Science.gov

Sample records for glycosylated single-chain fv

  1. A collagen-binding EGFR single-chain Fv antibody fragment for the targeted cancer therapy.

    PubMed

    Liang, Hui; Li, Xiaoran; Chen, Bing; Wang, Bin; Zhao, Yannan; Zhuang, Yan; Shen, He; Zhang, Zhijun; Dai, Jianwu

    2015-07-10

    Collagen, a primary component of the extracellular matrix (ECM), is highly expressed in a variety of cancers and influences the tumor microenvironment by increasing the recruitment of macrophages and endothelial cells. Therefore, collagen is a highly promising target for cancer therapy. The collagen-binding domain (CBD) can dynamically bind to collagen and achieve the sustained release of CBD-fused protein in the collagen network. Here, we developed a collagen-binding epidermal growth factor receptor (EGFR) antibody fragment for targeting the collagen-rich ECM in tumors. The single chain fragment variable (scFv) of cetuximab was fused to CBD (CBD-scFv) and expressed in Pichia pastoris. CBD-scFv preserved the antigen binding domain and anti-tumor activity of cetuximab in vitro. Moreover, CBD-scFv displayed a collagen binding ability due to the function of CBD. In vivo experiments revealed that CBD-scFv bound to collagen and achieved sustained release in tumors. Furthermore, CBD-scFv significantly suppressed the growth of tumors in A431 xenografts. Therefore, CBD-scFv had a potential therapeutic value for the collagen-rich carcinomas. The specific target and sustained release of CBD-scFv in tumors could be a new approach for targeted drug delivery in cancer therapy.

  2. Paracrine inhibition of prion propagation by anti-PrP single-chain Fv miniantibodies.

    PubMed

    Donofrio, Gaetano; Heppner, Frank L; Polymenidou, Magdalini; Musahl, Christine; Aguzzi, Adriano

    2005-07-01

    Prion diseases are characterized by the deposition of PrP(Sc), an abnormal form of the cellular prion protein PrP(C). A growing body of evidence suggests that antibodies to PrP(C) can antagonize deposition of PrP(Sc). However, host tolerance hampers the induction of immune responses to PrP(C), and cross-linking of PrP(C) by bivalent anti-PrP antibodies is neurotoxic. In order to obviate these problems, we explored the antiprion potential of recombinant single-chain antibody (scFv) fragments. scFv fragments derived from monoclonal anti-PrP antibody 6H4, flagged with c-myc and His6 tags, were correctly processed and secreted by mammalian RD-4 rhabdomyosarcoma cells. When cocultured with cells secreting anti-PrP scFv, chronically prion-infected neuroblastoma cells ceased to produce PrP(Sc), even if antibody-producing cells were physically separated from target cells in transwell cultures. Expression of scFv with irrelevant specificity, or of similarly tagged molecules, was not curative. Therefore, eukaryotically expressed scFv exerts a paracrine antiprion activity. The effector functions encoded by immunoglobulin constant domains are unnecessary for this effect. Because of their small size and their monovalent binding, scFv fragments may represent candidates for gene transfer-based immunotherapy of prion diseases.

  3. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack.

    PubMed

    Tavladoraki, P; Benvenuto, E; Trinca, S; De Martinis, D; Cattaneo, A; Galeffi, P

    1993-12-01

    Expression of viral genes in transgenic plants is a very effective tool for attenuating plant viral infection. Nevertheless, the lack of generality and risk issues related to the expression of viral genes in plants might limit the exploitation of this strategy. Expression in plants of antibodies against essential viral proteins could provide an alternative approach to engineer viral resistance. Recently, expression of complete or engineered antibodies has been successfully achieved in plants. The engineered single-chain Fv antibody scFv (refs 10, 11) is particularly suitable for expression in plants because of its small size and the lack of assembly requirements. Here we present evidence that constitutive expression in transgenic plants of a scFv antibody, directed against the plant icosahedral tombusvirus artichoke mottled crinkle virus, causes reduction of infection incidence and delay in symptom development. PMID:8247156

  4. Structural dynamics of a single-chain Fv antibody against (4-hydroxy-3-nitrophenyl)acetyl.

    PubMed

    Sato, Yusui; Tanaka, Yusuke; Inaba, Satomi; Sekiguchi, Hiroshi; Maruno, Takahiro; Sasaki, Yuji C; Fukada, Harumi; Kobayashi, Yuji; Azuma, Takachika; Oda, Masayuki

    2016-10-01

    Protein structure dynamics are critical for understanding structure-function relationships. An antibody can recognize its antigen, and can evolve toward the immunogen to increase binding strength, in a process referred to as affinity maturation. In this study, a single-chain Fv (scFv) antibody against (4-hydroxy-3-nitrophenyl)acetyl, derived from affinity matured type, C6, was designed to comprise the variable regions of light and heavy chains connected by a (GGGGS)3 linker peptide. This scFv was expressed in Escherichia coli in the insoluble fraction, solubilized in the presence of urea, and refolded by stepwise dialysis. The correctly refolded scFv was purified, and its structural, physical, and functional properties were analyzed using analytical ultracentrifugation, circular dichroism spectrometry, differential scanning calorimetry, and surface plasmon resonance biosensor. Thermal stability of C6 scFv increased greatly upon antigen binding, due to favorable enthalpic contributions. Antigen binding kinetics were comparable to those of the intact C6 antibody. Structural dynamics were analyzed using the diffracted X-ray tracking method, showing that fluctuations were suppressed upon antigen binding. The antigen binding energy determined from the angular diffusion coefficients was in good agreement with that calculated from the kinetics analysis, indicating that the fluctuations detected at single-molecule level are well reflected by antigen binding events. PMID:27222286

  5. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv. PMID:26452845

  6. Multi-channeled single chain variable fragment (scFv) based microfluidic device for explosives detection.

    PubMed

    Charles, Paul T; Davis, Jasmine; Adams, André A; Anderson, George P; Liu, Jinny L; Deschamps, Jeffrey R; Kusterbeck, Anne W

    2015-11-01

    The development of explosives detection technologies has increased significantly over the years as environmental and national security agencies implement tighter pollution control measures and methods for improving homeland security. 2, 4, 6-Trinitrotoluene (TNT), known primarily as a component in munitions, has been targeted for both its toxicity and carcinogenic properties that if present at high concentrations can be a detriment to both humans, marine and plant ecosystems. Enabling end users with environmental detection and monitoring systems capable of providing real-time, qualitative and quantitative chemical analysis of these toxic compounds would be extremely beneficial. Reported herein is the development of a multi-channeled microfluidic device immobilized with single chain fragment variable (scFv) recombinant proteins specific for the explosive, TNT. Fluorescence displacement immunoassays performed under constant flow demonstrated trace level sensitivity and specificity for TNT. The utility of three multi-channeled devices immobilized with either (1) scFv recombinant protein, (2) biotinylated-scFv (bt-scFv) and (3) monoclonal anti-TNT (whole IgG molecule) were investigated and compared. Fluorescence dose response curves, crossreactivity measurements and limits of detection (LOD) for TNT were determined. Fluorescence displacement immunoassays for TNT in natural seawater demonstrated detection limits at sub-parts-per-billion levels (0.5 ppb) utilizing the microfluidic device with immobilized bt-scFv.

  7. Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To improve expression efficiency of the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse in the methylotrophic yeast Pichia pastoris (P. pastoris) GS115, the DNA sequence encoding for CBL-scFv was designed and synthesized based on the codon bias of P. p...

  8. Tumor Targeting by a Multivalent Single-Chain Fv (scFv) Anti-Lewis Y Antibody Construct

    PubMed Central

    Kelly, Marcus P.; Lee, F.-T.; Tahtis, Kiki; Power, Barbara E.; Smyth, Fiona E.; Brechbiel, Martin W.; Hudson, Peter J.

    2008-01-01

    Abstract The use of single-chain variable fragment (scFv) constructs has been investigated in cancer radioimmunotherapy (RIT) and radioimmunodetection, as these molecules permit rapid tumor penetration and clearance from the serum relative to whole IgG. Multimerization of scFv constructs has demonstrated improvements in functional affinity (i.e., avidity) and maximal tumor uptake. In this paper, we report the first biodistribution and pharmacokinetics studies of a noncovalent, direct-linked scFv (VL-0-VH) trimeric/tetrameric “multimer” of the anti-Lewis Y monoclonal antibody, hu3S193. The in vitro binding and in vivo biodistribution of the hu3S193 multimer was characterized alongside the hu3S193 F(ab′)2 following radiolabeling with the Indium-111 (111In) radioisotope. Immunoreactivities of the radiolabeled multimer and F(ab′)2 were 73% and 53.2%, and binding affinities (Ka) were 1.58 × 107 M−1 and 4.31 × 106 M−1 for the multimer and F(ab′)2, respectively. Maximal tumor uptake in Ley-positive MCF-7 breast cancer xenografted BALB/c nude mice was 12.6 ± 2.5 percent injected dose/per gram (%ID/g) at 6 hours postinjection for the multimer and 15.7 ± 2.1 %ID/g at 24 hours postinjection for the F(ab′)2. However, limited in vitro stability and high renal localization of radiolabeled constructs were observed, which, despite the observed tumor targeting of the hu3S193 multimer, most likely preclude its use in RIT and imaging modalities. PMID:18771345

  9. Development of Phage-Based Single Chain Fv Antibody Reagents for Detection of Yersinia pestis

    PubMed Central

    Shou, Yulin; Graves, Steven W.; Bradbury, Andrew R. M.

    2011-01-01

    Background Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1). F1 is encoded by the caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we screened a large single chain Fv antibody fragment (scFv) phage display library using purified F1 antigen as a selection target. Different forms of the selected antibodies were used to establish assays for recombinant F1 antigen and Y. pestis detection. Methods Phage antibody panning was performed against F1 in an automated fashion using the Kingfisher magnetic bead system. Selected scFvs were screened for F1-binding specificity by one-step alkaline phosphatase enzyme linked immunosorbant assay (ELISA), and assayed for binding to recombinant antigen and/or Y. pestis by flow cytometry and whole-cell ELISA. Results Seven of the eight selected scFvs were shown to specifically bind both recombinant F1 and a panel of F1-positive Yersinia cells. The majority of the soluble scFvs were found to be difficult to purify, unstable and prone to cross-reactivity with F1-negative Yersinia strains, whereas phage displayed scFvs were found to be easy to purify/label and remarkably stable. Furthermore direct fluorescent labeling of phage displaying scFv allowed for an easy one-step flow cytometry assay. Slight cross-reactivity was observed when fixed cells were used in ELISA. Conclusions Our high throughput methods of selection and screening allowed for time and cost effective discovery of seven scFvs specifically binding Y. pestis F1 antigen. We describe implementation of different methods for phage-based immunoassay. Based on the success of these methods and the proven stability of phage, we indicate that the use of phage-displayed, rather than phage-free proteins, might generally overcome the shortcomings of scFv

  10. Expression of functional single-chain variable domain fragment antibody (scFv) against mycotoxin zearalenone in Pichia pastoris.

    PubMed

    Chang, Hyun-Joo; Choi, Sung-Wook; Chun, Hyang Sook

    2008-10-01

    A synthetic gene coding for single-chain variable domain fragment antibody against mycotoxin zearalenone (scFv-ZEN) has been designed, constructed and expressed in Pichia pastoris. The native scFv-ZEN sequence was optimized to Pichia preference codon usage. The expression level of codon-optimized scFv-ZEN was slightly higher than that of native scFv-ZEN, and its maximum yield reached 328 mg total protein/l in flask culture. The binding activities of two selected clones to ZEN using surface plasmon resonance analysis were comparable or better than that of monoclonal antibody. Our results demonstrate the potential of soluble scFv-ZEN for developing a rapid and affordable immunoassay for detection of ZEN in food and feedstuff. PMID:18575809

  11. Development of single chain variable fragment (scFv) antibodies against surface proteins of ‘Ca. Liberibacter asiaticus’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ca. Liberibacter asiaticus’ is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vec...

  12. Redesigning of anti-c-Met single chain Fv antibody for the cytoplasmic folding and its structural analysis.

    PubMed

    Edwardraja, Selvakumar; Neelamegam, Rameshkumar; Ramadoss, Vijayaraj; Venkatesan, Subramanian; Lee, Sun-Gu

    2010-06-15

    Typically, single chain Fv antibodies are unable to fold properly under a reducing cytoplasm because of the reduction of disulfide bonds. The inability to fold limits both the production of the functional scFvs and their targeting against antigens, which are generally executed in a reducing cytoplasm. In this study, the target scFv CDR was grafted with stable human consensus framework sequences, which enabled the generation of a foldable scFv in a reducing cytoplasm of Escherichia coli. Additionally, the structural features affecting the folding efficiency of the engineered scFv were identified by analyzing the predicted structure. An anti-c-Met scFv, which was a cytoplasmic non-foldable protein, was redesigned as the model system. This study confirmed that the engineered anti-c-Met scFv was folded into its native form in the cytoplasm of E. coli BL21(DE3) without a significant loss in the specific binding activity against c-Met antigen. The structures of the wild-type anti-c-Met scFv and the engineered scFv were predicted using homology modeling. A comparative analysis based on the sequence and structure showed that the hydrophobicity of 12 solvent exposed residues decreased, and two newly formed salt bridges might have improved the folding efficiency of the engineered scFv under the reducing condition.

  13. A Combination of Structural and Empirical Analyses Delineates the Key Contacts Mediating Stability and Affinity Increases in an Optimized Biotherapeutic Single-chain Fv (scFv).

    PubMed

    Tu, Chao; Terraube, Virginie; Tam, Amy Sze Pui; Stochaj, Wayne; Fennell, Brian J; Lin, Laura; Stahl, Mark; LaVallie, Edward R; Somers, Will; Finlay, William J J; Mosyak, Lydia; Bard, Joel; Cunningham, Orla

    2016-01-15

    Fully-human single-chain Fv (scFv) proteins are key potential building blocks of bispecific therapeutic antibodies, but they often suffer from manufacturability and clinical development limitations such as instability and aggregation. The causes of these scFv instability problems, in proteins that should be theoretically stable, remains poorly understood. To inform the future development of such molecules, we carried out a comprehensive structural analysis of the highly stabilized anti-CXCL13 scFv E10. E10 was derived from the parental 3B4 using complementarity-determining region (CDR)-restricted mutagenesis and tailored selection and screening strategies, and carries four mutations in VL-CDR3. High-resolution crystal structures of parental 3B4 and optimized E10 scFvs were solved in the presence and absence of human CXCL13. In parallel, a series of scFv mutants was generated to interrogate the individual contribution of each of the four mutations to stability and affinity improvements. In combination, these analyses demonstrated that the optimization of E10 was primarily mediated by removing clashes between both the VL and the VH, and between the VL and CXCL13. Importantly, a single, germline-encoded VL-CDR3 residue mediated the key difference between the stable and unstable forms of the scFv. This work demonstrates that, aside from being the critical mediators of specificity and affinity, CDRs may also be the primary drivers of biotherapeutic developability.

  14. GPI-anchored single chain Fv - an effective way to capture transiently-exposed neutralization epitopes on HIV-1 envelope spike

    PubMed Central

    2010-01-01

    Background Identification of broad neutralization epitopes in HIV-1 envelope spikes is paramount for HIV-1 vaccine development. A few broad neutralization epitopes identified so far are present on the surface of native HIV-1 envelope spikes whose recognition by antibodies does not depend on conformational changes of the envelope spikes. However, HIV-1 envelope spikes also contain transiently-exposed neutralization epitopes, which are more difficult to identify. Results In this study, we constructed single chain Fvs (scFvs) derived from seven human monoclonal antibodies and genetically linked them with or without a glycosyl-phosphatidylinositol (GPI) attachment signal. We show that with a GPI attachment signal the scFvs are targeted to lipid rafts of plasma membranes. In addition, we demonstrate that four of the GPI-anchored scFvs, but not their secreted counterparts, neutralize HIV-1 with various degrees of breadth and potency. Among them, GPI-anchored scFv (X5) exhibits extremely potent and broad neutralization activity against multiple clades of HIV-1 strains tested. Moreover, we show that GPI-anchored scFv (4E10) also exhibited more potent neutralization activity than its secretory counterpart. Finally, we demonstrate that expression of GPI-anchored scFv (X5) in the lipid raft of plasma membrane of human CD4+ T cells confers long-term resistance to HIV-1 infection, HIV-1 envelope-mediated cell-cell fusion, and the infection of HIV-1 captured and transferred by human DCs. Conclusions Thus GPI-anchored scFv could be used as a general and effective way to identify antibodies that react with transiently-exposed neutralization epitopes in envelope proteins of HIV-1 and other enveloped viruses. The GPI-anchored scFv (X5), because of its breadth and potency, should have a great potential to be developed into anti-viral agent for HIV-1 prevention and therapy. PMID:20923574

  15. Recombinant single-chain Fv antibody fragment-alkaline phosphatase conjugate for one-step immunodetection in molecular hybridization.

    PubMed

    Muller, B H; Chevrier, D; Boulain, J C; Guesdon, J L

    1999-07-30

    Using phage-display technology, a recombinant single-chain Fv antibody fragment (scFv) was rapidly generated from the K16-16 hybridoma secreting mouse monoclonal antibody (MAb) that binds to acetylaminofluorene-labeled DNA (AAF-DNA). The selected A4 phage-scFv specifically bound to AAF-DNA. The anti-AAF scFv gene was then recloned into a fusion vector for the production of a hybrid protein comprising the antibody fragment fused to a potent bacterial alkaline phosphatase variant (PhoAv). The anti-AAF scFv-PhoAv hybrid protein was bifunctional and possessed both antigen binding capacity and PhoA activity. The recombinant conjugate was directly used, without further purification, for one-step immunodetection in dot-blot hybridization. The detection limit was identical and the test was quicker than the conventional two-step procedure with the purified anti-AAF MAb revealed with a secondary enzyme-labeled antibody. To assess the value of this new reagent for the immunodetection of genomic nucleic acids, genomic DNAs of Campylobacter jejuni and Campylobacter coli were then one-step immunodetected with non-purified recombinant scFv-PhoAv conjugate in a Southern-blot hybridization experiment. The present study shows that the genetic fusion with PhoAv provides a new tool for immunodetection which presents easier and quicker production and use with the same sensitivity and specificity as classical reagents. The recombinant anti-AAF scFv-PhoAv conjugate is a promising alternative reagent for applications involving the immunodetection of specific DNA or RNA sequences, such as the detection and characterization of microorganisms.

  16. Radioimmunoguided surgery in colorectal cancer using a genetically engineered anti-CEA single-chain Fv antibody.

    PubMed

    Mayer, A; Tsiompanou, E; O'Malley, D; Boxer, G M; Bhatia, J; Flynn, A A; Chester, K A; Davidson, B R; Lewis, A A; Winslet, M C; Dhillon, A P; Hilson, A J; Begent, R H

    2000-05-01

    In radioimmunoguided surgery (RIGS), a radiolabeled antibody is given i.v. before surgery and a hand-held gamma-detecting probe is used to locate tumor in the operative field. The rapid blood clearance and good tumor penetration of single-chain Fv antibodies (scFv) offer potential advantages over larger antibody molecules used previously for RIGS. A Phase I clinical trial is reported on RIGS with scFv (MFE-23-his) to carcinoembryonic antigen (CEA). Thirty-four patients undergoing surgery for colorectal carcinoma (17 primary tumors, 16 liver metastases, and 1 anastomotic recurrence) and 1 patient with liver metastases of pancreatic carcinoma received 125I-labeled MFE-23-his scFv (125I-MFE-23-his) 24, 48, 72, or 96 h before operation. 125I-MFE-23-his showed biexponential blood clearance with alpha and beta half-lives of 0.32 and 10.95 h, respectively. The abdomen was scanned during surgery with a hand-held gamma detecting probe (Neoprobe Corp.). 125I-MFE-23-his showed good tumor localization; comparison with histology showed overall accuracy of 84%. Highest median ratios for tumor:normal tissue and tumor:blood were recorded 72 or 96 h after scFv injection for patients undergoing resection of liver metastases. High levels of radioactivity were found in the kidneys. Five patients had grade 1 fever, and three had a grade 1 rise in blood pressure according to the Common Toxicity Criteria. There was a significant correlation between these ratios and those measured in excised tissues using a laboratory gamma counter (P < 0.001). MFE-23-his scFv antibody localizes in CEA-producing carcinomas. The short interval between injection and operation, the lack of significant toxicity, and the relatively simple production in bacteria make MFE-23-his scFv suitable for RIGS.

  17. Bacterial cytoplasm production of an EGFP-labeled single-chain Fv antibody specific for the HER2 human receptor.

    PubMed

    Lombardi, Alessio; Gianese, Giulio; Arcangeli, Caterina; Galeffi, Patrizia; Sperandei, Maria

    2011-12-01

    The human epidermal growth factor receptor 2 (HER2) is the main diagnostic marker of breast and ovary cancers. Here, to obtain a rapid and sensitive immunodiagnostic tool a single-chain antibody (scFv800E6) specific for the HER2 was fused to the N-terminus of the enhanced green fluorescent protein (EGFP) by a flexible linker. The soluble production of the novel scFv800E6-EGFP protein in the cytoplasm of Escherichia coli was investigated at different induction temperatures (25, 30 and 37°C); the intrinsic fluorescent properties and the binding activity to HER2 positive tumour cells of the fusion protein were analysed. Western blotting and fluorescence analysis of SDS-PAGE revealed the presence of two scFv800E6-EGFP forms, with different mobility and optical properties, their ratio depending on the induction temperature. The fluorescent form maintained the optical fluorescence properties of EGFP and exhibited a binding activity to the HER2-expressing cells comparable to that of the non-fused scFv800E6. In addition, to provide an insight into the effect of the induction temperature on the molecular structure, the folding of the fusion protein was assessed at atomic level by performing molecular dynamics simulations of the homology-derived model of scFv800E6-EGFP at 300 K and 310 K. The comparison of the data collected at these two temperatures revealed that the higher temperature affects specific structural elements. To improve the production of the soluble and functional scFv800E6-EGFP protein, "in silico" results could be utilised for ad hoc design of the molecular structure. PMID:22066531

  18. Development of high-affinity single chain Fv against foot-and-mouth disease virus.

    PubMed

    Jung, Joon-Goo; Jeong, Gu Min; Yim, Sung Sun; Jeong, Ki Jun

    2016-03-01

    Foot-and-mouth disease (FMD) is caused by the FMD virus (FMDV) and results in severe economic losses in livestock farming. For rapid FMD diagnostic and therapeutic purposes, an effective antibody against FMDV is needed. Here, we developed a high-affinity antibody against FMDV by FACS-based high throughput screening of a random library. With the FITC-conjugated VP1 epitope of FMDV and high-speed FACS sorting, we screened the synthetic antibody (scFv) library in which antibody variants are displayed in the periplasm of Escherichia coli. After three rounds of sorting, we isolated one antibody fragment (#138-scFv) against the VP1 epitope of FMDV. Next, to improve its affinity, a mutation library of #138-scFV was constructed by error-prone PCR and screened by FACS. After three rounds of sorting, we isolated one antibody (AM-32 scFv), which has a higher binding affinity (KD=42.7nM) than that of the original #138-scFv. We also confirmed that it specifically binds to whole inactivated FMDV. PMID:26827774

  19. Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile virus.

    PubMed

    Gould, L Hannah; Sui, Jianhua; Foellmer, Harald; Oliphant, Theodore; Wang, Tian; Ledizet, Michel; Murakami, Akikazu; Noonan, Kristin; Lambeth, Cassandra; Kar, Kalipada; Anderson, John F; de Silva, Aravinda M; Diamond, Michael S; Koski, Raymond A; Marasco, Wayne A; Fikrig, Erol

    2005-12-01

    West Nile virus has spread rapidly across the United States, and there is currently no approved human vaccine or therapy to prevent or treat disease. Passive immunization with antibodies against the envelope protein represents a promising means to provide short-term prophylaxis and treatment for West Nile virus infection. In this study, we identified a panel of 11 unique human single-chain variable region antibody fragments (scFvs) that bind the envelope protein of West Nile virus. Selected scFvs were converted to Fc fusion proteins (scFv-Fcs) and were tested in mice for their ability to prevent lethal West Nile virus infection. Five of these scFv-Fcs, 11, 15, 71, 85, and 95, protected 100% of mice from death when given prior to infection with virus. Two of them, 11 and 15, protected 80% of mice when given at days 1 and 4 after infection. In addition, four of the scFv-Fcs cross-neutralized dengue virus, serotype 2. Binding assays using yeast surface display demonstrated that all of our scFvs bind to sites within domains I and II of West Nile virus envelope protein. These recombinant human scFvs are potential candidates for immunoprophylaxis and therapy of flavivirus infections.

  20. Development of single-chain variable fragments (scFv) against influenza virus targeting hemagglutinin subunit 2 (HA2).

    PubMed

    Li, Tai-Wei; Cheng, Shu-Fang; Tseng, Yen-Tzu; Yang, Yu-Chih; Liu, Wen-Chun; Wang, Sheng-Cyuan; Chou, Mei-Ju; Lin, Yu-Jen; Wang, Yueh; Hsiao, Pei-Wen; Wu, Suh-Chin; Chang, Ding-Kwo

    2016-01-01

    Influenza A viruses (IAV) are widespread in birds and domestic poultry, occasionally causing severe epidemics in humans and posing health threats. Hence, the need to develop a strategy for prophylaxis or therapy, such as a broadly neutralizing antibody against IAV, is urgent. In this study, single-chain variable fragment (scFv) phage display technology was used to select scFv fragments recognizing influenza envelope proteins. The Tomlinson I and J scFv phage display libraries were screened against the recombinant HA2 protein (rHA2) for three rounds. Only the third-round elution sample of the Tomlinson J library showed high binding affinity to rHA2, from which three clones (3JA18, 3JA62, and 3JA78) were chosen for preparative-scale production as soluble antibody by E. coli. The clone 3JA18 was selected for further tests due to its broad affinity for influenza H1N1, H3N2 and H5N1. Simulations of the scFv 3JA18-HA trimer complex revealed that the complementarity-determining region of the variable heavy chain (VH-CDR2) bound the stem region of HA. Neutralization assays using a peptide derived from VH-CDR2 also supported the simulation model. Both the selected antibody and its derived peptide were shown to suppress infection with H5N1 and H1N1 viruses, but not H3N2 viruses. The results also suggested that the scFvs selected from rHA2 could have neutralizing activity by interfering with the function of the HA stem region during virus entry into target cells.

  1. Generation and characterization of a human single-chain fragment variable (scFv) antibody against cytosine deaminase from Yeast

    PubMed Central

    Mallano, Alessandra; Zamboni, Silvia; Carpinelli, Giulia; Santoro, Filippo; Flego, Michela; Ascione, Alessandro; Gellini, Mara; Tombesi, Marina; Podo, Franca; Cianfriglia, Maurizio

    2008-01-01

    Background The ability of cytosine deaminase (CD) to convert the antifungal agent 5-fluorocytosine (5-FC) into one of the most potent and largely used anticancer compound such as 5-fluorouracil (5-FU) raised considerable interest in this enzyme to model gene or antibody – directed enzyme-prodrug therapy (GDEPT/ADEPT) aiming to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. The selection and characterization of a human monoclonal antibody in single chain fragment (scFv) format represents a powerful reagent to allow in in vitro and in vivo detection of CD expression in GDEPT/ADEPT studies. Results An enzymatic active recombinant CD from yeast (yCD) was expressed in E. coli system and used as antigen for biopanning approach of the large semi-synthetic ETH-2 antibody phage library. Several scFvs were isolated and specificity towards yCD was confirmed by Western blot and ELISA. Further, biochemical and functional investigations demonstrated that the binding of specific scFv with yCD did not interfere with the activity of the enzyme in converting 5-FC into 5-FU. Conclusion The construction of libraries of recombinant antibody fragments that are displayed on the surface of filamentous phage, and the selection of phage antibodies against target antigens, have become an important biotechnological tool in generating new monoclonal antibodies for research and clinical applications. The scFvH5 generated by this method is the first human antibody which is able to detect yCD in routinary laboratory techniques without interfering with its enzymatic function. PMID:18783590

  2. Peptide docking of HIV-1 p24 with single chain fragment variable (scFv) by CDOCKER algorithm

    NASA Astrophysics Data System (ADS)

    Karim, Hana Atiqah Abdul; Tayapiwatana, Chatchai; Nimmanpipug, Piyarat; Zain, Sharifuddin M.; Rahman, Noorsaadah Abdul; Lee, Vannajan Sanghiran

    2014-10-01

    In search for the important residues that might have involve in the binding interaction between the p24 caspid protein of HIV-1 fragment (MET68 - PRO90) with the single chain fragment variable (scFv) of FAB23.5, modern computational chemistry approach has been conducted and applied. The p24 fragment was initially taken out from the 1AFV protein molecule consisting of both light (VL) and heavy (VH) chains of FAB23.5 as well as the HIV-1 caspid protein. From there, the p24 (antigen) fragment was made to dock back into the protein pocket receptor (antibody) by using the CDOCKER algorithm to conduct the molecular docking process. The score calculated from the CDOCKER gave 15 possible docked poses with various docked ligand's positions, the interaction energy as well as the binding energy. The best docked pose that imitates the original antigen's position was determined and further processed to the In Situ minimization to obtain the residues interaction energy as well as to observe the hydrogen bonds interaction in the protein-peptide complex. Based on the results demonstrated, the specific residues in the complex that have shown immense lower interaction energies in the 5Å vicinity region from the peptide are from the heavy chain (VH:TYR105) and light chain (VL: ASN31, TYR32, and GLU97). Those residues play vital roles in the binding mechanism of Antibody-Antigen (Ab-Ag) complex of p24 with FAB23.5.

  3. Development of single chain variable fragment (scFv) antibodies against surface proteins of 'Ca. Liberibacter asiaticus'.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Minenkova, Olga; Hartung, John

    2016-03-01

    'Candidatus Liberibacter asiaticus' is the causal agent of citrus huanglongbing, the most serious disease of citrus worldwide. We have developed and applied immunization and affinity screening methods to develop a primary library of recombinant single chain variable fragment (scFv) antibodies in an M13 vector, pKM19. The antibody population is enriched for antibodies that bind antigens of 'Ca. Liberibacter asiaticus'. The primary library has more than 10(7) unique antibodies and the genes that encode them. We have screened this library for antibodies that bind to specifically-chosen proteins that are present on the surface of 'Ca. Liberibacter asiaticus'. These proteins were used as targets for affinity-based selection of scFvs that bind to the major outer membrane protein, OmpA; the polysaccharide capsule protein KpsF; a protein component of the type IV pilus (CapF); and, two flagellar proteins FlhA and FlgI. These scFvs have been used in ELISA and dot blot assays against purified protein antigens and 'Ca. Liberibacter asiaticus' infected plant extracts. We have also recloned many of these scFvs into a plasmid expression vector designed for the production of scFvs. Screening of these scFvs was more efficient when phage-bound, rather than soluble scFvs, were used. We have demonstrated a technology to produce antibodies at will and against any protein target encoded by 'Ca. Liberibacter asiaticus'. Applications could include advanced diagnostic methods for huanglongbing and the development of immune labeling reagents for in planta applications. PMID:26744234

  4. Functional stability of 3D8 scFv, a nucleic acid-hydrolyzing single chain antibody, under different biochemical and physical conditions.

    PubMed

    Lee, Joungmin; Park, Hyunjoon; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Byun, Sung June; Lee, Sukchan; Kwon, Myung-Hee

    2015-12-30

    3D8 single-chain Fv (scFv) is a catalytic nucleic acid antibody with anti-viral activity against a broad spectrum of viruses. Here we investigated the functional stability of 3D8 scFv to provide a basis for engineering a 3D8 scFv derivative and for developing stable formulations with improved stability and potential use as an anti-viral agent. The stability of 3D8 scFv was assessed by measuring its DNA-hydrolyzing activity under different biochemical and physical conditions using a fluorescence resonance energy transfer (FRET)-based method. In addition, the anti-influenza (H9N2) effect of 3D8 scFv was evaluated in A549 cells. 3D8 scFv was stable at 50°C for 6h at pH 7.2, for 3 days at pH 4-10 at 37°C and 30 days at pH 4-8 at 37°C. The stability was not affected by a reducing condition, freeze-thawing for up to 30 cycles, or lyophilization. Evaluation of the anti-virus effect showed that cells treated with 32-128 units of 3D8 scFv showed a 50% decrease in influenza replication compared to untreated cells. Based on its enzymatic stability in various biochemical and physical environments, 3D8 scFv holds good potential for development as an anti-viral therapeutic. PMID:26536531

  5. Structure of a Single-Chain Fv Bound to the 17 N-Terminal Residues of Huntingtin Provides Insights into Pathogenic Amyloid Formation and Suppression

    PubMed Central

    De Genst, Erwin; Chirgadze, Dimitri Y.; Klein, Fabrice A.C.; Butler, David C.; Matak-Vinković, Dijana; Trottier, Yvon; Huston, James S.; Messer, Anne; Dobson, Christopher M.

    2015-01-01

    Huntington's disease is triggered by misfolding of fragments of mutant forms of the huntingtin protein (mHTT) with aberrant polyglutamine expansions. The C4 single-chain Fv antibody (scFv) binds to the first 17 residues of huntingtin [HTT(1-17)] and generates substantial protection against multiple phenotypic pathologies in situ and in vivo. We show in this paper that C4 scFv inhibits amyloid formation by exon1 fragments of huntingtin in vitro and elucidate the structural basis for this inhibition and protection by determining the crystal structure of the complex of C4 scFv and HTT(1-17). The peptide binds with residues 3–11 forming an amphipathic helix that makes contact with the antibody fragment in such a way that the hydrophobic face of this helix is shielded from the solvent. Residues 12–17 of the peptide are in an extended conformation and interact with the same region of another C4 scFv:HTT(1-17) complex in the asymmetric unit, resulting in a β-sheet interface within a dimeric C4 scFv:HTT(1-17) complex. The nature of this scFv–peptide complex was further explored in solution by high-resolution NMR and physicochemical analysis of species in solution. The results provide insights into the manner in which C4 scFv inhibits the aggregation of HTT, and hence into its therapeutic potential, and suggests a structural basis for the initial interactions that underlie the formation of disease-associated amyloid fibrils by HTT. PMID:25861763

  6. Successful engineering of a highly potent single-chain variable-fragment (scFv) bispecific antibody to target disialoganglioside (GD2) positive tumors.

    PubMed

    Cheng, Ming; Santich, Brian H; Xu, Hong; Ahmed, Mahiuddin; Huse, Morgan; Cheung, Nai-Kong V

    2016-06-01

    Engineering potent bispecific antibodies from single-chain variable fragments (scFv) remains difficult due to the inherent instability and insufficient binding of scFv's compared to their parental immunoglobulin format. Previously, we described a scFv-based bispecific antibody (scBA) against disialoganglioside (GD2) based on the anti-GD2 murine 5F11-scFv and the anti-CD3 huOKT3-scFv (5F11-scBA). In this study, we substituted the 5F11-scFv with the higher affinity (13-fold) hu3F8-scFv to form hu3F8-scBA. With this modification, hu3F8-scBA redirected T cells to kill GD2(+) cancer cell lines with up to 5,000-fold higher potency (femtomolar EC50) compared with 5F11-scBA (picomolar EC50) in cytotoxicity assays, even against target cells with low GD2 densities. Furthermore, hu3F8-scBA induced stronger T-cell activation than 5F11-scBA, as measured by Ca(2+) flux and cytokine release. Additionally, in vivo, hu3F8-scBA suppressed tumor growth and prolonged mice survival much more effectively than 5F11-scBA, in both neuroblastoma and melanoma xenograft models. We conclude that the functional properties of scBA's can be increased substantially by relatively modest increases in antigen affinity.

  7. High efficient expression of a functional humanized single-chain variable fragment (scFv) antibody against CD22 in Pichia pastoris.

    PubMed

    Zarei, Najmeh; Vaziri, Behrouz; Shokrgozar, Mohammad Ali; Mahdian, Reza; Fazel, Ramin; Khalaj, Vahid

    2014-12-01

    Single-chain variable fragments (scFvs) have recently emerged as attractive candidates in targeted immunotherapy of various malignancies. The anti-CD22 scFv is able to target CD22, on B cell surface and is being considered as a promising molecule in targeted immunotherapy of B cell malignancies. The recombinant anti-CD22 scFv has been successfully expressed in Escherichia coli; however, the insufficient production yield has been a major bottleneck for its therapeutic application. The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the production of a wide variety of recombinant proteins such as antibody fragments. In this study, we used the Pichia expression system to express a humanized scFv antibody against CD22. The full-length humanized scFv gene was codon optimized, cloned into the pPICZαA and expressed in GS115 strain. The maximum production level of the scFv (25 mg/L) were achieved at methanol concentration, 1 %; pH 6.0; inoculum density, OD600 = 3 and the induction time of 72 h. The correlation between scFv gene dosage and expression level was also investigated by real-time PCR, and the results confirmed the presence of such correlation up to five gene copies. Immunofluorescence and flow cytometry studies and Biacore analysis demonstrated binding to CD22 on the surface of human lymphoid cell line Raji and recombinant soluble CD22, respectively. Taken together, the presented data suggest that the Pichia pastoris can be considered as an efficient host for the large-scale production of anti-CD22 scFv as a promising carrier for targeted drug delivery in treatment of CD22(+) B cell malignancies. PMID:25239038

  8. Successful engineering of a highly potent single-chain variable-fragment (scFv) bispecific antibody to target disialoganglioside (GD2) positive tumors

    PubMed Central

    Cheng, Ming; Santich, Brian H.; Xu, Hong; Ahmed, Mahiuddin; Huse, Morgan; Cheung, Nai-Kong V.

    2016-01-01

    ABSTRACT Engineering potent bispecific antibodies from single-chain variable fragments (scFv) remains difficult due to the inherent instability and insufficient binding of scFv's compared to their parental immunoglobulin format. Previously, we described a scFv-based bispecific antibody (scBA) against disialoganglioside (GD2) based on the anti-GD2 murine 5F11-scFv and the anti-CD3 huOKT3-scFv (5F11-scBA). In this study, we substituted the 5F11-scFv with the higher affinity (13-fold) hu3F8-scFv to form hu3F8-scBA. With this modification, hu3F8-scBA redirected T cells to kill GD2(+) cancer cell lines with up to 5,000-fold higher potency (femtomolar EC50) compared with 5F11-scBA (picomolar EC50) in cytotoxicity assays, even against target cells with low GD2 densities. Furthermore, hu3F8-scBA induced stronger T-cell activation than 5F11-scBA, as measured by Ca2+ flux and cytokine release. Additionally, in vivo, hu3F8-scBA suppressed tumor growth and prolonged mice survival much more effectively than 5F11-scBA, in both neuroblastoma and melanoma xenograft models. We conclude that the functional properties of scBA's can be increased substantially by relatively modest increases in antigen affinity. PMID:27471647

  9. A neutralizing recombinant single chain antibody, scFv, against BaP1, A P-I hemorrhagic metalloproteinase from Bothrops asper snake venom.

    PubMed

    Castro, J M A; Oliveira, T S; Silveira, C R F; Caporrino, M C; Rodriguez, D; Moura-da-Silva, A M; Ramos, O H P; Rucavado, A; Gutiérrez, J M; Magalhães, G S; Faquim-Mauro, E L; Fernandes, I

    2014-09-01

    BaP1 is a P-I class snake venom metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomings by Bothrops asper, a medically important snake species in Central America and parts of South and North America. The main treatment for these accidents is the passive immunotherapy using antibodies raised in horses. In order to obtain more specific and batch-to-batch consistent antivenons, recombinant antibodies are considered a good option compared to animal immunization. We constructed a recombinant single chain variable fragment (scFv) from a monoclonal antibody against BaP1 (MABaP1) formerly secreted by a hybridoma clone. This recombinant antibody was cloned into pMST3 vector in fusion with SUMO protein and contains VH and VL domains linked by a flexible (G4S)3 polypeptide (scFvBaP1). The aim of this work was to produce scFvBaP1 and to evaluate its potential concerning the neutralization of biologically important activities of BaP1. The cytoplasmic expression of this construct was successfully achieved in C43 (DE3) bacteria. Our results showed that scFvBaP1-SUMO fusion protein presented an electrophoretic band of around 43 kDa from which SUMO alone corresponded to 13.6 kDa, and only the scFv was able to recognize BaP1 as well as the whole venom by ELISA. In contrast, neither an irrelevant scFv anti-LDL nor its MoAb partner recognized it. BaP1-induced fibrinolysis was significantly neutralized by scFvBaP1, but not by SUMO, in a concentration-dependent manner. In addition, scFvBaP1, as well as MaBaP1, completely neutralized in vivo hemorrhage, muscle necrosis, and inflammation induced by the toxin. Docking analyses revealed possible modes of interaction of the recombinant antibody with BaP1. Our data showed that scFv recognized BaP1 and whole B. asper venom, and neutralized biological effects of this SVMP. This scFv antibody can be used for understanding the molecular mechanisms of neutralization of SVMPs, and for exploring the potential of

  10. Cloning and expression in Escherichia coli of a human gelatinase B-inhibitory single-chain immunoglobulin variable fragment (scFv).

    PubMed

    Zhou, N; Paemen, L; Opdenakker, G; Froyen, G

    1997-09-15

    The murine monoclonal antibody REGA-3G12 selectively and specifically inhibits the activity of human gelatinase B. The cDNA fragments which encode the variable regions of the light and heavy chains were isolated by PCR-mediated cloning and sequenced. Single-chain Fv expression constructs for Escherichia coli were generated in which c-myc tag sequences were encoded. Inducible expression of the scFv and secretion to the periplasm were obtained with higher yields when the c-myc tag sequence was positioned at the amino-terminal side. The inhibitory activity of purified scFv on neutrophil gelatinase B was tested in a gelatin degradation assay and it was found to possess a similar specific activity as that of the intact monoclonal antibody and of the pepsin-clipped F(ab')2 derivative. This shows for the first time that inhibition of soluble enzymes with scFv is possible and opens new perspectives for the treatment of diseases with excessive and detrimental enzyme production in the host.

  11. Screening and identification of human ZnT8-specific single-chain variable fragment (scFv) from type 1 diabetes phage display library.

    PubMed

    Wu, Qian; Wang, Xiaodong; Gu, Yong; Zhang, Xiao; Qin, Yao; Chen, Heng; Xu, Xinyu; Yang, Tao; Zhang, Mei

    2016-07-01

    Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×10(8) clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D. PMID:27270580

  12. Novel anti-Tn single-chain Fv-Fc fusion proteins derived from immunized phage library and antibody Fc domain.

    PubMed

    Kubota, Tsuguo; Matsushita, Takefumi; Niwa, Rinpei; Kumagai, Izumi; Nakamura, Kazuyasu

    2010-09-01

    Tn[GalNAc(α1-3)-Ser/Thr] antigen, a tumor-associated carbohydrate antigen, is highly expressed in various tumors and an attractive candidate for cancer immunotherapy. The generation of an anti-Tn antibody is a first step toward the construction of new anticancer molecules. However, because of the simple and small conformation of the Tn molecule, it is difficult to generate an anti-Tn antibody for therapeutic use by conventional hybridoma technology. The purpose of this study was to isolate anti-Tn single-chain antibody fragments (scFv) by phage display technology from a novel immunised library, to attach an antibody constant region (Fc) and to convert them to scFv-Fc fusion proteins. The scFv-Fcs obtained here showed strict specificity against the Tn antigen and also showed antibody-dependent cellular cytotoxicity. These results suggest a potential use of this antibody generating method by phage display and indicate the potential of Fc-fusion proteins as therapeutic candidates.

  13. The sub-nanomolar binding of DNA-RNA hybrids by the single-chain Fv fragment of antibody S9.6.

    PubMed

    Phillips, Damilola D; Garboczi, David N; Singh, Kavita; Hu, Zonglin; Leppla, Stephen H; Leysath, Clinton E

    2013-08-01

    The monoclonal antibody S9.6 binds DNA-RNA hybrids with high affinity, making it useful in research and diagnostic applications, such as in microarrays and in the detection of R-loops. A single-chain variable fragment (scFv) of S9.6 was produced, and its affinities for various synthetic nucleic acid hybrids were measured by surface plasmon resonance (SPR). S9.6 exhibits dissociation constants of approximately 0.6 nM for DNA-RNA and, surprisingly, 2.7 nM for RNA-RNA hybrids that are AU-rich. The affinity of the S9.6 scFv did not appear to be strongly influenced by various buffer conditions or by ionic strength below 500 mM NaCl. The smallest epitope that was strongly bound by the S9.6 scFv contained six base pairs of DNA-RNA hybrid. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine.

  15. Generation of a Single Chain Antibody Variable Fragment (scFv) to Sense Selectively RhoB Activation

    PubMed Central

    Chinestra, Patrick; Olichon, Aurélien; Medale-Giamarchi, Claire; Lajoie-Mazenc, Isabelle; Gence, Rémi; Inard, Cyril; Ligat, Laetitia; Faye, Jean-Charles; Favre, Gilles

    2014-01-01

    Determining the cellular level of activated form of RhoGTPases is of key importance to understand their regulatory functions in cell physiopathology. We previously reported scFvC1, that selectively bind to the GTP-bound form of RhoA, RhoB and RhoC. In this present study we generate, by molecular evolution, a new phage library to isolate scFvs displaying high affinity and selectivity to RhoA and RhoB. Using phage display affinity maturation against the GTP-locked mutant RhoAL63, we isolated scFvs against RhoA active conformation that display Kd values at the nanomolar range, which corresponded to an increase of affinity of three orders of magnitude compared to scFvC1. Although a majority of these evolved scFvs remained selective towards the active conformation of RhoA, RhoB and RhoC, we identified some scFvs that bind to RhoA and RhoC but not to RhoB activated form. Alternatively, we performed a substractive panning towards RhoB, and isolated the scFvE3 exhibiting a 10 times higher affinity for RhoB than RhoA activated forms. We showed the peculiar ability of scFvE3 to detect RhoB but not RhoA GTP-bound form in cell extracts overexpressing Guanine nucleotide Exchange Factor XPLN as well as in EGF stimulated HeLa cells. Our results demonstrated the ability of scFvs to distinguish RhoB from RhoA GTP-bound form and provide new selective tools to analyze the cell biology of RhoB GTPase regulation. PMID:25365345

  16. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. PMID:26232710

  17. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody.

    PubMed

    Thammasit, Patcharin; Sangboonruang, Sirikwan; Suwanpairoj, Supattara; Khamaikawin, Wannisa; Intasai, Nutjeera; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Tragoolpua, Khajornsak

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer.

  18. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody

    PubMed Central

    Thammasit, Patcharin; Sangboonruang, Sirikwan; Suwanpairoj, Supattara; Khamaikawin, Wannisa; Intasai, Nutjeera; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Tragoolpua, Khajornsak

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is a human leukocyte surface molecule that is enriched on the surface of many cancer cells, and it plays an important role in proliferation and metastasis. In this study, we utilized the chimeric adenoviral vector Ad5/F35 carrying gene encoding scFv against EMMPRIN (scFv-M6-1B9) to down-regulate EMMPRIN cell surface expression and investigated programmed cell death response in colorectal cancer (CRC) cell, Caco-2. The scFv-M6-1B9 intrabody exhibits robust activity in reducing EMMPRIN cell surface expression. This approach led to the inducing of apoptosis, which was relative to the increasing of apoptotic bodies in sub-G1 peak, phosphatidylserine externalization, as well as TUNEL-positive cells. In addition, real-time RT-PCR and western blotting analysis indicated that apoptosis was enhanced through the mitochondrial pathway, a marked reduction of Bcl-2, leading to the translocation of cytochrome c and also the dramatic activation of caspase-3. Moreover, carcinoembryonic antigen (CEA), a tumor marker for CRC, was found to have significantly diminished in both secreted protein and mRNA levels. In conclusion, these findings suggest that EMMPRIN down-regulation by scFv-M6-1B9 intrabody has great potential in enhancing the efficacy of apoptosis induction through the mitochondrial pathway and in effecting a decline in the CEA level. Thus, its benefits could be applied to project the future prospects for targeted gene therapy and therapeutic application in monitoring colorectal cancer. PMID:25663946

  19. Human Single-Chain Fv Immunoconjugates Targeted to a Melanoma-Associated Chondroitin Sulfate Proteoglycan Mediate Specific Lysis of Human Melanoma Cells by Natural Killer Cells and Complement

    NASA Astrophysics Data System (ADS)

    Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan

    1999-02-01

    Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.

  20. Cross-Neutralization Activity of Single-Chain Variable Fragment (scFv) Derived from Anti-V3 Monoclonal Antibodies Mediated by Post-Attachment Binding.

    PubMed

    Maruta, Yasuhiro; Kuwata, Takeo; Tanaka, Kazuki; Alam, Muntasir; Valdez, Kristel Paola Ramirez; Egami, Yoshika; Suwa, Yoshiaki; Morioka, Hiroshi; Matsushita, Shuzo

    2016-09-21

    The V3 loop in the envelope (Env) of HIV-1 is one of the major targets of neutralizing antibodies. However, this antigen is hidden inside the Env trimer in most isolates and is fully exposed only during CD4-gp120 interaction. Thus, primary HIV-1 isolates are relatively resistant to anti-V3 antibodies because IgG is too large to access the V3 loop. To overcome this obstacle, we constructed single-chain variable fragments (scFvs) from anti-V3 monoclonal antibodies 0.5γ, 5G2, and 16G6. Enhanced neutralization by 0.5γ and 5G2 scFvs was observed in strains resistant to their IgG counterparts. Neutralization coverage by 0.5γ scFv reached up to 90% of the tested viruses (tier 2 and 3 classes). The temperature-regulated neutralization assay revealed that extensive cross-neutralization of 0.5γ scFv can be explained by post-attachment neutralization. Neutralization assay involving viruses carrying an inter-subunit disulfide bond (SOS virus) showed that the neutralization-susceptible timeframe after attachment was 60 to 120 min. These results indicate that the scFvs efficiently access the V3 loop and subsequently neutralize HIV-1, even after virus attachment to the target cells. Based on its broad and potent neutralizing activity, further development of anti-V3 scFv for therapeutic and preventive strategies is warranted.

  1. In vivo near-infrared fluorescence imaging of FAP-expressing tumors with activatable FAP-targeted, single-chain Fv-immunoliposomes.

    PubMed

    Rüger, Ronny; Tansi, Felista L; Rabenhold, Markus; Steiniger, Frank; Kontermann, Roland E; Fahr, Alfred; Hilger, Ingrid

    2014-07-28

    Molecular and cellular changes that precede the invasive growth of solid tumors include the release of proteolytic enzymes and peptides in the tumor stroma, the recruitment of phagocytic and lymphoid infiltrates and alteration of the extracellular matrix. The reactive tumor stroma consists of a large number of myofibroblasts, characterized by high expression of fibroblast activation protein alpha (FAP). FAP, a type-II transmembrane sialoglycoprotein is an attractive target in diagnosis and therapy of several pathologic disorders especially cancer. In the underlying work, a fluorescence-activatable liposome (fluorescence-quenched during circulation and fluorescence activation upon cellular uptake), bearing specific single-chain Fv fragments directed against FAP (scFv'FAP) was developed, and its potential for use in fluorescence diagnostic imaging of FAP-expressing tumor cells was evaluated by whole body fluorescence imaging. The liposomes termed anti-FAP-IL were prepared via post-insertion of ligand-phospholipid-conjugates into preformed DY-676-COOH-containing liposomes. The anti-FAP-IL revealed a homogeneous size distribution and showed specific interaction and binding with FAP-expressing cells in vitro. The high level of fluorescence quenching of the near-infrared fluorescent dye sequestered in the aqueous interior of the liposomes enables fluorescence imaging exclusively upon uptake and degradation by cells, which results in fluorescence activation. Only FAP-expressing cells were able to take up and activate fluorescence of anti-FAP-IL in vitro. Furthermore, anti-FAP-IL accumulated selectively in FAP-expressing xenograft models in vivo, as demonstrated by blocking experiments using free scFv'FAP. The local tumor fluorescence intensities were in agreement with the intrinsic degree of FAP-expression in different xenograft models. Thus, anti-FAP-IL can serve as a suitable in vivo diagnostic tool for pathological disorders accompanied by high FAP-expression.

  2. Escherichia coli expressing single-chain Fv on the cell surface as a potential prophylactic of porcine epidemic diarrhea virus.

    PubMed

    Pyo, Hyun-Mi; Kim, In-Joong; Kim, Seong-Hee; Kim, Hyun-Soo; Cho, Soo-Dong; Cho, In-Soo; Hyun, Bang-Hun

    2009-03-23

    Porcine epidemic diarrhea virus (PEDV) is a causative agent of severe diarrhea which leads to death in piglets. Because of the high mortality which is up to 100% in suckling piglets, PED is an important porcine disease in Korea. In this study, we developed a prophylactic candidate using single-chain Fvs to prevent the PEDV infection. ScFvs of mouse monoclonal antibody which was verified to neutralize PEDV was expressed in Escherichia coli expression system. After the confirmation of PEDV neutralizing activity of purified recombinant scFvs by VN test, scFvs were expressed on the surface of E. coli cells. The signal sequence and autotransporter beta domain of protease IgA (IgAP) of Neisseria gonorrhoeae were introduced to endow scFvs with the direction to the cell surface and the support as a transmembrane domain. 5x10(6)CFU of E. coli expressing scFvs against PEDV showed promising result of 94% foci reduction compared to wild type E. coli. This result demonstrated that E. coli expressing scFvs on the cell surface retained functional potency of parent antibody and therefore blocked PEDV infection into target cells in vitro. This in vitro assay result proposes the perspective of recombinant E. coli cells expressing scFvs as a novel prophylactic against PEDV infection. PMID:19428826

  3. Crystal structure of the anti-(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts.

    PubMed

    Boehm, M K; Corper, A L; Wan, T; Sohi, M K; Sutton, B J; Thornton, J D; Keep, P A; Chester, K A; Begent, R H; Perkins, S J

    2000-03-01

    MFE-23 is the first single-chain Fv antibody molecule to be used in patients and is used to target colorectal cancer through its high affinity for carcinoembryonic antigen (CEA), a cell-surface member of the immunoglobulin superfamily. MFE-23 contains an N-terminal variable heavy-chain domain joined by a (Gly(4)Ser)(3) linker to a variable light-chain (V(L)) domain (kappa chain) with an 11-residue C-terminal Myc-tag. Its crystal structure was determined at 2.4 A resolution by molecular replacement with an R(cryst) of 19.0%. Five of the six antigen-binding loops, L1, L2, L3, H1 and H2, conformed to known canonical structures. The sixth loop, H3, displayed a unique structure, with a beta-hairpin loop and a bifurcated apex characterized by a buried Thr residue. In the crystal lattice, two MFE-23 molecules were associated back-to-back in a manner not seen before. The antigen-binding site displayed a large acidic region located mainly within the H2 loop and a large hydrophobic region within the H3 loop. Even though this structure is unliganded within the crystal, there is an unusually large region of contact between the H1, H2 and H3 loops and the beta-sheet of the V(L) domain of an adjacent molecule (strands DEBA) as a result of intermolecular packing. These interactions exhibited remarkably high surface and electrostatic complementarity. Of seven MFE-23 residues predicted to make contact with antigen, five participated in these lattice contacts, and this model for antigen binding is consistent with previously reported site-specific mutagenesis of MFE-23 and its effect on CEA binding.

  4. Expression of V(H)-linker-V(L) orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1 in Escherichia coli.

    PubMed

    Liu, Aiping; Ye, Yang; Chen, Weifeng; Wang, Xiaohong; Chen, Fusheng

    2015-02-01

    Aflatoxin B1 (AFB1) is a toxic secondary metabolic product, which threatens human and animal health. Antibody is a key factor for immunoassay against toxic stuff like AFB1, and single-chain Fv antibody fragment (scFv) has become a popular format of genetically engineered antibody. In this study, four hybridoma cell lines against AFB1 were obtained, and then scFvs 2E6 derived from hybridoma cell line 2E6 were constructed in different V(H)/V(L) orientations. Subsequently, scFvs 2E6 were expressed in E. coli BL21(DE3) mainly in the form of inclusion body. SDS-PAGE, Western blot and ELISA were employed to characterize scFvs 2E6. The results revealed that the yield of inclusion body of scFvs 2E6 in either V(H)/V(L) orientation was similar; however, only the scFv in V(H)-linker-V(L) orientation showed anti-AFB1 bioactivity after refolding. The present study underscores the importance of choosing optimal V(H)/V(L) orientation for scFv construction, and scFv may be favorable for immunoassays in food industry. PMID:25540048

  5. The FGF-1-specific single-chain antibody scFv1C9 effectively inhibits breast cancer tumour growth and metastasis

    PubMed Central

    Shi, Hengliang; Fu, Chunling; Wang, Wei; Li, Yu; Du, Shuang; Cao, Rangjuan; Chen, Jingying; Sun, Dong; Zhang, Zhongyu; Wang, Xingzhi; Zhu, Xiaojuan

    2014-01-01

    Immunotherapy mediated by recombinant antibodies is an effective therapeutic strategy for a variety of cancers. In a previous study, we demonstrated that the fibroblast growth factor 1 (FGF-1)-specific recombinant antibody scFv1C9 arrests the cell cycle at the G0/G1 transition by blocking the intracrine FGF-1 pathway in breast cancer cells. Here, we further show that the overexpression of scFv1C9 in MCF-7 and MDA-MB-231 breast cancer cells by lentiviral infection resulted in decreased tumourigenicity, tumour growth and lung metastasis through FGF-1 neutralization. We found that scFv1C9 resulted in the up-regulation of p21, which in turn inhibited the expression of CDK2 and blocked cell cycle progression. To explore the potential role of scFv1C9 in vivo, we delivered the gene into solid tumours by electroporation, which resulted in significant inhibition of tumour growth. In tumour tissue sections, immunohistochemical staining of the cellular proliferation marker Ki-67 and the microvessel marker CD31 showed a reduction in the proliferative index and microvessel density, respectively, upon expression of scFv1C9 compared with the appropriate controls. Thus, our data indicate a central role for scFv1C9 in blocking the intracrine pathway of FGF-1, therefore, scFv1C9 could be developed in an effective therapeutic for breast cancer. PMID:25124967

  6. Characterization of the Native and Denatured Herceptin by ELISA and QCM using a High-Affinity Single Chain Fragment Variable (scFv) Recombinant Antibody

    PubMed Central

    Shang, Yuqin; Mernaugh, Ray

    2012-01-01

    Herceptin/Trastuzumab is a humanized IgG1κ light chain antibody used to treat some forms of breast cancer. A phage-displayed recombinant antibody library was used to obtain an scFv (designated 2B4) to a linear synthetic peptide representing Herceptin’s heavy chain CDR3. ELISAs and piezoimmunosensor/quartz crystal microbalance (QCM) assays were used to characterize 2B4-binding activity to both native and heat denatured Herceptin. The 2B4 scFv specifically bound to heat denatured Herceptin in a concentration dependent manner over a wide (35–220.5 nM) dynamic range. Herceptin denatures and forms significant amount of aggregates when heated. UV-Vis characterization confirms that Herceptin forms aggregates as the temperature used to heat Herceptin increases. QCM affinity assay shows that binding stoichiometry between 2B4 scFv and Herceptin follows a 1:2 relationship proving that 2B4 scFv binds strongly to the dimers of heat denatured Herceptin aggregates and exhibits an affinity constant of 7.17 × 1013 M−2. The 2B4-based QCM assay was more sensitive than the corresponding ELISA. Combining QCM with ELISA can be used to more fully characterize non-specific binding events in assays. The potential theoretical and clinical implications of these results and the advantages of using QCM to characterize human therapeutic antibodies in samples are also discussed. PMID:22934911

  7. Targeted delivery of a SNARE protease to sensory neurons using a single chain antibody (scFv) against the extracellular domain of P2X(3) inhibits the release of a pain mediator.

    PubMed

    Ma, Hui; Meng, Jianghui; Wang, Jiafu; Hearty, Stephen; Dolly, J Oliver; O'Kennedy, Richard

    2014-09-01

    P2X3 (P2X purinoceptor 3) is predominantly expressed on nociceptive sensory neurons and plays a crucial role in signalling leading to chronic inflammatory pain and some features of neuropathic pain. Thus it represents a potential target for pain therapeutics. BoNT/A (botulinum neurooxin type A) effectively relieves certain types of pain through inhibiting the neuronal release of pain peptides. A recombinant single-chain variable fragment (scFv) antibody designated MH7C was generated against the extracellular domain of P2X3 using phage display. The genes encoding the scFv and activated di-chain form of BoNT/A without the C-terminal-binding subdomain (LC-HN-HCN/A) were ligated and expressed in Escherichia coli cells as a composite fusion protein. The purified protein bound and entered P2X3-containing sensory neurons, cleaved synaptosomal-associated protein of 25 kDa and inhibited the release of a pain peptide. This novel fusion protein designated 'LC-HN-HCN/A-MH7C' has potential clinical applications in the treatment of chronic inflammatory and sympathetically maintained neuropathic pain.

  8. Reversible dimer formation and stability of the anti-tumour single-chain Fv antibody MFE-23 by neutron scattering, analytical ultracentrifugation, and NMR and FT-IR spectroscopy.

    PubMed

    Lee, Yie Chia; Boehm, Mark K; Chester, Kerry A; Begent, Richard H J; Perkins, Stephen J

    2002-06-28

    MFE-23 is a single chain Fv (scFv) antibody molecule used to target colorectal cancer through its high affinity for the tumour marker carcinoembryonic antigen (CEA). ScFv molecules are formed from peptide-linked antibody V(H) and V(L) domains, and many of these form dimers. Our recent crystal structure for MFE-23 showed that this formed an unusual symmetric back-to-back association of two monomers that is consistent with a domain-swapped diabody structure. Neutron scattering and modelling fits showed that MFE-23 existed as compact V(H)-V(L)-linked monomers at therapeutically relevant concentrations below 1 mg/ml. Size-exclusion gel chromatography showed that the monomeric and dimeric forms of MFE-23 could be separated, and that the proportions of these two forms depended on the starting MFE-23 concentration. Sedimentation equilibrium experiments by analytical ultracentrifugation at nine concentrations of MFE-23 indicated a reversible monomer-dimer self-association equilibrium with an association constant of 1.9x10(3)-2.2x10(3) M(-1). Sedimentation velocity experiments using the time derivative g(s(*)) method showed that MFE-23-His has a concentration-dependent weight average sedimentation coefficient that increased from 1.8 S for the monomer to about 3-6 S for the dimer. Both values agreed with those calculated from the MFE-23 crystal structure. In relation to the thermal stability of MFE-23, denaturation experiments by (1)H NMR and FT-IR spectroscopy showed that the molecule is stable up to 47 degrees C, after which denaturation was irreversible. MFE-23 dimerisation is discussed in terms of a new model for diabody structures, in which the V(H) and V(L) domains in the monomer are able to dissociate and reassociate to form a dimer, or diabody, but in which symmetric back-to-back contacts between the two monomers are formed. This dimerisation in solution is attributed to the complementary nature of the C-terminal surface of the MFE-23 monomer. Crystal structures for

  9. Single-chain Fv antibody fragments retain binding properties of the monoclonal antibody raised against peptide P1 of the human prion protein.

    PubMed

    Skrlj, Nives; Serbec, Vladka Curin; Dolinar, Marko

    2010-03-01

    Prion diseases are incurable neurodegenerative diseases that affect both humans and animals. The infectious agent is a pathogenic form of the prion protein that accumulates in brain as amyloids. Currently, there is neither cure nor reliable preclinical diagnostics on the market available. The growing number of reports shows that passive immunisation is one of the most promising strategies for prion disease therapy, where antibodies against prions may prevent and even cure the infection. Since antibodies are large molecules and, thus, might not be suitable for the therapy, different antibody fragments are a good alternative. Therefore, we have designed and prepared single-chain antibody fragments (scFvs) derived from the PrP(Sc)-specific murine monoclonal antibody V5B2. Using a new expression vector pMD204, we produced scFvs in two opposing chain orientations in the periplasm of Escherichia coli. Both recombinant antibody fragments retained the specificity of the parent antibody and one of these exhibited binding properties comparable to the corresponding murine Fab fragments with the affinity in nM range. Our monovalent antibody fragments are of special interest in view of possible therapeutic reagents for prion diseases as well as for development of a new generation of diagnostics. PMID:19597999

  10. Selection of single chain variable fragment (scFv) antibodies from a hyperimmunized phage display library for the detection of the antibiotic monensin.

    PubMed

    Makvandi-Nejad, Shokouh; Sheedy, Claudia; Veldhuis, Linda; Richard, Gabrielle; Hall, J Christopher

    2010-08-31

    Concerns over the occurrence of the veterinary antibiotic monensin (MW 671Da) in animal food products and water have given rise to the need for a sensitive and rapid detection method. In this study, four monensin-specific single chain variable fragments (scFvs) were isolated from a hyperimmunized phage-displayed library originating from splenocytes of a mouse immunized with monensin conjugated to bovine serum albumin (BSA). The coding sequences of the scFvs were engineered in the order 5'-V(L)-linker-V(H)-3', where the linker encodes for Gly(10)Ser(7)Arg. Three rounds of selection were performed against monensin conjugated to chicken ovalbumin (OVA) and keyhole limpet hemocyanin (KLH), alternately. In the third round of selection, two different strategies, which differed in the number of washes and the concentration of the coating conjugates, were used to select for specific binders to monensin. A total of 376 clones from round two and three were screened for their specific binding to monensin conjugates and positive clones were sequenced. It was found that 80% of clones from round three contained a stop codon. After removing the stop codon by site-directed mutagenesis, ten binders with different amino acid sequences were subcloned into the vector pMED2 for soluble expression in Escherichia coli HB2151. Four of these scFvs bound to free monensin as determined using competitive fluorescence polarization assays (C-FPs). IC(50) values ranged from 0.031 and 231 microM. A cross-reactivity assay against salinomycin, lasalocid A, kanamycin and ampicillin revealed that the two best binders were highly specific to monensin.

  11. Blocking monocyte transmigration in in vitro system by an anti-CD99 human antibody in single chain fragment variable (scFv) format. Efficient large scale purification of biological active scFv from inclusion bodies in E. coli expression system

    PubMed Central

    Moricoli, Diego; Muller, William A.; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Fiori, Valentina; Watson, Richard; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro

    2015-01-01

    Migration of leukocytes into a site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies under GMP conditions and hence, the absence of toxic reagents utilized for the solubilization and refolding steps of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting we herein describe an efficient and large scale production of the antibody fragments expressed in E.coli as insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signalling. Thanks to the original purification protocol that can be extended to other scFvs that are expressed as inclusion bodies in bacterial systems, the scFv anti-CD99 C7A herein described represents the first step towards the construction of new antibody therapeutic. PMID:24798881

  12. Specific single chain variable fragment (ScFv) antibodies to angiotensin II AT(2) receptor: evaluation of the angiotensin II receptor expression in normal and tumor-bearing mouse lung.

    PubMed

    Tamura, Masaaki; Yan, Heping; Zegarra-Moro, Ofelia; Edl, Jennifer; Oursler, Stephanie; Chard-Bergstrom, Cindy; Andrews, Gordon; Kanehira, Tsutomu; Takekoshi, Susumu; Mernaugh, Ray

    2008-08-01

    To gain insight into the mechanism by which angiotensin II type 2 receptor (AT(2)) regulates carcinogen-induced lung tumorigenesis, we have newly developed anti-AT(2) single chain variable fragment (ScFv) antibodies using a rodent phage-displayed recombinant antibody library with various peptide fragments of the receptor protein, and investigated the expression of the AT(2) receptor protein. The specificity of the antibodies was verified using AT(2) over-expressing COS-7 cells and AT(2) naturally expressing PC12W cells. In control wild type mouse lung, a stronger immunoreactivity was observed in bronchial epithelial cells. A moderate immunoreactivity was detected in pulmonary vascular walls and vascular endothelial cells. In the lungs possessing tobacco-specific nitrosamine (NNK)-induced tumors, significantly increased AT(2) and AT(1 )immunostaining was observed in adenomatous lesions. These data suggest that the increase in both receptors' expression in the alveolar epithelial cells may be accompanied with the onset of NNK-induced tumorigenesis and hence play important roles in lung tumorigenesis.

  13. Specific Single Chain Variable Fragment (ScFv) Antibodies to Angiotensin II AT2 Receptor: Evaluation of the Angiotensin II Receptor Expression in Normal and Tumor-bearing Mouse Lung

    PubMed Central

    Tamura, Masaaki; Yan, Heping; Zegarra-Moro, Ofelia; Edl, Jennifer; Oursler, Stephanie; Chard-Bergstrom, Cindy; Andrews, Gordon; Kanehira, Tsutomu; Takekoshi, Susumu; Mernaugh, Ray

    2010-01-01

    Summary To gain insight into the mechanism by which angiotensin II type 2 receptor (AT2) regulates carcinogen-induced lung tumorigenesis, we have newly developed anti-AT2 single chain variable fragment (ScFv) antibodies using a rodent phage-displayed recombinant antibody library with various peptide fragments of the receptor protein, and investigated the expression of the AT2 receptor protein. The specificity of the antibodies was verified using AT2 over-expressing COS-7 cells and AT2 naturally expressing PC12W cells. In control wild type mouse lung, a stronger immunoreactivity was observed in bronchial epithelial cells. A moderate immunoreactivity was detected in pulmonary vascular walls and vascular endothelial cells. In the lungs possessing tobacco-specific nitrosamine (NNK)-induced tumors, significantly increased AT2 and AT1 immunostaining was observed in adenomatous lesions. These data suggest that the increase in both receptors' expression in the alveolar epithelial cells may be accompanied with the onset of NNK-induced tumorigenesis and hence play important roles in lung tumorigenesis. PMID:18438736

  14. Method for preparation of single chain antibodies

    DOEpatents

    Cheung, Nai-Kong V.; Guo, Hong-fen

    2012-04-03

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  15. Structural and functional characterization of an anti-West Nile virus monoclonal antibody and its single-chain variant produced in glycoengineered plants.

    PubMed

    Lai, Huafang; He, Junyun; Hurtado, Jonathan; Stahnke, Jake; Fuchs, Anja; Mehlhop, Erin; Gorlatov, Sergey; Loos, Andreas; Diamond, Michael S; Chen, Qiang

    2014-10-01

    Previously, our group engineered a plant-derived monoclonal antibody (MAb pE16) that efficiently treated West Nile virus (WNV) infection in mice. In this study, we developed a pE16 variant consisting of a single-chain variable fragment (scFv) fused to the heavy chain constant domains (CH) of human IgG (pE16scFv-CH). pE16 and pE16scFv-CH were expressed and assembled efficiently in Nicotiana benthamiana ∆XF plants, a glycosylation mutant lacking plant-specific N-glycan residues. Glycan analysis revealed that ∆XF plant-derived pE16scFv-CH (∆XFpE16scFv-CH) and pE16 (∆XFpE16) both displayed a mammalian glycosylation profile. ∆XFpE16 and ∆XFpE16scFv-CH demonstrated equivalent antigen-binding affinity and kinetics, and slightly enhanced neutralization of WNV in vitro compared with the parent mammalian cell-produced E16 (mE16). A single dose of ∆XFpE16 or ∆XFpE16scFv-CH protected mice against WNV-induced mortality even 4 days after infection at equivalent rates as mE16. This study provides a detailed tandem comparison of the expression, structure and function of a therapeutic MAb and its single-chain variant produced in glycoengineered plants. Moreover, it demonstrates the development of anti-WNV MAb therapeutic variants that are equivalent in efficacy to pE16, simpler to produce, and likely safer to use as therapeutics due to their mammalian N-glycosylation. This platform may lead to a more robust and cost-effective production of antibody-based therapeutics against WNV infection and other infectious, inflammatory or neoplastic diseases. PMID:24975464

  16. Single-Chain Antibody Library

    DOE Data Explorer

    Baird, Cheryl

    Researchers at Pacific Northwest National Laboratory (PNNL) have constructed a nonimmune library consisting of 109 human antibody scFv fragments, which have been cloned and expressed on the surface of yeast. Nanomolar-affinity scFvs are routinely obtained by magnetic bead screening and flow cytometric sorting. The yeast library can be amplified 1010 fold without measurable loss of clonal diversity. This allows for indefinite expansion of the library. All scFv clones can be assessed directly on the yeast cell surface by immunofluorescent labeling and flow cytometry, obviating separate subcloning, expression, and purification steps. The ability to use multiplex library screening demonstrates the utility of this approach for high-throughput antibody isolation for proteomic applications. The yeast library may be used for research projects or teaching performed for U.S. Government purposes only. If you would like to request an aliquot of the single-chain antibody library for your research, please print and fill out the Materials Transfer Agreement (MTA) [PDF, 20K]. The website provides the contact information for mailing the MTA. [copied from http://www.sysbio.org/dataresources/singlechain.stm

  17. Creation and Evaluation of a Single-chain Antibody Tetramer that Targets Brain Endothelial Cells

    PubMed Central

    Zhang, Xiaobin; Wang, Xin Xiang; Shusta, Eric V.

    2014-01-01

    Antibodies that target and internalize into blood-brain barrier (BBB) endothelial cells offer promise as drug delivery agents. Previously, we identified a single-chain antibody (scFvA) capable of binding to the BBB. In an attempt to improve the binding and internalization properties of the single chain antibody (scFvA), a biotinylation tag (Avitag) was fused to scFvA and the protein secreted by yeast. The scFvA-Avitag could be biotinylated by yeast-displayed BirA enzyme and biotinylated scFvA-Avitag could be used to create scFv tetramers. Tetramerization of scFvA improved the internalization of scFvA into BBB endothelial cells, and biotinylated scFvA-Avitag could also be used to target streptavidin-coated quantum dots for BBB endothelial cell internalization. Perfusing the rat brain with scFvA-tetramer confirmed that the antigen targeted by scFvA is distributed on blood side of the BBB, suggesting the potential for downstream application of scFvA in brain-targeted drug delivery. PMID:24659822

  18. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  19. Immobilization strategies for single-chain antibody microarrays

    SciTech Connect

    Seurynck-Servoss, Shannon L.; Baird, Cheryl L.; Miller, Keith D.; Pefaur, Noah B.; Gonzalez, Rachel M.; Apiyo, David O.; Engelmann, Heather E.; Srinivastava, Sudhir; Kagan, Jacob; Rodland, Karin D.; Zangar, Richard C.

    2008-06-01

    Sandwich enzyme-linked immunosorbent assay (ELISA) microarrays have great potential for validating biomarkers of disease. ELISA relies on robust affinity reagents that retain activity when immobilized or when labeled for detection. Single-chain antibodies (scFv) are affinity reagents that have greater potential for high-throughput production than traditional immunoglobin G (IgG). Unfortunately, scFv are typically less stabile than IgG and not always suitable for use in sandwich ELISAs. We therefore investigated different immobilization strategies and scFv structural modifications to see if we could develop a more robust scFv reagent. Two promising strategies that emerged from these studies: 1) the precapture of epitope-tagged scFv using an anti-epitope antibody and 2) the direct printing of a thioredoxin/scFv fusion protein on glass slides. The use of either strategy improved the stability of immobilized scFv and increased the sensitivity of the scFv ELISA microarray assays, although the anti-epitope precapture method had a risk of reagent transfer. Using the direct printing method, we show that anti-PSA scFv are highly specific when tested against 21 different IgG-based assays. Finally, the scFv microarray PSA assay gave comparable results (R2 = 0.95) to a commercial 96-well ELISA when tested using serum samples. Overall, these results suggest that minor modifications of the scFv protein structure are sufficiently to produce reagents that are suitable for use in multiplex assay systems.

  20. Single Chain Variable Fragment against Nicastrin Inhibits the γ-Secretase Activity*

    PubMed Central

    Hayashi, Ikuo; Takatori, Sho; Urano, Yasuomi; Iwanari, Hiroko; Isoo, Noriko; Osawa, Satoko; Fukuda, Maiko A.; Kodama, Tatsuhiko; Hamakubo, Takao; Li, Tong; Wong, Philip C.; Tomita, Taisuke; Iwatsubo, Takeshi

    2009-01-01

    γ-Secretase is a membrane protein complex that catalyzes intramembrane proteolysis of a variety of substrates including the amyloid β precursor protein of Alzheimer disease. Nicastrin (NCT), a single-pass membrane glycoprotein that harbors a large extracellular domain, is an essential component of the γ-secretase complex. Here we report that overexpression of a single chain variable fragment (scFv) against NCT as an intrabody suppressed the γ-secretase activity. Biochemical analyses revealed that the scFv disrupted the proper folding and the appropriate glycosyl maturation of the endogenous NCT, which are required for the stability of the γ-secretase complex and the intrinsic proteolytic activity, respectively, implicating the dual role of NCT in the γ-secretase complex. Our results also highlight the importance of the calnexin cycle in the functional maturation of the γ-secretase complex. The engineered intrabodies may serve as rationally designed, molecular targeting tools for the discovery of novel actions of the membrane proteins. PMID:19684016

  1. Methods of preparing and using single chain anti-tumor antibodies

    DOEpatents

    Cheung, Nai-Kong; Guo, Hong-Fen

    2010-02-23

    This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.

  2. Targeting nanodisks via a single chain variable antibody - Apolipoprotein chimera

    SciTech Connect

    Iovannisci, David M.; Beckstead, Jennifer A.; Ryan, Robert O.

    2009-02-06

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that {alpha}-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.

  3. Advances in single chain technology.

    PubMed

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A

    2015-10-01

    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses. PMID:26505056

  4. Advances in single chain technology.

    PubMed

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A

    2015-10-01

    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses.

  5. Generation of intracellular single-chain antibodies directed against polypeptide GalNAc-transferase using a yeast two-hybrid system.

    PubMed

    Ma, Li; Koyota, Souichi; Myoen, Yu; Yamashita, Tetsuro; Yatabe, Naoki; Koizumi, Yukio; Aosasa, Masayoshi; Nishimichi, Norihisa; Matsuda, Haruo; Sugiyama, Toshihiro

    2012-02-24

    Mucin-type O-glycosylation is initiated by a large number of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNAc-T). Although extensive in vitro studies using synthetic peptides as substrates suggest that most GalNAc-Ts exhibit overlapping substrate specificities, many studies have shown that individual GalNAc-Ts play an important role in both animals and humans. Further investigations of the functions of individual GalNAc-Ts including in vivo substrate proteins and O-glycosylation sites are necessary. In this study, we attempted to generate single-chain variable fragment (scFv) antibodies to bind to GalNAc-T1, T2, T3, and T4 using a yeast two-hybrid system for screening a naive chicken scFv library. Several different scFvs were isolated against a single target GalNAc-T isoform specifically under expressed in yeast and were confirmed to be expressed in mammalian cells and to retain binding activity inside the cells. Generation of these specific antibodies provides an opportunity to modify and exploit antibodies for specific applications in investigations of GalNAc-T functions.

  6. Identification of internalizing human single chain antibodies targeting brain tumor sphere cells

    PubMed Central

    Zhu, Xiaodong; Bidlingmaier, Scott; Hashizume, Rintaro; James, C. David; Berger, Mitchel S.; Liu, Bin

    2010-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain tumor and there is no curative treatment to date. Resistance to conventional therapies and tumor recurrence pose major challenges to treatment and management of this disease, and therefore new therapeutic strategies need to be developed. Previous studies by other investigators have shown that a subpopulation of GBM cells can grow as neurosphere-like cells when cultured in restrictive media, and exhibit enhanced tumor initiating ability and resistance to therapy. We report here the identification of internalizing human single chain antibodies (scFvs) targeting GBM tumor sphere cells. We selected a large naive phage antibody display library on the glycosylation-dependent CD133 epitope-positive subpopulation of GBM cells grown as tumor spheres and identified internalizing scFvs that target tumor sphere cells broadly, as well as scFvs that target the CD133 positive subpopulation. These scFvs were found to be efficiently internalized by GBM tumor sphere cells. One scFv GC4 inhibited self-renewal of GBM tumor sphere cells in vitro. We have further developed a full-length human IgG1 based on this scFv and found that it potently inhibits proliferation of GBM tumor sphere cells and GBM cells grown in regular non-selective media. Taken together, these results show that internalizing human scFvs targeting brain tumor sphere cells can be readily identified from a phage antibody display library, which could be useful for further development of novel therapies that target subpopulations of GBM cells to combat recurrence and resistance to treatment. PMID:20587664

  7. Use of Single-Chain Antibody Derivatives for Targeted Drug Delivery

    PubMed Central

    Safdari, Yaghoub; Ahmadzadeh, Vahideh; Khalili, Masoumeh; Jaliani, Hossein Zarei; Zarei, Vahid; Erfani-Moghadam, Vahid

    2016-01-01

    Single-chain antibodies (scFvs), which contain only the variable domains of full-length antibodies, are relatively small molecules that can be used for selective drug delivery. In this review, we discuss how scFvs help improve the specificity and efficiency of drugs. Small interfering RNA (siRNA) delivery using scFv-drug fusion peptides, siRNA delivery using scFv-conjugated nanoparticles, targeted delivery using scFv-viral peptide-fusion proteins, use of scFv in fusion with cell-penetrating peptides for effective targeted drug delivery, scFv-mediated targeted delivery of inorganic nanoparticles, scFv-mediated increase of tumor killing activity of granulocytes, use of scFv for tumor imaging, site-directed conjugation of scFv molecules to drug carrier systems, use of scFv to relieve pain and use of scFv for increasing drug loading efficiency are among the topics that are discussed here. PMID:27249008

  8. Targeting of influenza epitopes to murine CR1/CR2 using single-chain antibodies.

    PubMed

    Prechl, J; Tchorbanov, A; Horváth, A; Baiu, D C; Hazenbos, W; Rajnavölgyi, E; Kurucz, I; Capel, P J; Erdei, A

    1999-05-01

    Single-chain variable fragment (scFv) antibodies are genetically engineered molecules comprising the variable regions responsible for specific binding. scFv that recognize certain surface molecules on professional antigen presenting cells could therefore be suitable for targeting Ag to these cells. We have produced an scFv that recognizes murine complement receptors 1 and 2 (CR1/CR2) and genetically fused it with different numbers of influenza hemagglutinin peptides which contain both B and T cell epitopes. The CR1/CR2 specific hybridoma 7G6 was used for RT-PCR to obtain the variable regions, which were then combined to create an scFv fragment. The influenza hemagglutinin intersubunit peptide HA317-41 (IP) was engineered to the N terminus of the scFv in one, two or three copies. The so obtained IP(1-3)7G6scFv still bound the complement receptors; the peptides in the construct were recognized by the peptide specific monoclonal IP2-11-1 on Western blots and ELISAs. The CR1/CR2 positive B lymphomas A20 and 2PK3 presented the peptide to an I-Ed restricted IP specific T cell hybridoma more efficiently when incubated with the IP(1)7G6 constructs as compared to the free peptide. The results suggest that scFv could work as targeting devices in subunit vaccines.

  9. Targeting of influenza epitopes to murine CR1/CR2 using single-chain antibodies.

    PubMed

    Prechl, J; Tchorbanov, A; Horváth, A; Baiu, D C; Hazenbos, W; Rajnavölgyi, E; Kurucz, I; Capel, P J; Erdei, A

    1999-05-01

    Single-chain variable fragment (scFv) antibodies are genetically engineered molecules comprising the variable regions responsible for specific binding. scFv that recognize certain surface molecules on professional antigen presenting cells could therefore be suitable for targeting Ag to these cells. We have produced an scFv that recognizes murine complement receptors 1 and 2 (CR1/CR2) and genetically fused it with different numbers of influenza hemagglutinin peptides which contain both B and T cell epitopes. The CR1/CR2 specific hybridoma 7G6 was used for RT-PCR to obtain the variable regions, which were then combined to create an scFv fragment. The influenza hemagglutinin intersubunit peptide HA317-41 (IP) was engineered to the N terminus of the scFv in one, two or three copies. The so obtained IP(1-3)7G6scFv still bound the complement receptors; the peptides in the construct were recognized by the peptide specific monoclonal IP2-11-1 on Western blots and ELISAs. The CR1/CR2 positive B lymphomas A20 and 2PK3 presented the peptide to an I-Ed restricted IP specific T cell hybridoma more efficiently when incubated with the IP(1)7G6 constructs as compared to the free peptide. The results suggest that scFv could work as targeting devices in subunit vaccines. PMID:10408376

  10. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants.

    PubMed

    Brar, Hargeet K; Bhattacharyya, Madan K

    2012-06-01

    Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases.

  11. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants.

    PubMed

    Brar, Hargeet K; Bhattacharyya, Madan K

    2012-06-01

    Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases. PMID:22397408

  12. Single Chain Antibodies Against gp55 of Human Cytomegalovirus (HCMV) for Prophylaxis and Treatment of HCMV Infections

    PubMed Central

    Moazen, Bahareh; Ebrahimi, Elahe; Nejatollahi, Foroogh

    2016-01-01

    Background: Immunotherapy is a promising prospective new treatment for cytomegalovirus (CMV) infections. Neutralizing effects have been reported using monoclonal antibodies. Recombinant single chain antibodies (scFvs) due to their advantages over monoclonal antibodies are potential alternatives and provide valuable clinical agents. Objectives: The aim of this study was to select specific single chain antibodies against gp55 of CMV and to evaluate their neutralizing effects. In the present study, we selected specific single chain antibodies against glycoprotein 55 (gp55) of CMV for their use in treatment and diagnosis. Materials and Methods: Single chain antibodies specific against an epitope located in the C-terminal part of gp55 were selected from a phage antibody display library. After four rounds of panning, twenty clones were amplified by the polymerase chain reaction (PCR) and fingerprinted by MvaI restriction enzyme. The reactivities of the specific clones were tested by the enzyme-linked immunosorbent assay (ELISA) and the neutralizing effects were evaluated by the plaque reduction assay. Results: Fingerprinting of selected clones revealed three specific single chain antibodies (scFv1, scFv2 and scFv3) with frequencies 25%, 20 and 20%. The clones produced positive ELISA with the corresponding peptide. The percentages of plaque reduction for scFv1, scFv2 and scFv3 were 23.7, 68.8 and 11.6, respectively. Conclusions: Gp55 of human CMV is considered as an important candidate for immunotherapy. In this study, we selected three specific clones against gp55. The scFvs reacted only with the corresponding peptide in a positive ELISA. The scFv2 with 68.8% neutralizing effect showed the potential to be considered for prophylaxis and treatment of CMV infections, especially in solid organ transplant recipients, for whom treatment of CMV is urgently needed. The scFv2 with neutralizing effect of 68.8%, has the potential to be considered for treatment of these patients

  13. Targeting nanodisks via a single chain variable antibody--apolipoprotein chimera.

    PubMed

    Iovannisci, David M; Beckstead, Jennifer A; Ryan, Robert O

    2009-02-01

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that alpha-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.

  14. Construction of multiform scFv antibodies using linker peptide.

    PubMed

    Wang, Shihua; Zheng, Cengjie; Liu, Ying; Zheng, Huirong; Wang, Zonghua

    2008-05-01

    Multiform single chain variable fragments (scFvs) including different length linker scFvs and bispecific scFv were constructed. The linker lengths of 0, 3, 5, 8, 12, and 15 amino acids between V(H) and V(L) of antideoxynivalenol (anti-DON) scFv were used to analyze the affinities of scFvs. The affinity constants of these scFvs increased when the linker was lower than 12 amino acids. The affinity constant would not change when the linker was longer than 12 amino acids. Fusion gene of anti-DON scFv and antizearalenone (anti-ZEN) scFv was also constructed through connection by a short peptide linker DNA to express a bispecific scFv. The affinity constants assay showed that the two scFvs of fusion bispecific scFv remained their own affinity compared to their parental scFvs. Competitive direct enzyme linked immunosorbent assay was used to detect DON and ZEN in contaminated wheat (Triticum aestivum L.) samples, and the results indicated that this bispecific scFv was applicable in DON and ZEN detection. This work confirmed that bispecific scFv could be successfully obtained, and might also have an application in diagnosing fungal infection, and breeding transgenic plants.

  15. Characterization of a single-chain variable fragment specific to Cronobacter spp. from hybridoma based on outer membrane protein A.

    PubMed

    Chen, Qiming; Tao, Tingting; Bie, Xiaomei; Lu, Fengxia; Li, Yuanhong; Lu, Zhaoxin

    2016-10-01

    Monoclonal antibody and polyclonal antibody specific to Cronobacter spp. had been reported in previous studies. However, the preparation of single-chain variable fragment (scFv) was faster and convenient. Hence, the aim of this study was to construct a scFv using outer membrane protein A (OmpA) of C. sakazakii as antigen. The protein sequences of OmpA of Cronobacter spp. were analyzed first. The results showed protein OmpA with length of 347 amino acids was conserved in Cronobacter genus (94.83%-100% of protein identity) and was greater than that observed for the other genera tested (8.28-91.64% of protein identity). Then, purified protein OmpA expressed in E. coli was used to prepare hybridoma and to construct scFv further. The scFv was named scFvH81 and analyzed by bioinformatics. The model of scFvH81 built by homologous modeling had a good quality (residues in disallowed regions: 3%) and showed that scFvH81 had a standard pocket-like site. Purified scFvH81 was prepared by denaturation and renaturation of inclusion body and it showed a good specificity and its affinity of Ka=2.39×10(6)M(-1). Therefore, it could be used in the detection and the pathogenesis study of Cronobacter spp. PMID:27498230

  16. Production and characterization of a single-chain variable fragment linked alkaline phosphatase fusion protein for detection of O,O-diethyl organophosphorus pesticides in a one-step enzyme-linked immunosorbent assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A single-chain variable fragment (scFv) and alkaline phosphatase (AP) fusion protein for detection of O, O-diethyl organophosphorus pesticides (OPs) was produced and characterized. The scFv gene was prepared by cloning VL and VH genes from a hybridoma cell secreting monoclonal antibody with broad-s...

  17. Optimization modeling of single-chain antibody against hepatoma based on similarity algorithm.

    PubMed

    Zhao, Zhi-Jun; Chen, Jing-Tao; Yuan, Jia-Ying; Yin, Xiao-Xiang; Song, Hua-Yong; Wang, Xin-Chun

    2015-01-01

    The purposes was to establish optimal modeling of single-chain antibody molecules based on similarity algorithm and seek the connecting peptides that had the minimal effect on the structure and bioactivity of the variable region of heavy chain (VH) and that of light chain (VL) in a single-chain antibody against liver cancer. After the Linker with different lengths (n=0~7) had been added into single chain fragment variable (ScFv), modeling of the overall sequences of VH, VL and ScFv were conducted respectively. Meanwhile, the peptide chain structure of (Gly4Ser)n was adopted for the connecting peptide. Then the spatial spherical shell layer alignment algorithm based on spherical polar coordinates was utilized for comparing the structural similarity of VH and VL before and after adding connecting peptide. Equally, in order to determine the stability of VH and VL, MATLAB was applied for analysis of the fore and aft distances and the diffusion radius. Indirect ELISA method was used to detect single-chain antibody immunological activity of Linker with different lengths. The MTT assay was utilized for the examination of the inhibition rate of single-chain antibody with different lengths of Linker to liver cancer cell. When n=4, the structural similarity between VH together with VL and their original ones was the highest. When n=3, the influence of connecting peptide on the stability of VH and VL was minimum. When n>3, the fore and aft distances changed little due to the increase and fold of the length of peptide chain. The results of ELISA detection showed that when n=4, affinity of single chain antibody to liver cancer cells was much higher. The MTT test also indicated that when n=4, the inhibition rate of the connecting peptide on hepatoma carcinoma cell reached the highest, and that came second when n=3. When n=4, the structural stability and biological functions of anti-hepatoma single-chain antibody were both favorable. This study has provided a basis for the design

  18. Construction of an antimyoglobin single-chain variable fragment with rapid reaction kinetics.

    PubMed

    Jang, Jun-Hyuck; Kim, Dong-Hyung; Paek, Se-Hwan; Woo, Eui-Jeon; Kim, Young-Wan

    2016-01-01

    Antibodies with rapid reaction kinetics (high association and dissociation rates), named reversible antibodies, are used to perform continuous monitoring of sensitive disease biomarkers. In cases of acute myocardial infarction (AMI), continuous monitoring and early diagnosis are important. Human myoglobin (Myo) is a useful biomarker for AMI during the early stage after the onset of symptoms. In this study, a single-chain variable fragment (scFv) specific to Myo was derived from an IgG antibody that has rapid reaction kinetics. Enzyme-linked immunosorbent assay revealed that recombinant scFv exhibited 3.8-fold reduced affinity compared with the parent IgG antibody based on the antibody concentration necessary for 50% of the maximum signal. The scFv retained the rapid reaction kinetic mode with average kon and koff of 2.63 × 10(5) M(-1) Sec(-1) and 3.25 × 10(-3) Sec(-1) , respectively, which were reduced to 10- and 2.3-fold compared with those of the parent antibody. The equilibrium constant for the association of the scFv (KA = 8.09 × 10(7) M(-1) ) was 4.6-fold lower than that of its parent IgG antibody. This scFv may be a starting point for further mutagenesis/kinetic and structural analyses providing valuable insight into the mechanism of reversible antibodies.

  19. Affinity maturation of single-chain variable fragment specific for aflatoxin B(1) using yeast surface display.

    PubMed

    Min, Won-Ki; Kim, Sung-Gun; Seo, Jin-Ho

    2015-12-01

    As aflatoxin B1 is one of the most toxic mycotoxins, it is important to detect and to quantify aflatoxin B1 accurately by immunological methods. To enhance aflatoxin B1-binding affinity of the single-chain variable fragment, yeast surface display technique combined with fluorescence-activated cell sorting was applied. A randomly mutated scFv library was subjected to 4 rounds of fluorescence-activated cell sorting, resulting in isolation of 5 scFv variants showing an affinity improvement compared to the parental wild type scFv. The best scFv with a 9-fold improvement in affinity for aflatoxin B1 exhibited similar specificity to the monoclonal antibody. Most of the mutations in scFv-M37 were located outside of the canonical antigen-contact loops, suggesting that its affinity improvement might be driven by an allosteric effect inducing scFv-M37 to form a more favorable binding pocket for aflatoxin B1 than the wild type scFv. PMID:26041237

  20. The protective effects and underlying mechanism of an anti-oligomeric Aβ42 single-chain variable fragment antibody.

    PubMed

    Zhang, Yuan; Chen, Xu; Liu, Jinyu; Zhang, Yingjiu

    2015-12-01

    Oligomeric Aβ42 aggregates have been identified as one of the major neurotoxic components of Alzheimer's disease (AD). Immunotherapy targeted against these Aβ42 aggregates has been proposed as an appropriate therapeutic approach for the treatment of AD. Here, we report an anti-oligomeric Aβ42 single-chain variable fragment (scFv) antibody, named MO6, obtained from the human antibody library of a healthy donor. ScFv MO6 specifically recognized and bound to the oligomeric Aβ42 (Aβ42 oligomers and immature protofibrils; 18-37 kDa), and reduced their levels mainly by blocking their formation, although scFv MO6 also induced disaggregation of Aβ42 aggregates. More importantly, scFv MO6 ameliorated or attenuated Aβ42-induced cytotoxicity and increased cell viability by up to 33%. Furthermore, scFv MO6 efficiently passed through an in vitro blood-brain barrier (BBB) model with a delivery efficiency of 66% after 60 min post-administration. ScFv MO6 is a monovalent antibody with an affinity constant (KD) of 5.2×10(-6) M for Aβ42 oligomers. Molecular docking simulations of Aβ42 to scFv MO6 revealed that the approach and specific binding of scFv MO6 to oligomeric Aβ42 aggregates was achieved by conformational recognition and directed induction, which resulted in a more dynamic adaptation of Aβ42 to scFv MO6, occurring mainly in the N-terminal (3-4), middle (12-19) and C-terminal (34-42) regions of Aβ42. This binding mode of scFv MO6 to Aβ42 explains its protective effects against oligomeric Aβ42. Our findings may be applied for the design of a smaller antibody specific for Aβ42 oligermers. PMID:26256421

  1. Studies of Single-Chain Antibody Expression in Quiescent Escherichia coli

    PubMed Central

    Mukherjee, K. J.; Rowe, D. C. D.; Watkins, N. A.; Summers, D. K.

    2004-01-01

    Quiescent Escherichia coli cells are generated by overexpressing the Rcd transcript in an hns-205 mutant host. The resulting nongrowing, metabolically active cells were used here to express a single-chain antibody fragment (scFv) in shake flask and fermentor cultures. The expression system is based on two plasmids; one carries the product gene expressed from λPL under the control of the cI857 temperature-sensitive repressor, while the second expresses Rcd from λPR. Shifting the culture from 30 to 42°C induces Rcd expression and product expression simultaneously. Our scFv carried a PelB leader, and 90% of the protein was secreted into the culture supernatant. In a batch culture, the supernatant concentration of scFv in the quiescent-cell culture (optical density at 600 nm [OD600] of 3.5) was 37 mg liter−1, compared to a maximum of 13 mg liter−1 in the control culture (final OD600 of 20). In a fed-batch fermentor culture, quiescent cells were held at an OD600 of 20 for 24 h and the extracellular scFv concentration reached a maximum of 150 mg liter−1. A control culture with a similar feed reached an OD600 of 80, but despite the higher density, the extracellular scFv concentration did not exceed 35 mg liter−1. Quiescent cells at an OD600 of 50 exhibited a small decline in the specific product formation rate, but nevertheless, an extracellular scFv concentration of 160 mg liter−1 was achieved in 8 h. The rate of extracellular accumulation was 10-fold greater in the quiescent culture than in the control culture. This study demonstrates that it is possible to establish high-density quiescent E. coli cultures that are capable of efficient synthesis, folding, and export of proteins. PMID:15128562

  2. Kinetic analysis of a monoclonal therapeutic antibody and its single-chain homolog by surface plasmon resonance.

    PubMed

    Patel, Rekha; Andrien, Bruce A

    2010-01-01

    Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field. PMID:19720041

  3. Expression of sclerostin scFv and the effect of sclerostin scFv on healing of osteoporotic femur fracture in rats.

    PubMed

    Yao, Qi; Ni, Jie; Hou, Yu; Ding, Lixiang; Zhang, Licheng; Jiang, Hua

    2014-06-01

    Osteoporosis is a systemic metabolic disease characterized by low bone mass with deterioration of the bony microstructure which leads to both bone brittleness and increased risk of fracture. Sclerostin is a protein encoded by the SOST gene which is specifically expressed in osteocyte. Monoclonal antibodies of sclerostin can promote bone formation by antagonizing its inhibitory action. However, the effectiveness of monoclonal antibodies to exert such effects are limited by the large molecular mass and high immunogenicity. Here, we report that we purified a high immune affinity, single-chain antibody of SOST: SOST-single-chain Fv (scFv). Real-time polymerase chain reaction amplification of the variable regions of the heavy- and light-chain gene from a secretory anti-SOST antibody was performed. Animal experiments showed that SOST-scFv promoted bone healing in a rat model of osteoporosis.

  4. A VL-linker-VH Orientation Dependent Single Chain Variable Antibody Fragment Against Rabies Virus G Protein with Enhanced Neutralizing Potency in vivo.

    PubMed

    Cheng, Yue; Li, Zhuang; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2016-01-01

    Lethal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragment (scFv), which is composed of a variable heavy chain (VH) and variable light chain (VL) connected by a peptide linker, may be developed as alternative to RIG for neutralizing rabies virus (RV). However, our previously constructed scFv (FV57S) with the (NH2) VH-linker-VL (COOH) orientation showed a lower neutralizing potency than its parent RIG. This orientation may inhibit FV57S from refolding into an intact and correct conformation. Therefore, the RFV57S protein with a VL-linker-VH orientation was constructed based on FV57S. A HIS tag was incorporated to aid in purification and detection of RFV57S and FV57S. However, abilities of RFV57S and FV57S to bind with the anti-HIS tag mAb were different. Therefore, a novel direct ELISA was established by utilizing a biotin-labeled truncated glycoprotein of RV. Although with similar stability and in vitro neutralizing potency as FV57S, RFV57S showed enhanced binding ability, affinity and in vivo protective efficacy against lethal dose of RV. Our studies support the feasibility of developing a scFv with reversed orientation and provide a novel method for evaluating the binding ability, stability and affinity of engineered antibodies recognizing linear epitope.

  5. Expression and characterization of single-chain variable fragment antibody against staphylococcal enterotoxin A in Escherichia coli.

    PubMed

    Chen, Weifeng; Hu, Li; Liu, Aiping; Li, Jinquan; Chen, Fusheng; Wang, Xiaohong

    2014-11-01

    The staphylococcal enterotoxins (SEs) are potent gastrointestinal exotoxins synthesized by Staphylococcus aureus, which is responsible for various diseases including septicemia, food poisoning, and toxic shock syndrome, as well as bovine mastitis. Among them, staphylococcal enterotoxin A (SEA) is one of the most commonly present serotypes in staphylococcal food poisoning cases. In this study, the stable hybridoma 3C12 producing anti-SEA monoclonal antibody was established with an equilibrium dissociation constant (KD) of 1.48 × 10(-8) mol·L(-1), its ScFv-coding genes were obtained and then the anti-SEA single chain variable fragment (ScFv) protein was expressed in Escherichia coli. Characterization of the expressed target ScFv protein was analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis, Western blot, and enzyme-linked immunosorbent assay. The results demonstrated that the recombinant anti-SEA ScFv protein retained a specific binding activity for SEA, and the KD value of the soluble ScFv was about 3.75 × 10(-7) mol·L(-1). The overall yield of bioactive anti-SEA ScFv in E. coli flask culture was more than 10 mg·L(-1).

  6. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit

  7. Genetically engineered multivalent single chain antibody constructs for cancer therapy

    SciTech Connect

    Surinder Batra, Ph D

    2006-02-27

    its tumor: normal tissue ratio for improved therapeutic index, we engineered a variety antibody constructs. These constructs were evaluated using novel approaches like special radionuclides, pretargeting and optimization. Due to the smaller size, the engineered antibody molecules should penetrate better throughout a tumor mass, with less dose heterogeneity, than is the case with intact IgG. Multivalent scFvs with an appropriate radionuclide, therefore, hold promising prospects for cancer therapy and clinical imaging in MAb-based radiopharmaceuticals. In addition, the human anti-mouse antibodies (HAMA) responses in patients against antibody-based therapy are usually directed against the immunoglobulin constant regions; however, anti-idiotypic responses can also be detected. The HAMA responses reduce the efficacy of treatment by removing the circulating antibody molecules, fragments, and possibly scFvs by altering the pharmacokinetic properties of the antibody. HAMA responses against divalent IgG, divalent Ig fragments, and possibly multimeric scFvs could cause immune complex formation with hypersensitivity or allergic reactions that could be harmful to patients. The use of small molecules, such as scFvs (monomeric as well as multimeric), with their shorter biological half-lives and the lack of the constant regions and humanized variable (binding regions) performed in our studies should reduce the development of HAMA. The generation of humanized and fully human scFvs should further reduce the development of HAMA. Specific accomplishments on the project are the production of large amounts of recombinant antibodies as they are required in large amounts for cancer diagnosis and therapy. A variety of single-chain Fv (scFv) constructs were engineered for the desired pharmacokinetic properties. Tetrameric and dimeric scFvs showed a two-fold advantage: (1) there was a considerable gain in avidity as compared to smaller fragments, and (2) the biological half-life was more

  8. Escherichia coli surface display of single-chain antibody VRC01 against HIV-1 infection

    SciTech Connect

    Wang, Lin-Xu; Mellon, Michael; Bowder, Dane; Quinn, Meghan; Shea, Danielle; Wood, Charles; Xiang, Shi-Hua

    2015-01-15

    Human immunodeficiency virus type 1 (HIV-1) transmission and infection occur mainly via the mucosal surfaces. The commensal bacteria residing in these surfaces can potentially be employed as a vehicle for delivering inhibitors to prevent HIV-1 infection. In this study, we have employed a bacteria-based strategy to display a broadly neutralizing antibody VRC01, which could potentially be used to prevent HIV-1 infection. The VRC01 antibody mimics CD4-binding to gp120 and has broadly neutralization activities against HIV-1. We have designed a construct that can express the fusion peptide of the scFv-VRC01 antibody together with the autotransporter β-barrel domain of IgAP gene from Neisseria gonorrhoeae, which enabled surface display of the antibody molecule. Our results indicate that the scFv-VRC01 antibody molecule was displayed on the surface of the bacteria as demonstrated by flow cytometry and immunofluorescence microscopy. The engineered bacteria can capture HIV-1 particles via surface-binding and inhibit HIV-1 infection in cell culture. - Highlights: • Designed single-chain VRC01 antibody was demonstrated to bind HIV-1 envelope gp120. • Single-chain VRC01 antibody was successfully displayed on the surface of E. coli. • Engineered bacteria can absorb HIV-1 particles and prevent HIV-1 infection in cell culture.

  9. Functional Production of a Soluble and Secreted Single-Chain Antibody by a Bacterial Secretion System

    PubMed Central

    Cheng, Chiu-Min; Tzou, Shey-Cherng; Zhuang, Ya-Han; Huang, Chien-Chiao; Kao, Chien-Han; Liao, Kuang-Wen; Cheng, Ta-Chun; Chuang, Chih-Hung; Hsieh, Yuan-Chin; Tai, Ming-Hong; Cheng, Tian-Lu

    2014-01-01

    Single-chain variable fragments (scFvs) serve as an alternative to full-length monoclonal antibodies used in research and therapeutic and diagnostic applications. However, when recombinant scFvs are overexpressed in bacteria, they often form inclusion bodies and exhibit loss of function. To overcome this problem, we developed an scFv secretion system in which scFv was fused with osmotically inducible protein Y (osmY), a bacterial secretory carrier protein, for efficient protein secretion. Anti-EGFR scFv (αEGFR) was fused with osmY (N- and C-termini) and periplasmic leader sequence (pelB) to generate αEGFR-osmY, osmY-αEGFR, and pelB-αEGFR (control), respectively. In comparison with the control, both the osmY-fused αEGFR scFvs were soluble and secreted into the LB medium. Furthermore, the yield of soluble αEGFR-osmY was 20-fold higher, and the amount of secreted protein was 250-fold higher than that of osmY-αEGFR. In addition, the antigen-binding activity of both the osmY-fused αEGFRs was 2-fold higher than that of the refolded pelB-αEGFR from inclusion bodies. Similar results were observed with αTAG72-osmY and αHer2-osmY. These results suggest that the N-terminus of osmY fused with scFv produces a high yield of soluble, functional, and secreted scFv, and the osmY-based bacterial secretion system may be used for the large-scale industrial production of low-cost αEGFR protein. PMID:24824752

  10. Production of an anti-idiotypic antibody single chain variable fragment vaccine against Edwardsiella tarda.

    PubMed

    Qin, Hong; Jin, Xiaohang; Huang, Weiquan; Liu, Yulin

    2010-02-01

    Edwardsiella tarda is the pathogen responsible for edwardsiellosis, a serious infectious disease of freshwater and marine fish species, and currently recognized to be the species pathogenic for human. An anti-idiotypic monoclonal antibody (mAb), 1E11, has been developed. It mimics the protective epitope of E. tarda and can prevent fish from infection of E. tarda. In this study, the correct variable heavy (VH) and variable light (VL) genes were obtained from 1E11 by using bioinformatics methods, and a 15 amino acid (Gly4Ser)3 linker was used to hold the two V domains together for the construction of VL-linker-VH form of single chain variable fragment (scFv) gene. Then, the scFv was subcloned into the vector pET-28a, expressed in the Escherichia coli BL21 cells, and identified by SDS-PAGE and western blotting. Red drum (Sciaenops ocellatus L.) weighing about 50 g was subjected to challenge with different E. tarda strains after 4 weeks followed by vaccination, the mortality rates and relative percentage survival were recorded and calculated, and the survival rate of fish in the scFv subgroups was obviously higher than that of control subgroups (P<0.01). Enzyme-linked immunosorbent assay results show that after 4 weeks of post-vaccination, the level of specific antibody in fish sera of scFv groups was significantly higher than control groups. This study indicates that the recombinant antibody scFv was successfully developed, and it may serve as an effective vaccine candidate against E. tarda. PMID:20119624

  11. Exploiting Cross-reactivity to Neutralize Two Different Scorpion Venoms with One Single Chain Antibody Fragment*

    PubMed Central

    Riaño-Umbarila, Lidia; Contreras-Ferrat, Gabriel; Olamendi-Portugal, Timoteo; Morelos-Juárez, Citlalli; Corzo, Gerardo; Possani, Lourival D.; Becerril, Baltazar

    2011-01-01

    We report the optimization of a family of human single chain antibody fragments (scFv) for neutralizing two scorpion venoms. The parental scFv 3F recognizes the main toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2), albeit with low affinity. This scFv was subjected to independent processes of directed evolution to improve its recognition toward Cn2 (Riaño-Umbarila, L., Juárez-González, V. R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L. D., and Becerril, B. (2005) FEBS J. 272, 2591–2601) and Css2 (this work). Each evolved variant showed strong cross-reactivity against several toxins, and was capable of neutralizing Cn2 and Css2. Furthermore, each variant neutralized the whole venoms of the above species. As far as we know, this is the first report of antibodies with such characteristics. Maturation processes revealed key residue changes to attain expression, stability, and affinity improvements as compared with the parental scFv. Combination of these changes resulted in the scFv LR, which is capable of rescuing mice from severe envenomation by 3 LD50 of freshly prepared whole venom of C. noxius (7.5 μg/20 g of mouse) and C. suffusus (26.25 μg/20 g of mouse), with surviving rates between 90 and 100%. Our research is leading to the formulation of an antivenom consisting of a discrete number of human scFvs endowed with strong cross-reactivity and low immunogenicity. PMID:21156801

  12. Improved expression of single-chain antibodies in Ustilago maydis.

    PubMed

    Sarkari, Parveen; Reindl, Michèle; Stock, Janpeter; Müller, Olaf; Kahmann, Regine; Feldbrügge, Michael; Schipper, Kerstin

    2014-12-10

    To produce the full repertoire of biopharmaceutical proteins, alternative expression platforms are required. Systems that enable secretion of the target protein are favored because this facilitates downstream processing. Ustilago maydis is a promising fungal model organism for future applications in protein expression. Recently, we described the exploitation of a novel unconventional secretion mechanism for the export of heterologous proteins. In this mode of secretion, the endochitinase Cts1 functions as a carrier for export with the main advantage of avoiding potentially harmful N-glycosylation. The major limitation until now was a low yield of secreted full-length protein. For optimization, we identified two bottlenecks: mRNA amount and extracellular proteolytic activity. By generating novel expression vectors harboring a strong constitutive promoter as well as eliminating harmful proteases, yields were increased significantly. A scFv antibody fragment against the cMyc epitope served as proof-of-principle and could be purified in its active, full-length form from the culture supernatant. Thus, we improved the novel expression system in U. maydis such that it can now be investigated with respect to other targets with potential applications for instance in diagnostics and medicine.

  13. Flow cytometry-based methods for assessing soluble scFv activities and detecting pathogen antigens in solution

    SciTech Connect

    Gray, Sean; Weigel, Kris M.; Miller, Keith D.; Ndung'u, Joseph; Buscher, Philippe; Tran, Thao N.; Baird, Cheryl L.; Cangelosi, Gerard A.

    2010-04-01

    Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. A limiting step in the isolation of scFv from nonimmune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeastdisplayed and secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of its ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv toidentify additional yeast-displayed scFv that bind nonoverlapping or noncompeting epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries.

  14. Flow Cytometry-Based Methods for Assessing Soluble scFv Activities and Detecting Antigens in Solution

    PubMed Central

    Gray, Sean A.; Weigel, Kris M.; Miller, Keith D.; Ndung'u, Joseph; Büscher, Philippe; Tran, Thao; Baird, Cheryl; Cangelosi, Gerard A.

    2010-01-01

    Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. Alimiting step in the isolation of scFv from non-immune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeast-displayed and -secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of their ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv to identify additional yeast-displayed scFv that bind non-overlapping or non-competing epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast-displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries. PMID:19953671

  15. Targeted inhibition of tumour cell growth by a bispecific single-chain toxin containing an antibody domain and TGF alpha.

    PubMed Central

    Schmidt, M.; Wels, W.

    1996-01-01

    Overexpression of the epidermal growth factor receptor (EGFR) and ErbB-2 has been observed in a variety of human tumours, making these receptors promising targets for directed tumour therapy. Since many tumour cells express both ErbB-2 and EGFR and these receptors synergise in cellular transformation, therapeutic reagents simultaneously binding to ErbB-2 and EGFR might offer advantages for tumour therapy. We have previously described the potent anti-tumoral activity of a bispecific antibody toxin that contains ErbB-2- and EGFR-specific single-chain Fv (scFv) domains. Here we report the construction and functional characterisation of a novel bispecific recombinant toxin, scFv(FRP5)-TGF alpha-ETA. The fusion protein consists of the antigen-binding domain of the ErbB-2-specific MAb, FRP5, and the natural EGFR ligand, TGF alpha, inserted at different positions in truncated Pseudomonas exotoxin A. ScFv(FRP5)-TGF alpha-ETA protein displayed binding to EGFR and ErbB-2, thereby inducing activation of the receptors, which was dependent on the cellular context and the level of EGFR and ErbB-2 expression. The bispecific molecule was cytotoxic in vitro for tumour cells expressing various levels of the target receptors. In vivo scFv(FRP5)-TGF alpha-ETA potently inhibited the growth of established A431 tumour xenografts in nude mice. Images Figure 1 Figure 2 Figure 5 PMID:8826849

  16. Immunolabeling of CD3-positive lymphocytes with a recombinant single-chain antibody/alkaline phosphatase conjugate.

    PubMed

    Bourin, P; Servat, A; Lataillade, J J; Goyffon, M; Vaux, D; Billiald, P

    2000-02-01

    G3(3) is a novel murine monoclonal antibody directed against the CD3 antigen of human T lymphocytes which could be used to analyze lymphoid malignancies. We have produced and characterized a recombinant colorimetric immunoconjugate with the antigen-binding specificity of antibody G3(3). A gene encoding a single-chain antibody variable fragment (scFv) was assembled using the original hybridoma cells as a source of antibody variable heavy (VH) and variable light (VL) chain genes. The chimeric gene was introduced into a prokaryotic expression vector in order to produce a soluble scFv fused to bacterial alkaline phosphatase. DNA sequencing and Western blotting analyses demonstrated the integrity of the soluble immunoconjugate recovered from induced recombinant bacteria. The scFv/AP protein was bifunctional and similar in immunoreactivity to the parent G3(3) antibody. Flow cytometry and immunostaining experiments confirmed that the activity of the scFv/AP protein compares favourably with that of the parent antibody. The scFv/AP conjugate was bound to CD3 antigen at the surface of T cells and was directly detected by its enzymatic activity. Thus this novel fusion protein has potential applications as an immunodiagnostic reagent.

  17. Optimized extraction of a single-chain variable fragment of antibody by using aqueous micellar two-phase systems.

    PubMed

    Malpiedi, Luciana P; Nerli, Bibiana B; Taqueda, Maria E S; Abdalla, Dulcineia S P; Pessoa, Adalberto

    2015-07-01

    In this work, the purification of a single-chain variable fragment (scFv) of an antibody by using liquid-liquid extraction in aqueous micellar two-phase systems was optimized by means of central composite design. Protein partitioning assays were performed by using the selected system composition in previous works: Triton X-114 at 4% wt/wt, yeast fermentation supernatant at 60% wt/wt, McIlvaine buffer pH 7.00. The other system component concentrations, Cibacron Blue F3GA (CB), Fabsorbent™ F1P HF (HF) and NaCl, were selected as independent variables. ScFv recovery percentage (%R) and purification factor (PF) were selected as the responses. According to the optimization process both, scFv recovery percentage and purification factor were favored with the addition of HF and NaCl in a range of concentrations around the central point of the second central composite design (HF 0.0120% w/w, CB 0.0200% w/w, NaCl 0.200% w/w). These experimental conditions allowed the concentration and pre-purification of scFv in the micelle-rich bottom phase of the systems with a recovery percentage superior to 88% and a purification factor of approximately 3.5. These results improved the previously presented works and demonstrated the convenience of using aqueous micellar two-phase systems as a first step in the purification of scFv molecules.

  18. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity

    PubMed Central

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A.; Motamedi-Shad, Neda; Irving, James A.; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J.; Miranda, Elena; Lomas, David A.

    2015-01-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin.—Ordóñez, A., Pérez, J., Tan, L., Dickens, J. A., Motamedi-Shad, N., Irving, J. A., Haq, I., Ekeowa, U., Marciniak, S. J., Miranda, E., Lomas, D. A. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity. PMID:25757566

  19. Design, expression and characterization of a single chain anti-CD20 antibody; a germline humanized antibody derived from Rituximab.

    PubMed

    Ahmadzadeh, Vahideh; Farajnia, Safar; Hosseinpour Feizi, Mohammad Ali; Khavarinejad, Ramazan Ali

    2014-10-01

    CD20 is a B cell lineage specific surface antigen involved in various B cell malignancies. So far, several murine and chimeric antibodies have been produced against this antigen among which Rituximab is a commercially approved antibody widely used in treatment of cancers associated with CD20 overexpression. The current study reports the production and characterization of a humanized single chain version of Rituximab through CDR grafting method. For either heavy or light chain variable domains, a human antibody with the highest sequence homology to Rituximab was selected from human germline sequences and used as framework donors. Vernier zone residues in framework regions were replaced with those of Rituximab to retain the antigen binding affinity of parental antibody. The reactivity of humanized single chain antibody with CD20 was examined by ELISA and dot blot assays. The ability of antibody to suppress the growth of CD20 overexpressing Raji cells was tested by MTT assay. Analysis of reactivity with CD20 antigen revealed that the humanized single chain antibody reacted to the target antigen with high affinity. Proliferation inhibition assay showed that humanized scFv could suppress the proliferation of Raji cells efficiently in a dose-dependent manner. This successful production of a humanized scFv with the ability to inhibit growth of CD20-expressing cancer cell may provide a promising alternative strategy for CD20 targeted therapy.

  20. Improved biological activity of a single chain antibody fragment against human epidermal growth factor receptor 2 (HER2) expressed in the periplasm of Escherichia coli.

    PubMed

    Akbari, Vajihe; Sadeghi, Hamid Mir Mohammad; Jafarian-Dehkordi, Abbas; Abedi, Daryoush; Chou, C Perry

    2015-12-01

    A novel monoclonal antibody against human epidermal growth factor receptor 2 (HER2), i.e., pertuzumab (Perjeta®) developed by Genentech, has been verified to be effective in treating metastatic HER2-overexpressing breast cancer. The fact that the presence of the Fc region of the anti-HER2 is uncritical for growth inhibition of tumor cells suggests the potential biological activity of the associated antibody fragments. In the present study, we report functional expression of anti-HER2his-scFv, a single-chain variable fragment (scFv) derived from pertuzumab, in the periplasm of Escherichia coli and its purification. Biological activity of the soluble scFv produced in this manner was characterized using immunofluorescent staining, immunocytochemistry, flow cytometry and cytotoxicity assay. The effect of anti-HER2his-scFv on HER2 dimerization was also assessed by tyrosine kinase assay. It was observed that the purified scFv had a high specificity and affinity to HER2 receptors expressed on the surface of tumor cells with a selective cytotoxic effect on HER2-overexpressing SK-OV-3 cells. In addition, anti-HER2his-scFv was able to suppress phosphorylation of HER2 in the presence of heregulin. The results suggest that anti-HER2his-scFv can be a potential candidate for various therapeutic and diagnosis applications.

  1. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    PubMed

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples.

  2. Construction and bacterial expression of a recombinant single-chain antibody fragment against Wuchereria bancrofti SXP-1 antigen for the diagnosis of lymphatic filariasis.

    PubMed

    Kamatchi, R; Charumathi, J; Ravishankaran, R; Kaliraj, P; Meenakshisundaram, S

    2016-01-01

    Global programmes to eliminate lymphatic filariasis (GPELF) require mapping, monitoring and evaluation using filarial antigen diagnostic kits. To meet this objective, a functional single-chain fragment variable (ScFv) specific for filarial Wuchereria bancrofti SXP-1 (Wb-SXP-1) antigen was constructed for the diagnosis of active filarial infection, an alternative to the production of complete antibodies using hybridomas. The variable heavy chain (VH) and the variable light chain (kappa) (Vκ) genes were amplified from the mouse hybridoma cell line and were linked together with a flexible linker by overlap extension polymerase chain reaction (PCR). The ScFv construct (Vκ-Linker-VH) was expressed as a fusion protein with N-terminal His tag in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC) without the addition of reducing agents. Immunoblotting and sandwich enzyme-linked immunosorbent assay (ELISA) were used to analyse the antigen binding affinity of purified ScFv. The purified ScFv was found to recognize recombinant and native Wb-SXP-1 antigen in microfilariae (Mf)-positive patient sera. The affinity of ScFv was comparable with that of the monoclonal antibody. The development of recombinant ScFv to replace monoclonal antibody for detection of filarial antigen was achieved. The recombinant ScFv was purified, on-column refolded and its detection ability validated using field samples. PMID:26693887

  3. Generation of human single-chain variable fragment antibodies specific to dengue virus non-structural protein 1 that interfere with the virus infectious cycle.

    PubMed

    Poungpair, Ornnuthchar; Bangphoomi, Kunan; Chaowalit, Prapaipit; Sawasdee, Nunghathai; Saokaew, Nichapatr; Choowongkomon, Kiattawee; Chaicumpa, Wanpen; Yenchitsomanus, Pa-thai

    2014-01-01

    Severe forms of dengue virus (DENV) infection frequently cause high case fatality rate. Currently, there is no effective vaccine against the infection. Clinical cases are given only palliative treatment as specific anti-DENV immunotherapy is not available and it is urgently required. In this study, human single-chain variable fragment (HuScFv) antibodies that bound specifically to the conserved non-structural protein-1 (NS1) of DENV and interfered with the virus replication cycle were produced by using phage display technology. Recombinant NS1 (rNS1) of DENV serotype 2 (DENV2) was used as antigen in phage bio-panning to select phage clones that displayed HuScFv from antibody phage display library. HuScFv from two phagemid transformed E. coli clones, i.e., clones 11 and 13, bound to the rNS1 as well as native NS1 in both secreted and intracellular forms. Culture fluids of the HuScFv11/HuScFv13 exposed DENV2 infected cells had significant reduction of the infectious viral particles, implying that the antibody fragments affected the virus morphogenesis or release. HuScFv epitope mapping by phage mimotope searching revealed that HuScFv11 bound to amino acids 1-14 of NS1, while the HuScFv13 bound to conformational epitope at the C-terminal portion of the NS1. Although the functions of the epitopes and the molecular mechanism of the HuScFv11 and HuScFv13 require further investigations, these small antibodies have high potential for development as anti-DENV biomolecules. PMID:24492300

  4. Production of scFv-Conjugated Affinity Silk Powder by Transgenic Silkworm Technology

    PubMed Central

    Sato, Mitsuru; Kojima, Katsura; Sakuma, Chisato; Murakami, Maria; Aratani, Eriko; Takenouchi, Takato; Tamada, Yasushi; Kitani, Hiroshi

    2012-01-01

    Bombyx mori (silkworm) silk proteins are being utilized as unique biomaterials for medical applications. Chemical modification or post-conjugation of bioactive ligands expand the applicability of silk proteins; however, the processes are elaborate and costly. In this study, we used transgenic silkworm technology to develop single-chain variable fragment (scFv)-conjugated silk fibroin. The cocoons of the transgenic silkworm contain fibroin L-chain linked with scFv as a fusion protein. After dissolving the cocoons in lithium bromide, the silk solution was dialyzed, concentrated, freeze-dried, and crushed into powder. Immunoprecipitation analyses demonstrate that the scFv domain retains its specific binding activity to the target molecule after multiple processing steps. These results strongly suggest the promise of scFv-conjugated silk fibroin as an alternative affinity reagent, which can be manufactured using transgenic silkworm technology at lower cost than traditional affinity carriers. PMID:22496833

  5. A functional recombinant single-chain T cell receptor fragment capable of selectively targeting antigen-presenting cells.

    PubMed

    Epel, Malka; Ellenhorn, Joshua D; Diamond, Don J; Reiter, Yoram

    2002-11-01

    Specificity in the immune system is dictated and regulated by specific recognition of peptide/major histocompatibility complexes (MHC) by the T cell receptor (TCR). Such peptide/MHC complexes are a desirable target for novel approaches in immunotherapy because of their highly restricted fine specificity. Recently a potent anti-human p53 CD8(+) cytotoxic T lymphocyte (CTL) response has been developed in HLA-A2 transgenic mice after immunization with peptides corresponding to HLA-A2 motifs from human p53. An alpha/beta T-cell receptor was cloned from such CTL which exhibited a moderately high affinity to the human p53(149-157) peptide. In this report, we investigated the possibility of using a recombinant tumor-specific TCR for antigen-specific elimination of cells that express the specific MHC-peptide complex. To this end, we constructed a functional single-chain Fv fragment from the cloned TCR and fused it to a very potent cytotoxic molecule, a truncated form of Pseudomonas exotoxin A (PE38). The p53 TCR scFv-P38 fusion protein was generated by in vitro refolding from bacterially-expressed inclusion bodies, and was found to be functional by its ability to bind antigen-presenting cells (APC) which express the specific p53-derived peptide. Moreover, we have shown that the p53-specific TCR scFv-PE38 molecule specifically kills APC in a peptide-dependent manner. These results represent the first time that a TCR-derived recombinant single-chain Fv fragment has been used as a targeting moiety to deliver a cytotoxic effector molecule to cells and has been able to mediate the efficient killing of the particular cell population that expresses the specific MHC/peptide complex. Similarly to antibody-based targeting approaches, TCR with tumor cell specificity represent attractive candidates for generating new, very specific targeting moieties for various modes of cancer immunotherapy. PMID:12384808

  6. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal.

    PubMed

    Badescu, George O; Marsh, Andrew; Smith, Timothy R; Thompson, Andrew J; Napier, Richard M

    2016-01-01

    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA.

  7. Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal

    PubMed Central

    Badescu, George O.; Marsh, Andrew; Smith, Timothy R.; Thompson, Andrew J.; Napier, Richard M.

    2016-01-01

    A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA. PMID:27023768

  8. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    SciTech Connect

    Bradbury, Andrew M; Velappan, Nileena; Schmidt, Jurgen G

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  9. Chaperone-Assisted Soluble Expression of a Humanized Anti-EGFR ScFv Antibody in E. Coli

    PubMed Central

    Veisi, Kamal; Farajnia, Safar; Zarghami, Nosratollah; Khoram Khorshid, Hamid Reza; Samadi, Nasser; Ahdi Khosroshahi, Shiva; Zarei Jaliani, Hossein

    2015-01-01

    Purpose: Formation of inclusion bodies is a considerable obstacle threatening the advantages of E. coli expression system to serve as the most common and easiest system in recombinant protein production. To solve this problem, several strategies have been proposed among which application of molecular chaperones is of remarkable consideration. The aim of this study was to evaluate the effects of molecular chaperones on soluble expression of aggregation-prone humanized single chain antibody. Methods: To increase the solubility of a humanized single chain antibody (hscFv), different chaperone plasmids including PG-tf2 (GroES- GroEL- tig), ptf16 (tig) and pGro7 (GroES- GroEL) were co-expressed in BL21 cells containing pET-22b- hscFv construct. The solubility of recombinant hscFv was analyzed by SDS-PAGE. After purification of soluble hscFv by Ni-NTA column, the biological activity and cytotoxicity of the recombinant protein were tested by ELISA and MTT assay, respectively. Results: SDS-PAGE analysis of the hscFv revealed that chaperone utility remarkably increased (up to 50%) the solubility of the protein. ELISA test and MTT assay analyses also confirmed the biological activity of the gained hscFv in reaction with A431 cells (OD value: 2.6) and inhibition of their proliferation, respectively. Conclusion: The results of this study revealed that co-expression of chaperones with hscFv leads to remarkable increase in the solubility of the recombinant hscFv, which could be of great consideration for large scale production of recombinant single chain antibodies. PMID:26793607

  10. Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants.

    PubMed

    Panjideh, Hossein; Coelho, Vânia; Dernedde, Jens; Fuchs, Hendrik; Keilholz, Ulrich; Thiel, Eckhard; Deckert, P Markus

    2008-10-01

    Recombinant antibody fusion constructs with heterologous functional domains are a promising approach to new therapeutic targeting strategies. However, expression of such constructs is mostly limited to cost and labor-intensive mammalian expression systems. Here we report on the employment of Pichia pastoris for the expression of heterologous antibody fusion constructs with green fluorescent protein, A33scFv::GFP, or with cytosine deaminase, A33scFv::CDy, their production in a biofermenter and a modified purification strategy. Combined, these approaches improved production yields by about thirty times over established standard protocols, with extracellular secretion of the fusion construct reaching 12.0 mg/l. Bifunctional activity of the fusion proteins was demonstrated by flow cytometry and an in-vitro cytotoxicity assay. With equal amounts of purified protein, the modified purification method lead to higher functional results. Our results demonstrate the suitability of methylotrophic Pichia expression systems and laboratory-scale bioreactors for the production of high quantities of bifunctionally active heterologous single-chain fusion proteins.

  11. Antineoplastic effect of intracellular expression of a single-chain antibody directed against type IV collagenase.

    PubMed

    Wang, W; Zhou, J; Xu, L; Zhen, Y

    2000-01-01

    It has been shown that the type IV collagenase with its two subtypes, 72 kDa/ MMP-2 and 92 kDa/MMP-9, plays an important role in tumor invasion and metastasis formation that occur through a mechanism of proteolytic degradation of collagen IV in the basement membrane. One possible method to specifically inhibit the function of the targeted protein of a cell is to express intracellular antibody combining site that can block the function or prevent the expression of the targeted molecule. Accordingly, intracellular antibodies against type IV collagenase may have a therapeutic use against tumor invasion and metastasis. As described in our previous reports, an anti-type IV collagenase monoclonal antibody (3D6) was obtained using the hybridoma approach, and its functional single-chain Fv fragment (scFv) named M97 was constructed based on recombinant phage display techniques. In this study, the endoplasmic reticulum (ER)-retained scFv antibody fragment was used to inhibit the function of type IV collagenase. For expression in mammalian cells, the assembled scFv M97 gene with ER retention signal encoding 6 additional amino acid (SEKDEL) was reamplified by PCR. The amplified fragments were cloned into the pcDNA3.1 vector containing the CMV early-intermediate promoter/enhancer. The resulting plasmid was sequenced and then introduced by the lipofectamine method into PG cells, a highly metastatic human lung cancer cell line and G418-resistant cells were obtained by G418 selection. After transfection, the M97 mRNA expression was observed and the type IV collagenase expression was downregulated significantly as measured by ELISA. The biological behavior of PG cells, such as the ability of in vitro invasion of colony formation on soft agar through Matrigel, were also inhibited by scFv M97 transfection. The results indicate that intracellular antibody technology represents a novel and efficient way to selectively abrogate the activity of type IV collagenase, at least in vitro. We

  12. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    PubMed

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.

  13. Purification and on-column refolding of a single-chain antibody fragment against rabies virus glycoprotein expressed in Escherichia coli.

    PubMed

    Xi, Hualong; Yuan, Ruosen; Chen, Xiaoxu; Gu, Tiejun; Cheng, Yue; Li, Zhuang; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2016-10-01

    An anti-rabies virus single-chain antibody fragment of an anti-glycoprotein with the VL-linker-VH orientation, designated scFv57RN, was successfully and conveniently prepared in this study. The scFv57RN protein was mainly expressed in inclusion bodies in Escherichia coli. After washing and purification, the inclusion bodies were finally obtained with an on-column refolding procedure. Further purification by gel exclusion chromatography was performed to remove inactive multimers. About 360 mg of final product was recovered from 1 L of bacterial culture. The final product showed a high neutralizing titer of 950 IU/mg to the CVS-11 strain as measured using the rapid fluorescent focus inhibition test. Our study demonstrated a highly efficient method to mass produce scFV57RN with activity from inclusion bodies, which may be applied in the purification of other insoluble proteins.

  14. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity.

    PubMed

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A; Motamedi-Shad, Neda; Irving, James A; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J; Miranda, Elena; Lomas, David A

    2015-06-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin. PMID:25757566

  15. A single-chain variable fragment intrabody prevents intracellular polymerization of Z α1-antitrypsin while allowing its antiproteinase activity.

    PubMed

    Ordóñez, Adriana; Pérez, Juan; Tan, Lu; Dickens, Jennifer A; Motamedi-Shad, Neda; Irving, James A; Haq, Imran; Ekeowa, Ugo; Marciniak, Stefan J; Miranda, Elena; Lomas, David A

    2015-06-01

    Mutant Z α1-antitrypsin (E342K) accumulates as polymers within the endoplasmic reticulum (ER) of hepatocytes predisposing to liver disease, whereas low levels of circulating Z α1-antitrypsin lead to emphysema by loss of inhibition of neutrophil elastase. The ideal therapy should prevent polymer formation while preserving inhibitory activity. Here we used mAb technology to identify interactors with Z α1-antitrypsin that comply with both requirements. We report the generation of an mAb (4B12) that blocked α1-antitrypsin polymerization in vitro at a 1:1 molar ratio, causing a small increase of the stoichiometry of inhibition for neutrophil elastase. A single-chain variable fragment (scFv) intrabody was generated based on the sequence of mAb4B12. The expression of scFv4B12 within the ER (scFv4B12KDEL) and along the secretory pathway (scFv4B12) reduced the intracellular polymerization of Z α1-antitrypsin by 60%. The scFv4B12 intrabody also increased the secretion of Z α1-antitrypsin that retained inhibitory activity against neutrophil elastase. MAb4B12 recognized a discontinuous epitope probably located in the region of helices A/C/G/H/I and seems to act by altering protein dynamics rather than binding preferentially to the native state. This novel approach could reveal new target sites for small-molecule intervention that may block the transition to aberrant polymers without compromising the inhibitory activity of Z α1-antitrypsin.

  16. Synergistic capture of Clostridium botulinum Type A neurotoxin by scFv antibodies to novel epitopes

    SciTech Connect

    Gray, Sean A.; Barr, John R.; Kalb, Suzanne R.; Marks, James D.; Baird, Cheryl L.; Cangelosi, Gerard A.; Miller, Keith D.; Feldhaus, Michael J.

    2011-10-01

    A non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc. Of these, three also bound to full-length BoNT/A toxin complex with affinities ranging from 5 nM to 170 nM. Epitope binning showed that the three unique clones recognized at least two epitopes that were distinct from one another and from the detection MAbs. After production in E. coli, the scFv were coupled to magnetic particles and tested for their ability to capture BoNT/A holotoxin using an Endopep-MS assay. In this assay, toxin captured by scFv coated magnetic particles was detected by incubation of the complex with a peptide containing a BoNT/A-specific cleavage sequence. Mass spectrometry was used to detect the ratio of intact peptide to cleavage products as evidence for toxin capture. When tested individually, each of the scFv showed a weak positive Endopep-MS result. However, when the particles were coated with all three scFv simultaneously, they exhibited significantly higher Endopep-MS activity, consistent with synergistic binding. These results demonstrate novel approaches toward the isolation and characterization of scFv antibodies specific to unlabeled antigen. They also provide evidence that distinct scFv antibodies can work synergistically to increase the efficiency of antigen capture onto a solid support.

  17. A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment.

    PubMed

    Li, Zhuang; Cheng, Yue; Xi, Hualong; Gu, Tiejun; Yuan, Ruosen; Chen, Xiaoxu; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2015-12-01

    Fatal rabies can be prevented effectively by post-exposure prophylactic (PEP) with rabies immunoglobulin (RIG). Single-chain variable fragments (scFv), which are composed of a variable heavy chain (VH) and a variable light chain (VL) connected by a peptide linker, can potentially be used to replace RIG. However, in our previous study, a scFv (scFV57S) specific for the rabies virus (RV) G protein showed a lower neutralizing potency than that of its parent IgG due to lower stability and altered peptide assembly pattern. In monoclonal antibodies, the VH and VL interact non-covalently, while in scFvs the VH is connected covalently with the VL by the artificial linker. In this study, we constructed and expressed two peptides 57VL-JUN-HIS and 57VH-FOS-HA in Escherichia coli. The well-known Fos and Jun leucine zippers were utilized to dimerize VH and VL similarly to the IgG counterpart. The two peptides assembled to form zipFv57S in vitro. Due to the greater similarity in structure with IgG, the zipFv57S protein showed a higher binding ability and affinity resulting in notable improvement of in vitro neutralizing activity over its corresponding scFv. The zipFv57S protein was also found to be more stable and showed similar protective rate as RIG in mice challenged with a lethal dose of RV. Our results not only indicated zipFv57S as an ideal alternative for RIG in PEP but also offered a novel and efficient hetero-dimerization pattern of VH and VL leading to enhanced neutralizing potency.

  18. Expression and purification of a novel therapeutic single-chain variable fragment antibody against BNP from inclusion bodies of Escherichia coli.

    PubMed

    Bu, Dawei; Zhou, Yuwei; Tang, Jian; Jing, Fang; Zhang, Wei

    2013-12-01

    Abnormal brain natriuretic peptide (BNP) secretion is regarded as the dominating mechanism of cerebral salt wasting syndrome (CSW), which results from a renal loss of sodium and water during intracranial disease leading to hyponatremia. Scale preparation of therapeutic single-chain variable fragment (scFv) that can neutralize elevated circulating BNP may have potential value for clinical use. In this report, we used a recently isolated humanized anti-BNP scFv fragment (3C1) as model antibody (Ab) to evaluate the potential of scale production of this therapeutic protein. The truncated gene encoding for scFv fragment cloned in pET22b (+) was mainly overexpressed as inclusion bodies in Escherichia coli (E. coli) Rosetta (DE3) pLysS cells. The insoluble fragment was solubilized and purified by Ni-NTA agarose resin under denaturation conditions, and recovered via an effective refolding buffer containing 50 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 1 mM EDTA, 0.5 M arginine, 2 mM GSH, 1 mM GSSG, and 5% glycerol. The refolded scFv fragment was concentrated by PEG20000, and dialyzed in PBS (containing 5% glycerol, pH 7.4). The final yield was approximately 10.2 mg active scFv fragment per liter of culture (3.4 g wet weight cells). The scFv fragment was more than 95% pure assessed by SDS-PAGE assay. Recombinant scFv fragment with His tag displayed its immunoreactivity with anti-His tag Ab by western blotting. ELISA showed the scFv fragment specifically bound to BNP, and it displayed similar activity as the traditional anti-BNP monoclonal Ab (mAb). Thus, the current strategy allows convenient small-scale production of this therapeutic protein.

  19. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously.

    PubMed

    Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Kontermann, Roland E; Rüger, Ronny

    2015-03-10

    Liposomes are well-established drug delivery systems with cancer chemotherapy as main focus. To increase the cellular drug delivery, liposomes can be endowed with ligands, e.g. recombinant antibody fragments, which ensure specific cell interaction. Multispecific immunoliposomes can be prepared to improve the liposome to cell interaction by targeting multiple different targets at the same time, for instance by coupling two or more different ligands to the liposomal surface, resulting in a synergistic or additive increase in binding. An alternative approach is the use of bispecific ligands to address at least two different targets. For this purpose we cloned a single-chain diabody fragment (scDb`), a bispecific molecule targeting two antigens, endoglin (CD105) and fibroblast activation protein (FAP), expressed on cells of the tumor microenvironment. As model cell system, a human fibrosarcoma cell line was used expressing endoglin and FAP simultaneously. Monospecific immunoliposomes directed either against endoglin or FAP were compared in vitro for cell binding and cytotoxic activity with bispecific dual-targeted scFv`-IL (bispecific scFv`FAP/CD105-IL) and bispecific single-chain diabody`-IL (scDb`CD105/FAP-IL) targeting endoglin and FAP simultaneously. In the underlying study, bispecific scFv`FAP/CD105-IL interacted stronger with cells expressing FAP and endoglin (both targets simultaneously) compared to the monospecific immunoliposomes. Furthermore, bispecific scDb`-immunoliposomes increased the cell interaction massively and showed enhanced cytotoxicity against target cells using doxorubicin-loaded immunoliposomes. The use of recombinant bispecific ligands as scDb`-molecules facilitates the generation of bispecific immunoliposomes by using the established post-insertion technique, enabling an extension of the ligand specificity spectrum via genetic modification.

  20. Efficient silkworm expression of single-chain variable fragment antibody against ginsenoside Re using Bombyx mori nucleopolyhedrovirus bacmid DNA system and its application in enzyme-linked immunosorbent assay for quality control of total ginsenosides.

    PubMed

    Sakamoto, Seiichi; Pongkitwitoon, Benyakan; Nakamura, Seiko; Maenaka, Katsumi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2010-09-01

    A single-chain variable fragment (scFv) antibody against ginsenoside Re (G-Re) have been successfully expressed in the silkworm larvae using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. The baculovirus donor vector for expression of scFv against G-Re (GRe-scFv) was constructed to contain honeybee melittin signal sequence to accelerate secretion of the recombinant GRe-scFv into the haemolymph of silkworm larvae. Functional recombinant GRe-scFv was purified by cation exchange chromatography followed by immobilized metal ion affinity chromatography. The yield of purified GRe-scFv was 6.5 mg per 13 silkworm larvae, which is equivalent to 650 mg/l of the haemolymph, exhibiting extremely higher yield than that expressed in Escherichia coli (1.7 mg/l of culture medium). It was revealed from characterization that GRe-scFv retained similar characteristic of the parental monoclonal antibody (MAb) against G-Re (MAb-4G10), making it possible to develop indirect competitive enzyme-linked immunosorbent assay (icELISA) for quality control of total ginsenosides in various ginsengs. The detectable range for calibration of G-Re by developed icELISA shows 0.05-10 microg/ml. These results clearly suggested that the silkworm expression system is quite useful for the expression of functional scFv that frequently required time- and cost-consuming re-folding when it expressed in E. coli. PMID:20592135

  1. Green fluorescent-conjugated anti-CEA single chain antibody for the detection of CEA-positive cancer cells.

    PubMed

    Salavatifar, Maryam; Amin, Shadi; Jahromi, Zahra Moghaddassi; Rasgoo, Nasrin; Rastgoo, Nasrin; Arbabi, Mehdi

    2011-06-01

    According to World Health Organization (WHO), cancer is a leading cause of death worldwide, accounting for 7.4 million deaths (around 13% of all deaths) in 2004. Monoclonal/recombinant antibodies, which specifically target clinical biomarkers of disease, have increasingly been applied as powerful tools in cancer imaging and therapy, a fact that is highlighted by some nine FDA-approved monoclonal antibodies (MAbs) or their immunoconjugates (as of December 2008) for use in cancer treatment. In this study, five monoclonal antibodies (MAbs) were generated and characterized against carcinoembryonic antigen (CEA), which is widely used clinically as both a blood and tissue tumor marker of epithelial malignancy. Variable domains (VH and VL) of one the stable MAbs with highest affinity were PCR-amplified and assembled as single-chain antibody fragment (scFv). Following the cloning and expression of scFv antibody fragments in Escherichia coli, the functional binding and specificity of the recombinant antibody were confirmed by ELISA. To develop a direct in vitro detection of CEA-positive cancer cells, scFv DNA was genetically fused to enhanced green fluorescent protein (EGFP) gene and expressed in bacteria. The chimeric fluorescent protein is able to specifically detect CEA-positive cell lines; no cross-reactivity was observed with a negative control cell line. This strategy will likely allow the establishment of a rapid, single-step detection assay of CEA, which is considered to be one of the best predictors of malignancy among all other tumor markers.

  2. Golgi glycosylation.

    PubMed

    Stanley, Pamela

    2011-04-01

    Glycosylation is a very common modification of protein and lipid, and most glycosylation reactions occur in the Golgi. Although the transfer of initial sugar(s) to glycoproteins or glycolipids occurs in the ER or on the ER membrane, the subsequent addition of the many different sugars that make up a mature glycan is accomplished in the Golgi. Golgi membranes are studded with glycosyltransferases, glycosidases, and nucleotide sugar transporters arrayed in a generally ordered manner from the cis-Golgi to the trans-Golgi network (TGN), such that each activity is able to act on specific substrate(s) generated earlier in the pathway. The spectrum of glycosyltransferases and other activities that effect glycosylation may vary with cell type, and thus the final complement of glycans on glycoconjugates is variable. In addition, glycan synthesis is affected by Golgi pH, the integrity of Golgi peripheral membrane proteins, growth factor signaling, Golgi membrane dynamics, and cellular stress. Knowledge of Golgi glycosylation has fostered the development of assays to identify mechanisms of intracellular vesicular trafficking and facilitated glycosylation engineering of recombinant glycoproteins. PMID:21441588

  3. Single-Chain Probes for Illuminating Androgenicity of Chemicals.

    PubMed

    Kim, Sung-Bae; Tao, Hiroaki

    2016-01-01

    The present protocol introduces a single-chain probe carrying a functional peptide in the N-terminal domain of the androgen receptor (AR NTD) for illuminating androgenicity of ligands. In the single-chain probe, a functional peptide in the AR NTD was genetically fused to the ligand-binding domain of AR (AR LBD) via a flexible linker, and then sandwiched between the N- and C-terminal fragments of split-firefly luciferase (FLuc) dissected at D415. This single-chain probe exerts (1) a high signal-to-background ratio and (2) sensitive discrimination between agonists and antagonists, where the dimerization of AR LBD is not involved. The present protocol guides a fundamental methodology on how to discriminate weak protein-protein (peptide) binding, and provides a new insight into the intramolecular folding inside monomeric AR. PMID:27424901

  4. Mapping of antigenic determinants on a SAT2 foot-and-mouth disease virus using chicken single-chain antibody fragments.

    PubMed

    Opperman, Pamela A; Maree, Francois F; Van Wyngaardt, Wouter; Vosloo, Wilna; Theron, Jacques

    2012-08-01

    Recombinant single-chain variable fragments (scFvs) of antibodies make it possible to localize antigenic and immunogenic determinants, identify protective epitopes and can be exploited for the design of improved diagnostic tests and vaccines. A neutralizing epitope, as well as other potential antigenic sites of a SAT2 foot-and-mouth disease virus (FMDV) were identified using phage-displayed scFvs. Three unique ZIM/7/83-specific scFvs, designated scFv1, scFv2 and scFv3, were isolated. Further characterization of these scFvs revealed that only scFv2 was capable of neutralizing the ZIM/7/83 virus and was used to generate neutralization-resistant virus variants. Sequence analysis of the P1 region of virus escaping neutralization revealed a residue change from His to Arg at position 159 of the VP1 protein. Residue 159 is not only surface exposed but is also located at the C-terminal base of the G-H loop, a known immunogenic region of FMDV. A synthetic peptide, of which the sequence corresponded to the predicted antigenic site of the VP1 G-H loop of ZIM/7/83, inhibited binding of scFv2 to ZIM/7/83 in a concentration-dependent manner. This region can therefore be considered in the design of SAT2 vaccine seed viruses for the regional control of FMD in Africa.

  5. Intracellular expression of a single-chain antibody directed against type IV collagenase inhibits the growth of lung cancer xenografts in nude mice.

    PubMed

    Wang, W; Zhang, S; Li, Y; Xu, L; Zhou, J; Zhen, Y

    2000-08-01

    It was documented that type IV collagenase with two subtypes of 72 ku/MMP-2 and 92 ku/MMP-9 plays an important role in tumor invasion and metastasis. The endoplasmic reticulum (ER)-retained, single chain Fv antibody fragment (scFv) was used to inhibit the function of type IV collagenase. For expression in mammalian cells, the assembled scFv M97 gene with ER retention signal encoding 6 additional amino acids (SEKDEL) was reamplified by PCR. The amplified fragments were cloned into the pcDNA3.1 vector. The resulting plasmid was sequenced and then introduced into PG cells, a highly metastatic human lung cancer cell line, by lipofectAMINE method. The result of intrabody gene therapy showed that type IV collegenase expression was down regulated significantly as measured by ELISA. The biological behavior of PG cell, such as the ability of in vitro invasion through Matrigel, colony formation on soft agar, was also inhibited by scFv M97 transfection. Animal experiments in a xenograft model of human lung cancer showed that scFv M97 transfection significantly prolonged the survival time of nude mice. The results indicate that intracellular antibody technology represents a novel and efficient way to abrogate selectively the activity of type IV collagenase. PMID:18726348

  6. Construction, expression, and characterization of a single-chain variable fragment antibody against 2,4-dichlorophenoxyacetic acid in the hemolymph of silkworm larvae.

    PubMed

    Sakamoto, Seiichi; Pongkitwitoon, Benyakan; Nakamura, Seiko; Sasaki-Tabata, Kaori; Tanizaki, Yusuke; Maenaka, Katsumi; Tanaka, Hiroyuki; Morimoto, Satoshi

    2011-07-01

    A single-chain variable fragment antibody against herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D-scFv) has been successfully expressed in the hemolymph of silkworm larvae using a rapid Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. Variable heavy- and light-chain domains were cloned directly from the cDNA of the hybridoma cell line 2C4 and assembled together with flexible peptide linker (Gly(4)Ser)(3) between two domains. The yield of functional 2,4-D-scFv after purification was 640 μg per 30 ml of hemolymph, which is equivalent to 21.3 mg per liter of hemolymph. The characterization of 2,4-D-scFv using an indirect competitive enzyme-linked immunosorbent assay (icELISA) revealed that it has wide cross-reactivities against 2,4,5-trichlorophenoxyacetic acid (65.5%), 2,4-dichlorophenol (47.9%), and 2,4-dichlorobenzoic acid (26.0%), making it possible to apply 2,4-D-scFv to icELISA for detecting/determining 2,4-D and its metabolites. Judging from its cost and time requirements and its ease of handling, this BmNPV bacmid DNA expression system is more useful for expressing functional scFv than bacterial systems, which frequently require costly and time-consuming refolding.

  7. Single chain FV constructs of anti-ganglioside GD2 antibodies for radioimaging and radioimmumotheraphy. Progress report

    SciTech Connect

    Cheung, N.K.V.; Larson, S.M.

    1993-11-01

    For the past several years, we have studied the anti-G{sub D2} murine monoclonal antibody, 3F8, in radiolabeled form, for diagnosis and therapy of neuroblastoma. The targeting properties of this antibody/antigen system are exceptional, with uptakes consistently in the highest range of reported results for in vivo human studies. The radioiodinated antibody 3F8 is now used by us as our criteria for diagnosis and staging of advanced neuroblastoma. This antibody is showing considerable promise also in our Phase I trials in Stage 4 neuroblastoma, and major responses are being seen at current dose level, with manageable marrow toxicity, but no limiting organ toxicity.

  8. Using Engineered Single-Chain Antibodies to Correlate Molecular Binding Properties and Nanoparticle Adhesion Dynamics

    PubMed Central

    Haun, Jered B.; Pepper, Lauren R.; Boder, Eric T.; Hammer, Daniel A.

    2011-01-01

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200 nm diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested however, but did appear to effect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. Based on this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that bear

  9. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    PubMed

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that

  10. Synthesis and pre-clinical evaluation of an (18)F-labeled single-chain antibody fragment for PET imaging of epithelial ovarian cancer.

    PubMed

    Sharma, Sai Kiran; Wuest, Melinda; Way, Jenilee D; Bouvet, Vincent R; Wang, Monica; Wuest, Frank R

    2016-01-01

    Anti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an (18)F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models. Anti-CA125 scFv was derived from MAb-B43.13 by recombinant expression of the fragment in E.coli. Fragment scFv-B43.13 was purified via immobilized metal affinity chromatography and characterized for antigen binding via immuno-staining and flow cytometry. Prosthetic group N-succinimidyl 4-[(18)F]fluorobenzoate ([(18)F]SFB) was used for radiolabeling of scFv-B43.13. Preclinical ovarian cancer models were developed based on ovarian cancer cell lines OVCAR3 (CA125-positive) and SKOV3 (CA125-negative) in NIH-III mice. The radiopharmacological profile of (18)F-labeled scFv-B43.13 ([(18)F]FBz-scFv-B43.13) was studied with PET. [(18)F]FBz-scFv-B43.13 was prepared in radiochemical yields of 3.7 ± 1.8% (n = 5) at an effective specific activity of 3.88 ± 0.76 GBq/µmol (n = 5). The radiotracer demonstrated selective uptake in CA125-positive OVCAR3 cells and virtually no uptake in CA125-negative SKOV3 cells. Standardized uptake values (SUV) of radioactivity uptake in OVCAR3 tumors was 0.5 (n = 3) and 0.3 (n = 2) in SKOV3 tumors after 60 min post injection (p.i.). PMID:27508105

  11. Synthesis and pre-clinical evaluation of an 18F-labeled single-chain antibody fragment for PET imaging of epithelial ovarian cancer

    PubMed Central

    Sharma, Sai Kiran; Wuest, Melinda; Way, Jenilee D; Bouvet, Vincent R; Wang, Monica; Wuest, Frank R

    2016-01-01

    Anti-CA125 antibodies have been used in immunoassays to quantify levels of shed antigen in the serum of patients who are under surveillance for epithelial ovarian cancer (EOC). However, there is currently no molecular imaging probe in the clinic for the assessment of CA125 expression in vivo. The present study describes the development of an 18F-labeled single-chain variable fragment (scFv) for PET imaging of CA125 in preclinical EOC models. Anti-CA125 scFv was derived from MAb-B43.13 by recombinant expression of the fragment in E.coli. Fragment scFv-B43.13 was purified via immobilized metal affinity chromatography and characterized for antigen binding via immuno-staining and flow cytometry. Prosthetic group N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) was used for radiolabeling of scFv-B43.13. Preclinical ovarian cancer models were developed based on ovarian cancer cell lines OVCAR3 (CA125-positive) and SKOV3 (CA125-negative) in NIH-III mice. The radiopharmacological profile of 18F-labeled scFv-B43.13 ([18F]FBz-scFv-B43.13) was studied with PET. [18F]FBz-scFv-B43.13 was prepared in radiochemical yields of 3.7 ± 1.8% (n = 5) at an effective specific activity of 3.88 ± 0.76 GBq/µmol (n = 5). The radiotracer demonstrated selective uptake in CA125-positive OVCAR3 cells and virtually no uptake in CA125-negative SKOV3 cells. Standardized uptake values (SUV) of radioactivity uptake in OVCAR3 tumors was 0.5 (n = 3) and 0.3 (n = 2) in SKOV3 tumors after 60 min post injection (p.i.). PMID:27508105

  12. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe

    PubMed Central

    Mazzocco, Claire; Fracasso, Giulio; Germain-Genevois, Coralie; Dugot-Senant, Nathalie; Figini, Mariangela; Colombatti, Marco; Grenier, Nicolas; Couillaud, Franck

    2016-01-01

    We aimed to evaluate a fluorescent-labeled single chain variable fragment (scFv) of the anti-PSMA antibody as a specific probe for the detection of prostate cancer by in vivo fluorescence imaging. An orthotopic model of prostate cancer was generated by injecting LNCaP cells into the prostate lobe. ScFvD2B, a high affinity anti-PSMA antibody fragment, was labeled using a near-infrared fluorophore to generate a specific imaging probe (X770-scFvD2B). PSMA-unrelated scFv-X770 was used as a control. Probes were injected intravenously into mice with prostate tumors and fluorescence was monitored in vivo by fluorescence molecular tomography (FMT). In vitro assays showed that X770-scFvD2B specifically bound to PSMA and was internalized in PSMA-expressing LNCaP cells. After intravenous injection, X770-scFvD2B was detected in vivo by FMT in the prostate region. On excised prostates the scFv probe co-localized with the cancer cells and was found in PSMA-expressing cells. The PSMA-unrelated scFv used as a control did not label the prostate cancer cells. Our data demonstrate that scFvD2B is a high affinity contrast agent for in vivo detection of PSMA-expressing cells in the prostate. NIR-labeled scFvD2B could thus be further developed as a clinical probe for imaging-guided targeted biopsies. PMID:26996325

  13. Fast conversion of scFv to Fab antibodies using type IIs restriction enzymes.

    PubMed

    Sanmark, Hanna; Huovinen, Tuomas; Matikka, Tero; Pettersson, Tiina; Lahti, Maria; Lamminmäki, Urpo

    2015-11-01

    Single chain variable fragment (scFv) antibody libraries are widely used for developing novel bioaffinity reagents, although Fab or IgG molecules are the preferred antibody formats in many final applications. Therefore, rapid conversion methods for combining multiple DNA fragments are needed to attach constant domains to the scFv derived variable domains. In this study we describe a fast and easy cloning method for the conversion of single framework scFv fragments to Fab fragments using type IIS restriction enzymes. All cloning steps excluding plating of the Fab transformants can be done in 96 well plates and the procedure can be completed in one working day. The concept was tested by converting 69 scFv clones into Fab format on 96 well plates, which resulted in 93% success rate. The method is particularly useful as a high-throughput tool for the conversion of the chosen scFv clones into Fab molecules in order to analyze them as early as possible, as the conversion can significantly affect the binding properties of the chosen clones.

  14. Anti-Staphylococcus aureus single-chain variable region fragments provide protection against mastitis in mice.

    PubMed

    Wang, Man; Zhang, Yan; Zhu, Jianguo

    2016-03-01

    Staphylococcus aureus is a leading causative agent of bovine mastitis, which can result in significant economic losses to the dairy industry. However, available vaccines against bovine mastitis do not confer adequate protection, although passive immunization with antibodies may be useful to prevent disease. Hence, we constructed a bovine single-chain variable region fragment (scFv) phage display library using cDNAs from peripheral blood lymphocytes of cows with S. aureus-induced mastitis. After four rounds of selection, eight scFvs that bound S. aureus antigens with high affinity were obtained. The framework regions of the variable domains (VH and VL) of the eight scFvs were highly conserved, and the complementarity-determining regions (CDRs) displayed significant diversity, especially CDR3 of the VH domain. All eight scFvs inhibited S. aureus growth in culture medium. Lactating mice were challenged by injecting S. aureus into the fourth mammary gland. Histopathological analysis showed that treatment with these scFvs prior to bacterial challenge maintained the structure of the mammary acini, decreased infiltration of polymorphonuclear neutrophils, increased levels of interferon-gamma and interleukin-4, and reduced tumor necrosis factor-alpha levels in mammary tissues, as compared with mice treatment with physiological saline (P < 0.05). These novel bovine scFvs may be suitable candidates for therapeutic agents for the prevention of S. aureus-induced bovine mastitis.

  15. Effects of protein engineering and rational mutagenesis on crystal lattice of single chain antibody fragments

    PubMed Central

    Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C.; Johnson, Jennifer L.; Entzminger, Kevin; Jain, Avni; Heaner, David P.; Morales, Ivan A.; Truskett, Thomas M.; Maynard, Jennifer A.; Lieberman, Raquel L.

    2014-01-01

    Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although non-complementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts. PMID:24615866

  16. Enzyme-mediated site-specific bioconjugation of metal complexes to proteins: sortase-mediated coupling of copper-64 to a single-chain antibody.

    PubMed

    Paterson, Brett M; Alt, Karen; Jeffery, Charmaine M; Price, Roger I; Jagdale, Shweta; Rigby, Sheena; Williams, Charlotte C; Peter, Karlheinz; Hagemeyer, Christoph E; Donnelly, Paul S

    2014-06-10

    The enzyme-mediated site-specific bioconjugation of a radioactive metal complex to a single-chain antibody using the transpeptidase sortase A is reported. Cage amine sarcophagine ligands that were designed to function as substrates for the sortase A mediated bioconjugation to antibodies were synthesized and enzymatically conjugated to a single-chain variable fragment. The antibody fragment scFv(anti-LIBS) targets ligand-induced binding sites (LIBS) on the glycoprotein receptor GPIIb/IIIa, which is present on activated platelets. The immunoconjugates were radiolabeled with the positron-emitting isotope (64)Cu. The new radiolabeled conjugates were shown to bind selectively to activated platelets. The diagnostic potential of the most promising conjugate was demonstrated in an in vivo model of carotid artery thrombosis using positron emission tomography. This approach gives homogeneous products through site-specific enzyme-mediated conjugation and should be broadly applicable to other metal complexes and proteins. PMID:24777818

  17. De novo design of a single-chain diphenylporphyrin metalloprotein.

    PubMed

    Bender, Gretchen M; Lehmann, Andreas; Zou, Hongling; Cheng, Hong; Fry, H Christopher; Engel, Don; Therien, Michael J; Blasie, J Kent; Roder, Heinrich; Saven, Jeffrey G; DeGrado, William F

    2007-09-01

    We describe the computational design of a single-chain four-helix bundle that noncovalently self-assembles with fully synthetic non-natural porphyrin cofactors. With this strategy, both the electronic structure of the cofactor as well as its protein environment may be varied to explore and modulate the functional and photophysical properties of the assembly. Solution characterization (NMR, UV-vis) of the protein showed that it bound with high specificity to the desired cofactors, suggesting that a uniquely structured protein and well-defined site had indeed been created. This provides a genetically expressed single-chain protein scaffold that will allow highly facile, flexible, and asymmetric variations to enable selective incorporation of different cofactors, surface-immobilization, and introduction of spectroscopic probes.

  18. Development trends for generation of single-chain antibody fragments.

    PubMed

    Farajnia, Safar; Ahmadzadeh, Vahideh; Tanomand, Asghar; Veisi, Kamal; Khosroshahi, Shiva Ahdi; Rahbarnia, Leila

    2014-10-01

    Recombinant antibodies are increasingly being employed as therapeutic agents especially in combination with anti-cancer drugs. The single-chain antibody fragments are small antigen-binding proteins which provide the most commonly used antibody formats for diagnostic and therapeutic purposes. These antibody fragments have more rapid tumor penetration and clearance from the serum relative to full-length monoclonal antibodies. There are in vitro antibody-display technologies such as phage display, cell surface display, ribosome display and mRNA display that can be used to isolate high specificity and affinity single-chain antibodies against a wide variety of targets. We review these strategies for generation of stable and active antibody fragments in the present article.

  19. Investigation of SPR and electrochemical detection of antigen with polypyrrole functionalized by biotinylated single-chain antibody: a review.

    PubMed

    Lê, H Q A; Sauriat-Dorizon, H; Korri-Youssoufi, H

    2010-07-26

    An electrochemical label-free immunosensor based on a biotinylated single-chain variable fragment (Sc-Fv) antibody immobilized on copolypyrrole film is described. An efficient immunosensor device formed by immobilization of a biotinylated single-chain antibody on an electropolymerized copolymer film of polypyrrole using biotin/streptavidin system has been demonstrated for the first time. The response of the biosensor toward antigen detection was monitored by surface plasmon resonance (SPR) and electrochemical analysis of the polypyrrole response by differential pulse voltammetry (DPV). The composition of the copolymer formed from a mixture of pyrrole (py) as spacer and a pyrrole bearing a N-hydroxyphthalimidyl ester group on its 3-position (pyNHP), acting as agent linker for biomolecule immobilization, was optimized for an efficient immunosensor device. The ratio of py:pyNHP for copolymer formation was studied with respect to the antibody immobilization and antigen detection. SPR was employed to monitor in real time the electropolymerization process as well as the step-by-step construction of the biosensor. FT-IR demonstrates the chemical copolymer composition and the efficiency of the covalent attachment of biomolecules. The film morphology was analyzed by electron scanning microscopy (SEM). Results show that a well organized layer is obtained after Sc-Fv antibody immobilization thanks to the copolymer composition defined with optimized pyrrole and functionalized pyrrole leading to high and intense redox signal of the polypyrrole layer obtained by the DPV method. Detection of specific antigen was demonstrated by both SPR and DPV, and a low concentration of 1 pg mL(-1) was detected by measuring the variation of the redox signal of polypyrrole.

  20. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain.

    PubMed

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10(-10) M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  1. Expression and Functional Properties of an Anti-Triazophos High-Affinity Single-Chain Variable Fragment Antibody with Specific Lambda Light Chain

    PubMed Central

    Liu, Rui; Liang, Xiao; Xiang, Dandan; Guo, Yirong; Liu, Yihua; Zhu, Guonian

    2016-01-01

    Triazophos is a widely used organophosphorous insecticide that has potentially adverse effects to organisms. In the present study, a high-affinity single-chain variable fragment (scFv) antibody with specific lambda light chain was developed for residue monitoring. First, the specific variable regions were correctly amplified from a hybridoma cell line 8C10 that secreted monoclonal antibody (mAb) against triazophos. The regions were then assembled as scFv via splicing by overlap extension polymerase chain reaction. Subsequently, the recombinant anti-triazophos scFv-8C10 was successfully expressed in Escherichia coli strain HB2151 in soluble form, purified through immobilized metal ion affinity chromatography, and verified via Western blot and peptide mass fingerprinting analyses. Afterward, an indirect competitive enzyme-linked immunosorbent assay was established based on the purified anti-triazophos scFv-8C10 antibody. The assay exhibited properties similar to those based on the parent mAb, with a high sensitivity (IC50 of 1.73 ng/mL) to triazophos and no cross reaction for other organophosphorus pesticides; it was reliable in detecting triazophos residues in spiked water samples. Moreover, kinetic measurement using a surface plasmon resonance biosensor indicated that the purified scFv-8C10 antibody had a high affinity of 1.8 × 10−10 M and exhibited good binding stability. Results indicated that the recombinant high-affinity scFv-8C10 antibody was an effective detection material that would be promising for monitoring triazophos residues in environment samples. PMID:27338340

  2. Development of a biotinylated broad-specificity single-chain variable fragment antibody and a sensitive immunoassay for detection of organophosphorus pesticides.

    PubMed

    Zhao, Fengchun; Tian, Yuan; Wang, Huimin; Liu, Jiye; Han, Xiao; Yang, Zhengyou

    2016-09-01

    Organophosphorus pesticides (OPs) are the most widely used pesticides in agriculture, and OP residues have been broadly reported in food and environmental samples. The aim of this study is to develop a recombinant antibody-based broad-specificity immunoassay for OPs. A phage display library was prepared from a mouse pre-immunized with a generic immunogen of OPs, and a single-chain variable fragment (scFv) antibody was selected. The selected scFv antibody was fused with biotin acceptor domain (BAD) and overexpressed as an inclusion body in Escherichia coli BL21 (DE3). Then, the protein was refolded by stepwise urea gradient dialysis and biotinylated in vitro by E. coli biotin ligase (BirA). Subsequently, the scFv-BAD protein was purified from the biotinylated system with high yield (66.7 mg L(-1)) and confirmed by SDS-PAGE and Western blot. Based on the biotinylated scFv-BAD, a sensitive and broad-specificity competitive indirect enzyme-linked immunosorbent assay (ciELISA) for detection of OPs was developed. The cross-reactivity (CR) studies demonstrated that the ciELISA described here exhibited the broadest detection spectrum for OPs up to now, and 30 OPs could be determined with 50 % inhibition value (IC50) values ranging from 19.4 to 515.2 ng mL(-1). Moreover, the developed ciELISA was used for the recovery study of the spiked samples and showed satisfactory recoveries. Graphical Abstract Schematic diagram of the development of biotinylated broad-specificity single-chain variable fragment antibody-based immunoassay for organophosphorus pesticides. PMID:27411546

  3. A Single-Chain Antibody Using LoxP511 as the Linker Enables Large-Content Phage Library Construction via Cre/LoxP Recombination.

    PubMed

    Zhang, Yan; Wang, Wei; Lv, Ming; Lin, Zhou; Geng, Jing; Li, Yali; Shen, Beifen; Ma, Yuanfang; Li, Yan; Qiao, Chunxia; Feng, Jiannan

    2014-07-01

    To obtain natural or "me-better" antibodies (e.g., affinity-maturated antibodies), phage display libraries are widely used. However, the likelihood of obtaining satisfactory antibodies depends on the library content. Here, we used computer-aided design to model the use of the LoxP511 site as a linker between the heavy and light variable domains of an antibody for construction of a large single-chain fragment (scFv) antibody phage library by using the Cre/LoxP recombinant system. Then, we constructed two novel scFvs based on 2C4, namely, AH_scFv15 (15 amino acid [aa] linker; common [SG4]3 sequence) and AH_scFv21 (21-aa linker; LoxP511 sequence), to verify the use of the LoxP511 site as a linker. Our results indicate that LoxP511 could be used effectively for the construction of a large (e.g., 5 × 10(12)) phage display library of scFv antibodies from which it was possible to isolate an antibody with the same epitope as 2C4 but with higher affinity.

  4. Production and characterization of monoclonal antibody and its recombinant single chain variable fragment specific for a food-born mycotoxin, fumonisin B1.

    PubMed

    Min, Won-Ki; Cho, Young-Jin; Park, Jun-Bock; Bae, Yi-Hyun; Kim, Eun-Jeong; Park, Kyungmoon; Park, Yong-Cheol; Seo, Jin-Ho

    2010-01-01

    Fumonisin B(1) (FMB(1)) is a food-born mycotoxin produced by Fusarium moniliforme. Monoclonal antibody against FMB(1) (anti-FMB(1) mAb) was produced in the hybridoma DV9, which was established from a BALB/c mouse immunized with bovine serum albumin conjugated FMB(1) (FMB(1)-BSA). A competitive direct enzyme-linked immunosorbent assay (ELISA) showed that anti-FMB(1) mAb has about 10 ppb of minimum FMB(1) detection concentration and 220 ppb of 50% inhibition concentration (IC(50)). Much lower cross-reactivity of anti-FMB(1) mAb on ochratoxin A, aflatoxin B(1) and deoxynivalenol provided that anti-FMB(1) mAb was specific for FMB(1). The gene coding single chain variable fragment against FMB(1) (anti-FMB(1) scFv) was cloned from the hybridoma DV9 and was expressed in recombinant Escherichia coli. Insoluble anti-FMB(1) scFv required optimization of its refolding condition, and hence functional scFv was obtained. By using indirect ELISA, about 12-fold lower binding activity of anti-FMB(1) scFv on FMB(1)-BSA was obtained in comparison with that of the parental mAb. PMID:19597742

  5. Cloning and expression of a single-chain catalytic antibody that acts as a glutathione peroxidase mimic with high catalytic efficiency.

    PubMed Central

    Ren, X; Gao, S; You, D; Huang, H; Liu, Z; Mu, Y; Liu, J; Zhang, Y; Yan, G; Luo, G; Yang, T; Shen, J

    2001-01-01

    Glutathione peroxidase (GPX) has a powerful role in scavenging reactive oxygen species. In previous papers we have developed a new strategy for generating abzymes: the monoclonal antibody with a substrate-binding site is first prepared, then a catalytic group is incorporated into the monoclonal antibody's binding site by using chemical mutation [Luo, Zhu, Ding, Gao, Sun, Liu, Yang and Shen (1994) Biochem. Biophys. Res. Commun. 198, 1240-1247; Ding, Liu, Zhu, Luo, Zhao and Ni (1998) Biochem. J. 332, 251-255]. Since then we have established a series of catalytic antibodies capable of catalysing the decomposition of hydroperoxides by GSH. The monoclonal antibody 2F3 was raised against GSH-S-2,4-dinitrophenyl t-butyl ester and exhibited high catalytic efficiency, exceeding that of rabbit liver GPX, after chemical mutation. To produce pharmaceutical proteins and to study the reason why it exhibits high catalytic efficiency, we sequenced, cloned and expressed the variable regions of 2F3 antibody as a single-chain Fv fragment (2F3-scFv) in different bacterial strains. The amounts of 2F3-scFv proteins expressed from JM109 (DE3), BL21 (DE3), and BL21 (coden plus) were 5-10%, 15-20% and 25-30% of total bacterial proteins respectively. The 2F3-scFv was expressed as inclusion bodies, purified in the presence of 8 M urea by Co(2+)-immobilized metal-affinity chromatography (IMAC) and renatured to the active form in vitro by gel filtration. The binding constants of the active 2F3-scFv for GSH and GSSG were 2.46 x 10(5) M(-1) and 1.03 x 10(5) M(-1) respectively, which were less by one order of magnitude than that of the intact 2F3 antibody. The active 2F3-scFv was converted into selenium-containing 2F3-scFv (Se-2F3-scFv) by chemical modification of the reactive serine; the GPX activity of the Se-2F3-scFv was 3394 units/micromol, which approaches the activity of rabbit liver GPX. PMID:11583583

  6. Reducing heterophilic antibody interference in immunoassays using single chain antibodies

    SciTech Connect

    Baird, Cheryl L.; Tan, Ruimin; Fischer, Christopher J.; Victry, Kristin D.; Zangar, Richard C.; Rodland, Karin D.

    2011-12-15

    Sandwich ELISA microarrays have the potential to simultaneously quantify the levels of multiple diagnostic targets in a biological sample. However, as seen with traditional ELISA diagnostics, heterophilic antibodies (HA) in patient sera have the potential to cause interference in these assays. We demonstrate here that reducing the diagnostic capture antibody to its minimal functional unit, the variable heavy and light domains artificially connected with a short polypeptide linker (scFv), is an effective strategy for reducing the HA assay interference.

  7. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli.

    SciTech Connect

    Miller, Keith D.; Feldhaus, Jane M.; Gray, Sean A.; Siegel, Robert W.; Feldhaus, Michael J.

    2005-08-01

    Single chain (scFv) antibodies are used as affinity reagents for diagnostics, therapeutics, and proteomic analyses. The antibody discovery platform we use to identify novel antigen binders involves discovery, characterization, and production. The discovery and characterization components have previously been characterized but in order to fully utilize the capabilities of affinity reagents from our yeast surface display library, efforts were focused on developing a production component to obtain purified, soluble, and active scFvs. Instead of optimizing conditions to achieve maximum yield, efforts were focused on using a system that could quickly and easily produce and process hundreds of scFv antibodies. Heterologous protein expression in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli were evaluated for their ability to rapidly, efficaciously, and consistently produce scFv antibodies for use in downstream proteomic applications. Following purification, the binding activity of several scFv antibodies were quantified using a novel Biacore assay. All three systems produced soluble scFv antibodies which ranged in activity from 0-99%. scFv antibody yields from Saccharomyces, Pichia, and E. coli were 1.5-4.2, 0.4-7.3, and 0.63-16.4 mg L-1 culture, respectively. For our purposes, expression in E. coli proved to be the quickest and most consistent way to obtain and characterize purified scFv for downstream applications. The E. coli expression system was also used to compare scFv production levels from the periplasm, inclusion bodies, and culture media. The E. coli production system was then used to produce variants of several scFv to determine structure function relationships.

  8. Cell-free eukaryotic systems for the production, engineering, and modification of scFv antibody fragments

    PubMed Central

    Stech, Marlitt; Hust, Michael; Schulze, Corina; Dübel, Stefan; Kubick, Stefan

    2014-01-01

    Open cell-free translation systems based on Escherichia coli cell lysates have successfully been used to produce antibodies and antibody fragments. In this study, we demonstrate the cell-free expression of functional single-chain antibody variable fragments (scFvs) in a eukaryotic and endotoxin-free in vitro translation system based on Spodoptera frugiperda (Sf21) insect cell extracts. Three scFv candidates with different specificities were chosen as models. The first scFv candidate SH527-IIA4 specifically discriminates between its phosphorylated (SMAD2-P) and nonphosphorylated antigens (SMAD2) (where SMAD is mothers against decapentaplegic homolog 2), whereas the second scFv candidate SH527-IIC10 recognizes both, SMAD2-P and SMAD2. The third scFv candidate SH855-C11 binds specifically to a linear epitope of the CXC chemokine receptor type 5. The translocation of antibody fragments into the lumen of endogenous microsomal vesicles, which are contained in the lysate, was facilitated by fusion of scFv genes to the insect cell specific signal sequence of honeybee melittin. We compared the binding capabilities of scFv fragments with and without melittin signal peptide and detected that translocated scFv fragments were highly functional, whereas scFvs synthesized in the cytosol of the cell extract showed strongly decreased binding capabilities. Additionally, we describe a cell-free protein synthesis method for the incorporation of noncanonical amino acids into scFv molecules in eukaryotic cell lysates. We demonstrate the successful cotranslational labeling of de novo synthesized scFv molecules with fluorescent amino acids, using residue-specific as well as site-specific labeling. PMID:25821419

  9. Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody

    PubMed Central

    Saeed, Mesha; van Brakel, Mandy; Zalba, Sara; Schooten, Erik; Rens, Joost AP; Koning, Gerben A; Debets, Reno; ten Hagen, Timo LM

    2016-01-01

    Therapy of melanoma using T-cells with genetically introduced T-cell receptors (TCRs) directed against a tumor-selective cancer testis antigen (CTA) NY-ESO1 demonstrated clear antitumor responses in patients without side effects. Here, we exploited the concept of TCR-mediated targeting through introduction of single-chain variable fragment (scFv) antibodies that mimic TCRs in binding major histocompatibility complex-restricted CTA. We produced scFv antibodies directed against Melanoma AntiGEn A1 (MAGE A1) presented by human leukocyte antigen A1 (HLA-A1), in short M1/A1, and coupled these TCR-like antibodies to liposomes to achieve specific melanoma targeting. Two anti-M1/A1 antibodies with different ligand-binding affinities were derived from a phage-display library and reformatted into scFvs with an added cysteine at their carboxyl termini. Protein production conditions, ie, bacterial strain, temperature, time, and compartments, were optimized, and following production, scFv proteins were purified by immobilized metal ion affinity chromatography. Batches of pure scFvs were validated for specific binding to M1/A1-positive B-cells by flow cytometry. Coupling of scFvs to liposomes was conducted by employing different conditions, and an optimized procedure was achieved. In vitro experiments with immunoliposomes demonstrated binding of M1/A1-positive B-cells as well as M1/A1-positive melanoma cells and internalization by these cells using flow cytometry and confocal microscopy. Notably, the scFv with nonenhanced affinity of M1/A1, but not the one with enhanced affinity, was exclusively bound to and internalized by melanoma tumor cells expressing M1/A1. Taken together, antigen-mediated targeting of tumor cells as well as promoting internalization of nanoparticles by these tumor cells is mediated by TCR-like scFv and can contribute to melanoma-specific targeting. PMID:27022262

  10. Identification of Fusarium virguliforme FvTox1-Interacting Synthetic Peptides for Enhancing Foliar Sudden Death Syndrome Resistance in Soybean.

    PubMed

    Wang, Bing; Swaminathan, Sivakumar; Bhattacharyya, Madan K

    2015-01-01

    Soybean is one of the most important crops grown across the globe. In the United States, approximately 15% of the soybean yield is suppressed due to various pathogen and pests attack. Sudden death syndrome (SDS) is an emerging fungal disease caused by Fusarium virguliforme. Although growing SDS resistant soybean cultivars has been the main method of controlling this disease, SDS resistance is partial and controlled by a large number of quantitative trait loci (QTL). A proteinacious toxin, FvTox1, produced by the pathogen, causes foliar SDS. Earlier, we demonstrated that expression of an anti-FvTox1 single chain variable fragment antibody resulted in reduced foliar SDS development in transgenic soybean plants. Here, we investigated if synthetic FvTox1-interacting peptides, displayed on M13 phage particles, can be identified for enhancing foliar SDS resistance in soybean. We screened three phage-display peptide libraries and discovered four classes of M13 phage clones displaying FvTox1-interacting peptides. In vitro pull-down assays and in vivo interaction assays in yeast were conducted to confirm the interaction of FvTox1 with these four synthetic peptides and their fusion-combinations. One of these peptides was able to partially neutralize the toxic effect of FvTox1 in vitro. Possible application of the synthetic peptides in engineering SDS resistance soybean cultivars is discussed. PMID:26709700

  11. Anti-ABCG2 scFv antibody of lung adenocarcinoma increases chemosensitivity and induces apoptosis through the activation of mitochondrial pathway.

    PubMed

    Zhao, Wen-Si; Luo, Yi; Li, Bo-Yi; Zhou, Han-Jing; Zhang, Tao

    2016-01-01

    ABCG2 is a multidrug resistance efflux pump expressed in many diverse tumors. The overexpression of ABCG2 is associated with resistance to a wide variety of anticancer agents, providing a noticeable setback to successful cancer therapy. Therapies targeting ABCG2 may therefore be a promising candidate for reversal of chemoresistance. The anti-ABCG2 single-chain variable fragment (scFv) antibody was constructed by phage display peptide library technology. Immunoblotting, ELISA and immunocytochemistry were used to evaluate the soluble expression and immunoreactivity of the scFv. The effects of scFv on cell function and chemosensitization were confirmed by colony formation, cell migration and CCK-8 assays. Flow cytometry was used to analyse the cell cycle and apoptosis. Radioimmunoimaging and nude mouse tumorigenicity assays were taken to determine the biodistribution and antitumor capacity of the scFv antibody. We have successfully screened out the candidate scFv antibody with an apparent molecular weight of 34 kDa. The scFv demonstrated favourable binding ability to lung adenocarcinoma cells and ABCG2 antigen, and the radioactivity was specifically aggregated at the tumor location. Furthermore, the internalized scFv resulted in antibody-mediated downregulation of ABCG2, proliferation inhibition, apoptosis and cisplatin (DDP) sensitivity. The anti-ABCG2 scFv antibody possesses good tumoraffin and antitumor activity and may therefore be an effective therapeutic agent for lung adenocarcinoma that is dependent on ABCG2 for drug resistance and survival. PMID:27293996

  12. Anti-ABCG2 scFv antibody of lung adenocarcinoma increases chemosensitivity and induces apoptosis through the activation of mitochondrial pathway

    PubMed Central

    Zhao, Wen-Si; Luo, Yi; Li, Bo-Yi; Zhou, Han-Jing; Zhang, Tao

    2016-01-01

    ABCG2 is a multidrug resistance efflux pump expressed in many diverse tumors. The overexpression of ABCG2 is associated with resistance to a wide variety of anticancer agents, providing a noticeable setback to successful cancer therapy. Therapies targeting ABCG2 may therefore be a promising candidate for reversal of chemoresistance. The anti-ABCG2 single-chain variable fragment (scFv) antibody was constructed by phage display peptide library technology. Immunoblotting, ELISA and immunocytochemistry were used to evaluate the soluble expression and immunoreactivity of the scFv. The effects of scFv on cell function and chemosensitization were confirmed by colony formation, cell migration and CCK-8 assays. Flow cytometry was used to analyse the cell cycle and apoptosis. Radioimmunoimaging and nude mouse tumorigenicity assays were taken to determine the biodistribution and antitumor capacity of the scFv antibody. We have successfully screened out the candidate scFv antibody with an apparent molecular weight of 34 kDa. The scFv demonstrated favourable binding ability to lung adenocarcinoma cells and ABCG2 antigen, and the radioactivity was specifically aggregated at the tumor location. Furthermore, the internalized scFv resulted in antibody-mediated downregulation of ABCG2, proliferation inhibition, apoptosis and cisplatin (DDP) sensitivity. The anti-ABCG2 scFv antibody possesses good tumoraffin and antitumor activity and may therefore be an effective therapeutic agent for lung adenocarcinoma that is dependent on ABCG2 for drug resistance and survival. PMID:27293996

  13. High-level expression of a phage display-derived scFv in Pichia pastoris.

    PubMed

    Damasceno, Leonardo M; Lee, Frank; Ritter, Gerd; Old, Lloyd; Batt, Carl

    2009-01-01

    Numerous techniques are available for investigating protein-ligand interactions. The phage display technique is one such method routinely used to identify antibody-antigen interactions and has the benefit of being easily adaptable to high-throughput screening platforms. Once identified, antigen-binding domains on fragment antibodies or single-chain fragment antibodies (scFv) can be expressed and purified for further studies. In this chapter, we describe a method for high-level expression of a phage display-derived scFv in Pichia pastoris. The phage display-derived antibody A33scFv recognizes a cell surface glycoprotein (designated A33) expressed in colon cancer that serves as a target antigen for radioimmunoimaging and/or immunotherapy of human colon cancer. The expression and purification of A33scFv was optimized for the methylotrophic yeast P. pastoris. P. pastoris with a Mut(S) phenotype was selected to express A33scFv under regulation of the methanol-inducible AOX1 promoter. Here we describe a large-scale fed-batch fermentation process with an efficient online closed-loop methanol control for the production of the recombinant protein. Purification of A33scFv from clarified culture medium was done using a two-step chromatographic procedure using anion exchange and hydrophobic interaction chromatography, resulting in a final product with more than 90% purity. This chapter provides protocols that can be used as a base for process development of recombinant protein expression in P. pastoris and purification of these proteins for use in further functionality studies and in diagnostic and therapeutic applications.

  14. Human monoclonal ScFv specific to NS1 protein inhibits replication of influenza viruses across types and subtypes.

    PubMed

    Yodsheewan, Rungrueang; Maneewatch, Santi; Srimanote, Potjanee; Thueng-In, Kanyarat; Songserm, Thaweesak; Dong-Din-On, Fonthip; Bangphoomi, Kunan; Sookrung, Nitat; Choowongkomon, Kiattawee; Chaicumpa, Wanpen

    2013-10-01

    Currently, there is a need of new anti-influenza agents that target influenza virus proteins other than ion channel M2 and neuraminidase. Non-structural protein-1 (NS1) is a highly conserved multifunctional protein which is indispensable for the virus replication cycle. In this study, fully human single chain antibody fragments (HuScFv) that bound specifically to recombinant and native NS1 were produced from three huscfv-phagemid transformed Escherichia coli clones (nos. 3, 10 and 11) selected from a human ScFv phage display library. Western blot analysis, mimotope searching/epitope identification, homology modeling/molecular docking and phage mimotope ELISA inhibition indicated that HuScFv of clone no. 3 reacted with NS1 R domain important for host innate immunity suppression; HuScFv of clone nos. 10 and 11 bound to E domain sites necessary for NS1 binding to the host eIF4GI and CPSF30, respectively. The HuScFv of all clones could enter the influenza virus infected cells and interfered with the NS1 activities leading to replication inhibition of viruses belonging to various heterologous A subtypes and type B by 2-64-fold as semi-quantified by hemagglutination assay. Influenza virus infected cells treated with representative HuScFv (clone 10) had up-expression of IRF3 and IFN-β genes by 14.75 and 4.95-fold, respectively, in comparison with the controls, indicating that the antibodies could restore the host innate immune response. The fully human single chain antibodies have high potential for developing further as a safe (adjunctive) therapeutic agent for mitigating, if not abrogating, severe symptoms of influenza.

  15. Insilico analysis of three different tag polypeptides with dual roles in scFv antibodies.

    PubMed

    Mohammadi, Mozafar; Nejatollahi, Foroogh; Sakhteman, Amirhossein; Zarei, Neda

    2016-08-01

    Single chain fragment variable (scFv) antibodies are composed of variable heavy (VH) and variable light (VL) domains that are joined by a polypeptide linker. Typically, [(Gly4Ser) n] sequence is used as a linker to retain the integrity of the antigen-binding domain. Due to its low immunogenicity, this sequence cannot be used as a tag for scFv detection and purification. Several evidences have shown that the addition of an N or C-terminal tag for scFv detection and purification will result in the decreased expression and binding capacity of this antibody fragment. In this study, we substituted the traditional linker (GGGGS) with His-tag, C-myc or E-tag sequences through molecular modeling. Stability and integrity of all models were assessed by molecular dynamic (MD) simulation. Based on MD simulation analysis, the model containing E-tag sequence as a linker indicated more stability compared to other molecules. The results suggest that E-tag not only can be substituted for the traditional linker, also eliminates the necessity of using additional tag for scFv detection and purification. PMID:27113782

  16. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies.

    PubMed

    Stöger, E; Vaquero, C; Torres, E; Sack, M; Nicholson, L; Drossard, J; Williams, S; Keen, D; Perrin, Y; Christou, P; Fischer, R

    2000-03-01

    This report describes the stable expression of a medically important antibody in the staple cereal crops rice and wheat. We successfully expressed a single-chain Fv antibody (ScFvT84.66) against carcinoembryonic antigen (CEA), a well characterized tumor-associated marker antigen. scFv constructs were engineered for recombinant antibody targeting to the plant cell apoplast and ER. Up to 30 microg/g of functional recombinant antibody was detected in the leaves and seeds of wheat and rice. We confirmed that transgenic dry seeds could be stored for at least five months at room temperature, without significant loss of the amount or activity of scFvT84.66. Our results represent the first transition from model plant expression systems, such as tobacco and Arabidopsis, to widely cultivated cereal crops, such as rice and wheat, for expression of an antibody molecule that has already shown efficacy in clinical applications. Thus, we have established that molecular pharming in cereals can be a viable production system for such high-value pharmaceutical macromolecules. Our findings provide a strong foundation for exploiting alternative uses of cereal crops both in industrialized and developing countries.

  17. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope.

    PubMed

    Bublin, Merima; Kostadinova, Maria; Fuchs, Julian E; Ackerbauer, Daniela; Moraes, Adolfo H; Almeida, Fabio C L; Lengger, Nina; Hafner, Christine; Ebner, Christof; Radauer, Christian; Liedl, Klaus R; Valente, Ana Paula; Breiteneder, Heimo

    2015-01-01

    Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes. PMID:26579717

  18. A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope

    PubMed Central

    Fuchs, Julian E.; Ackerbauer, Daniela; Moraes, Adolfo H.; Almeida, Fabio C. L.; Lengger, Nina; Hafner, Christine; Ebner, Christof; Radauer, Christian; Liedl, Klaus R.; Valente, Ana Paula; Breiteneder, Heimo

    2015-01-01

    Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients’ sera to all three β-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes. PMID:26579717

  19. Human monoclonal ScFv that inhibits cellular entry and metalloprotease activity of tetanus neurotoxin.

    PubMed

    Indrawattana, Nitaya; Sookrung, Nitat; Kulkeaw, Kasem; Seesuay, Watee; Kongngoen, Thida; Chongsa-nguan, Manas; Tungtrongchitr, Anchalee; Chaicumpa, Wanpen

    2010-03-01

    Tetanus is a deadly disease of warm blooded animals and humans caused by an exotoxin called tetanospasmin or tetanus neurotoxin (TeNT) produced by anaerobic bacterium named Clostridium tetani TeNT is an A-B toxin; each molecule consists of a heavy chain (HC) containing cellular receptor binding domain and a light chain (LC) with zinc metalloprotease activity. TeNT produced in the infected tissue by the bacteria grown under anaerobic condition binds to ganglioside receptors of peripheral nerve, and endocytosed. The A subunit exits from the endosome and undergoes a retrograde transport via the nerve axon to the spinal cord. This highly toxic enzyme specifically cleaves one of the nerve cell SNARE proteins, i.e., synaptobrevin, resulting in inhibition of the release of neurotransmitters (glycine and GABA) from inhibitory interneuron causing spastic paralysis, the characteristic of tetanus. Current treatment mainstay of human tetanus is by passively administering anti-tetanus toxin produced from animals immunized with adjuvanted tetanus toxoid (TT). There are several obstacles in production and use of the animal derived therapeutic antibody especially the allergic reaction and serum sickness induced by the host immune response to the foreign protein. The animal antibody, mainly IgG, blocks nerve cell entry of the TeNT but does not neutralize the TeNT protease activity per se and cannot reverse the tetanus symptoms. In this study, fully human single chain antibody fragments (HuScFv) were produced from a human antibody phage display library. TT was used as antigen in a single round phage bio-panning to select phage clones that display TT bound-HuScFv from the library. HuScFv from 4 selected huscfv-phagemid transformed E. coli clones inhibited binding of the native TeNT to retinoic acid pulsed human neuroblastoma cells when used at the molecular TeNT:HuScFv ratio of 1:100. HuScFv from one of the 4 clones also inhibited the TeNT mediated cleavage of recombinant

  20. Humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity.

    PubMed

    Xiangbao, Yin; Linquan, Wu; Mingwen, Huang; Fan, Zhou; Kai, Wang; Xin, Yu; Kaiyang, Wang; Huaqun, Fu

    2014-06-01

    Low sensitivity of tumor tissue, targeting and sustained release of the drug are bottlenecks of the effect of chemotherapy on hepatocellular carcinoma. In this study, we used the ribosome display technology to screen human anti-VEGFR 2-single-chain antibody (ScFv) that could target directly to VEGFR2, and nanotechnology to prepare As2O3-nanoparticles. Then we built anti-VEGFR-2ScFv-As2O3-stealth nanoparticles using molecular coupling technology, which significantly increased anti-tumor effect while reducing toxicity. The in vivo tissue targeting distribution and anti-tumor effects of the anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles were investigated. Our results showed that anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles could inhibit the development of liver cancer xenograft as a targeting agent and also significantly inhibit angiogenesis.

  1. Humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity.

    PubMed

    Xiangbao, Yin; Linquan, Wu; Mingwen, Huang; Fan, Zhou; Kai, Wang; Xin, Yu; Kaiyang, Wang; Huaqun, Fu

    2014-06-01

    Low sensitivity of tumor tissue, targeting and sustained release of the drug are bottlenecks of the effect of chemotherapy on hepatocellular carcinoma. In this study, we used the ribosome display technology to screen human anti-VEGFR 2-single-chain antibody (ScFv) that could target directly to VEGFR2, and nanotechnology to prepare As2O3-nanoparticles. Then we built anti-VEGFR-2ScFv-As2O3-stealth nanoparticles using molecular coupling technology, which significantly increased anti-tumor effect while reducing toxicity. The in vivo tissue targeting distribution and anti-tumor effects of the anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles were investigated. Our results showed that anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles could inhibit the development of liver cancer xenograft as a targeting agent and also significantly inhibit angiogenesis. PMID:24855034

  2. Radiolabelling of glycosylated MFE-23::CPG2 fusion protein (MFECP1) with 99mTc for quantitation of tumour antibody-enzyme localisation in antibody-directed enzyme pro-drug therapy (ADEPT).

    PubMed

    Francis, R J; Mather, S J; Chester, K; Sharma, S K; Bhatia, J; Pedley, R B; Waibel, R; Green, A J; Begent, R H J

    2004-08-01

    MFECP1 is a glycosylated recombinant fusion protein composed of MFE-23, a high-affinity anti-carcinoembryonic antigen (CEA) single chain Fv (scFv), fused to the enzyme carboxypeptidase G2 (CPG2), and has been constructed for use in antibody-directed enzyme pro-drug therapy (ADEPT). Radiolabelling of glycosylated MFECP1 with technetium-99m was developed for the purpose of determining tumour localisation of MFECP1 in a phase I ADEPT clinical study. The method used was 99mTc-carbonyl [99mTc(H2O)3(CO)3]+ (abbreviated to TcCO) mediated labelling of 99mTc to the hexahistidine (His) tag of MFECP1. MFECP1 fusion protein was labelled with TcCO under a variety of conditions, and this was shown to be a relatively simple and robust method. Tissue biodistribution was assessed in a CEA-expressing LS174T (human colon carcinoma) nude mouse xenograft model. Tissues were taken at 1, 4 and 6 h for assessment of distribution of radioactivity and for measurement of CPG2 enzyme levels. The amount of radioactivity retained by the tumour proved to be an accurate estimation of actual measured enzyme activity, indicating that this radiolabelling method does not appear to damage the antibody-antigen binding or the enzyme activity of MFECP1. However, correlation between CPG2 enzyme activity and measured radioactivity in liver, spleen and kidney was poor, indicating retention of radioactivity in non-tumour sites but loss of enzyme activity. The high retention of technetium radioisotope in normal tissues may limit the clinical applicability of this radiolabelling method for MFECP1; however, these results suggest that this technique does have applicability for measuring the biodistribution of His-tagged recombinant proteins.

  3. An anti-Aβ (amyloid β) single-chain variable fragment prevents amyloid fibril formation and cytotoxicity by withdrawing Aβ oligomers from the amyloid pathway.

    PubMed

    Marín-Argany, Marta; Rivera-Hernández, Geovanny; Martí, Joaquim; Villegas, Sandra

    2011-07-01

    Aβ (amyloid β) immunotherapy has been revealed as a possible tool in Alzheimer's disease treatment. In contrast with complete antibodies, the administration of scFvs (single-chain variable fragments) produces neither meningoencephalitis nor cerebral haemorrhage. In the present study, the recombinant expression of scFv-h3D6, a derivative of an antibody specific for Aβ oligomers, is presented, as well as the subsequent proof of its capability to recover the toxicity induced by the Aβ1-42 peptide in the SH-SY5Y neuroblastoma cell line. To gain insight into the conformational changes underlying the prevention of Aβ toxicity by this antibody fragment, the conformational landscape of scFv-h3D6 upon temperature perturbation is also described. Heating the native state does not lead to any extent of unfolding, but rather directly to a β-rich intermediate state which initiates an aggregation pathway. This aggregation pathway is not an amyloid fibril pathway, as is that followed by the Aβ peptide, but rather a worm-like fibril pathway which, noticeably, turns out to be non-toxic. On the other hand, this pathway is thermodynamically and kinetically favoured when the scFv-h3D6 and Aβ1-42 oligomers form a complex in native conditions, explaining how the scFv-h3D6 withdraws Aβ1-42 oligomers from the amyloid pathway. To our knowledge, this is the first description of a conformational mechanism by which a scFv prevents Aβ-oligomer cytotoxicity.

  4. Generation of a mouse scFv library specific for porcine aminopeptidase N using the T7 phage display system.

    PubMed

    Sun, Dongbo; Shi, Hongyan; Chen, Jianfei; Shi, Da; Zhu, Qinghe; Zhang, Hong; Liu, Shengwang; Wang, Yunfeng; Qiu, Huaji; Feng, Li

    2012-06-01

    Porcine aminopeptidase N (pAPN) is a common cellular receptor for swine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PEDV). To investigate single-chain fragment variable (scFv) repertoire against pAPN, the genes encoding the immunoglobulin light chain variable region (VL) and heavy chain variable region (VH) were amplified by reverse transcript polymerase chain reaction (RT-PCR) using a series of degenerate primers from the spleen of BABL/c mice immunized with native pAPN. The VL and VH amplicons were combined randomly by a 12 amino acid flexible linker by splicing by overlap extension PCR (SOE-PCR), which produced the scFv gene repertoire. After ligation of the scFv gene repertoire into the T7Select10-3b vector, a mouse scFv phage library specific for pAPN was produced through in vitro packaging. The primary scFv library against pAPN contained 2.0×10(7) recombinant phage clones, and the titer of the amplified library was 3.6×10(9)pfu/mL. BstNI restriction analysis and DNA sequencing revealed that 28 phage clones from the primary pAPN scFv library showed excellent diversity. The effectiveness of the scFv library against pAPN was verified further by phage ELISA using the recombinant protein of the pAPN C subunit as coating antigen. The construction and evaluation of a murine scFv library against the common receptor pAPN of porcine coronaviruses TGEV and PEDV using the T7 phage display system are described.

  5. Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water.

    PubMed

    Zhang, Xiuyuan; He, Kuo; Zhao, Ruiping; Wang, Lixia; Jin, Yandan

    2016-10-01

    Single chain variable fragment (scFv), containing of heavy and light chains (VH and VL) joined by a short peptide linker, has been used widely for immunodetection. Nevertheless, cloning functional variable genes is still a bottle neck for the scFv generation technology. Here, a rational strategy for cloning and selecting variable region genes from an anti-microcystin-LR hybridoma was devised, then the functional VH and VL genes were recloned and assembled to scFv using splicing overlap extension PCR. The resulting scFv gene was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein (scFv-AP) by vector PLIP6/GN. Then an indirect competitive chemiluminescent enzyme immunoassay (ic-CLEIA) for detection of microcystin-LR was developed. The half-maximum inhibition concentrations (IC50) and limits of detection (LODs, IC15) were 0.81 ± 0.04 μgL(-1) and 0.13 ± 0.03 μgL(-1), respectively. With the mean coefficient of variation lowing 8%, the mean recovery in intra-assay and inter-assay were 100.06% and 96.46%, The proposed strategy should be useful for generation scFv in a rapid and simple way.

  6. Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water.

    PubMed

    Zhang, Xiuyuan; He, Kuo; Zhao, Ruiping; Wang, Lixia; Jin, Yandan

    2016-10-01

    Single chain variable fragment (scFv), containing of heavy and light chains (VH and VL) joined by a short peptide linker, has been used widely for immunodetection. Nevertheless, cloning functional variable genes is still a bottle neck for the scFv generation technology. Here, a rational strategy for cloning and selecting variable region genes from an anti-microcystin-LR hybridoma was devised, then the functional VH and VL genes were recloned and assembled to scFv using splicing overlap extension PCR. The resulting scFv gene was recombinantly expressed as a soluble scFv-alkaline phosphatase fusion protein (scFv-AP) by vector PLIP6/GN. Then an indirect competitive chemiluminescent enzyme immunoassay (ic-CLEIA) for detection of microcystin-LR was developed. The half-maximum inhibition concentrations (IC50) and limits of detection (LODs, IC15) were 0.81 ± 0.04 μgL(-1) and 0.13 ± 0.03 μgL(-1), respectively. With the mean coefficient of variation lowing 8%, the mean recovery in intra-assay and inter-assay were 100.06% and 96.46%, The proposed strategy should be useful for generation scFv in a rapid and simple way. PMID:27380224

  7. An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification.

    PubMed

    Sotelo, Pablo; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen

    2012-01-01

    Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles.

  8. Structural Basis of Neutralization of the Major Toxic Component from the Scorpion Centruroides noxius Hoffmann by a Human-derived Single-chain Antibody Fragment

    SciTech Connect

    Canul-Tec, Juan Carlos; Riaño-Umbarila, Lidia; Rudiño-Piñera, Enrique; Becerril, Baltazar; Possani, Lourival D.; Torres-Larios, Alfredo

    2011-08-09

    It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 {angstrom} resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complex reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of {beta}-toxins to its Na+ channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.

  9. Multiparameter optimization method and enhanced production of secreted recombinant single-chain variable fragment against the HIV-1 P17 protein from Escherichia coli by fed-batch fermentation.

    PubMed

    Paopang, Porntip; Kasinrerk, Watchara; Tayapiwatana, Chatchai; Seesuriyachan, Phisit; Butr-Indr, Bordin

    2016-01-01

    The single-chain fragment variable (scFv) was used to produce a completely functional antigen-binding fragment in bacterial systems. The advancements in antibody engineering have simplified the method of producing Fv fragments and made it more efficient and generally relevant. In a previous study, the scFv anti HIV-1 P17 protein was produced by a batch production system, optimized by the sequential simplex optimization method. This study continued that work in order to enhance secreted scFv production by fed-batch cultivation, which supported high volumetric productivity and provided a large amount of scFvs for diagnostic and therapeutic research. The developments in cell culture media and process parameter settings were required to realize the maximum production of cells. This study investigated the combined optimization methods, Plackett-Burman design (PBD) and sequential simplex optimization, with the aim of optimize feed medium. Fed-batch cultivation with an optimal feeding rate was determined. The result demonstrated that a 20-mL/hr feeding rate of the optimized medium can increase cell growth, total protein production, and scFv anti-p17 activity by 4.43, 1.48, and 6.5 times more than batch cultivation, respectively. The combined optimization method demonstrated novel power tools for the optimization strategy of multiparameter experiments.

  10. Development of Human-Like scFv-Fc Neutralizing Botulinum Neurotoxin E

    PubMed Central

    Miethe, Sebastian; Rasetti-Escargueil, Christine; Avril, Arnaud; Liu, Yvonne; Chahboun, Siham; Korkeala, Hannu; Mazuet, Christelle; Popoff, Michel-Robert; Pelat, Thibaut; Thullier, Philippe; Sesardic, Dorothea; Hust, Michael

    2015-01-01

    Background Botulinum neurotoxins (BoNTs) are considered to be the most toxic substances known on earth and are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food-poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agent by the Centers of Disease Control and Prevention (CDC) and are listed among the six agents with the highest risk to be used as bioweapons. Neutralizing antibodies are required for the development of effective anti-botulism therapies to deal with the potential risk of exposure. Results In this study, a macaque (Macaca fascicularis) was immunized with recombinant light chain of BoNT/E3 and an immune phage display library was constructed. After a multi-step panning, several antibody fragments (scFv, single chain fragment variable) with nanomolar affinities were isolated, that inhibited the endopeptidase activity of pure BoNT/E3 in vitro by targeting its light chain. Furthermore, three scFv were confirmed to neutralize BoNT/E3 induced paralysis in an ex vivo mouse phrenic nerve-hemidiaphragm assay. The most effective neutralization (20LD50/mL, BoNT/E3) was observed with scFv ELC18, with a minimum neutralizing concentration at 0.3 nM. Furthermore, ELC18 was highly effective in vivo when administered as an scFv-Fc construct. Complete protection of 1LD50 BoNT/E3 was observed with 1.6 ng/dose in the mouse flaccid paralysis assay. Conclusion These scFv-Fcs antibodies are the first recombinant antibodies neutralizing BoNT/E by targeting its light chain. The human-like nature of the isolated antibodies is predicting a good tolerance for further clinical development. PMID:26440796

  11. Single Chain Fragment Variable Recombinant Antibody Functionalized Gold Nanoparticles for a Highly Sensitive Colorimetric Immunoassay

    PubMed Central

    Liu, Yang; Liu, Yi; Raymond, Raymond L.; Zeng, Xiangqun

    2009-01-01

    In this report, the peptide linker connecting scFv VH and VL domains were genetically modified to contain different amino acids (i.e. cysteine (scFv-cys) or histidines ( scFv-his)) to enable the scFv to adsorb or self-assemble onto the gold nanoparticles (NPs). The scFv-cys stabilized gold NPs were used to develop a highly sensitive colorimetric immunosensor. The scFv-cys stabilized gold NPs were characterized by UV-vis spectra, transmission electron microscope (TEM) and FT-IR. After adding the antigen rabbit IgG, the solution of scFv-cys stabilized gold NPs shows obvious visible color change from deep red to light purple due to the aggregation of the gold nanoparticles. Based on the colorimetric aggregation of scFv-cys stabilized gold NPs, the immunosensor exhibits high sensitivity with detection limit of 1.7 nM and good specificity. The good properties of the colorimetric aggregation immunosensor would be attributed to the small size of scFv and the covalent link between the scFv and gold NPs that improve the better orientation and enhance the probe density. With the advantages of speed, simplicity and specificity, the colorimetric immunoassay based on the functionalized scFv stabilized gold NPs represents a promising approach for protein analysis and clinical diagnostics. PMID:19327975

  12. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine.

    PubMed

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  13. The Development of a Recombinant scFv Monoclonal Antibody Targeting Canine CD20 for Use in Comparative Medicine

    PubMed Central

    Jain, Saurabh; Aresu, Luca; Comazzi, Stefano; Shi, Jianguo; Worrall, Erin; Clayton, John; Humphries, William; Hemmington, Sandra; Davis, Paul; Murray, Euan; Limeneh, Asmare A.; Ball, Kathryn; Ruckova, Eva; Muller, Petr; Vojtesek, Borek; Fahraeus, Robin; Argyle, David; Hupp, Ted R.

    2016-01-01

    Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20

  14. Evaluation of rMETase-Loaded Stealth PLGA/Liposomes Modified with Anti-CAGE scFV for Treatment of Gastric Carcinoma.

    PubMed

    Xin, Lin; Caot, Jia-Qing; Liu, Chuan; Zeng, Fei; Cheng, Hua; Hu, Xiao-Yun; Shao, Jiang-Hua

    2015-07-01

    Stealth PLGA/Liposome nanoparticles (NPs) modified with tumor-targeting single-chain antibody fragment (scFV-P/L) for systemic delivery of recombinant methioninase (rMETase) for gastric cancer were prepared. The morphologies and therapeutic effects of rMETase-loaded scFV-P/L (scFV-rMETase-P/L) in vitro were analyzed. Functional scFV-P/L NPs composed of PLGA, DOPC and DSPE-PEG display low cell cytoxicity in SGC-7901 cells, and has more cell uptake ability than P/L NPs. scFV-rMETase-P/L was more effective in inhibiting tumor growth in the subcutaneous gastric carcinoma tumor model than free rMETase in solution (p < 0.05) and rMETase-loaded P/L (rMETase-P/L) (p < 0.05). Our findings collectively support the utility of scFV-targeted P/L NPs as a potentially effective drug delivery system.

  15. Dendritic Cells Transfected with scFv from Mab 7.B12 Mimicking Original Antigen gp43 Induces Protection against Experimental Paracoccidioidomycosis

    PubMed Central

    Ferreira, Karen S.; Maranhão, Andrea Q.; Garcia, Maria C. C.; Brígido, Marcelo M.; Santos, Suelen S.; Lopes, José D.; Almeida, Sandro R.

    2011-01-01

    Paracoccidioidomycosis (PCM), endemic in Latin America, is a progressive systemic mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), which primarily attacks lung tissue. Dendritic cells (DCs) are able to initiate a response in naïve T cells, and they also participate in Th-cell education. Furthermore, these cells have been used for therapy in several disease models. Here we transfected DCs with a plasmid (pMAC/PS-scFv) encoding a single chain variable fragment (scFv) of an anti-Id antibody that is capable of mimicking gp43, the main antigenic component of P. brasiliensis. First, Balb/c mice were immunized subcutaneously with pMAC/PS-scFv and, after seven days, scFv protein was presented to the regional lymph nodes cells. Moreover, we showed that the DCs transfected with scFv were capable of efficiently activating proliferation of total lymph node cells and inducing a decrease in lung infection. Therefore, our results suggested that the use of scFv-transfected DCs may be a promising therapy in the paracoccidioidomycosis (PCM) model. PMID:21249212

  16. Successful construction and stable expression of an anti-CD45RA scFv-EGFP fusion protein in Chinese hamster ovary cells.

    PubMed

    Wang, Zhujun; Chen, Yuanyuan; Li, Sisi; Cheng, Yuping; Zhao, Haizhao; Jia, Ming; Luo, Zebin; Tang, Yongmin

    2014-02-01

    CD45RA has been found highly expressed on leukemia cells and may be a potential target of the disease. In this study, an anti-CD45RA single-chain antibody fragment (scFv3A4) was genetically linked to the N terminus of the enhanced green fluorescent protein (EGFP) to generate a scFv3A4-EGFP fusion protein. The scFv3A4-EGFP with a molecular weight of 57kDa was stably expressed and secreted from the transfected CHO cells through the ER/Golgi-dependent pathway. The fusion protein was soluble in the culture supernatant and the yield was 1350μg/L. Flow cytometry analysis showed that the scFv3A4-EGFP had the same binding site and a very similar reactivity pattern with its parental murine monoclonal antibody (mAb) 3A4. Furthermore, comparing to conventional labeled 3A4-FITC antibody, the scFv3A4-EGFP was more resistant to illumination and more suitable for immunofluorescence histology (IFH) detection. Therefore, the scFv3A4-EGFP fusion protein can be a powerful tool to investigate the targeting of CD45RA on leukemia cells, biological activity of the target and possibly for the genetic manipulation of the antibody.

  17. Effects of a brain-engraftable microglial cell line expressing anti-prion scFv antibodies on survival times of mice infected with scrapie prions.

    PubMed

    Fujita, Koji; Yamaguchi, Yoshitaka; Mori, Tsuyoshi; Muramatsu, Naomi; Miyamoto, Takahito; Yano, Masashi; Miyata, Hironori; Ootsuyama, Akira; Sawada, Makoto; Matsuda, Haruo; Kaji, Ryuji; Sakaguchi, Suehiro

    2011-10-01

    We first verified that a single chain Fv fragment against prion protein (anti-PrP scFv) was secreted by HEK293T cells and prevented prion replication in infected cells. We then stably expressed anti-PrP scFv in brain-engraftable murine microglial cells and intracerebrally injected these cells into mice before or after infection with prions. Interestingly, the injection before or at an early time point after infection attenuated the infection marginally but significantly prolonged survival times of the mice. These suggest that the ex vivo gene transfer of anti-PrP scFvs using brain-engraftable cells could be a possible immunotherapeutic approach against prion diseases.

  18. [Construction of combinatorial immune library of single chain human antibodies to orthopoxviruses and selection from this library antibodies to recombinant protein prA30L of variola virus].

    PubMed

    Dubrovskaia, V V; Ulitin, A B; Laman, A G; Gileva, I P; Bormotov, N I; Il'ichev, A A; Brovko, F A; Shchelkunov, S N; Belanov, E F; Tikunova, N V

    2007-01-01

    A combinatorial immune library of human single-chain antibody fragments (scFv) was constructed on the base of genes encoding variable domains of heavy and light chains of immunoglobulins cloned from the lymphocytes of four vaccinia virus (VACV) vaccinated donors. The size of the library was 3 x 10(7) independent clones. After the library was enriched with the clones producing scFv against recombinant analogue of variola virus surface protein prA30L, a panel of unique antibodies specific to both prA30L and VACV was selected from the library. A plaque reduction neutralization test was performed for all selected antibodies and two antibodies were shown to be able to neutralize plaque formation of VACV in Vero E6 cells monolayer. Binding specificities of these antibodies were confirmed using ELISA and Western blot analysis. To determine the amino acid sequences of neutralizing antibodies their genes were sequenced.

  19. Conversion of scFv peptide-binding specificity for crystal chaperone development

    SciTech Connect

    Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.

    2012-02-07

    In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 {angstrom} resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a {approx}52 {angstrom} channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries.

  20. Production of anti-amoxicillin ScFv antibody and simulation studying its molecular recognition mechanism for penicillins.

    PubMed

    Liu, Jing; Zhang, Hui C; Duan, Chang F; Dong, Jun; Zhao, Guo X; Wang, Jian P; Li, Nan; Liu, Jin Z; Li, Yu W

    2016-11-01

    The molecular recognition mechanism of an antibody for its hapten is very interesting. The objective of this research was to study the intermolecular interactions of an anti-amoxicillin antibody with penicillin drugs. The single chain variable fragment (ScFv) antibody was generated from a hybridoma cell strain excreting the monoclonal antibody for amoxicillin. The recombinant ScFv antibody showed similar recognition ability for penicillins to its parental monoclonal antibody: simultaneous recognizing 11 penicillins with cross-reactivities of 18-107%. The three-dimensional structure of the ScFv antibody was simulated by using homology modeling, and its intermolecular interactions with 11 penicillins were studied by using molecular docking. Results showed that three CDRs are involved in antibody recognition; CDR L3 Arg 100, CDR H3 Tyr226, and CDR H3 Arg 228 were the key contact amino acid residues; hydrogen bonding was the main antibody-drug intermolecular force; and the core structure of penicillin drugs was the main antibody binding position. These results could explain the recognition mechanism of anti-amoxicillin antibody for amoxicillin and its analogs. This is the first study reporting the production of ScFv antibody for penicillins and stimulation studying its recognition mechanism.

  1. Structural and functional characterization of a novel scFv anti-HSP60 of Strongyloides sp.

    PubMed Central

    Levenhagen, Marcelo Arantes; de Almeida Araújo Santos, Fabiana; Fujimura, Patrícia Tiemi; Caneiro, Ana Paula; Costa-Cruz, Julia Maria; Goulart, Luiz Ricardo

    2015-01-01

    Phage display is a powerful technology that selects specific proteins or peptides to a target. We have used Phage Display to select scFv (single-chain variable fragment) clones from a combinatorial library against total proteins of Strongyloides venezuelensis. After scFv characterization, further analysis demonstrated that this recombinant fragment of antibody was able to bind to an S. venezuelensis antigenic fraction of ~65 kDa, present in the body periphery and digestive system of infective larvae (L3), as demonstrated by immunofluorescence. Mass spectrometry results followed by bioinformatics analysis showed that this antigenic fraction was a heat shock protein 60 (HSP60) of Strongyloides sp. The selected scFv was applied in serodiagnosis by immune complexes detection in serum samples from individuals with strongyloidiasis using a sandwich enzyme-linked immunosorbent assay (ELISA), showing sensitivity of 97.5% (86.84–99.94), specificity of 98.81 (93.54–99.97), positive likelihood ratio of 81.60 and an area under the curve of 0.9993 (0.9973–1.000). Our study provided a novel monoclonal scFv antibody fragment which specifically bound to HSP60 of Strongyloides sp. and was applied in the development of an innovative serodiagnosis method for the human strongyloidiasis. PMID:25994608

  2. Glycosylated Metal Phthalocyanines.

    PubMed

    Hanack, Michael

    2015-11-10

    In the first part; the syntheses of mono-; di-; and tetra-glycosylated phthalonitriles is described; which are the most used starting materials for the preparation of the corresponding glycosylated metal (mostly zinc) phthalocyanines. In the second section; the preparation of symmetric and unsymmetric mono-; tetra-; and octa- glycosylated zinc phthalocyanines are reviewed; in which the sugar is attached to the phthalocyanine macrocycle; either anomerically or via another one of its OH-groups.

  3. Selection and characterisation of recombinant single-chain antibodies to the hapten Aflatoxin-B1 from naive recombinant antibody libraries.

    PubMed

    Moghaddam, A; Løbersli, I; Gebhardt, K; Braunagel, M; Marvik, O J

    2001-08-01

    Selection of antibodies from large repertoire phage display libraries has become a common technique for isolation of specific antibodies to antigens. Many of these libraries are shown to contain antibodies specific to haptens, but only when these haptens are derivatised or conjugated to an immobilising molecule, such as bovine serum albumin (BSA). There has been little demonstration of the suitability of naive recombinant antibody libraries for isolating antibodies that bind low molecular weight haptens in the absence of a carrier molecule and few have addressed the problems associated with selecting antibodies that only recognize the combination of hapten and the carrier molecule. We have panned two-phage antibody libraries against AflatoxinB1-BSA and screened single-chain antibody fragments for binding to AflatoxinB1-BSA and Aflatoxin-B1. Many of the antibodies isolated specifically bound AflatoxinB1-BSA, but not soluble Aflatoxin-B1 or BSA. Modification of the protocol led to isolation of single-chain fragment variable antibody domain (scFv) antibodies that specifically bound soluble Aflatoxin-B1 with an affinity of 6x10(-9) M. PMID:11406162

  4. Generation of an anti-NAGase single chain antibody and its application in a biosensor-based assay for the detection of NAGase in milk.

    PubMed

    Welbeck, Katherine; Leonard, Paul; Gilmartin, Niamh; Byrne, Barry; Viguier, Caroline; Arora, Sushrut; O'Kennedy, Richard

    2011-02-01

    Bovine mastitis, an inflammation of the mammary gland in cows, is a major challenge for the dairy industry worldwide as it lowers milk yield, reduces milk quality and increases overall production costs. Early diagnosis is of the utmost importance. N-acetyl-β-D-glucosaminidase (NAGase) is an enzyme released into milk during inflammation and acts as an early indicator of mastitis. This paper describes the selection of anti-NAGase single chain fragment variable antibodies (scFv) from naïve human antibody libraries and their incorporation into an automated optical biosensor-based immunoassay to detect NAGase in milk. The scFv with the highest affinity for NAGase was first characterized by inhibition ELISA, followed by further evaluation using a surface plasmon resonance platform. Purified NAGase was immobilized on the surface of a CM5 chip and spiked NAGase milk samples were analyzed. The limit of detection for the assay for the assay was determined as 1μg/ml.

  5. Single Chain Variable Fragments Produced in Escherichia coli against Heat-Labile and Heat-Stable Toxins from Enterotoxigenic E. coli

    PubMed Central

    Andrade, Fernanda B.; Nepomuceno, Roberto; Silva, Anderson; Munhoz, Danielle D.; Yamamoto, Bruno B.; Luz, Daniela; Abreu, Patrícia A. E.; Horton, Denise S. P. Q.; Elias, Waldir P.; Ramos, Oscar H. P.; Piazza, Roxane M. F.

    2015-01-01

    Background Diarrhea is a prevalent pathological condition frequently associated to the colonization of the small intestine by enterotoxigenic Escherichia coli (ETEC) strains, known to be endemic in developing countries. These strains can produce two enterotoxins associated with the manifestation of clinical symptoms that can be used to detect these pathogens. Although several detection tests have been developed, minimally equipped laboratories are still in need of simple and cost-effective methods. With the aim to contribute to the development of such diagnostic approaches, we describe here two mouse hybridoma-derived single chain fragment variable (scFv) that were produced in E. coli against enterotoxins of ETEC strains. Methods and Findings Recombinant scFv were developed against ETEC heat-labile toxin (LT) and heat-stable toxin (ST), from previously isolated hybridoma clones. This work reports their design, construction, molecular and functional characterization against LT and ST toxins. Both antibody fragments were able to recognize the cell-interacting toxins by immunofluorescence, the purified toxins by ELISA and also LT-, ST- and LT/ST-producing ETEC strains. Conclusion The developed recombinant scFvs against LT and ST constitute promising starting point for simple and cost-effective ETEC diagnosis. PMID:26154103

  6. The single-chain immunotoxin MCSP-ETA’, targeting melanoma-associated chondroitin sulfate proteoglycan, is a potent inducer of apoptosis in cultured human melanoma cells

    PubMed Central

    Schwenkert, Michael; Birkholz, Katrin; Schwemmlein, Michael; Kellner, Christian; Peipp, Matthias; Nettelbeck, Dirk M.; Schuler-Thurner, Beatrice; Schaft, Niels; Dörrie, Jan; Ferrone, Soldano; Kämpgen, Eckhart; Fey, Georg H.

    2009-01-01

    A recombinant immunotoxin was constructed by fusing a single-chain Fv (scFv) antibody fragment, specific for the melanoma-associated chondroitin sulfate proteoglycan (MCSP), to a truncated variant of Pseudomonas Exotoxin A (ETA’), carrying a C-terminal KDEL peptide for improved intracellular transport. The resulting immunotoxin, MCSP-ETA’, induced antigen-specific, potent apoptosis in the cultured human melanoma-derived cell lines A2058 and A375M, and treatment with a single dose of the agent eliminated up to 80 % of these cells within 72 h. The dose needed for half-maximum killing (EC50) was approximately 1 nM for both cell lines. MCSP-ETA’ also displayed cytotoxic activity against cultured primary melanoma cells from patients with advanced disease, with net cell death reaching up to 70 % within 96 h after treatment with a single dose of 14 nM. MCSP-ETA’ induced cell death synergistically with Cyclosporin A (CsA), both in established human melanoma cell lines and cultured primary melanoma cells. The distinctive antigen-restricted induction of apoptosis and the synergy with CsA justify further evaluation of this novel agent with regard to its potential applications for the treatment of melanoma and other MCSP-positive malignancies. PMID:18337643

  7. Molecular engineering of high affinity single-chain antibody fragment for endothelial targeting of proteins and nanocarriers in rodents and humans.

    PubMed

    Greineder, Colin F; Hood, Elizabeth D; Yao, Anning; Khoshnejad, Makan; Brenner, Jake S; Johnston, Ian H; Poncz, Mortimer; Gottstein, Claudia; Muzykantov, Vladimir R

    2016-03-28

    Endothelial cells (EC) represent an important target for pharmacologic intervention, given their central role in a wide variety of human pathophysiologic processes. Studies in lab animal species have established that conjugation of drugs and carriers with antibodies directed to surface targets like the Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1, a highly expressed endothelial transmembrane protein) help to achieve specific therapeutic interventions in ECs. To translate such "vascular immunotargeting" to clinical practice, it is necessary to replace antibodies by advanced ligands that are more amenable to use in humans. We report the molecular design of a single chain variable antibody fragment (scFv) that binds with high affinity to human PECAM-1 and cross-reacts with its counterpart in rats and other animal species, allowing parallel testing in vivo and in human endothelial cells in microfluidic model. Site-specific modification of the scFv allows conjugation of protein cargo and liposomes, enabling their endothelial targeting in these models. This study provides a template for molecular engineering of ligands, enabling studies of drug targeting in animal species and subsequent use in humans. PMID:26855052

  8. Single Chain Antibodies as Tools to Study transforming growth factor-β-Regulated SMAD Proteins in Proximity Ligation-Based Pharmacological Screens.

    PubMed

    Blokzijl, Andries; Zieba, Agata; Hust, Michael; Schirrmann, Thomas; Helmsing, Saskia; Grannas, Karin; Hertz, Ellen; Moren, Anita; Chen, Lei; Söderberg, Ola; Moustakas, Aristidis; Dübel, Stefan; Landegren, Ulf

    2016-06-01

    The cellular heterogeneity seen in tumors, with subpopulations of cells capable of resisting different treatments, renders single-treatment regimens generally ineffective. Accordingly, there is a great need to increase the repertoire of drug treatments from which combinations may be selected to efficiently target sets of pathological processes, while suppressing the emergence of resistance mutations. In this regard, members of the TGF-β signaling pathway may furnish new, valuable therapeutic targets. In the present work, we developed in situ proximity ligation assays (isPLA) to monitor the state of the TGF-β signaling pathway. Moreover, we extended the range of suitable affinity reagents for this analysis by developing a set of in-vitro-derived human antibody fragments (single chain fragment variable, scFv) that bind SMAD2 (Mothers against decapentaplegic 2), 3, 4, and 7 using phage display. These four proteins are all intracellular mediators of TGF-β signaling. We also developed an scFv specific for SMAD3 phosphorylated in the linker domain 3 (p179 SMAD3). This phosphorylation has been shown to inactivate the tumor suppressor function of SMAD3. The single chain affinity reagents developed in the study were fused tocrystallizable antibody fragments (Fc-portions) and expressed as dimeric IgG-like molecules having Fc domains (Yumabs), and we show that they represent valuable reagents for isPLA.Using these novel assays, we demonstrate that p179 SMAD3 forms a complex with SMAD4 at increased frequency during division and that pharmacological inhibition of cyclin-dependent kinase 4 (CDK4)(1) reduces the levels of p179SMAD3 in tumor cells. We further show that the p179SMAD3-SMAD4 complex is bound for degradation by the proteasome. Finally, we developed a chemical screening strategy for compounds that reduce the levels of p179SMAD3 in tumor cells with isPLA as a read-out, using the p179SMAD3 scFv SH544-IIC4. The screen identified two kinase inhibitors, known inhibitors

  9. The use of scFv-displaying yeast in mammalian cell surface selections.

    PubMed

    Wang, Xin Xiang; Shusta, Eric V

    2005-09-01

    Yeast surface display has proven to be a powerful tool for the directed evolution of immunological proteins when soluble ligands are available (Cho, B.K., Kieke, M.C., Boder, E.T., Wittrup, K.D., Kranz, D.M., 1998. A yeast surface display system for the discovery of ligands that trigger cell activation. J. Immunol. Methods 220, 179; Boder, E.T., Midelfort, K.S., Wittrup, K.D., 2000. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. U. S. A. 97, 10701; Shusta, E.V., Holler, P.D., Kieke, M.C., Kranz, D.M., Wittrup, K.D., 2000. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat. Biotechnol. 18, 754; Esteban, O., Zhao, H., 2004. Directed evolution of soluble single-chain human class II MHC molecules. J. Mol. Biol. 340, 81). This investigation extends the utility of this display platform by demonstrating its capacity for use in cell panning selections. This was accomplished by employing a model single-chain antibody (scFv)-hapten system that allowed for detailed investigation of the factors governing panning success. Yeast displaying anti-fluorescein scFv (4-4-20) exhibited specific interactions with the fluoresceinated endothelial cells and could be recovered from large backgrounds of irrelevant yeast in just three rounds. Successful selections required as few as 1700 fluorescein ligands per cell, and a three-round enrichment ratio of 10(6) was possible. These results indicate that yeast surface display is a viable option for use in cell or tissue-based selections.

  10. Dynamics of Single Chains of Suspended Ferrofluid Particles

    NASA Technical Reports Server (NTRS)

    Cutillas, S.; Liu, J.

    1999-01-01

    We present an experimental study of the dynamics of isolated chains made of super-paramagnetic particles under the influence of a magnetic field. The motivation of this work is to understand if the chain fluctuations exist and, if it does, how does the fluctuation affect chain aggregation. We find that single chains strongly fluctuate and that the characteristic frequency of their fluctuations is inversely proportional to the magnetic field strength. The higher the field the lower the characteristic frequency of the chain fluctuations. In the high magnetic field limit, chains behave like rigid rods without any internal motions. In this work, we used ferrofluid particles suspended in water. These particles do not have any intrinsic magnetization. Once a magnetic field is applied, a dipole moment is induced in each particle, proportional to the magnetic field. A dipolar magnetic interaction then occurs between particles. If dipole-dipole magnetic energy is higher than the thermal energy, the result is a structure change inside the dipolar fluid. The ratio of these two energies is expressed by a coupling constant lambda as: lambda = (pi(a(exp 3))(chi(exp 2))(mu(sub 0))(H(sub 0))(exp 2))/18kT Where a is the particle radius, mu(sub 0) is the vacuum magnetic permeability, H(sub 0) the applied magnetic field, k the Boltzmann constant and T the absolute temperature. If lambda > 1, magnetic particles form chains along the field direction. The lateral coalescence of several chains may form bigger aggregates especially if the particle volume fraction is high. While many studies and applications deal with the rheological properties and the structural changes of these dipolar fluids, this work focuses on the understanding of the chain dynamics. In order to probe the chain dynamics, we used dynamic light scattering (DLS) in self-beating mode as our experimental technique. The experimental geometry is such that the scattering plane is perpendicular to the magnetic field

  11. Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves.

    PubMed

    Iglesias, Rosario; Pérez, Yolanda; de Torre, Carlos; Ferreras, J Miguel; Antolín, Pilar; Jiménez, Pilar; Rojo, M Angeles; Méndez, Enrique; Girbés, Tomás

    2005-06-01

    Sugar beet (Beta vulgaris L.) leaves contain virus-inducible type 1 (single chain) ribosome-inactivating proteins that have been named beetins. The structural and functional characterization, the cellular location, and the potential role of beetins as antiviral agents are reported here. Beetins are formed of a single polypeptide chain with a varying degree of glycosylation and strongly inhibited in vitro protein synthesis in rabbit reticulocyte lysates (IC50=1.15 ng ml(-1)) and a Vicia sativa L. cell-free system (IC50=68 ng ml(-1)) through the single depurination of the large rRNA. Beetins trigger the multidepurination of tobacco mosaic virus (TMV) genomic RNA which underwent extensive degradation upon treatment with acid aniline. Beetins are extracellular proteins that were recovered from the apoplastic fluid. Induction of sugar beet RIPs with either H2O2 or artichoke mottled crinkle virus (AMCV) was observed in leaves distant from the site of application of such elicitors. The external application of purified beetin to sugar leaves prevented infection by AMCV which supports the preliminary hypothesis that beetins could be involved in plant systemic acquired resistance subjected to induction by phytopathogens.

  12. Anti-EGFR scFv tetramer (tetrabody) with a stable monodisperse structure, strong anticancer effect, and a long in vivo half-life.

    PubMed

    Asano, Ryutaro; Koyama, Noriaki; Hagiwara, Yasuyo; Masakari, Yosuke; Orimo, Ryota; Arai, Kyoko; Ogata, Hiromi; Furumoto, Shozo; Umetsu, Mitsuo; Kumagai, Izumi

    2016-06-01

    The development of single-chain variable fragments (scFvs) as therapeutic agents has the potential to reduce the high cost of antibody production, but the development process often impairs scFv functions such as binding affinity and pharmacokinetics. Multimerization is one strategy for recovering or enhancing these lost functions. Previously, we constructed several antiepidermal growth factor receptor (EGFR) scFv multimers by modifying linker length and domain order. Antitumor effects comparable with those of the currently approved anti-EGFR therapeutic antibodies were observed for scFv trimers. In the present study, we fractionated an anti-EGFR scFv tetramer from the intracellular soluble fraction of an Escherichia coli transformant. Compared with the trimer, the tetramer showed higher affinity, greater cancer cell growth inhibition, and prolonged blood retention time. Furthermore, the tetramer did not dissociate into the trimer or other smaller species during long-term storage (up to 33 weeks). Thus, our developed scFv tetramer is an attractive candidate next-generation anti-EGFR therapeutic antibody that can be produced via a low-cost bacterial expression system. PMID:27419062

  13. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses.

    PubMed

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An; Chang, Ya-Chun

    2015-10-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli.

  14. A Strategy for Generating a Broad-Spectrum Monoclonal Antibody and Soluble Single-Chain Variable Fragments against Plant Potyviruses

    PubMed Central

    Liu, Han-Lin; Lin, Wei-Fang; Hu, Wen-Chi; Lee, Yung-An

    2015-01-01

    Potyviruses are major pathogens that often cause mixed infection in calla lilies. To reduce the time and cost of virus indexing, a detection method for the simultaneous targeting of multiple potyviruses was developed by generating a broad-spectrum monoclonal antibody (MAb) for detecting the greatest possible number of potyviruses. The conserved 121-amino-acid core regions of the capsid proteins of Dasheen mosaic potyvirus (DsMV), Konjak mosaic potyvirus (KoMV), and Zantedeschia mild mosaic potyvirus (ZaMMV) were sequentially concatenated and expressed as a recombinant protein for immunization. After hybridoma cell fusion and selection, one stable cell line that secreted a group-specific antibody, named C4 MAb, was selected. In the reaction spectrum test, the C4 MAb detected at least 14 potyviruses by indirect enzyme-linked immunosorbent assay (I-ELISA) and Western blot analysis. Furthermore, the variable regions of the heavy (VH) and light (VL) chains of the C4 MAb were separately cloned and constructed as single-chain variable fragments (scFvs) for expression in Escherichia coli. Moreover, the pectate lyase E (PelE) signal peptide of Erwinia chrysanthemi S3-1 was added to promote the secretion of C4 scFvs into the medium. According to Western blot analysis and I-ELISA, the soluble C4 scFv (VL-VH) fragment showed a binding specificity similar to that of the C4 MAb. Our results demonstrate that a recombinant protein derived from fusion of the conserved regions of viral proteins has the potential to produce a broad-spectrum MAb against a large group of viruses and that the PelE signal peptide can improve the secretion of scFvs in E. coli. PMID:26209665

  15. Refolding single-chain antibody (scFv) using lauroyl-L-glutamate as a solubilization detergent and arginine as a refolding additive.

    PubMed

    Kudou, Motonori; Ejima, Daisuke; Sato, Haruna; Yumioka, Ryosuke; Arakawa, Tsutomu; Tsumoto, Kouhei

    2011-05-01

    Therapeutic potential of immunoconjugates has opened a new window for antibody-based biopharmaceuticals. Greater tissue penetration and hence enhanced cell toxicity are obtained with a smaller version of antibodies. While the whole antibody can be readily produced via mammalian expression system, antibody fragments often require refolding of insoluble proteins. Here we report a new refolding method for antibody fragments using a novel amino acid-based detergent as a solubilizing agent and arginine-assisted refolding. Inclusion bodies of antibody fragments were solubilized by 2.5% lauroyl-L-Glu (C12-L-Glu) and successfully refolded by multi-step dilution into a buffer solution containing arginine hydrochloride and thiol/disulfide-exchange reagents. Adjustment of temperature was found to be critical for increase in the refolding yield. Although each protein requires appropriate optimization, solubilization by C12-L-Glu and dilution refolding assisted by arginine can generate the native, functional antibody fragments. The procedure should enable us to utilize bacterial expression systems for the large-scale manufacturing.

  16. Selection of scFv Antibody Fragments Binding to Human Blood versus Lymphatic Endothelial Surface Antigens by Direct Cell Phage Display

    PubMed Central

    Keller, Thomas; Kalt, Romana; Raab, Ingrid; Schachner, Helga; Mayrhofer, Corina; Kerjaschki, Dontscho; Hantusch, Brigitte

    2015-01-01

    The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers. PMID:25993332

  17. Development of specific scFv antibodies to detect neurocysticercosis antigens and potential applications in immunodiagnosis.

    PubMed

    Ribeiro, Vanessa da Silva; Araújo, Thaise Gonçalves; Gonzaga, Henrique Tomaz; Nascimento, Rafael; Goulart, Luiz Ricardo; Costa-Cruz, Julia Maria

    2013-01-01

    We have shown previously that detection of circulating antibodies against mimotopes selected by phage display were useful in neurocysticercosis diagnosis. However, circulating antigens may also be useful in patients' clinical follow-up. Therefore, we aimed to select novel combinatorial antibodies, single-chain variable fragment (scFv), which can be used for specific antigens with pre-defined affinity and specificity without prior immunization. A phage scFv antibody library was selected against Taenia solium mimotopes displayed on phages coupled in beads and total saline extract of T. solium metacestodes (S) immobilized on microtiter plate wells. After two rounds of selection, 96 phage clones were evolved and validated against each target by enzyme linked immunosorbent assay (ELISA), and dot-blot, and three specific antibodies (B6, G10 and A4) were further characterized by sequencing and indirect immunofluorescence (IFI) assays. IFI revealed tegument staining for the B6, while the others showed a non-uniform staining in the whole parasite. The selected scFvs were used to capture their antigen targets that were elucidated through mass spectrometry, and used for antibody detection in NC patients' sera by ELISA, which achieved sensitivities greater than 97% and specificities above 95%. We have successfully developed scFv antibodies against important mimotopes used in NC diagnosis, and can be further explored to detect circulating antigens for clinical follow-up of patients with NC. Our strategy also highlighted the possibility of using this combinatorial approach to select, capture and characterize specific antigens to better understand this intriguing parasite infection and disease evolution.

  18. Targeting of Adenovirus Serotype 5 Pseudotyped with Short Fiber from Serotype 41 to c-erbB2-Positive Cells Using Bispecific Single-Chain Diabody

    PubMed Central

    Kashentseva, Elena A.; Douglas, Joanne T.; Zinn, Kurt R.; Curiel, David T.; Dmitriev, Igor P.

    2009-01-01

    Summary The purpose of the current study was to alter the broad native tropism of human adenovirus for virus targeting to c-erbB2-positive cancer cells. First, we engineered a single-chain antibody (scFv) against the c-erbB2 oncoprotein into minor capsid protein IX (pIX) of adenovirus serotype 5 (Ad5) in a manner commensurate with virion integrity and binding to the soluble extracellular c-erbB2 domain. To ablate native viral tropism and facilitate binding of the pIX-incorporated scFv to cellular c-erbB2 we replaced the Ad5 fiber with the Ad41 short (41s) fiber devoid of all known cell-binding determinants. The resultant Ad5F41sIX6.5 vector demonstrated increased cell binding and gene transfer as compared to the Ad5F41s control, however, this augmentation of virus infectivity was not c-erbB2-specific. Incorporation of a six histidine (His6) peptide into the C-terminus of the 41s fiber protein resulted in markedly increased Ad5F41s6H infectivity in 293AR cells, which express a membrane-anchored scFv against the C-terminal oligo-histidine tag, as compared to the Ad5F41s vector and the parental 293 cells. These data suggested that a 41s fiber-incorporated His6 tag could serve for attachment of an adapter protein designed to guide Ad5F41s6H infection in a c-erbB2-specific manner. We therefore engineered a bispecific scFv diabody (scDb) combining affinities for both c-erbB2 and the His6 tag and showed its ability to provide up to 25-fold increase of Ad5F41s6H infectivity in c-erbB2-positive cells. Thus, Ad5 fiber replacement by a His6–tagged 41s fiber coupled with virus targeting mediated by an scDb adapter represents a promising strategy to confer Ad5 vector tropism for c-erbB2-positive cancer cells. PMID:19285990

  19. Chemiluminescence competitive indirect enzyme immunoassay for 20 fluoroquinolone residues in fish and shrimp based on a single-chain variable fragment.

    PubMed

    Tao, Xiaoqi; Chen, Min; Jiang, Haiyang; Shen, Jianzhong; Wang, Zhanhui; Wang, Xia; Wu, Xiaoping; Wen, Kai

    2013-09-01

    A chemiluminescent competitive indirect enzyme-linked immunosorbent assay, based on a mutant single-chain variable fragment (scFv), was developed to detect a broad range of fluoroquinolones (FQs) in fish and shrimp matrices. In this study, the best scFvC4A9H1_mut2 was adopted, which showed 10-fold improved affinity to sarafloxacin (SAR), difloxacin (DIF), and trovafloxacin (TRO), while the affinity to other FQs was fully inherited from wild-type scFvC4A9H1. In the optimized generic test, scFvC4A9H1_mut2 in combination with norfloxacin-ovalbumin conjugate and horseradish peroxidase-labeled anti-c-myc 9E10 antibody showed 50 % binding inhibition (IC50) at 0.12 μg kg(-1) for norfloxacin in buffer. Screening for the class of FQ antibiotics is accomplished using a simple, rapid extraction carried out with ethanol/acetic acid (99:1, v/v). This common extraction was able to detect 20 FQ residues such as s ciprofloxacin (CIP), danofloxacin, DIF, enoxacin, enrofloxacin (ENR), fleroxacin, amifloxacin, flumequine, levofloxacin, lomefloxacin hydrochloride, marbofloxacin, norfloxacin (NOR), ofloxacin, orbifloxacin, pazufloxacin, pefloxacin-d5 (PEF), prulifloxacin, SAR, sparfloxacin, and TRO in fish and shrimp. The limit of detection (LOD) for NOR was 0.2 μg kg(-1) and the LODs for CIP and ENR were all <0.2 μg kg(-1). Values of LODs inferred from the cross-reactivity data will range from approximately 0.23 μg kg(-1) for PEF to 2.1 μg kg(-1) for TRO. Field fish and shrimp samples were analyzed and compared to the results obtained from liquid chromatography tandem mass spectrometric method. All five instances (from 0.25 to 15.6 μg kg(-1)) in which FQs were present at concentrations near or above the assay LOD were identified as positive by the newly developed assay, demonstrating the usefulness of this assay as a screening tool.

  20. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation

    PubMed Central

    Tillotson, Benjamin J.; Goulatis, Loukas I.; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V.

    2015-01-01

    The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes. PMID:26713870

  1. Primary structure and functional scFv antibody expression of an antibody against the human protooncogen c-myc.

    PubMed

    Fuchs, P; Breitling, F; Little, M; Dübel, S

    1997-06-01

    The immunoglobulin heavy- and light-chain variable region (Vh and Vl) genes were isolated from Myc1-9E10 hybridoma cells, which secreted monoclonal antibody against human oncogen c-myc. The expression vector pOPE52-c-myc was constructed for the recombinant production in E. coli. A 30 kDa single chain fragment (scFv) expression product was found in the periplasmic space by SDS-PAGE and immunoblotting. A significant fraction was processed correctly as demonstrated with an antiserum recognizing the processed aminoterminus only. The specific binding of the scFv fragment to the peptide epitope of the maternal monoclonal antibody was demonstrated and the primary sequence of the variable regions was determined. Sequence comparison with previously published partial Vh and Vl sequences from this hybridoma cell line revealed a genetic heterogeneity for the light chain variable region. The potential use of this scFv as a new tool for detection and purification of tagged proteins, for adding costimulatory signals to the surface of cancer cells as well as for analyzing c-myc function in the living cell by cytoplasmic expression is discussed.

  2. Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation.

    PubMed

    Tillotson, Benjamin J; Goulatis, Loukas I; Parenti, Isabelle; Duxbury, Elizabeth; Shusta, Eric V

    2015-01-01

    The equilibrium binding affinity of receptor-ligand or antibody-antigen pairs may be modulated by protonation of histidine side-chains, and such pH-dependent mechanisms play important roles in biological systems, affecting molecular uptake and trafficking. Here, we aimed to manipulate cellular transport of single-chain antibodies (scFvs) against the transferrin receptor (TfR) by engineering pH-dependent antigen binding. An anti-TfR scFv was subjected to histidine saturation mutagenesis of a single CDR. By employing yeast surface display with a pH-dependent screening pressure, scFvs having markedly increased dissociation from TfR at pH 5.5 were identified. The pH-sensitivity generally resulted from a central cluster of histidine residues in CDRH1. When soluble, pH-sensitive, scFv clone M16 was dosed onto live cells, the internalized fraction was 2.6-fold greater than scFvs that lacked pH-sensitive binding and the increase was dependent on endosomal acidification. Differences in the intracellular distribution of M16 were also observed consistent with an intracellular decoupling of the scFv M16-TfR complex. Engineered pH-sensitive TfR binding could prove important for increasing the effectiveness of TfR-targeted antibodies seeking to exploit endocytosis or transcytosis for drug delivery purposes. PMID:26713870

  3. Supramolecular Nanoparticles via Single-Chain Folding Driven by Ferrous Ions.

    PubMed

    Wang, Fei; Pu, Hongting; Jin, Ming; Wan, Decheng

    2016-02-01

    Single-chain nanoparticles can be obtained via single-chain folding assisted by intramolecular crosslinking reversibly or irreversibly. Single-chain folding is also an efficient route to simulate biomacromolecules. In present study, poly(N-hydroxyethylacrylamide-co-4'-(propoxy urethane ethyl acrylate)-2,2':6',2''-terpyridine) (P(HEAm-co-EMA-Tpy)) is synthesized via reversible addition fragmentation chain transfer polymerization. Single-chain folding and intramolecular crosslinking of P(HEAm-co-EMA-Tpy) are achieved via metal coordination chemistry. The intramolecular interaction is characterized on ultraviolet/visible spectrophotometer (UV-vis spectroscopy), proton nuclear magnetic resonance ((1)H NMR), and differential scanning calorimetry (DSC). The supramolecular crosslinking mediated by Fe(2+) plays an important role in the intramolecular collapsing of the single-chain and the formation of the nanoparticles. The size and morphology of the nanoparticles can be controlled reversibly via metal coordination chemistry, which can be characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic force microscope (AFM).

  4. Production and Purification of a Novel Anti-TNF-α Single Chain Fragment Variable Antibody

    PubMed Central

    Alizadeh, Ali Akbar; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2015-01-01

    Purpose: TNF-α is an inflammatory cytokine with a key role in initiation of inflammatory responses. Anti-TNF-α antibodies are being used in clinic for the purpose of diagnosis and treatment due to their high specificity. The objective of the current study was to express and purify an anti-TNF-α scFv antibody identified by phage display technology. Methods: The DNA coding sequence of the identified scFv was cloned into pET28a vector and the corresponding protein was expressed as 6×His tagged using E.coli BL21 (DE3) pLysS expression system followed by affinity purification on Ni-Sepharose affinity column. Results: The J44 scFv antibody was cloned into the expression vector and successfully expressed and purified. The purity of the scFv fraction was confirmed using SDS-PAGE analysis. Western blotting technique was used to detect expression of 6×His tagged protein. Conclusion: In the current study an anti-TNF-α scFv antibody was successfully expressed in bacterial expression system and purified on affinity column. The purified protein can be used in different in vitro and in vivo experiments in order to elucidate its functionality. PMID:26793614

  5. Identification of Novel Single Chain Fragment Variable Antibodies Against TNF-α Using Phage Display Technology

    PubMed Central

    Alizadeh, Ali Akbar; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2015-01-01

    Purpose: Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine, involved in both physiological and pathological pathways. Because of central role of TNF-α in pathogenesis of inflammatory diseases, in the current study, we aimed to identify novel scFv antibodies against TNF-α using phage display technology. Methods: Using libraries composed of phagemid displaying scFv antibodies, four rounds of biopanning against TNF-α were carried out, which led to identification of scFvs capable of binding to TNF-α. The scFv antibody with appropriate binding affinity towards TNF-α, was amplified and used in ELISA experiment. Results: Titration of phage achieved from different rounds of biopanning showed an enrichment of specific anti-TNF-α phages during biopanning process. Using ELISA experiment, a binding constant (Kd) of 1.11 ± 0.32 nM was determined for the phage displaying J48 scFv antibody. Conclusion: The findings in the current work revealed that the identified novel scFv antibody displayed at the N-terminal of minor coat proteins of phagemid binds TNF-α with suitable affinity. However, the soluble form of the antibody is needed to be produced and evaluated in more details regarding its binding properties to TNF-α. PMID:26793613

  6. High-level production in Pichia pastoris of an anti-p185HER-2 single-chain antibody fragment using an alternative secretion expression vector.

    PubMed

    Gurkan, Cemal; Symeonides, Stefan N; Ellar, David J

    2004-02-01

    The methylotrophic yeast Pichia pastoris has become a highly popular expression host for the recombinant production of a wide variety of proteins. Initial success with this system was greatly facilitated by the development of versatile expression vectors that were almost exclusively based on the strong, tightly regulated promoter of the P. pastoris major alcohol oxidase gene ( AOX1 ). For example, pIB4 is an Escherichia coli - P. pastoris shuttle vector that also uses the AOX1 promoter to allow intracellular expression of endogenous and foreign genes in the latter organism. Since the eukaryotic advantages of P. pastoris would be best harnessed through the secretory targeting of the recombinant proteins, we modified the pIB4 vector by adding the Saccharomyces cerevisiae alpha-factor secretion signal immediately upstream of its multiple cloning site. Here we describe the construction of this modified vector, pIB4alpha, and its successful use for the high-level expression and secretion of a functional single-chain antibody fragment (scFv), C6.5, which targets p185(HER-2), a cell-surface glycoprotein overexpressed in about 30% of human breast and ovarian cancers. The PCR strategy used for the subcloning of the C6.5 construct into pIB4alpha also introduced a short DNA sequence coding for a C-terminal hexahistidine tag, which allowed subsequent purification of the secreted scFv, by immobilized-metal-affinity chromatography, to a yield of 70 mg x l(-1) of shake-flask culture. In conclusion, our results suggest that the secretion expression vector pIB4alpha not only complements the original pIB4 vector for intracellular expression in P. pastoris, but might also constitute an attractive alternative to the commercially available secretion expression vectors. PMID:12962542

  7. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    PubMed

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents.

  8. Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas.

    PubMed

    Crosby, Natasha M; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A; Kamei, Ayako; Simonsen, Jens B; Luo, Bing; Gordon, Leo I; Forte, Trudy M; Ryan, Robert O

    2015-08-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  9. Anti-CD20 single chain variable antibody fragment–apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas

    PubMed Central

    Crosby, Natasha M.; Ghosh, Mistuni; Su, Betty; Beckstead, Jennifer A.; Kamei, Ayako; Simonsen, Jens B.; Luo, Bing; Gordon, Leo I.; Forte, Trudy M.; Ryan, Robert O.

    2015-01-01

    A fusion protein comprising an α-CD20 single chain variable fragment (scFv) antibody, a spacer peptide, and human apolipoprotein (apo) A-I was constructed and expressed in Escherichia coli. The lipid interaction properties intrinsic to apoA-I as well as the antigen recognition properties of the scFv were retained by the chimera. scFv•apoA-I was formulated into nanoscale reconstituted high-density lipoprotein particles (termed nanodisks; ND) and incubated with cultured cells. α-CD20 scFv•apoA-I ND bound to CD20-positive non-Hodgkins lymphoma (NHL) cells (Ramos and Granta) but not to CD20-negative T lymphocytes (i.e., Jurkat). Binding to NHL cells was partially inhibited by pre-incubation with rituximab, a monoclonal antibody directed against CD20. Confocal fluorescence microscopy analysis of Granta cells following incubation with α-CD20 scFv•apoA-I ND formulated with the intrinsically fluorescent hydrophobic polyphenol, curcumin, revealed α-CD20 scFv•apoA-I localizes to the cell surface, while curcumin off-loads and gains entry to the cell. Compared to control incubations, viability of cultured NHL cells was decreased upon incubation with α-CD20 scFv•apoA-I ND harboring curcumin. Thus, formulation of curcumin ND with α-CD20 scFv•apoA-I as the scaffold component confers cell targeting and enhanced bioactive agent delivery, providing a strategy to minimize toxicity associated with chemotherapeutic agents. PMID:25994015

  10. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development.

    PubMed

    Hosking, Christopher G; McWilliam, Hamish E G; Driguez, Patrick; Piedrafita, David; Li, Yuesheng; McManus, Donald P; Ilag, Leodevico L; Meeusen, Els N T; Veer, Michael J de

    2015-12-01

    The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11-12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test. PMID:26684756

  11. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development

    PubMed Central

    Hosking, Christopher G.; McWilliam, Hamish E. G.; Driguez, Patrick; Piedrafita, David; Li, Yuesheng; McManus, Donald P.; Ilag, Leodevico L.; Meeusen, Els N. T.; de Veer, Michael J.

    2015-01-01

    The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11–12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test. PMID:26684756

  12. Generation of a Novel Bacteriophage Library Displaying scFv Antibody Fragments from the Natural Buffalo Host to Identify Antigens from Adult Schistosoma japonicum for Diagnostic Development.

    PubMed

    Hosking, Christopher G; McWilliam, Hamish E G; Driguez, Patrick; Piedrafita, David; Li, Yuesheng; McManus, Donald P; Ilag, Leodevico L; Meeusen, Els N T; Veer, Michael J de

    2015-12-01

    The development of effective diagnostic tools will be essential in the continuing fight to reduce schistosome infection; however, the diagnostic tests available to date are generally laborious and difficult to implement in current parasite control strategies. We generated a series of single-chain antibody Fv domain (scFv) phage display libraries from the portal lymph node of field exposed water buffaloes, Bubalus bubalis, 11-12 days post challenge with Schistosoma japonicum cercariae. The selected scFv-phages showed clear enrichment towards adult schistosomes and excretory-secretory (ES) proteins by immunofluorescence, ELISA and western blot analysis. The enriched libraries were used to probe a schistosome specific protein microarray resulting in the recognition of a number of proteins, five of which were specific to schistosomes, with RNA expression predominantly in the adult life-stage based on interrogation of schistosome expressed sequence tags (EST). As the libraries were enriched by panning against ES products, these antigens may be excreted or secreted into the host vasculature and hence may make good targets for a diagnostic assay. Further selection of the scFv library against infected mouse sera identified five soluble scFv clones that could selectively recognise soluble whole adult preparations (SWAP) relative to an irrelevant protein control (ovalbumin). Furthermore, two of the identified scFv clones also selectively recognised SWAP proteins when spiked into naïve mouse sera. These host B-cell derived scFvs that specifically bind to schistosome protein preparations will be valuable reagents for further development of a cost effective point-of-care diagnostic test.

  13. Protein Glycosylation in Cancer

    PubMed Central

    Stowell, Sean R.; Ju, Tongzhong; Cummings, Richard D.

    2015-01-01

    Neoplastic transformation results in a wide variety of cellular alterations that impact the growth, survival, and general behavior of affected tissue. Although genetic alterations underpin the development of neoplastic disease, epigenetic changes can exert an equally significant effect on neoplastic transformation. Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of neoplastic progression. Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Many of these changes may support neoplastic progression, and unique alterations in tumor-associated glycosylation may also serve as a distinct feature of cancer cells and therefore provide novel diagnostic and even therapeutic targets. PMID:25621663

  14. Evaluation of anti-HER2 scFv-conjugated PLGA-PEG nanoparticles on 3D tumor spheroids of BT474 and HCT116 cancer cells

    NASA Astrophysics Data System (ADS)

    Thuy Duong Le, Thi; Pham, Thu Hong; Nghia Nguyen, Trong; Giang Ngo, Thi Hong; Nhung Hoang, Thi My; Huan Le, Quang

    2016-06-01

    Three-dimensional culture cells (spheroids) are one of the multicellular culture models that can be applied to anticancer chemotherapeutic development. Multicellular spheroids more closely mimic in vivo tumor-like patterns of physiologic environment and morphology. In previous research, we designed docetaxel-loaded pegylated poly(D, L-lactide-co-glycolide) nanoparticles conjugated with anti-HER2 single chain antibodies (scFv-Doc-PLGA-PEG) and evaluated them in 2D cell culture. In this study, we continuously evaluate the cellular uptake and cytotoxic effect of scFv-Doc-PLGA-PEG on a 3D tumor spheroid model of BT474 (HER2-overexpressing) and HCT116 (HER2-underexpressing) cancer cells. The results showed that the nanoparticle formulation conjugated with scFv had a significant internalization effect on the spheroids of HER2-overexpressing cancer cells as compared to the spheroids of HER2-underexpressing cancer cells. Therefore, cytotoxic effects of targeted nanoparticles decreased the size and increased necrotic score of HER2-overexpressing tumor spheroids. Thus, these scFv-Doc-PLGA-PEG nanoparticles have potential for active targeting for HER2-overexpressing cancer therapy. In addition, BT474 and HCT116 spheroids can be used as a tumor model for evaluation of targeting therapies.

  15. Gigantoxin-4-4D5 scFv is a novel recombinant immunotoxin with specific toxicity against HER2/neu-positive ovarian carcinoma cells.

    PubMed

    Lv, Xinxin; Zhang, Jian; Xu, Rui; Dong, Yuguo; Sun, Aiyou; Shen, Yaling; Wei, Dongzhi

    2016-07-01

    Immunotoxins are a new class of antibody-targeted therapy in clinical development. Traditional immunotoxins that are constructed from the toxins of plants or bacteria need to be internalized to the cytoplasm and thus have limited antitumor efficacy. In the present study, we combined a recently reported sea anemone cytolysin Gigantoxin-4 with an anti-HER2/neu single-chain variable fragment 4D5 scFv to construct a novel immunotoxin. We fused a SUMO tag to the N-terminus of Gigantoxin-4-4D5 scFv and it was successfully expressed in Escherichia coli strain BL21 (DE3) in a soluble form. After purification, the purity of Gigantoxin-4-4D5 scFv reached 96 % and the yield was 14.3 mg/L. Our results demonstrated that Gigantoxin-4-4D5 scFv exerted a highly cytotoxic effect on the HER2/neu-positive ovarian carcinoma SK-OV-3 cell line. And the hemolytic activity was weaker, making it safe for normal cells. The results of immunofluorescence analysis showed that this novel immunotoxin could specifically bind to SK-OV-3 cells with no recognition of human embryonic kidney 293 cells. Scanning electron microscope observations and extracellular lactate dehydrogenase activity indicated that it could induce necrosis in SK-OV-3 cells by disrupting the cell membrane. Moreover, it could also mediate apoptosis of SK-OV-3 cells. PMID:27063011

  16. Effects of Environmental Factors on Soluble Expression of a Humanized Anti-TNF-α scFv Antibody in Escherichia coli

    PubMed Central

    Sina, Mohammad; Farajzadeh, Davoud; Dastmalchi, Siavoush

    2015-01-01

    Purpose: The bacterial cultivation conditions for obtaining anti-TNF-α single chain variable fragment (scFv) antibody as the soluble product in E. coli was investigated. Methods: To avoid the production of inclusion bodies, the effects of lactose, IPTG, incubation time, temperature, shaking protocol, medium additives (Mg+2, sucrose), pH, osmotic and heat shocks were examined. Samples from bacterial growth conditions with promising results of soluble expression of GST-hD2 scFv were affinity purified and quantified by SDS-PAGE and image processing for further evaluation. Results: The results showed that cultivation in LB medium under induction by low concentrations of lactose and incubation at 10 °C led to partial solubilization of the expressed anti-TNF-α scFv (GST-hD2). Other variables which showed promising increase in soluble expression of GST-hD2 were osmotic shock and addition of magnesium chloride. Furthermore, addition of sucrose to medium suppressed the expression of scFv completely. The other finding was that the addition of sorbitol decreased the growth rate of bacteria. Conclusion: It can be concluded that low cultivation temperature in the presence of low amount of inducer under a long incubation time or addition of magnesium chloride are the most effective environmental factors studied for obtaining the maximum solubilization of GST-hD2 recombinant protein. PMID:26819916

  17. The story of a unique molecule in hemophilia A: recombinant single-chain factor VIII.

    PubMed

    Pabinger-Fasching, Ingrid

    2016-05-01

    For patients with hemophilia A, replacement of deficient factor VIII (FVIII) using plasma-derived or recombinant FVIII (rFVIII) products to restore hemostatic control can reduce bleeding complications and preserve musculoskeletal function. Despite the clinical availability of several of these products, challenges remain in the treatment of hemophilia A, the most notable of which are the risk of inhibitor development and the limited half-life of existing FVIII concentrates, which can make prophylaxis burdensome for patients. The use of recombinant protein technology may lead to novel FVIII products with improved properties. This article describes the story of a unique recombinant FVIII protein, rVIII-SingleChain, which is currently in development. In contrast to native FVIII and other commercially available rFVIII preparations, rVIII-SingleChain uses a strong, covalent bond to connect the light and heavy chains, thereby creating a stable, single-chain rFVIII. It has enhanced intrinsic stability, better integrity after reconstitution, and a higher binding affinity to von Willebrand factor. The physicochemical profile of rVIII-SingleChain and preclinical data on its activity and phamacokinetics strengthened the rationale for its clinical investigation. Available data from the AFFINITY clinical trial program are promising; indicating that it has good hemostatic efficacy when used on demand, for prophylaxis, and in the surgical setting, and is also very well tolerated. A pediatric study and an extension study are ongoing as part of the AFFINITY program.

  18. The story of a unique molecule in hemophilia A: recombinant single-chain factor VIII.

    PubMed

    Pabinger-Fasching, Ingrid

    2016-05-01

    For patients with hemophilia A, replacement of deficient factor VIII (FVIII) using plasma-derived or recombinant FVIII (rFVIII) products to restore hemostatic control can reduce bleeding complications and preserve musculoskeletal function. Despite the clinical availability of several of these products, challenges remain in the treatment of hemophilia A, the most notable of which are the risk of inhibitor development and the limited half-life of existing FVIII concentrates, which can make prophylaxis burdensome for patients. The use of recombinant protein technology may lead to novel FVIII products with improved properties. This article describes the story of a unique recombinant FVIII protein, rVIII-SingleChain, which is currently in development. In contrast to native FVIII and other commercially available rFVIII preparations, rVIII-SingleChain uses a strong, covalent bond to connect the light and heavy chains, thereby creating a stable, single-chain rFVIII. It has enhanced intrinsic stability, better integrity after reconstitution, and a higher binding affinity to von Willebrand factor. The physicochemical profile of rVIII-SingleChain and preclinical data on its activity and phamacokinetics strengthened the rationale for its clinical investigation. Available data from the AFFINITY clinical trial program are promising; indicating that it has good hemostatic efficacy when used on demand, for prophylaxis, and in the surgical setting, and is also very well tolerated. A pediatric study and an extension study are ongoing as part of the AFFINITY program. PMID:27288063

  19. Mammalian glycosylation in immunity

    PubMed Central

    Marth, Jamey D.; Grewal, Prabhjit K.

    2009-01-01

    Glycosylation produces a diverse and abundant repertoire of glycans, which are collectively known as the glycome. Glycans are one of the four fundamental macromolecular components of all cells, and are highly regulated in the immune system. Their diversity reflects their multiple biological functions that encompass ligands for proteinaceous of receptors known as lectins. Since the discovery that selectins and their glycan ligands are important for the regulation of leukocyte trafficking, it has been shown that additional features of the vertebrate immune system are also controlled by endogenous cellular glycosylation. This Review focuses on the emerging immunological roles of the mammalian glycome. PMID:18846099

  20. Structural features of T cell receptor variable regions that enhance domain stability and enable expression as single-chain VαVβ fragments

    PubMed Central

    Richman, Sarah A.; Aggen, David H.; Dossett, Michelle L.; Donermeyer, David L.; Allen, Paul M.; Greenberg, Philip D.; Kranz, David M.

    2009-01-01

    The variable (V) domains of antibodies and T cell receptors (TCRs) share sequence homology and striking structural similarity. Single-chain antibody V domain constructs (scFv) are routinely expressed in a variety of heterologous systems, both for production of soluble protein as well as for in vitro engineering. In contrast, single-chain T cell receptor V domain constructs (scTCR) are prone to aggregation and misfolding and are refractory to display on phage or yeast in their wild-type form. However, through random mutagenesis and yeast display engineering, it has been possible to isolate scTCR mutants that are properly folded and displayed on the yeast surface. These displayed mutants can serve not only as a scaffold for further engineering but also as scTCR variants that exhibit favorable biophysical properties in E. coli expression. Thus, a more comprehensive understanding of the V domain mutations that allowed display would be beneficial. Our goal here was to identify generalizable patterns of important mutations that can be applied to different TCRs. We compared five different scTCRs, four from mice and one from a human, for yeast surface display. Analysis of a collection of mutants revealed four distinct regions of TCR V domains that were most important for enabling surface expression: the Vα-Vβ interface, the HV4 of Vβ, and the region of the Vα and Vβ domains normally apposed against the constant (C) domains. Consistent with the role of the V-C interface in surface display, reconstitution of this interface, by including the constant domains of each chain, allowed V domain display and αβ chain association on the yeast surface, thus providing an alternative TCR scaffold. However, the surface levels of TCR achieved with engineered scTCR mutants were superior to that of the VαCα/VβCβ constructs. Therefore, we describe further optimization of the current strategy for surface display of the single-chain format in order to facilitate yeast display

  1. Particle generation, functionalization and sortase A-mediated modification with targeting of single-chain antibodies for diagnostic and therapeutic use.

    PubMed

    Hagemeyer, Christoph E; Alt, Karen; Johnston, Angus P R; Such, Georgina K; Ta, Hang T; Leung, Melissa K M; Prabhu, Sandeep; Wang, Xiaowei; Caruso, Frank; Peter, Karlheinz

    2015-01-01

    Antibody fusion to nonprotein materials such as contrast agents or radio-tracers, nano- or microparticles or small-molecule drugs is attracting major interest for molecular imaging and drug delivery. Nondirected bioconjugation techniques may impair antibody affinity, result in lower amounts of functional antibodies and generate multicomponent mixtures. We present a detailed protocol for the enzymatic bioconjugation of small recombinant antibodies to imaging particles, and we also describe the generation of and conjugation to a low-fouling capsule assembled for drug delivery from PEG and PVPON (poly(N-vinylpyrrolidone) by a layer-by-layer (LbL) technique. The single-chain variable fragment (scFv) is equipped with a short C-terminal LPETG tag and the fusion partners are functionalized with an N-terminal GGG nucleophilic group for sortase A conjugation. The LbL capsules are assembled through hydrogen bonding by depositing alkyne-modified poly(vinylpyrrolidone) and poly(methacrylic acid) layers on silica particles, followed by depositing alkyne-modified PEG. The generation of the antibodies and LbL capsules takes ∼1-2 weeks each. The conjugation and functional testing takes another 3-4 d. PMID:25502886

  2. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli

    PubMed Central

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1–14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1–14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1–14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1–14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis. PMID:24675419

  3. Selection of a human butyrylcholinesterase-like antibody single-chain variable fragment resistant to AChE inhibitors from a phage library expressed in E. coli.

    PubMed

    Podestà, Adriano; Rossi, Serena; Massarelli, Ilaria; Carpi, Sara; Adinolfi, Barbara; Fogli, Stefano; Bianucci, Anna Maria; Nieri, Paola

    2014-01-01

    Organophosphates are potent poisoning agents that cause severe cholinergic toxicity. Current treatment has been reported to be unsatisfactory and novel antidotes are needed. In this study, we used a single-chain variable fragment (scFv) library to select a recombinant antibody fragment (WZ1-14.2.1) with butyrylcholinesterase-like catalytic activity by using an innovative method integrating genetic selection and the bait-and-switch strategy. Ellman assay demonstrated that WZ1-14.2.1 has Michaelis-Menten kinetics in the hydrolysis of all the three substrates used, acetylthiocholine, propionylthiocholine and butyrylthiocholine. Notably, the catalytic activity was resistant to the following acetylcholinesterase inhibitors: neostigmine, iso-OMPA, chlorpyrifos oxon, dichlorvos, and paraoxon ethyl. Otherwise, the enzymatic activity of WZ1-14.2.1 was inhibited by the selective butyrylcholinesterase inhibitor, ethopropazine, and by the Ser-blocking agent phenylmethanesuphonyl fluoride. A hypothetical 3D structure of the WZ1-14.2.1 catalytic site, compatible with functional results, is proposed on the basis of a molecular modeling analysis.

  4. Single-chain Variable Fragment Albumin Fusions Bind the Neonatal Fc Receptor (FcRn) in a Species-dependent Manner

    PubMed Central

    Andersen, Jan Terje; Cameron, Jason; Plumridge, Andrew; Evans, Leslie; Sleep, Darrell; Sandlie, Inger

    2013-01-01

    Albumin has a serum half-life of 3 weeks in humans. This has been utilized to extend the serum persistence of biopharmaceuticals that are fused to albumin. In light of the fact that the neonatal Fc receptor (FcRn) is a key regulator of albumin homeostasis, it is crucial to address how fusion of therapeutics to albumin impacts binding to FcRn. Here, we report on a detailed molecular investigation on how genetic fusion of a short peptide or an single-chain variable fragment (scFv) fragment to human serum albumin (HSA) influences pH-dependent binding to FcRn from mouse, rat, monkey, and human. We have found that fusion to the N- or C-terminal end of HSA only slightly reduces receptor binding, where the most noticeable effect is seen after fusion to the C-terminal end. Furthermore, in contrast to the observed strong binding to human and monkey FcRn, HSA and all HSA fusions bound very poorly to mouse and rat versions of the receptor. Thus, we demonstrate that conventional rodents are limited as preclinical models for analysis of serum half-life of HSA-based biopharmaceuticals. This finding is explained by cross-species differences mainly found within domain III (DIII) of albumin. Our data demonstrate that although fusion, particularly to the C-terminal end, may slightly reduce the affinity for FcRn, HSA is versatile as a carrier of biopharmaceuticals. PMID:23818524

  5. Blood Clotting-Inspired Control of Single-Chain Molecules in Flows

    NASA Astrophysics Data System (ADS)

    Sing, Charles; Alexander-Katz, Alfredo

    2011-03-01

    Recent experimental evidence has demonstrated a clear link between mechanical stimuli and the activation of von Willebrand Factor (vWF), a protein that plays a critical role in the blood clotting cascade. This protein exhibits counter-intuitive conformational and adsorption responses that suggest novel ways of controlling the single-chain dynamics of polymer chains. Specifically, we are using simulation and theoretical approaches to elucidate the fundamental physics that govern globule-stretch transitions in collapsed polymers due to the effect of fluid flows. We begin to extend this general approach to the case of globule adsorption-desorption transitions in the presence of fluid flows, and demonstrate how kinetic considerations must be taken into account to describe the basic features of these transitions. We expect that these results will both allow the development of novel techniques for single-chain targeting and assembly and offer insight into the physiological behavior of vWF.

  6. Production of recombinant orange-spotted grouper (Epinephelus coioides) follicle-stimulating hormone (FSH) in single-chain form and dimer form by Pichia pastoris and their biological activities.

    PubMed

    Chen, Jun; Zhang, Yanhong; Tang, Zhiguo; Mao, Jiewei; Kuang, Zhonglei; Qin, Chaobin; Li, Wensheng

    2012-09-01

    FSH is a key regulator of steroidogenesis and gonadal growth in teleosts. However, function of FSH is elusive in grouper due to the lack of purified and native FSH. In the present study, we reported production of bioactive orange-spotted grouper (Epinephelus coioides) FSH in dimer form and single-chain form by Pichia pastoris. Dimer form of recombinant grouper FSH (rgFSHba) was accomplished by co-expressing mature FSHb-subunit and a-subunit genes. Fusion of mature FSHb-subunit and a-subunit genes together linking with a polypeptide (4×(Gly-Ser)-Gly-Thr) gene generated single-chain form of recombinant grouper FSH (rgFSHb-a). Recombinant grouper common α-subunit (rgCga) and FSHb-subunit (rgFSHb) were also separately produced. Recombinant proteins were verified by Western blot and mass spectrometry assays, and characterized by deglycosylation analysis. Deglycosylation assay suggested that glycosylation of recombinant FSH mainly occurred on common a-subunit. Bioactivities of recombinant proteins were initially evaluated by activating grouper FSH receptor, and further demonstrated by incubating ovarian fragments of adult grouper and intraperitoneal injection in juvenile female grouper. Two forms of recombinant FSH presented similar biological activities of activating FSH receptor and stimulating in vitro testosterone (T) and estradiol-17β (E2) secretion, though the dimer form functioned slightly weaker than the single-chain form. However, injections of rgFSHb-a or rgFSHba could significantly increase serum T and E2 levels, induce early ovarian development, reduce hypothalamic gnrh1 mRNA level, and increase hypothalamic cyp19a1b mRNA level. Data in this study suggested that recombinant gonadotropin could be produced in dimer form or single-chain form by P. pastoris, and FSH could regulate steroidogenesis and early ovarian development in juvenile grouper.

  7. Plant protein glycosylation

    PubMed Central

    Strasser, Richard

    2016-01-01

    Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures. PMID:26911286

  8. Stepwise Unfolding of Single-Chain Nanoparticles by Chemically Triggered Gates.

    PubMed

    Fischer, Tobias S; Schulze-Sünninghausen, David; Luy, Burkhard; Altintas, Ozcan; Barner-Kowollik, Christopher

    2016-09-01

    The orthogonal, stepwise, and order-independent unfolding of single-chain nanoparticles (SCNPs) is introduced as a key step towards actively controlling the folding dynamics of SCNPs. The SCNPs are compacted by multiple hydrogen bonds and host-guest interactions. Well-defined diblock (AB) and tetrablock (ABCD) copolymers are equipped with orthogonal recognition motifs via modular ligation along the lateral chain. Initially, single-chain folding of the diblock copolymer was induced by the host-guest complexation of benzo-21-crown-7 (B21C7, host) and a secondary ammonium salt (AS, guest), representing an efficient avenue for single-chain collapse. Next, both orthogonal Hamilton wedge (HW) and cyanuric acid (CA) as well as B21C7-AS motifs were employed to generate SCNPs based on the ABCD polymer system. Subsequently, the stepwise dual-gated and order-independent unfolding of the SCNPs was investigated by the addition of external stimuli. The folding and unfolding were explored by 1D (1) H NMR spectroscopy, dynamic light scattering (DLS), and diffusion-ordered NMR spectroscopy (DOSY). PMID:27357944

  9. Covalent and oriented immobilization of scFv antibody fragments via an engineered glycan moiety.

    PubMed

    Hu, Xuejun; Hortigüela, María J; Robin, Sylvain; Lin, Heng; Li, Yajie; Moran, Anthony P; Wang, Wenxin; Wall, J Gerard

    2013-01-14

    Antibody-derived fragments have enormous potential application in solid-phase assays such as biomarker detection and protein purification. Controlled orientation of the immobilized antibody molecules is a critical requirement for the sensitivity and efficacy of such assays. We present an approach for covalent, correctly oriented attachment of scFv antibody fragments on solid supports. Glycosylated scFvs were expressed in Escherichia coli and the C-terminal, binding pocket-distal glycan tag was oxidized for covalent attachment to amine-functionalized beads. The glycosylated scFvs could be immobilized at salt concentrations that precluded nonspecific adsorption of unglycosylated molecules and the covalently attached antibody fragments exhibited 4-fold higher functional activity than ionically adsorbed scFvs. The glyco-tethered scFvs were stable in NaCl concentrations that removed greater than 90% of adsorbed scFvs and they exhibited improved stability of antigen binding over both adsorbed scFvs and soluble, nonimmobilized scFvs in accelerated degradation tests. The simple expression and immobilization approach reported is likely to find broad application in in vitro antibody tests.

  10. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo.

    PubMed

    Rülker, Torsten; Voß, Luzie; Thullier, Philippe; O' Brien, Lyn M; Pelat, Thibaut; Perkins, Stuart D; Langermann, Claudia; Schirrmann, Thomas; Dübel, Stefan; Marschall, Hans-Jürgen; Hust, Michael; Hülseweh, Birgit

    2012-01-01

    Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv), ToR67-3B4, from a non-human primate (NHP) antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ß-propionolactone (ß-Pl) inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE. PMID:22666347

  11. Identification of human single-chain antibodies with broad reactivity for noroviruses

    PubMed Central

    Huang, Wanzhi; Samanta, Moumita; Crawford, Sue E.; Estes, Mary K.; Neill, Frederick H.; Atmar, Robert L.; Palzkill, Timothy

    2014-01-01

    Norovirus infections are a common cause of gastroenteritis and new methods to rapidly diagnose norovirus infections are needed. The goal of this study was to identify antibodies that have broad reactivity of binding to various genogroups of norovirus. A human scFv phage display library was used to identify two antibodies, HJT-R3-A9 and HJT-R3-F7, which bind to both genogroups I and II norovirus virus-like particles (VLPs). Mapping experiments indicated that the HJT-R3-A9 clone binds to the S-domain while the HJT-R3-F7 clone binds the P-domain of the VP1 capsid protein. In addition, a family of scFv antibodies was identified by elution of phage libraries from the GII.4 VLP target using a carbohydrate that serves as an attachment factor for norovirus on human cells. These antibodies were also found to recognize both GI and GII VLPs in enzyme-linked immunosorbent assay (ELISA) experiments. The HJT-R3-A9, HJT-R3-F7 and scFv antibodies identified with carbohydrate elution were shown to detect antigen from a clinical sample known to contain GII.4 norovirus but not a negative control sample. Finally, phages displaying the HJT-R3-A9 scFv can be used directly to detect both GI.1 and GII.4 norovirus from stool samples, which has the potential to simplify and reduce the cost of diagnostics based on antibody-based ELISA methods. PMID:24946948

  12. Cloning, bacterial expression and crystallization of Fv antibody fragments

    NASA Astrophysics Data System (ADS)

    E´, Jean-Luc; Boulot, Ginette; Chitarra, V´ronique; Riottot, Marie-Madeleine; Souchon, H´le`ne; Houdusse, Anne; Bentley, Graham A.; Narayana Bhat, T.; Spinelli, Silvia; Poljak, Roberto J.

    1992-08-01

    The variable Fv fragments of antibodies, cloned in recombinant plasmids, can be expressed in bacteria as functional proteins having immunochemical properties which are very similar or identical with those of the corresponding parts of the parent eukaryotic antibodies. They offer new possibilities for the study of antibody-antigen interactions since the crystals of Fv fragments and of their complexes with antigen reported here diffract X-rays to a higher resolution that those obtained with the cognate Fab fragments. The Fv approach should facilitate the structural study of the combining site of antibodies and the further characterization of antigen-antibody interactions by site-directed mutagenesis experiments.

  13. Construction and Validation of SRA-FV Need Assessment.

    PubMed

    Thornton, David; Knight, Raymond A

    2015-08-01

    This article describes the construction and testing of a newly designed instrument to assess psychological factors associated with increased rates of sexual recidivism. The new instrument (Structured Risk Assessment-Forensic Version or SRA-FV) was based on previous research using the SRA framework. This article describes the results of testing SRA-FV with a large sample (N = 566) of sexual offenders being evaluated for an early civil commitment program. SRA-FV was found to significantly predict sexual recidivism for both child molesters and rapists and to have incremental predictive value relative to two widely used static actuarial instruments (Static-99R; Risk Matrix 2000/S).

  14. Sulfide-mediated dehydrative glycosylation.

    PubMed

    Nguyen, H M; Chen, Y; Duron, S G; Gin, D Y

    2001-09-12

    The development of a new method for glycosylation with 1-hydroxy glycosyl donors employing dialkyl sulfonium reagents is described. The process employs the reagent combination of a dialkyl sulfide and triflic anhydride to effect anomeric bond constructions. This controlled dehydrative coupling of various C(1)-hemiacetal glycosyl donors and nucleophilic acceptors proceeds by way of a sulfide-to-sulfoxide oxidation process in which triflic anhydride serves as the oxidant.

  15. Clinical applications of phage-derived sFvs and sFv fusion proteins.

    PubMed

    Chester, K A; Bhatia, J; Boxer, G; Cooke, S P; Flynn, A A; Huhalov, A; Mayer, A; Pedley, R B; Robson, L; Sharma, S K; Spencer, D I; Begent, R H

    2000-01-01

    Single chain Fv antibodies (sFvs) have been produced from filamentous bacteriophage libraries obtained from immunised mice. MFE-23, the most characterised of these sFvs, is reactive with carcinoembryonic antigen (CEA), a glycoprotein that is highly expressed in colorectal adenocarcinomas. MFE-23 has been expressed in bacteria and purified in our laboratory for two clinical trials; a gamma camera imaging trial using 123I-MFE-23 and a radioimmunoguided surgery trial using 125I-MFE-23, where tumour deposits are detected by a hand-held probe during surgery. Both these trials show MFE-23 is safe and effective in localising tumour deposits in patients with cancer. We are now developing fusion proteins which use MFE-23 to deliver a therapeutic moiety; MFE-23::CPG2 targets the enzyme carboxypeptidase G2 (CPG2) for use in the ADEPT (antibody directed enzyme prodrug therapy) system and MFE::TNF alpha aims to reduce sequestration and increase tumor concentrations of systemically administered TNF alpha.

  16. Interference of HCV replication by cell penetrable human monoclonal scFv specific to NS5B polymerase

    PubMed Central

    Thueng-in, Kanyarat; Thanongsaksrikul, Jeeraphong; Jittavisutthikul, Surasak; Seesuay, Watee; Chulanetra, Monrat; Sakolvaree, Yuwaporn; Srimanote, Potjanee; Chaicumpa, Wanpen

    2014-01-01

    A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV's NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes. PMID:25517317

  17. Interference of HCV replication by cell penetrable human monoclonal scFv specific to NS5B polymerase.

    PubMed

    Thueng-in, Kanyarat; Thanongsaksrikul, Jeeraphong; Jittavisutthikul, Surasak; Seesuay, Watee; Chulanetra, Monrat; Sakolvaree, Yuwaporn; Srimanote, Potjanee; Chaicumpa, Wanpen

    2014-01-01

    A new class of hepatitis C virus (HCV)-targeted therapeutics that is safe, broadly effective and can cope with virus mutations is needed. The HCV's NS5B is highly conserved and different from human protein, and thus it is an attractive target for anti-HCV therapeutics development. In this study, NS5B bound-phage clones selected from a human single chain variable antibody fragment (scFv) phage display library were used to transform appropriate E. coli bacteria. Two scFv inhibiting HCV polymerase activity were selected. The scFvs were linked to a cell penetrating peptide to make cell penetrable scFvs. The transbodies reduced the HCV RNA and infectious virus particles released into the culture medium and inside hepatic cells transfected with a heterologous HCV replicon. They also rescued the innate immune response of the transfected cells. Phage mimotope search and homology modeling/molecular docking revealed the NS5B subdomains and residues bound by the scFvs. The scFv mimotopes matched residues of the NS5B, which are important for nucleolin binding during HCV replication, as well as residues that interconnect the fingers and thumb domains for forming a polymerase active groove. Both scFvs docked on several residues at the thumb armadillo-like fold that could be the polymerase interactive sites of other viral/host proteins for the formation of the replication complex and replication initiation. In conclusion, human transbodies that inhibited HCV RdRp activity and HCV replication and restored the host innate immune response were produced. They are potentially future interferon-free anti-HCV candidates, particularly in combination with other cognates that are specific to NS5B epitopes and other HCV enzymes. PMID:25517317

  18. Purification optimization for a recombinant single-chain variable fragment against type 1 insulin-like growth factor receptor (IGF-1R) by using design of experiment (DoE).

    PubMed

    Song, Yong-Hong; Sun, Xue-Wen; Jiang, Bo; Liu, Ji-En; Su, Xian-Hui

    2015-12-01

    Design of experiment (DoE) is a statistics-based technique for experimental design that could overcome the shortcomings of traditional one-factor-at-a-time (OFAT) approach for protein purification optimization. In this study, a DoE approach was applied for optimizing purification of a recombinant single-chain variable fragment (scFv) against type 1 insulin-like growth factor receptor (IGF-1R) expressed in Escherichia coli. In first capture step using Capto L, a 2-level fractional factorial analysis and successively a central composite circumscribed (CCC) design were used to identify the optimal elution conditions. Two main effects, pH and trehalose, were identified, and high recovery (above 95%) and low aggregates ratio (below 10%) were achieved at the pH range from 2.9 to 3.0 with 32-35% (w/v) trehalose added. In the second step using cation exchange chromatography, an initial screening of media and elution pH and a following CCC design were performed, whereby the optimal selectivity of the scFv was obtained on Capto S at pH near 6.0, and the optimal conditions for fulfilling high DBC and purity were identified as pH range of 5.9-6.1 and loading conductivity range of 5-12.5 mS/cm. Upon a further gel filtration, the final purified scFv with a purity of 98% was obtained. Finally, the optimized conditions were verified by a 20-fold scale-up experiment. The purities and yields of intermediate and final products all fell within the regions predicted by DoE approach, suggesting the robustness of the optimized conditions. We proposed that the DoE approach described here is also applicable in production of other recombinant antibody constructs.

  19. A Cancer Specific Cell-Penetrating Peptide, BR2, for the Efficient Delivery of an scFv into Cancer Cells

    PubMed Central

    Lim, Ki Jung; Sung, Bong Hyun; Shin, Ju Ri; Lee, Young Woong; Kim, Da Jung; Yang, Kyung Seok; Kim, Sun Chang

    2013-01-01

    Cell-penetrating peptides (CPPs) have proven very effective as intracellular delivery vehicles for various therapeutics. However, there are some concerns about non-specific penetration and cytotoxicity of CPPs for effective cancer treatments. Herein, based on the cell-penetrating motif of an anticancer peptide, buforin IIb, we designed several CPP derivatives with cancer cell specificity. Among the derivatives, a 17-amino acid peptide (BR2) was found to have cancer-specificity without toxicity to normal cells. After specifically targeting cancer cells through interaction with gangliosides, BR2 entered cells via lipid-mediated macropinocytosis. Moreover, BR2 showed higher membrane translocation efficiency than the well-known CPP Tat (49–57). The capability of BR2 as a cancer-specific drug carrier was demonstrated by fusion of BR2 to a single-chain variable fragment (scFv) directed toward a mutated K-ras (G12V). BR2-fused scFv induced a higher degree of apoptosis than Tat-fused scFv in K-ras mutated HCT116 cells. These results suggest that the novel cell-penetrating peptide BR2 has great potential as a useful drug delivery carrier with cancer cell specificity. PMID:23776609

  20. The efficient elimination of solid tumor cells by EGFR-specific and HER2-specific scFv-SNAP fusion proteins conjugated to benzylguanine-modified auristatin F.

    PubMed

    Woitok, Mira; Klose, Diana; Niesen, Judith; Richter, Wolfgang; Abbas, Muhammad; Stein, Christoph; Fendel, Rolf; Bialon, Magdalena; Püttmann, Christiane; Fischer, Rainer; Barth, Stefan; Kolberg, Katharina

    2016-10-28

    Antibody-drug conjugates (ADCs) combine the potency of cytotoxic drugs with the specificity of monoclonal antibodies (mAbs). Most ADCs are currently generated by the nonspecific conjugation of drug-linker reagents to certain amino acid residues in mAbs, resulting in a heterogeneous product. To overcome this limitation and prepare ADCs with a defined stoichiometry, we use SNAP-tag technology as an alternative conjugation strategy. This allows the site-specific conjugation of O(6)-benzylguanine (BG)-modified small molecules to SNAP-tag fusion proteins. To demonstrate the suitability of this system for the preparation of novel recombinant ADCs, here we conjugated SNAP-tagged single chain antibody fragments (scFvs) to a BG-modified version of auristatin F (AURIF). We used two scFv-SNAP fusion proteins targeting members of the epidermal growth factor receptor (EGFR) family that are frequently overexpressed in breast cancer. The conjugation of BG-AURIF to EGFR-specific 425(scFv)-SNAP and HER2-specific αHER2(scFv)-SNAP resulted in two potent recombinant ADCs that specifically killed breast cancer cell lines by inducing apoptosis when applied at nanomolar concentrations. These data confirm that SNAP-tag technology is a promising tool for the generation of novel recombinant ADCs.

  1. Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements.

    PubMed

    Crivianu-Gaita, Victor; Thompson, Michael

    2016-11-15

    The choice of biosensing elements is crucial for the development of the optimal biosensor. Three of the most versatile biosensing elements are antibody single-chain Fv fragments (scFv), antibody fragment-antigen binding (Fab') units, and aptamers. This article provides an overview of these three biorecognition elements with respects to their synthesis/engineering, various immobilization techniques, and examples of their use in biosensors. Furthermore, the final section of the review compares and contrasts their characteristics (time/cost of development, ease and variability of immobilization, affinity, stability) illustrating their advantages and disadvantages. Overall, scFv fragments are found to display the highest customizability (i.e. addition of functional groups, immobilizing peptides, etc.) due to recombinant synthesis techniques. If time and cost are an issue in the development of the biosensor, Fab' fragments should be chosen as they are relatively cheap and can be developed quickly from whole antibodies (several days). However, if there are sufficient funds and time is not a factor, aptamers should be utilized as they display the greatest affinity towards their target analytes and are extremely stable (excellent biosensor regenerability).

  2. The efficient elimination of solid tumor cells by EGFR-specific and HER2-specific scFv-SNAP fusion proteins conjugated to benzylguanine-modified auristatin F.

    PubMed

    Woitok, Mira; Klose, Diana; Niesen, Judith; Richter, Wolfgang; Abbas, Muhammad; Stein, Christoph; Fendel, Rolf; Bialon, Magdalena; Püttmann, Christiane; Fischer, Rainer; Barth, Stefan; Kolberg, Katharina

    2016-10-28

    Antibody-drug conjugates (ADCs) combine the potency of cytotoxic drugs with the specificity of monoclonal antibodies (mAbs). Most ADCs are currently generated by the nonspecific conjugation of drug-linker reagents to certain amino acid residues in mAbs, resulting in a heterogeneous product. To overcome this limitation and prepare ADCs with a defined stoichiometry, we use SNAP-tag technology as an alternative conjugation strategy. This allows the site-specific conjugation of O(6)-benzylguanine (BG)-modified small molecules to SNAP-tag fusion proteins. To demonstrate the suitability of this system for the preparation of novel recombinant ADCs, here we conjugated SNAP-tagged single chain antibody fragments (scFvs) to a BG-modified version of auristatin F (AURIF). We used two scFv-SNAP fusion proteins targeting members of the epidermal growth factor receptor (EGFR) family that are frequently overexpressed in breast cancer. The conjugation of BG-AURIF to EGFR-specific 425(scFv)-SNAP and HER2-specific αHER2(scFv)-SNAP resulted in two potent recombinant ADCs that specifically killed breast cancer cell lines by inducing apoptosis when applied at nanomolar concentrations. These data confirm that SNAP-tag technology is a promising tool for the generation of novel recombinant ADCs. PMID:27502168

  3. Chiral single-chain magnet: helically stacked [Mn(III)2Cu(II)] triangles.

    PubMed

    Shiga, Takuya; Maruyama, Kazuya; Newton, Graham N; Inglis, Ross; Brechin, Euan K; Oshio, Hiroki

    2014-05-01

    The one-dimensional complex [Mn(III)2Cu(II)(μ3-O)(Cl-sao)3(EtOH)2]·EtOH (Mn2Cu) was obtained by the metal replacement reaction of the trinuclear manganese complex (Et3NH)[Mn(III)3(μ3-O)Cl2(Cl-sao)3(MeOH)2(H2O)2] with [Cu(acac)2]. The Mn2Cu chain exhibits single-chain-magnet behavior with finite-size effects due to its large magnetic anisotropy.

  4. Crystal engineering to control the magnetic interaction between weak ferromagnetic single-chain magnets assembled in a 3D framework.

    PubMed

    Su, Lei; Song, Wei-Chao; Zhao, Jiong-Peng; Liu, Fu-Chen

    2016-07-01

    A new single-chain-magnet (SCM), [Co4(OMe)3(HCO2)2(L)3·DMF]n, (L = 4-(pyridin-4-yl)benzolate) (2), was constructed by changing the spacers of a weak ferromagnetic single-chain magnet [Co8(OMe)6(HCO2)4(isonic)6·H2O]n (1). By contrasting the magnetism of the two complexes, it is found that the longer the linker the stronger the magnetic properties.

  5. Use of antibody gene library for the isolation of specific single chain antibodies by ampicillin-antigen conjugates.

    PubMed

    Neumann-Schaal, Meina; Messerschmidt, Katrin; Grenz, Nicole; Heilmann, Katja

    2013-03-01

    Isolation of recombinant antibodies from antibody libraries is commonly performed by different molecular display formats including phage display and ribosome display or different cell-surface display formats. We describe a new method which allows the selection of Escherichia coli cells producing the required single chain antibody by cultivation in presence of ampicillin conjugated to the antigen of interest. The method utilizes the neutralization of the conjugate by the produced single chain antibody which is secreted to the periplasm. Therefore, a new expression system based on the pET26b vector was designed and a library was constructed. The method was successfully established first for the selection of E. coli BL21 Star (DE3) cells expressing a model single chain antibody (anti-fluorescein) by a simple selection assay on LB-agar plates. Using this selection assay, we could identify a new single chain antibody binding biotin by growing E. coli BL21 Star (DE3) containing the library in presence of a biotin-ampicillin conjugate. In contrast to methods as molecular or cell surface display our selection system applies the soluble single chain antibody molecule and thereby avoids undesired effects, e.g. by the phage particle or the yeast fusion protein. By selecting directly in an expression strain, production and characterization of the selected single chain antibody is possible without any further cloning or transformation steps.

  6. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    PubMed

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration.

  7. Properties and Applications of Single-Chain Major Histocompatibility Complex Class I Molecules

    PubMed Central

    Kotsiou, Eleni; Brzostek, Joanna

    2011-01-01

    Abstract Stable major histocompatibility complex (MHC) class I molecules at the cell surface consist of three separate, noncovalently associated components: the class I heavy chain, the β2-microglobulin light chain, and a presented peptide. These three components are assembled inside cells via complex pathways involving many other proteins that have been studied extensively. Correct formation of disulfide bonds in the endoplasmic reticulum is central to this process of MHC class I assembly. For a single specific peptide to be presented at the cell surface for possible immune recognition, between hundreds and thousands of peptide-containing precursor polypeptides are required, so the overall process is relatively inefficient. To increase the efficiency of antigen presentation by MHC class I molecules, and for possible therapeutic purposes, single-chain molecules have been developed in which the three, normally separate components have been joined together via flexible linker sequences in a single polypeptide chain. Remarkably, these single-chain MHC class I molecules fold up correctly, as judged by functional recognition by cells of the immune system, and more recently by X-ray crystallographic structural data. This review focuses on the interesting properties and potential of this new type of engineered MHC class I molecule. Antioxid. Redox Signal. 15, 645–655. PMID:21126187

  8. Recognition of Vipera ammodytes meridionalis neurotoxin vipoxin and its components using phage-displayed scFv and polyclonal antivenom sera.

    PubMed

    Stoyanova, Vishnya; Aleksandrov, Radoslav; Lukarska, Maria; Duhalov, Deyan; Atanasov, Vasil; Petrova, Svetla

    2012-10-01

    Vipoxin is a potent postsynaptic heterodimeric neurotoxin isolated from the venom of the Bulgarian snake Vipera ammodytes meridionalis, whose snakebites cause different and strongly manifested pathophysiological effects (neurotoxic, hemolytic, anticoagulant, convulsant, hypotensive, hyperglycemic etc.). The neutralization of snake toxins calls for extensive research through the application of different approaches: antibodies, non-immunologic inhibitors, natural products derived from plants and animals, as well as synthetic drugs. In this study, we applied naive Tomlinson I + J (Cambridge, UK) libraries to obtain recombinant human scFv antibodies against the vipoxin's two subunits--basic and toxic phospholipase A₂ (PLA₂) and acidic, non-toxic component. We found that 33 of more than hundred tested clones were positive and recognized vipoxin and its subunits. Enriched scFv-phage samples (1.2 × 10⁹ pfu/ml) were analyzed for their binding (ELISA) and enzyme-inhibiting abilities. Single chain Fv-phage clones--D₁₂, E₃, F₆, D₁₀ and G₅ exhihest binding affinity for the toxic component. Clones A₁, D₁₂ and C₁₂ recognized preferentially vipoxin's acidic component. Clones E₃, G₅ and H₄ inhibited the enzymatic activity of both vipoxin and its purified and separated toxic subunit to the highest extent. Six of the selected clones (E₃, G₅, H₄, C₁₂, D₁₀ and A₁₁) inhibited direct hemolytic activity of vipoxin and its pure PLA₂ subunit. The obtained specific scFv antibodies will be used for epitope mapping studies required to shed light on the role of the phospholipase A₂ activity for the vipoxin toxicity and its effective neutralization.

  9. Purification and characterization of mouse single-chain antibody against polycyclic aromatic hydrocarbons.

    PubMed

    Ustinov, Valentin A; Averjanov, Anton V; Glushkov, Andrey N

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyren mainly induce lung cancer in humans. We characterized the mouse single chain antibody against benzo[a]pyren (pSh). pSh was expressed and purified as cellulose binding domain fusion (pSh-CBD). The pSh-CBD bound five different PAH with high affinity. The 18 amino acid linker connected pSh-CBD heavy and light chains provided correct protein folding. The KDs for pSh-CBD and polycyclic aromatic hydrocarbons were similar to KDs for monoclonal antibody, approximately 10(-8). Separately heavy and light chains of pSh-CBD did not interact with benzo[a]pyren. Previously defined eleven pSh-CBD aa involved to benzo[a]pyren binding were confirmed by mutagenesis.

  10. Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles.

    PubMed

    Serna, Naroa; Céspedes, María Virtudes; Saccardo, Paolo; Xu, Zhikun; Unzueta, Ugutz; Álamo, Patricia; Pesarrodona, Mireia; Sánchez-Chardi, Alejandro; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio; Ferrer-Miralles, Neus

    2016-07-01

    A single chain polypeptide containing the low density lipoprotein receptor (LDLR) ligand Seq-1 with blood-brain barrier (BBB) crossing activity has been successfully modified by conventional genetic engineering to self-assemble into stable protein-only nanoparticles of 30nm. The nanoparticulate presentation dramatically enhances in vitro, LDLR-dependent cell penetrability compared to the parental monomeric version, but the assembled protein does not show any enhanced brain targeting upon systemic administration. While the presentation of protein drugs in form of nanoparticles is in general advantageous regarding correct biodistribution, this principle might not apply to brain targeting that is hampered by particular bio-physical barriers. Irrespective of this fact, which is highly relevant to the nanomedicine of central nervous system, engineering the cationic character of defined protein stretches is revealed here as a promising and generic approach to promote the controlled oligomerization of biologically active protein species as still functional, regular nanoparticles. PMID:26949165

  11. Induced crystallization of single-chain polyethylene on a graphite surface: molecular dynamics simulation.

    PubMed

    Yang, Hua; Zhao, Xiao Jun; Sun, Miao

    2011-07-01

    Molecular dynamics (MD) simulations have been carried out on the crystallization of single-chain polyethylene (PE) which was adsorbed on a graphite (001) surface on one side and exposed to vacuum on the other at different temperatures. The MD simulation data have been analyzed to provide information about the crystallization process of polymer adsorbed on the solid substrate. The isothermal crystallization of PE proceeds in two steps: (1) adsorption and (2) orientation. The results detail the radial density distribution function, ordered parameters, local bond-orientational order parameters, and the local properties displayed in layers of the polymer parallel to the graphite and vacuum interfaces. It was also shown that the film thickness affected the critical crystallization temperature of the adsorbed polymer on the substrate surface. Furthermore, the influence of the graphite surface area on the crystallization of PE is discussed by comparing the crystallinity evolution of PE on graphite with different coverage.

  12. Magnetic Relaxation and Coercivity of Finite-size Single Chain Magnets

    NASA Astrophysics Data System (ADS)

    Gredig, Thomas; Byrne, Matthew; Vindigni, Alessandro

    2015-03-01

    The magnetic coercivity of hysteresis loops for iron phthalocyanine thin films depends on the iron chain length and the measurement sweep speed below 5 K. The average one-dimensional (1D) iron chain length in samples is controlled during deposition. These 1D iron chains can be tuned over one order of magnitude with the shortest chain having 100 elements. We show that the coercivity strongly increases with the average length of the iron chains, which self-assemble parallel to the substrate surface. Magnetic relaxation and sweep speed data suggest spin dynamics play an important role. Implementing Glauber dynamics with a finite-sized 1D Ising model provides qualitative agreement with experimental data. This suggests that iron phthalocyanine thin films act as single chain magnets and provide a solid test system for tunable finite-sized magnetic chains. This research has been supported with the NSF-DMR 0847552 grant.

  13. Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles.

    PubMed

    Serna, Naroa; Céspedes, María Virtudes; Saccardo, Paolo; Xu, Zhikun; Unzueta, Ugutz; Álamo, Patricia; Pesarrodona, Mireia; Sánchez-Chardi, Alejandro; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio; Ferrer-Miralles, Neus

    2016-07-01

    A single chain polypeptide containing the low density lipoprotein receptor (LDLR) ligand Seq-1 with blood-brain barrier (BBB) crossing activity has been successfully modified by conventional genetic engineering to self-assemble into stable protein-only nanoparticles of 30nm. The nanoparticulate presentation dramatically enhances in vitro, LDLR-dependent cell penetrability compared to the parental monomeric version, but the assembled protein does not show any enhanced brain targeting upon systemic administration. While the presentation of protein drugs in form of nanoparticles is in general advantageous regarding correct biodistribution, this principle might not apply to brain targeting that is hampered by particular bio-physical barriers. Irrespective of this fact, which is highly relevant to the nanomedicine of central nervous system, engineering the cationic character of defined protein stretches is revealed here as a promising and generic approach to promote the controlled oligomerization of biologically active protein species as still functional, regular nanoparticles.

  14. A modular approach to introduce function into single-chain polymeric nanoparticles.

    PubMed

    Huerta, Elisa; van Genabeek, Bas; Stals, Patrick J M; Meijer, E W; Palmans, Anja R A

    2014-08-01

    Here, a modular approach is reported to introduce a specific function into single-chain polymeric nanoparticles (SCPNs). Hereto, an amphiphilic polymer with pendant benzene-1,3,5-tricarboxamide (BTA) units is mixed with a "free" BTA that contains a functional group, either a fluorescent naphthalimide or a catalytically active l-proline. Taking advantage of hydrophobic interactions and self-recognition properties of the BTA units, the "free" BTAs are captured into the interior of the SCPN in water as evidenced by fluorescence studies. To illustrate that function can be readily introduced using a modular approach, l-proline-based BTAs are incorporated to procure a catalytically active SCPN in water. The aldol reaction between p-nitrobenzaldehyde and cyclohexanone shows good conversions at low catalyst loadings and substrate concentrations, and high stereoselectivities are obtained (de = 91% and ee = 98%). PMID:24962087

  15. Effect of coil-globule transition on the single-chain crystallization.

    PubMed

    Wang, Mao-Xiang

    2013-05-30

    The folding process of a single chain including coil-globule transition and crystallization has been investigated through dynamic Monte Carlo simulations. The results based upon ensemble averaging illustrated three distinct states: coil, molten globule, and globule states. Furthermore, the crystallization process from these collapsed states demonstrated various characteristics and it also verified the thermodynamic partitions. The isothermal crystallization in the three states showed the folding rates, and the final crystallite morphologies strongly depended on the collapsed states. Especially, the onset temperature of crystallization in the intermediate molten globule state demonstrated the strongest sensitivity to the solvent qualities in the three different states. Moreover, the crystallization in this intermediate state illustrated a two-step folding mechanism with the prior dense core serving as a precursor to induce the subsequent crystallization. Our observations would help in understanding the thermodynamics and kinetics of phase transition of a single macromolecule. Possible relations to the protein folding were also discussed. PMID:23646890

  16. An improved single-chain Fab platform for efficient display and recombinant expression.

    PubMed

    Koerber, James T; Hornsby, Michael J; Wells, James A

    2015-01-30

    Antibody phage display libraries combined with high-throughput selections have recently demonstrated tremendous promise to create the next generation of renewable, recombinant antibodies to study proteins and their many post-translational modification states; however, many challenges still remain, such as optimized antibody scaffolds. Recently, a single-chain fragment antigen binding (Fab) (scFab) format, in which the carboxy-terminus of the light chain is linked to the amino-terminus of the heavy chain, was described to potentially combine the high display levels of a single-chain fragment variable with the high stability of purified Fabs. However, this format required removal of the interchain disulfide bond to achieve modest display levels and subsequent bacterial expression resulted in high levels of aggregated scFab, hindering further use of scFabs. Here, we developed an improved scFab format that retains the interchain disulfide bond by increasing the linker length between the light and heavy chains to improve display and bacterial expression levels to 1-3 mg/L. Furthermore, rerouting of the scFab to the co-translational signal recognition particle pathway combined with reengineering of the signal peptide sequence results in display levels 24-fold above the original scFab format and 3-fold above parent Fab levels. This optimized scFab scaffold can be easily reformatted in a single step for expression in a bacterial or mammalian host to produce stable (Tm of 81 °C), predominantly monomeric (>90%) antibodies at a high yield. Ultimately, this new scFab format will advance high-throughput antibody generation platforms to discover the next generation of research and therapeutic antibodies.

  17. An improved single-chain Fab platform for efficient display and recombinant expression.

    PubMed

    Koerber, James T; Hornsby, Michael J; Wells, James A

    2015-01-30

    Antibody phage display libraries combined with high-throughput selections have recently demonstrated tremendous promise to create the next generation of renewable, recombinant antibodies to study proteins and their many post-translational modification states; however, many challenges still remain, such as optimized antibody scaffolds. Recently, a single-chain fragment antigen binding (Fab) (scFab) format, in which the carboxy-terminus of the light chain is linked to the amino-terminus of the heavy chain, was described to potentially combine the high display levels of a single-chain fragment variable with the high stability of purified Fabs. However, this format required removal of the interchain disulfide bond to achieve modest display levels and subsequent bacterial expression resulted in high levels of aggregated scFab, hindering further use of scFabs. Here, we developed an improved scFab format that retains the interchain disulfide bond by increasing the linker length between the light and heavy chains to improve display and bacterial expression levels to 1-3 mg/L. Furthermore, rerouting of the scFab to the co-translational signal recognition particle pathway combined with reengineering of the signal peptide sequence results in display levels 24-fold above the original scFab format and 3-fold above parent Fab levels. This optimized scFab scaffold can be easily reformatted in a single step for expression in a bacterial or mammalian host to produce stable (Tm of 81 °C), predominantly monomeric (>90%) antibodies at a high yield. Ultimately, this new scFab format will advance high-throughput antibody generation platforms to discover the next generation of research and therapeutic antibodies. PMID:25481745

  18. A Novel Single-Chain Antibody Fragment for Detection of Mannose 6-Phosphate-Containing Proteins

    PubMed Central

    Müller-Loennies, Sven; Galliciotti, Giovanna; Kollmann, Katrin; Glatzel, Markus; Braulke, Thomas

    2010-01-01

    Newly synthesized soluble lysosomal hydrolases require mannose 6-phosphate (Man6P) residues on their oligosaccharides for their transport to lysosomes. The formation of Man6P residues is catalyzed by the GlcNAc-1-phosphotransferase, which is defective in the lysosomal storage disorders mucolipidosis type II (ML II) and ML III. Both hypersecretion and reduced intracellular level of lysosomal enzymes as well as direct sequencing of GlcNAc-1-phosphotransferase genes are important diagnostic markers for ML II and ML III. A high-affinity Man6P-specific single-chain antibody fragment was generated, allowing the rapid indirect demonstration of defective GlcNAc-1-phosphotransferase. In media and extracts of cultured fibroblasts of healthy controls but not of ML II and ML III patients, several Man6P-containing proteins could be detected by anti-Man6P Western blotting. Immunoprecipitation of Man6P-containing proteins from conditioned media or mouse brain extracts followed by arylsulfatase A and cathepsin D Western blotting confirmed the specificity of the antibody fragment for lysosomal proteins. Application of the antibody fragment in immunohistochemistry of human brain slices from nonaffected patients showed strong neuronal immunoreactivity, which was not observed in cortical sections of an ML II patient. Finally, in brain extracts of a novel GlcNAc-1-phosphotransferase knock-in mouse no Man6P-containing proteins were detectable. Thus, the single-chain antibody fragment against Man6P was demonstrated to allow the specific, rapid, and convenient detection of Man6P-containing proteins and facilitates the diagnosis of ML II and ML III. PMID:20472886

  19. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B.

    PubMed

    Rasetti-Escargueil, Christine; Avril, Arnaud; Chahboun, Siham; Tierney, Rob; Bak, Nicola; Miethe, Sebastian; Mazuet, Christelle; Popoff, Michel R; Thullier, Philippe; Hust, Michael; Pelat, Thibaut; Sesardic, Dorothea

    2015-01-01

    Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2-7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2-7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2-7 and BLC3) are close to the human germline sequences, which

  20. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B

    PubMed Central

    Rasetti-Escargueil, Christine; Avril, Arnaud; Chahboun, Siham; Tierney, Rob; Bak, Nicola; Miethe, Sebastian; Mazuet, Christelle; Popoff, Michel R; Thullier, Philippe; Hust, Michael; Pelat, Thibaut; Sesardic, Dorothea

    2015-01-01

    Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2–7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2–7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2–7 and BLC3) are close to the human germline sequences

  1. Development of human-like scFv-Fc antibodies neutralizing Botulinum toxin serotype B.

    PubMed

    Rasetti-Escargueil, Christine; Avril, Arnaud; Chahboun, Siham; Tierney, Rob; Bak, Nicola; Miethe, Sebastian; Mazuet, Christelle; Popoff, Michel R; Thullier, Philippe; Hust, Michael; Pelat, Thibaut; Sesardic, Dorothea

    2015-01-01

    Botulinum neurotoxins (BoNTs) are responsible for human botulism, a life-threatening disease characterized by flaccid muscle paralysis that occurs naturally by food poisoning or colonization of the gastrointestinal tract by BoNT-producing clostridia. BoNTs have been classified as category A agents by the Centers for Disease Control and Prevention. To date, 7 subtypes of BoNT/B were identified showing that subtypes B1 (16 strains) and B2 (32 strains) constitute the vast majority of BoNT/B strains. Neutralizing antibodies are required for the development of anti-botulism drugs to deal with the potential risk. In this study, macaques (Macaca fascicularis) were immunized with recombinant light chain (LC) or heavy chain (HC) of BoNT/B2, followed by the construction of 2 hyper-immune phage display libraries. The best single-chain variable fragments (scFvs) isolated from each library were selected according to their affinities and cross reactivity with BoNT/B1 toxin subtype. These scFvs against LC and HC were further analyzed by assessing the inhibition of in vitro endopeptidase activity of BoNT/B1 and B2 and neutralization of BoNT/B1 and B2 toxin-induced paralysis in the mouse ex vivo phrenic nerve assay. The antibodies B2-7 (against HC) and BLC3 (against LC) were produced as scFv-Fc, and, when tested individually, neutralized BoNT/B1 and BoNT/B2 in a mouse ex vivo phrenic nerve assay. Whereas only scFv-Fc BLC3 alone protected mice against BoNT/B2-induced paralysis in vivo, when B2-7 and BLC3 were combined they exhibited potent synergistic protection. The present study provided an opportunity to assess the extent of antibody-mediated neutralization of BoNT/B1 and BoNT/B2 subtypes in ex vivo and in vitro assays, and to confirm the benefit of the synergistic effect of antibodies targeting the 2 distinct functional domains of the toxin in vivo. Notably, the framework regions of the most promising antibodies (B2-7 and BLC3) are close to the human germline sequences, which

  2. Hallmarks of glycosylation in cancer

    PubMed Central

    Munkley, Jennifer; Elliott, David J.

    2016-01-01

    Aberrant glycosylation plays a fundamental role in key pathological steps of tumour development and progression. Glycans have roles in cancer cell signalling, tumour cell dissociation and invasion, cell-matrix interactions, angiogenesis, metastasis and immune modulation. Aberrant glycosylation is often cited as a ‘hallmark of cancer’ but is notably absent from both the original hallmarks of cancer and from the next generation of emerging hallmarks. This review discusses how glycosylation is clearly an enabling characteristic that is causally associated with the acquisition of all the hallmark capabilities. Rather than aberrant glycosylation being itself a hallmark of cancer, another perspective is that glycans play a role in every recognised cancer hallmark. PMID:27007155

  3. Human scFv antibodies (Afribumabs) against Africanized bee venom: Advances in melittin recognition.

    PubMed

    Pessenda, Gabriela; Silva, Luciano C; Campos, Lucas B; Pacello, Elenice M; Pucca, Manuela B; Martinez, Edson Z; Barbosa, José E

    2016-03-15

    Africanized Apis mellifera bees, also known as killer bees, have an exceptional defensive instinct, characterized by mass attacks that may cause envenomation or death. From the years 2000-2013, 77,066 bee accidents occurred in Brazil. Bee venom comprises several substances, including melittin and phospholipase A2 (PLA2). Due to the lack of antivenom for bee envenomation, this study aimed to produce human monoclonal antibody fragments (single chain fragment variable; scFv), by using phage display technology. These fragments targeted melittin and PLA2, the two major components of bee venom, to minimize their toxic effects in cases of mass envenomation. Two phage antibody selections were performed using purified melittin. As the commercial melittin is contaminated with PLA2, phages specific to PLA2 were also obtained during one of the selections. Specific clones for melittin and PLA2 were selected for the production of soluble scFvs, named here Afribumabs: prefix: afrib- (from Africanized bee); stem/suffix: -umab (fully human antibody). Afribumabs 1 and 2 were tested in in vitro and in vivo assays to assess their ability to inhibit the toxic actions of purified melittin, PLA2, and crude bee venom. Afribumabs reduced hemolysis caused by purified melittin and PLA2 and by crude venom in vitro and reduced edema formation in the paws of mice and prolonged the survival of venom-injected animals in vivo. These results demonstrate that Afribumabs may contribute to the production of the first non-heterologous antivenom treatment against bee envenomation. Such a treatment may overcome some of the difficulties associated with conventional immunotherapy techniques. PMID:26829652

  4. Targeted macrophage cytotoxicity using a nonreplicative live vector expressing a tumor-specific single-chain variable region fragment.

    PubMed

    Paul, S; Snary, D; Hoebeke, J; Allen, D; Balloul, J M; Bizouarne, N; Dott, K; Geist, M; Hilgers, J; Kieny, M P; Burchell, J; Taylor-Papadimitriou, J; Acres, R B

    2000-07-01

    Antigen-specific recognition and subsequent destruction of tumor cells is the goal of vaccine-based immunotherapy of cancer. Often, however, tumor antigen-specific cytotoxic T lymphocytes (CTLs) are either not available or in a state of anergy. In addition, MHCI expression on tumor cells is often downregulated. Either or both of these situations can allow tumor growth to proceed unchecked by CTL control. We have shown previously that tumor antigen-specific monoclonal antibodies can be expressed in vaccinia virus and that activated macrophages infected with this virus acquire the ability to kill tumor cells expressing that antigen. Here we show that a membrane-anchored form of the scFv portion of the MUC1 tumor antigen-specific monoclonal antibody, SM3, can be expressed on activated macrophages with the highly attenuated poxvirus, modified vaccinia Ankara (MVA), as a gene transfer vector. Cells infected with the MVA-scFv construct were shown to express the membrane-bound scFv by Western blot and FACS analysis. That cells expressing the membrane-anchored scFv specifically bind antigen was shown by FACS and by BIAcore analysis. GM-CSF-activated macrophages were infected with the construct and shown to recognize specifically MUC1-expressing tumor cells as measured by IL-12 release. Furthermore, activated macrophages expressing the membrane-bound scFv specifically lyse target cells expressing the MUC1 antigen but not cells that do not express MUC1. PMID:10910139

  5. Crystal engineering to control the magnetic interaction between weak ferromagnetic single-chain magnets assembled in a 3D framework.

    PubMed

    Su, Lei; Song, Wei-Chao; Zhao, Jiong-Peng; Liu, Fu-Chen

    2016-07-01

    A new single-chain-magnet (SCM), [Co4(OMe)3(HCO2)2(L)3·DMF]n, (L = 4-(pyridin-4-yl)benzolate) (2), was constructed by changing the spacers of a weak ferromagnetic single-chain magnet [Co8(OMe)6(HCO2)4(isonic)6·H2O]n (1). By contrasting the magnetism of the two complexes, it is found that the longer the linker the stronger the magnetic properties. PMID:27333437

  6. Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form

    PubMed Central

    2012-01-01

    Background In 2009, a novel influenza A/H1N1 virus (H1N1pdm) quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1). Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009–2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs). Findings Human single-fold scFv libraries (Tomlinson I + J) underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA). After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity. Discussion Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display libraries was highly

  7. Influence of backbone rigidness on single chain conformation of thiophene-based conjugated polymers.

    PubMed

    Hu, Zhongjian; Liu, Jianhua; Simón-Bower, Lauren; Zhai, Lei; Gesquiere, Andre J

    2013-04-25

    Structural order of conjugated polymers at different length scales directs the optoelectronic properties of the corresponding materials; thus it is of critical importance to understand and control conjugated polymer morphology for successful application of these materials in organic optoelectronics. Herein, with the aim of probing the dependence of single chain folding properties on the chemical structure and rigidness of the polymer backbones, single molecule fluorescence spectroscopy was applied to four thiophene-based conjugated polymers. These include regioregular poly(3-hexylthiophene) (RR-P3HT), poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-14), poly(2,5-bis(3-tetradecylthiophen-2-yl)thiophene-2-yl)thiophen-2-ylthiazolo[5,4-d]thiazole) (PTzQT-12), and poly(3,3-didodecylquaterthiophene)] (PQT-12). Our previous work has shown that RR-P3HT and PBTTT-14 polymer chains fold in their nanostructures, whereas PQT-12 and PTzQT-12 do not fold in their nanostructures. At the single molecule level, it was found that RR-P3HT single chains almost exclusively fold into loosely and strongly aggregated conformations, analogous to the folding properties in nanostructures. PQT-12 displays significant chain folding as well, but only into loosely aggregated conformations, showing an absence of strongly aggregated polymer chains. PBTTT-14 exhibits a significant fraction of rigid polymer chain. The findings made for single molecules of PQT-12 and PBTTT-14 are thus in contrast with the observations made in their corresponding nanostructures. PTzQT-12 appears to be the most rigid and planar conjugated polymer of these four polymers. However, although the presumably nonfolding polymers PQT-12 and PTzQT-12 exhibit less folding than RR-P3HT, there is still a significant occurrence of chain folding for these polymers at the single molecule level. These results suggest that the folding properties of conjugated polymers can be influenced by the architecture of the

  8. Glycosyl iodides. History and recent advances.

    PubMed

    Meloncelli, Peter J; Martin, Alan D; Lowary, Todd L

    2009-06-12

    The use of glycosyl iodides as an effective method for the preparation of glycosides has had a recent resurgence in carbohydrate chemistry, despite its early roots in which these species were believed to be of limited use. Renewed interest in these species as glycosylating agents has been spurred by their demonstrated utility in the stereoselective preparation of O-glycosides, and other glycosylic compounds. This review provides a brief historical account followed by an examination of the use of glycosyl iodides in the synthesis of oligosaccharides and other glycomimetics, including C-glycosylic compounds, glycosyl azides and N-glycosides.

  9. Effects of Water on the Single-Chain Elasticity of Poly(U) RNA.

    PubMed

    Luo, Zhonglong; Cheng, Bo; Cui, Shuxun

    2015-06-01

    Water, the dominant component under the physiological condition, is a complicated solvent which greatly affects the properties of solute molecules. Here, we utilize atomic force microscope-based single-molecule force spectroscopy to study the influence of water on the single-molecule elasticity of an unstructured single-stranded RNA (poly(U)). In nonpolar solvents, RNA presents its inherent elasticity, which is consistent with the theoretical single-chain elasticity calculated by quantum mechanics calculations. In aqueous buffers, however, an additional energy of 1.88 kJ/mol·base is needed for the stretching of the ssRNA chain. This energy is consumed by the bound water rearrangement (Ew) during chain elongation. Further experimental results indicate that the Ew value is uncorrelated to the salt concentrations and stretching velocity. The results obtained in an 8 M guanidine·HCl solution provide more evidence that the bound water molecules around RNA give rise to the observed deviation between aqueous and nonaqueous environments. Compared to synthetic water-soluble polymers, the value of Ew of RNA is much lower. The weak interference of water is supposed to be the precondition for the RNA secondary structure to exist in aqueous solution. PMID:25989243

  10. New approach for designing single-chain magnets: organization of chains via hydrogen bonding between nucleobases.

    PubMed

    Zhang, Wei-Xiong; Shiga, Takuya; Miyasaka, Hitoshi; Yamashita, Masahiro

    2012-04-25

    Two one-dimensional (1D) manganese complexes, [Mn(2)(naphtmen)(2)(L)](ClO(4))·2Et(2)O·2MeOH·H(2)O (1) and [Mn(2)(naphtmen)(2)(HL)](ClO(4))(2)·MeOH (2), were synthesized by using a bridging ligand with a nucleobase moiety, 6-amino-9-β-carboxyethylpurine, and a salen-type manganese(III) dinuclear complex, [Mn(2)(naphtmen)(2)(H(2)O)(2)](ClO(4))(2) (naphtmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(naphthylideneiminato) dianion). In 1 and 2, the carboxylate-bridged Mn(III) dinuclear units are alternately linked by two kinds of weak Mn···O interactions into 1D chains. As a result, canted antiferromagnetic and ferromagnetic interactions are alternately present along the chains, leading to a 1D chain with non-cancellation of anisotropic spins. Since the chains connected via H-bonds between nucleobase moieties are magnetically isolated, both 1 and 2 act as single-chain magnets (SCMs). More importantly, this result shows the smaller canting angles hinder long-range ordering in favor of SCM dynamics.

  11. Generation and characterization of a single-chain anti-EphA2 antibody

    PubMed Central

    Goldgur, Yehuda; Susi, Petri; Karelehto, Eveliina; Sanmark, Hanna; Lamminmäki, Urpo; Oricchio, Elisa; Wendel, Hans-Guido; Nikolov, Dimitar B; Himanen, Juha P

    2015-01-01

    Recombinant antibody phage library technology provides multiple advantages, including that human antibodies can be generated against proteins that are highly conserved between species. We used this technology to isolate and characterize an anti-EphA2 single-chain antibody. We show that the antibody binds the antigen with 1:1 stoichiometry and has high specificity for EphA2. The crystal structure of the complex reveals that the antibody targets the same receptor surface cavity as the ephrin ligand. Specifically, a lengthy CDR-H3 loop protrudes deep into the ligand-binding cavity, with several hydrophobic residues at its tip forming an anchor-like structure buried within the hydrophobic Eph pocket, in a way similar to the ephrin receptor-binding loop in the Eph/ephrin structures. Consequently, the antibody blocks ephrin binding to EphA2. Furthermore, it induces apoptosis and reduces cell proliferation in lymphoma cells lines. Since Ephs are important mediators of tumorigenesis, such antibodies could have applications both in research and therapy. PMID:25494541

  12. Generation and characterization of a single-chain anti-EphA2 antibody.

    PubMed

    Goldgur, Yehuda; Susi, Petri; Karelehto, Eveliina; Sanmark, Hanna; Lamminmäki, Urpo; Oricchio, Elisa; Wendel, Hans-Guido; Nikolov, Dimitar B; Himanen, Juha P

    2014-12-01

    Recombinant antibody phage library technology provides multiple advantages, including that human antibodies can be generated against proteins that are highly conserved between species. We used this technology to isolate and characterize an anti-EphA2 single-chain antibody. We show that the antibody binds the antigen with 1:1 stoichiometry and has high specificity for EphA2. The crystal structure of the complex reveals that the antibody targets the same receptor surface cavity as the ephrin ligand. Specifically, a lengthy CDR-H3 loop protrudes deep into the ligand-binding cavity, with several hydrophobic residues at its tip forming an anchor-like structure buried within the hydrophobic Eph pocket, in a way similar to the ephrin receptor-binding loop in the Eph/ephrin structures. Consequently, the antibody blocks ephrin binding to EphA2. Furthermore, it induces apoptosis and reduces cell proliferation in lymphoma cells lines. Since Ephs are important mediators of tumorigenesis, such antibodies could have applications both in research and therapy.

  13. Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design

    PubMed Central

    Leone, Serena; Pica, Andrea; Merlino, Antonello; Sannino, Filomena; Temussi, Piero Andrea; Picone, Delia

    2016-01-01

    Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction. PMID:27658853

  14. Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain magnets.

    PubMed

    Miyasaka, Hitoshi; Julve, Miguel; Yamashita, Masahiro; Clérac, Rodolphe

    2009-04-20

    Slow relaxation of the magnetization (i.e., "magnet-like" behavior) in materials composed of magnetically isolated chains was observed for the first time in 2001. This type of behavior was predicted in the 1960s by Glauber in a chain of ferromagnetically coupled Ising spins (the so-called Glauber dynamics). In 2002, this new class of nanomagnets was named single-chain magnets (SCMs) by analogy to single-molecule magnets that are isolated molecules displaying related superparamagnetic properties. A long-range order occurs only at T = 0 K in any pure one-dimensional (1D) system, and thus such systems remain in their paramagnetic state at any finite temperature. Nevertheless, the combined action of large uniaxial anisotropy and intrachain magnetic interactions between high-spin magnetic units of the 1D arrangement promotes long relaxation times for the magnetization reversal with decreasing temperature, and finally at significantly low temperatures, the material can behave as a magnet. In this Forum Article, we summarize simple theoretical approaches used for understanding typical SCM behavior and some rational synthetic strategies to obtain SCM materials together with representative examples of SCMs previously reported.

  15. Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds

    PubMed Central

    Wei, Rong-Min; Cao, Fan; Li, Jing; Yang, Li; Han, Yuan; Zhang, Xiu-Ling; Zhang, Zaichao; Wang, Xin-Yi; Song, You

    2016-01-01

    By introducing large counter cations as the spacer, two isolated 3, 3-ladder compounds, (Ph4P)[CoII(3-Mepy)2.7(H2O)0.3WV(CN)8]·0.6H2O (1) and (Ph4As)[CoII(3-Mepy)3WV(CN)8] (2, 3-Mepy = 3-methylpyridine), were synthesized and characterized. Static and dynamic magnetic characterizations reveal that compounds 1 and 2 both behave as the single-chain magnets (SCMs) with very high energy barriers: 252(9) K for 1 and 224(7) K for 2, respectively. These two compounds display the highest relaxation barriers for cyano-bridged SCMs and are preceded only by two cobalt(II)-radical compounds among all SCMs. Meanwhile, a large coercive field of 26.2 kOe (1) and 22.6 kOe (2) were observed at 1.8 K. PMID:27071451

  16. Antibodies and intrabodies against huntingtin: production and screening of monoclonals and single-chain recombinant forms.

    PubMed

    Khoshnan, Ali; Ou, Susan; Ko, Jan; Patterson, Paul H

    2013-01-01

    Antibodies can be extremely useful tools for the field of triplet repeats diseases. These reagents are important for localizing proteins in tissues and they can be used in the isolation and characterization of the components of protein complexes. In the context of huntingtin (Htt), antibodies can distinguish Htt with normal or an expanded polyglutamine (polyQ) repeats, and they can identify distinct conformations of Htt. Htt is the protein that, when mutated to contain an expanded polyQ motif, causes Huntington's disease (HD). Our group has produced monoclonal and recombinant single-chain antibodies (intrabodies) that can be used for these purposes and to perturb the function of Htt in living cells. Studies with anti-Htt intrabodies have led to identification of novel pathogenic epitopes. Moreover, some of the isolated intrabodies can reduce the neurotoxicity of mutant Htt in cell culture and animal models of HD. Thus, the production of antibodies and intrabodies has made a significant contribution to the understanding of HD pathogenesis and has introduced a novel strategy to treat this debilitating neurodegenerative disorder.

  17. Single-Chain Magnets Based on Octacyanotungstate with the Highest Energy Barriers for Cyanide Compounds

    NASA Astrophysics Data System (ADS)

    Wei, Rong-Min; Cao, Fan; Li, Jing; Yang, Li; Han, Yuan; Zhang, Xiu-Ling; Zhang, Zaichao; Wang, Xin-Yi; Song, You

    2016-04-01

    By introducing large counter cations as the spacer, two isolated 3, 3-ladder compounds, (Ph4P)[CoII(3-Mepy)2.7(H2O)0.3WV(CN)8]·0.6H2O (1) and (Ph4As)[CoII(3-Mepy)3WV(CN)8] (2, 3-Mepy = 3-methylpyridine), were synthesized and characterized. Static and dynamic magnetic characterizations reveal that compounds 1 and 2 both behave as the single-chain magnets (SCMs) with very high energy barriers: 252(9) K for 1 and 224(7) K for 2, respectively. These two compounds display the highest relaxation barriers for cyano-bridged SCMs and are preceded only by two cobalt(II)-radical compounds among all SCMs. Meanwhile, a large coercive field of 26.2 kOe (1) and 22.6 kOe (2) were observed at 1.8 K.

  18. IL-8 single-chain homodimers and heterodimers: interactions with chemokine receptors CXCR1, CXCR2, and DARC.

    PubMed Central

    Leong, S. R.; Lowman, H. B.; Liu, J.; Shire, S.; Deforge, L. E.; Gillece-Castro, B. L.; McDowell, R.; Hébert, C. A.

    1997-01-01

    Covalent single-chain dimers of the chemokine interleukin-8 (IL-8) have been designed to mimic the dimeric form of IL-8 in solution and facilitate the production of heterodimer variants of IL-8. Physical studies indicated that use of a simple peptide linker to join two subunits, while allowing receptor binding and activation, led to self-association of the tethered dimers. However, addition of a single disulfide crosslink between the tethered subunits prevented this multimer from forming, yielding a species of dimer molecular weight. Crosslinked single-chain dimers bind to both IL-8 neutrophil receptors CXCR1 and CXCR2 as well as to DARC, as does a double disulfide-linked dimer with no peptide linker. In addition, neutrophil response to these dimers as measured by chemotaxis or beta-glucuronidase release is similar to that elicited by wild-type IL-8, providing evidence that the dissociation of the dimeric species is not required for these biologically relevant activities. Finally, through construction of single-chain heterodimer mutants, we show that only the first subunit's ELR motif is the single-chain variants. PMID:9070443

  19. Stability engineering of anti-EGFR scFv antibodies by rational design of a lambda-to-kappa swap of the VL framework using a structure-guided approach

    PubMed Central

    Lehmann, Andreas; Wixted, Josephine H F; Shapovalov, Maxim V; Roder, Heinrich; Dunbrack, Roland L; Robinson, Matthew K

    2015-01-01

    Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability. PMID:26337947

  20. General model of phospholipid bilayers in fluid phase within the single chain mean field theory.

    PubMed

    Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A

    2014-05-01

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  1. Single chain structure in thin polymer films: corrections to Flory's and Silberberg's hypotheses

    NASA Astrophysics Data System (ADS)

    Cavallo, A.; Müller, M.; Wittmer, J. P.; Johner, A.; Binder, K.

    2005-05-01

    Conformational properties of polymer melts confined between two hard structureless walls are investigated by Monte Carlo simulation of the bond fluctuation model. Parallel and perpendicular components of chain extension, bond-bond correlation function and structure factor are computed and compared with recent theoretical approaches attempting to go beyond Flory's and Silberberg's hypotheses. We demonstrate that for ultrathin films where the thickness, H, is smaller than the excluded volume screening length (blob size), ξ, the chain size parallel to the walls diverges logarithmically, R2/2Napb2+clog(N) with c~1/H. The corresponding bond-bond correlation function decreases like a power law, C(s) = d/sω with s being the curvilinear distance between bonds and ω = 1. Upon increasing the film thickness, H, we find—in contrast to Flory's hypothesis—the bulk exponent ω = 3/2 and, more importantly, a decreasing d(H) that gives direct evidence for an enhanced self-interaction of chain segments reflected at the walls. Systematic deviations from the Kratky plateau as a function of H are found for the single chain form factor parallel to the walls in agreement with the non-monotonic behaviour predicted by theory. This structure in the Kratky plateau might give rise to an erroneous estimation of the chain extension from scattering experiments. For large H the deviations are linear with the wavevector, q, but are very weak. In contrast, for ultrathin films, H<ξ, very strong corrections (albeit logarithmic in q) are found suggesting a possible experimental verification of our results.

  2. Targeting of HIV-1 Tat traffic and function by transduction-competent single chain antibodies.

    PubMed

    Theisen, Dietmar M; Pongratz, Carola; Wiegmann, Katja; Rivero, Francisco; Krut, Oleg; Krönke, Martin

    2006-04-12

    Human immunodeficiency virus type 1-encoded Tat protein is a transactivating factor essentially required for viral replication. Tat binds specifically to the transactivation response RNA stem loop, which is formed at the 5' end of all viral transcripts. The TAR binding motif of Tat also contains a protein transduction domain, PTD that mediates not only nuclear localization of Tat but is also capable of transducing cargo across cellular membranes. In order to target a Tat antagonist directly to the TAR binding site in the nucleus, we engineered a chimeric protein consisting of the Tat-derived PTD fused to the anti-Tat single chain antibody scFvtat1 that binds intracellularly to Tat. Recombinant scFvtat1-PTD(TAT) fusion antibody retained both, anti-Tat specificity and PTD(TAT)-mediated transduction-competence leading to its nuclear accumulation within living cells. Incubation of Jurkat T cells with scFvtat1-PTD(TAT) suppressed Tat-dependent transcription of a HIV-1 reporter gene by >80%. Transfection of a scFvtat1-PTD(TAT) expression plasmid in HEK293 cells resulted in diffuse cytoplasmic and nuclear expression. ScFvtat1-PTD(TAT) did not inhibit HIV-1 Tat translocation to the nucleus, yet showed increased inhibition of 78%, indicating a nuclear site of scFvtat1-PTD(TAT) action. Strikingly, the PTD(TAT) alone showed 55% inhibition in the HIV-1 luciferase reporter assay, indicating competition with HIV-1 Tat binding to the TAR element. The results of this study suggest that Tat traffic can only marginally be affected by anti-Tat antibodies and that effective inhibition of Tat function requires both competition with HIV Tat for TAR binding mediated by PTD(TAT) and steric hindrance mediated by the scFvtat1 moiety.

  3. Molecular dynamics simulation of secondary sorption behavior of montmorillonite modified by single chain quaternary ammonium cations.

    PubMed

    Zhao, Qian; Burns, Susan E

    2012-04-01

    Organoclays synthesized from single chain quaternary ammonium cations (QAC) ((CH(3))(3)NR(+)) exhibit different mechanisms for the sorption of nonpolar organic compounds as the length of the carbon chain is increased. The interaction between a nonpolar sorbate and an organoclay intercalated with small QACs has been demonstrated to be surface adsorption, while partitioning is the dominant mechanism in clays intercalated with long chain surfactants. This study presents the results of a molecular dynamics (MD) simulation performed to examine the sorption mechanisms of benzene in the interlayer of three organoclays with chain lengths ranging from 1 to 16 carbons: tetramethylammonium (TMA) clay; decyltrimethylammonium (DTMA) clay; and hexadecyltrimethylammonium (HDTMA) clay. The basis of the overall simulation was a combined force field of ClayFF and CVFF. In the simulations, organic cations were intercalated and benzene molecules were introduced to the interlayer, followed by whole system NPT and NVT time integration. Trajectories of all the species were recorded after the system reached equilibrium and subsequently analyzed. Simulation results confirmed that the arrangement of the surfactants controlled the sorption mechanism of organoclays. Benzene molecules were observed to interact directly with the clay surface in the presence of TMA cations, but tended to interact with the aliphatic chain of the HDTMA cation in the interlayer. The simulation provided insight into the nature of the adsorption/partitioning mechanisms in organoclays, and explained experimental observations of decreased versus increased uptake capacities as a function of increasing total organic carbon (TOC) for TMA clay and HDTMA clay, respectively. The transition of sorption mechanisms was also quantified with simulation of DTMA clay, with a chain length between that of TMA and HDTMA. Furthermore, this study suggested that at the molecular level, the controlling factor for the ultimate sorption

  4. The single chain limit of structural relaxation in a polyolefin blend

    NASA Astrophysics Data System (ADS)

    May, Andrew F.; Maranas, Janna K.

    2006-07-01

    The influence of composition on component dynamics and relevant static properties in a miscible polymer blend is investigated using molecular dynamics simulation. Emphasis is placed on dynamics in the single chain dilution limit, as this limit isolates the role of inherent component mobility in the polymer's dynamic behavior when placed in a blend. For our systems, a biased local concentration affecting dynamics must arise primarily from chain connectivity, which is quantified by the self-concentration, because concentration fluctuations are minimized due to restraints on chain lengths arising from simulation considerations. The polyolefins simulated [poly(ethylene-propylene) (PEP) and poly(ethylene-butene) (PEB)] have similar structures and glass transition temperatures, and all interactions are dispersive in nature. We find that the dependence of dynamics upon composition differs between the two materials. Specifically, PEB (slower component) is more influenced by the environment than PEP. This is linked to a smaller self-concentration for PEB than PEP. We examine the accuracy of the Lodge-McLeish model (which is based on chain connectivity acting over the Kuhn segment length) in predicting simulation results for effective concentration. The model predicts the simulation results with high accuracy when the model's single parameter, the self-concentration, is calculated from simulation data. However, when utilizing the theoretical prediction of the self-concentration the model is not quantitatively accurate. The ability of the model to link the simulated self-concentration with biased local compositions at the Kuhn segment length provides strong support for the claim that chain connectivity is the leading cause of distinct mobility in polymer blends. Additionally, the direct link between the willingness of a polymer to be influenced by the environment and the value of the self-concentration emphasizes the importance of the chain connectivity. Furthermore, these

  5. HER2-siRNA delivered by EGFR-specific single chain antibody inhibits NSCLC cell proliferation and tumor growth

    PubMed Central

    Liu, Li; Li, Fakai; Zhang, Jian; Ye, Mingxiang; Zhao, Hu; Zhao, Jing; Yan, Bo; Yang, Angang; Zhang, Rui; Li, Xia; Ren, Xinling

    2016-01-01

    Overexpression of human epidermal growth factor receptor type2 (HER2) is closely associated with aggressive progression and poor prognosis in non-small cell lung cancer (NSCLC). Here, we generated an EGFR-scFv-arginine nonamer peptide fusion protein (scFv-9R) as a cargo to deliver HER2 specific siRNA into HER2-positive NSCLC cells both in vitro and in vivo. HER2-siRNAs delivered by scFv-9R effeciently silenced HER2 expression in EGFR-positive NSCLC cells, and consequently resulted in G1 arrest and cell growth inhibition. Importantly, intravenous injection of scFv-9R/HER2-siRNA complex markedly suppressed growth of EGFR-positive NSCLC xenograft in nude mice, resulting from downregulated HER2 expression, reduced cell proliferation and enhanced cell apoptosis. Collectively, our study provides a novel therapeutic strategy for the treatment of EGFR-positive, HER2-overexpressed NSCLC. PMID:26988752

  6. Novel amyloid-beta specific scFv and VH antibody fragments from human and mouse phage display antibody libraries.

    PubMed

    Medecigo, M; Manoutcharian, K; Vasilevko, V; Govezensky, T; Munguia, M E; Becerril, B; Luz-Madrigal, A; Vaca, L; Cribbs, D H; Gevorkian, G

    2010-06-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer's disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Abeta1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single-domain (VH) format. We demonstrated that these antibody fragments recognize in a specific manner amyloid-beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Abeta1-42 in neuroblastoma cell cultures in a concentration-dependent manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Abeta, which makes them strong therapeutic candidates due to the fact that most of the Abeta species found in the brains of AD patients display extensive N-terminus truncations/modifications.

  7. Isolation of soluble scFv antibody fragments specific for small biomarker molecule, L-Carnitine, using phage display.

    PubMed

    Abou El-Magd, Rabab M; Vozza, Nicolas F; Tuszynski, Jack A; Wishart, David S

    2016-01-01

    Isolation of single chain antibody fragment (scFv) clones from naïve Tomlinson I+J phage display libraries that specifically bind a small biomarker molecule, L-Carnitine, was performed using iterative affinity selection procedures. L-Carnitine has been described as a conditionally essential nutrient for humans. Abnormally high concentrations of L-Carnitine in urine are related to many health disorders including diabetes mellitus type 2 and lung cancer. ELISA-based affinity characterization results indicate that selectants preferentially bind to L-Carnitine in the presence of key bioselecting component materials and closely related L-Carnitine derivatives. In addition, the affinity results were confirmed using biophysical fluorescence quenching for tyrosine residues in the V segment. Small-scale production of the soluble fragment yielded 1.3mg/L using immunopure-immobilized protein A affinity column. Circular Dichroism data revealed that the antibody fragment (Ab) represents a folded protein that mainly consists of β-sheets. These novel antibody fragments may find utility as molecular affinity interface receptors in various electrochemical biosensor platforms to provide specific L-Carnitine binding capability with potential applications in metabolomic devices for companion diagnostics and personalized medicine applications. It may also be used in any other biomedical application where detection of the L-Carnitine level is important. PMID:26608419

  8. NOVEL AMYLOID-BETA SPECIFIC scFv and VH ANTIBODY FRAGMENTS FROM HUMAN AND MOUSE PHAGE DISPLAY ANTIBODY LIBRARIES

    PubMed Central

    Medecigo, M.; Manoutcharian, K.; Vasilevko, V.; Govezensky, T.; Munguia, M. E.; Becerril, B.; Luz-Madrigal, A.; Vaca, L.; Cribbs, D. H.; Gevorkian, G.

    2010-01-01

    Anti-amyloid immunotherapy has been proposed as an appropriate therapeutic approach for Alzheimer’s disease (AD). Significant efforts have been made towards the generation and assessment of antibody-based reagents capable of preventing and clearing amyloid aggregates as well as preventing their synaptotoxic effects. In this study, we selected a novel set of human anti-amyloid-beta peptide 1-42 (Aβ1-42) recombinant monoclonal antibodies in a single chain fragment variable (scFv) and a single domain (VH) formats. We demonstrated that these antibody fragments recognize in a specific manner amyloid beta deposits in APP/Tg mouse brains, inhibit toxicity of oligomeric Aβ1-42 in neuroblastoma cell cultures in a concentration-dependently manner and reduced amyloid deposits in APP/Tg2576 mice after intracranial administration. These antibody fragments recognize epitopes in the middle/C-terminus region of Aβ, which makes them strong therapeutic candidates due to the fact that most of the Aβ species found in the brains of AD patients display extensive N-terminus truncations/modifications. PMID:20451261

  9. Benzyne arylation of oxathiane glycosyl donors.

    PubMed

    Fascione, Martin A; Turnbull, W Bruce

    2010-01-01

    The arylation of bicyclic oxathiane glycosyl donors has been achieved using benzyne generated in situ from 1-aminobenzotriazole (1-ABT) and lead tetraacetate. Following sulfur arylation, glycosylation of acetate ions proceeded with high levels of stereoselectivity to afford α -glycosyl acetates in a 'one-pot' reaction, even in the presence of alternative acceptor alcohols.

  10. Congenital Disorders of Glycosylation and Intellectual Disability

    ERIC Educational Resources Information Center

    Wolfe, Lynne A.; Krasnewich, Donna

    2013-01-01

    The congenital disorders of glycosylation (CDG) are a rapidly growing group of inborn errors of metabolism that result from defects in the synthesis of glycans. Glycosylation is a major post-translational protein modification and an estimated 2% of the human genome encodes proteins for glycosylation. The molecular bases for the current 60…

  11. Formal Verification of the AAMP-FV Microcode

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Greve, David A.; Wilding, Matthew M.; Srivas, Mandayam

    1999-01-01

    This report describes the experiences of Collins Avionics & Communications and SRI International in formally specifying and verifying the microcode in a Rockwell proprietary microprocessor, the AAMP-FV, using the PVS verification system. This project built extensively on earlier experiences using PVS to verify the microcode in the AAMP5, a complex, pipelined microprocessor designed for use in avionics displays and global positioning systems. While the AAMP5 experiment demonstrated the technical feasibility of formal verification of microcode, the steep learning curve encountered left unanswered the question of whether it could be performed at reasonable cost. The AAMP-FV project was conducted to determine whether the experience gained on the AAMP5 project could be used to make formal verification of microcode cost effective for safety-critical and high volume devices.

  12. Serrumab: a novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities.

    PubMed

    Pucca, Manuela Berto; Cerni, Felipe Augusto; Peigneur, Steve; Arantes, Eliane Candiani; Tytgat, Jan; Barbosa, José Elpidio

    2014-01-01

    In Brazil, scorpion envenomation is an important public health problem. The yellow scorpion, Tityus serrulatus (Ts), is considered the most dangerous species in the country, being responsible for the most severe clinical cases of envenomation. Currently, the administration of serum produced in horses is recognized and used as a treatment for accidents with scorpions. However, horse herds' maintenance is costly and the antibodies are heterologous, which can cause anaphylaxis and Serum Sickness. In the present work, a human monoclonal fragment antibody, Serrumab, has been analysed. Toxin neutralizing effects of Serrumab were evaluated using a two-electrode voltage-clamp technique. The results show that Serrumab presented a high neutralizing effect against Ts β-toxins (Ts1, 43.2% and Ts2, 68.8%) and none or low neutralizing effect against α-toxins (Ts3, 0% and Ts5, 10%). Additional experiments demonstrated that Serrumab was also able to neutralize the action of toxins from other scorpion genus (Css II, 45.96% and Lqh III, 100%/β- and α-toxins, respectively). This work indicated that Serrumab is able to neutralize many toxins in Ts venom, and could being considered as a neutralizing antibody for formulating a human anti-scorpion serum in Brazil. Additionally, this work demonstrated that Serrumab could neutralize different toxins from distinct scorpion genus. All these results reinforce the idea that Serrumab is a scFv antibody with multiple neutralizing capacities and a promising candidate for inclusion in scorpion anti-venoms against different genera. PMID:24001307

  13. Potent Inhibition of Human Immunodeficiency Virus Type 1 Replication by an Intracellular Anti-Rev Single-Chain Antibody

    NASA Astrophysics Data System (ADS)

    Duan, Lingxun; Bagasra, Omar; Laughlin, Mark A.; Oakes, Joseph W.; Pomerantz, Roger J.

    1994-05-01

    Human immunodeficiency virus type 1 (HIV-1) has a complex life cycle, which has made it a difficult target for conventional therapeutic modalities. A single-chain antibody moiety, directed against the HIV-1 regulatory protein Rev, which rescues unspliced viral RNA from the nucleus of infected cells, has now been developed. This anti-Rev single-chain construct (SFv) consists of both light and heavy chain variable regions of an anti-Rev monoclonal antibody, which, when expressed intracellularly within human cells, potently inhibits HIV-1 replication. This intracellular SFv molecule is demonstrated to specifically antagonize Rev function. Thus, intracellular SFv expression, against a retroviral regulatory protein, may be useful as a gene therapeutic approach to combat HIV-1 infections.

  14. Golgi glycosylation and human inherited diseases.

    PubMed

    Freeze, Hudson H; Ng, Bobby G

    2011-09-01

    The Golgi factory receives custom glycosylates and dispatches its cargo to the correct cellular locations. The process requires importing donor substrates, moving the cargo, and recycling machinery. Correctly glycosylated cargo reflects the Golgi's quality and efficiency. Genetic disorders in the specific equipment (enzymes), donors (nucleotide sugar transporters), or equipment recycling/reorganization components (COG, SEC, golgins) can all affect glycosylation. Dozens of human glycosylation disorders fit these categories. Many other genes, with or without familiar names, well-annotated pedigrees, or likely homologies will join the ranks of glycosylation disorders. Their broad and unpredictable case-by-case phenotypes cross the traditional medical specialty boundaries. The gene functions in patients may be elusive, but their common feature may include altered glycosylation that provide clues to Golgi function. This article focuses on a group of human disorders that affect protein or lipid glycosylation. Readers may find it useful to generalize some of these patient-based, translational observations to their own research. PMID:21709180

  15. Golgi Glycosylation and Human Inherited Diseases

    PubMed Central

    Freeze, Hudson H.; Ng, Bobby G.

    2011-01-01

    The Golgi factory receives custom glycosylates and dispatches its cargo to the correct cellular locations. The process requires importing donor substrates, moving the cargo, and recycling machinery. Correctly glycosylated cargo reflects the Golgi's quality and efficiency. Genetic disorders in the specific equipment (enzymes), donors (nucleotide sugar transporters), or equipment recycling/reorganization components (COG, SEC, golgins) can all affect glycosylation. Dozens of human glycosylation disorders fit these categories. Many other genes, with or without familiar names, well-annotated pedigrees, or likely homologies will join the ranks of glycosylation disorders. Their broad and unpredictable case-by-case phenotypes cross the traditional medical specialty boundaries. The gene functions in patients may be elusive, but their common feature may include altered glycosylation that provide clues to Golgi function. This article focuses on a group of human disorders that affect protein or lipid glycosylation. Readers may find it useful to generalize some of these patient-based, translational observations to their own research. PMID:21709180

  16. Passive immunotherapy for anthrax toxin mediated by an adenovirus expressing an anti-protective antigen single-chain antibody.

    PubMed

    Kasuya, Kazuhiko; Boyer, Julie L; Tan, Yadi; Alipui, D Olivier; Hackett, Neil R; Crystal, Ronald G

    2005-02-01

    In the 2001 U.S. bioterror attacks, 33,000 individuals required postexposure prophylaxis, 18 subjects contracted anthrax (11 inhalation, 7 cutaneous), and despite optimal medical therapy, 5 deaths resulted. Rapid protection against anthrax is required in a bioterrorism scenario; this study describes an in vivo gene transfer-based therapy that uses a human adenovirus (Ad)-based vector (AdalphaPAscAb) encoding a single-chain antibody directed against protective antigen (PA), a critical component of Bacillus anthracis lethal toxin. Following AdalphaPAscAb administration to mice, anti-PA single-chain antibody and anti-PA neutralizing activity were detected in serum over a 2-week period. Substantial survival advantage from anthrax lethal toxin was conferred by AdalphaPAscAb following administration from 1 to 14 days prior to toxin challenge, compared to no survival associated with an Ad vector expressing a control single-chain antibody. Passive immunotherapy with an Ad-based vector may be a rapid, convenient approach for protecting a susceptible population against anthrax, including use as an adjunct to antibiotic therapy.

  17. Design and construction of a new human naïve single-chain fragment variable antibody library, IORISS1.

    PubMed

    Pasello, Michela; Zamboni, Silvia; Mallano, Alessandra; Flego, Michela; Picci, Piero; Cianfriglia, Maurizio; Scotlandi, Katia

    2016-04-20

    Human monoclonal antibodies are a powerful tool with increasingly successful exploitations and the single chain fragment variable format can be considered the building block for the implementation of more complex and effective antibody-based constructs. Phage display is one of the best and most efficient methods to isolate human antibodies selected from an efficient and variable phage display library. We report a method for the construction of a human naïve single-chain variable fragment library, termed IORISS1. Many different sets of oligonucleotide primers as well as optimized electroporation and ligation reactions were used to generate this library of 1.2×10(9) individual clones. The key difference is the diversity of variable gene templates, which was derived from only 15 non-immunized human donors. The method described here, was used to make a new human naïve single-chain fragment variable phage display library that represents a valuable source of diverse antibodies that can be used as research reagents or as a starting point for the development of therapeutics. Using biopanning, we determined the ability of IORISS1 to yield antibodies. The results we obtained suggest that, by using an optimized protocol, an efficient phage antibody library can be generated. PMID:26945728

  18. Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies.

    PubMed Central

    Mhashilkar, A M; Bagley, J; Chen, S Y; Szilvay, A M; Helland, D G; Marasco, W A

    1995-01-01

    Genes encoding the rearranged immunoglobulin heavy and light chain variable regions of anti-HIV-1 Tat, exon 1 or exon 2 specific monoclonal antibodies have been used to construct single chain intracellular antibodies 'intrabodies' for expression in the cytoplasm of mammalian cells. These anti-Tat single chain intrabodies (anti-Tat sFvs) are additionally modified with a C-terminal human C kappa domain to increase cytoplasmic stability and/or the C-terminal SV40 nuclear localization signal to direct the nascent intrabody to the nuclear compartment, respectively. The anti-Tat sFvs with specific binding activity against the N-terminal activation domain of Tat, block Tat-mediated transactivation of HIV-1 LTR as well as intracellular trafficking of Tat in mammalian cells. As a result, the transformed lymphocytes expressing anti-Tat sFvs are resistant to HIV-1 infection. Thus, these studies demonstrate that stably expressed single chain intrabodies and their modified forms can effectively target molecules in the cytoplasm and nuclear compartments of eukaryotic cells. Furthermore, these studies suggest that anti-Tat sFvs used either alone or in combination with other genetically based strategies may be useful for the gene therapy of HIV-1 infection and AIDS. Images PMID:7537216

  19. Construction, expression, and characterization of a novel fully activated recombinant single-chain hepatitis C virus protease.

    PubMed Central

    Taremi, S. S.; Beyer, B.; Maher, M.; Yao, N.; Prosise, W.; Weber, P. C.; Malcolm, B. A.

    1998-01-01

    Efficient proteolytic processing of essential junctions of the hepatitis C virus (HCV) polyprotein requires a heterodimeric complex of the NS3 bifunctional protease/helicase and the NS4A accessory protein. A single-chain recombinant form of the protease has been constructed in which NS4A residues 21-32 (GSVVIVGRIILS) were fused in frame to the amino terminus of the NS3 protease domain (residues 3-181) through a tetrapeptide linker. The single-chain recombinant protease has been overexpressed as a soluble protein in E. coli and purified to homogeneity by a combination of metal chelate and size-exclusion chromatography. The single-chain recombinant protease domain shows full proteolytic activity cleaving the NS5A-5B synthetic peptide substrate, DTEDVVCCSMSYTWTGK with a Km and k(cat) of 20.0 +/- 2.0 microM and 9.6 +/- 2.0 min(-1), respectively; parameters identical to those of the authentic NS3(1-631)/NS4A(1-54) protein complex generated in eukaryotic cells (Sali DL et al., 1998, Biochemistry 37:3392-3401). PMID:9792101

  20. Total Synthesis of Glycosylated Proteins

    PubMed Central

    Brailsford, John; Zhang, Qiang; Shieh, Jae-Hung; Moore, Malcolm A.S.

    2016-01-01

    Glycoproteins are an important class of naturally occurring biomolecules which play a pivotal role in many biological processes. They are biosynthesized as complex mixtures of glycoforms through post-translational protein glycosylation. This fact, together with the challenges associated with producing them in homogeneous form, has hampered detailed structure-function studies of glycoproteins as well as their full exploitation as potential therapeutic agents. By contrast, chemical synthesis offers the unique opportunity to gain access to homogeneous glycoprotein samples for rigorous biological evaluation. Herein, we review recent methods for the assembly of complex glycopeptides and glycoproteins and present several examples from our laboratory towards the total chemical synthesis of clinically relevant glycosylated proteins that have enabled synthetic access to full-length homogeneous glycoproteins. PMID:25805144

  1. Datasets of a novel bivalent single chain antibody constructed by overlapping oligonucleotide annealing method targeting human CD123.

    PubMed

    Moradi-Kalbolandi, Shima; Habibi-Anbouhi, Mahdi; Golkar, Majid; Behdani, Mahdi; Rezaei, Gashin; Ghazizadeh, Leila; Abolhassani, Mohsen; Shokrgozar, Mohammad Ali

    2016-09-01

    Current therapies for acute myeloid leukemia (AML), are associated with high relapse rates. Hence, development of new therapeutic strategies is crucial to circumvent this problem. Bivalent antibody technology has been used to engineer novel antibody fragments with increased avidity, by assembling two scFv in a single molecule. Here, we present accompanying data from construction and characterization experiments of a biscFv antibody targeting CD123, the most important biomarker of leukemic cancer stem cells which play a key role in relapsed AML after chemotherapy. Data in this article are related to the research paper "Development of a novel engineered antibody targeting human CD123" Moradi-Kalbolandi S. et al. (2016) [1]. PMID:27536714

  2. Progress in Yeast Glycosylation Engineering.

    PubMed

    Hamilton, Stephen R; Zha, Dongxing

    2015-01-01

    While yeast are lower eukaryotic organisms, they share many common features and biological processes with higher eukaryotes. As such, yeasts have been used as model organisms to facilitate our understanding of such features and processes. To this end, a large number of powerful genetic tools have been developed to investigate and manipulate these organisms. Going hand-in-hand with these genetic tools is the ability to efficiently scale up the fermentation of these organisms, thus making them attractive hosts for the production of recombinant proteins. A key feature of producing recombinant proteins in yeast is that these proteins can be readily secreted into the culture supernatant, simplifying any downstream processing. A consequence of this secretion is that the proteins typically pass through the secretory pathway, during which they may be exposed to various posttranslational modifications. The addition of glycans is one such modification. Unfortunately, while certain aspects of glycosylation are shared between lower and higher eukaryotes, significant differences exist. Over the last two decades much research has focused on engineering the glycosylation pathways of yeast to more closely resemble those of higher eukaryotes, particularly those of humans for the production of therapeutic proteins. In the current review we shall highlight some of the key achievements in yeast glyco-engineering which have led to humanization of both the N- and O-linked glycosylation pathways. PMID:26082216

  3. Process development of periplasmatically produced single chain fragment variable against epidermal growth factor receptor in Escherichia coli.

    PubMed

    Lindner, Robert; Moosmann, Anna; Dietrich, Alexander; Böttinger, Heiner; Kontermann, Roland; Siemann-Herzberg, Martin

    2014-12-20

    Prokaryotic production systems have been widely used to manufacture recombinant therapeutic proteins. Economically, the prokaryotic production – especially of small therapeutic molecules – is advantageous compared to eukaryotic production strategies. However, due to the potential endotoxin and host cell protein contamination, the requirements for the purification process are disproportionately higher and therefore more expensive and elaborate to circumvent. For this reason, the goal of this work was to develop and establish a rapid, simple, inexpensive and ‘up-scalable’ production and purification process, using the therapeutic relevant protein anti-EGFR scFv hu225 as model molecule. Configuring high cell density cultivation of Escherichia coli – using the rha-BAD expression system as production platform – a specific product concentration up to 20 mgscFv/gCDW was obtained. By combining freeze-and-thaw, osmotic shock and pH induced host cell protein precipitation, almost 70% of the product was extracted from the biomass. In a novel approach a mixed mode chromatography was implemented as a capturing and desalting step, which allowed the direct application of further ion exchange chromatography steps for purification up to pharmaceutical grade. Thereby, 50% of the produced scFv could be purified within 10 h while maintaining the biological activity. PMID:25450642

  4. Blocking monocyte transmigration in in vitro system by a human antibody scFv anti-CD99. Efficient large scale purification from periplasmic inclusion bodies in E. coli expression system.

    PubMed

    Moricoli, Diego; Muller, William Anthony; Carbonella, Damiano Cosimo; Balducci, Maria Cristina; Dominici, Sabrina; Watson, Richard; Fiori, Valentina; Weber, Evan; Cianfriglia, Maurizio; Scotlandi, Katia; Magnani, Mauro

    2014-06-01

    Migration of leukocytes into site of inflammation involves several steps mediated by various families of adhesion molecules. CD99 play a significant role in transendothelial migration (TEM) of leukocytes. Inhibition of TEM by specific monoclonal antibody (mAb) can provide a potent therapeutic approach to treating inflammatory conditions. However, the therapeutic utilization of whole IgG can lead to an inappropriate activation of Fc receptor-expressing cells, inducing serious adverse side effects due to cytokine release. In this regard, specific recombinant antibody in single chain variable fragments (scFvs) originated by phage library may offer a solution by affecting TEM function in a safe clinical context. However, this consideration requires large scale production of functional scFv antibodies and the absence of toxic reagents utilized for solubilization and refolding step of inclusion bodies that may discourage industrial application of these antibody fragments. In order to apply the scFv anti-CD99 named C7A in a clinical setting, we herein describe an efficient and large scale production of the antibody fragments expressed in E. coli as periplasmic insoluble protein avoiding gel filtration chromatography approach, and laborious refolding step pre- and post-purification. Using differential salt elution which is a simple, reproducible and effective procedure we are able to separate scFv in monomer format from aggregates. The purified scFv antibody C7A exhibits inhibitory activity comparable to an antagonistic conventional mAb, thus providing an excellent agent for blocking CD99 signaling. This protocol can be useful for the successful purification of other monomeric scFvs which are expressed as periplasmic inclusion bodies in bacterial systems.

  5. NEUROLOGICAL ASPECTS OF HUMAN GLYCOSYLATION DISORDERS

    PubMed Central

    Freeze, Hudson H.; Eklund, Erik A.; Ng, Bobby G.; Patterson, Marc C.

    2016-01-01

    This review will present principles of glycosylation, describe the relevant glycosylation pathways and their related disorders, and highlight some of the neurological aspects and issues that continue to challenge researchers. Over 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delay/intellectual disability, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Between these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of mis-glycosylated products afflicting a myriad of processes including cell signaling, cell-cell interaction and cell migration. This vast complexity in glycan composition and function, along with limited analytic tools has impeded the identification of key glycosylated molecules that cause pathologies, and to date few critical target proteins have been pinpointed. PMID:25840006

  6. [Glycosylation of autoantibodies in autoimmunes diseases].

    PubMed

    Goulabchand, R; Batteux, F; Guilpain, P

    2013-12-01

    Protein glycosylation is one of the most common post-translational modifications, involved in the well described protein biosynthesis process. Protein glycosylation seems to play a major role in the pathogenesis of auto-immune diseases. Herein are described the main alterations of autoantibody glycosylation associated with autoimmunes diseases such as rheumatoid arthritis, IgA glomerulonephritis, Schoenlein-Henoch purpura, Sjögren's syndrome, systemic scleroderma, systemic lupus erythematosus, myasthenia gravis and granulomatosis with polyangiitis (Wegener). Molecular identification of altered immunoglobulin glycosylation could lead to a better understanding of the pathogenesis of those diseases, might allow an evaluation of their biological activity and could even be a new therapeutic target.

  7. A novel recombinant single-chain hepatitis C virus NS3-NS4A protein with improved helicase activity.

    PubMed Central

    Howe, A. Y.; Chase, R.; Taremi, S. S.; Risano, C.; Beyer, B.; Malcolm, B.; Lau, J. Y.

    1999-01-01

    Hepatitis C virus (HCV) nonstructural protein 3 (NS3) has been shown to possess protease and helicase activities and has also been demonstrated to spontaneously associate with nonstructural protein NS4A (NS4A) to form a stable complex. Previous attempts to produce the NS3/NS4A complex in recombinant baculovirus resulted in a protein complex that aggregated and precipitated in the absence of nonionic detergent and high salt. A single-chain form of the NS3/NS4A complex (His-NS4A21-32-GSGS-NS3-631) was constructed in which the NS4A core peptide is fused to the N-terminus of the NS3 protease domain as previously described (Taremi et al., 1998). This protein contains a histidine tagged NS4A peptide (a.a. 21-32) fused to the full-length NS3 (a.a. 3-631) through a flexible tetra amino acid linker. The recombinant protein was expressed to high levels in Escherichia coli, purified to homogeneity, and examined for NTPase, nucleic acid unwinding, and proteolytic activities. The single-chain recombinant NS3-NS4A protein possesses physiological properties equivalent to those of the NS3/NS4A complex except that this novel construct is stable, soluble and sixfold to sevenfold more active in unwinding duplex RNA. Comparison of the helicase activity of the single-chain recombinant NS3-NS4A with that of the full-length NS3 (without NS4A) and that of the helicase domain alone suggested that the presence of the protease domain and at least the NS4A core peptide are required for optimal unwinding activity. PMID:10386883

  8. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  9. Catalytic activity of an in vivo tumor targeted anti-CEA scFv::carboxypeptidase G2 fusion protein.

    PubMed

    Bhatia, J; Sharma, S K; Chester, K A; Pedley, R B; Boden, R W; Read, D A; Boxer, G M; Michael, N P; Begent, R H

    2000-02-15

    Antibody-directed enzyme prodrug therapy (ADEPT) targets an enzyme selectively to a tumor where it converts a relatively non-toxic prodrug to a potent cytotoxic drug. Previous clinical work using antibody-enzyme chemical conjugates has been limited by the moderate efficiency of tumor targeting of these molecules. To address this a recombinant fusion protein composed of MFE-23, an anti-carcinoembryonic antigen (CEA) single chain Fv (scFv) antibody, fused to the amino-terminus of the enzyme carboxypeptidase G2 (CPG2) has been constructed to achieve ADEPT in CEA-producing tumors. MFE-23::CPG2 fusion protein was overexpressed in Escherichia coli and purified using CEA affinity chromatography. Efficacy of MFE-23::CPG2 delivery to tumors in vivo was assessed by measuring catalytic activity after intravenous injection of purified MFE-23::CPG2 into nude mice bearing CEA-positive LS174T human colon adenocarcinoma xenografts. Recombinant MFE-23::CPG2 cleared rapidly from circulation and catalytic activity in extracted tissues showed tumor to plasma ratios of 1.5:1 (6 hr), 10:1 (24 hr), 19:1 (48 hr) and 12:1 (72 hr). (125)I-MFE-23::CPG2 was retained in kidney, liver and spleen but MFE-23::CPG2 catalytic activity was not, resulting in excellent tumor to normal tissue enzyme ratios 48 hr after injection. These were 371:1 (tumor to liver), 450:1 (tumor to lung), 562:1 (tumor to kidney), 1,477:1 (tumor to colon) and 1,618:1 (tumor to spleen). Favorable tumor : normal tissue ratios occurred at early time points when there was still 21% (24 hr) and 9.5% (48 hr) of the injected activity present per gram of tumor tissue. The high tumor concentrations and selective tumor retention of active enzyme delivered by MFE-23::CPG2 establish that this recombinant fusion protein has potential to give improved clinical efficiency for ADEPT.

  10. Mn(III)(tetra-biphenyl-porphyrin)-TCNE single-chain magnet via suppression of the interchain interactions.

    PubMed

    Ishikawa, Ryuta; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro

    2012-08-20

    A single-chain magnet (SCM) of [Mn(TBPP)(TCNE)]·4m-PhCl(2) (1), where TBPP(2-) = meso-tetra(4-biphenyl)porphyrinate; TCNE(•-) = tetracyanoethenide radical anion; m-PhCl(2) = meta-dichlorobenzene, was prepared via suppression of interchain interactions. 1 has a one-dimensional alternating Mn(III)(porphrin)-TCNE(•-)chain structure similar to those of a family of complexes reported by Miller and co-workers. From a comparison of the static magnetic properties of 1 with other Mn(III)(porphyrin)-TCNE(•-) chains, a magneto-structural correlation between the intrachain magnetic exchange and both the dihedral angle between the mean plane on [Mn(TBPP)(TCNE)] and Mn-N≡C was observed. The ac magnetic susceptibility data of 1 could be fit with the Arrhenius law, indicating that slow magnetic relaxation and ruling out three-dimensional long-range ordering and spin-glass-like behavior. The Cole-Cole plot for 1 was semicircular, verifying that it is an SCM. Therefore, 1 is an ideal single-chain magnet with significantly strong intrachain magnetic exchange interactions beyond the Ising limit.

  11. 77 FR 35850 - Safety Zone; F/V Deep Sea, Penn Cove, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... the Fishing Vessel (F/V) Deep Sea, located in Penn Cove, WA. This action is necessary to ensure the... Fishing Vessel Deep Sea located at approximately 48 13'18'' N, 122 47'42'' W, Penn Cove, WA. (b... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; F/V Deep Sea, Penn Cove, WA AGENCY:...

  12. FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides.

    PubMed

    Guo, Li; Wenner, Nancy; Kuldau, Gretchen A

    2015-12-01

    Hyphal anastomosis is a hallmark of filamentous fungi and plays vital roles including cellular homoeostasis, interhyphal communication and nutrient translocation. Here we identify a gene, FvSO, in Fusarium verticillioides, a filamentous ascomycete causing maize ear and stalk rot and producing fumonisin mycotoxins. FvSO, like its Neurospora crassa homologue SO, is required for vegetative hyphal fusion. It is also essential for normal vegetative growth, sporulation, and pathogenesis. FvSO encodes a predicted WW domain protein and shares 70 % protein sequence identity with N. crassa SO. FvSO deletion mutants (ΔFvSO) had abnormal distribution of conidia size, and conidia of ΔFvSO germinated much later and slower than wild type. ΔFvSO was deficient in hyphal anastomosis, had slower radial growth and produced less fungal biomass than wild type. ΔFvSO were unable to perform anastomosis, a key feature of filamentous fungi. Interestingly, production of fumonisin B1 by ΔFvSO was significantly reduced compared to wild type. Additionally, ΔFvSO was nonpathogenic to corn ears, stalks and seedlings, likely due to defective growth and development. In conclusion, FvSO is essential for vegetative hyphal fusion and is required for normal vegetative growth and sporulation, normal levels of fumonisin production and pathogenicity in F. verticillioides. The pleiotropic nature of ΔFvSO phenotypes suggests that FvSO is likely involved in certain signalling pathways that regulate multiple cellular functions.

  13. Glycosylation enables aesculin to activate Nrf2.

    PubMed

    Kim, Kyun Ha; Park, Hyunsu; Park, Hee Jin; Choi, Kyoung-Hwa; Sadikot, Ruxana T; Cha, Jaeho; Joo, Myungsoo

    2016-01-01

    Since aesculin, 6,7-dihydroxycoumarin-6-O-β-glucopyranoside, suppresses inflammation, we asked whether its anti-inflammatory activity is associated with the activation of nuclear factor-E2-related factor 2 (Nrf2), a key anti-inflammatory factor. Our results, however, show that aesculin marginally activated Nrf2. Since glycosylation can enhance the function of a compound, we then asked whether adding a glucose makes aesculin activate Nrf2. Our results show that the glycosylated aesculin, 3-O-β-d-glycosyl aesculin, robustly activated Nrf2, inducing the expression of Nrf2-dependent genes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase 1 in macrophages. Mechanistically, 3-O-β-d-glycosyl aesculin suppressed ubiquitination of Nrf2, retarding degradation of Nrf2. Unlike aesculin, 3-O-β-d-glycosyl aesculin significantly suppressed neutrophilic lung inflammation, a hallmark of acute lung injury (ALI), in mice, which was not recapitulated in Nrf2 knockout mice, suggesting that the anti-inflammatory function of the compound largely acts through Nrf2. In a mouse model of sepsis, a major cause of ALI, 3-O-β-d-glycosyl aesculin significantly enhanced the survival of mice, compared with aesculin. Together, these results show that glycosylation could confer the ability to activate Nrf2 on aesculin, enhancing the anti-inflammatory function of aesculin. These results suggest that glycosylation can be a way to improve or alter the function of aesculin. PMID:27417293

  14. Glycosylation enables aesculin to activate Nrf2

    PubMed Central

    Kim, Kyun Ha; Park, Hyunsu; Park, Hee Jin; Choi, Kyoung-Hwa; Sadikot, Ruxana T.; Cha, Jaeho; Joo, Myungsoo

    2016-01-01

    Since aesculin, 6,7-dihydroxycoumarin-6-O-β-glucopyranoside, suppresses inflammation, we asked whether its anti-inflammatory activity is associated with the activation of nuclear factor-E2-related factor 2 (Nrf2), a key anti-inflammatory factor. Our results, however, show that aesculin marginally activated Nrf2. Since glycosylation can enhance the function of a compound, we then asked whether adding a glucose makes aesculin activate Nrf2. Our results show that the glycosylated aesculin, 3-O-β-d-glycosyl aesculin, robustly activated Nrf2, inducing the expression of Nrf2-dependent genes, such as heme oxygenase-1, glutamate-cysteine ligase catalytic subunit, and NAD(P)H quinone oxidoreductase 1 in macrophages. Mechanistically, 3-O-β-d-glycosyl aesculin suppressed ubiquitination of Nrf2, retarding degradation of Nrf2. Unlike aesculin, 3-O-β-d-glycosyl aesculin significantly suppressed neutrophilic lung inflammation, a hallmark of acute lung injury (ALI), in mice, which was not recapitulated in Nrf2 knockout mice, suggesting that the anti-inflammatory function of the compound largely acts through Nrf2. In a mouse model of sepsis, a major cause of ALI, 3-O-β-d-glycosyl aesculin significantly enhanced the survival of mice, compared with aesculin. Together, these results show that glycosylation could confer the ability to activate Nrf2 on aesculin, enhancing the anti-inflammatory function of aesculin. These results suggest that glycosylation can be a way to improve or alter the function of aesculin. PMID:27417293

  15. A compact phage display human scFv library for selection of antibodies to a wide variety of antigens

    PubMed Central

    Pansri, Potjamas; Jaruseranee, Nanthnit; Rangnoi, Kuntalee; Kristensen, Peter; Yamabhai, Montarop

    2009-01-01

    Background Phage display technology is a powerful new tool for making antibodies outside the immune system, thus avoiding the use of experimental animals. In the early days, it was postulated that this technique would eventually replace hybridoma technology and animal immunisations. However, since this technology emerged more than 20 years ago, there have only been a handful reports on the construction and application of phage display antibody libraries world-wide. Results Here we report the simplest and highly efficient method for the construction of a highly useful human single chain variable fragment (scFv) library. The least number of oligonucleotide primers, electroporations and ligation reactions were used to generate a library of 1.5 × 108 individual clones, without generation of sub-libraries. All possible combinations of heavy and light chains, among all immunoglobulin isotypes, were included by using a mixture of primers and overlapping extension PCR. The key difference from other similar libraries was the highest diversity of variable gene repertoires, which was derived from 140 non-immunized human donors. A wide variety of antigens were successfully used to affinity select specific binders. These included pure recombinant proteins, a hapten and complex antigens such as viral coat proteins, crude snake venom and cancer cell surface antigens. In particular, we were able to use standard bio-panning method to isolate antibody that can bind to soluble Aflatoxin B1, when using BSA-conjugated toxin as a target, as demonstrated by inhibition ELISA. Conclusion These results suggested that by using an optimized protocol and very high repertoire diversity, a compact and efficient phage antibody library can be generated. This advanced method could be adopted by any molecular biology laboratory to generate both naïve or immunized libraries for particular targets as well as for high-throughput applications. PMID:19175944

  16. Assay and purification of Fv fragments in fermenter cultures: design and evaluation of generic binding reagents.

    PubMed

    Berry, M J; Wattam, T A; Willets, J; Lindner, N; de Graaf, T; Hunt, T; Gani, M; Davis, P J; Porter, P

    1994-01-01

    Fv fragments whose genes have been cloned using common PCR primers carry identical peptide motifs at their termini. We have raised antibodies against the C-terminal motif of the VH chain GQGTTVTVSS and evaluated their utility as reagents for the assay and purification of Fvs in the fermenter culture. Three different Fvs were included in the investigation. We found that the motif was exposed and available for capture when Fv fragments were blotted onto nitrocellulose paper or adsorbed directly onto microtiter plates. In contrast, the motif was either partially or totally obscured when the Fv was complexed with immobilised antigen or when free in solution. This reactivity profile enabled us to develop a general-purpose assay for Fv protein, but not a general-purpose assay for monitoring active Fv. The apparent inaccessibility of the C-terminus of VH conflicts with currently held views on the three-dimensional structure of these molecules.

  17. Assay and purification of Fv fragments in fermenter cultures: design and evaluation of generic binding reagents.

    PubMed

    Berry, M J; Wattam, T A; Willets, J; Lindner, N; de Graaf, T; Hunt, T; Gani, M; Davis, P J; Porter, P

    1994-01-01

    Fv fragments whose genes have been cloned using common PCR primers carry identical peptide motifs at their termini. We have raised antibodies against the C-terminal motif of the VH chain GQGTTVTVSS and evaluated their utility as reagents for the assay and purification of Fvs in the fermenter culture. Three different Fvs were included in the investigation. We found that the motif was exposed and available for capture when Fv fragments were blotted onto nitrocellulose paper or adsorbed directly onto microtiter plates. In contrast, the motif was either partially or totally obscured when the Fv was complexed with immobilised antigen or when free in solution. This reactivity profile enabled us to develop a general-purpose assay for Fv protein, but not a general-purpose assay for monitoring active Fv. The apparent inaccessibility of the C-terminus of VH conflicts with currently held views on the three-dimensional structure of these molecules. PMID:7508476

  18. Glycosylation site occupancy in health, congenital disorder of glycosylation and fatty liver disease

    PubMed Central

    Hülsmeier, Andreas J.; Tobler, Micha; Burda, Patricie; Hennet, Thierry

    2016-01-01

    Glycosylation is an integral part in health and disease, as emphasized by the growing number of identified glycosylation defects. In humans, proteins are modified with a diverse range of glycoforms synthesized in complex biosynthetic pathways. Glycosylation disorders have been described in congenital disorders of glycosylation (CDG) as well as in acquired disease conditions such and non-alcoholic fatty liver disease (NAFLD). A hallmark in a subset of CDG cases is the reduced glycosylation site occupancy of asparagine-linked glycans. Using an optimized method protocol, we determined the glycosylation site occupancy from four proteins of hepatic and lymphatic origin from CDG and NAFLD patients. We found variable degrees of site occupancy, depending on the tissue of origin and the disease condition. In CDG glycosylation sites of IgG2 and IgA1 were occupied to normal levels. In NAFLD haptoglobin and transferrin glycosylation sites were hyper-glycosylated, a property qualifying for its use as a potential biomarker. Furthermore, we observed, that glycosylation sites of liver-originating transferrin and haptoglobin are differentially occupied under physiological conditions, a further instance not noticed in serum proteins to date. Our findings suggest the use of serum protein hyperglycosylation as a biomarker for early stages of NAFLD. PMID:27725718

  19. RB virus: a strain of Friend virus that produces a 'Friend virus-like' disease in Fv-2rr mice.

    PubMed

    Geib, R W; Seaward, M B; Stevens, M L; Cho, C L; Majumdar, M

    1989-10-01

    RB virus is a newly derived strain of Friend virus that was adapted to produce a 'Friend-like' disease in mice that are genetically resistant to wild-type Friend virus. RB virus was produced by passing high titers of the wild-type Friend virus (Lilly-Steeves polycythemia-producing strain) through adult Fv-2rr mice. Titration of the defective spleen focus-forming virus indicated RB virus infected similar numbers of Fv-2ss or Fv-2rr target cells. Analysis of the spleens from mice infected with RB virus indicated that RB induced the early stage of Friend disease (erythroid proliferation) in both Fv-2rr and Fv-2ss mice. Fv-2ss mice infected with RB virus developed the classical Friend disease within 3 weeks. In contrast, the percentage of Fv-2rr mice developing the 'Friend-like' disease after infection with RB virus never exceeded 60%. The latency period of RBV in Fv-2rr mice was strain dependent. D2.R16 (Fv-2rr) developed the syndrome more rapidly than C57BL/6 (Fv-2rr). RB virus retained the capacity to transform erythroprogenitor cells from both Fv-2ss and Fv-2rr animals. Cells infected with RB virus consistently produced a modified SFFV envelope protein, gp48.

  20. Two water-bridged cobalt(II) chains with isomeric naphthoate spacers: from metamagnetic to single-chain magnetic behaviour.

    PubMed

    Liu, Zhong-Yi; Xia, Yan-Fei; Jiao, Jiao; Yang, En-Cui; Zhao, Xiao-Jun

    2015-12-14

    The crystal structures and magnetic behaviours of two water-bridged one-dimensional (1D) cobalt(II) chains with different isomeric naphthoate (na(-)) terminals, [Co(H2O)3(2-na)2]n (1) and {[Co(H2O)3(1-na)2]·2H2O}n (2), were reported to investigate the effect of interchain distance on their magnetic properties. Complex 1 with trans-2-na(-) blocks and dense interchain separation exhibits a metamagnetic transition from antiferromagnetic ordering to a saturated paramagnetic phase. By contrast, complex 2 possessing cis-arranged 1-na(-) spacers and good interchain isolation shows unusual single-chain magnetic behavior under a zero dc field. Thus, completely different interchain packing by isomeric naphthoate ligands governs the ratio of intra- to inter-chain magnetic interactions and further results in different magnetic phenomena, which provide significant magnetostructural information on 1D magnetic systems. PMID:26514974

  1. Self-assembly of different single-chain bolaphospholipids and their miscibility with phospholipids or classical amphiphiles.

    PubMed

    Blume, Alfred; Drescher, Simon; Graf, Gesche; Köhler, Karen; Meister, Annette

    2014-06-01

    A variety of bolalipids with a single long alkyl chain and two identical headgroups self-assemble in aqueous solutions into helical entangled nanofibers leading to the formation of a hydrogel. An increase in temperature usually leads to the break-up of the fiber structure into micellar aggregates. In this paper the question is addressed whether bolalipids of different lengths or different headgroup structures can form mixed fibers. Also, the stability of the fiber aggregation of bolalipids in mixtures with phospholipids forming lamellar bilayers is discussed. Here, the question whether single-chain bolalipids can be incorporated into phospholipid bilayers to stabilize bilayer membranes is important, as possibly lipid vesicles used for drug delivery can be improved. Finally, the stability of the fiber aggregate against solubilisation by common surfactants was studied. The paper addresses the question which type of aggregate structure dominates the self-assembly of bipolar and monopolar amphiphiles in aqueous suspension.

  2. Detection of the single-chain precursor in the production and purification process of recombinant human insulin.

    PubMed

    Leng, Chunsheng; Li, Qingwei; Wu, Fenfang; Chen, Liyong; Su, Peng

    2013-08-01

    High quality recombinant insulin requires being free of single-chain precursor (proinsulin), a task that depends on the selectivity and sensitivity of the monitoring process for detecting proinsulin. In this study we developed an enzyme-linked immunosorbent assay (ELISA) system that was specifically tailored to detect recombinant proinsulin. The proinsulin consists of six components: an initiating methionine, 48 amino acids from human growth hormones (HGH, used as the protection peptide), first connecting Arg-residue, B-chain of insulin, and second connecting Arg-peptide and A-chain of insulin. This form of proinsulin is more stable and can be efficiently expressed by E. coli than insulin. Herein, we evaluated the specificity, precision, recovery, sensitivity, and detection range of the proinsulin ELISA kit. The results showed that the ELISA kit is a very useful tool for monitoring the proinsulin yield in early stages of insulin production as well as the residual proinsulin in the final product, insulin.

  3. Anti-Human Endoglin (hCD105) Immunotoxin-Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1.

    PubMed

    Barriuso, Begoña; Antolín, Pilar; Arias, F Javier; Girotti, Alessandra; Jiménez, Pilar; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Girbés, Tomás

    2016-01-01

    Endoglin (CD105) is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT)-containing recombinant musarmin 1 (single chain ribosome-inactivating proteins) linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10(-10) to 10(-9) M. PMID:27294959

  4. Anti-Human Endoglin (hCD105) Immunotoxin—Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1

    PubMed Central

    Barriuso, Begoña; Antolín, Pilar; Arias, F. Javier; Girotti, Alessandra; Jiménez, Pilar; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Girbés, Tomás

    2016-01-01

    Endoglin (CD105) is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT)—containing recombinant musarmin 1 (single chain ribosome-inactivating proteins) linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10−10 to 10−9 M. PMID:27294959

  5. Glycosylation of Fluorophenols by Plant Cell Cultures

    PubMed Central

    Shimoda, Kei; Kubota, Naoji; Kondo, Yoko; Sato, Daisuke; Hamada, Hiroki

    2009-01-01

    Fluoroaromatic compounds are used as agrochemicals and released into environment as pollutants. Glycosylation of 2-, 3-, and 4-fluorophenols using plant cell cultures of Nicotiana tabacum was investigated to elucidate their potential to metabolize these compounds. Cultured N. tabacum cells converted 2-fluorophenol into its β-glucoside (60%) and β-gentiobioside (10%). 4-Fluorophenol was also glycosylated to its β-glucoside (32%) and β-gentiobioside (6%) by N. tabacum cells. On the other hand, N. tabacum glycosylated 3-fluorophenol to β-glucoside (17%). PMID:19564930

  6. Glycosylation and Activities of Natural Products.

    PubMed

    Huang, Gangliang; Lv, Meijiao; Hu, Jinchuan; Huang, Kunlin; Xu, Hong

    2016-01-01

    Natural products are widely found in nature, their number and variety are numerous, the structures are complex and diverse. These natural products have many physiological and pharmacological activities. Glycosylation can increase the diversity of structure and function of natural product, it has become the focus of drug research and development. The impacts of glycosylation of natural products to water solubility, pharmacological activities, bioavailability, or others were described in this review, which provides a reference for the development and application of glycosylated natural products. PMID:27499190

  7. Harnessing Glycosylation to Improve Cellulase Activity

    SciTech Connect

    Beckham, G. T.; Dai, Z.; Matthews, J. F.; Momany, M.; Payne, C. M.; Adney, W. S.; Baker, S. E.; Himmel, M. E.

    2012-06-01

    Cellulases and hemicellulases are responsible for the turnover of plant cell wall polysaccharides in the biosphere, and thus form the foundation of enzyme engineering efforts in biofuels research. Many of these carbohydrate-active enzymes from filamentous fungi contain both N-linked and O-linked glycosylation, the extent and heterogeneity of which depends on growth conditions, expression host, and the presence of glycan trimming enzymes in the secretome, all of which in turn impact enzyme activity. As the roles of glycosylation in enzyme function have not been fully elucidated, here we discuss the potential roles of glycosylation on glycoside hydrolase enzyme structure and function after secretion. We posit that glycosylation, instead of hindering cellulase engineering, can be used as an additional tool to enhance enzyme activity, given deeper understanding of its molecular-level role in biomass deconstruction.

  8. Harnessing glycosylation to improve cellulase activity

    SciTech Connect

    Beckham, Gregg T.; Dai, Ziyu; Mattews, James F.; Momany, Michelle; Payne, Christina M.; Adney, William S.; Baker, Scott E.; Himmel, Michael E.

    2012-06-11

    Cellulases and hemicellulases are responsible for the turnover of plant cell wall polysaccharides in the biosphere, and thus form the foundation of enzyme engineering efforts in biofuels research. Many of these carbohydrate-active enzymes from filamentous fungi contain both N-linked and O-linked glycosylation, the extent and heterogeneity of which depends on growth conditions, expression host, and the presence of glycan trimming enzymes in the secretome, all of which in turn impacts enzyme activity. As the roles of glycosylation in enzyme function have not been fully elucidated, here we discuss the potential roles of glycosylation on glycoside hydrolase enzyme structure and function after secretion. We posit that glycosylation, instead of hindering cellulase engineering, can be used as an additional tool to enhance enzyme activity, given deeper understanding of its molecular-level role in biomass deconstruction.

  9. Exploring human glycosylation for better therapies.

    PubMed

    Krasnova, Larissa; Wong, Chi-Huey

    2016-10-01

    Glycosylation of lipids and proteins is not encoded by genes directly and depends on many factors including the origin of cell-lines, differential expression of carbohydrate enzymes and availability of substrates, as well as environmental conditions. Individual cells from different tissues produce each glycoprotein as heterogeneous mixtures of glycoforms with distinct biological activities in response to different conditions and disease states. As the result, the study of glycosylation could not rely purely on biochemical methods; instead it requires a multidisciplinary approach utilizing a variety of methods including genetic manipulation and glycosylation pathway engineering, structural and functional proteomic analysis, chemical and enzymatic synthesis, development of glycosylation probes and glycan microarrays. This review highlights recent progress and demonstrates how the availability of structure-defined oligosaccharides enables development of new and improved therapies, such as therapeutic homogeneous antibodies and carbohydrate-based vaccines against cancer. PMID:27178988

  10. Conformational implications of asparagine-linked glycosylation.

    PubMed Central

    Imperiali, B; Rickert, K W

    1995-01-01

    The effects of cotranslational protein modification on the process of protein folding are poorly understood. Time-resolved fluorescence energy transfer has been used to assess the impact of glycosylation on the conformational dynamics of flexible oligopeptides. The peptide sequences examined are selected from glycoproteins of known three-dimensional structure. The energy transfer modulation associated with N-linked glycosylation is consistent with the glycopeptides sampling different conformational profiles in water. Results show that glycosylation causes the modified peptides to adopt a different ensemble of conformations, and for some peptides this change may lead to conformations that are more compact and better approximate the conformation of these peptides in the final folded protein. This result further implies that cotranslational glycosylation can trigger the timely formation of structural nucleation elements and thus assist in the complex process of protein folding. PMID:7816856

  11. Site-specific scFv labelling with invertase via Sortase A mechanism as a platform for antibody-antigen detection using the personal glucose meter

    PubMed Central

    Ismail, Nur Faezee; Lim, Theam Soon

    2016-01-01

    Antibody labelling to reporter molecules is gaining popularity due to its many potential applications for diagnostics and therapeutics. However, non-directional bioconjugation methods which are commonly used often results in the loss of target binding capabilities. Therefore, a site-specific enzymatic based bioconjugation such as sortase-mediated transpeptidation allows for a more rapid and efficient method of antibody conjugation for diagnostic applications. Here we describe the utilization of sortase A bioconjugation to conjugate a single chain fragment variable (scFv) to the extracellular invertase (invB) from Zymomonas mobilis with the aim of developing an invertase based immunoassay. In addition, conjugation to enhanced green fluorescent protein (eGFP) was also validated to show the flexibility of the method. The invertase conjugated complex was successfully applied for the detection of antibody-antigen interaction using a personal glucose meter (PGM) for assay readout. The setup was used in both a direct and competitive assay highlighting the robustness of the conjugate for assay development. The method provides an alternative conjugation process to allow easy exchange of antibodies to facilitate rapid development of diagnostic assays for various diseases on the PGM platform. PMID:26782912

  12. Site-specific scFv labelling with invertase via Sortase A mechanism as a platform for antibody-antigen detection using the personal glucose meter.

    PubMed

    Ismail, Nur Faezee; Lim, Theam Soon

    2016-01-01

    Antibody labelling to reporter molecules is gaining popularity due to its many potential applications for diagnostics and therapeutics. However, non-directional bioconjugation methods which are commonly used often results in the loss of target binding capabilities. Therefore, a site-specific enzymatic based bioconjugation such as sortase-mediated transpeptidation allows for a more rapid and efficient method of antibody conjugation for diagnostic applications. Here we describe the utilization of sortase A bioconjugation to conjugate a single chain fragment variable (scFv) to the extracellular invertase (invB) from Zymomonas mobilis with the aim of developing an invertase based immunoassay. In addition, conjugation to enhanced green fluorescent protein (eGFP) was also validated to show the flexibility of the method. The invertase conjugated complex was successfully applied for the detection of antibody-antigen interaction using a personal glucose meter (PGM) for assay readout. The setup was used in both a direct and competitive assay highlighting the robustness of the conjugate for assay development. The method provides an alternative conjugation process to allow easy exchange of antibodies to facilitate rapid development of diagnostic assays for various diseases on the PGM platform. PMID:26782912

  13. Intracellular interference of tick-borne flavivirus infection by using a single-chain antibody fragment delivered by recombinant Sindbis virus.

    PubMed Central

    Jiang, W; Venugopal, K; Gould, E A

    1995-01-01

    A single-chain antibody fragment that identifies a neutralizing epitope on the envelope protein of louping ill and some other tick-borne flaviviruses was previously expressed in soluble form from bacteria and shown to be functionally active in vitro. To see whether or not the single-chain antibody could bind and inactivate infectious virus in vivo, we have used recombinant Sindbis virus as a delivery vehicle for intracellular expression of the antibody fragment. The variable genes and interchain linker encoding the single-chain antibody were cloned into a double subgenomic Sindbis virus expression vector to generate recombinant Sindbis virus. Infection with this recombinant Sindbis virus provided high-level cytoplasmic expression of the antibody fragment in mammalian cells. We demonstrate (i) that the antibody fragment was antigen binding and (ii) that louping ill virus infectivity was significantly reduced in the presence of intracellular antibody expressed by the superinfecting recombinant Sindbis virus. PMID:7815482

  14. Human plasma protein N-glycosylation.

    PubMed

    Clerc, Florent; Reiding, Karli R; Jansen, Bas C; Kammeijer, Guinevere S M; Bondt, Albert; Wuhrer, Manfred

    2016-06-01

    Glycosylation is the most abundant and complex protein modification, and can have a profound structural and functional effect on the conjugate. The oligosaccharide fraction is recognized to be involved in multiple biological processes, and to affect proteins physical properties, and has consequentially been labeled a critical quality attribute of biopharmaceuticals. Additionally, due to recent advances in analytical methods and analysis software, glycosylation is targeted in the search for disease biomarkers for early diagnosis and patient stratification. Biofluids such as saliva, serum or plasma are of great use in this regard, as they are easily accessible and can provide relevant glycosylation information. Thus, as the assessment of protein glycosylation is becoming a major element in clinical and biopharmaceutical research, this review aims to convey the current state of knowledge on the N-glycosylation of the major plasma glycoproteins alpha-1-acid glycoprotein, alpha-1-antitrypsin, alpha-1B-glycoprotein, alpha-2-HS-glycoprotein, alpha-2-macroglobulin, antithrombin-III, apolipoprotein B-100, apolipoprotein D, apolipoprotein F, beta-2-glycoprotein 1, ceruloplasmin, fibrinogen, immunoglobulin (Ig) A, IgG, IgM, haptoglobin, hemopexin, histidine-rich glycoprotein, kininogen-1, serotransferrin, vitronectin, and zinc-alpha-2-glycoprotein. In addition, the less abundant immunoglobulins D and E are included because of their major relevance in immunology and biopharmaceutical research. Where available, the glycosylation is described in a site-specific manner. In the discussion, we put the glycosylation of individual proteins into perspective and speculate how the individual proteins may contribute to a total plasma N-glycosylation profile determined at the released glycan level. PMID:26555091

  15. EXPERIMENTAL CHALLENGE STUDY OF FV3-LIKE RANAVIRUS INFECTION IN PREVIOUSLY FV3-LIKE RANAVIRUS INFECTED EASTERN BOX TURTLES (TERRAPENE CAROLINA CAROLINA) TO ASSESS INFECTION AND SURVIVAL.

    PubMed

    Hausmann, Jennifer C; Wack, Allison N; Allender, Matthew C; Cranfield, Mike R; Murphy, Kevin J; Barrett, Kevin; Romero, Jennell L; Wellehan, James F X; Blum, Stella A; Zink, M Christine; Bronson, Ellen

    2015-12-01

    The Maryland Zoo in Baltimore experienced an outbreak of Frog virus-3 (FV3)-like ranavirus during the summer of 2011, during which 14 of 27 (52%) of its captive eastern box turtles (Terrapene carolina carolina) survived. To assess survival, immunity, and viral shedding, an experimental challenge study was performed in which the surviving, previously infected turtles were reinfected with the outbreak strain of FV3-like ranavirus. Seven turtles were inoculated with virus intramuscularly and four control turtles received saline intramuscularly. The turtles were monitored for 8 wk with blood and oral swabs collected for quantitative polymerase chain reaction (qPCR). During that time, one of seven (14%) inoculated turtles and none of the controls (0%) died; there was no significant difference in survival. Clinical signs of the inoculated turtles, except for the turtle that died, were mild compared to the original outbreak. Quantitative PCR for FV3-like ranavirus on blood and oral swabs was positive for all inoculated turtles and negative for all controls. The turtle that died had intracytoplasmic inclusion bodies in multiple organs. Three inoculated and two control turtles were euthanized at the end of the study. No inclusion bodies were present in any of the organs. Quantitative PCR detected FV3-like ranavirus in the spleen of a control turtle, which suggested persistence of the virus. The surviving five turtles were qPCR-negative for FV3-like ranavirus from blood and oral swabs after brumation. Quantitative PCR for Terrapene herpesvirus 1 found no association between ranavirus infection and herpesvirus loads. In conclusion, previously infected eastern box turtles can be reinfected with the same strain of FV3-like ranavirus and show mild to no clinical signs but can shed the virus from the oral cavity.

  16. Carbohydrate post-glycosylational modifications

    PubMed Central

    Yu, Hai; Chen, Xi

    2008-01-01

    Carbohydrate modification is a common phenomenon in nature. Many carbohydrate modifications such as some epimerization, O-acetylation, O-sulfation, O-methylation, N-deacetylation, and N-sulfation, take place after the formation of oligosaccharide or polysaccharide backbones. These modifications can be categorized as carbohydrate post-glycosylational modifications (PGMs). Carbohydrate PGMs further extend the complexity of the structures and the synthesis of carbohydrates and glycoconjugates. They also increase the capacity of the biological information that can be controlled by finely tuning the structures of carbohydrates. Developing efficient methods to obtain structurally defined naturally occurring oligosaccharides, polysaccharides, and glycoconjugates with carbohydrate PGMs is essential for understanding the biological significance of carbohydrate PGMs. Combine with high-throughput screening methods, synthetic carbohydrates with PGMs are invaluable probes in structure-activity relationship studies. We illustrate here several classes of carbohydrates with PGMs and their applications. Recent progress in chemical, enzymatic, and chemoenzymatic syntheses of these carbohydrates and their derivatives are also presented. PMID:17340000

  17. Glycosylation of the nuclear pore

    PubMed Central

    Li, Bin; Kohler, Jennifer J.

    2014-01-01

    The O-linked β-N-acetylglucosamine (O-GlcNAc) post-translational modification was first discovered thirty years ago and is highly concentrated in the nuclear pore. In the years since the discovery of this single sugar modification, substantial progress has been made in understanding the biochemistry of O-GlcNAc and its regulation. Nonetheless, O-GlcNAc modification of proteins continues to be overlooked, due in large part to the lack of reliable methods available for its detection. Recently, a new crop of immunological and chemical detection reagents has changed the research landscape. Using these tools, approximately 1000 O-GlcNAc-modified proteins have been identified. While other forms of glycosylation are typically associated with extracellular proteins, O-GlcNAc is abundant on nuclear and cytoplasmic proteins. In particular, phenylalanine-glycine (FG) nucleoporins (NUPs) are heavily O-GlcNAc-modified. Recent experiments are beginning to provide insight into the functional implications of O-GlcNAc modification on certain proteins, but its role in the nuclear pore has remained enigmatic. However, tantalizing new results suggest that O-GlcNAc may play roles in regulating nucleocytoplasmic transport. PMID:24423194

  18. Radioiodination and biodistribution of the monoclonal antibody TU-20 and its scFv fragment

    NASA Astrophysics Data System (ADS)

    Kubaštová, H.; Kleinova, V.; Seifert, D.; Fišer, M.; Kranda, K.

    2006-01-01

    The ability of the monoclonal antibody TU-20 and its scFv fragment to specifically bind to the C-end of the class III beta-tubulin makes these preparations useful as potential diagnostics for in vivo determination of neurodegenerative diseases that entail degradation of neuronal cytoskeleton. To examine this hypothesis, TU-20 and its scFv were labelled with 125I and their properties were extensively investigated. TU-20 and its scFv were labelled via chloramine-T with the yield 90 95% and 64 78%, respectively. Their quality control, performed by an ELISA and gel electrophoresis, determined adequate properties for further studies. The in vitro experiment, involving autoradiography and immunohistochemistry of mice’ brain slices, enabled confirmation of preserved immunospecificity of the radiolabelled substances. Finally, the in vivo biodistribution proved differences in elimination of either TU-20, scFv TU-20, or iodide from the mice.

  19. Expression of recombinant human anti-TNF-α scFv-Fc in Arabidopsis thaliana seeds.

    PubMed

    Yao, N; Ai, L; Dong, Y Y; Liu, X M; Wang, D Z; Wang, N; Li, X W; Wang, F W; Li, Xk; Li, H Y; Jiang, C

    2016-01-01

    Recombinant human anti-tumor necrosis factor (TNF)-α scFv-Fc was expressed in TKO mutant Arabidopsis thaliana seeds using plant-specific codons. Immunoblotting using a human IgG1 antibody detected the expression of anti-TNF-α proteins in plants. Results from qRT-PCR analysis demonstrated that the time of harvest significantly affected the protein yield and quality. Our results indicate that the Phaseolus vulgaris β-phaseolin promoter directed anti-TNF-α scFv-Fc expression in A. thaliana seeds, with a maximum yield obtained at 20-days of development. Although the yield of anti-TNF-α scFv-Fc protein was not very high, accumulation of recombinant proteins in seeds is an attractive and simple method that can be used to purify biologically active anti-TNF-α scFv-Fc. PMID:27420937

  20. Direct production of Fv-fragments from a family of monoclonal IgGs papain digestion.

    PubMed

    Ornatowska, M; Glasel, J A

    1991-01-01

    Fv fragments of four monoclonal antibodies specific for morphine binding have been produced from their divalent IgG forms by papain digestion using the classic procedure for Fab formation. The binding characteristics of one of the Fv fragments have been determined relative to the intact antibody by equilibrium dialysis. Its dissociation constant is a factor of five lower than the IgG. Previous work had resulted in the sequences of each the chains for the four Fv fragments. The light chains are all from the highly homologous lambda subclass while the gamma heavy chains are closely related except for their CDR regions. In this work optical molar extinction coefficients are predicted from amino acid sequences for each of the fragments. It is found that they differ significantly from each other and from the commonly used value for intact IgG. Detailed comparisons between our results and those reported previously on the molecular masses of Fv-derived light and heavy chains and hapten-Fv dissociation constants are given based on analytical gel electrophoresis and electroblotting experiments using dye and immunovisualization techniques. Isoelectric focusing experiments have been performed and the pIs obtained are compared to those predicted theoretically from the chain sequences. Gel filtration column chromatography, acrylamide gel electrophoresis and equilibrium dialysis experiments are consistent with significant aggregation of the Fv fragments in neutral solution with accompanying inactivation of the binding site. Comparison of sequences for the Fv light and heavy chains are made with those which have been proposed to be important for chain dimer association and for canonical hypervariable regions. This methods of Fv production is not regarded as a general one. However, it may be an approach which is general to lambda chain containing antibodies.

  1. Activated Platelets in Carotid Artery Thrombosis in Mice Can Be Selectively Targeted with a Radiolabeled Single-Chain Antibody

    PubMed Central

    Goldschmidt, Jürgen; Pethe, Annette; Hagemeyer, Christoph E.; Neudorfer, Irene; Zirlik, Andreas; Weber, Wolfgang A.; Bode, Christoph; Meyer, Philipp T.

    2011-01-01

    Background Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. Methodology/Principal Findings LIBS as well as an unspecific control single-chain antibody were labeled with 111Indium (111In) via bifunctional DTPA ( = 111In-LIBS/111In-control). Autoradiography after incubation with 111In-LIBS on activated platelets in vitro (mean 3866±28 DLU/mm2, 4010±630 DLU/mm2 and 4520±293 DLU/mm2) produced a significantly higher ligand uptake compared to 111In-control (2101±76 DLU/mm2, 1181±96 DLU/mm2 and 1866±246 DLU/mm2) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of 111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630±10650 DLU/mm2 vs. 17390±7470 DLU/mm2; P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with 111In-LIBS resulted in a significant increase of the target-to-background ratio compared to 111In-control (1.99±0.36 vs. 1.1±0.24; P<0.01). Conclusions/Significance Nuclear imaging with 111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis

  2. Effect of the Fv-1 locus on the titration of murine leukemia viruses.

    PubMed

    Jolicoeur, P; Baltimore, D

    1975-12-01

    Titration of N- and B-tropic murine leukemia viruses on sensitive and resistant cell lines has been studied by direct XC plaque assay and infective center assay. The titration of cloned B-tropic virus by infective center assay on BALB/3T3 (Fv-1b/b) and NIH/3T3 (Fv-1n/n) cells gave one-hit patterns, with 100-fold less infected NIH/3T3 cells than BALB/3T3 cells. The titration of B-tropic virus on DBA/2 cells (Fv-1n/n) was also a one-hit. The titration of a one-hit curve, and there were about 100-fold less infected BALB/3T3 cells than NIH/3T3 cells. Comparable results were obtained by titrating the cloned N-tropic virus on congenic SIM (Fv-1n/n) and SIM.R (Fv-1b/b) cells or the Gross N-tropic virus on BALB/3T3 cells. Therefore, our data indicate that the multiple-hit phenomenon described previously may not be an essential part of the Fv-1 gene restriction.

  3. Recombinant Fv-Hsp70 protein mediates neuroprotection after focal cerebral ischemia in rats

    PubMed Central

    Zhan, Xinhua; Ander, Bradley P; Liao, Isaac H; Hansen, James E; Kim, Chester; Clements, Douglas; Weisbart, Richard H; Nishimura, Robert N; Sharp, Frank R

    2010-01-01

    Background and Purpose This study investigated the effects of intravenous recombinant Fv-Hsp70 protein on infarction volume and behavior following experimental ischemic stroke. Methods Focal cerebral ischemia was produced by occluding the middle cerebral artery (MCA) using the intraluminal suture technique. Rats subjected to 2 hours of focal ischemia were allowed to survive 24 h. At 2 ¼ h and 3 h after onset of ischemia, Fv-Hsp70 recombinant protein (0.5 mg / kg) or saline was injected via the tail vein. Sensory-motor function and infarction volume were assessed at 24 h following ischemia. Results Administration of Fv-Hsp70 following focal cerebral ischemia significantly decreased infarct volume by 68% and significantly improved sensory-motor function compared to the saline-treated control group. Western blots showed Fv-Hsp70 in ischemic but not in control brain; and Fv-Hsp70 suppressed endogenous Hsp70. Conclusion Fv-Hsp70 protects ischemic brain in this experimental stroke model. PMID:20075343

  4. Refolded scFv Antibody Fragment against Myoglobin Shows Rapid Reaction Kinetics

    PubMed Central

    Song, Hyung-Nam; Jang, Jun-Hyuck; Kim, Young-Wan; Kim, Dong-Hyung; Park, Sung-Goo; Lee, Myung Kyu; Paek, Se-Hwan; Woo, Eui-Jeon

    2014-01-01

    Myoglobin is one of the early biomarkers for acute myocardial infarction. Recently, we have screened an antibody with unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid reaction kinetics are thought to be an early IgG form produced during early stage of in vivo immunization. We produced a recombinant scFv fragment for the premature antibody from Escherichia coli using refolding technology. The scFv gene was constructed by connection of the VH–VL sequence with a (Gly4Ser)3 linker. The scFv fragment without the pelB leader sequence was expressed at a high level, but the solubility was extremely low. A high concentration of 8 M urea was used for denaturation. The dilution refolding process in the presence of arginine and the redox reagents GSH and GSSH successfully produced a soluble scFv protein. The resultant refolded scFv protein showed association and dissociation values of 9.32 × 10−4 M−1·s−1 and 6.29 × 10−3 s−1, respectively, with an affinity value exceeding 107 M−1 (kon/koff), maintaining the original rapid reaction kinetics of the premature antibody. The refolded scFv could provide a platform for protein engineering for the clinical application for diagnosis of heart disease and the development of a continuous biosensor. PMID:25530617

  5. A Uranium-Based UO2+–Mn2+ Single-Chain Magnet Assembled trough Cation–Cation Interactions**

    PubMed Central

    Mougel, Victor; Chatelain, Lucile; Hermle, Johannes; Caciuffo, Roberto; Colineau, Eric; Tuna, Floriana; Magnani, Nicola; de Geyer, Arnaud; Pécaut, Jacques; Mazzanti, Marinella

    2014-01-01

    Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f–3d heterometallic 1D chains [{[UO2(salen)(py)][M(py)4](NO3)}]n, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation–cation interaction from the reaction of the uranyl(V) complex [UO2(salen)py][Cp*2Co] (Cp*=pentamethylcyclopentadienyl) with Cd(NO3)2 or Mn(NO3)2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134±0.8 K (93±0.5 cm−1), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T<6 K, with an impressive coercive field of 3.4 T at 2 K. PMID:24311434

  6. Selection of bisphenol A - single-chain antibodies from a non-immunized mouse library by ribosome display.

    PubMed

    Zhao, Li; Ning, Baoan; Bai, Jialei; Chen, Xiang; Peng, Yuan; Sun, Siming; Li, Guimin; Fan, Xianjun; Liu, Yuanyuan; Liu, Jianqing; Sun, Yanan; Gao, Zhixian; Zhang, Juankun

    2015-11-01

    Developing reagents with high affinity and specificity are critical to detect the environmental hormones or toxicants. Ribosome display technology has been widely used in functional protein or peptide screening and in directed evolution of protein molecules in vitro. In this study, single-chain variable fragments (scFvs) against bisphenol A (BPA) were selected from a library constructed from splenocytes of non-immunized mice. After five rounds of selection, the selected scFvs bound to BPA with high affinity. Indirect competitive enzyme-linked immunosorbent assay (ELISA) was introduced to screen the antibody affinity and specificity to BPA. The equilibrium dissociation constants (KDS) of one clone was 1.76μM as determined by surface plasmon resonance (SPR). This study indicated that ribosome display can isolate binders to small molecules from a non-immunized naive library without any in vivo steps and can generate recombinant antibodies efficiently and rapidly. In addition, this study provides a methodological framework for detection of small molecules using recombinant antibodies.

  7. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1

    PubMed Central

    Ghadge, Ghanashyam D.; Pavlovic, John; Koduvayur, Sujatha P.; Kay, Brian K.; Roos, Raymond P.

    2013-01-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as ‘intrabodies’ within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. PMID:23607939

  8. The O-P-O bridged Mn2(salen)2 chains showing coexistence of single chain magnet and metamagnet behaviour.

    PubMed

    Wang, Ting-Ting; Ren, Min; Bao, Song-Song; Cai, Zhong-Sheng; Liu, Bin; Zheng, Ze-Hua; Xu, Zhong-Li; Zheng, Li-Min

    2015-03-01

    Three new chain compounds in which the Mn2(salen)2 dimers are bridged by O-P-O units are reported, namely, [Mn2(salen)2(C6H9PO3H)](ClO4) (1), [Mn2(salen)2(C6H5PO3H)](ClO4) (2) and [Mn2(salen)2(C6H5PHO2)](ClO4) (3). The phosphonate or phosphinate ligands adopt a syn-anti bidentate bridging mode in 1, while a syn-syn bidentate bridging mode in 2 and 3, thus leading to a difference in the Mn-O···O-Mn torsion angle over the O-P-O bridge. Compound 1 shows a paramagnetic behavior with dominant antiferromagnetic interactions. In compounds 2 and 3, the antiferromagnetic interactions through the O-P-O bridges are considerably stronger than those in 1. They display coexistence of single chain magnet (SCM) behaviour with a spin canted structure and metamagnetism at low temperature. The results demonstrate that the magnetic dynamics of the O-P-O bridged Mn2(salen)2 chains may be modulated by selecting suitable phosphonate or phosphinate ligands.

  9. Amino-Terminal Extended Peptide Single-Chain Trimers are Potent Synthetic Agonists for Memory Human CD8+ T cells

    PubMed Central

    Carreno, Beatriz M.; Becker-Hapak, Michelle; Chan, Megan; Lie, Wen-Rong; Wang, Xiaoli; Hansen, Ted H.; Linette, Gerald P.

    2012-01-01

    Upon antigen exposure, most memory T cells undergo re-stimulation induced cell death. Here we describe a novel synthetic agonist, an amino-terminal extended decamer peptide expressed as a single chain trimer, the AT-SCT, that preferentially promotes the growth of memory human CD8+ T cells with minimal re-stimulation-induced cell death. Using the CMV pp65 and melanoma gp100 antigens, we observe the in vitro numerical expansion of a clonally diverse poly-functional population of antigen-specific CD8+ T cells from normal individuals and vaccinated melanoma patients, respectively. Memory CD8+ T cells stimulated with AT-SCT presented on MHC class I/II null cells show reduced cytokine production, slower kinetics of TCR down-regulation and decreased cell death when compared to native nonamer SCT-activated T cells. However, both ERK phosphorylation and cell cycle kinetics are identical in AT-SCT- and SCT-activated T cells. Probing of SCT and AT-SCT peptide-MHC (p-MHC) complexes using fluorochrome-conjugated TCR multimers suggest that nonamer and decamer-linked peptides may be anchored differently to HLA-A2 peptide binding groove. Our findings demonstrate that modified p-MHC structures such as AT-SCT can be engineered as T cell agonists to promote the growth and expansion of memory human CD8+ T cells. PMID:22573808

  10. Structure and function of a single-chain, multi-domain long-chain acyl-CoA carboxylase

    PubMed Central

    Tran, Timothy H.; Hsiao, Yu-Shan; Jo, Jeanyoung; Chou, Chi-Yuan; Dietrich, Lars E.P.; Walz, Thomas; Tong, Liang

    2014-01-01

    Biotin-dependent carboxylases are widely distributed in nature and have important functions in the metabolism of fatty acids, amino acids, carbohydrates, cholesterol and other compounds 1–6. Defective mutations in several of these enzymes have been linked to serious metabolic diseases in humans, and acetyl-CoA carboxylase (ACC) is a target for drug discovery against diabetes, cancer and other diseases 7–9. We report here the identification and biochemical, structural and functional characterizations of a novel single-chain (120 kD), multi-domain biotin-dependent carboxylase in bacteria. It has preference for long-chain acyl-CoA substrates, although it is also active toward short- and medium-chain acyl-CoAs, and we have named it long-chain acyl-CoA carboxylase (LCC). The holoenzyme is a homo-hexamer with molecular weight of 720 kD. The 3.0 Å crystal structure of Mycobacterium avium subspecies paratuberculosis LCC (MapLCC) holoenzyme revealed an architecture that is strikingly different compared to those of related biotin-dependent carboxylases 10,11. In addition, the domains of each monomer have no direct contacts with each other. They are instead extensively swapped in the holoenzyme, such that one cycle of catalysis involves the participation of four monomers. Functional studies in Pseudomonas aeruginosa suggest that the enzyme is involved in the utilization of selected carbon and nitrogen sources. PMID:25383525

  11. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Chul; Kim, Su-Jin; Kim, Kyung-Sup; Shin, Hang-Cheol; Yoon, Ji-Won

    2000-11-01

    A cure for diabetes has long been sought using several different approaches, including islet transplantation, regeneration of β cells and insulin gene therapy. However, permanent remission of type 1 diabetes has not yet been satisfactorily achieved. The development of type 1 diabetes results from the almost total destruction of insulin-producing pancreatic β cells by autoimmune responses specific to β cells. Standard insulin therapy may not maintain blood glucose concentrations within the relatively narrow range that occurs in the presence of normal pancreatic β cells. We used a recombinant adeno-associated virus (rAAV) that expresses a single-chain insulin analogue (SIA), which possesses biologically active insulin activity without enzymatic conversion, under the control of hepatocyte-specific L-type pyruvate kinase (LPK) promoter, which regulates SIA expression in response to blood glucose levels. Here we show that SIA produced from the gene construct rAAV-LPK-SIA caused remission of diabetes in streptozotocin-induced diabetic rats and autoimmune diabetic mice for a prolonged time without any apparent side effects. This new SIA gene therapy may have potential therapeutic value for the cure of autoimmune diabetes in humans.

  12. Crystal structures of ricin toxin's enzymatic subunit (RTA) in complex with neutralizing and non-neutralizing single-chain antibodies.

    PubMed

    Rudolph, Michael J; Vance, David J; Cheung, Jonah; Franklin, Matthew C; Burshteyn, Fiana; Cassidy, Michael S; Gary, Ebony N; Herrera, Cristina; Shoemaker, Charles B; Mantis, Nicholas J

    2014-08-26

    Ricin is a select agent toxin and a member of the RNA N-glycosidase family of medically important plant and bacterial ribosome-inactivating proteins. In this study, we determined X-ray crystal structures of the enzymatic subunit of ricin (RTA) in complex with the antigen binding domains (VHH) of five unique single-chain monoclonal antibodies that differ in their respective toxin-neutralizing activities. None of the VHHs made direct contact with residues involved in RTA's RNA N-glycosidase activity or induced notable allosteric changes in the toxin's subunit. Rather, the five VHHs had overlapping structural epitopes on the surface of the toxin and differed in the degree to which they made contact with prominent structural elements in two folding domains of the RTA. In general, RTA interactions were influenced most by the VHH CDR3 (CDR, complementarity-determining region) elements, with the most potent neutralizing antibody having the shortest and most conformationally constrained CDR3. These structures provide unique insights into the mechanisms underlying toxin neutralization and provide critically important information required for the rational design of ricin toxin subunit vaccines. PMID:24907552

  13. Efficacy and safety of rVIII-SingleChain: results of a phase 1/3 multicenter clinical trial in severe hemophilia A

    PubMed Central

    Mahlangu, Johnny; Kuliczkowski, Kazimierz; Karim, Faraizah Abdul; Stasyshyn, Oleksandra; Kosinova, Marina V.; Lepatan, Lynda Mae; Skotnicki, Aleksander; Boggio, Lisa N.; Klamroth, Robert; Oldenburg, Johannes; Hellmann, Andrzej; Santagostino, Elena; Baker, Ross I.; Fischer, Kathelijn; Gill, Joan C.; P’Ng, Stephanie; Chowdary, Pratima; Escobar, Miguel A.; Khayat, Claudia Djambas; Rusen, Luminita; Bensen-Kennedy, Debra; Blackman, Nicole; Limsakun, Tharin; Veldman, Alex; St. Ledger, Katie

    2016-01-01

    Recombinant VIII (rVIII)-SingleChain is a novel B-domain–truncated recombinant factor VIII (rFVIII), comprised of covalently bonded factor VIII (FVIII) heavy and light chains. It was designed to have a higher binding affinity for von Willebrand factor (VWF). This phase 1/3 study investigated the efficacy and safety of rVIII-SingleChain in the treatment of bleeding episodes, routine prophylaxis, and surgical prophylaxis. Participants were ≥12 years of age, with severe hemophilia A (endogenous FVIII <1%). The participants were allocated by the investigator to receive rVIII-SingleChain in either an on-demand or prophylaxis regimen. Of the 175 patients meeting study eligibility criteria, 173 were treated with rVIII-SingleChain, prophylactically (N = 146) or on-demand (N = 27). The total cumulative exposure was 14 306 exposure days (EDs), with 120 participants reaching ≥50 EDs and 52 participants having ≥100 EDs. Hemostatic efficacy was rated by the investigator as excellent or good in 93.8% of the 835 bleeds treated and assessed. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.0, 2.4) and the median overall annualized bleeding rate (ABR) was 1.14 (Q1, Q3: 0.0, 4.2). Surgical hemostasis was rated as excellent/good in 100% of major surgeries by the investigator. No participant developed FVIII inhibitors. In conclusion, rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy in surgery and in the control of bleeding events, low ABR in patients on prophylaxis, and a favorable safety profile in this large clinical study. This trial was registered at www.clinicaltrials.gov as #NCT01486927. PMID:27330001

  14. Efficacy and safety of rVIII-SingleChain: results of a phase 1/3 multicenter clinical trial in severe hemophilia A.

    PubMed

    Mahlangu, Johnny; Kuliczkowski, Kazimierz; Karim, Faraizah Abdul; Stasyshyn, Oleksandra; Kosinova, Marina V; Lepatan, Lynda Mae; Skotnicki, Aleksander; Boggio, Lisa N; Klamroth, Robert; Oldenburg, Johannes; Hellmann, Andrzej; Santagostino, Elena; Baker, Ross I; Fischer, Kathelijn; Gill, Joan C; P'Ng, Stephanie; Chowdary, Pratima; Escobar, Miguel A; Khayat, Claudia Djambas; Rusen, Luminita; Bensen-Kennedy, Debra; Blackman, Nicole; Limsakun, Tharin; Veldman, Alex; St Ledger, Katie; Pabinger, Ingrid

    2016-08-01

    Recombinant VIII (rVIII)-SingleChain is a novel B-domain-truncated recombinant factor VIII (rFVIII), comprised of covalently bonded factor VIII (FVIII) heavy and light chains. It was designed to have a higher binding affinity for von Willebrand factor (VWF). This phase 1/3 study investigated the efficacy and safety of rVIII-SingleChain in the treatment of bleeding episodes, routine prophylaxis, and surgical prophylaxis. Participants were ≥12 years of age, with severe hemophilia A (endogenous FVIII <1%). The participants were allocated by the investigator to receive rVIII-SingleChain in either an on-demand or prophylaxis regimen. Of the 175 patients meeting study eligibility criteria, 173 were treated with rVIII-SingleChain, prophylactically (N = 146) or on-demand (N = 27). The total cumulative exposure was 14 306 exposure days (EDs), with 120 participants reaching ≥50 EDs and 52 participants having ≥100 EDs. Hemostatic efficacy was rated by the investigator as excellent or good in 93.8% of the 835 bleeds treated and assessed. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.0, 2.4) and the median overall annualized bleeding rate (ABR) was 1.14 (Q1, Q3: 0.0, 4.2). Surgical hemostasis was rated as excellent/good in 100% of major surgeries by the investigator. No participant developed FVIII inhibitors. In conclusion, rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy in surgery and in the control of bleeding events, low ABR in patients on prophylaxis, and a favorable safety profile in this large clinical study. This trial was registered at www.clinicaltrials.gov as #NCT01486927.

  15. Efficacy and safety of rVIII-SingleChain: results of a phase 1/3 multicenter clinical trial in severe hemophilia A.

    PubMed

    Mahlangu, Johnny; Kuliczkowski, Kazimierz; Karim, Faraizah Abdul; Stasyshyn, Oleksandra; Kosinova, Marina V; Lepatan, Lynda Mae; Skotnicki, Aleksander; Boggio, Lisa N; Klamroth, Robert; Oldenburg, Johannes; Hellmann, Andrzej; Santagostino, Elena; Baker, Ross I; Fischer, Kathelijn; Gill, Joan C; P'Ng, Stephanie; Chowdary, Pratima; Escobar, Miguel A; Khayat, Claudia Djambas; Rusen, Luminita; Bensen-Kennedy, Debra; Blackman, Nicole; Limsakun, Tharin; Veldman, Alex; St Ledger, Katie; Pabinger, Ingrid

    2016-08-01

    Recombinant VIII (rVIII)-SingleChain is a novel B-domain-truncated recombinant factor VIII (rFVIII), comprised of covalently bonded factor VIII (FVIII) heavy and light chains. It was designed to have a higher binding affinity for von Willebrand factor (VWF). This phase 1/3 study investigated the efficacy and safety of rVIII-SingleChain in the treatment of bleeding episodes, routine prophylaxis, and surgical prophylaxis. Participants were ≥12 years of age, with severe hemophilia A (endogenous FVIII <1%). The participants were allocated by the investigator to receive rVIII-SingleChain in either an on-demand or prophylaxis regimen. Of the 175 patients meeting study eligibility criteria, 173 were treated with rVIII-SingleChain, prophylactically (N = 146) or on-demand (N = 27). The total cumulative exposure was 14 306 exposure days (EDs), with 120 participants reaching ≥50 EDs and 52 participants having ≥100 EDs. Hemostatic efficacy was rated by the investigator as excellent or good in 93.8% of the 835 bleeds treated and assessed. Across all prophylaxis regimens, the median annualized spontaneous bleeding rate was 0.00 (Q1, Q3: 0.0, 2.4) and the median overall annualized bleeding rate (ABR) was 1.14 (Q1, Q3: 0.0, 4.2). Surgical hemostasis was rated as excellent/good in 100% of major surgeries by the investigator. No participant developed FVIII inhibitors. In conclusion, rVIII-SingleChain is a novel rFVIII molecule showing excellent hemostatic efficacy in surgery and in the control of bleeding events, low ABR in patients on prophylaxis, and a favorable safety profile in this large clinical study. This trial was registered at www.clinicaltrials.gov as #NCT01486927. PMID:27330001

  16. Expression, purification and characterization of B72.3 Fv fragments.

    PubMed Central

    King, D J; Byron, O D; Mountain, A; Weir, N; Harvey, A; Lawson, A D; Proudfoot, K A; Baldock, D; Harding, S E; Yarranton, G T

    1993-01-01

    The Fv fragment of the antibody B72.3 has been produced by expression in both a mammalian and microbial system, namely Chinese hamster ovary (CHO) cells and Escherichia coli. In both cases secretion of the Fv into the culture medium was achieved, with equivalent amounts of Vh and Vl produced. The yield of Fv from CHO cells was 4 mg/l in roller-bottle culture. E. coli proved to be a more productive system with yields of 40 mg/l in shake flasks rising to 450 mg/l in fermentations. B72.3 Fv from both sources was capable of binding to antigen with similar binding ability to the Fab' fragment. A detailed sedimentation analysis, both by velocity and equilibrium techniques, revealed that the two domains of Fv are associated at high concentrations at pH values close to neutral, but dissociate at concentrations lower than approx. 0.5 mg/ml. Individual Vh or Vl polypeptides are not able to bind to the antigen and thus these results suggest that the antigen promotes assembly of Fv at the low concentrations used in the antigen-binding assays. At a pH value of 1.9, Vh and Vl are completely dissociated even at very high concentrations and are apparently unfolded at low solute concentrations. Small-angle X-ray scattering was used to measure a radius of gyration of 1.75 +/- 0.2 nm (17.5 +/- 2 A) for Fv. Images Figure 1 Figure 2 PMID:8457200

  17. Chemical O‐Glycosylations: An Overview

    PubMed Central

    2016-01-01

    Abstract The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo‐ and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O‐glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects. PMID:27777833

  18. Studies on recombinant single chain Jacalin lectin reveal reduced affinity for saccharides despite normal folding like native Jacalin.

    PubMed

    Sahasrabuddhe, Anagh A; Gaikwad, Sushama M; Krishnasastry, M V; Khan, M Islam

    2004-12-01

    Sugar binding studies, inactivation, unfolding, and refolding of native Jacalin (nJacalin) from Artocarpus integrifolia and recombinant single-chain Jacalin (rJacalin) expressed in Escherichia coli were studied by intrinsic fluorescence and thermal and chemical denaturation approaches. Interestingly, rJacalin does not undergo any proteolytic processing in an E. coli environment. It has 100fold less affinity for methyl-alpha-galactose (Ka: 2.48 x 10(2)) in comparison to nJacalin (Ka: 1.58 x 10(4)), and it also binds Thomsen-Friedenreich (TF) disaccharide (Galbeta1-3GalNAc) with less affinity. Overall sugar binding characteristics of rJacalin are qualitatively similar to that of nJacalin (Gal

  19. Hafnium(IV) tetratriflate as a glycosyl fluoride activation reagent.

    PubMed

    Manabe, Shino; Ito, Yukishige

    2013-05-01

    Hafnium(IV) tetratriflate was found to be a good activator of glycosyl fluoride. The protocol was operationally simple and was widely applicable to a variety of substrates in both solid-phase and solution-phase glycosylation reactions.

  20. Annual parallax and a dimming event of a Mira variable star, FV Bootis

    NASA Astrophysics Data System (ADS)

    Kamezaki, Tatsuya; Nakagawa, Akiharu; Omodaka, Toshihiro; Inoue, Kan-ichiro; Chibueze, James O.; Nagayama, Takumi; Ueno, Yuji; Matsunaga, Noriyuki

    2016-10-01

    We present the first measurement of the trigonometric parallax of water masers associated with a Mira star, FV Bootis (FV Boo) using VLBI Exploration of Radio Astrometry (VERA). Based on our multi-epoch VERA observations, we derived the parallax to be 0.97 ± 0.06 mas, which corresponds to a distance of 1.03^{+0.07}_{-0.06} kpc. The water masers around FV Boo were spatially distributed over an area of 41 au × 41 au, and their internal motions indicate the presence of an outflow. Using the Kagoshima University 1 m optical/infrared telescope, we determined the period to be 305.6 d and the mean apparent magnitude to be +2.91 mag in the K'-band. On the period-luminosity plane, the obtained period and K'-band magnitude puts FV Boo slightly below the sequence of Miras, possibly due to circumstellar reddening. Combining our photometric data with COBE and 2MASS datasets spanning over 20 years, we found in the near infrared that FV Boo was significantly fainter in 2005 compared with preceding and later phases. Its color, however, did not show a large variation through this change. We infer that the dimming could be caused by an eclipse due to a cloud in a binary system.

  1. Annual parallax and a dimming event of a Mira variable star, FV Bootis

    NASA Astrophysics Data System (ADS)

    Kamezaki, Tatsuya; Nakagawa, Akiharu; Omodaka, Toshihiro; Inoue, Kan-ichiro; Chibueze, James O.; Nagayama, Takumi; Ueno, Yuji; Matsunaga, Noriyuki

    2016-08-01

    We present the first measurement of the trigonometric parallax of water masers associated with a Mira star, FV Bootis (FV Boo) using VLBI Exploration of Radio Astrometry (VERA). Based on our multi-epoch VERA observations, we derived the parallax to be 0.97 ± 0.06 mas, which corresponds to a distance of 1.03^{+0.07}_{-0.06} kpc. The water masers around FV Boo were spatially distributed over an area of 41 au × 41 au, and their internal motions indicate the presence of an outflow. Using the Kagoshima University 1 m optical/infrared telescope, we determined the period to be 305.6 d and the mean apparent magnitude to be +2.91 mag in the K'-band. On the period-luminosity plane, the obtained period and K'-band magnitude puts FV Boo slightly below the sequence of Miras, possibly due to circumstellar reddening. Combining our photometric data with COBE and 2MASS datasets spanning over 20 years, we found in the near infrared that FV Boo was significantly fainter in 2005 compared with preceding and later phases. Its color, however, did not show a large variation through this change. We infer that the dimming could be caused by an eclipse due to a cloud in a binary system.

  2. Isolation of anti-T cell receptor scFv mutants by yeast surface display.

    PubMed

    Kieke, M C; Cho, B K; Boder, E T; Kranz, D M; Wittrup, K D

    1997-11-01

    Yeast surface display and sorting by flow cytometry have been used to isolate mutants of an scFv that is specific for the Vbeta8 region of the T cell receptor. Selection was based on equilibrium binding by two fluorescently labeled probes, a soluble Vbeta8 domain and an antibody to the c-myc epitope tag present at the carboxy-terminus of the scFv. The mutants that were selected in this screen included a scFv with threefold increased affinity for the Vbeta8 and scFv clones that were bound with reduced affinities by the anti-c-myc antibody. The latter finding indicates that the yeast display system may be used to map conformational epitopes, which cannot be revealed by standard peptide screens. Equilibrium antigen binding constants were estimated within the surface display format, allowing screening of isolated mutants without necessitating subcloning and soluble expression. Only a relatively small library of yeast cells (3 x 10[5]) displaying randomly mutagenized scFv was screened to identify these mutants, indicating that this system will provide a powerful tool for engineering the binding properties of eucaryotic secreted and cell surface proteins.

  3. A generic strategy for subcloning antibody variable regions from the scFv phage display vector pCANTAB 5 E into pASK85 permits the economical production of F(ab) fragments and leads to improved recombinant immunoglobulin stability.

    PubMed

    Kramer, Karl; Fiedler, Markus; Skerra, Arne; Hock, Bertold

    2002-04-01

    Apart from the decisive sensitivity and specificity of immunosensors, the employed antibodies essentially contribute to additional key factors like fabrication costs for sensor chips and sensor stability. A production scheme for recombinant antibody fragments has been optimised with respect to these particular issues of biosensor development. The phagemid vector pCANTAB 5 E is widely used for the selection of antibody fragments from corresponding libraries. However, large-scale production of the selected single-chain F(v) (scFv) fragments is substantially restricted by the high cost for the inducer IPTG and the anti-E-tag antibody. The latter is needed in significant amounts for the purification of the recombinant protein. A generic strategy was established for subcloning scFv variable regions from pCANTAB 5 E into the plasmid pASK85 for the expression of F(ab) fragments. pASK85 bears coding sequences for murine constant domains including a His(6) tag at the carboxyl-terminal end of the constant heavy chain domain. The anti-s-triazine antibody K47H served as a model system in this study. Biosynthesis of the F(ab) fragment in a high cell density fermenter was induced by addition of anhydrotetracycline. The F(ab) fragment was subsequently purified from the periplasmic extract in a single step by immobilized metal affinity chromatography (IMAC). A yield of 100 microg/lxOD(550) purified F(ab) fragment was obtained employing a standard fermentation scheme. The sensitivity and cross-reactivity of the F(ab) was comparable to the parent scFv when assayed by enzyme immunoassay. However, the F(ab) fragment exhibited significantly improved long-term stability.

  4. Glycosyl Thioimidates as Versatile Building Blocks for Organic Synthesis

    PubMed Central

    Hasty, S. J.

    2013-01-01

    This review discusses the synthesis and application of glycosyl thioimidates in chemical glycosylation and oligosaccharide assembly. Although glycosyl thioimidates include a broad range of compounds, the discussion herein centers on S-benzothiazolyl (SBaz), S-benzoxazolyl (SBox), S-thiazolinyl (STaz), and S-benzimidazolyl (SBiz) glycosides. These heterocyclic moieties have recently emerged as excellent anomeric leaving groups that express unique characteristics for highly diastereoselective glycosylation and help to provide the streamlined access to oligosaccharides. PMID:24288416

  5. Genome-wide evolutionary conservation of N-glycosylation sites.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2011-08-01

    Although posttranslational protein modifications are generally thought to perform important cellular functions, recent studies showed that a large fraction of phosphorylation sites are not evolutionarily conserved. Whether the same is true for other protein modifications, such as N-glycosylation is an open question. N-glycosylation is a form of cotranslational and posttranslational modification that occurs by enzymatic addition of a polysaccharide, or glycan, to an asparagine (N) residue of a protein. Examining a large set of experimentally determined mouse N-glycosylation sites, we find that the evolutionary rate of glycosylated asparagines is significantly lower than that of nonglycosylated asparagines of the same proteins. We further confirm that the conservation of glycosylated asparagines is accompanied by the conservation of the canonical motif sequence for glycosylation, suggesting that the above substitution rate difference is related to glycosylation. Interestingly, when solvent accessibility is considered, the substitution rate disparity between glycosylated and nonglycosylated asparagines is highly significant at solvent accessible sites but not at solvent inaccessible sites. Thus, although the solvent inaccessible glycosylation sites were experimentally identified, they are unlikely to be genuine or physiologically important. For solvent accessible asparagines, our analysis reveals a widespread and strong functional constraint on glycosylation, unlike what has been observed for phosphorylation sites in most studies, including our own analysis. Because the majority of N-glycosylation occurs at solvent accessible sites, our results show an overall functional importance for N-glycosylation.

  6. Biodistribution of the Radiolabeled Anti III {beta}-Tubulin scFv Fragment in Mice

    SciTech Connect

    Kleinova, Veronika; Svecova, H.; Chaloupkova, H.; Kranda, K.; Fiser, M.

    2007-11-26

    For studies of new potential radiopharmaceutical such as radiolabeled compound, the biodistribution exoeriments are essential to describe behavior of the substance in organism. The specific binding of the scFv fragment of the monoclonal antibody TU-20 to the C-end of the class III {beta}-tubulin makes this substance useful as a potential diagnostics for in vivo neurodegenerative diseases determination. To examine this hypothesis, scFv was radio-labeled with {sup 125}I and {sup 123}I, and its biochemical properties were studied. The in vivo bio-distribution confirmed the expected elimination behavior of the radio-labeled scFv TU-20 in mice. The bi-exponential model for two-phase clearance to determine short phase half-life t{sub 1/2{alpha}} and long phase half-life t{sub 1/2{beta}} values was used to evaluate the experimental data.

  7. The Autonomous Glycosylation of Large DNA Viruses

    PubMed Central

    Piacente, Francesco; Gaglianone, Matteo; Laugieri, Maria Elena; Tonetti, Michela G.

    2015-01-01

    Glycosylation of surface molecules is a key feature of several eukaryotic viruses, which use the host endoplasmic reticulum/Golgi apparatus to add carbohydrates to their nascent glycoproteins. In recent years, a newly discovered group of eukaryotic viruses, belonging to the Nucleo-Cytoplasmic Large DNA Virus (NCLDV) group, was shown to have several features that are typical of cellular organisms, including the presence of components of the glycosylation machinery. Starting from initial observations with the chlorovirus PBCV-1, enzymes for glycan biosynthesis have been later identified in other viruses; in particular in members of the Mimiviridae family. They include both the glycosyltransferases and other carbohydrate-modifying enzymes and the pathways for the biosynthesis of the rare monosaccharides that are found in the viral glycan structures. These findings, together with genome analysis of the newly-identified giant DNA viruses, indicate that the presence of glycogenes is widespread in several NCLDV families. The identification of autonomous viral glycosylation machinery leads to many questions about the origin of these pathways, the mechanisms of glycan production, and eventually their function in the viral replication cycle. The scope of this review is to highlight some of the recent results that have been obtained on the glycosylation systems of the large DNA viruses, with a special focus on the enzymes involved in nucleotide-sugar production. PMID:26690138

  8. Detection of cytoplasmic glycosylation associated with hydroxyproline.

    PubMed

    West, Christopher M; van der Wel, Hanke; Blader, Ira J

    2006-01-01

    A special class of glycosylation occurs on a proline residue of the cytoplasmic/nuclear protein Skp1 in the social amoeba Dictyostelium. For this glycosylation to occur, the proline must first be hydroxylated by the action of a soluble prolyl 4-hydroxylase acting on the protein. Cytoplasmic prolyl 4-hydroxylases are dioxygen-dependent enzymes that have low affinity for their O2 substrate and, therefore, have been implicated in O2-sensing in Dictyostelium, as well as in vertebrates and invertebrates. The sugar-hydroxyproline linkage has low abundance, is resistant to alkali cleavage and known glycosidases, and does not bind known lectins. However, initial screens for this modification can be made by assessing changes in electrophoretic mobility of candidate proteins after treatment of cells with prolyl hydroxylase inhibitors, and/or by metabolic labeling with [3H]sugar precursors. In addition, cytoplasmic hydroxylation/glycosylation can be assessed by assaying for cytoplasmic glycosyltransferases. Here we describe these methods and examples of their use in analyzing Skp1 glycosylation in Dictyostelium and the apicomplexan Toxoplasma gondii, the causative agent of toxoplasmosis in humans. PMID:17132515

  9. Neurologic course of congenital disorders of glycosylation.

    PubMed

    Pearl, P L; Krasnewich, D

    2001-06-01

    Congenital disorders of glycosylation, formerly called carbohydrate-deficient glycoprotein syndrome, may present in infancy with slowly progressive neurologic deficits including cognitive impairment, ataxia, pigmentary retinal degeneration, and neuropathy. The metabolic defect is in N-linked oligosaccharide synthesis, and diagnosis is made by a serum transferrin isoelectric focusing. We reviewed the neurologic course of 10 children with congenital disorders of glycosylation (ages 13 months to 7 years). All had severe developmental delay and ataxia; none walked unassisted, and the highest level of communication was simple sign language in one patient. Five of 10 children had seizures (absence, complex partial, tonic clonic). Only one patient has had strokelike episodes, despite reports that they are common in this population. The underlying basis of these episodes has been hypothesized to be coagulopathy due to dysfunctional, incorrectly glycosylated coagulation factors. This 5-year-old patient with congenital disorders of glycosylation type Ia had two strokelike episodes, with evolving hemiparesis over 5 to 6 days' duration, followed by focal tonic-clonic seizures. Coagulation studies were normal. Electroencephalography showed transient hemispheric polymorphous delta-range slowing and suppression. Magnetic resonance imaging revealed corresponding cortical swelling. Magnetic resonance angiography was normal. Magnetic resonance spectroscopy revealed a decrease in the N-acetylaspartate peak, suggesting neuronal loss, with normal lactate peak. The neuroradiologic data do not support a thrombotic, embolic, or hemorrhagic basis for strokelike episodes in carbohydrate-deficient glycoprotein syndrome; other mechanisms must be considered.

  10. Structural and Functional Characterization of a Single-Chain Form of the Recognition Domain of Complement Protein C1q

    PubMed Central

    Moreau, Christophe; Bally, Isabelle; Chouquet, Anne; Bottazzi, Barbara; Ghebrehiwet, Berhane; Gaboriaud, Christine; Thielens, Nicole

    2016-01-01

    Complement C1q is a soluble pattern recognition molecule comprising six heterotrimeric subunits assembled from three polypeptide chains (A–C). Each heterotrimer forms a collagen-like stem prolonged by a globular recognition domain. These recognition domains sense a wide variety of ligands, including pathogens and altered-self components. Ligand recognition is either direct or mediated by immunoglobulins or pentraxins. Multivalent binding of C1q to its targets triggers immune effector mechanisms mediated via its collagen-like stems. The induced immune response includes activation of the classical complement pathway and enhancement of the phagocytosis of the recognized target. We report here, the first production of a single-chain recombinant form of human C1q globular region (C1q-scGR). The three monomers have been linked in tandem to generate a single continuous polypeptide, based on a strategy previously used for adiponectin, a protein structurally related to C1q. The resulting C1q-scGR protein was produced at high yield in stably transfected 293-F mammalian cells. Recombinant C1q-scGR was correctly folded, as demonstrated by its X-ray crystal structure solved at a resolution of 1.35 Å. Its interaction properties were assessed by surface plasmon resonance analysis using the following physiological C1q ligands: the receptor for C1q globular heads, the long pentraxin PTX3, calreticulin, and heparin. The 3D structure and the binding properties of C1q-scGR were similar to those of the three-chain fragment generated by collagenase digestion of serum-derived C1q. Comparison of the interaction properties of the fragments with those of native C1q provided insights into the avidity component associated with the hexameric assembly of C1q. The interest of this functional recombinant form of the recognition domains of C1q in basic research and its potential biomedical applications are discussed. PMID:26973654

  11. Surface Glycosylation Profiles of Urine Extracellular Vesicles

    PubMed Central

    Gerlach, Jared Q.; Krüger, Anja; Gallogly, Susan; Hanley, Shirley A.; Hogan, Marie C.; Ward, Christopher J.

    2013-01-01

    Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications. PMID:24069349

  12. Evaluating Goddard Multi-Scale Modeling Framework at Different fv-GCM Grid Spacing

    NASA Astrophysics Data System (ADS)

    Chern, J.; Matsui, T.; Shen, B.; Tao, W.

    2009-12-01

    The Goddard Multi-scale Modeling Framework (MMF) is based on the coupling of the two-dimensional Goddard Cumulus Ensemble (GCE) model and the finite-volume GCM (fv-GCM). Thus MMF enables explicit resolution of stochastic moist convection process by embedded GCE simulations, unlike traditional GCMs that rely on convection parameterization. At each fv-GCM column, the fv-GCM provides mean atmospheric conditions and large-scale temperature and moisture advection to drive the 2D GCE models, which feedback the tendencies of thermodynamic parameter and cloud statistics to the fv-GCM. Earlier investigations show that the Goddard MMF simulates better cloudiness (high and low), single ITCZ and a more realistic diurnal variation of rainfall than traditional GCMs. Another advantages of using the Goddard MMF is that the resolution of GCE-simulated clouds is compatible to satellite observations, while traditional GCM requires disaggregation of grid-volume feature to compare with high-resolution satellite observations. Thus, satellite instrumental simulator can be directly applied to translate MMF simulations into the satellite instrumental signals in straightforward way. In this year, we examine the sensitivity of the Goddard MMF simulation at different fv-GCM grid spacing, and evaluated performances against the TRMM satellite. Previously, fv-GCM was run at 2x2.5 degree horizontal lat-lon grid spacing, and we are currently running fv-GCM at 1x1.25 degree. We examine the performance of the Goddard MMF at different fv-GCM grid spacing with respect to rainfall frequency, rain structure, and microphysics using multi-sensor radiance-based evaluation method, known as the TRMM Triple-Sensor Three-step Evaluation Framework (T3EF). T3EF utilizes multi-sensor satellite simulators, Goddard Satellite Data Simulation Unit, and novel statistics of multi-sensor radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares GCE and satellite observations in

  13. Internalization of exogenous cystatin F supresses cysteine proteases and induces the accumulation of single-chain cathepsin L by multiple mechanisms.

    PubMed

    Colbert, Jeff D; Matthews, Stephen P; Kos, Janko; Watts, Colin

    2011-12-01

    Cystatin F is an unusual member of the cystatin family of protease inhibitors, which is made as an inactive dimer and becomes activated by proteolysis in the endo/lysosome pathway of the immune cells that produce it. However a proportion is secreted and can be taken up and activated by other cells. We show here that cystatin F acquired in this way induces a dramatic accumulation of the single-chain form of cathepsin L (CatL). Cystatin F was observed in the same cellular compartments as CatL and was tightly complexed with CatL as determined by co-precipitation studies. The observed accumulation of single-chain CatL was partly due to cystatin F-mediated inhibition of the putative single-chain to two-chain CatL convertase AEP/legumain and partly to general suppression of cathepsin activity. Thus, cystatin F stabilizes CatL leading to the dramatic accumulation of an inactive complex composed either of the single-chain or two-chain form depending on the capacity of cystatin F to inhibit AEP. Cross-transfer of cystatin F from one cell to another may therefore attenuate potentially harmful effects of excessive CatL activity while paradoxically, inducing accumulation of CatL protein. Finally, we confirmed earlier data (Beers, C., Honey, K., Fink, S., Forbush, K., and Rudensky, A. (2003) J. Exp. Med. 197, 169-179) showing a loss of CatL activity, but not of CatL protein, in macrophages activated with IFNγ. However, we found equivalent loss of CatL activity in wild type and cystatin F-null macrophages suggesting that an inhibitory activity other than cystatin F quenches CatL activity in activated macrophages.

  14. Single chain morphology and nanofiber-like aggregates of branched β-(1 → 3)-D-glucan in water/dimethylsulfoxide solution.

    PubMed

    Chen, Cong; Meng, Yan; Li, Sheng; Wu, Wenhua; Liu, Chuanjun; Xu, Xiaojuan; Zhang, Lina

    2016-02-10

    A polysaccharide coded as PR-CA was extracted from Polyporus rhinoceros and determined to be a β-(1 → 3)-D-glucan with multiple branches. The weight-average molecular weights (Mw) of PR-CA in dimethylsulfoxide (DMSO) and in water were determined with static light scattering (SLS) to be 3.57 × 10(5) and 1.79 × 10(7), indicating existence of the single chains in DMSO and co-existence of single chains and aggregates in water. Moreover, the stiffness of single chains of PR-CA in water was directly visualized by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hollow structure of PR-CA nanofibers with width of 30-40 nm and length of ∼ 350 nm formed in the water/DMSO (9:1, v:v) was demonstrated by a fluorescent probe tetraphenylethylene (TPE) via aggregation-induced emission (AIE). The formation of PR-CA nanofibers was ascribed to the parallel aggregation of the extended PR-CA chains due to the hydrogen bonding and hydrophobic interaction. This work offered valuable results for promising applications of natural branched β-glucans in the biological fields of drug inclusion, delivery and disease diagnosis. PMID:26686132

  15. Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody.

    PubMed Central

    Marasco, W A; Haseltine, W A; Chen, S Y

    1993-01-01

    A single-chain antibody, derived from a human monoclonal antibody that recognizes the CD4 binding region of the human immunodeficiency virus type 1 (HIV-1) envelope protein, has been designed for intracellular expression in eukaryotic cells. The single-chain antibody is composed of an immunoglobulin heavy-chain leader sequence and heavy- and light-chain variable regions that are joined by an interchain linker. The antibody is stably expressed and retained in the endoplasmic reticulum and is not toxic to the cells. The antibody binds to the envelope protein within the cell and inhibits processing of the envelope precursor and syncytia formation. The infectivity of the HIV-1 particles produced by cells that express the single-chain antibody is substantially reduced. These studies illustrate the feasibility of designing antibodies that bind and inactivate molecules intracellularly. Antibodies that act on target molecules within cells should provide a useful tool for research as well as for control of infectious and other diseases. Images Fig. 1 Fig. 2 Fig. 3 PMID:8356098

  16. Glycosyl trifluoroacetimidates. 2. Synthesis of dioscin and xiebai saponin I.

    PubMed

    Yu, Biao; Tao, Houchao

    2002-12-13

    Two trisaccharide steroidal saponins, dioscin (1) and Xiebai saponin I (2) with various bioactivities, were efficiently synthesized using the newly developed glycosyl N-phenyl trifluoroacetimidates (10-13) as glycosylation donors. Thus, dioscin was synthesized in five steps and a 33% overall yield from diosgenin and glycosyl trifluoroacetimidates (10 and 11). Xiebai saponin I was synthesized in eight steps and a 32% overall yield from laxogenin and glycosyl trifluoroacetimidates (10, 12, and 13), whereupon, the rare steroid laxogenin was prepared from diosgenin in four steps and an overall 69% yield. All the glycosylation reactions involved in the present syntheses demonstrated that glycosyl trifluoroacetimidates were successful donors comparable to the corresponding glycosyl trichloroacetimidates. PMID:12467439

  17. Solving Glycosylation Disorders: Fundamental Approaches Reveal Complicated Pathways

    PubMed Central

    Freeze, Hudson H.; Chong, Jessica X.; Bamshad, Michael J.; Ng, Bobby G.

    2014-01-01

    Over 100 human genetic disorders result from mutations in glycosylation-related genes. In 2013, a new glycosylation disorder was reported every 17 days. This trend will probably continue given that at least 2% of the human genome encodes glycan-biosynthesis and -recognition proteins. Established biosynthetic pathways provide many candidate genes, but finding unanticipated mutated genes will offer new insights into glycosylation. Simple glycobiomarkers can be used in narrowing the candidates identified by exome and genome sequencing, and those can be validated by glycosylation analysis of serum or cells from affected individuals. Model organisms will expand the understanding of these mutations’ impact on glycosylation and pathology. Here, we highlight some recently discovered glycosylation disorders and the barriers, breakthroughs, and surprises they presented. We predict that some glycosylation disorders might occur with greater frequency than current estimates of their prevalence. Moreover, the prevalence of some disorders differs substantially between European and African Americans. PMID:24507773

  18. Genetic evidence for a product of the Fv-1 locus that transfers resistance to mouse leukemia viruses.

    PubMed Central

    Tennant, R W; Schluter, B; Myer, F E; Otten, J A; Yang, W K; Brown, A

    1976-01-01

    Extracts of mouse cells have been shown to transfer to N- or B-trophic host range types of mouse leukemia viruses. The genetic specificity of the inhibition was tested in two ways: (i) by correlating the Fv-1 genotype of a number of mouse strains with the restriction-transferring activity of extracts of the respective embryo cell cultures, and (ii) by correlating the Fv-1 genotype of BLC3F2 (C57BL/6 female [Fv-1bb] by C3H male [Fv-1nn] parental strains) mouse embryos, which segregate the Fv-1 alleles in a 12:1 ratio, with the inhibitor activity of extracts of the cells from each embryo. Five independent matings, totaling 45 individual embryos, were tested. Each embryo was cultured, and the Fv-1 genotype was determined independently by titration of N- and B-tropic viruses; the extracts of replicate secondary cultures were tested for their effect on infection of permissive cells by N- and B-tropic viruses. The specific-restriction-transferring activity of the embryos was found to segregate with the appropriate Fv-1 genotype. These res-lts confirm the suggestion that the inhibitor of the leukemia virus host range types in the cellular extracts is a product of the Fv-1 locus. PMID:186636

  19. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites

    PubMed Central

    Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent

    2015-01-01

    Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies. PMID:26008705

  20. Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites.

    PubMed

    Hartmann, Ulrike; Forsgren, Eva; Charrière, Jean-Daniel; Neumann, Peter; Gauthier, Laurent

    2015-05-22

    Apis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75%) and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  1. Characterization and Functional Analysis of scFv-based Chimeric Antigen Receptors to Redirect T Cells to IL13Rα2-positive Glioma.

    PubMed

    Krenciute, Giedre; Krebs, Simone; Torres, David; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Li, Xiao-Nan; Lesniak, Maciej S; Balyasnikova, Irina V; Gottschalk, Stephen

    2016-02-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CARs) is an attractive approach to improve outcomes for patients with glioblastoma (GBM). IL13Rα2 is expressed at a high frequency in GBM but not in normal brain, making it a promising CAR T-cell therapy target. IL13Rα2-specific CARs generated up to date contain mutated forms of IL13 as an antigen-binding domain. While these CARs target IL13Rα2, they also recognize IL13Rα1, which is broadly expressed. To overcome this limitation, we constructed a panel of IL13Rα2-specific CARs that contain the IL13Rα2-specific single-chain variable fragment (scFv) 47 as an antigen binding domain, short or long spacer regions, a transmembrane domain, and endodomains derived from costimulatory molecules and CD3.ζ (IL13Rα2-CARs). IL13Rα2-CAR T cells recognized IL13Rα2-positive target cells in coculture and cytotoxicity assays with no cross-reactivity to IL13Rα1. However, only IL13Rα2-CAR T cells with a short spacer region produced IL2 in an antigen-dependent fashion. In vivo, T cells expressing IL13Rα2-CARs with short spacer regions and CD28.ζ, 41BB.ζ, and CD28.OX40.ζ endodomains had potent anti-glioma activity conferring a significant survival advantage in comparison to mice that received control T cells. Thus, IL13Rα2-CAR T cells hold the promise to improve current IL13Rα2-targeted immunotherapy approaches for GBM and other IL13Rα2-positive malignancies. PMID:26514825

  2. Increased stability and DNA site discrimination of "single chain" variants of the dimeric beta-barrel DNA binding domain of the human papillomavirus E2 transcriptional regulator.

    PubMed

    Dellarole, Mariano; Sánchez, Ignacio E; Freire, Eleonora; de Prat-Gay, Gonzalo

    2007-10-30

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric beta-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  3. Increased Stability and DNA Site Discrimination of Single Chain Variants of the Dimeric beta-Barrel DNA Binding Domain of the Human Papillomavirus E2 Transcriptional Regulator

    SciTech Connect

    Dellarole,M.; Sanchez, I.; Freire, E.; de Prat-Gay, G.

    2007-01-01

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric {beta}-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  4. Decreased secretion and unfolded protein response up-regulation are correlated with intracellular retention for single-chain antibody variants produced in yeast

    PubMed Central

    Xu, Ping; Robinson, Anne Skaja

    2009-01-01

    Heterologous protein expression can easily overwhelm a cell's capacity to properly fold protein, initiating the unfolded protein response (UPR), and resulting in a loss of protein expression. In the current model of the unfolded protein response, the chaperone BiP modulates the activation of the UPR due to its interactions with the signaling protein Ire1p and newly synthesized proteins. In this research, 4−4−20 scFv variants were generated by rational design to alter BiP binding to newly synthesized scFv proteins or via directed evolution aimed at improved secretion. Interestingly, the predicted BiP binding ability did not correlate significantly with the unfolded protein response. However, pulse-chase analysis of scFv fate revealed that mutants with a decreased ER residence time were more highly secreted, indicating that improved protein folding was more likely the cause for improved secretion. In fact, decreased secretion correlated with increased binding by BiP, as determined by co-immune precipitation studies. This suggests that the algorithm is not useful for in vivo prediction of variants, and that in vivo screens are more effective for finding variants with improved properties. PMID:19415776

  5. Glycosylation modulates arenavirus glycoprotein expression and function

    SciTech Connect

    Bonhomme, Cyrille J. Capul, Althea A. Lauron, Elvin J. Bederka, Lydia H. Knopp, Kristeene A. Buchmeier, Michael J.

    2011-01-20

    The glycoprotein of lymphocytic choriomeningitis virus (LCMV) contains nine potential N-linked glycosylation sites. We investigated the function of these N-glycosylations by using alanine-scanning mutagenesis. All the available sites were occupied on GP1 and two of three on GP2. N-linked glycan mutations at positions 87 and 97 on GP1 resulted in reduction of expression and absence of cleavage and were necessary for downstream functions, as confirmed by the loss of GP-mediated fusion activity with T87A and S97A mutants. In contrast, T234A and E379N/A381T mutants impaired GP-mediated cell fusion without altered expression or processing. Infectivity via virus-like particles required glycans and a cleaved glycoprotein. Glycosylation at the first site within GP2, not normally utilized by LCMV, exhibited increased VLP infectivity. We also confirmed the role of the N-linked glycan at position 173 in the masking of the neutralizing epitope GP-1D. Taken together, our results indicated a strong relationship between fusion and infectivity.

  6. Diversity in Protein Glycosylation among Insect Species

    PubMed Central

    Vandenborre, Gianni; Smagghe, Guy; Ghesquière, Bart; Menschaert, Gerben; Nagender Rao, Rameshwaram; Gevaert, Kris; Van Damme, Els J. M.

    2011-01-01

    Background A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. Methodology/Principal Findings In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin) affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum), the silkworm (Bombyx mori), the honeybee (Apis mellifera), the fruit fly (D. melanogaster) and the pea aphid (Acyrthosiphon pisum). To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. Conclusions/Significance The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed. PMID:21373189

  7. Glycosylation Substrate Specificity of Pseudomonas aeruginosa 1244 Pilin*S

    PubMed Central

    Horzempa, Joseph; Comer, Jason E.; Davis, Sheila A.; Castric, Peter

    2008-01-01

    The β-carbon of the Pseudomonas aeruginosa 1244 pilin C-terminal Ser is a site of glycosylation. The present study was conducted to determine the pilin structures necessary for glycosylation. It was found that although Thr could be tolerated at the pilin C terminus, the blocking of the Ser carboxyl group with the addition of an Ala prevented glycosylation. Pilin from strain PA103 was not glycosylated by P. aeruginosa 1244, even when the C-terminal residue was converted to Ser. Substituting the disulfide loop region of strain PA103 pilin with that of strain 1244 allowed glycosylation to take place. Neither conversion of 1244 pilin disulfide loop Cys residues to Ala nor the deletion of segments of this structure prevented glycosylation. It was noted that the PA103 pilin disulfide loop environment was electronegative, whereas that of strain 1244 pilin had an overall positive charge. Insertion of a positive charge into the PA103 pilin disulfide loop of a mutant containing Ser at the C terminus allowed glycosylation to take place. Extending the “tail” region of the PA103 mutant pilin containing Ser at its terminus resulted in robust glycosylation. These results suggest that the terminal Ser is the major pilin glycosylation recognition feature and that this residue cannot be substituted at its carboxyl group. Although no other specific recognition features are present, the pilin surface must be compatible with the reaction apparatus for glycosylation to occur. PMID:16286455

  8. [Construction of anti-B7-H4-scFv library and screening and identification of anti-B7-H4-scFv].

    PubMed

    Shao, Luanluan; Xu, Chaochao; Ji, Hongshuai; Mao, Weiping; Wang, Yingying; Liu, Xiaoqian; Zhu, Yanyan

    2016-09-01

    Objective To construct the ribosome display library of anti-B7-H4 extracellular domain, and select the antibody with high specificity. Methods The cDNA of B7-H4 extracellular domain was amplified from A549 cells by reverse transcription PCR (RT-PCR). To express ectodomains of B7-H4, the sequence of B7-H4 gene, which encodes the B7-H4 extracellular domains, was inserted into plasmid pET-28a(+). The purified recombinant protein of B7-H4 extracellular domain was used to immunize BALB/c mice. The total RNA was extracted from the spleen of BALB/c mice which had been immunized with B7-H4 recombinant protein. The genes of VH, Vκ and VH/Vκ were amplified separately by RT-PCR and splicing by overlap extension PCR (SOE-PCR). The gene of VH/ Vκ was ligated into pUM19-T vector and the ligated sample was transformed into competent E.coli DH5α. The resulting plasmid was isolated and then subjected to sequencing to verify the gene sequence. TNT(R)T7 Quick for PCR DNA kit was used to translate and screen the anti-B7-H4-scFv in vitro from the ribosome display library. Western blotting and an indirect ELISA were performed to detect the specificity of anti-B7-H4-scFv. Results The right sequences of VH, Vκ and VH/Vκ were acquired, which were 439, 680 and 1098 bp in length, respectively. The analysis of specificity demonstrated that the anti-B7-H4-scFv screened from the ribosome display library had a high specific combining ability with B7-H4. Conclusion The experiment has successively constructed the ribosome display library of anti-B7-H4 extracellular domain, and selected the anti-B7-H4-scFv which has a high specific binding ability with recombinant protein of B7-H4 extracelluar domain. PMID:27609584

  9. Lactonization-mediated glycosylations and their application to oligosaccharide synthesis.

    PubMed

    Kim, Kwan Soo; Jeon, Heung Bae

    2008-01-01

    The concept of lactonization-mediated and related glycosylations led us to develop new methods of glycosylation such as the 2'-carboxybenzyl (CB) glycoside method, the glycosyl pentenoate/phenylselenyl trifluoromethanesulfonate (PhSeOTf) method, and the glycosyl aryl phthalate method. Highly stereoselective beta-mannopyranosylations were achieved by employing the CB glycoside and the glycosyl pentenoate/PhSeOTf methods. The CB glycoside method was also utilized for stereoselective 2-deoxyglycosylation, beta-arabinofuranosylation, and alpha-galactofuranosylation. In addition, these lactonization-mediated methods of glycosylation were employed for the synthesis of complex oligosaccharides. In particular, the CB glycoside method was successfully applied to the synthesis of repeating oligosaccharide subunits of the O-polysaccharide of the lipopolysaccharide from Danish Helicobacter pylori strains and Escherichia coli 077, the synthesis of oligoarabinofuranosides in mycobacterial cell walls, and the total synthesis of antineoplastic agelagalastatin. PMID:18302265

  10. Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris.

    PubMed

    de la Cruz, Silvia; Alcocer, Marcos; Madrid, Raquel; García, Aina; Martín, Rosario; González, Isabel; García, Teresa

    2016-06-10

    The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470mgkg(-1). This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products. PMID:27085890

  11. Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris.

    PubMed

    de la Cruz, Silvia; Alcocer, Marcos; Madrid, Raquel; García, Aina; Martín, Rosario; González, Isabel; García, Teresa

    2016-06-10

    The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470mgkg(-1). This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products.

  12. Expression and Purification of the scFv from Hybridoma Cells Secreting a Monoclonal Antibody Against S Protein of PEDV

    PubMed Central

    Zhu, Qinghe; Guo, Donghua; Feng, Li

    2013-01-01

    The variable regions of the heavy chain (VH) and light chain (VL) were amplified by RT-PCR from the hybridoma 6E6, which secretes the monoclonal antibody against PEDV S protein. The VL and VH amplicons were combined using SOE-PCR by a 12 amino acid flexible linker (SSGGGGSGGGGS), which produced the scFv gene (named scFv/6E6). After sequence analysis, the scFv/6E6 gene was cloned into the prokaryotic expression vector pGEX-6p-1 with a GST-tag. The recombinant scFv/6E6 protein was successfully expressed in recombinant Escherichia coli by IPTG induction. Moreover, the recombinant scFv/6E6 protein was purified from the inclusion body form by the gel-cutting measure followed by electroelution and dialysis. The recombinant scFv/6E6 protein reported here will provide some basis for further antiviral drug research based on the scFv molecule. PMID:23600505

  13. [Congenital disorder of glycosylation type Ia (CDG Ia) - underdiagnosed entity?].

    PubMed

    Sätilä, Heli; Kuusela, Anna-Leena; Pietilä, Kati; Niinikoski, Harri; Keskinen, Päivi

    2016-01-01

    Congenital disorders of glycosylation (CDG) are a relatively recently identified group of multisystem disorders caused by defective glycosylation of N-glycosylated proteins. They mainly involve the central and peripheral nervous system, but other organ systems are involved as well. Type CDG Ia accounts for over 80% of cases, characterized by decreased activity of the enzyme phosphomannomutase caused by mutations in chromosome 16 PMM2 gene. Treatment of CDG Ia remains symptomatic.

  14. Spontaneous formation of bilayers and vesicles in mixtures of single-chain alkyl carboxylates: effect of pH and aging and cytotoxicity studies.

    PubMed

    Vlachy, N; Merle, C; Touraud, D; Schmidt, J; Talmon, Y; Heilmann, J; Kunz, W

    2008-09-16

    We report the observation of bilayer fragments, some of which close to form vesicles, over a large range of pH at room temperature from mixtures of single-chain biocompatible commercially available nontoxic alkyl carboxylic surfactants after neutralization with HCl. The pH at which the morphological transitions occur is varied only by changing the ratio between two surfactants: the alkyloligoethyleneoxide carboxylate and sodium laurate. The effect of aging of the mixed surfactant systems in the pH region desired for dermatologic application (4.5 < pH < 7) is also studied. Finally, we show results of cytotoxicity studies on the surfactant mixtures.

  15. Two Isostructural Coordination Polymers Showing Diverse Magnetic Behaviors: Weak Coupling (Ni(II)) and an Ordered Array of Single-Chain Magnets (Co(II)).

    PubMed

    Chen, Min; Zhao, Hui; Sañudo, E Carolina; Liu, Chun-Sen; Du, Miao

    2016-04-18

    Two isomorphic 3-D complexes with the formulas [M3(TPTA) (OH)2(H2O)4]n (M = Ni for 1 and Co for 2; H4TPTA = [1,1':4',1″-terphenyl]-2',3,3″,5'-tetracarboxylic acid) have been synthesized and magnetically characterized. Complexes 1 (Ni(II)) and 2 (Co(II)) have the same 1-D rod-shaped inorganic SBUs but exhibit significantly different magnetic properties. Complex 2(Co(II)) is a 3-D arrangement of a 1-D Co(II) single-chain magnet (SCM), while complex 1(Ni(II)) exhibits weak coupling. PMID:27022765

  16. Two Isostructural Coordination Polymers Showing Diverse Magnetic Behaviors: Weak Coupling (Ni(II)) and an Ordered Array of Single-Chain Magnets (Co(II)).

    PubMed

    Chen, Min; Zhao, Hui; Sañudo, E Carolina; Liu, Chun-Sen; Du, Miao

    2016-04-18

    Two isomorphic 3-D complexes with the formulas [M3(TPTA) (OH)2(H2O)4]n (M = Ni for 1 and Co for 2; H4TPTA = [1,1':4',1″-terphenyl]-2',3,3″,5'-tetracarboxylic acid) have been synthesized and magnetically characterized. Complexes 1 (Ni(II)) and 2 (Co(II)) have the same 1-D rod-shaped inorganic SBUs but exhibit significantly different magnetic properties. Complex 2(Co(II)) is a 3-D arrangement of a 1-D Co(II) single-chain magnet (SCM), while complex 1(Ni(II)) exhibits weak coupling.

  17. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  18. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  19. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  20. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  1. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diabetes and to determine the proper insulin dosage for a patient. Elevated levels of glycosylated hemoglobin indicate uncontrolled diabetes in a patient. (b) Classification. Class II (performance standards)....

  2. A Propos of Glycosyl Cations and the Mechanism of Chemical Glycosylation; the Current State of the Art

    PubMed Central

    Bohé, Luis

    2014-01-01

    An overview of recent advances in glycosylation with particular emphasis on mechanism is presented. The mounting evidence for both the existence of glycosyl oxocarbenium ions as fleeting intermediates in some reactions, and the crucial role of the associated in counter ion in others is discussed. The extremes of the SN1 and SN2 manifolds for the glycosylation reaction are bridged by a continuum of mechanisms in which it appears likely that most examples are located. PMID:25108484

  3. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art.

    PubMed

    Bohé, Luis; Crich, David

    2015-02-11

    An overview of recent advances in glycosylation with particular emphasis on mechanism is presented. The mounting evidence for both the existence of glycosyl oxocarbenium ions as fleeting intermediates in some reactions, and the crucial role of the associated counterion in others is discussed. The extremes of the SN1 and SN2 manifolds for the glycosylation reaction are bridged by a continuum of mechanisms in which it appears likely that most examples are located.

  4. Single-chain protein mimetics of the N-terminal heptad-repeat region of gp41 with potential as anti–HIV-1 drugs

    PubMed Central

    Crespillo, Sara; Cámara-Artigas, Ana; Casares, Salvador; Morel, Bertrand; Cobos, Eva S.; Mateo, Pedro L.; Mouz, Nicolas; Martin, Christophe E.; Roger, Marie G.; El Habib, Raphaelle; Su, Bin; Moog, Christiane; Conejero-Lara, Francisco

    2014-01-01

    During HIV-1 fusion to the host cell membrane, the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) of the envelope subunit gp41 become transiently exposed and accessible to fusion inhibitors or Abs. In this process, the NHR region adopts a trimeric coiled-coil conformation that can be a target for therapeutic intervention. Here, we present an approach to rationally design single-chain protein constructs that mimic the NHR coiled-coil surface. The proteins were built by connecting with short loops two parallel NHR helices and an antiparallel one with the inverse sequence followed by engineering of stabilizing interactions. The constructs were expressed in Escherichia coli, purified with high yield, and folded as highly stable helical coiled coils. The crystal structure of one of the constructs confirmed the predicted fold and its ability to accurately mimic an exposed gp41 NHR surface. These single-chain proteins bound to synthetic CHR peptides with very high affinity, and furthermore, they showed broad inhibitory activity of HIV-1 fusion on various pseudoviruses and primary isolates. PMID:25489108

  5. The effect of secondary structures on the NLO properties of single chain oligopeptides: a comparison between β-strand and α-helix polyglycines.

    PubMed

    Alparone, Andrea

    2013-08-21

    The evolution of the electronic first-order longitudinal hyperpolarizability (βzzz) and the hyperpolarizability aligned along the direction of the dipole moment (βμ) of the α-helix and β-strand single chain H2N-(CH2-CO-NH)n-CH2-COOH (n = 1-9) oligoglycines, were investigated. For this purpose we have used Hartree-Fock, second-order Møller-Plesset perturbation theory and Coulomb-attenuating Density Functional Theory computations. For the longest chain, βμ(β-strand) is one order of magnitude greater than βμ(α-helix), due to the cooperative effect of the α-helices being unfavourable for the NLO properties. The βzzz and βμ values per unit cell of the β-strand conformation were determined, extrapolating the properties in the limit of the polymer. The calculated βzzz values were elucidated using the two-state model involving the characteristic π-π* NV1 electronic transition of peptides. Single chain β-strand polyglycines can be discriminated from the α-helices using second-order NLO effects.

  6. Glycosylation of plant produced human antibodies.

    PubMed

    Kallolimath, Somanath; Steinkellner, Herta

    2015-12-23

    Human immunoglobulins circulate as highly heterogeneously glycosylated mixture of otherwise homogeneous protein backbones. A series of studies, mainly on IgG, have unequivocally proven that antibodies modulate their effector function through sugars present in the Fc domain. However, our limited technology in producing complex proteins such as antibodies, with defined glycan structures hamper in depths studies. This review introduces a plant based expression platform enabling engineering of antibody glycans. The procedure is based on the simultaneous delivery of appropriate constructs, carrying cDNAs of target proteins (e.g. heavy and light chain of antibodies) in combination with human glycosylation enzymes into plant leaves. Harvesting of recombinant proteins one week post construct delivery allows high speed and flexibility. Major achievements include the production of functional active slialylated pentameric IgMs in tobacco leaves. The system provides a viable approach to the generation of antibodies with defined glycoforms on demand, contributing to studies on antibody glycans and the development of novel antibody based drugs. PMID:27472861

  7. Altered Tumor-Cell Glycosylation Promotes Metastasis

    PubMed Central

    Häuselmann, Irina; Borsig, Lubor

    2014-01-01

    Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompass aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor-cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor-cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors – lectins. In this review, we will discuss current concepts how tumor-cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins, and selectins. Siglecs are present on virtually all hematopoietic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor-cell survival. Selectins are vascular adhesion receptors that promote tumor-cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis, and aid to develop clinical strategies to prevent metastasis. PMID:24592356

  8. Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels.

    PubMed

    Greene, Eric R; Himmel, Michael E; Beckham, Gregg T; Tan, Zhongping

    2015-01-01

    Cellulose in plant cell walls is the largest reservoir of renewable carbon on Earth. The saccharification of cellulose from plant biomass into soluble sugars can be achieved using fungal and bacterial cellulolytic enzymes, cellulases, and further converted into fuels and chemicals. Most fungal cellulases are both N- and O-glycosylated in their native form, yet the consequences of glycosylation on activity and structure are not fully understood. Studying protein glycosylation is challenging as glycans are extremely heterogeneous, stereochemically complex, and glycosylation is not under direct genetic control. Despite these limitations, many studies have begun to unveil the role of cellulase glycosylation, especially in the industrially relevant cellobiohydrolase from Trichoderma reesei, Cel7A. Glycosylation confers many beneficial properties to cellulases including enhanced activity, thermal and proteolytic stability, and structural stabilization. However, glycosylation must be controlled carefully as such positive effects can be dampened or reversed. Encouragingly, methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production. PMID:26613815

  9. Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels.

    PubMed

    Greene, Eric R; Himmel, Michael E; Beckham, Gregg T; Tan, Zhongping

    2015-01-01

    Cellulose in plant cell walls is the largest reservoir of renewable carbon on Earth. The saccharification of cellulose from plant biomass into soluble sugars can be achieved using fungal and bacterial cellulolytic enzymes, cellulases, and further converted into fuels and chemicals. Most fungal cellulases are both N- and O-glycosylated in their native form, yet the consequences of glycosylation on activity and structure are not fully understood. Studying protein glycosylation is challenging as glycans are extremely heterogeneous, stereochemically complex, and glycosylation is not under direct genetic control. Despite these limitations, many studies have begun to unveil the role of cellulase glycosylation, especially in the industrially relevant cellobiohydrolase from Trichoderma reesei, Cel7A. Glycosylation confers many beneficial properties to cellulases including enhanced activity, thermal and proteolytic stability, and structural stabilization. However, glycosylation must be controlled carefully as such positive effects can be dampened or reversed. Encouragingly, methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.

  10. Negative Effects of Low Dose Atrazine Exposure on the Development of Effective Immunity to FV3 in Xenopus laevis

    PubMed Central

    Sifkarovski, Jason; Grayfer, Leon; De Jesús Andino, Francisco; Lawrence, B. Paige; Robert, Jacques

    2014-01-01

    The recent dramatic increase of the prevalence and range of amphibian host species and populations infected by ranaviruses such as Frog Virus 3 (FV3) raises concerns about the efficacies of amphibian antiviral immunity. In this context, the potential negative effects of water contaminants such as the herbicide atrazine, at environmentally relevant levels, on host antiviral immunity remains unclear. Here we describe the use of the amphibian Xenopus laevis as an ecotoxiciology platform to elucidate the consequences of exposure to ecologically relevant doses of atrazine on amphibian antiviral immunity. X. laevis were exposed at tadpole and adult stages as well as during metamorphosis to atrazine (range from 0.1 to 10.0 ppb) prior to infection with FV3. Quantitative analysis of gene expression revealed significant changes in the pro-inflammatory cytokine, TNF-α and the antiviral type I IFN gene in response to FV3 infection. This was most marked in tadpoles that were exposed to atrazine at doses as low 0.1 ppb. Furthermore, atrazine exposure significantly compromised tadpole survival following FV3 infections. In contrast, acute atrazine exposure of mature adult frogs did not induce detectable effects on anti-FV3 immunity, but adults that were exposed to atrazine during metamorphosis exhibited pronounced defects in FV3-induced TNF-α gene expression responses and slight diminution in type I IFN gene induction. Thus, even at low doses, atrazine exposure culminates in impaired development of amphibian antiviral defenses. PMID:24984115

  11. Negative effects of low dose atrazine exposure on the development of effective immunity to FV3 in Xenopus laevis.

    PubMed

    Sifkarovski, Jason; Grayfer, Leon; De Jesús Andino, Francisco; Lawrence, B Paige; Robert, Jacques

    2014-11-01

    The recent dramatic increase of the prevalence and range of amphibian host species and populations infected by ranaviruses such as Frog Virus 3 (FV3) raises concerns about the efficacies of amphibian antiviral immunity. In this context, the potential negative effects of water contaminants such as the herbicide atrazine, at environmentally relevant levels, on host antiviral immunity remains unclear. Here we describe the use of the amphibian Xenopus laevis as an ecotoxicology platform to elucidate the consequences of exposure to ecologically relevant doses of atrazine on amphibian antiviral immunity. X. laevis were exposed at tadpole and adult stages as well as during metamorphosis to atrazine (range from 0.1 to 10.0 ppb) prior to infection with FV3. Quantitative analysis of gene expression revealed significant changes in the pro-inflammatory cytokine, TNF-α and the antiviral type I IFN gene in response to FV3 infection. This was most marked in tadpoles that were exposed to atrazine at doses as low 0.1 ppb. Furthermore, atrazine exposure significantly compromised tadpole survival following FV3 infections. In contrast, acute atrazine exposure of mature adult frogs did not induce detectable effects on anti-FV3 immunity, but adults that were exposed to atrazine during metamorphosis exhibited pronounced defects in FV3-induced TNF-α gene expression responses and slight diminution in type I IFN gene induction. Thus, even at low doses, atrazine exposure culminates in impaired development of amphibian antiviral defenses.

  12. The Fusarium virguliforme toxin FvTox1 causes foliar sudden death syndrome-like symptoms in soybean.

    PubMed

    Brar, Hargeet K; Swaminathan, Sivakumar; Bhattacharyya, Madan K

    2011-10-01

    Fusarium virguliforme causes sudden death syndrome (SDS) in soybean. The pathogen has never been isolated from diseased foliar tissues; therefore, one or more toxins have been considered to cause foliar SDS development. Cell-free F. virguliforme culture filtrates containing a toxin causes foliar SDS in soybean. A low-molecular-weight protein of approximately 13.5 kDa (FvTox1), purified from F. virguliforme culture filtrates, produces foliar SDS-like symptoms in cut soybean seedlings. Anti-FvTox1 monoclonal antibodies raised against the purified FvTox1 were used in isolating the FvTox1 gene. In the presence of light, recombinant FvTox1 protein expressed in an insect cell line resulted in chlorosis and necrosis in soybean leaf disks that are typical foliar SDS symptoms. SDS-susceptible but not the SDS-resistant soybean lines were sensitive to the baculovirus-expressed toxin. The requirement of light for foliar SDS-like symptom development indicates that FvTox1 induces foliar SDS in soybean, most likely through production of free radicals by interrupting photosynthesis. PMID:21635141

  13. A selective and mild glycosylation method of natural phenolic alcohols

    PubMed Central

    Poláková, Monika

    2016-01-01

    Summary Several bioactive natural p-hydroxyphenylalkyl β-D-glucopyranosides, such as vanillyl β-D-glucopyranoside, salidroside and isoconiferin, and their glycosyl analogues were prepared by a simple reaction sequence. The highly efficient synthetic approach was achieved by utilizing acetylated glycosyl bromides as well as aromatic moieties and mild glycosylation promoters. The aglycones, p-O-acetylated arylalkyl alcohols, were prepared by the reduction of the corresponding acetylated aldehydes or acids. Various stereoselective 1,2-trans-O-glycosylation methods were studied, including the DDQ–iodine or ZnO–ZnCl2 catalyst combination. Among them, ZnO–iodine has been identified as a new glycosylation promoter and successfully applied to the stereoselective glycoside synthesis. The final products were obtained by conventional Zemplén deacetylation. PMID:27340444

  14. The genetics of glycosylation in Gram-negative bacteria.

    PubMed

    Power, P M; Jennings, M P

    2003-01-28

    In recent years there has been a dramatic increase in reports of glycosylation of proteins in various Gram-negative systems including Neisseria meningitidis, Neisseria gonorrhoeae, Campylobacter jejuni, Pseudomonas aeruginosa, Escherichia coli, Caulobacter crescentus, Aeromonas caviae and Helicobacter pylori. Although this growing list contains many important pathogens (reviewed by Benz and Schmidt [Mol. Microbiol. 45 (2002) 267-276]) and the glycosylations are found on proteins important in pathogenesis such as pili, adhesins and flagella the precise role(s) of the glycosylation of these proteins remains to be determined. Furthermore, the details of the glycosylation biosynthetic process have not been determined in any of these systems. The definition of the precise role of glycosylation and the mechanism of biosynthesis will be facilitated by a detailed understanding of the genes involved. PMID:12586395

  15. Display and selection of scFv antibodies on HEK-293T cells

    PubMed Central

    Ho, Mitchell; Pastan, Ira

    2009-01-01

    We describe a human cell display strategy to isolate high affinity single chain antibody fragments (scFvs) specific for CD22 for the treatment of B-cell malignancies. Our strategy uses flow cytometry and human embryonic kidney 293T (HEK-293T) cells that are widely used for transient protein expression. Flow cytometry enhances the screen's sensitivity thereby allowing us to isolate high affinity scFvs. Using human cell display one could isolate and engineer scFvs, single domains, Fabs or whole IgGs for increased affinity and other biological functions. PMID:19554290

  16. Isolation of novel single-chain Cro proteins targeted for binding to the bcl-2 transcription initiation site by repertoire selection and subunit combinatorics.

    PubMed

    Jonas, Kristina; Van Der Vries, Erhard; Nilsson, Mikael T I; Widersten, Mikael

    2005-11-01

    New designed DNA-binding proteins may be recruited to act as transcriptional regulators and could provide new therapeutic agents in the treatment of genetic disorders such as cancer. We have isolated tailored DNA-binding proteins selected for affinity to a region spanning the transcription initiation site of the human bcl-2 gene. The proteins were derived from a single-chain derivative of the lambda Cro protein (scCro), randomly mutated in its recognition helices to construct libraries of protein variants of distinct DNA-binding properties. By phage display-afforded affinity selections combined with recombination of shuffled subunits, protein variants were isolated, which displayed high affinity for the target bcl-2 sequence, as determined by electrophoretic mobility shift and biosensor assays. The proteins analyzed were moderately sequence-specific but provide a starting point for further maturation of desired function.

  17. Tunable crossover between one- and three-dimensional magnetic dynamics in C oII single-chain magnets organized by halogen bonding

    NASA Astrophysics Data System (ADS)

    Amjad, A.; Clemente-Juan, J. M.; Coronado, E.; Luis, F.; Evangelisti, M.; Espallargas, G. Mínguez; del Barco, E.

    2016-06-01

    Low-temperature magnetometry, ac susceptibility, and calorimetry have been employed to study Co-based single-chain magnets (SCMs) organized through halogen bonding. Magnetic hysteresis and maxima in the dc and ac susceptibilities, respectively, confirm the SCM behavior of the system. Several characteristic magnetic relaxation regimes are observed at different temperatures, which can be associated with both intra- and interchain exchange interactions. Remarkably, tweaking the rate at which an external magnetic field is swept along the axis of the chains enables a controlled transition between the one- and three-dimensional dynamics. Experiments on an isostructural Co-based SCM system crystallized with different halogens do not show three-dimensional dynamics, illustrating the importance of halogen bonding on the control of interchain interactions.

  18. Fe2+-Ti4+ vs. Fe2+-Fe3+ charge-transfer and short-range order in single chains of face-sharing octahedra: ellenbergerite and dumortierite

    NASA Astrophysics Data System (ADS)

    Chopin, C.; Langer, K.; Khomenko, V.

    2009-04-01

    In zoned pyrope megacrysts from the Dora-Maira UHP terrane, new, dark-violet colour varieties of the hexagonal, high-pressure silicate ellenbergerite extend the range of known Fe contents for this mineral from 0-0.1 to 0-0.4 atom pfu, for Ti contents commonly in the range 0.2-0.4 pfu. The new varieties show an extremely intense pleochroism, colourless for E perpendicular to c to deep Prussian blue for E//c, as compared to colourless to lilac or reddish purple for classical Fe-poor ellenbergerite. These features were the incentive for an electronic absorption spectroscopic study and a reappraisal of the interpretation of the charge transfers (CT), colour and ordering schemes in this group and the structurally related borosilicate dumortierite. Both structures are characterized by the presence of infinite single chains of face-sharing, partly vacant octahedra along the 6-fold screw axis and pseudo-hexad axis, respectively, in which the Fe and Ti atoms are partitioned. In the spectra of Fe-poor ellenbergerite, the presence of a single Fe2+-Ti4+ CT band near 19000 cm˘1 was taken as evidence for complete short-range ordering of Mg(Fe), Ti and vacancies in the octahedral single chain [1]. The E//c spectra of Fe-rich ellenbergerite show the same absorption band near 19000 cm˘1 but consistently flanked by another CT band near 14000 cm˘1 , the intensity of which increases with total Fe content. The latter is similar to the 12400 cm˘1 CT band observed as the single feature in E//c spectra of the isotructural (Ti-free and Fe-bearing) phosphoellenbergerite, and clearly assigned to Fe2+-Fe3+ CT in the octahedral single chain [1]. The same colour pattern occurs in the dumortierite group, with red Fe-poor, Ti-rich crystals showing a single CT band near 20000 cm˘1, blue Ti-poor crystals showing a single CT band near 16500 cm˘1, and violet Fe- and Ti-rich crystals showing a combination of the two bands [2]. In the light of the new data, we reinterpret the dumortierite colour

  19. Recent developments in glycosyl urea synthesis.

    PubMed

    McKay, Matthew J; Nguyen, Hien M

    2014-02-19

    The area of sugar urea derivatives has received considerable attention in recent years because of the unique structural properties and activities that these compounds display. The urea-linkage at the anomeric center is a robust alternative to the naturally occurring O- and N-glycosidic linkages of oligosaccharides and glycoconjugates, and the natural products that have been identified to contain these structures show remarkable biological activity. While methods for installing the β-urea-linkage at the anomeric center have been around for decades, the first synthesis of α-urea glycosides has been much more recent. In either case, the selective synthesis of glycosyl ureas can be quite challenging, and a mixture of α- and β-isomers will often result. This paper will provide a comprehensive review of the synthetic approaches to α- and β-urea glycosides and examine the structure and activity of the natural products and their analogues that have been identified to contain them.

  20. Structural and Functional Characterization of a Single-chain Peptide-MHC Molecule that Modulates both Naive and Activated CD8plus T Cells

    SciTech Connect

    D Samanta; G Mukherjee; U Ramagopal; R Chaparro; S Nathenson; T DiLorenzo; S Almo

    2011-12-31

    Peptide-MHC (pMHC) multimers, in addition to being tools for tracking and quantifying antigen-specific T cells, can mediate downstream signaling after T-cell receptor engagement. In the absence of costimulation, this can lead to anergy or apoptosis of cognate T cells, a property that could be exploited in the setting of autoimmune disease. Most studies with class I pMHC multimers used noncovalently linked peptides, which can allow unwanted CD8{sup +} T-cell activation as a result of peptide transfer to cellular MHC molecules. To circumvent this problem, and given the role of self-reactive CD8{sup +} T cells in the development of type 1 diabetes, we designed a single-chain pMHC complex (scK{sup d}.IGRP) by using the class I MHC molecule H-2K{sup d} and a covalently linked peptide derived from islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP{sub 206-214}), a well established autoantigen in NOD mice. X-ray diffraction studies revealed that the peptide is presented in the groove of the MHC molecule in canonical fashion, and it was also demonstrated that scK{sup d}.IGRP tetramers bound specifically to cognate CD8{sup +} T cells. Tetramer binding induced death of naive T cells and in vitro- and in vivo-differentiated cytotoxic T lymphocytes, and tetramer-treated cytotoxic T lymphocytes showed a diminished IFN-{gamma} response to antigen stimulation. Tetramer accessibility to disease-relevant T cells in vivo was also demonstrated. Our study suggests the potential of single-chain pMHC tetramers as possible therapeutic agents in autoimmune disease. Their ability to affect the fate of naive and activated CD8{sup +} T cells makes them a potential intervention strategy in early and late stages of disease.

  1. ECM Proteins Glycosylation and Relation to Diabetes

    NASA Astrophysics Data System (ADS)

    Pernodet, Nadine; Bloomberg, Ayla; Sood, Vandana; Slutsky, Lenny; Ge, Shouren; Clark, Richard; Rafailovich, Miriam

    2004-03-01

    The chemical modification and crosslinking of proteins by sugar glycosylation contribute to the aging of tissue proteins, and acceleration of this reaction during hyperglycemia is implicated in the pathogenesis of diabetic complications, such as disorder of the wound healing. Advanced glycation endproducts (AGEs) formation and protein crosslinking are irreversible processes that alter the structural and functional properties of proteins, lipid components and nucleic acids. And the mechanism, by which it happens, is not clear. Fibrinogen and fibronectin are plasma proteins, which play a major role in human wound healing. Fibrinogen converts to an insoluble fibrin "gel" following a cut, which eventually forms a clot to prevent blood loss, to direct cell adhesion and migration for forming scars. Fibronectin is a critical protein for cell adhesion and migration in wound healing. The effects of glucose on the binding of these plasma proteins from the extra cellular matrix (ECM) were followed at different concentrations by atomic force microscopy and lateral force modulation to measure the mechanical response of the samples. Glucose solutions (1, 2, and 3mg/mL) were incubated with the protein (100 mg/ml) and silicon (Si) substrates spun with sulfonated polystyrene (SPS) 28% for five days. Data showed that not only the organization of the protein on the surface was affected but also its mechanical properties. At 3 mg/mL glucose, Fn fibers were observed to be harder than those of the control, in good agreement with our hypothesis that glycosylation hardens tissues by crosslinking of proteins in the ECM and might cause fibers to break more easily.

  2. N-glycosylation of Colorectal Cancer Tissues

    PubMed Central

    Balog, Crina I. A.; Stavenhagen, Kathrin; Fung, Wesley L. J.; Koeleman, Carolien A.; McDonnell, Liam A.; Verhoeven, Aswin; Mesker, Wilma E.; Tollenaar, Rob A. E. M.; Deelder, André M.; Wuhrer, Manfred

    2012-01-01

    Colorectal cancer is the third most common cancer worldwide with an annual incidence of ∼1 million cases and an annual mortality rate of ∼655,000 individuals. There is an urgent need for identifying novel targets to develop more sensitive, reliable, and specific tests for early stage detection of colon cancer. Post-translational modifications are known to play an important role in cancer progression and immune surveillance of tumors. In the present study, we compared the N-glycan profiles from 13 colorectal cancer tumor tissues and corresponding control colon tissues. The N-glycans were enzymatically released, purified, and labeled with 2-aminobenzoic acid. Aliquots were profiled by hydrophilic interaction liquid chromatography (HILIC-HPLC) with fluorescence detection and by negative mode MALDI-TOF-MS. Using partial least squares discriminant analysis to investigate the N-glycosylation changes in colorectal cancer, an excellent separation and prediction ability were observed for both HILIC-HPLC and MALDI-TOF-MS data. For structure elucidation, information from positive mode ESI-ion trap-MS/MS and negative mode MALDI-TOF/TOF-MS was combined. Among the features with a high separation power, structures containing a bisecting GlcNAc were found to be decreased in the tumor, whereas sulfated glycans, paucimannosidic glycans, and glycans containing a sialylated Lewis type epitope were shown to be increased in tumor tissues. In addition, core-fucosylated high mannose N-glycans were detected in tumor samples. In conclusion, the combination of HILIC and MALDI-TOF-MS profiling of N-glycans with multivariate statistical analysis demonstrated its potential for identifying N-glycosylation changes in colorectal cancer tissues and provided new leads that might be used as candidate biomarkers. PMID:22573871

  3. Selection of affinity-improved neutralizing human scFv against HBV PreS1 from CDR3 VH/VL mutant library.

    PubMed

    Chen, YanMin; Bai, Yin; Guo, XiaoChen; Wang, WenFei; Zheng, Qi; Wang, FuXiang; Sun, Dejun; Li, DeShan; Ren, GuiPing; Yin, JieChao

    2016-07-01

    A CDR3 mutant library was constructed from a previously isolated anti-HBV neutralizing Homo sapiens scFv-31 template by random mutant primers PCR. Then the library was displayed on the inner membrane surface in Escherichia coli periplasmic space. Seven scFv clones were isolated from the mutant library through three rounds of screening by flow cytometry. Competition ELISA assay indicates that isolated scFv fragments show more efficient binding ability to HBV PreS1 compared with parental scFv-31. HBV neutralization assay indicated that two clones (scFv-3 and 59) show higher neutralizing activity by blocking the HBV infection to Chang liver cells. Our method provides a new strategy for rapid screening of mutant antibody library for affinity-enhanced scFv clones and the neutralizing scFvs obtained from this study provide a potential alternative of Hepatitis B immune globulin.

  4. Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations.

    PubMed

    Hellwig, S; Emde, F; Raven, N P; Henke, M; van Der Logt, P; Fischer, R

    2001-08-20

    In the last few years the Pichia pastoris expression system has been gaining more and more interest for the expression of recombinant proteins. Many groups have employed fermentation technology in their investigations because the system is fairly easy to scale up and suitable for the production in the milligram to gram range. A large number of heterologous proteins from different sources has been expressed, but the fermentation process technology has been investigated to a lesser extent. A large number of fermentations are carried out in standard bioreactors that may be insufficiently equipped to meet the demands of high-cell-density fermentations of methylotrophic yeasts. In particular, the lack of on-line methanol analysis leads to fermentation protocols that may impair the optimal expression of the desired products. We have used a commercially available methanol sensor to investigate in detail the effects of supplementary glycerol feeding while maintaining a constant methanol concentration during the induction of a Mut(+) strain of Pichia pastoris. Specific glycerol feed rates in the range of 38-4.2 mg. g(-1). h(-1) (mg glycerol per gram fresh weight per hour) were investigated. Expression of the recombinant scFv antibody fragment was only observed at specific feed rates below 6 mg. g(-1). h(-1). At low specific feed rates, growth was even lower than with methanol as the sole carbon source and the harvest expression level of the scFv was only half of that found in the control fermentation. These results show that glycerol inhibits expression driven by the AOX1 promoter even at extremely limited availability and demonstrate the benefits of on-line methanol control in Pichia fermentation research.

  5. Targeted delivery of CXCR4-siRNA by scFv for HER2(+) breast cancer therapy.

    PubMed

    Jiang, Kuo; Li, Jia; Yin, Jipeng; Ma, Qiong; Yan, Bo; Zhang, Xiang; Wang, Lei; Wang, Lifeng; Liu, Tao; Zhang, Yinglong; Fan, Qingyu; Yang, Angang; Qiu, Xiuchun; Ma, Baoan

    2015-08-01

    Therapeutics based on short interfering RNAs (siRNAs) have great potential to treat human diseases. However, the clinical application of siRNAs has been limited by their poor intracellular uptake, low serum stability, and inability to target specific cells. In this study, we addressed this lack of specificity by synthesizing a molecularly targeted CXCR4-siRNA (CXCR4si) for the treatment of HER2(+) breast cancers using a HER2-scFv-arginine nonamer peptide fusion protein (e23sFv-9R) as an siRNA carrier. The e23sFv-9R binding siRNA is able to specifically deliver the siRNA to HER2(+) breast cancer cells and concentrate and persist in orthotopic HER2(+) breast cancer xenografts for at least 36 h. CXCR4si delivered by e23sFv-9R inhibited CXCR4 gene expression, reduced proliferation and metastasis and induced apoptosis in the HER2(+) breast cancer BT-474 cell line in vitro. Moreover, the systemic delivery of CXCR4si by e23sFv-9R is able to suppress tumor growth, reduce metastasis and prolong survival in mice bearing HER2(+) xenografts. This approach causes no systemic toxicity and does not activate the innate immune response, suggesting that a fusion protein carrying CXCR4si shows promise in the treatment of HER2-overexpressing breast cancer. PMID:25956853

  6. FV-162 is a novel, orally bioavailable, irreversible proteasome inhibitor with improved pharmacokinetics displaying preclinical efficacy with continuous daily dosing.

    PubMed

    Wang, Z; Dove, P; Wang, X; Shamas-Din, A; Li, Z; Nachman, A; Oh, Y J; Hurren, R; Ruschak, A; Climie, S; Press, B; Griffin, C; Undzys, E; Aman, A; Al-awar, R; Kay, L E; O'Neill, D; Trudel, S; Slassi, M; Schimmer, A D

    2015-01-01

    Approved proteasome inhibitors have advanced the treatment of multiple myeloma but are associated with serious toxicities, poor pharmacokinetics, and most with the inconvenience of intravenous administration. We therefore sought to identify novel orally bioavailable proteasome inhibitors with a continuous daily dosing schedule and improved therapeutic window using a unique drug discovery platform. We employed a fluorine-based medicinal chemistry technology to synthesize 14 novel analogs of epoxyketone-based proteasome inhibitors and screened them for their stability, ability to inhibit the chymotrypsin-like proteasome, and antimyeloma activity in vitro. The tolerability, pharmacokinetics, pharmacodynamic activity, and antimyeloma efficacy of our lead candidate were examined in NOD/SCID mice. We identified a tripeptide epoxyketone, FV-162, as a metabolically stable, potent proteasome inhibitor cytotoxic to human myeloma cell lines and primary myeloma cells. FV-162 had limited toxicity and was well tolerated on a continuous daily dosing schedule. Compared with the benchmark oral irreversible proteasome inhibitor, ONX-0192, FV-162 had a lower peak plasma concentration and longer half-life, resulting in a larger area under the curve (AUC). Oral FV-162 treatment induced rapid, irreversible inhibition of chymotrypsin-like proteasome activity in murine red blood cells and inhibited tumor growth in a myeloma xenograft model. Our data suggest that oral FV-162 with continuous daily dosing schedule displays a favorable safety, efficacy, and pharmacokinetic profile in vivo, identifying it as a promising lead for clinical evaluation in myeloma therapy.

  7. Fab-dsFv: A bispecific antibody format with extended serum half-life through albumin binding

    PubMed Central

    Davé, Emma; Adams, Ralph; Zaccheo, Oliver; Carrington, Bruce; Compson, Joanne E.; Dugdale, Sarah; Airey, Michael; Malcolm, Sarah; Hailu, Hanna; Wild, Gavin; Turner, Alison; Heads, James; Sarkar, Kaushik; Ventom, Andrew; Marshall, Diane; Jairaj, Mark; Kopotsha, Tim; Christodoulou, Louis; Zamacona, Miren; Lawson, Alastair D.; Heywood, Sam; Humphreys, David P.

    2016-01-01

    ABSTRACT An antibody format, termed Fab-dsFv, has been designed for clinical indications that require monovalent target binding in the absence of direct Fc receptor (FcR) binding while retaining substantial serum presence. The variable fragment (Fv) domain of a humanized albumin-binding antibody was fused to the C-termini of Fab constant domains, such that the VL and VH domains were individually connected to the Cκ and CH1 domains by peptide linkers, respectively. The anti-albumin Fv was selected for properties thought to be desirable to ensure a durable serum half-life mediated via FcRn. The Fv domain was further stabilized by an inter-domain disulfide bond. The bispecific format was shown to be thermodynamically and biophysically stable, and retained good affinity and efficacy to both antigens simultaneously. In in vivo studies, the serum half-life of Fab-dsFv, 2.6 d in mice and 7.9 d in cynomolgus monkeys, was equivalent to Fab'-PEG. PMID:27532598

  8. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.

    PubMed

    Zhang, Yueping; Choi, Yoon-E; Zou, Xuexiao; Xu, Jin-Rong

    2011-02-01

    Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regulating diverse processes important for plant infection in phytopathogenic fungi, in this study we identified and functionally characterized the FvMK1 gene in F. verticillioides. FvMK1 is orthologous to FMK1 in F. oxysporum and GPMK1 in F. graminearum. The Fvmk1 deletion mutant was reduced in vegetative growth and production of microconidia. However, it was normal in sexual reproduction and increased in the production of macroconidia. In infection assays with developing corn kernels, the Fvmk1 mutant was non-pathogenic and failed to colonize through wounding sites. It also failed to cause stalk rot symptoms beyond the inoculation sites on corn stalks, indicating that FvMK1 is essential for plant infection. Furthermore, the Fvmk1 mutant was significantly reduced in fumonisin production and expression levels of FUM1 and FUM8, two genes involved in fumonisin biosynthesis. The defects of the Fvmk1 mutant were fully complemented by re-introducing the wild type FvMK1 allele. These results demonstrate that FvMK1 plays critical roles in the regulation of vegetative growth, asexual reproduction, fumonisin biosynthesis, and pathogenicity. PMID:20887797

  9. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.

    PubMed

    Zhang, Yueping; Choi, Yoon-E; Zou, Xuexiao; Xu, Jin-Rong

    2011-02-01

    Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regulating diverse processes important for plant infection in phytopathogenic fungi, in this study we identified and functionally characterized the FvMK1 gene in F. verticillioides. FvMK1 is orthologous to FMK1 in F. oxysporum and GPMK1 in F. graminearum. The Fvmk1 deletion mutant was reduced in vegetative growth and production of microconidia. However, it was normal in sexual reproduction and increased in the production of macroconidia. In infection assays with developing corn kernels, the Fvmk1 mutant was non-pathogenic and failed to colonize through wounding sites. It also failed to cause stalk rot symptoms beyond the inoculation sites on corn stalks, indicating that FvMK1 is essential for plant infection. Furthermore, the Fvmk1 mutant was significantly reduced in fumonisin production and expression levels of FUM1 and FUM8, two genes involved in fumonisin biosynthesis. The defects of the Fvmk1 mutant were fully complemented by re-introducing the wild type FvMK1 allele. These results demonstrate that FvMK1 plays critical roles in the regulation of vegetative growth, asexual reproduction, fumonisin biosynthesis, and pathogenicity.

  10. Lowering the isoelectric point of the Fv portion of recombinant immunotoxins leads to decreased nonspecific animal toxicity without affecting antitumor activity.

    PubMed

    Onda, M; Nagata, S; Tsutsumi, Y; Vincent, J J; Wang, Q; Kreitman, R J; Lee, B; Pastan, I

    2001-07-01

    Recombinant immunotoxins are genetically engineered proteins in which the Fv portion of an antibody is fused to a toxin. Our laboratory uses a 38-kDa form of Pseudomonas exotoxin A termed PE38 for this purpose. Clinical studies with immunotoxins targeting CD25 and CD22 have shown that dose-limiting side effects are attributable to liver damage and other inflammatory toxicities. We recently showed that mutating exposed surface neutral residues to acidic residues in the framework region of the Fv portion of an immunotoxin targeting CD25 [anti-Tac(scFv)-PE38] lowered its isoelectric point (pI) and decreased its toxicity in mice without impairing its cytotoxic or antitumor activities. We have now extended these studies and made mutations that change basic residues to neutral or acidic residues. Initially the pI of the mutant Fv (M1) of anti-Tac(scFv)-PE38 was decreased further. Subsequently, mutations were made in two other immunotoxins, SS1(dsFv)-PE38 targeting ovarian cancer and B3(dsFv)-PE38 targeting colon and breast cancers. We have found that all these mutant molecules fully retained specific target cell cytotoxicity and antitumor activity but were considerably less toxic to mice. Therefore, lowering the pI of the Fv may be a general approach to diminish the nonspecific toxicity of recombinant immunotoxins and other Fv fusion proteins without losing antitumor activity. PMID:11431343

  11. Glycosyl Dithiocarbamates: β-Selective Couplings without Auxiliary Groups

    PubMed Central

    2015-01-01

    In this article, we evaluate glycosyl dithiocarbamates (DTCs) with unprotected C2 hydroxyls as donors in β-linked oligosaccharide synthesis. We report a mild, one-pot conversion of glycals into β-glycosyl DTCs via DMDO oxidation with subsequent ring opening by DTC salts, which can be generated in situ from secondary amines and CS2. Glycosyl DTCs are readily activated with Cu(I) or Cu(II) triflate at low temperatures and are amenable to reiterative synthesis strategies, as demonstrated by the efficient construction of a tri-β-1,6-linked tetrasaccharide. Glycosyl DTC couplings are highly β-selective despite the absence of a preexisting C2 auxiliary group. We provide evidence that the directing effect is mediated by the C2 hydroxyl itself via the putative formation of a cis-fused bicyclic intermediate. PMID:24548247

  12. Stability-increasing effects of anthocyanin glycosyl acylation.

    PubMed

    Zhao, Chang-Ling; Yu, Yu-Qi; Chen, Zhong-Jian; Wen, Guo-Song; Wei, Fu-Gang; Zheng, Quan; Wang, Chong-De; Xiao, Xing-Lei

    2017-01-01

    This review comprehensively summarizes the existing knowledge regarding the chemical implications of anthocyanin glycosyl acylation, the effects of acylation on the stability of acylated anthocyanins and the corresponding mechanisms. Anthocyanin glycosyl acylation commonly refers to the phenomenon in which the hydroxyl groups of anthocyanin glycosyls are esterified by aliphatic or aromatic acids, which is synthetically represented by the acylation sites as well as the types and numbers of acyl groups. Generally, glycosyl acylation increases the in vitro and in vivo chemical stability of acylated anthocyanins, and the mechanisms primarily involve physicochemical, stereochemical, photochemical, biochemical or environmental aspects under specific conditions. Additionally, the acylation sites as well as the types and numbers of acyl groups influence the stability of acylated anthocyanins to different degrees. This review could provide insight into the optimization of the stability of anthocyanins as well as the application of suitable anthocyanins in food, pharmaceutical and cosmetic industries. PMID:27507456

  13. Analytical detection and characterization of biopharmaceutical glycosylation by MS.

    PubMed

    Oh, Myung Jin; Hua, Serenus; Kim, Unyong; Kim, Hyun Joong; Lee, Jua; Kim, Jae-Han; An, Hyun Joo

    2016-04-01

    Glycosylation plays an important role in ensuring the proper structure and function of most biotherapeutic proteins. Even small changes in glycan composition, structure, or location can have a drastic impact on drug safety and efficacy. Recently, glycosylation has become the subject of increased focus as biopharmaceutical companies rush to create not only biosimilars, but also biobetters based on existing biotherapeutic proteins. Against this backdrop of ongoing biopharmaceutical innovation, updated methods for accurate and detailed analysis of protein glycosylation are critical for biopharmaceutical companies and government regulatory agencies alike. This review summarizes current methods of characterizing biopharmaceutical glycosylation, including compositional mass profiling, isomer-specific profiling and structural elucidation by MS and hyphenated techniques. PMID:26964748

  14. Enhanced Aromatic Sequons Increase Oligosaccharyltransferase Glycosylation Efficiency and Glycan Homogeneity.

    PubMed

    Murray, Amber N; Chen, Wentao; Antonopoulos, Aristotelis; Hanson, Sarah R; Wiseman, R Luke; Dell, Anne; Haslam, Stuart M; Powers, David L; Powers, Evan T; Kelly, Jeffery W

    2015-08-20

    N-Glycosylation plays an important role in protein folding and function. Previous studies demonstrate that a phenylalanine residue introduced at the n-2 position relative to an Asn-Xxx-Thr/Ser N-glycosylation sequon increases the glycan occupancy of the sequon in insect cells. Here, we show that any aromatic residue at n-2 increases glycan occupancy in human cells and that this effect is dependent upon oligosaccharyltransferase substrate preferences rather than differences in other cellular processing events such as degradation or trafficking. Moreover, aromatic residues at n-2 alter glycan processing in the Golgi, producing proteins with less complex N-glycan structures. These results demonstrate that manipulating the sequence space surrounding N-glycosylation sequons is useful both for controlling glycosylation efficiency, thus enhancing glycan occupancy, and for influencing the N-glycan structures produced. PMID:26190824

  15. Glycosyl dithiocarbamates: β-selective couplings without auxiliary groups.

    PubMed

    Padungros, Panuwat; Alberch, Laura; Wei, Alexander

    2014-03-21

    In this article, we evaluate glycosyl dithiocarbamates (DTCs) with unprotected C2 hydroxyls as donors in β-linked oligosaccharide synthesis. We report a mild, one-pot conversion of glycals into β-glycosyl DTCs via DMDO oxidation with subsequent ring opening by DTC salts, which can be generated in situ from secondary amines and CS2. Glycosyl DTCs are readily activated with Cu(I) or Cu(II) triflate at low temperatures and are amenable to reiterative synthesis strategies, as demonstrated by the efficient construction of a tri-β-1,6-linked tetrasaccharide. Glycosyl DTC couplings are highly β-selective despite the absence of a preexisting C2 auxiliary group. We provide evidence that the directing effect is mediated by the C2 hydroxyl itself via the putative formation of a cis-fused bicyclic intermediate. PMID:24548247

  16. Prediction of FV520B Steel Flow Stresses at High Temperature and Strain Rates

    NASA Astrophysics Data System (ADS)

    Han, Xiaolan; Zhao, Shengdun; Zhang, Chenyang; Fan, Shuqin; Xu, Fan

    2015-10-01

    In order to develop reliable constitutive equations for the simulation, the hot deformation behavior of FV520B steel was investigated through isothermal compression tests in a wide range of temperatures from 900 °C to 1100 °C at an interval of 50 °C and strain rate from 0.01 to 10 s-1 on Gleeble-1500D simulator. The effects of temperature and strain rate on deformation behavior were represented by Zener-Holloman parameter in an exponent-type equation of Arrhenius constitutive. The influence of strain was incorporated in the constitutive analysis by material constants expressed as a polynomial function of strain. The constitutive equation (considering the compensation of strain) could precisely predict the flow stress only at strain rate 0.01 s-1 except at the temperatures of 900 °C and 1000 °C, whereas the flow stress predicted by a modified equation (incorporating both the strain and strain rate) demonstrated a well agreement with the experimental data throughout the entire range of temperatures and strain rates. Correlation coefficient (R) of 0.988 and average absolute relative error (AARE) of 5.7% verified the validity of developed equation from statistical analysis, which further confirmed that the modified constitutive equation could accurately predict the flow stress of FV520B steel.

  17. Membrane Fusion Mediated Targeted Cytosolic Drug Delivery Through scFv Engineered Sendai Viral Envelopes.

    PubMed

    Kumar, M; Mani, P; Pratheesh, P; Chandra, S; Jeyakkodi, M; Chattopadhyay, P; Sarkar, D P; Sinha, S

    2015-01-01

    Antibody targeted cytoplasmic delivery of drugs is difficult to achieve as antigen-antibody interaction results in the payload being directed to the endosomal compartment. However, Sendai viral envelopes can bring about cytoplasmic delivery due to F-protein mediated membrane fusion. In this study we have generated and fused a recombinant scFv directed to the onco-fetal antigen, the Placental isozyme of Alkaline Phosphatase (PAP) with the trans-membrane and part of the cytoplasmic domain of the Sendai F protein (F(TMC)). Reconstituted virosomes, having both the fusion protein as well as the native F-protein were able to specifically bind and deliver drugs to PAP expressing cells. About 75% of the delivery was cytoplasmic in nature. Hence, this immuno-virosome, which is devoid of the comparatively more toxic HN protein, has the novel ability to combine specific antibody mediated targeting with cytoplasmic delivery. The scFv ensured specific binding to PAP expressing cells, without cross reacting with the other isozymes of alkaline phosphatase. The advantages of cytoplasmic delivery would include reduced degradation and lowered immunogenicity of the payload and carrier. The ubiquitous expression of PAP on a variety of cancers like seminoma, choriocarcinoma, cervical and breast cancers also suggests its potential usefulness in a number of malignancies.

  18. A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity.

    PubMed

    Bai, Xuelian; Kim, Jihye; Kang, Seungmin; Kim, Wankyu; Shim, Hyunbo

    2015-01-01

    The present work describes the construction and validation of a human scFv library with a novel design approach to synthetic complementarity determining region (CDR) diversification. The advantage of synthetic antibody libraries includes the possibility of exerting fine control over factors like framework sequences, amino acid and codon usage, and CDR diversity. However, random combinatorial synthesis of oligonucleotides for CDR sequence diversity also produces many clones with unnatural sequences and/or undesirable modification motifs. To alleviate these issues, we designed and constructed a novel semi-synthetic human scFv library with non-combinatorial, pre-designed CDR diversity and a single native human framework each for heavy, kappa, and lambda chain variable domains. Next-generation sequencing analysis indicated that the library consists of antibody clones with highly nature-like CDR sequences and the occurrence of the post-translational modification motifs is minimized. Multiple unique clones with nanomolar affinity could be isolated from the library against a number of target antigens, validating the library design strategy. The results demonstrate that it is possible to construct a functional antibody library using low, non-combinatorial synthetic CDR diversity, and provides a new strategy for the design of antibody libraries suitable for demanding applications.

  19. A Novel Human scFv Library with Non-Combinatorial Synthetic CDR Diversity

    PubMed Central

    Kang, Seungmin; Kim, Wankyu; Shim, Hyunbo

    2015-01-01

    The present work describes the construction and validation of a human scFv library with a novel design approach to synthetic complementarity determining region (CDR) diversification. The advantage of synthetic antibody libraries includes the possibility of exerting fine control over factors like framework sequences, amino acid and codon usage, and CDR diversity. However, random combinatorial synthesis of oligonucleotides for CDR sequence diversity also produces many clones with unnatural sequences and/or undesirable modification motifs. To alleviate these issues, we designed and constructed a novel semi-synthetic human scFv library with non-combinatorial, pre-designed CDR diversity and a single native human framework each for heavy, kappa, and lambda chain variable domains. Next-generation sequencing analysis indicated that the library consists of antibody clones with highly nature-like CDR sequences and the occurrence of the post-translational modification motifs is minimized. Multiple unique clones with nanomolar affinity could be isolated from the library against a number of target antigens, validating the library design strategy. The results demonstrate that it is possible to construct a functional antibody library using low, non-combinatorial synthetic CDR diversity, and provides a new strategy for the design of antibody libraries suitable for demanding applications. PMID:26484868

  20. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination

    PubMed Central

    Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W.; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D.; Baden, Lindsey; Barouch, Dan H.; Alter, Galit

    2016-01-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.   PMID:26982805

  1. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis

    PubMed Central

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-01-01

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser89 is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S89 was substituted with G89 (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis. PMID:26634432

  2. Aberrant glycosylation associated with enzymes as cancer biomarkers

    PubMed Central

    2011-01-01

    Background One of the new roles for enzymes in personalized medicine builds on a rational approach to cancer biomarker discovery using enzyme-associated aberrant glycosylation. A hallmark of cancer, aberrant glycosylation is associated with differential expressions of enzymes such as glycosyltransferase and glycosidases. The aberrant expressions of the enzymes in turn cause cancer cells to produce glycoproteins with specific cancer-associated aberrations in glycan structures. Content In this review we provide examples of cancer biomarker discovery using aberrant glycosylation in three areas. First, changes in glycosylation machinery such as glycosyltransferases/glycosidases could be used as cancer biomarkers. Second, most of the clinically useful cancer biomarkers are glycoproteins. Discovery of specific cancer-associated aberrations in glycan structures of these existing biomarkers could improve their cancer specificity, such as the discovery of AFP-L3, fucosylated glycoforms of AFP. Third, cancer-associated aberrations in glycan structures provide a compelling rationale for discovering new biomarkers using glycomic and glycoproteomic technologies. Summary As a hallmark of cancer, aberrant glycosylation allows for the rational design of biomarker discovery efforts. But more important, we need to translate these biomarkers from discovery to clinical diagnostics using good strategies, such as the lessons learned from translating the biomarkers discovered using proteomic technologies to OVA 1, the first FDA-cleared In Vitro Diagnostic Multivariate Index Assay (IVDMIA). These lessons, providing important guidance in current efforts in biomarker discovery and translation, are applicable to the discovery of aberrant glycosylation associated with enzymes as cancer biomarkers as well. PMID:21906357

  3. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis.

    PubMed

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-12-04

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser(89) is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S(89) was substituted with G(89) (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis.

  4. Disulfide bonds and glycosylation in fungal peroxidases.

    PubMed

    Limongi, P; Kjalke, M; Vind, J; Tams, J W; Johansson, T; Welinder, K G

    1995-01-15

    Four conserved disulfide bonds and N-linked and O-linked glycans of extracellular fungal peroxidases have been identified from studies of a lignin and a manganese peroxidase from Trametes versicolor, and from Coprinus cinereus peroxidase (CIP) and recombinant C. cinereus peroxidase (rCIP) expressed in Aspergillus oryzae. The eight cysteine residues are linked 1-3, 2-7, 4-5 and 6-8, and are located differently from the four conserved disulfide bridges present in the homologous plant peroxidases. CIP and rCIP were identical in their glycosylation pattern, although the extent of glycan chain heterogeneity depended on the fermentation batch. CIP and rCIP have one N-linked glycan composed only of GlcNAc and Man at residue Asn142, and two O-linked glycans near the C-terminus. The major glycoform consists of single Man residues at Thr331 and at Ser338. T. versicolor lignin isoperoxidase TvLP10 contains a single N-linked glycan composed of (GlcNAc)2Man5 bound to Asn103, whereas (GlcNAc)2Man3 was found in T. versicolor manganese isoperoxidase TvMP2 at the same position. In addition, mass spectrometry of the C-terminal peptide of TvMP2 indicated the presence of five Man residues in O-linked glycans. No phosphate was found in these fungal peroxidases.

  5. Expression of a Functional zipFv Antibody Fragment and Its Fusions with Alkaline Phosphatase in the Cytoplasm of an Escherichia coli

    PubMed Central

    Hur, Byung-ung; Choi, Hyo-jung; Yoon, Jae-bong

    2010-01-01

    Background Expression of recombinant antibodies and their derivatives fused with other functional molecules such as alkaline phosphatase in Escherichia coli is important in the development of molecular diagnostic reagents for biomedical research. Methods We investigated the possibility of applying a well-known Fos-Jun zipper to dimerize VH and VL fragments originated from the Fab clone (SP 112) that recognizes pyruvate dehydrogenase complex-E2 (PDC-E2), and demonstrated that the functional zipFv-112 and its alkaline phosphatase fusion molecules (zipFv-AP) can be produced in the cytoplasm of Origami(DE3) trxB gor mutant E. coli strain. Results The zipFv-AP fusion molecules exhibited higher antigen-binding signals than the zipFv up to a 10-fold under the same experimental conditions. However, conformation of the zipFv-AP seemed to be influenced by the location of an AP domain at the C-terminus of VH or VL domain [zipFv-112(H-AP) or zipFv-112(L-AP)], and inclusion of an AraC DNA binding domain at the C-terminus of VH of the zipFv-112(L-AP), termed zipFv-112(H-AD/L-AP), was also beneficial. Cytoplasmic co-expression of disulfide-binding isomerase C (DsbC) helped proper folding of the zipFv-112(H-AD/L-AP) but not significantly. Conclusion We believe that our zipFv constructs may serve as an excellent antibody format bi-functional antibody fragments that can be produced stably in the cytoplasm of E. coli. PMID:20532123

  6. Site-Selective Glycosylation of Hemoglobin on Cys β93

    PubMed Central

    Zhang, Yalong; Bhatt, Veer S.; Sun, Guoyong; Wang, Peng G.; Palmer, Andre F.

    2009-01-01

    In this work, we describe the synthesis and characterization of a novel glycosylated hemoglobin (Hb) with high oxygen affinity as a potential Hb-based oxygen carrier. Site-selective glycosylation of bovine Hb was achieved by conjugating a lactose derivative to Cys 93 on the β subunit of Hb. LC-MS analysis indicates that the reaction was quantitative, with no unmodified Hb present in the reaction product. The glycosylation site was identified by chymotrypsin digestion of the glycosylated bovine Hb followed with LC-MS/MS and from the X-ray crystal structure of the glycosylated Hb. The chemical conjugation of the lactose derivative at Cys β93 yields an oxygen carrier with a high oxygen affinity (P50 of 4.94 mmHg) and low cooperativity coefficient (n) of 1.20. Asymmetric flow field-flow fractionation (AFFFF) coupled with multi-angle static light scattering (MASLS) was used to measure the absolute molecular weight of the glycosylated Hb. AFFFF-MASLS analysis indicates that glycosylation of Hb significantly altered the α2β2-αβ equilibrium compared to native Hb. Subsequent X-ray analysis of the glycosylated Hb crystal showed that the covalently linked lactose derivative is sandwiched between the β1 and α2 (and hence by symmetry the β2 and α1) subunits of the tetramer, and the interaction between the saccharide and amino acid residues located at the interface is apparently stabilized by hydrogen bonding interactions. The resultant structural analysis of the glycosylated Hb helps to explain the shift in the α2β2-αβ equilibrium in terms of the hydrogen bonding interactions at the β1α2/β2α1 interface. Taken together, all of these results indicate that it is feasible to site-specifically glycosylate Hb. This work has great potential in developing an oxygen carrier with defined chemistry that can target oxygen delivery to low pO2 tissues and organs. PMID:18925771

  7. Supraagonistic, bispecific single-chain antibody purified from the serum of cloned, transgenic cows induces T-cell-mediated killing of glioblastoma cells in vitro and in vivo.

    PubMed

    Grosse-Hovest, Ludger; Wick, Wolfgang; Minoia, Rosa; Weller, Michael; Rammensee, Hans-Georg; Brem, Gottfried; Jung, Gundram

    2005-12-20

    Here we characterize the antitumor activity of a recombinant bispecific single-chain antibody isolated from the serum of cloned transgenic cows. The antibody, termed r28M, is directed to a melanoma-associated proteoglycan, also expressed on glioblastoma cells, and to human CD28. Bound to tumor cells, r28M induced exceedingly efficient supraagonistic T-cell activation via the CD28 molecule without an additional stimulus via the TCR/CD3 complex. In vitro, T cells and NK cells contributed to tumor cell killing after r28M-mediated activation of peripheral blood mononuclear cells. However, NK activity depended on T-cell-derived cytokines. In vivo, r28M markedly inhibited the growth of human glioblastoma cells in nude mice. The serum half-life of the protein after i.v. injection was approximately 6 hr. Thus, r28M is unique not only in inducing supraagonistic CD28-mediated T-cell activation against tumor cells in vitro and in vivo, it also meets 2 additional requirements that are critical for clinical application: a relatively long serum half-life and the possibility of obtaining large amounts of active material from cloned transgenic livestock.

  8. Identification of HLA-A24-binding peptides of Mycobacterium tuberculosis derived proteins with beta 2m linked HLA-A24 single chain expressing cells.

    PubMed

    Ding, Jie; Wang, Yan; Cheng, Tingting; Chen, Xiaowei; Gao, Bin

    2010-01-01

    Tuberculosis is caused by an intracellular pathogen Mycobacterium tuberculosis (Mtb) and poses a persistent threat to global health. MHC class I-restricted CD8 cytotoxic T lymphocytes (CTL) are essential for protective immunity to Tuberculosis. Information for CTL epitopes derived from Mtb is desirable for vaccine design and assessment of T cell responses. However, the knowledge about CTL epitopes of Mtb, particularly those non-A2 HLA alleles restricted is rare. In this study, beta-2-microglobulin (beta 2m, beta(2)m) linked HLA-A24 single chain was expressed on RMA-S cell line defective in the endogenous antigen processing and applied for screening of peptides which could stabilize the HLA-A24 complex on the cell surface. From a group of peptides predicted as binders by a computer algorithm, five peptides were shown to bind to HLA-A24 protein on the cell surface. As comparison we have also identified a dozen Mtb proteins derived peptides that bind to HLA-A2 specifically. The cell line and HLA binders present here would be useful for further identification of CD8 restricted Mtb epitopes.

  9. Human single-chain urokinase is activated by the omptins PgtE of Salmonella enterica and Pla of Yersinia pestis despite mutations of active site residues.

    PubMed

    Järvinen, Hanna M; Laakkonen, Liisa; Haiko, Johanna; Johansson, Tiira; Juuti, Katri; Suomalainen, Marjo; Buchrieser, Carmen; Kalkkinen, Nisse; Korhonen, Timo K

    2013-08-01

    Fibrinolysis is important in cell migration and tightly regulated by specific inhibitors and activators; of the latter, urokinase (uPA) associates with enhancement of cell migration. Active uPA is formed through cleavage of the single-chain uPA (scuPA). The Salmonella enterica strain 14028R cleaved human scuPA at the peptide bond Lys158-Ile159, the site cleaved also by the physiological activator human plasmin. The cleavage led to activation of scuPA, while no cleavage or activation were detected with the mutant strain 14028R lacking the omptin protease PgtE. Complementation and expression studies confirmed the role of PgtE in scuPA activation. Similar cleavage and activation of scuPA were detected with recombinant Escherichia coli expressing the omptin genes pla from Yersinia pestis, ompT and ompP from E. coli, sopA from Shigella flexneri, and leo from Legionella pneumophila. For these omptins the activation of scuPA is the only shared function so far detected. Only poor cleavage and activation of scuPA were seen with YcoA of Y. pestis and YcoB of Yersinia pseudotuberculosis that are considered to be proteolytically inactive omptin variants. Point mutations of active site residues in Pla and PgtE had different effects on the proteolysis of plasminogen and of scuPA, indicating versatility in omptin proteolysis.

  10. Expression of an abscisic acid-binding single-chain antibody influences the subcellular distribution of abscisic acid and leads to developmental changes in transgenic potato plants.

    PubMed

    Strauss, M; Kauder, F; Peisker, M; Sonnewald, U; Conrad, U; Heineke, D

    2001-07-01

    Potato (Solanum tuberosum L. cv. Désirée) plants were transformed to express a single-chain variable-fragment antibody against abscisic acid (ABA), and present in the endoplasmic reticulum at to up to 0.24% of the soluble leaf protein. The resulting transgenic plants were only able to grow normally at 95% humidity and moderate light. Four-week-old plants accumulated ABA to high extent, were retarded in growth and their leaves were smaller than those of control plants. Leaf stomatal conductivity was increased due to larger stomates. The subcellular concentrations of ABA in the chloroplast, cytoplasm and vacuole, and the apoplastic space of leaves were determined. In the 4-week-old transgenic plants the concentration of ABA not bound to the antibody was identical to that of control plants and the stomates were able to close in response to lower humidity of the atmosphere. A detailed analysis of age-dependent changes in plant metabolism showed that leaves of young transformed plants developed in ABA deficiency and leaves of older plants in ABA excess. Phenotypic changes developed in ABA deficiency partly disappeared in older plants.

  11. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    PubMed

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle. PMID:25697468

  12. Hybrid metabolic flux analysis and recombinant protein prediction in Pichia pastoris X-33 cultures expressing a single-chain antibody fragment.

    PubMed

    Isidro, Inês A; Portela, Rui M; Clemente, João J; Cunha, António E; Oliveira, Rui

    2016-09-01

    Despite the growing importance of the Pichia pastoris expression system as industrial workhorse, the literature is almost absent in systematic studies on how culture medium composition affects central carbon fluxes and heterologous protein expression. In this study we investigate how 26 variations of the BSM+PTM1 medium impact central carbon fluxes and protein expression in a P. pastoris X-33 strain expressing a single-chain antibody fragment. To achieve this goal, we adopted a hybrid metabolic flux analysis (MFA) methodology, which is a modification of standard MFA to predict the rate of synthesis of recombinant proteins. Hybrid MFA combines the traditional parametric estimation of central carbon fluxes with non-parametric statistical modeling of product-related quantitative or qualitative measurements as a function of central carbon fluxes. It was observed that protein yield variability was 53.6 % (relative standard deviation) among the different experiments. Protein yield is much more sensitive to medium composition than biomass growth, which is mainly determined by the carbon source availability and main salts. Hybrid MFA was able to describe accurately the protein yield with normalized RMSE of 6.3 % over 5 independent experiments. The metabolic state that promotes high protein yields is characterized by high overall metabolic rates through main central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy generating pathways. PMID:27129458

  13. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS).

    PubMed

    Mejías, Maria P; Hiriart, Yanina; Lauché, Constanza; Fernández-Brando, Romina J; Pardo, Romina; Bruballa, Andrea; Ramos, María V; Goldbaum, Fernando A; Palermo, Marina S; Zylberman, Vanesa

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome. PMID:27118524

  14. A novel multiplexed fluorescence polarisation immunoassay based on a recombinant bi-specific single-chain diabody for simultaneous detection of fluoroquinolones and sulfonamides in milk.

    PubMed

    Chen, Min; Wen, Kai; Tao, Xiaoqi; Ding, Shuangyang; Xie, Jie; Yu, Xuezhi; Li, Jiancheng; Xia, Xi; Wang, Yang; Xie, Sanlei; Jiang, Haiyang

    2014-01-01

    Major research efforts are focusing on the development of simultaneous multiplexed immunoassays. In this study, a novel dual-binding fluorescence polarisation immunoassay (DB-FPIA) using a broad-specificity bi-specific single-chain diabody (scDb) and two fluorescent-labelled tracers (sulfamethoxypyridazine-fluorescein isothiocyanate (SMP-FITC) and sarafloxacin-Texas Red (SAR-TR)) with different excitation and emission wavelengths was developed for simultaneous and high-throughput detection of 19 fluoroquinolones (FQs) and 13 sulfonamides (SAs) at the maximum residue limits in milk samples. Recoveries for spiked milk samples were from 76.4% to 128.4%, with a relative standard deviation lower than 13.9%. The developed DB-FPIA was then applied to field samples, followed by confirmation by LC-MS/MS. All three instances in which FQs and SAs were present at concentrations near or above the assay limit of detection were identified as positive by the developed DB-FPIA, demonstrating that the method is suitable for rapid screening of FQs and SAs contamination. The novel methodology combines the advantage of the FPIA and the broad sensitivity of scDb and shows great promise for fast multi-analyte screening of low-molecular weight chemical residues in food samples.

  15. Characterization and ab initio XRPD structure determination of a novel silicate with Vierer single chains: the crystal structure of NaYSi2O6.

    PubMed

    Többens, Daniel M; Kahlenberg, Volker; Kaindl, Reinhard

    2005-12-12

    The crystal structure of a sodium yttrium silicate with composition NaYSi2O6 has been determined from laboratory X-ray powder diffraction data by simulated annealing, and has been subsequently refined with the Rietveld technique. The compound is monoclinic with space group P2(1)/c and unit cell parameters of a=5.40787(2) A, b=13.69784(5) A, c=7.58431(3) A, and beta=109.9140(3) degrees at 23.5 degrees C (Z=4). The structure was found to be a single-chain silicate with a chain periodicity of four. The two symmetry dependent [Si4O12] chains in the unit cell are parallel to c. A prominent feature is the strong folding of the crankshaft-like chains within the b,c-plane resulting in intrachain Si-Si-Si angles close to 90 degrees. The coordination of the Y3+ ions by O2- is 7-fold in the form of slightly irregular pentagonal bipyramids, with oxygen atoms from four different chains contributing to the coordination polyhedron. Na+ ions are irregularly coordinated by 10 oxygens from two neighboring chains. No disorder of Na+ and Y3+ between the two nontetrahedral cation sites could be observed. Furthermore, micro-Raman spectra have been obtained from the polycrystalline material. PMID:16323944

  16. Development of an enhanced bovine viral diarrhea virus subunit vaccine based on E2 glycoprotein fused to a single chain antibody which targets to antigen-presenting cells.

    PubMed

    Pecora, Andrea; Malacari, Darío A; Pérez Aguirreburualde, María S; Bellido, Demian; Escribano, José M; Dus Santos, María J; Wigdorovitz, Andrés

    2015-01-01

    Bovine viral diarrhea virus (BVDV) is an important cause of economic losses worldwide. E2 is an immunodominant protein and a promising candidate to develop subunit vaccines. To improve its immunogenicity, a truncated E2 (tE2) was fused to a single chain antibody named APCH, which targets to antigen-presenting cells. APCH-tE2 and tE2 proteins were expressed in the baculovirus system and their immunogenicity was firstly compared in guinea pigs. APCH-tE2 vaccine was the best one to evoke a humoral response, and for this reason, it was selected for a cattle vaccination experiment. All the bovines immunized with 1.5 μg of APCH-tE2 developed high levels of neutralizing antibodies against BVDV up to a year post-immunization, demonstrating its significant potential as a subunit vaccine. This novel vaccine is undergoing scale-up and was transferred to the private sector. Nowadays, it is being evaluated for registration as the first Argentinean subunit vaccine for cattle.

  17. Development of camelid single chain antibodies against Shiga toxin type 2 (Stx2) with therapeutic potential against Hemolytic Uremic Syndrome (HUS)

    PubMed Central

    Mejías, Maria P.; Hiriart, Yanina; Lauché, Constanza; Fernández-Brando, Romina J.; Pardo, Romina; Bruballa, Andrea; Ramos, María V.; Goldbaum, Fernando A.; Palermo, Marina S.; Zylberman, Vanesa

    2016-01-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome. PMID:27118524

  18. Crystal Structures of Ricin Toxin’s Enzymatic Subunit (RTA) in Complex with Neutralizing and Non-neutralizing Single Chain Antibodies

    PubMed Central

    Rudolph, Michael J.; Vance, David J.; Cheung, Jonah; Franklin, Matthew C.; Burshteyn, Fiana; Cassidy, Michael S.; Gary, Ebony N.; Herrera, Cristina; Shoemaker, Charles B.; Mantis, Nicholas J.

    2014-01-01

    Ricin is a Select Agent Toxin and a member of the RNA N-glycosidase family of medically important plant and bacterial ribosome-inactivating proteins (RIPs). In this study, we determined x-ray crystal structures of the enzymatic subunit of ricin (RTA) in complex with the antigen binding domains (VHH) of five unique single-chain monoclonal antibodies that differ in their respective toxin-neutralizing activities. None of the VHHs made direct contact with residues involved in RTA’s RNA N-glycosidase activity or induced notable allosteric changes in the toxin’s subunit. Rather, the five VHHs had overlapping structural epitopes on the surface of the toxin and differed in the degree to which they made contact with prominent structural elements in two folding domains of the RTA. In general, RTA interactions were influenced most by the VHH CDR3 elements, with the most potent neutralizing antibody having the shortest and most conformationally constrained CDR3. These structures provide unique insights into the mechanisms underlying toxin neutralization and provide critically important information required for the rational design of ricin toxin subunit vaccines. PMID:24907552

  19. [Non-enzymatic glycosylation of dietary protein in vitro].

    PubMed

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  20. Prion propagation in cells expressing PrP glycosylation mutants.

    PubMed

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  1. [Non-enzymatic glycosylation of dietary protein in vitro].

    PubMed

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  2. Use of cell lines and primary cultures to explore the capacity of rainbow trout to be a host for frog virus 3 (FV3).

    PubMed

    Pham, P H; Huang, Y J; Mosser, D D; Bols, N C

    2015-10-01

    The capacity of rainbow trout, Oncorhynchus mykiss, to be a host for frog virus 3 (FV3) was evaluated at the cellular level. Cell cultures from this species were tested for their ability to express FV3 major capsid protein (MCP) gene, to develop cytopathic effect (CPE), and to produce FV3. After FV3 addition, MCP transcripts were detected in six of six cell lines and in primary macrophage cultures. CPE developed in all cell culture systems, except primary lymphocytes. For the macrophage cell line, RTS11, and primary macrophages, cell death was by apoptosis because DNA laddering and Annexin staining were detected. By contrast, markers of apoptosis did not accompany CPE in three epithelial cell lines from the gill (RTgill-W1), intestine (RTgut-GC), and liver (RTL-W1) and in two fibroblast cell lines from gonads (RTG-2) and skin (RTHDF). Therefore, FV3 was able to enter and begin replicating in several cell types. Yet, FV3 was produced in only two cell lines, RTG-2 and RTL-W1, and only modestly. Overall, these results suggest that if tissue accessibility were possible, FV3 would have the capacity to induce injury, but the ability to replicate would be limited, likely making rainbow trout a poor host for FV3.

  3. Glycosylated hemoglobin and hyperbaric oxygen coverage denials.

    PubMed

    Moffat, A D; Worth, E R; Weaver, L K

    2015-01-01

    Some Medicaid and Medicare fiscal intermediaries are denying hyperbaric oxygen (HBO2) therapy for diabetic foot ulcer (DFU) patients if the glycosylated hemoglobin (HbA1c) > 7.0%. We performed multiple PubMed searches for any diabetic wound healing clinical trial that documented HbA1c and had a wound healing endpoint. We scrutinized 30 peer-reviewed clinical trials, representing more than 4,400 patients. The average HbA1c from the intervention side of the studies was 8.6% (7.2% - 9.9%) and the control/sham side was 8.3% (6.0% - 10.6%). Twelve studies made a direct attempt to link HbA1c and wound healing. Four retrospective studies and one prospective cohort study assert that lower HbA1c favors wound healing, but review of the studies reveal design flaws that invalidate these conclusions. In total, 25 studies showed no direct correlation between HbA1c levels and wound healing. There was no randomized controlled trial (RCT) data demonstrating that HbA1c < 7.0% improves diabetic wound healing. In every study reviewed, wounds healed with high HbA1c levels that would be considered poorly controlled by the American Diabetes Association (ADA). Frequently, patients lack optimal blood glucose control when they have a limb-threatening DFU. The evidence supports that denying hyperbaric oxygen to those with HbA1c > 7.0% is unfounded. PMID:26152104

  4. Glycosylated Nanoparticles as Efficient Antimicrobial Delivery Agents.

    PubMed

    Eissa, Ahmed M; Abdulkarim, Ali; Sharples, Gary J; Cameron, Neil R

    2016-08-01

    Synthetic polymer nanoparticles that can be tailored through multivalent ligand display on the surface, while at the same time allowing encapsulation of desired bioactive molecules, are especially useful in providing a versatile and robust platform in the design of specific delivery vehicles for various purposes. Glycosylated nanoparticles (glyco-NPs) of a poly(n-butyl acrylate) (pBA) core and poly(N-2-(β-d-glucosyloxy)ethyl acrylamide) (p(NβGlcEAM)) or poly(N-2-(β-D-galactosyloxy)ethyl acrylamide) (p(NβGalEAM)) corona were prepared via nanoprecipitation in aqueous solutions of preformed amphiphilic glycopolymers. Well-defined block copolymers of (poly(pentafluorophenyl acrylate) (pPFPA) and pBA were first prepared by RAFT polymerization followed by postpolymerization functionalization with aminoethyl glycosides to yield p(NβGlcEAM-b-BA) and p(NβGalEAM-b-BA), which were then used to form glyco-NPs (glucosylated and galactosylated NPs, Glc-NPs and Gal-NPs, respectively). The glyco-NPs were characterized by dynamic light scattering (DLS) and TEM. Encapsulation and release of ampicillin, leading to nanoparticles that we have termed "glyconanobiotics", were studied. The ampicillin-loaded glyco-NPs were found to induce aggregation of Staphylococcus aureus and Escherichia coli and resulted in antibacterial activity approaching that of ampicillin itself. This glyconanobiotics strategy represents a potential new approach for the delivery of antibiotics close to the surface of bacteria by promoting bacterial aggregation. Defined release in the proximity of the bacterial envelope may thus enhance antibacterial efficiency and potentially reduce the quantities of agent required for potency. PMID:27434596

  5. Glycosylated hemoglobin and hyperbaric oxygen coverage denials.

    PubMed

    Moffat, A D; Worth, E R; Weaver, L K

    2015-01-01

    Some Medicaid and Medicare fiscal intermediaries are denying hyperbaric oxygen (HBO2) therapy for diabetic foot ulcer (DFU) patients if the glycosylated hemoglobin (HbA1c) > 7.0%. We performed multiple PubMed searches for any diabetic wound healing clinical trial that documented HbA1c and had a wound healing endpoint. We scrutinized 30 peer-reviewed clinical trials, representing more than 4,400 patients. The average HbA1c from the intervention side of the studies was 8.6% (7.2% - 9.9%) and the control/sham side was 8.3% (6.0% - 10.6%). Twelve studies made a direct attempt to link HbA1c and wound healing. Four retrospective studies and one prospective cohort study assert that lower HbA1c favors wound healing, but review of the studies reveal design flaws that invalidate these conclusions. In total, 25 studies showed no direct correlation between HbA1c levels and wound healing. There was no randomized controlled trial (RCT) data demonstrating that HbA1c < 7.0% improves diabetic wound healing. In every study reviewed, wounds healed with high HbA1c levels that would be considered poorly controlled by the American Diabetes Association (ADA). Frequently, patients lack optimal blood glucose control when they have a limb-threatening DFU. The evidence supports that denying hyperbaric oxygen to those with HbA1c > 7.0% is unfounded.

  6. Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Reed, S.C.; Belnap, J.; Phillips, S.L.

    2002-01-01

    Summers on the Colorado Plateau (USA) are typified by harsh conditions such as high temperatures, brief soil hydration periods, and high UV and visible radiation. We investigated whether community composition, physiological status, and pigmentation might vary in biological soil crusts as a result of such conditions. Representative surface cores were sampled at the ENE, WSW, and top microaspects of 20 individual soil crust pedicels at a single site in Canyonlands National Park, Utah, in spring and fall of 1999. Frequency of cyanobacterial taxa, pigment concentrations, and dark adapted quantum yield (Fv/Fm) were measured for each core. The frequency of major cyanobacterial taxa was lower in the fall compared to spring. The less-pigmented cyanobacterium Microcoleus vaginatus showed significant mortality when not in the presence of Nostoc spp. and Scytonema myochrous (Dillw.) Agardh. (both synthesizers of UV radiation-linked pigments) but had little or no mortality when these species were abundant. We hypothesize that the sunscreen pigments produced by Nostoc and Scytonema in the surface of crusts protect other, less-pigmented taxa. When fall and spring samples were compared, overall cyanobacterial frequency was lower in fall, while sunscreen pigment concentrations, chlorophyll a concentration, and Fv/Fm were higher in fall. The ratio of cyanobacterial frequency/chlorophyll a concentrations was 2-3 times lower in fall than spring. Because chlorophyll a is commonly used as a surrogate measure of soil cyanobacterial biomass, these results indicate that seasonality needs to be taken into consideration. In the fall sample, most pigments associated with UV radiation protection or repair were at their highest concentrations on pedicel tops and WSW microaspects, and at their lowest concentrations on ENE microaspects. We suggest that differential pigment concentrations between microaspects are induced by varying UV radiation dosage at the soil surface on these different

  7. Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs.

    PubMed

    Zhang, Peiqing; Woen, Susanto; Wang, Tianhua; Liau, Brian; Zhao, Sophie; Chen, Chen; Yang, Yuansheng; Song, Zhiwei; Wormald, Mark R; Yu, Chuanfei; Rudd, Pauline M

    2016-05-01

    Glycosylation of therapeutic proteins has a profound impact on their safety and efficacy. Many factors shape the glycosylation of biotherapeutics, ranging from expression systems and cell culture processes to downstream purification strategies. Various analytical technologies have been developed to address questions concerning different aspects of glycosylation. Informatics tools are also crucial for a systematic understanding of the glycosylation processes. Hence, an integrated approach is required to harness glycosylation for the production of optimal and consistent glycoprotein-based therapeutic drugs. Here, we review the latest developments and challenges in glycosylation analysis and control in the context of bioprocessing monoclonal antibodies.

  8. Prevalence of 1691G>A FV mutation in females from Bosnia and Herzegovina--a preliminary report.

    PubMed

    Valjevac, Amina; Mehić, Bakir; Kiseljaković, Emina; Ibrulj, Slavka; Garstka, Agnieszka; Adler, Grażyna

    2013-02-01

    Factor V is the liver-synthesized multidomain glycoprotein encoded by a gene localised on chromosome 1q23. The point mutation 1691G>A in this gene results in formation of an altered protein of V Factor resistant to activated protein C (APC) cleavage. This mutation alone is the most frequent cause of inborn thrombophilia and the most widely acknowledged genetic risk factor for venous thrombosis in a Caucasian population. This study was designed to provide the first estimate of the frequency of the allele 1691A FV in the Bosnian female population. The 1691G>A FV mutation was examined by polymerase chain reaction-restriction fragment length polymorphism, in a group of 67 women, mean age of 58.6 years with no history of cardiovascular incident. Our findings revealed an absence of the mutated allele 1691A FV in the studied group. This is the first report on the 1691G>A FV mutation in a population from Bosnia and Herzegovina. Further research is needed to establish prevalence of the mutated allele in the population from Bosnia and Herzegovina. PMID:23448608

  9. Small Glycosylated Lignin Oligomers Are Stored in Arabidopsis Leaf Vacuoles

    PubMed Central

    Dima, Oana; Morreel, Kris; Vanholme, Bartel; Kim, Hoon; Ralph, John; Boerjan, Wout

    2015-01-01

    Lignin is an aromatic polymer derived from the combinatorial coupling of monolignol radicals in the cell wall. Recently, various glycosylated lignin oligomers have been revealed in Arabidopsis thaliana. Given that monolignol oxidation and monolignol radical coupling are known to occur in the apoplast, and glycosylation in the cytoplasm, it raises questions about the subcellular localization of glycosylated lignin oligomer biosynthesis and their storage. By metabolite profiling of Arabidopsis leaf vacuoles, we show that the leaf vacuole stores a large number of these small glycosylated lignin oligomers. Their structural variety and the incorporation of alternative monomers, as observed in Arabidopsis mutants with altered monolignol biosynthesis, indicate that they are all formed by combinatorial radical coupling. In contrast to the common believe that combinatorial coupling is restricted to the apoplast, we hypothesized that the aglycones of these compounds are made within the cell. To investigate this, leaf protoplast cultures were cofed with 13C6-labeled coniferyl alcohol and a 13C4-labeled dimer of coniferyl alcohol. Metabolite profiling of the cofed protoplasts provided strong support for the occurrence of intracellular monolignol coupling. We therefore propose a metabolic pathway involving intracellular combinatorial coupling of monolignol radicals, followed by oligomer glycosylation and vacuolar import, which shares characteristics with both lignin and lignan biosynthesis. PMID:25700483

  10. Impact of glycosylation on the unimpaired functions of the sperm

    PubMed Central

    2015-01-01

    One of the key factors of early development is the specification of competence between the oocyte and the sperm, which occurs during gametogenesis. However, the starting point, growth, and maturation for acquiring competence during spermatogenesis and oogenesis in mammals are very different. Spermatogenesis includes spermiogenesis, but such a metamorphosis is not observed during oogenesis. Glycosylation, a ubiquitous modification, is a preliminary requisite for distribution of the structural and functional components of spermatids for metamorphosis. In addition, glycosylation using epididymal or female genital secretory glycans is an important process for the sperm maturation, the acquisition of the potential for fertilization, and the acceleration of early embryo development. However, nonemzymatic unexpected covalent bonding of a carbohydrate and malglycosylation can result in falling fertility rates as shown in the diabetic male. So far, glycosylation during spermatogenesis and the dynamics of the plasma membrane in the process of capacitation and fertilization have been evaluated, and a powerful role of glycosylation in spermatogenesis and early development is also suggested by structural bioinformatics, functional genomics, and functional proteomics. Further understanding of glycosylation is needed to provide a better understanding of fertilization and embryo development and for the development of new diagnostic and therapeutic tools for infertility. PMID:26473106

  11. Glycosylation: impact, control and improvement during therapeutic protein production.

    PubMed

    Costa, Ana Rita; Rodrigues, Maria Elisa; Henriques, Mariana; Oliveira, Rosário; Azeredo, Joana

    2014-12-01

    The emergence of the biopharmaceutical industry represented a major revolution for modern medicine, through the development of recombinant therapeutic proteins that brought new hope for many patients with previously untreatable diseases. There is a ever-growing demand for these therapeutics that forces a constant technological evolution to increase product yields while simultaneously reducing costs. However, the process changes made for this purpose may also affect the quality of the product, a factor that was initially overlooked but which is now a major focus of concern. Of the many properties determining product quality, glycosylation is regarded as one of the most important, influencing, for example, the biological activity, serum half-life and immunogenicity of the protein. Consequently, monitoring and control of glycosylation is now critical in biopharmaceutical manufacturing and a requirement of regulatory agencies. A rapid evolution is being observed in this context, concerning the influence of glycosylation in the efficacy of different therapeutic proteins, the impact on glycosylation of a diversity of parameters/processes involved in therapeutic protein production, the analytical methodologies employed for glycosylation monitoring and control, as well as strategies that are being explored to use this property to improve therapeutic protein efficacy (glycoengineering). This work reviews the main findings on these subjects, providing an up-to-date source of information to support further studies.

  12. Site-specific protein glycosylation analysis with glycan isomer differentiation.

    PubMed

    Hua, Serenus; Nwosu, Charles C; Strum, John S; Seipert, Richard R; An, Hyun Joo; Zivkovic, Angela M; German, J Bruce; Lebrilla, Carlito B

    2012-05-01

    Glycosylation is one of the most common yet diverse post-translational modifications. Information on glycan heterogeneity and glycosite occupancy is increasingly recognized as crucial to understanding glycoprotein structure and function. Yet, no approach currently exists with which to holistically consider both the proteomic and glycomic aspects of a system. Here, we developed a novel method of comprehensive glycosite profiling using nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) that shows glycan isomer-specific differentiation on specific sites. Glycoproteins were digested by controlled non-specific proteolysis in order to produce informative glycopeptides. High-resolution, isomer-sensitive chromatographic separation of the glycopeptides was achieved using microfluidic chip-based capillaries packed with graphitized carbon. Integrated LC/MS/MS not only confirmed glycopeptide composition but also differentiated glycan and peptide isomers and yielded structural information on both the glycan and peptide moieties. Our analysis identified at least 13 distinct glycans (including isomers) corresponding to five compositions at the single N-glycosylation site on bovine ribonuclease B, 59 distinct glycans at five N-glycosylation sites on bovine lactoferrin, 13 distinct glycans at one N-glycosylation site on four subclasses of human immunoglobulin G, and 20 distinct glycans at five O-glycosylation sites on bovine κ-casein. Porous graphitized carbon provided effective separation of glycopeptide isomers. The integration of nano-LC with MS and MS/MS of non-specifically cleaved glycopeptides allows quantitative, isomer-sensitive, and site-specific glycoprotein analysis.

  13. Studying N-linked glycosylation of receptor tyrosine kinases.

    PubMed

    Itkonen, Harri M; Mills, Ian G

    2015-01-01

    Metabolic alterations have been identified as a frequent event in cancer. This is often associated with increased flux through glycolysis, and also a secondary pathway to glycolysis, hexosamine biosynthetic pathway (HBP). HBP provides substrate for N-linked glycosylation, which occurs in the endoplasmic reticulum and the Golgi apparatus. N-linked glycosylation supports protein folding and correct sorting of proteins to plasma membrane and secretion. This process generates complex glycoforms, which can be recognized by other proteins and glycosylation of receptor tyrosine kinases (RTK) can also regulate their plasma-membrane retention time. Of special interest for experimental biologists, plants produce proteins, termed lectins, which bind with high specificity to glyco-conjugates. For the purposes of molecular biology, plant lectins can be conjugated to different moieties, such as agarose beads, which enable precipitation of specifically glycosylated proteins. In this chapter, we describe in detail how to perform pull-down experiments with commercially available lectins to identify changes in the glycosylation of RTKs. PMID:25319893

  14. I. Enabling Single-Chain Surfactants to Form Vesicles by Nonamphiphilic Liquid Crystals in Water II. Controlling Attachment and Ligand-Mediated Adherence of Candida albicans on Monolayers

    NASA Astrophysics Data System (ADS)

    Varghese, Nisha

    This dissertation describes a fundamental study of weak noncovalent interactions and surface forces that exist at the interfaces of various interacting moieties (small molecules or microbes), and its relevance to colloidal and material chemistry. Chapter 1 presents an emulsion system that enables single-chain anionic or nonionic surfactants to sequester and encapsulate certain water-soluble organic salts, leading to the formation of vesicles in water. The water-soluble organic salt in the system comprises of disodium cromoglycate crystals that are emulsified by surfactants in water to form stable liquid crystal droplets. The work provides an exception to the rule of geometric packing factor that dictates formation of micelles by the surfactants in water. Chapter 2 shows that the odd or even number of carbon atoms present in the aliphatic chain of surfactants affect the ability of surfactants to emulsify aqueous-based liquid crystals of disodium cromoglycate. Such an odd-even effect is frequently observed for solid state properties like melting point, heat of fusion and refractive index but is rarely observed for molecules present in solution. When mixed in water, anionic single-chain surfactants with odd number of carbon atoms emulsifies disodium cromoglycate to form liquid crystal droplets, while surfactants with even number of carbon atoms fail to emulsify disodium cromoglycate. Chapter 3 Bolaamphiphiles usually form vesicles only in extreme conditions or in the presence of surfactants. Here, we explore the co-assembly system of synthesized bolaamphiphiles and disodium cromoglycate in water. The combination of the self-assembly forces of the bolaamphiphile and self-associating property of disodium cromoglycate liquid crystals act together at the interface form a unique microemulsion of liquid crystal droplets of disodium cromoglycate embedded in liquid crystal phase. Chapter 4 describes a key event (adhesion) that precedes infections caused by Candida albicans

  15. A candidate for a single-chain magnet: [Mn3(OAc)6(py)2(H2O)2]n (OAc is acetate and py is pyridine).

    PubMed

    Caballero-Jiménez, Judith; Reyes Ortega, Yasmi; Bernès, Sylvain; Escudero, Roberto

    2014-08-01

    The title complex, catena-poly[di-μ3-acetato-κ(6)O:O:O'-tetra-μ2-acetato-κ(4)O:O;κ(4)O:O'-diaquabis(pyridine-κN)trimanganese(II)], [Mn3(CH3COO)6(C6H5N)2(H2O)2]n, is a true one-dimensional coordination polymer, in which the Mn(II) centres form a zigzag chain along [010]. The asymmetric unit contains two metal centres, one of which (Mn1) lies on an inversion centre, while the other (Mn2) is placed close to an inversion centre on a general position. Since all the acetates behave as bridging ligands, although with different μ2- and μ3-coordination modes, a one-dimensional polymeric structure is formed, based on trinuclear repeat units (Mn1...Mn2...Mn2'), in which the Mn2 and Mn2' sites are related by an inversion centre. Within this monomeric block, the metal-metal separations are Mn1...Mn2 = 3.36180 (18) Å and Mn2...Mn2' = 4.4804 (3) Å. Cation Mn1, located on an inversion centre, displays an [MnO6] coordination sphere, while Mn2, on a general position, has a slightly stronger [MnO5N] ligand field, as the sixth coordination site is occupied by a pyridine molecule. Both centres approximate an octahedral ligand field. The chains are parallel in the crystal structure and interact via hydrogen bonds involving coordinated water molecules. However, the shortest metal-metal separation between two chains [5.3752 (3) Å] is large compared with the intrachain interactions. These structural features are compatible with a single-chain magnet behaviour, as confirmed by preliminary magnetic studies.

  16. Expression and purification of a single-chain Type IV restriction enzyme Eco94GmrSD and determination of its substrate preference.

    PubMed

    He, Xinyi; Hull, Victoria; Thomas, Julie A; Fu, Xiaoqing; Gidwani, Sonal; Gupta, Yogesh K; Black, Lindsay W; Xu, Shuang-yong

    2015-05-19

    The first reported Type IV restriction endonuclease (REase) GmrSD consists of GmrS and GmrD subunits. In most bacteria, however, the gmrS and gmrD genes are fused together to encode a single-chain protein. The fused coding sequence for ECSTEC94C_1402 from E. coli strain STEC_94C was expressed in T7 Express. The protein designated as Eco94GmrSD displays modification-dependent ATP-stimulated REase activity on T4 DNA with glucosyl-5-hydroxymethyl-cytosines (glc-5hmC) and T4gt DNA with 5-hydroxymethyl-cytosines (5hmC). A C-terminal 6xHis-tagged protein was purified by two-column chromatography. The enzyme is active in Mg(2+) and Mn(2+) buffer. It prefers to cleave large glc-5hmC- or 5hmC-modified DNA. In phage restriction assays, Eco94GmrSD weakly restricted T4 and T4gt, whereas T4 IPI*-deficient phage (Δip1) were restricted more than 10(6)-fold, consistent with IPI* protection of E. coli DH10B from lethal expression of the closely homologous E. coli CT596 GmrSD. Eco94GmrSD is proposed to belong to the His-Asn-His (HNH)-nuclease family by the identification of a putative C-terminal REase catalytic site D507-H508-N522. Supporting this, GmrSD variants D507A, H508A, and N522A displayed no endonuclease activity. The presence of a large number of fused GmrSD homologs suggests that GmrSD is an effective phage exclusion protein that provides a mechanism to thwart T-even phage infection.

  17. Gene therapy with a single chain interleukin 12 fusion protein induces T cell-dependent protective immunity in a syngeneic model of murine neuroblastoma.

    PubMed

    Lode, H N; Dreier, T; Xiang, R; Varki, N M; Kang, A S; Reisfeld, R A

    1998-03-01

    A major goal of tumor immunotherapy is the effective eradication of established metastases associated with the induction of a T cell-mediated protective immunity. We achieved this in a poorly immunogenic murine neuroblastoma model by gene therapy with a single chain interleukin 12 (scIL-12) fusion protein that assures equal expression of its p35 and p40 subunits. Thus, NXS2 hybrid neuroblastoma cells (C1300 x dorsal root ganglion cells), which form experimental bone marrow and liver metastases in syngeneic A/J mice, were transduced with a gene encoding murine interleukin 12, monomerized by introduction of a protein linker between the p35 and p40 protein chains of this heterodimeric cytokine. We demonstrate for the first time that subcutaneous vaccination with these transduced cells induces a protective immunity, as indicated by the complete absence of liver and bone marrow metastasis after challenge with NXS2 wild-type tumor cells. Furthermore, vaccination of animals with established liver and bone marrow metastases completely eradicated liver metastases and suppressed bone marrow metastases. The local and systemic immune response against scIL-12-transduced NXS2 cells is largely dependent on CD8(+) T cells. This was demonstrated in vivo by depletion of immunocompetent A/J mice with monoclonal anti-CD4 and anti-CD8 antibodies and in vitro by specific major histocompatibility complex, class I-restricted CD8(+) T cell-mediated killing of NXS2 and their parental C1300 neuroblastoma cells. In conclusion, we demonstrate successful anti-tumor immunotherapy with an scIL-12 fusion protein that could facilitate clinical application of interleukin 12 gene therapy.

  18. Tumor-targeted IL-2 amplifies T cell-mediated immune response induced by gene therapy with single-chain IL-12.

    PubMed

    Lode, H N; Xiang, R; Duncan, S R; Theofilopoulos, A N; Gillies, S D; Reisfeld, R A

    1999-07-20

    Induction, maintenance, and amplification of tumor-protective immunity after cytokine gene therapy is essential for the clinical success of immunotherapeutic approaches. We investigated whether this could be achieved by single-chain IL-12 (scIL-12) gene therapy followed by tumor-targeted IL-2 using a fusion protein containing a tumor-specific recombinant anti-ganglioside GD(2) antibody and IL-2 (ch14.18-IL-2) in a poorly immunogenic murine neuroblastoma model. Herein, we demonstrate the absence of liver and bone marrow metastases after a lethal challenge with NXS2 wild-type cells only in mice (five of six animals) vaccinated with scIL-12-producing NXS2 cells and given a booster injection of low-dose ch14.18-IL-2 fusion protein. This tumor-protective immunity was effective 3 months after initial vaccination, in contrast to control animals treated with a nonspecific fusion protein or an equivalent mixture of antibody and IL-2. Only va