work aims at the preparation of dry adhesives with switchable bonding properties by using the reversible nature of the [4πs+4πs] cycloaddition of anthracenes. Photo-responsive hydrogenated carboxylated nitrile butadiene rubber with photo-responsive pendant anthracene groups is prepared by one-pot synthesis. The formation of 3D networks relies on the photodimerization of the anthracene moieties upon UV exposure (λ > 300 nm). Controlled cleavage of the crosslink sites is achieved by either deep UV exposure (λ = 254 nm) or thermal dissociation at 70 °C. The kinetics of the optical and thermal cleavage routes are compared in thin films using UV-vis spectroscopy and their influence on the reversibility of the network is detailed. Going from thin films to free standing samples the modulation of the network structure and thermo-mechanical properties over repeated crosslinking and cleavage cycles are characterized by low-field NMR spectroscopy and dynamic mechanical analysis. The applicability of the stimuli-responsive networks as adhesives with reversible bonding properties is demonstrated. The results evidence that the reversibility of the crosslinking reaction enables a controlled switching "on" and "off" of adhesion properties. The recovery of the adhesion force amounts to 75 and 80% for photo- and thermal dissociation, respectively. Spatial control of adhesion properties is evidenced by adhesion force mapping experiments of photo-patterned films.
Wu, Lianming; Liu, David Q; Vogt, Frederick G
2006-01-01
Fragmentation mechanisms of trans-1,4-diphenyl-2-butene-1,4-dione were studied using a variety of mass spectrometric techniques. The major fragmentation pathways occur by various rearrangements by loss of H(2)O, CO, H(2)O and CO, and CO(2). The other fragmentation pathways via simple alpha cleavages were also observed but accounted for the minor dissociation channels in both a two-dimensional (2-D) linear ion trap and a quadrupole time-of-flight (Q-TOF) mass spectrometer. The elimination of CO(2) (rather than CH(3)CHO or C(3)H(8)), which was confirmed by an exact mass measurement using the Q-TOF instrument, represented a major fragmentation pathway in the 2-D linear ion trap mass spectrometer. However, the elimination of H(2)O and CO becomes more competitive in the beam-type Q-TOF instrument. The loss of CO is observed in both the MS(2) experiment of m/z 237 and the MS(3) experiment of m/z 219 but via the different transition states. The data suggest that the olefinic double bond in protonated trans-1,4-diphenyl-2-butene-1,4-dione plays a key role in stabilizing the rearrangement transition states and increasing the bond dissociation (cleavage) energy to give favorable rearrangement fragmentation pathways. Copyright (c) 2006 John Wiley & Sons, Ltd.
An enantioselective route to alpha-methyl carboxylic acids via metal and enzyme catalysis.
Norinder, Jakob; Bogár, Krisztián; Kanupp, Lisa; Bäckvall, Jan-E
2007-11-22
Dynamic kinetic resolution of allylic alcohols to allylic acetates followed by copper-catalyzed allylic substitution gave alkenes in high yields and high optical purity. Subsequent oxidative C-C double bond cleavage afforded pharmaceutically important alpha-methyl substituted carboxylic acids in high ee.
Recognition and cleavage of corn defense chitinases by fungal polyglycine hydrolases
USDA-ARS?s Scientific Manuscript database
Polyglycine hydrolases are secreted fungal endoproteases that cleave peptide bonds in the polyglycine interdomain linker of ChitA chitinase, an antifungal protein from domesticated corn. Polyglycine hydrolases are novel proteins in terms of activity and sequence. The objective of the study is to und...
NASA Astrophysics Data System (ADS)
Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy
2018-05-01
Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy
2018-01-01
Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...
2015-12-04
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.
2013-01-01
Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure. PMID:24311579
Lustemberg, Pablo G.; Ramírez, Pedro J.; Liu, Zongyuan; ...
2016-10-27
The results of core-level photoemission indicate that Ni-CeO 2(111) surfaces with small or medium coverages of nickel are able to activate methane at 300 K, producing adsorbed CH x and CO x (x = 2, 3) groups. Calculations based on density functional theory predict a relatively low activation energy of 0.6–0.7 eV for the cleavage of the first C–H bond in the adsorbed methane molecule. Ni and O centers of ceria work in a cooperative way in the dissociation of the C–H bond at room temperature, where a low Ni loading is crucial for the catalyst activity and stability. Themore » strong electronic perturbations in the Ni nanoparticles produced by the ceria supports of varying natures, such as stoichiometric and reduced, result in a drastic change in their chemical properties toward methane adsorption and dissociation as well as the dry reforming of methane reaction. Lastly, the coverage of Ni has a drastic effect on the ability of the system to dissociate methane and catalyze the dry re-forming process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustemberg, Pablo G.; Ramírez, Pedro J.; Liu, Zongyuan
The results of core-level photoemission indicate that Ni-CeO 2(111) surfaces with small or medium coverages of nickel are able to activate methane at 300 K, producing adsorbed CH x and CO x (x = 2, 3) groups. Calculations based on density functional theory predict a relatively low activation energy of 0.6–0.7 eV for the cleavage of the first C–H bond in the adsorbed methane molecule. Ni and O centers of ceria work in a cooperative way in the dissociation of the C–H bond at room temperature, where a low Ni loading is crucial for the catalyst activity and stability. Themore » strong electronic perturbations in the Ni nanoparticles produced by the ceria supports of varying natures, such as stoichiometric and reduced, result in a drastic change in their chemical properties toward methane adsorption and dissociation as well as the dry reforming of methane reaction. Lastly, the coverage of Ni has a drastic effect on the ability of the system to dissociate methane and catalyze the dry re-forming process.« less
Xu, Kai; Wei, Dong-Qing; Chen, Xiang-Rong; Ji, Guang-Fu
2014-10-01
The Car-Parrinello molecular dynamics simulation was applied to study the thermal decomposition of solid phase nitromethane under gradual heating and fast annealing conditions. In gradual heating simulations, we found that, rather than C-N bond cleavage, intermolecular proton transfer is more likely to be the first reaction in the decomposition process. At high temperature, the first reaction in fast annealing simulation is intermolecular proton transfer leading to CH3NOOH and CH2NO2, whereas the initial chemical event at low temperature tends to be a unimolecular C-N bond cleavage, producing CH3 and NO2 fragments. It is the first time to date that the direct rupture of a C-N bond has been reported as the first reaction in solid phase nitromethane. In addition, the fast annealing simulations on a supercell at different temperatures are conducted to validate the effect of simulation cell size on initial reaction mechanisms. The results are in qualitative agreement with the simulations on a unit cell. By analyzing the time evolution of some molecules, we also found that the time of first water molecule formation is clearly sensitive to heating rates and target temperatures when the first reaction is an intermolecular proton transfer.
Catabolism of gastrin releasing peptide and substance P by gastric membrane-bound peptidases.
Bunnett, N W; Kobayashi, R; Orloff, M S; Reeve, J R; Turner, A J; Walsh, J H
1985-01-01
The catabolism of two gastric neuropeptides, the C-terminal decapeptide of gastrin releasing peptide-27 (GRP10) and substance P (SP), by membrane-bound peptidases of the porcine gastric corpus and by porcine endopeptidase-24.11 ("enkephalinase") has been investigated. GRP10 was catabolized by gastric muscle peptidases (specific activity 1.8 nmol min-1 mg-1 protein) by hydrolysis of the His8-Leu9 bond and catabolism was inhibited by phosphoramidon (I50 approx. 10(-8) M), a specific inhibitor of endopeptidase-24.11. The same bond in GRP10 was cleaved by purified endopeptidase-24.11, and hydrolysis was equally sensitive to inhibition by phosphoramidon. SP was catabolized by gastric muscle peptidases (specific activity 1.7 nmol min-1 mg-1 protein) by hydrolysis of the Gln6-Phe7, Phe7-Phe8 and Gly9-Leu10 bonds, which is identical to the cleavage of SP by purified endopeptidase-24.11. The C-terminal cleavage of GRP10 and SP would inactivate the peptides. It is concluded that a membrane-bound peptidase in the stomach wall catabolizes and inactivates GRP10 and SP and that, in its specificity and sensitivity to phosphoramidon, this peptidase resembles endopeptidase-24.11.
A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers
Yang, Youdi; Li, Shaopeng; Han, Buxing
2018-01-01
Ether bond activation is very interesting because the synthesis of many valuable compounds involves conversion of ethers. Moreover, C–O bond cleavage is also very important for the transformation of biomass, especially lignin, which abundantly contains ether bonds. Developing efficient methods to activate aromatic ether bonds has attracted much attention. However, this is a challenge because of the inertness of aryl ether bonds. We proposed a new route to activate aryl methyl ether bonds and synthesize aryl acetates by carbonylation of aryl methyl ethers. The reaction could proceed over RhCl3 in the presence of LiI and LiBF4, and moderate to high yields of aryl acetates could be obtained from transformation of various aryl methyl ethers with different substituents. It was found that LiBF4 could assist LiI to cleave aryl methyl ether bonds effectively. The reaction mechanism was proposed by a combination of experimental and theoretical studies. PMID:29795781
2014-01-01
Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C–N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C–O cleavage products are not formed under the reaction conditions. The observed reactivity is opposite to the electrophilicity of polar carbonyl groups resulting from the nX → π*C=O (X = O, N) conjugation. Mechanistic studies suggest that coordination of Sm to the carbonyl and then to Lewis basic nitrogen in the tetrahedral intermediate facilitate electron transfer and control the selectivity of the C–N/C–O cleavage. Notably, the method provides direct access to acyl-type radicals from unactivated amides under mild electron transfer conditions. PMID:24460078
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beste, Ariana; Overbury, Steven H.
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces
Beste, Ariana; Overbury, Steven H.
2016-03-09
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed productmore » selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Ultimately, subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.« less
Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces.
Beste, Ariana; Overbury, Steven H
2016-04-21
We have explored the dehydrogenation of methoxy on pristine and defective (111), (100), and (110) ceria surfaces with density functional methods. Methanol conversion is used as a probe reaction to understand structure sensitivity of the oxide catalysis. Differences in reaction selectivity have been observed experimentally as a function of crystallographically exposed faces and degree of reduction. We find that the barrier for carbon-hydrogen cleavage in methoxy is similar for the pristine and defective (111), (100), and (110) surfaces. However, there are large differences in the stability of the surface intermediates on the different surfaces. The variations in experimentally observed product selectivities are a consequence of the interplay between barrier controlled bond cleavage and desorption processes. Subtle differences in activation energies for carbon-hydrogen cleavage on the different crystallographic faces of ceria could not be correlated with structural or electronic descriptors.
Avula, Bharathi; Wang, Yan-Hong; Wang, Mei; Ali, Zulfiqar; Smillie, Troy J.; Zweigenbaum, Jerry; Khan, Ikhlas A.
2017-01-01
Yam (Dioscorea spp.) is an important edible tuber plant used for medicinal purposes to promote health and longevity in Chinese tradition. Steroidal saponins were reported to be the major physiologically active constituents in yams. In this current work, the structural characteristics of steroidal saponins in methanolic extracts from dried rhizomes of two Dioscorea species (D. villosa L. and D. cayenensis Lam.) and dietary supplements have been identified and analyzed using UHPLC/QTOF-MS in both negative and positive ion modes. The fragmentation patterns of reference standards were determined and the steroidal saponins in the extracts were identified or tentatively characterized from their retention times and mass spectra. The fragments produced by collision-induced dissociation (CID) revealed the characteristic cleavage of glycosidic bonds, and the fragmentation pattern provided structural information about the sugars. Twenty-one saponins, including four tentatively identified compounds, were detected in the crude extracts of two Dioscorea species. These saponins can be used to distinguish D. villosa from D. cayenensis. For example, asperin and gracillin are found only in D. cayenensis, and dioscoreavilloside A and B and parvifloside are only found in D. villosa. This can be used to determine the presence or absence of D. villosa in commercial products, which may help determine the spiking of plant material, and/or prevent the use of potentially mislabeled or misidentified “Dioscorea” material. The analytical method also provided an alternative, fast method for quality control of Dioscorea species in dietary supplements. Principal component analysis showed that Dioscorea species and commercial products were easily distinguished. From this a partial least squares model was constructed to determine what species are in different products. PMID:24510365
Kjaer, Troels R.; Hansen, Annette G.; Sørensen, Uffe B. S.; Holm, Anne T.; Sørensen, Grith L.; Jensenius, Jens C.
2013-01-01
The three human ficolins (H-, L-, and M-ficolins) and mannan-binding lectin are pattern recognition molecules of the innate immune system mediating activation of the lectin pathway of the complement system. These four human proteins bind to some microorganisms and may be involved in the resolution of infections. We investigated binding selectivity by examining the binding of M-ficolin to a panel of more than 100 different streptococcal strains (Streptococcus pneumoniae and Streptococcus mitis), each expressing distinct polysaccharide structures. M-ficolin binding was observed for three strains only: strains of the pneumococcal serotypes 19B and 19C and a single S. mitis strain expressing a similar polysaccharide structure. The bound M-ficolin, in association with MASP-2, mediated the cleavage of complement factor C4. Binding to the bacteria was inhibitable by N-acetylglucosamine, indicating that the interaction with the bacterial surface takes place via the fibrinogen-like domain. The common N-acetylmannosamine residue present in the structures of the four capsular polysaccharides of group 19 is linked via a phosphodiester bond. This residue is apparently not a ligand for M-ficolin, since the lectin binds to two of the group 19 polysaccharides only. M-ficolin bound strongly to serotype 19B and 19C polysaccharides. In contrast to those of serotypes 19A and 19F, serotype 19B and 19C polysaccharides contain an extra N-acetylmannosamine residue linked via glycoside linkage only. Thus, this extra residue seems to be the M-ficolin ligand. In conclusion, we were able to demonstrate specific binding of M-ficolin to some capsular polysaccharides of the opportunistic pathogen S. pneumoniae and of the commensal bacterium S. mitis. PMID:23184524
Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family.
Janeček, Štefan; Gabriško, Marek
2016-07-01
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Zhang, Kun-Di; Li, Wen; Wang, Ye-Fei; Zheng, Yan-Lin; Tan, Fang-Cheng; Ma, Xiao-Qing; Yao, Li-Shan; Bayer, Edward A; Wang, Lu-Shan; Li, Fu-Li
2018-05-14
Processive hydrolysis of crystalline cellulose by cellulases is a critical step for lignocellulose deconstruction. The classic Trichoderma reesei exoglucanase TrCel7A, which has a closed active-site tunnel, starts each processive run by threading the tunnel with a cellulose chain. Loop regions are necessary for tunnel conformation, resulting in weak thermostability of fungal exoglucanases. However, endoglucanase CcCel9A, from the thermophilic bacterium Clostridium cellulosi, comprises a glycoside hydrolase (GH) family 9 module with an open cleft and five carbohydrate-binding modules (CBMs) and hydrolyzes crystalline cellulose processively. How CcCel9A and other similar GH9 enzymes bind to the smooth surface of crystalline cellulose to achieve processivity is still unknown. Our results demonstrate that the C-terminal CBM3b and three CBMX2s enhance productive adsorption to cellulose, while the CBM3c adjacent to the GH9 is tightly bound to 11 glucosyl units, thereby extending the catalytic cleft to 17 subsites, which facilitates decrystallization by forming a supramodular binding surface. In the open cleft, the strong interaction forces between substrate-binding subsites and glucosyl rings enable cleavage of the hydrogen bonds and extraction of a single cellulose chain. In addition, subsite -4 is capable of drawing the chain to its favored location. Cellotetraose is released from the open cleft as the initial product to achieve high processivity, which is further hydrolyzed to cellotriose, cellobiose and glucose by the catalytic cleft of the endoglucanase. On this basis, we propose a wirewalking mode for processive degradation of crystalline cellulose by an endoglucanase, which provides insights for rational design of industrial cellulases.
Biochemical and kinetic analysis of the GH3 family beta-xylosidase from Aspergillus awamori X-100.
Eneyskaya, Elena V; Ivanen, Dina R; Bobrov, Kirill S; Isaeva-Ivanova, Lyudmila S; Shabalin, Konstantin A; Savel'ev, Andrew N; Golubev, Alexander M; Kulminskaya, Anna A
2007-01-15
The beta-xylosidase from Aspergillus awamori X-100 belonging to the family 3 glycoside hydrolase revealed a distinctive transglycosylating ability to produce xylooligosaccharides with degree of polymerization more than 7. In order to explain this fact, the enzyme has been subjected to the detailed biochemical study. The enzymatic hydrolysis of p-nitrophenyl beta-D-xylopyranoside was found to occur with overall retention of substrate anomeric configuration suggesting cleavage of xylosidic bonds through a double-displacement mechanism. Kinetic study with aryl beta-xylopyranosides substrates, in which leaving group pK(a)s were in the range of 3.96-10.32, revealed monotonic function of log(k(cat)) and no correlation of log(k(cat)/Km) versus pKa values indicating deglycosylation as a rate-limiting step for the enzymatic hydrolysis. The classical bell-shaped pH dependence of k(cat)/Km indicated two ionizable groups in the beta-xylosidase active site with apparent pKa values of 2.2 and 6.4. The kinetic parameters of hydrolysis, Km and k(cat), of p-nitrophenyl beta-D-1,4-xylooligosaccharides were very close to those for hydrolysis of p-nitrophenyl-beta-D-xylopyranoside. Increase of p-nitrophenyl-beta-D-xylopyranoside concentration up to 80 mM led to increasing of the reaction velocity resulting in k(cat)(app)=81 s(-1). Addition of alpha-methyl D-xylopyranoside to the reaction mixture at high concentration of p-nitrophenyl-beta-D-xylopyranoside (50 mM) caused an acceleration of the beta-xylosidase-catalyzed reactions and appearance of a new transglycosylation product, alpha-methyl D-xylopyranosyl-1,4-beta-D-xylopyranoside, that was identified by 1H NMR spectroscopy. The kinetic model suggested for the enzymatic reaction was consistent with the results obtained.
Bruña, Sonia; González-Vadillo, Ana Mª; Ferrández, Marta; Perles, Josefina; Montero-Campillo, M Merced; Mó, Otilia; Cuadrado, Isabel
2017-09-12
The formation of a family of silicon- and siloxane-bridged multiferrocenyl derivatives carrying different functional groups attached to silicon, including Fc 2 (CH 3 ) 3 C(CH 2 ) 2 SiCH[double bond, length as m-dash]CH 2 (5), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)SiCH[double bond, length as m-dash]CH 2 (6), Fc 2 (OH)SiCH[double bond, length as m-dash]CH 2 (7), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-Si(O-CH[double bond, length as m-dash]CH 2 )Fc 2 (8) and Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-SiFc 3 (9) is described. Silyl vinyl ether molecules 6, 8 and 9 and the heteroleptic vinylsilane 5 resulted from the competing metathesis reaction of lithioferrocene (FcLi), CH 2 [double bond, length as m-dash]CH-OLi or (CH 3 ) 3 C(CH 2 ) 2 Li with the corresponding multifunctional chlorosilane, Cl 3 SiCH[double bond, length as m-dash]CH 2 or Cl 3 Si-O-SiCl 3 . The last two organolithium species have been likely formed in situ by fragmentation of the tetrahydrofuran solvent. Diferrocenylvinyloxyvinylsilane 6 is noteworthy since it represents a rare example of a redox-active silyl mononomer in which two different C[double bond, length as m-dash]C polymerisable groups are directly connected to silicon. The molecular structures of the silicon-containing multiferrocenyl species 5, 6, 8 and 9 have been investigated by single-crystal X-ray diffraction studies, demonstrating the capture and storage processes of two ring fragments resulting from the cleavage of cyclic THF in redox-active and stable crystalline organometallic compounds. From electrochemical studies we found that by changing the anion of the supporting electrolyte from [PF 6 ] - to [B(C 6 F 5 ) 4 ] - , the redox behaviour of tetrametallic disiloxane 8 can be switched from a poorly resolved multistep redox process to four consecutive well-separated one-electron oxidations, corresponding to the sequential oxidation of the four ferrocenyl moieties.
Iodide-catalyzed synthesis of N-nitrosamines via C-N cleavage of nitromethane.
Zhang, Jie; Jiang, Jiewen; Li, Yuling; Wan, Xiaobing
2013-11-15
An iodide-catalyzed process to synthesize N-nitrosamines has been developed using TBHP as the oxidant. The mild catalytic system succeeded in cleaving the carbon-nitrogen bond in nitromethane. This methodology uses commercially available, inexpensive catalysts and oxidants and has a wide substrate scope and operational simplicity.
Heme-Containing Metal-Organic Frameworks for the Oxidative Degradation of Chemical Warfare Agents
2016-04-14
stability of the oxo without sacrificing its inherent reactivity, we have synthesized a new framework featuring fluorinated groups in the ortho...especially suitable for the degradation of electrophilic phosphorous center, leading to the cleavage of P-S or P-O bond present in VX nerve agents
Electronic modules easily separated from heat sink
NASA Technical Reports Server (NTRS)
1965-01-01
Metal heat sink and electronic modules bonded to a thermal bridge can be easily cleaved for removal of the modules for replacement or repair. A thin film of grease between a fluorocarbon polymer film on the metal heat sink and an adhesive film on the modules acts as the cleavage plane.
Mono- and tri-ester hydrogenolysis using tandem catalysis. Scope and mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohr, Tracy L.; Li, Zhi; Assary, Rajeev S.
The scope and mechanism of thermodynamically leveraged ester RC(O)O-R' bond hydrogenolysis by tandem metal triflate + supported Pd catalysts are investigated both experimentally and theoretically by DFT and energy span analysis. This catalytic system has a broad scope, with relative cleavage rates scaling as, tertiary 4 secondary 4 primary ester at 1 bar H-2, yielding alkanes and carboxylic acids with high conversion and selectivity. Benzylic and allylic esters display the highest activity. The rate law is nu = k[M(OTf )(n)](1)[ester](0)[H-2](0) with an H/D kinetic isotope effect = 6.5 +/- 0.5, implying turnover-limiting C-H scission following C-O cleavage, in agreement withmore » theory. Intermediate alkene products are then rapidly hydrogenated. Applying this approach with the very active Hf(OTf)(4) catalyst to bio-derived triglycerides affords near-quantitative yields of C-3 hydrocarbons rather than glycerol. From model substrates, it is found that RC(O)O-R' cleavage rates are very sensitive to steric congestion and metal triflate identity. For triglycerides, primary/external glyceryl CH2-O cleavage predominates over secondary/internal CH-O cleavage, with the latter favored by less acidic or smaller ionic radius metal triflates, raising the diester selectivity to as high as 48% with Ce(OTf)(3).« less
Lountos, George T; Austin, Brian P; Nallamsetty, Sreedevi; Waugh, David S
2009-01-01
Crystal structures of cleaved and uncleaved forms of the YscU cytoplasmic domain, an essential component of the type III secretion system (T3SS) in Yersinia pestis, have been solved by single-wavelength anomolous dispersion and refined with X-ray diffraction data extending up to atomic resolution (1.13 Å). These crystallographic studies provide structural insights into the conformational changes induced upon auto-cleavage of the cytoplasmic domain of YscU. The structures indicate that the cleaved fragments remain bound to each other. The conserved NPTH sequence that contains the site of the N263-P264 peptide bond cleavage is found on a β-turn which, upon cleavage, undergoes a major reorientation of the loop away from the catalytic N263, resulting in altered electrostatic surface features at the site of cleavage. Additionally, a significant conformational change was observed in the N-terminal linker regions of the cleaved and noncleaved forms of YscU which may correspond to the molecular switch that influences substrate specificity. The YscU structures determined here also are in good agreement with the auto-cleavage mechanism described for the flagellar homolog FlhB and E. coli EscU. PMID:19165725
Electron Detachment Dissociation of Underivatized Chloride-Adducted Oligosaccharides
NASA Astrophysics Data System (ADS)
Kornacki, James R.; Adamson, Julie T.; Håkansson, Kristina
2012-11-01
Chloride anion attachment has previously been shown to aid determination of saccharide anomeric configuration and generation of linkage information in negative ion post-source decay MALDI tandem mass spectrometry. Here, we employ electron detachment dissociation (EDD) and collision activated dissociation (CAD) for the structural characterization of underivatized oligosaccharides bearing a chloride ion adduct. Both neutral and sialylated oligosaccharides are examined, including maltoheptaose, an asialo biantennary glycan (NA2), disialylacto- N-tetraose (DSLNT), and two LS tetrasaccharides (LSTa and LSTb). Gas-phase chloride-adducted species are generated by negative ion mode electrospray ionization. EDD and CAD spectra of chloride-adducted oligosaccharides are compared to the corresponding spectra for doubly deprotonated species not containing a chloride anion to assess the role of chloride adduction in the stimulation of alternative fragmentation pathways and altered charge locations allowing detection of additional product ions. In all cases, EDD of singly chloridated and singly deprotonated species resulted in an increase in observed cross-ring cleavages, which are essential to providing saccharide linkage information. Glycosidic cleavages also increased in EDD of chloride-adducted oligosaccharides to reveal complementary structural information compared to traditional (non-chloride-assisted) EDD and CAD. Results indicate that chloride adduction is of interest in alternative anion activation methods such as EDD for oligosaccharide structural characterization.
Langston, James A.; Shaghasi, Tarana; Abbate, Eric; Xu, Feng; Vlasenko, Elena; Sweeney, Matt D.
2011-01-01
Several members of the glycoside hydrolase 61 (GH61) family of proteins have recently been shown to dramatically increase the breakdown of lignocellulosic biomass by microbial hydrolytic cellulases. However, purified GH61 proteins have neither demonstrable direct hydrolase activity on various polysaccharide or lignacious components of biomass nor an apparent hydrolase active site. Cellobiose dehydrogenase (CDH) is a secreted flavocytochrome produced by many cellulose-degrading fungi with no well-understood biological function. Here we demonstrate that the binary combination of Thermoascus aurantiacus GH61A (TaGH61A) and Humicola insolens CDH (HiCDH) cleaves cellulose into soluble, oxidized oligosaccharides. TaGH61A-HiCDH activity on cellulose is shown to be nonredundant with the activities of canonical endocellulase and exocellulase enzymes in microcrystalline cellulose cleavage, and while the combination of TaGH61A and HiCDH cleaves highly crystalline bacterial cellulose, it does not cleave soluble cellodextrins. GH61 and CDH proteins are coexpressed and secreted by the thermophilic ascomycete Thielavia terrestris in response to environmental cellulose, and the combined activities of T. terrestris GH61 and T. terrestris CDH are shown to synergize with T. terrestris cellulose hydrolases in the breakdown of cellulose. The action of GH61 and CDH on cellulose may constitute an important, but overlooked, biological oxidoreductive system that functions in microbial lignocellulose degradation and has applications in industrial biomass utilization. PMID:21821740
Cheng, Y D; Lin, S Y
2000-03-01
A novel Fourier transform infrared (FT-IR) microspectrophotometer equipped with differential scanning calorimetry (DSC) was used to investigate the kinetics of intramolecular cyclization of aspartame (APM) sweetener in the solid state under isothermal conditions. The thermal-dependent changes in the peak intensity of IR spectra at 1543, 1283, and 1259 cm(-1) were examined to explore the reaction. The results support that the intramolecular cyclization process in APM proceeded in three steps: the methoxyl group of ester was first thermolyzed to release methanol, then an acyl cation was attacked by the lone pair of electrons available on nitrogen by an S(N)1 pathway, and finally ring-closure occurred. The intramolecular cyclization of APM determined by this microscopic FT-IR/DSC system was found to follow zero-order kinetics after a brief induction period. The bond cleavage energy (259.38 kJ/mol) of thermolysis for the leaving group of -OCH(3), the bond conversion energy (328.88 kJ/mol) for the amide II NH band to DKP NH band, and the CN bond formation energy (326.93 kJ/mol) of cyclization for the DKP in the APM molecule were also calculated from the Arrhenius equation. The total activation energy of the DKP formation via intramolecular cyclization was 261.33 kJ/mol, calculated by the above summation of the bond energy of cleavage, conversion, and formation, which was near to the value determined by the DSC or TGA method. This indicates that the microscopic FT-IR/DSC system is useful as a potential tool not only to investigate the degradation mechanism of drugs in the solid state but also to directly predict the bond energy of the reaction.
Nachon, Florian; Asojo, Oluwatoyin A; Borgstahl, Gloria E O; Masson, Patrick; Lockridge, Oksana
2005-02-01
Organophosphorus poisons (OP) bind covalently to the active-site serine of cholinesterases. The inhibited enzyme can usually be reactivated with powerful nucleophiles such as oximes. However, the covalently bound OP can undergo a suicide reaction (termed aging) yielding nonreactivatable enzyme. In human butyrylcholinesterase (hBChE), aging involves the residues His438 and Glu197 that are proximal to the active-site serine (Ser198). The mechanism of aging is known in detail for the nerve gases soman, sarin, and tabun as well as the pesticide metabolite isomalathion. Aging of soman- and sarin-inhibited acetylcholinesterase occurs by C-O bond cleavage, whereas that of tabun- and isomalathion-inhibited acetylcholinesterase occurs by P-N and P-S bond cleavage, respectively. In this work, the crystal structures of hBChE inhibited by the ophthalmic reagents echothiophate (nonaged and aged) and diisopropylfluorophosphate (aged) were solved and refined to 2.1, 2.25, and 2.2 A resolution, respectively. No appreciable shift in the position of the catalytic triad histidine was observed between the aged and nonaged conjugates of hBChE. This absence of shift contrasts with the aged and nonaged crystal structures of Torpedo californica acetylcholinesterase inhibited by the nerve agent VX. The nonaged hBChE structure shows one water molecule interacting with Glu197 and the catalytic triad histidine (His438). Interestingly, this water molecule is ideally positioned to promote aging by two mechanisms: breaking either a C-O bond or a P-O bond. Pesticides and certain stereoisomers of nerve agents are expected to undergo aging by breaking the P-O bond.
Świerszcz, Iwona; Skurski, Piotr; Simons, Jack
2012-02-23
Ab initio electronic structure calculations were performed on a doubly charged polypeptide model H(+)-Lys(Ala)(19)-CO-CH(NH(2))-CH(2)-SS-CH(2)-(NH(2))CH-CO-(Ala)(19)-Lys-H(+) consisting of a C-terminal protonated Lys followed by a 19-Ala α-helix with a 20th Ala-like unit whose side chain is linked by a disulfide bond to a corresponding Ala-like unit connected to a second 19-Ala α-helix terminated by a second C-terminal-protonated Lys. The Coulomb potentials arising from the two charged Lys residues and dipole potentials arising from the two oppositely directed 72 D dipoles of the α-helices act to stabilize the SS bond's σ* orbital. The Coulomb potentials provide stabilization of 1 eV, while the two large dipoles generate an additional 4 eV. Such stabilization allows the SS σ* orbital to attach an electron and thereby generate disulfide bond cleavage products. Although calculations are performed only on SS bond cleavage, discussion of N-C(α) bond cleavage caused by electron attachment to amide π* orbitals is also presented. The magnitudes of the stabilization energies as well as the fact that they arise from Coulomb and dipole potentials are supported by results on a small model system consisting of a H(3)C-SS-CH(3) molecule with positive and negative fractional point charges to its left and right designed to represent (i) two positive charges ca. 32 Å distant (i.e., the two charged Lys sites of the peptide model) and (ii) two 72 D dipoles (i.e., the two α-helices). Earlier workers suggested that internal dipole forces in polypeptides could act to guide incoming free electrons (i.e., in electron capture dissociation (ECD)) toward the positive end of the dipole and thus affect the branching ratios for cleaving various bonds. Those workers argued that, because of the huge mass difference between an anion donor and a free electron, internal dipole forces would have a far smaller influence over the trajectory of a donor (i.e., in electron transfer dissociation (ETD)). The present findings suggest that, in addition to their effects on guiding electron or donor trajectories, dipole potentials (in combination with Coulomb potentials) also alter the energies of SS σ* and amide π* orbitals, which then affects the ability of these orbitals to bind an electron. Thus, both by trajectory-guiding and by orbital energy stabilization, Coulomb and dipole potentials can have significant influences on the branching ratios of ECD and ETC in which disulfide or N-C(α) bonds are cleaved. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vordtriede, Paul B.; Yoder, Marilyn D., E-mail: yoderm@umkc.edu
2008-07-01
The acidic polygalacturonase PehA from A. vitis has been crystallized. A molecular-replacement solution indicated a right-handed parallel β-helix fold. Polygalacturonases are pectate-degrading enzymes that belong to glycoside hydrolase family 28 and hydrolyze the α-1,4 glycosidic bond between neighboring galacturonasyl residues of the homogalacturonan substrate. The acidic polygalacturonase PehA from Agrobacterium vitis was overexpressed in Escherichia coli, where it accumulated in the periplasmic fraction. It was purified to homogeneity via a two-step chromatography procedure and crystallized using the hanging-drop vapour-diffusion technique. PehA crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 52.387, b = 62.738, c = 149.165more » Å, β = 89.98°. Crystals diffracted to 1.59 Å resolution and contained two molecules per asymmetric unit. An initial structure determination by molecular replacement indicated a right-handed parallel β-helix fold.« less
Horitani, Masaki; Byer, Amanda S; Shisler, Krista A; Chandra, Tilak; Broderick, Joan B; Hoffman, Brian M
2015-06-10
Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S-C5' bond, which creates the highly reactive 5'-deoxyadenosyl radical (5'-dAdo•), the same radical generated by homolytic Co-C bond cleavage in B12 radical enzymes. The SAM surrogate S-3',4'-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of (13)C, (2)H, and (15)N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 "tames" the 5'-dAdo• radical, preventing it from carrying out harmful side reactions: this "free radical" in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S-C5' bond, thereby enabling the 5'-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ∼0.6 Å toward the target and ∼1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5' radical, with "van der Waals control" of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature.
Horitani, Masaki; Byer, Amanda S.; Shisler, Krista A.; Chandra, Tilak; Broderick, Joan B.; Hoffman, Brian M.
2015-01-01
Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S–C5′ bond, which creates the highly reactive 5′-deoxyadenosyl radical (5′-dAdo•), the same radical generated by homolytic Co–C bond cleavage in B12 radical enzymes. The SAM surrogate S-3′,4′-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of 13C, 2H, and 15N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 “tames” the 5′-dAdo• radical, preventing it from carrying out harmful side reactions: this “free radical” in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S–C5′ bond, thereby enabling the 5′-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ~0.6 Å toward the target and ~1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5′ radical, with “van der Waals control” of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature. PMID:25923449
Vincent, B; Vincent, J P; Checler, F
1996-02-12
We have purified and characterized human brain endopeptidase 3.4.24.16. The enzyme behaved as a 72 kDa protein and belonged to the metalloprotease family. Human endopeptidase 3.4.24.16 cleaved neurotensin at a unique site at the Pro10-Tyr11 bond, leading to the formation of neurotensin(1-10) and neurotensin(11-13). The kinetic parameters displayed by human endopeptidase 3.4.24.16 towards a series of natural neuropeptides indicated that bradykinin was the most efficiently proteolysed. Angiotensin I, dynorphins 1-8 and 1-9 and substance P also behaved as good substrates while neuromedin N, angiotensin II, leucine and methionine enkephalin and neurokinin A resisted degradation by human endopeptidase 3.4.24.16. We have purified the porcine counterpart of endopeptidase 3.4.24.16 and compared its ability to cleave neurotensin with that of the enzyme from human origin. It appeared that, besides a major production of neurotensin(1-10), an additional formation of neurotensin(1-8) was observed with the pig enzyme, suggesting a cleavage of neurotensin not only at the Pro10-Tyr11 bond but also at the Arg8-Arg9 peptidyl bond. The latter cleavage appeared reminiscent of endopeptidase 3.4.24.15 since this peptidase was reported to cleave neurotensin at the Arg8-Arg9 bond. Our study indicated that neurotensin(1-10) formation by porcine endopeptidase 3.4.24.16 could be potently blocked with the selective endopeptidase 3.4.24.16 dipeptide inhibitor Pro-Ile without interfering with neurotensin(1-8) formation. By contrast, the formation of the latter product was highly potentiated by dithiothreitol and inhibited by the endopeptidase 3.4.24.15 inhibitor Cpp-Ala-Ala-Tyr-pAB, two effects that were not observed for neurotensin(1-10) production. Altogether, our results indicate that porcine endopeptidase 3.4.24.16 cleaves neurotensin at a unique site, leading to the formation of neurotensin(1-10) and that the production of neurotensin(1-8) is due to contaminating endopeptidase 3.4.24.15.
Teranishi, Ryoma; Matsuki, Ryota; Yuba, Eiji; Harada, Atsushi; Kono, Kenji
2016-01-01
For the delivery of doxorubicin (DOX), pH and redox dual responsive hollow nanocapsules were prepared through the stabilization of polymer vesicles, which spontaneously formed from polyamidoamine dendron-poly(l-lysine) (PAMAM dendron-PLL), by the introduction of disulfide (SS) bonds between PLLs. The SS-bonded nanocapsules exhibited a very slow release of DOX under an extracellular environment because the cationic PLL membrane acted as an electrostatic barrier against the protonated DOX molecules. However, increasing the glutathione concentration to the intracellular level facilitated the immediate release of DOX through the collapse of nanocapsules by the spontaneous cleavage of SS bonds. SS-bonded nanocapsules also escaped from the endosome by the buffering effect of PAMAM dendrons, and DOX delivery into the cytoplasm was achieved. Furthermore, DOX molecules delivered by SS-bonded nanocapsules exhibited an effective in vitro anticancer effect to HeLa cells. PMID:28042818
Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal
2016-09-02
Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.
Challa, Chandrasekhar; Varughese, Sunil; Suresh, Cherumuttathu H; Lankalapalli, Ravi S
2017-08-18
A transformation of the unstrained phenol substituted 3,3'-diindolylmethanes (DIPMs) to 2,3'-diindolylketones (DIKs) by double C-C single bond cleavage with associated rearrangements, triggered by phenyliodine(III) diacetate (PIDA), is reported. Density functional theory studies reveal a mechanism involving multiple "charge-switching" steps by synergistic involvement of the two indole units with overall low activation energy. The indole 'charge-switching' mechanism in DIPMs was further extended toward synthesis of a natural product motif cyclohepta[b]indole from biaryl appended DIBM.
Jia, Xiao Dong; Liu, Xiaofei; Yuan, Yu; Li, Pengfei; Hou, Wentao; He, Kaixuan
2018-06-03
A radical cation salt-initiated phosphorylation of N-benzylanilines was realized through the aerobic oxidation of sp3 C-H bond, providing a series of α-aminophosphonates in high yields. The investigation of the reaction scope revealed that this mild catalyst system is superior in good functional group tolerance and high reaction efficiency. The mechanistic study implied that the cleavage of the sp3 C-H bond was involved in the rate-determining step. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baiady, Nardeen; Padala, Prasanth; Mashahreh, Bayan; Cohen-Kfir, Einav; Todd, Emily A.; Du Pont, Kelly E.; Berndsen, Christopher E.; Wiener, Reuven
2016-01-01
The deubiquitinating enzyme associated molecule with the SH3 domain of STAM (AMSH) is crucial for the removal of ubiquitin molecules during receptor-mediated endocytosis and lysosomal receptor sorting. AMSH interacts with signal transducing adapter molecule (STAM) 1 or 2, which enhances the activity of AMSH through an unknown mechanism. This stimulation is dependent on the ubiquitin-interacting motif of STAM. Here we investigate the specific mechanism of AMSH stimulation by STAM proteins and the role of the STAM Vps27/Hrs/STAM domain. We show that, in the presence of STAM, the length of the ubiquitin chains affects the apparent cleavage rate. Through measurement of the chain cleavage kinetics, we found that, although the kcat of Lys63-linked ubiquitin chain cleavage was comparable for di- and tri-ubiquitin, the Km value was lower for tri-ubiquitin. This increased affinity for longer chains was dependent on the Vps27/Hrs/STAM domain of STAM and required that the substrate ubiquitin chain contain homogenous Lys63-linkages. In addition, STAM directed AMSH cleavage toward the distal isopeptide bond in tri-ubiquitin chains. Finally, we generated a structural model of AMSH-STAM to show how the complex binds Lys63-linked ubiquitin chains and cleaves at the distal end. These data show how a deubiquitinating enzyme-interacting protein dictates the efficiency and specificity of substrate cleavage. PMID:26601948
Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal
2016-10-04
Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nam, Wonwoo; Kim, Inwoo; Lim, Mi Hee; Choi, Hye Jin; Lee, Je Seung; Jang, Ho G
2002-05-03
The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.
Chen, Shu-Ting; Her, Guor-Rong
2014-09-16
A strategy based on a regioselective 6-O-desulfation reaction and negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)) was developed for the structural delineation of isomeric chondroitin sulfate oligosaccharides. Product ions resulting from the glycosidic cleavage provided information about the number of sulfate groups in each sugar residue. After the regioselective 6-O-desulfation reaction, the number of sulfate groups on each residue was obtained using a tandem mass spectrometry analysis of the reaction product. The sulfation pattern could be obtained based on the product ions of analytes before and after the desulfation reaction. The strategy was demonstrated using a series of tetrasaccharides prepared from shark cartilage chondroitin sulfate D. Among the 12 identified tetrasaccharides, six structures had not been reported before. Copyright © 2014 Elsevier B.V. All rights reserved.
[Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG's) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined bymore » isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.« less
[Induction of polygalacturonases important in pathogenicity of Pseudomonas solanacearum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
Recent studies on the importance of hydroxyproline-rich glycoproteins (HPRG`s) in the nature and function of plant cell walls have led to the question as to whether proteolytic enzymes are also involved in tissue maceration and act in concert with other cell wall degrading enzymes in the process. The primary objective of this research was to determine whether proteolytic enzymes, in combination with other enzymes, are involved in the degradation of plant cell walls and thus may be essential for pathogenesis by certain soft rot bacteria. The proteolytic enzymes of Erwinia carotovora subsp.carotovora (Ecc) grown on various media were examined bymore » isoelectrofocusing in polyacrylamide gels over a pH range of 3-10. In addition to the main protease present in culture filtrates, low concentrations of several other proteases were present in extracts from potato tubers infected by Ecc. These enzymes degraded gelatin, soluble collagen, and Hide Powder Azure, and showed weak activity on casein, but did not degrade insoluble collagen or elastin. Ecc proteases appear capable of degrading at least one type of cell wall protein in vitro, but we were unable to obtain evidence that these proteases can attack cell wall proteins in muro. The results indicate that some glycosidic alkali- labile bonds have to be broken befor Ecc proteases can degrade cell wall proteins. Thus, these proteases may play a role in cell wall degradation only when acting in concert with other enzymes that split glycosidic bonds.« less
Sentandreu, Rafael; Caminero, Antonio; Rentería, Itzel; León-Ramirez, Claudia; González-de-la-Vara, Luis; Valentin-Gomez, Eulogio; Ruiz-Herrera, José
2018-06-01
The walls of both, yeast and mycelial cells of Candida albicans possess a species-specific antigen that is recognized by a monoclonal antibody (MAb 3H8). This antigen can be extracted in the form of a very high Mr complex, close or over 106 Da, by treatment, with β-1,3-glucanase, β mercaptoethanol or dithothreitol, or mild alkali, but not by saturated hydrogen fluoride (HF) in pyridine, suggesting that the complex is bound to wall β-1,3 glucans, and to proteins by disulfide bonds, but not to β-1,6 glucans. Through its sensitivity to trypsin and different deglycosylation procedures, it was concluded that the epitope is associated to a glycoprotein containing N-glycosidic, but not O-glycosidic mannan moieties. By means of electrophoresis in polycrylamide gradient gels, followed by mass spectrometric analysis, the epitope was pinpointed to a very high MW complex containing Agglutinin-Like Sequence (ALS) family proteins, and other cytoplasmic, membrane and secreted proteins. The components of this complex are bound by unknown covalent bonds. The material extracted with β mercaptoethanol or dilute alkali appeared under the electron microscope as large aggregates in the form of spheroidal and mostly web-like structures of large sizes. These, and additional data, suggest that this protein complex may constitute an important part of the basic glycoprotein structure of C. albicans. The possibility that similar complexes exist in the wall of other fungi is an attractive, although yet untested possibility.
Khmelnitsky, Yuri L; Mozhaev, Vadim V; Cotterill, Ian C; Michels, Peter C; Boudjabi, Sihem; Khlebnikov, Vladimir; Madhava Reddy, M; Wagner, Gregory S; Hansen, Henrik C
2013-06-01
The structures of the two predominant metabolites (M4 and M5) of RVX-208, observed both in in vitro human and animal liver microsomal incubations, as well as in plasma from animal in vivo studies, were determined. A panel of biocatalytic systems was tested to identify biocatalysts suitable for milligram scale production of metabolite M4 from RVX-208. Rabbit liver S9 fraction was selected as the most suitable system, primarily based on pragmatic metrics such as catalyst cost and estimated yield of M4 (∼55%). Glucuronidation of RVX-208 catalyzed by rabbit liver S9 fraction was optimized to produce M4 in amounts sufficient for structural characterization. Structural studies using LC/MS/MS analysis and (1)H NMR spectroscopy showed the formation of a glycosidic bond between the primary hydroxyl group of RVX-208 and glucuronic acid. NMR results suggested that the glycosidic bond has the β-anomeric configuration. A synthetic sample of M4 confirmed the proposed structure. Metabolite M5, hypothesized to be the carboxylate of RVX-208, was prepared using human liver microsomes, purified by HPLC, and characterized by LC/MS/MS and (1)H NMR. The structure was confirmed by comparison to a synthetic sample. Both samples confirmed M5 as a product of oxidation of primary hydroxyl group of RVX-208 to carboxylic acid. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Shintani, Ryo; Takatsu, Keishi; Hayashi, Tamio
2008-03-20
A nonenzymatic kinetic resolution of tertiary homoallyl alcohols has been developed through a rhodium-catalyzed retro-allylation reaction under simple conditions. Selectivity factors of up to 12 have been achieved by employing (R)-H8-binap as the ligand, and the reaction can be conducted on a preparative scale.
Phenanthridine synthesis through iron-catalyzed intramolecular N-arylation of O-acetyl oxime.
Deb, Indubhusan; Yoshikai, Naohiko
2013-08-16
O-Acetyl oximes derived from 2'-arylacetophenones undergo N-O bond cleavage/intramolecular N-arylation in the presence of a catalytic amount of iron(III) acetylacetonate in acetic acid. In combination with the conventional cross-coupling or directed C-H arylation, the reaction offers a convenient route to substituted phenanthridines.
Catalytic routes and oxidation mechanisms in photoreforming of polyols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang
2016-12-01
Photocatalytic reforming of biomass-derived oxygenates leads to H 2 generation and evolution of CO 2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO 2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C 3–C 6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonylmore » group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.« less
From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization.
Picart, Pere; de María, Pablo Domínguez; Schallmey, Anett
2015-01-01
The set-up of biorefineries for the valorization of lignocellulosic biomass will be core in the future to reach sustainability targets. In this area, biomass-degrading enzymes are attracting significant research interest for their potential in the production of chemicals and biofuels from renewable feedstock. Glutathione-dependent β-etherases are emerging enzymes for the biocatalytic depolymerization of lignin, a heterogeneous aromatic polymer abundant in nature. They selectively catalyze the reductive cleavage of β-O-4 aryl-ether bonds which account for 45-60% of linkages present in lignin. Hence, application of β-etherases in lignin depolymerization would enable a specific lignin breakdown, selectively yielding (valuable) low-molecular-mass aromatics. Albeit β-etherases have been biochemically known for decades, only very recently novel β-etherases have been identified and thoroughly characterized for lignin valorization, expanding the enzyme toolbox for efficient β-O-4 aryl-ether bond cleavage. Given their emerging importance and potential, this mini-review discusses recent developments in the field of β-etherase biocatalysis covering all aspects from enzyme identification to biocatalytic applications with real lignin samples.
From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization
Picart, Pere; de María, Pablo Domínguez; Schallmey, Anett
2015-01-01
The set-up of biorefineries for the valorization of lignocellulosic biomass will be core in the future to reach sustainability targets. In this area, biomass-degrading enzymes are attracting significant research interest for their potential in the production of chemicals and biofuels from renewable feedstock. Glutathione-dependent β-etherases are emerging enzymes for the biocatalytic depolymerization of lignin, a heterogeneous aromatic polymer abundant in nature. They selectively catalyze the reductive cleavage of β-O-4 aryl-ether bonds which account for 45–60% of linkages present in lignin. Hence, application of β-etherases in lignin depolymerization would enable a specific lignin breakdown, selectively yielding (valuable) low-molecular-mass aromatics. Albeit β-etherases have been biochemically known for decades, only very recently novel β-etherases have been identified and thoroughly characterized for lignin valorization, expanding the enzyme toolbox for efficient β-O-4 aryl-ether bond cleavage. Given their emerging importance and potential, this mini-review discusses recent developments in the field of β-etherase biocatalysis covering all aspects from enzyme identification to biocatalytic applications with real lignin samples. PMID:26388858
NASA Astrophysics Data System (ADS)
Cao, Wenjin; Hewage, Dilrukshi; Yang, Dong-Sheng
2018-05-01
La atom reaction with isoprene is carried out in a laser-vaporization molecular beam source. The reaction yields an adduct as the major product and C—C cleaved and dehydrogenated species as the minor ones. La(C5H8), La(C2H2), and La(C3H4) are characterized with mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical computations. The MATI spectra of all three species exhibit a strong origin band and several weak vibronic bands corresponding to La-ligand stretch and ligand-based bend excitations. La(C5H8) is a five-membered metallacycle, whereas La(C2H2) and La(C3H4) are three-membered rings. All three metallacycles prefer a doublet ground state with a La 6s1-based valence electron configuration and a singlet ion. The five-membered metallacycle is formed through La addition and isoprene isomerization, whereas the two three-membered rings are produced by La addition and insertion, hydrogen migration, and carbon-carbon bond cleavage.
Heikkinen, Harri; Elder, Thomas; Maaheimo, Hannu; Rovio, Stella; Rahikainen, Jenni; Kruus, Kristiina; Tamminen, Tarja
2014-10-29
Chemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages. The homolytic cleavage/recoupling reactions were also studied by computational methods, which verified their thermodynamic feasibility. The presence of the tricin bound to wheat straw lignin was confirmed, and it was shown to participate in lignin reactions during the SE treatment. The preferred homolytic β-O-4 cleavage reaction was calculated to follow bond dissociation energies: G-O-G (guaiacyl) (69.7 kcal/mol) > G-O-S (syringyl) (68.4 kcal/mol) > G-O-T (tricin) (67.0 kcal/mol).
Subsite mapping of enzymes. Application of the depolymerase computer model to two alpha-amylases.
Allen, J D; Thoma, J A
1976-01-01
In the preceding paper (Allen and Thoma, 1976) we developed a depolymerase computer model, which uses a minimization routine to establish a subsite map for a depolymerase. In the present paper we show how the model is applied to experimental data for two alpha-amylases. Michaelis parameters and bond-cleavage frequencies for substrates of chain lengths up to twelve glucosyl units have been reported for Bacillus amyloliquefaciens, and a subsite map has been proposed for this enzyme [Thoma et al. (1971) J. Biol. Chem. 246, 5621-5635]. By applying the computer model to the experimental data, we have arrived at a ten-subsite map. We find that a significant improvement in this map is achieved by allowing the hydrolytic rate coefficient to vary as a function of the number of occupied subsites comprising the enzyme-binding region. The bond-cleavage frequencies, the enzyme is found to have eight subsites. A partial subsite map is arrived at, but the entire binding region cannot be mapped because Michaelis parameters are complicated by transglycosylation reactions. The hydrolytic rate coefficients for this enzyme are not constant. PMID:999630
NASA Astrophysics Data System (ADS)
Zhong, Guannan; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen
2017-07-01
γ-Glutamyltranspeptidases (γ-GTs), ubiquitous in glutathione metabolism for γ-glutamyl transfer/hydrolysis, are N-terminal nucleophile (Ntn)-hydrolase fold proteins that share an autoproteolytic process for self-activation. γ-GT homologues are widely present in Gram-positive actinobacteria where their Ntn-hydrolase activities, however, are not involved in glutathione metabolism. Herein, we demonstrate that the formation of 4-Alkyl-L-(dehydro)proline (ALDP) residues, the non-proteinogenic α-amino acids that serve as vital components of many bioactive metabolites found in actinobacteria, involves unprecedented Ntn-hydrolase activity of γ-GT homologue for C-C bond cleavage. The related enzymes share a key Thr residue, which acts as an internal nucleophile for protein hydrolysis and then as a newly released N-terminal nucleophile for carboxylate side-chain processing likely through the generation of an oxalyl-Thr enzyme intermediate. These findings provide mechanistic insights into the biosynthesis of various ALDP residues/associated natural products, highlight the versatile functions of Ntn-hydrolase fold proteins, and particularly generate interest in thus far less-appreciated γ-GT homologues in actinobacteria.
[Cleavage time for a hydrogen bond under a load].
Bespalov, S V; Tolpygo, K B
1993-01-01
Statistics of the hydrogen bond formation and break in a bundle of actin and myosin filaments realizing the attractive force in the sarcomere of a muscle is studied. Purely mechanical problem of the attractive-force formation and motion of myosin heads and action globules under their action is supplemented by accounting for the irreversible processes: 1. Thermal de-excitation of the latter in the chain of hydrogen bond during the elementary act of the ATP energy use resulting in fixing the extended actin filament. 2. Break of the hydrogen bonds, realizing this fixing, due to thermal fluctuations for the time tau. The average life-time turns out to be the order of time necessary for the movement of z-membrane sarcomere for the value of action filament extension delta 1, which is necessary for the process of muscle contraction to be continued.
Wang, Pengcheng; Williams, Renee T.; Guerrero, Candace R.; Ji, Debin; Wang, Yinsheng
2014-01-01
Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O2, N3 and O4) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3′-O3′ bond, the incorporation of an alkyl group to the O2 position and, to a much lesser extent, the O4 position, but not the N3 position of thymine, led to facile cleavage of the C3′-O3′ bond on the 3′ side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation. PMID:24664806
Isaac, R Elwyn; Johnson, Erik C; Audsley, Neil; Shirras, Alan D
2007-12-01
Recent studies have firmly established pigment dispersing factor (PDF), a C-terminally amidated octodecapeptide, as a key neurotransmitter regulating rhythmic circadian locomotory behaviours in adult Drosophila melanogaster. The mechanisms by which PDF functions as a circadian peptide transmitter are not fully understood, however; in particular, nothing is known about the role of extracellular peptidases in terminating PDF signalling at synapses. In this study we show that PDF is susceptible to hydrolysis by neprilysin, an endopeptidase that is enriched in synaptic membranes of mammals and insects. Neprilysin cleaves PDF at the internal Ser7-Leu8 peptide bond to generate PDF1-7 and PDF8-18. Neither of these fragments were able to increase intracellular cAMP levels in HEK293 cells cotransfected with the Drosophila PDF receptor cDNA and a firefly luciferase reporter gene, confirming that such cleavage results in PDF inactivation. The Ser7-Leu8 peptide bond was also the principal cleavage site when PDF was incubated with membranes prepared from heads of adult Drosophila. This endopeptidase activity was inhibited by the neprilysin inhibitors phosphoramidon (IC(50,) 0.15 micromol l(-1)) and thiorphan (IC(50,) 1.2 micromol l(-1)). We propose that cleavage by a member of the Drosophila neprilysin family of endopeptidases is the most likely mechanism for inactivating synaptic PDF and that neprilysin might have an important role in regulating PDF signals within circadian neural circuits.
Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism
Evans, W. C.; Fernley, H. N.; Griffiths, E.
1965-01-01
1. Phenanthrene is oxidatively metabolized by soil pseudomonads through trans-3,4-dihydro-3,4-dihydroxyphenanthrene to 3,4-dihydroxyphenanthrene, which then undergoes cleavage. 2. Some properties of the ring-fission product, cis-4-(1-hydroxynaphth-2-yl)-2-oxobut-3-enoic acid, are described. The Fe2+-dependent oxygenase therefore disrupts the bond between C-4 and the angular C of the phenanthrene nucleus. 3. An enzyme of the aldolase type converts the fission product into 1-hydroxy-2-naphthaldehyde (2-formyl-1-hydroxynaphthalene). An NAD-specific dehydrogenase is also present in the cell-free extract, which oxidizes the aldehyde to 1-hydroxy-2-naphthoic acid. This is then oxidatively decarboxylated to 1,2-dihydroxynaphthalene, thus allowing continuation of metabolism via the naphthalene pathway. 4. Anthracene is similarly metabolized, through 1,2-dihydro-1,2-dihydroxyanthracene to 1,2-dihydroxyanthracene, in which ring-fission occurs to give cis-4-(2-hydroxynaphth-3-yl)-2-oxobut-3-enoic acid. The position of cleavage is again at the bond between the angular C and C-1 of the anthracene nucleus. 5. Enzymes that convert the fission product through 2-hydroxy-3-naphthaldehyde into 2-hydroxy-3-naphthoic acid were demonstrated. The further metabolism of this acid is discussed. 6. The Fe2+-dependent oxygenase responsible for cleavage of all the o-dihydroxyphenol derivatives appears to be catechol 2,3-oxygenase, and is a constitutive enzyme in the Pseudomonas strains used. PMID:14342521
The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme
Díaz-Sánchez, Violeta; F. Estrada, Alejandro; Limón, M. Carmen; Al-Babili, Salim
2013-01-01
The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products. PMID:23893079
Abundance and reactivity of dibenzodioxocins in softwood lignin.
Argyropoulos, Dimitris S; Jurasek, Lubo; Kristofová, Lívia; Xia, Zhicheng; Sun, Yujun; Palus, Ernest
2002-02-13
To define the abundance and comprehend the reactivity of dibenzodioxocins in lignin, model compound studies, specific degradation experiments on milled wood lignin, and molecular modeling calculations have been performed. Quantitative (31)P NMR measurements of the increase of biphenolic hydroxyl groups formed after a series of alkaline degradations in the presence of hydrosulfide anions (kraft conditions) showed the presence of 3.7 dibenzodioxocin rings/100 C9 units in milled wood lignin. The DFRC degradation protocol (Derivatization Followed by Reductive Cleavage) was chosen as an independent means to estimate their abundance. Initial experiments with a dibenzodioxocin model compound, trans-6,7-dihydro-7-(4-hydroxy-3-methoxyphenyl)-4,9-dimethoxy-2,11-dipropyldibenzo[e,g][1,4]dioxocin-6-ylmethanol, showed that it is not cleaved under DFRC conditions, but rather it isomerizes into a cyclic oxepine structure. Steric effects precluded this isomerization from occurring when DFRC was applied to milled wood lignin. Instead, monoacetylated biphenolic moieties were released and quantified by (31)P NMR, at 4.3 dibenzodioxocin rings/100 C9 units. The dibenzodioxocin content in residual lignins isolated from kraft pulps delignified to various degrees showed that during pulp delignification, the initial rate of dibenzodioxocin removal was considerably greater than the cleavage rate of arylglycerol-beta-aryl ether bonds. The activation energy for the degradation of dibenzodioxocins under kraft conditions in milled wood lignin was 96 +/- 9 kJ/mol, similar to that of arylglycerol-beta-aryl ether bond cleavage.
Mitchell, Lorna J; Moody, Christopher J
2014-11-21
Alcohols are converted into to their corresponding carbonyl compounds using catalytic amounts of 1,4-hydroquinone with a copper nanoparticle electron transfer mediator with oxygen as the terminal oxidant in acetone as solvent under visible light irradiation. These conditions employing biorenewable hydroquinone as reagent were developed from initial experiments using stoichiometric amounts of 1,4-benzoquinone as oxidant. A range of benzylic and aliphatic primary and secondary alcohols are oxidized, affording the corresponding aldehydes or ketones in moderate to excellent yields. The methodology is also applicable to the oxidative degradation of lignin model compounds that undergo C-C bond cleavage to give simple aromatic compounds.
Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.
Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark
2015-03-21
Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.
Schnier, P D; Klassen, J S; Strittmatter, E F; Williams, E R
1998-09-23
The dissociation kinetics of a series of complementary and noncomplementary DNA duplexes, (TGCA)(2) (3-), (CCGG)(2) (3-), (AATTAAT)(2) (3-), (CCGGCCG)(2) (3-), A(7)*T(7) (3-), A(7)*A(7) (3-), T(7)*T(7) (3-), and A(7)*C(7) (3-) were investigated using blackbody infrared radiative dissociation in a Fourier transform mass spectrometer. From the temperature dependence of the unimolecular dissociation rate constants, Arrhenius activation parameters in the zero-pressure limit are obtained. Activation energies range from 1.2 to 1.7 eV, and preexponential factors range from 10(13) to 10(19) s(-1). Dissociation of the duplexes results in cleavage of the noncovalent bonds and/or cleavage of covalent bonds leading to loss of a neutral nucleobase followed by backbone cleavage producing sequence-specific (a - base) and w ions. Four pieces of evidence are presented which indicate that Watson-Crick (WC) base pairing is preserved in complementary DNA duplexes in the gas phase: i. the activation energy for dissociation of the complementary dimer, A(7)*T(7) (3-), to the single strands is significantly higher than that for the related noncomplementary A(7)*A(7) (3-) and T(7)*T(7) (3-) dimers, indicating a stronger interaction between strands with a specific base sequence, ii. extensive loss of neutral adenine occurs for A(7)*A(7) (3-) and A(7)*C(7) (3-) but not for A(7)*T(7) (3-) consistent with this process being shut down by WC hydrogen bonding, iii. a correlation is observed between the measured activation energy for dissociation to single strands and the dimerization enthalpy (-DeltaH(d)) in solution, and iv. molecular dynamics carried out at 300 and 400 K indicate that WC base pairing is preserved for A(7)*T(7) (3-) duplex, although the helical structure is essentially lost. In combination, these results provide strong evidence that WC base pairing can exist in the complete absence of solvent.
Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J
2017-06-01
Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.
Zechel, David L.; Jochimsen, Bjarne
2014-01-01
SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043