Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan
2016-01-01
Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123
Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan
2016-02-26
Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.
Magnetoresistive flux focusing eddy current flaw detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor); Namkung, Min (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil's longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multilayer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
Magnetoresistive Flux Focusing Eddy Current Flaw Detection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Namkung, Min (Inventor); Simpson, John W. (Inventor)
2005-01-01
A giant magnetoresistive flux focusing eddy current device effectively detects deep flaws in thick multilayer conductive materials. The probe uses an excitation coil to induce eddy currents in conducting material perpendicularly oriented to the coil s longitudinal axis. A giant magnetoresistive (GMR) sensor, surrounded by the excitation coil, is used to detect generated fields. Between the excitation coil and GMR sensor is a highly permeable flux focusing lens which magnetically separates the GMR sensor and excitation coil and produces high flux density at the outer edge of the GMR sensor. The use of feedback inside the flux focusing lens enables complete cancellation of the leakage fields at the GMR sensor location and biasing of the GMR sensor to a location of high magnetic field sensitivity. In an alternate embodiment, a permanent magnet is positioned adjacent to the GMR sensor to accomplish the biasing. Experimental results have demonstrated identification of flaws up to 1 cm deep in aluminum alloy structures. To detect deep flaws about circular fasteners or inhomogeneities in thick multi-layer conductive materials, the device is mounted in a hand-held rotating probe assembly that is connected to a computer for system control, data acquisition, processing and storage.
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.
2012-01-01
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221
Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X
2012-11-09
Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.
NASA Astrophysics Data System (ADS)
Dhani, H. S.; Aminudin, A.; Waslaluddin
2018-05-01
Electric current is the basic variable of measurement in instrumentation system. One of the current measurements had been developed was based on magnetic sensor. Giant Magnetoresistance (GMR) produces an output voltage when it detects the magnetic field from electric current flow. The purpose of this study was to characterize the response of GMR when variation number of coil was given. The characterization was the GMR voltage response to the AC current values from 0.01 A to 5.00 A. The linearity of the relation was reaching saturation point when the magnetic field measured higher than 10.5 Oe at room temperature. As the number of coil increased, the earlier saturation occurred. To see the sensitivity of the sensor response, the data graph was cut off at 1.56 A AC. From this research, we got single coil was ideal to measure electric current higher than 1.56 A AC, as the relation of GMR voltage to the current tended to maintain its linearity. For measurement of 1.56 A AC and less, coil number addition would increase the sensitivity of sensor response. This research hopefully will be benefit for further development using an electric current measurement based on GMR magnetic sensor for power meter design.
Reig, Candid; Cubells-Beltran, María-Dolores; Muñoz, Diego Ramírez
2009-01-01
The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR), from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications. PMID:22408486
Monolithic integration of GMR sensors for standard CMOS-IC current sensing
NASA Astrophysics Data System (ADS)
De Marcellis, A.; Reig, C.; Cubells-Beltrán, M.-D.; Madrenas, J.; Santos, J. D.; Cardoso, S.; Freitas, P. P.
2017-09-01
In this work we report on the development of Giant Magnetoresistive (GMR) sensors for off-line current measurements in standard integrated circuits. An ASIC has been specifically designed and fabricated in the well-known AMS-0.35 μm CMOS technology, including the electronic circuitry for sensor interfacing. It implements an oscillating circuit performing a voltage-to-frequency conversion. Subsequently, a fully CMOS-compatible low temperature post-process has been applied for depositing the GMR sensing devices in a full-bridge configuration onto the buried current straps. Sensitivity and resolution of these sensors have been investigated achieving experimental results that show a detection sensitivity of about 100 Hz/mA, with a resolution of about 5 μA.
GMR-based eddy current probe for weld seam inspection and its non-scanning detection study
NASA Astrophysics Data System (ADS)
Gao, Peng; Wang, Chao; Li, Yang; Wang, Libin; Cong, Zheng; Zhi, Ya
2017-04-01
Eddy current testing is one of the most important non-destructive testing methods for welding defects detection. This paper presents the use of a probe consisting of 4 giant magneto-resistive (GMR) sensors to detect weld defects. Information from four measuring points above and on both sides of the weld seam is collected at the same time. By setting the GMR sensors' sensing axes perpendicular to the direction of the excitation magnetic field, the information collected mainly reflects the change in the eddy current which is caused by defects. Digital demodulation technology is applied to extract the real part and imaginary part of the GMR sensors' output signals. The variables containing directional information of the magnetic field are introduced. Based on the data from the four GMR (4-GMR) sensors' output signals, four values, Ran, Mean, Var and k are selected as the feature quantities for defect recognition. Experiments are carried out on weld seams with and without defects, and the detection outputs are given in this paper. The 4-GMR probe is also employed to investigate non-scanning weld defect detection and the four feature quantities (Ran, Mean, Var and k) are studied to evaluate weld quality. The non-scanning weld defect detection is presented. A support vector machine is used to classify and discriminate welds with and without defects. Experiments carried out show that through the method in this paper, the recognition rate is 92% for welds without defects and 90% for welds with defects, with an overall recognition rate of 90.9%, indicating that this method could effectively detect weld defects.
NASA Astrophysics Data System (ADS)
Gui Zeng, Ding; Lee, Kyoung-il; Chung, Kyung-Won; Bae, Seongtae
2012-05-01
Effects of magnetic stray field retrieved from both longitudinal and perpendicular magnetic recording media (denoted by "media stray field") on electromigration (EM) characteristics of current-perpendicular-to-plane (CPP) giant magnetoresistance spin-valve (GMR SV) read sensors have been numerically studied to explore the electrical and magnetic stability of the read sensor under real operation. The mean-time-to-failure (MTTF) of the CPP GMR SV read sensors was found to have a strong dependence on the physical parameters of the recording media and recorded information status, such as the pulse width of media stray field, the bit length, and the head moving velocity. According to the numerical calculation results, it was confirmed that in the longitudinal media, the shorter the stray field pulse width (i.e., the sharper the media transition) allows for the longer MTTF of the CPP GMR SV read sensors; while in the perpendicular media, the sharper the media transition gives rise to a shorter MTTF. Interestingly, it was also revealed that the MTTF could be improved by reducing the bit length as well as increasing the head velocity in both longitudinal and perpendicular media. Furthermore, the bit distribution patterns, especially the number of consecutive `0' bits strongly affected the MTTF of GMR SV read sensors. The strong dependences of MTTF on the media stray field during CPP GMR SV sensor operation are thought to be mainly attributed to the thermal cycling (temperature rise and fall) caused by the resistance change due to GMR effects.
Routes for GMR-Sensor Design in Non-Destructive Testing
Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas
2012-01-01
GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.
High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array
NASA Astrophysics Data System (ADS)
Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick
2009-03-01
Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.
Design and Fabrication of Full Wheatstone-Bridge-Based Angular GMR Sensors.
Yan, Shaohua; Cao, Zhiqiang; Guo, Zongxia; Zheng, Zhenyi; Cao, Anni; Qi, Yue; Leng, Qunwen; Zhao, Weisheng
2018-06-05
Since the discovery of the giant magnetoresistive (GMR) effect, GMR sensors have gained much attention in last decades due to their high sensitivity, small size, and low cost. The full Wheatstone-bridge-based GMR sensor is most useful in terms of the application point of view. However, its manufacturing process is usually complex. In this paper, we present an efficient and concise approach to fabricate a full Wheatstone-bridge-based angular GMR sensor by depositing one GMR film stack, utilizing simple patterned processes, and a concise post-annealing procedure based on a special layout. The angular GMR sensor is of good linear performance and achieves a sensitivity of 0.112 mV/V/Oe at the annealing temperature of 260 °C in the magnetic field range from -50 to +50 Oe. This work provides a design and method for GMR-sensor manufacturing that is easy for implementation and suitable for mass production.
Apparatus and method for imaging metallic objects using an array of giant magnetoresistive sensors
Chaiken, Alison
2000-01-01
A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.
Determination of crack depth in aluminum using eddy currents and GMR sensors
NASA Astrophysics Data System (ADS)
Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.
2015-03-01
In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.
Eddy Current Testing for Detecting Small Defects in Thin Films
NASA Astrophysics Data System (ADS)
Obeid, Simon; Tranjan, Farid M.; Dogaru, Teodor
2007-03-01
Presented here is a technique of using Eddy Current based Giant Magneto-Resistance sensor (GMR) to detect surface and sub-layered minute defects in thin films. For surface crack detection, a measurement was performed on a copper metallization of 5-10 microns thick. It was done by scanning the GMR sensor on the surface of the wafer that had two scratches of 0.2 mm, and 2.5 mm in length respectively. In another experiment, metal coatings were deposited over the layers containing five defects with known lengths such that the defects were invisible from the surface. The limit of detection (resolution), in terms of defect size, of the GMR high-resolution Eddy Current probe was studied using this sample. Applications of Eddy Current testing include detecting defects in thin film metallic layers, and quality control of metallization layers on silicon wafers for integrated circuits manufacturing.
Detection of magnetic microbeads and ferrofluid with giant magnetoresistance sensors
NASA Astrophysics Data System (ADS)
Feng, J.; Wang, Y. Q.; Li, F. Q.; Shi, H. P.; Chen, X.
2011-01-01
Giant magnetoresistance sensors based on multilayers [Cu/NiFeCo]×10/ Ta were fabricated by microfabrication technology. A GMR-bridge was used to detect the magnetic MyOne beads and Ferro fluid. The dependence of the GMR-bridge signals on the surface coverage of MyOne beads was studied. The results show that the GMR sensor is capable of detecting the magnetic beads. The detectable limit of MyOne beads is about 100, and the corresponding signal output is 8 μV. The GMR bridge signal is proportional to the surface coverage of the MyOne beads. The sensitivity of the GMR bridge is inversely proportional to the feature size of the GMR sensor. The GMR bridge integrated with microfludic channel was also used for dynamic detection of ferrofluid (suspension of Fe3O4 particles). The results show that the GMR bridge is capable of detecting the flow of ferrofluid, and the sensor signals are proportional to the concentration of the ferrofluid. The detection limit of concentration of the ferrofluid is 0.56 mg/ml, and the corresponding signal is 6.2 μV.
Integration of GMR Sensors with Different Technologies
Cubells-Beltrán, María-Dolores; Reig, Càndid; Madrenas, Jordi; De Marcellis, Andrea; Santos, Joana; Cardoso, Susana; Freitas, Paulo P.
2016-01-01
Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications. PMID:27338415
Yuan, Samuel W.; Rottmayer, Robert Earl; Carey, Matthew J.
1999-01-01
A compact read/write head having a biased giant magnetoresistive sensor. Permanent magnet films are placed adjacent to the giant magnetoresistive sensor operating in the current-perpendicular-to the-plane (Cpp) mode and spaced with respect to the sensor by conducting films. These permanent magnet films provide a magnetic bias. The bias field is substantial and fairly uniform across sensor height. Biasing of the giant magnetoresistive sensor provides distinguishable response to the rising and falling edges of a recorded pulse on an adjacent recording medium, improves the linearity of the response, and helps to reduce noise. This read/write head is much simpler to fabricate and pattern and provides an enhanced uniformity of the bias field throughout the sensor.
Metallic Bead Detection by Using Eddy-Current Probe with SV-GMR Sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, S.; Chomsuwan, K.; Hagino, T.
2005-04-09
The progress of the ECT probe with micro magnetic sensor becomes possible to apply to various applications. The detection of micro metallic bead used for electric packaging has been reported in this paper. We proposed micro ECT probes with meander coil as exciter and spin-valve giant magneto-resistance (SV-GMR) as receiver. Micro metallic bead(solder ball) with the diameter of 0.25 to 0.76 mm is used as a measuring object. We discuss the detection and alignment of metallic bead by using ECT technique.
High yield Cu-Co CPP GMR multilayer sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spallas, J.; Mao, M.; Law, B.
1997-01-15
We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operationalmore » devices to {ge}90% per wafer and a significant reduction of the device resistance to {le}560 milliohms and of the uniformity of the device resistance to {le}3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 {angstrom}/Co 20 {angstrom}]{sub 18} (third peak) to [Cu 20.5 {angstrom}/Co 12 {angstrom}]{sub 30} (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% {+-} 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% {+-} 4%. The average second peak CPP sensitivity is 0.09 %/Oe {+-} 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs.« less
Benefits of GMR sensors for high spatial resolution NDT applications
NASA Astrophysics Data System (ADS)
Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.
2018-04-01
Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.
Costa, Tiago; Cardoso, Filipe A; Germano, Jose; Freitas, Paulo P; Piedade, Moises S
2017-10-01
The development of giant magnetoresistive (GMR) sensors has demonstrated significant advantages in nanomedicine, particularly for ultrasensitive point-of-care diagnostics. To this end, the detection system is required to be compact, portable, and low power consuming at the same time that a maximum signal to noise ratio is maintained. This paper reports a CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications. Based on the characterization of the GMR sensor's signal and noise, CMOS building blocks (i.e., current source, multiplexers, and preamplifier) were designed targeting a negligible noise when compared with the GMR sensor's noise and a low power consumption. The CMOS front-end was fabricated using AMS [Formula: see text] technology and the magnetoresistive sensors were post-fabricated on top of the CMOS chip with high yield ( [Formula: see text]). Due to its low circuit noise (16 [Formula: see text]) and overall equivalent magnetic noise ([Formula: see text]), the full system was able to detect 250 nm magnetic nanoparticles with a circuit imposed signal-to-noise ratio degradation of only -1.4 dB. Furthermore, the low power consumption (6.5 mW) and small dimensions ([Formula: see text] ) of the presented solution guarantees the portability of the detection system allowing its usage at the point-of-care.
Rifai, Damhuji; Abdalla, Ahmed N; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A
2017-03-13
The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient.
NASA Astrophysics Data System (ADS)
Bae, Seongtae
Since giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) spinvalve effects were developed for the last two decades after discovered, world wide researches on applying these effects for various kinds of solid state active devices has provided a strong impact on challenging new functional micro-magnetoelectronic devices. In particular, recently developed nano-structured magnetic spin-valve thin film materials for spin-electronic devices are now considered as building blocks of state-of-the-art electronic engineering. This research has been concentrated on developing and designing magneto-electronic solid state devices with high thermal and electrical stability using an alpha-Fe 2O3 and NiO oxide anti-ferromagnetic exchange biased GMR bottom spin-valves (BSV), NiFe/Cu/Co and NiFe/Cu/CoFe based closed-flux metallic pseudo spin-valves, and PtMn exchange biased TMR spin-valves. The category covering this research is divided into four main research steps. First is to investigate exchange bias coupling characteristics of alpha-Fe2 O3 and NiO oxide Anti-ferromagnetic materials (AF)/Ferromagnetic (F) layer systems for optimizing exchange biased BSV and to study magnetic properties of various kinds of magnetic thin films including single through multi-layered structures for the fundamental research on NiFe/Cu/Co and NiFe/Cu/CoFe closed-flux metallic pseudo spin-valves. Second is to develop and improve new kinds of BSVs and closed-flux metallic spinvalves by controlling process parameters in terms of crystalline orientation texture of AF and F layers, interfacial surface roughness, grain size (its size distribution), chemical composition, and kinetics of sputtering film growth. Third is to design, to fabricate, and to investigate the magnetic and electrical properties of magneto-electronic devices as well as their applications such as GMR magnetoresistive random access memory (MRAM), GMR read head, TMR read head, and new kinds of GMR solid state devices, which can be promisingly substituted for current microelectronic devices. Finally, the last is to focus on studying electrical reliability of GMR read sensor and GMR MRAM cell in terms of electromigration-induced failures of various kinds of magnetic thin films, which are currently used in GMR spin-valve materials, and is to investigate the effects of current (or voltage) induced dielectric breakdown in aluminum oxide tunnel barrier under various testing conditions on the electrical stability of real TMR read sensors.
NASA Technical Reports Server (NTRS)
Davis, Despina (Inventor); Mannam, Raja Sekharam (Inventor); Bellamkonda, Ramya (Inventor)
2013-01-01
A thermoelectrically cooled GMR sensor having a first thermoelectric layer with an array of nanowires, wherein the nanowires include a diameter of about 1 nanometer to about 1000 nanometers. A plurality of alternating layers of magnetic and nonmagnetic material are positioned over and extend the nanowires to form a GMR assembly. A second thermoelectric layer is positioned over the GMR assembly and extends the nanowires, such that the nanowires have a length of between about 100 nanometers and about 500 microns. Conductors are placed in contact with the first and second thermoelectric layers for connecting the thermoelectric layers to a voltage source.
Rifai, Damhuji; Abdalla, Ahmed N.; Razali, Ramdan; Ali, Kharudin; Faraj, Moneer A.
2017-01-01
The use of the eddy current technique (ECT) for the non-destructive testing of conducting materials has become increasingly important in the past few years. The use of the non-destructive ECT plays a key role in the ensuring the safety and integrity of the large industrial structures such as oil and gas pipelines. This paper introduce a novel ECT probe design integrated with the distributed ECT inspection system (DSECT) use for crack inspection on inner ferromagnetic pipes. The system consists of an array of giant magneto-resistive (GMR) sensors, a pneumatic system, a rotating magnetic field excitation source and a host PC acting as the data analysis center. Probe design parameters, namely probe diameter, an excitation coil and the number of GMR sensors in the array sensor is optimized using numerical optimization based on the desirability approach. The main benefits of DSECT can be seen in terms of its modularity and flexibility for the use of different types of magnetic transducers/sensors, and signals of a different nature with either digital or analog outputs, making it suited for the ECT probe design using an array of GMR magnetic sensors. A real-time application of the DSECT distributed system for ECT inspection can be exploited for the inspection of 70 mm carbon steel pipe. In order to predict the axial and circumference defect detection, a mathematical model is developed based on the technique known as response surface methodology (RSM). The inspection results of a carbon steel pipe sample with artificial defects indicate that the system design is highly efficient. PMID:28335399
Magnetocardiography with sensors based on giant magnetoresistance
NASA Astrophysics Data System (ADS)
Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C.
2011-04-01
Biomagnetic signals, mostly due to the electrical activity in the body, are very weak and they can only be detected by the most sensitive magnetometers, such as Superconducting Quantum Interference Devices (SQUIDs). We report here biomagnetic recordings with hybrid sensors based on Giant MagnetoResistance (GMR). We recorded magnetic signatures of the electric activity of the human heart (magnetocardiography) in healthy volunteers. The P-wave and QRS complex, known from the corresponding electric recordings, are clearly visible in the recordings after an averaging time of about 1 min. Multiple recordings at different locations over the chest yielded a dipolar magnetic field map and allowed localizing the underlying current sources. The sensitivity of the GMR-based sensors is now approaching that of SQUIDs and paves way for spin electronics devices for functional imaging of the body.
Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors
Arias, Sergio Iván Ravello; Muñoz, Diego Ramírez; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro
2013-01-01
Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Zt(if) is obtained considering it as the relationship between sensor output voltage and input sensing current, Zt(jf)=Vo,sensor(jf)/Isensor(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648
Giant magnetoresistive biosensors for molecular diagnosis: surface chemistry and assay development
NASA Astrophysics Data System (ADS)
Yu, Heng; Osterfeld, Sebastian J.; Xu, Liang; White, Robert L.; Pourmand, Nader; Wang, Shan X.
2008-08-01
Giant magnetoresistive (GMR) biochips using magnetic nanoparticle as labels were developed for molecular diagnosis. The sensor arrays consist of GMR sensing strips of 1.5 μm or 0.75 μm in width. GMR sensors are exquisitely sensitive yet very delicate, requiring ultrathin corrosion-resistive passivation and efficient surface chemistry for oligonucleotide probe immobilization. A mild and stable surface chemistry was first developed that is especially suitable for modifying delicate electronic device surfaces, and a practical application of our GMR biosensors was then demonstrated for detecting four most common human papillomavirus (HPV) subtypes in plasmids. We also showed that the DNA hybridization time could potentially be reduced from overnight to about ten minutes using microfluidics.
A novel CMOS transducer for giant magnetoresistance sensors.
Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong
2017-02-01
In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.
Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses
NASA Astrophysics Data System (ADS)
Tekgül, Atakan; Alper, Mürsel; Kockar, Hakan
2017-01-01
The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current-time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of -0.3 and -1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices.
The Detection and Discrimination of Small Munitions using Giant Magnetoresistive (OMR) Sensors
2010-09-01
Suffield, Canada. McGlone, D.T., 1998, Magnetometer Comparison Smoke Creek Instruments’ GMR SCIMAG- 01 & Bartington Fluxgate MAG-03MC70, A...a magnetometer and frequency domain or time domain electromagnetic induction sensor. Both the Honeywell and NVE GlvlR sensors studied have si.m ilar...field sensor. In p0ssive mode, the GMR sensor, which has a resolution of Jess than l 0 nT, perfom1ed similarly to a cesium vapor magnetometer . When
Advanced Magnetic Head Development Revision 1 Final Report CRADA No. TC-0840-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, C.; Shi, S.
The specific go,il of this research was the development of a prototype read magnetic sensor head using the Current:Perpendicular-to-Plane (CPP) geometry with known GMR (Giant Magneto-Resistive) multilayered structures to achieve read densities greater than 10 Gbit/in2, field sensitivities greater than 1%/Oe, switching fields less than 20 Oe, and total MR response greater than 10%. The specific materials needed for this idcnl behavior had to be determined, as did the eventual design of the sensor (placement of contact leads, shields, and biasing magnets). Thus the thrust of the rescnrch required a search for the proper multilayer material combination und the developmentmore » of a simulation capability to guide sensor design. Issues i:elated to device integration, such as media noise and lead contact resistance, were also recognized as important technological hurdles but these items were deferred until the operating conditions of the-prototype GMR sensor were more precisely determined.« less
NASA Astrophysics Data System (ADS)
Hashimoto, Y.; Yamamoto, N.; Kato, T.; Oshima, D.; Iwata, S.
2018-03-01
Giant magneto-resistance (GMR) spin-valve films with an FeSiB/CoFeB free layer were fabricated to detect applied strain in a GMR device. The magnetostriction constant of FeSiB was experimentally determined to have 32 ppm, which was one order of magnitude larger than that of CoFeB. In order to detect the strain sensitively and robustly against magnetic field fluctuation, the magnetic field modulation technique was applied to the GMR device. It was confirmed that the output voltage of the GMR device depends on the strain, and the gauge factor K = 46 was obtained by adjusting the applied DC field intensity and direction. We carried out the simulation based on a macro-spin model assuming uniaxial anisotropy, interlayer coupling between the free and pin layers, strain-induced anisotropy, and Zeeman energy, and succeeded in reproducing the experimental results. The simulation predicts that improving the magnetic properties of GMR films, especially reducing interlayer coupling, will be effective for increasing the output, i.e., the gauge factor, of the GMR strain sensors.
Determination of linear defect depths from eddy currents disturbances
NASA Astrophysics Data System (ADS)
Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes
2014-02-01
One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.
Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications
Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas
2016-01-01
The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors. PMID:27322277
Electron transport theory in magnetic nanostructures
NASA Astrophysics Data System (ADS)
Choy, Tat-Sang
Magnetic nanostructure has been a new trend because of its application in making magnetic sensors, magnetic memories, and magnetic reading heads in hard disks drives. Although a variety of nanostructures have been realized in experiments in recent years by innovative sample growth techniques, the theoretical study of these devices remain a challenge. On one hand, atomic scale modeling is often required for studying the magnetic nanostructures; on the other, these structures often have a dimension on the order of one micrometer, which makes the calculation numerically intensive. In this work, we have studied the electron transport theory in magnetic nanostructures, with special attention to the giant magnetoresistance (GMR) structure. We have developed a model that includes the details of the band structure and disorder, both of which are both important in obtaining the conductivity. We have also developed an efficient algorithm to compute the conductivity in magnetic nanostructures. The model and the algorithm are general and can be applied to complicated structures. We have applied the theory to current-perpendicular-to-plane GMR structures and the results agree with experiments. Finally, we have searched for the atomic configuration with the highest GMR using the simulated annealing algorithm. This method is computationally intensive because we have to compute the GMR for 103 to 104 configurations. However it is still very efficient because the number of steps it takes to find the maximum is much smaller than the number of all possible GMR structures. We found that ultra-thin NiCu superlattices have surprisingly large GMR even at the moderate disorder in experiments. This finding may be useful in improving the GMR technology.
Microfluidic platform for detection and quantification of magnetic markers
NASA Astrophysics Data System (ADS)
Kokkinis, Georgios; Cardoso, Susana; Giouroudi, Ioanna
2017-05-01
This paper reports on a microfluidic platform with an integrated spin valve giant magneto-resistance (GMR) sensor used for the detection and quantification of single magnetic micromarkers. A microfluidic channel containing the magnetic fluid, microconductors (MCs) for collection of the magnetic markers and a spin valve GMR sensor for detecting the presence of their magnetic stray field were integrated on a single chip. The results show that the sensor is capable of detecting a single magnetic marker with 2.8 μm diameter.
GMR sensors with linear and unhysteretic R(H) dependences
NASA Astrophysics Data System (ADS)
Stobiecki, F.; Szymański, B.; Luciński, T.; Dubowik, J.; Urbaniak, M.; Schmidt, M.; Röll, K.
2004-05-01
Magnetoresistance effect of Ni-Fe/Au/Co/Au sputtered multilayers was investigated. These new GMR structures, consisting of ferromagnetic layers with alternating in-plane (Ni-Fe) and out-of-plane (Co) magnetization configurations at remanence show magnetoresistive behavior attractive for some applications.
The guided-mode resonance biosensor: principles, technology, and implementation
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Lee, Kyu J.; Hemmati, Hafez; Ko, Yeong Hwan; Wenner, Brett R.; Allen, Jeffery W.; Allen, Monica S.; Gimlin, Susanne; Weidanz, Debra Wawro
2018-02-01
The guided-mode resonance (GMR) sensor operates with quasi-guided modes induced in periodic films. The resonance is enabled by 1D or 2D nanopatterns that are expeditiously fabricated. Optical sensors are needed in many fields including medical diagnostics, chemical analyses, and environmental monitoring. Inducing resonance in multiple modes enables extraction of complete bioreaction information including the biolayer thickness, biolayer refractive index, and any change in the refractive index in the background buffer solution. Thus, we refer to this version of the GMR sensor as the complete biosensor. We address the fundamentals, state of technological development, and implementation of this basic sensor modality.
HYPERSPECTRAL CHANNEL SELECTION FOR WATER QUALITY MONITORING ON THE GREAT MIAMI RIVER, OHIO
During the summer of 1999, spectral data were collected with a hand-held spectroradiometer, a laboratory spectrometer and airborne hyperspectral sensors from the Great Miami River (GMR), Ohio. Approximately 80 km of the GMR were imaged during a flyover with a Compact Airborne Sp...
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-01
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future. PMID:29316670
Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.
Shen, Hui-Min; Hu, Liang; Fu, Xin
2018-01-07
With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhenchao; Yamamoto, Tatsuya; Kubota, Takahide
2016-06-06
Current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) heterostructure devices using half-metallic NiMnSb Heusler alloy electrodes with single, dual, and triple Ag spacers were fabricated. The NiMnSb alloy films and Ag spacers show (001) epitaxial growth in all CPP-GMR multilayer structures. The dual-spacer CPP-GMR nanojunction exhibited an enhanced CPP-GMR ratio of 11% (a change in the resistance-area product, ΔRA, of 3.9 mΩ μm{sup 2}) at room temperature, which is approximately twice (thrice) of 6% (1.3 mΩ μm{sup 2}) in the single-spacer device. The enhancement of the CPP-GMR effects in the dual-spacer devices could be attributed to improved interfacial spin asymmetry. Moreover, it was observedmore » that the CPP-GMR ratios increased monotonically as the temperatures decreased. At 4.2 K, a CPP-GMR ratio of 41% (ΔRA = 10.5 mΩ μm{sup 2}) was achieved in the dual-spacer CPP-GMR device. This work indicates that multispacer structures provide an efficient enhancement of CPP-GMR effects in half-metallic material-based CPP-GMR systems.« less
NASA Astrophysics Data System (ADS)
Fannin, Alexander L.; Wenner, Brett R.; Allen, Jeffery W.; Allen, Monica S.; Magnusson, Robert
2017-12-01
We treat fundamental resonance effects in hybridized metal-dielectric elements that may find applications in absorption, sensing, and displays. The hybrid structures support guided-mode resonance (GMR) and surface plasmon resonance (SPR) operating independently or in unison. Numerical simulations of periodic resonant films coated in gold that effectively combine principles of both resonance effects show viability of absorbers with equalized spectra and hybrid waveguides. The experimentally measured spectra show qualitative agreement with theoretical models. We introduce a hybrid GMR/SPR refractive-index sensor consisting of a thin aluminum film integrated with a subwavelength silicon-dioxide grating. The sensor operates between the Rayleigh wavelengths of the cover and the substrate. A GMR is excited by TE-polarized light and is subsequently attenuated by the Rayleigh anomaly as the cover index increases. In transverse-magnetic-polarized light, it operates as a Rayleigh sensor with sharp spectral features that would be easily monitored with a spectrum analyzer. As a final device example, we present simulation results pertaining to a one-dimensional color filter utilizing SPR, GMR, and the Rayleigh anomaly and convert it into a polarization insensitive two-dimensional device. With dual periods along orthogonal directions, two resonant peaks are induced within the visible spectrum for unpolarized input light rendering a color-mixing effect. The output color of the dual pixel is tunable with the input polarization state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun
2016-01-28
Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the outputmore » performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.« less
Kuo, Wen-Kai; Syu, Siang-He; Lin, Peng-Zhi; Yu, Hsin Her
2016-02-01
This paper reports on a transmitted-type dual-channel guided-mode resonance (GMR) sensor system that uses phase-shifting interferometry (PSI) to achieve tunable phase detection sensitivity. Five interference images are captured for the PSI phase calculation within ∼15 s by using a liquid crystal retarder and a USB web camera. The GMR sensor structure is formed by a nanoimprinting process, and the dual-channel sensor device structure for molding is fabricated using a 3D printer. By changing the rotation angle of the analyzer in front of the camera in the PSI system, the sensor detection sensitivity can be tuned. The proposed system may achieve high throughput as well as high sensitivity. The experimental results show that an optimal detection sensitivity of 6.82×10(-4) RIU can be achieved.
A Magnetoresistive Tactile Sensor for Harsh Environment Applications
Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Leitao, Diana; Kosel, Jürgen
2016-01-01
A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature. PMID:27164113
Bailey, Joseph; Hunze, Arvid
2017-01-01
This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5–200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400–30,800 mm3 with 1.2 × 10−3−1.6 × 10−3 µT/mm3. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation. PMID:28956855
Bailey, Joseph; Long, Nicholas; Hunze, Arvid
2017-09-28
This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5-200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400-30,800 mm³ with 1.2 × 10 -3 -1.6 × 10 -3 µT/mm³. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation.
Development of adapted GMR-probes for automated detection of hidden defects in thin steel sheets
NASA Astrophysics Data System (ADS)
Pelkner, Matthias; Pohl, Rainer; Kreutzbruck, Marc; Commandeur, Colin
2016-02-01
Thin steel sheets with a thickness of 0.3 mm and less are the base materials of many everyday life products (cans, batteries, etc.). Potential inhomogeneities such as non-metallic inclusions inside the steel can lead to a rupture of the sheets when it is formed into a product such as a beverage can. Therefore, there is a need to develop automated NDT techniques to detect hidden defects and inclusions in thin sheets during production. For this purpose Tata Steel Europe and BAM, the Federal Institute for Materials Research and Testing (Germany), collaborate in order to develop an automated NDT-system. Defect detection systems have to be robust against external influences, especially when used in an industrial environment. In addition, such a facility has to achieve a high sensitivity and a high spatial resolution in terms of detecting small inclusions in the μm-regime. In a first step, we carried out a feasibility study to determine which testing method is promising for detecting hidden defects and inclusions inside ferrous thin steel sheets. Therefore, two methods were investigated in more detail - magnetic flux leakage testing (MFL) using giant magneto resistance sensor arrays (GMR) as receivers [1,2] and eddy current testing (ET). The capabilities of both methods were tested with 0.2 mm-thick steel samples containing small defects with depths ranging from 5 µm up to 60 µm. Only in case of GMR-MFL-testing, we were able to detect parts of the hidden defects with a depth of 10 µm trustworthily with a SNR better than 10 dB. Here, the lift off between sensor and surface was 250 µm. On this basis, we investigated different testing scenarios including velocity tests and different lift offs. In this contribution we present the results of the feasibility study leading to first prototypes of GMR-probes which are now installed as part of a demonstrator inside a production line.
NASA Astrophysics Data System (ADS)
Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc
2015-09-01
We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.
Non-invasive heart rate monitoring system using giant magneto resistance sensor.
Kalyan, Kubera; Chugh, Vinit Kumar; Anoop, C S
2016-08-01
A simple heart rate (HR) monitoring system designed and developed using the Giant Magneto-Resistance (GMR) sensor is presented in this paper. The GMR sensor is placed on the wrist of the human and it provides the magneto-plethysmographic signal. This signal is processed by the simple analog and digital instrumentation stages to render the heart rate indication. A prototype of the system has been built and test results on 26 volunteers have been reported. The error in HR estimation of the system is merely 1 beat per minute. The performance of the system when layer of cloth is present between the sensor and the human body is investigated. The capability of the system as a HR variability estimator has also been established through experimentation. The proposed technique can be used as an efficient alternative to conventional HR monitors and is well suited for remote and continuous monitoring of HR.
Determinants of endotoxin levels in carpets in New Zealand homes.
Wickens, K; Douwes, J; Siebers, R; Fitzharris, P; Wouters, I; Doekes, G; Mason, K; Hearfield, M; Cunningham, M; Crane, J
2003-06-01
Endotoxin in house dust has been shown to be associated with asthma severity. Little is known about the influence of housing characteristics on endotoxin distribution. Using standardized methods, dust was sampled from a 1m(2) site and the whole accessible carpet area in selected Wellington, New Zealand homes (n = 77). Endotoxin was measured using a Limulus Amoebocyte Lysate assay. Relative humidity and temperature were recorded using sensors placed in carpet bases. Questionnaires were used to collect information on housing characteristics. All analyses were performed for endotoxin units (EU)/mg and EU/m2 for each site. Geometric mean endotoxin levels were 22.7 EU/mg [geometric standard deviation (GSD) = 2.4] or 30,544 EU/m2 (GSD = 3.2) from the 1m(2) site, and 28.4 EU/mg (GSD = 3.4) or 5653 EU/m2 (GSD = 6.4) from the whole room. After controlling for confounding, endotoxin was positively associated with dogs inside [geometric mean ratio (GMR): 0.9-2.0], total household occupants (GMR: 1.7-2.0, for 1 m2 sample only), vacuum cleaners <1-year old (GMR: 2.3-2.7), reusing vacuum dust collection bags (GMR: 1.4-3.1), steamcleaning or shampooing the carpet (GMR: 1.4-2.2) and high relative humidity (GMR: 1.4-1.6). Lower endotoxin was associated with floor insulation (GMR: 0.4-0.8), and north-facing living rooms (GMR: 0.4-0.8). This study has identified home characteristics that could be modified to reduce endotoxin exposure.
Dittmer, W U; de Kievit, P; Prins, M W J; Vissers, J L M; Mersch, M E C; Martens, M F W C
2008-09-30
A rapid method for the sensitive detection of proteins using actuated magnetic particle labels, which are measured with a giant magneto-resistive (GMR) biosensor, is described. The technique involves a 1-step sandwich immunoassay with no fluid replacement steps. The various assay binding reactions as well as the bound/free separation are entirely controlled by magnetic forces induced by electromagnets above and below the sensor chip. During the assay, particles conjugated with tracer antibodies are actuated through the sample for target capture, and rapidly brought to the sensor surface where they bind to immobilized capture antibodies. Weakly or unbound labels are removed with a magnetic force oriented away from the GMR sensor surface. For the measurement of parathyroid hormone (PTH), a detection limit in the 10 pM range is obtained with a total assay time of 15 min when 300 nm particles are used. The same sensitivity can be achieved in 5 min when 500 nm particles are used. If 500 nm particles are employed in a 15-minute assay, then 0.8 pM of PTH is detectable. The low sample volume, high analytical performance and high speed of the test coupled with the compact GMR biosensor make the system especially suitable for sensitive testing outside of laboratory environments.
Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted
2016-09-16
distribution. Simulation results, using both an optimized coil and a conventional coil, are generated using the finite element method (FEM) model...optimized coil and a conventional coil, are generated using the finite element method (FEM) model. The signal magnitude for an optimized coil is seen to be...optimized coil. 4. Model Based Performance Analysis A 3D finite element model (FEM) is used to analyze the performance of the optimized coil and
Deep Flaw Detection with Giant Magnetoresistive (GMR) Based Self-Nulling Probe
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min
2004-01-01
In this paper a design modification to the Very-Low Frequency GMR Based Self-Nulling Probe has been presented to enable improved signal to noise ratio for deeply buried flaws. The design change consists of incorporating a feedback coil in the center of the flux focusing lens. The use of the feedback coil enables cancellation of the leakage fields in the center of the probe and biasing of the GMR sensor to a location of high magnetic field sensitivity. The effect of the feedback on the probe output was examined, and experimental results for deep flaw detection were presented. The experimental results show that the modified probe is capable of clearly identifying flaws up to 1 cm deep in aluminum alloy structures.
NASA Astrophysics Data System (ADS)
Antarnusa, G.; Elda Swastika, P.; Suharyadi, E.
2018-04-01
A Wheatstone bridge-giant magnetoresistance (GMR) sensor was successfully developed for a potential biomaterial detection. In order to achieve this, a giant magnetoresistive [Co(1.5nm/Cu(1.0nm)]20 multilayer structures have been fabricated by DC magnetron sputtering method, showing a magnetoresistance (MR) of 2.7%. The X-Ray diffraction (XRD) patterns showed that Co/Cu film multilayer has a high degree of crystallinity with a single peak corresponding to face-centered cubic (111) structure at 2θ = 44.1°. Co/Cu multilayers exhibit a soft magnetic behavior with the saturation magnetization (Ms) of 1489 emu/cc and the coercivity (Hc) of 11.2 Oe. The magnetite Fe3O4 nanoparticles used as a bimolecular labels (nanotags) were synthesized via co-precipitation method, exhibiting a soft magnetic behavior with Ms of 77.16 emu/g and Hc of 49 Oe. XRD patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and it grew in their inverse spinel structure with an average size of around 10 nm. The GMR sensor design was used to detect a biomolecules of streptavidin magnetic particles with concentration 10, 20, 30, and 40 μl/ml and α-amylase enzyme with consentration 10, 20, 30, and 40 μl/ml captured using polyethylene glycol (PEG)/Fe3O4 nanoparticles. Various applied magnetic fields of 0-650 Gauss have been performed using electromagnetic with the various currents of 0-5 A. Here, the final value of the output voltage signals for the streptavidin magnetic particles concentration is 1.2 mV (10 μl/ml). The output voltage changes with the increase of concentration. It was reported that the output voltage signal of the Wheatstone bridge exhibits log-linear function in real time measurement of the concentration of streptavidin magnetic particles and α-amylase enzyme respectively, making the sensor suitable for use as a biomolecule concentration detector. Thus, the combination of Co/Cu multilayer, Wheatstone bridge, magnetite and PEG polymer has potential application to be used in bio-detection applications where ultra-small bio-labels are needed.
Electromagnetic Detection of Fatigue Cracks under Protruding Head Ferromagnetic Fasteners
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Namkung, Min
2004-01-01
The detection of fatigue cracks under installed fasteners has been a major goal of the aging aircraft NDE community. The Sliding Probe, Magneto-Optic Imager, Rotating Self-Nulling Probe, Low Frequency Eddy Current Array, and Eddyscan systems are among the instruments developed for this inspection. It has been verified that the detection of fatigue cracks under flush head aluminum and titanium fasteners can be accomplished with a high resolution by the above techniques. The detection of fatigue cracks under ferromagnetic and protruding head fasteners, however, has been found to be much more difficult. For the present work, the inspection for fatigue cracks under SAE 4340 Steel Hi-Lok fasteners is explored. Modifications to the Rotating Self-Nulling Eddy Current Probe System are presented which enable the detection of fatigue cracks hidden under the protruding head of the ferromagnetic fastener. Inspection results for samples with varying length EDM notches are shown, as well as a comparison between the signature from an EDM notch and an actual fatigue crack. Finite Element Modeling is used to investigate the effect of the ferromagnetic fastener on the induced eddy current distribution in order to help explain the detection characteristics of the system. This paper will also introduce a modification to the Rotating Probe System designed specifically for the detection of deeply buried flaws in multilayer conductors. The design change incorporates a giant magnetoresistive (GMR) sensor as the pickup device to improve the low frequency performance of the probe. The flaw detection capabilities of the GMR based Self- Nulling Probe are presented along with the status of the GMR based Rotating Probe System for detection of deeply buried flaws under installed fasteners.
NASA Astrophysics Data System (ADS)
Borie, B.; Kehlberger, A.; Wahrhusen, J.; Grimm, H.; Kläui, M.
2017-08-01
We study the key domain-wall properties in segmented nanowire loop-based structures used in domain-wall-based sensors. The two reasons for device failure, namely, distribution of the domain-wall propagation field (depinning) and the nucleation field are determined with magneto-optical Kerr effect and giant-magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni81 Fe19 , a complete GMR stack with Co90 Fe10 /Ni81Fe19 as a free layer, and a single layer of Co90 Fe10 are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy, and the fabrication processes. We show that the propagation field is influenced only slightly by the geometry but significantly by material parameters. Simulations for a realistic wire shape yield a curling-mode type of magnetization configuration close to the nucleation field. Nonetheless, we find that the domain-wall nucleation fields can be described by a typical Stoner-Wohlfarth model related to the measured geometrical parameters of the wires and fitted by considering the process parameters. The GMR effect is subsequently measured in a substantial number of devices (3000) in order to accurately gauge the variation between devices. This measurement scheme reveals a corrected upper limit to the nucleation fields of the sensors that can be exploited for fast characterization of the working elements.
Lee, Jung-Rok; Sato, Noriyuki; Bechstein, Daniel J. B.; Osterfeld, Sebastian J.; Wang, Junyi; Gani, Adi Wijaya; Hall, Drew A.; Wang, Shan X.
2016-01-01
Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases. PMID:26728870
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
A 256 pixel magnetoresistive biosensor microarray in 0.18μm CMOS
Hall, Drew A.; Gaster, Richard S.; Makinwa, Kofi; Wang, Shan X.; Murmann, Boris
2014-01-01
Magnetic nanotechnologies have shown significant potential in several areas of nanomedicine such as imaging, therapeutics, and early disease detection. Giant magnetoresistive spin-valve (GMR SV) sensors coupled with magnetic nanotags (MNTs) possess great promise as ultra-sensitive biosensors for diagnostics. We report an integrated sensor interface for an array of 256 GMR SV biosensors designed in 0.18 μm CMOS. Arranged like an imager, each of the 16 column level readout channels contains an analog front- end and a compact ΣΔ modulator (0.054 mm2) with 84 dB of dynamic range and an input referred noise of 49 nT/√Hz. Performance is demonstrated through detection of an ovarian cancer biomarker, secretory leukocyte peptidase inhibitor (SLPI), spiked at concentrations as low as 10 fM. This system is designed as a replacement for optical protein microarrays while also providing real-time kinetics monitoring. PMID:24761029
NDT inspections exploiting invariances on scale transformations
NASA Astrophysics Data System (ADS)
Ramos, Helena Geirinhas; Torres, João; Ribeiro, Artur L.; Rebello, João
2015-03-01
The aim of this paper is to show the invariance on the giant magneto-resistor sensor (GMR) output response in the measurement of different plate thicknesses when the problem is resized. To resize the problem, two different probes were projected, implemented and tested: one, with all the dimensions resized by four times the other. Both probes include a pancake coil for magnetic field sinusoidal excitation and measurements are taken with a sensitive bridge fabricated from four giant magneto-resistors (GMR). It is demonstrated, experimentally and with numerical simulation, that the same response value is obtained for two diferent plate thicknesses if dilation principle is kept in the probe's dimensions and electrical quantities. The paper uses the dilation principle to show the invariance of the magnetic field measured by a similar magnetic sensors when data is acquired with the bigger probe on a plate with a thickness four times of the plate thickness used with the smaller probe.
NASA Astrophysics Data System (ADS)
Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc
2017-03-01
The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.
NASA Astrophysics Data System (ADS)
Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish
2016-02-01
The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.
Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors
2003-03-19
characterize the magnetic properties of the NiFe microbeads and chemically functionalize them for use in assays. 2.3. Sensor signal...have been developed as labels for biosensing. Magnetic labels have several potential advantages over other labels. The magnetic properties of the...temperature. Although Dynal M-280 microbeads are extremely monodispersed in size and have excellent biocompatible surface properties , their magnetic
Obstacles using amorphous materials for volume applications
NASA Astrophysics Data System (ADS)
Kiessling, Albert; Reininger, Thomas
2012-10-01
This contribution is especially focussed on the attempt to use amorphous or nanocrystalline metals in position sensor applications and to describe the difficulties and obstacles encountered in coherence with the development of appropriate industrial high volume series products in conjunction with the related quality requirements. The main motivation to do these investigations was to beat the generally known sensors especially silicon based Hall-sensors as well as AMR- and GMR-sensors - well known from mobile phones and electronic storage devices like hard discs and others - in terms of cost-effectiveness and functionality.
Electronic Structure and Transport in Magnetic Multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-02-18
ORNL assisted Seagate Recording Heads Operations in the development of CIPS pin Valves for application as read sensors in hard disk drives. Personnel at ORNL were W. H. Butler and Xiaoguang Zhang. Dr. Olle Heinonen from Seagate RHO also participated. ORNL provided codes and materials parameters that were used by Seagate to model CIP GMR in their heads. The objectives were to: (1) develop a linearized Boltzmann transport code for describing CIP GMR based on realistic models of the band structure and interfaces in materials in CIP spin valves in disk drive heads; (2) calculate the materials parameters needed asmore » inputs to the Boltzmann code; and (3) transfer the technology to Seagate Recording Heads.« less
NASA Astrophysics Data System (ADS)
Gupta, Anoop; Mohanan, Senthilnathan; Kinyanjui, Michael; Chuvilin, Andrey; Kaiser, Ute; Herr, Ulrich
2010-05-01
NiMn is an interesting material for achieving a high exchange bias in spin valve systems. We investigated the influence of a nano-oxide layer (NOL) inserted in the pinned Co layer on the magnetotransport properties of NiMn/Co/Cu/Co spin valve sensors. The samples were annealed at 350 °C for 10 min to achieve the antiferromagnetic L10 ordered structure of NiMn. The NOL has been characterized by small angle x-ray reflectivity, transmission electron microscopy (TEM), and energy filtered TEM. The inclusion of the NOL leads to an increase in the giant magnetoresistance (GMR) by 20 % indicating a high degree of specular reflection at the NOL. For NOL positions close to the NiMn/Co interface, a decrease in the exchange bias field (Hex) is observed. The best combination of high GMR value and large Hex was found when the NOL was inserted in the center of the pinned Co layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S.; Holody, P.; Loloee, R.
1997-03-01
From data on (Fe{sub 1-x}V{sub x}/Cu/Co/Cu){sub N} multilayers, we show that Fe doped with V gains a negative spin asymmetry for bulk scattering ({beta}{lt}0), which, combined with the positive asymmetry of Co, accounts for the inverse current perpendicular to the plane (CPP) giant magnetoresistance (GMR) we observe. More precisely, the competition between positive and negative asymmetries for interface and bulk scatterings in FeV leads to inverse (normal) GMR for layers thicker (thinner) than a compensation thickness. The negative {beta} of FeV is consistent with theoretical predictions and bulk alloy data. The current in the plane (CIP) GMR is not reversed,more » which illustrates the role of channeling in CIP. {copyright} {ital 1997} {ital The American Physical Society}« less
Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging
NASA Technical Reports Server (NTRS)
Felt, Frederick S.
2005-01-01
During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.
Machnicka, Magdalena A; Kaminska, Katarzyna H; Dunin-Horkawicz, Stanislaw; Bujnicki, Janusz M
2015-10-23
GmrSD is a modification-dependent restriction endonuclease that specifically targets and cleaves glucosylated hydroxymethylcytosine (glc-HMC) modified DNA. It is encoded either as two separate single-domain GmrS and GmrD proteins or as a single protein carrying both domains. Previous studies suggested that GmrS acts as endonuclease and NTPase whereas GmrD binds DNA. In this work we applied homology detection, sequence conservation analysis, fold recognition and homology modeling methods to study sequence-structure-function relationships in the GmrSD restriction endonucleases family. We also analyzed the phylogeny and genomic context of the family members. Results of our comparative genomics study show that GmrS exhibits similarity to proteins from the ParB/Srx fold which can have both NTPase and nuclease activity. In contrast to the previous studies though, we attribute the nuclease activity also to GmrD as we found it to contain the HNH endonuclease motif. We revealed residues potentially important for structure and function in both domains. Moreover, we found that GmrSD systems exist predominantly as a fused, double-domain form rather than as a heterodimer and that their homologs are often encoded in regions enriched in defense and gene mobility-related elements. Finally, phylogenetic reconstructions of GmrS and GmrD domains revealed that they coevolved and only few GmrSD systems appear to be assembled from distantly related GmrS and GmrD components. Our study provides insight into sequence-structure-function relationships in the yet poorly characterized family of Type IV restriction enzymes. Comparative genomics allowed to propose possible role of GmrD domain in the function of the GmrSD enzyme and possible active sites of both GmrS and GmrD domains. Presented results can guide further experimental characterization of these enzymes.
Wen, Zhenchao; Kubota, Takahide; Yamamoto, Tatsuya; Takanashi, Koki
2015-01-01
Remarkable magnetic and spin-dependent transport properties arise from well-designed spintronic materials and heterostructures. Half-metallic Heusler alloys with high spin polarization exhibit properties that are particularly advantageous for the development of high-performance spintronic devices. Here, we report fully (001)-epitaxial growth of a high-quality half-metallic NiMnSb half-Heusler alloy films, and their application to current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with Ag spacer layers. Fully (001)-oriented NiMnSb epitaxial films with very flat surface and high magnetization were prepared on Cr/Ag-buffered MgO(001) single crystalline substrates by changing the substrate temperature. Epitaxial CPP-GMR devices using the NiMnSb films and a Ag spacer were fabricated, and room-temperature (RT) CPP-GMR ratios for the C1b-type half-Heusler alloy were determined for the first time. A CPP-GMR ratio of 8% (21%) at RT (4.2 K) was achieved in the fully epitaxial NiMnSb/Ag/NiMnSb structures. Furthermore, negative anisotropic magnetoresistance (AMR) ratio and small discrepancy of the AMR amplitudes between RT and 10 K were observed in a single epitaxial NiMnSb film, indicating robust bulk half metallicity against thermal fluctuation in the half-Heusler compound. The modest CPP-GMR ratios could be attributed to interface effects between NiMnSb and Ag. This work provides a pathway for engineering a new class of ordered alloy materials with particular emphasis on spintronics. PMID:26672482
CPP magnetoresistance of magnetic multilayers: A critical review
NASA Astrophysics Data System (ADS)
Bass, Jack
2016-06-01
We present a comprehensive, critical review of data and analysis of Giant (G) Magnetoresistance (MR) with Current-flow Perpendicular-to-the-layer-Planes (CPP-MR) of magnetic multilayers [F/N]n (n=number of repeats) composed of alternating nanoscale layers of ferromagnetic (F) and non-magnetic (N) metals, or of spin-valves that allow control of anti-parallel (AP) and parallel (P) orientations of the magnetic moments of adjacent F-layers. GMR, a large change in resistance when an applied magnetic field changes the moment ordering of adjacent F-layers from AP to P, was discovered in 1988 in the geometry with Current flow in the layer-Planes (CIP). The CPP-MR has two advantages over the CIP-MR: (1) relatively simple two-current series-resistor (2CSR) and more general Valet-Fert (VF) models allow more direct access to the underlying physics; and (2) it is usually larger, which should be advantageous for devices. When the first CPP-MR data were published in 1991, it was not clear whether electronic transport in GMR multilayers is completely diffusive or at least partly ballistic. It was not known whether the properties of layers and interfaces would vary with layer thickness or number. It was not known whether the CPP-MR would be dominated by scattering within the F-metals or at the F/N interfaces. Nothing was known about: (1) spin-flipping within F-metals, characterized by a spin-diffusion length, lsfF; (2) interface specific resistances (AR=area A times resistance R) for N1/N2 interfaces; (3) interface specific resistances and interface spin-dependent scattering asymmetry at F/N and F1/F2 interfaces; and (4) spin-flipping at F/N, F1/F2 and N1/N2 interfaces. Knowledge of spin-dependent scattering asymmetries in F-metals and F-alloys, and of spin-flipping in N-metals and N-alloys, was limited. Since 1991, CPP-MR measurements have quantified the scattering and spin-flipping parameters that determine GMR for a wide range of F- and N-metals and alloys and of F/N pairs. This review is designed to provide a history of how knowledge of CPP-MR parameters grew, to give credit for discoveries, to explain how combining theory and experiment has enabled extraction of quantitative information about these parameters, but also to make clear that progress was not always direct and to point out where disagreements still exist. To limit its length, the review considers only collinear orientations of the moments of adjacent F-layers. To aid readers looking for specific information, we have provided an extensive table of contents and a detailed summary. Together, these should help locate over 100 figures plus 17 tables that collect values of individual parameters. In 1997, CIP-MR replaced anisotropic MR (AMR) as the sensor in read heads of computer hard drives. In principle, the usually larger CPP-MR was a contender for the next generation read head sensor. But in 2003, CIP-MR was replaced by the even larger Tunneling MR (TMR), which has remained the read-head sensor ever since. However, as memory bits shrink to where the relatively large specific resistance AR of TMR gives too much noise and too large an R to impedance match as a read-head sensor, the door is again opened for CPP-MR. We will review progress in finding techniques and F-alloys and F/N pairs to enhance the CPP-MR, and will describe its present capabilities.
Recent Developments of Magnetoresistive Sensors for Industrial Applications
Jogschies, Lisa; Klaas, Daniel; Kruppe, Rahel; Rittinger, Johannes; Taptimthong, Piriya; Wienecke, Anja; Rissing, Lutz; Wurz, Marc Christopher
2015-01-01
The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling). PMID:26569263
GMR biosensor arrays: a system perspective.
Hall, D A; Gaster, R S; Lin, T; Osterfeld, S J; Han, S; Murmann, B; Wang, S X
2010-05-15
Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. 2010 Elsevier B.V. All rights reserved.
GMR Biosensor Arrays: A System Perspective
Hall, D. A.; Gaster, R. S.; Lin, T.; Osterfeld, S. J.; Han, S.; Murmann, B.; Wang, S. X.
2010-01-01
Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1 – 8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4 seconds). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multipexability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. PMID:20207130
44 CFR 334.5 - GMR system description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false GMR system description. 334.5 Section 334.5 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.5 GMR system description. The GMR...
Formation of CCP-NOL in CPP-GMR spin valve structure for the enhancement of magnetoresistance
NASA Astrophysics Data System (ADS)
Kang, Y. M.; Isogami, S.; Tsunoda, M.; Takahashi, M.; Yoo, S. I.
2007-03-01
For the MR enhancement in current perpendicular to plane-giant magetoresistance spin valve (CPP-GMR SV), a current-confined path—nano-oxide layer (CCP-NOL)—AlO x was formed on the Cu spacer of half SV structure. In order to form effective current-confining paths, an ultra-thin AlO x layer was deposited on a Cu spacer layer by O 2 reactive sputtering of Al with infra-red (IR) heat treatment on the substrate, and that enable to form an island-structured insulating AlO x layer having holes between AlO x islands. By controlling PO 2 and substrate temperature in the NOL deposition, AlO x layer formation without an oxidizing bottom layer could be achieved.
NASA Astrophysics Data System (ADS)
Tibuleac, Sorin
In this dissertation, new reflection and transmission filters are developed and characterized in the optical and microwave spectral regions. These guided-mode resonance (GMR) filters are implemented by integrating diffraction gratings into classical thin-film multilayers to produce high efficiency filter response and low sidebands extended over a large spectral range. Diffraction from phase-shifted gratings and gratings with different periods is analyzed using rigorous coupled-wave theory yielding a new approach to filter linewidth broadening, line-shaping, and multi-line filters at normal incidence. New single-grating transmission filters presented have narrow linewidth, high peak transmittance, and low sideband reflectance. A comparison with classical thin-film filters shows that GMR devices require significantly fewer layers to obtain narrow linewidth and high peak response. All-dielectric microwave frequency- selective surfaces operating in reflection or transmission are shown to be realizable with only a few layers using common microwave materials. Single-layer and multilayer waveguide gratings operating as reflection and transmission filters, respectively, were built and tested in the 4-20 GHz frequency range. The presence of GMR notches and peaks is clearly established by the experimental results, and their spectral location and lineshape found to be in excellent agreement with the theoretical predictions. A new computer program using genetic algorithms and rigorous coupled-wave analysis was developed for optimization of multilayer structures containing homogeneous and diffractive layers. This program was utilized to find GMR filters possessing features not previously known. Thus, numerous examples of transmission filters with peaks approaching 100%, narrow linewidths (~0.03%), and low sidebands have been found in structures containing only 1-3 layers. A new type of GMR device integrating a waveguide grating with subwavelength period on the endface of an optical fiber is developed for high-resolution biomedical or chemical sensors and spectral filtering applications. Diffraction gratings with submicron periods exhibiting high efficiencies have been recorded for the first time on coated and uncoated endfaces of single-mode and multimode fibers. Guided-mode resonance transmittance notches of ~18% were experimentally obtained with structures consisting of photoresist gratings on thin films of Si3N4 deposited on optical fiber endfaces.
CPP-GMR films with a current-confined-path nano-oxide layer (CCP-NOL)
NASA Astrophysics Data System (ADS)
Fukuzawa, Hideaki; Yuasa, Hiromi; Iwasaki, Hitoshi
2007-03-01
We investigated the film performance and nanostructure of current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) spin-valve film with a current-confined-path nano-oxide layer (CCP-NOL). By applying ion-assisted oxidation (IAO) for the CCP-NOL formation, we enhanced the MR ratio to 5.4% at a small RA value of 500 mΩ µm2 for conventional Co90Fe10 layers. Furthermore, the use of bcc-Fe50Co50 also increased the MR ratio to 8.2% at a small RA value of 580 mΩ µm2. A modified Valet-Fert model for the CCP-NOL showed that the MR enhancement by the IAO is due to the improvement in resistivity of the CCP, and that by Fe50Co50 is due to a larger spin-dependent interface scattering effect. Analysis by cross-sectional TEM and three-dimensional atom probe confirmed the formation of the CCP-NOL structure. A reliability test for test element devices showed almost no change even under acceleration stress. The CPP-GMR spin-valve film with the CCP-NOL is extendable to future high-density recording heads due to its potential for a higher MR ratio at a small value of RA.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Xu, Jie; Cao, Derang; Li, Qiang; Zhao, Guoxia; Sun, Nian X.; Li, Shandong
2018-05-01
In the broad research of the GMR bio-sensing technology, it is vital to explore appropriate magnetic labels and its influences on the detection signal. In this work, four kinds of ferrite particles of γ-Fe2O3, CoFe2O4, NiFe2O4 and NiZnFe2O4 were prepared through calcining the Dimethyl Formamide (DMF) solution of the transition metal nitrates [Fe(NO3)3 and X(NO3)2, X = Co, Ni, Zn] to study the effect of magnetic properties on detection signals using a DC in-plane measuring method. It was revealed that for four particles, the output voltage differences |ΔV| between with and without magnetic particles exhibit log-linear functions of the particles concentrations x in the range from 0.1 to 10 ng/mL. A very low limitation of detection (LOD) of 0.1 ng/mL for all the samples was obtained, which is two orders smaller than that in the previous work. Moreover, the change of output voltage difference at the LOD (|ΔVlim|) is proportional to the magnetization at bias field (bias magnetization, Mbias), which indicates that larger Mbias leads to a lower LOD. This work provides a useful guidance in selecting or preparing magnetic labels to enhance the sensitivity of GMR biosensors.
Development of a magnetic lab-on-a-chip for point-of-care sepsis diagnosis
NASA Astrophysics Data System (ADS)
Schotter, Joerg; Shoshi, Astrit; Brueckl, Hubert
2009-05-01
We present design criteria, operation principles and experimental examples of magnetic marker manipulation for our magnetic lab-on-a-chip prototype. It incorporates both magnetic sample preparation and detection by embedded GMR-type magnetoresistive sensors and is optimized for the automated point-of-care detection of four different sepsis-indicative cytokines directly from about 5 μl of whole blood. The sample volume, magnetic particle size and cytokine concentration determine the microfluidic volume, sensor size and dimensioning of the magnetic gradient field generators. By optimizing these parameters to the specific diagnostic task, best performance is expected with respect to sensitivity, analysis time and reproducibility.
GMR microfluidic biosensor for low concentration detection of Nanomag-D beads
NASA Astrophysics Data System (ADS)
Devkota, J.; Kokkinis, G.; Jamalieh, M.; Phan, M. H.; Srikanth, H.; Cardoso, S.; Cardoso, F. A.; Giouroudi, I.
2015-06-01
This paper presents a novel microfluidic biosensor for in-vitro detection of biomolecules labeled by magnetic biomarkers (Nanomag-D beads) suspended in a static fluid in combination with giant magnetoresistance (GMR) sensors. While previous studies were focused mainly on exploring the MR change for biosensing of bacteria labeled with magnetic microparticles, we show that our biosensor can be used for the detection of much smaller pathogens in the range of a few hundred nanometers e.g., viruses labeled with Nanomag-D beads (MNPs). For the measurements we also used a novel method for signal acquisition and demodulation. Expensive function generators, data acquisition devices and lock-in amplifiers are substituted by a generic PC sound card and an algorithm combining the Fast Fourier Transform (FFT) of the signal with a peak detection routine. This way, costs are drastically reduced, portability is enabled, detection hands-on time is reduced, and sample throughput can be increased using automation and efficient data evaluation with the appropriate software.
NASA Astrophysics Data System (ADS)
Zhang, D. L.; Xu, X. G.; Wu, Y.; Miao, J.; Jiang, Y.
2011-03-01
We studied the pseudo-spin-valves (PSVs) with a structure of Ta/Co 2FeAl/NOL 1/Co 2FeAl/Cu/Co 2FeAl/NOL 2/Ta, where NOL represents the nano-oxide layer. Compared with the normal Co 2FeAl (CFA) PSV with a structure of Ta/Co 2FeAl/Cu/Co 2FeAl/Ta, which shows only a current-in-plane (CIP) giant magnetoresistance (GMR) of 0.03%, the CFA PSV with NOLs shows a large CIP-GMR of 5.84%. The enhanced GMR by the NOLs inserted in the CFA PSV is due to the large specular reflection caused by [(CoO)(Fe 2O 3)(Al 2O 3)] in NOL 1 and [(Fe 2O 3)(Al 2O 3)(Ta 2O 5)] in NOL 2. Another reason is that the roughness of the interface between Ta and CFA is improved by the oxidation procedure.
Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf.
Salinas-de-León, Pelayo; Acuña-Marrero, David; Rastoin, Etienne; Friedlander, Alan M; Donovan, Mary K; Sala, Enric
2016-01-01
Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote and/or well-protected areas. The islands of Darwin and Wolf in the far north of the Galapagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf over two consecutive years using stereo-video surveys, which reveal the largest reef fish biomass ever reported (17.5 t [Formula: see text] on average), consisting largely of sharks. Despite this, the abundance of reef fishes around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they were not fully protected from fishing until March 2016. Given the ecological value and the economic importance of Darwin and Wolf for the dive tourism industry, the current protection should ensure the long-term conservation of this hotspot of unique global value.
Magnetic microfluidic system for isolation of single cells
NASA Astrophysics Data System (ADS)
Mitterboeck, Richard; Kokkinis, Georgios; Berris, Theocharis; Keplinger, Franz; Giouroudi, Ioanna
2015-06-01
This paper presents the design and realization of a compact, portable and cost effective microfluidic system for isolation and detection of rare circulating tumor cells (CTCs) in suspension. The innovative aspect of the proposed isolation method is that it utilizes superparamagnetic particles (SMPs) to label CTCs and then isolate those using microtraps with integrated current carrying microconductors. The magnetically labeled and trapped CTCs can then be detected by integrated magnetic microsensors e.g. giant magnetoresistive (GMR) or giant magnetoimpedance (GMI) sensors. The channel and trap dimensions are optimized to protect the cells from shear stress and achieve high trapping efficiency. These intact single CTCs can then be used for additional analysis, testing and patient specific drug screening. Being able to analyze the CTCs metastasis-driving capabilities on the single cell level is considered of great importance for developing patient specific therapies. Experiments showed that it is possible to capture single labeled cells in multiple microtraps and hold them there without permanent electric current and magnetic field.
Hodel-Christian, S L; Murray, B E
1992-01-01
The genetic determinant encoding gentamicin resistance (Gmr) on the beta-lactamase encoding plasmid pBEM10 of Enterococcus faecalis HH22 is carried on a transposon, termed Tn5281, that is highly related to the staphylococcal Gmr transposons Tn4001 found in Australian isolates of Staphylococcus aureus and Tn4031 found in United States isolates of Staphylococcus epidermidis. We have now studied plasmid DNA from Gmr strains of E. faecalis isolated from diverse geographical locations (Houston, Pennsylvania, Thailand, and Chile) by using restriction endonuclease analysis and DNA-DNA hybridization to determine whether other Gmr E. faecalis carry Tn5281 or a similar type of element. We also compared these enterococci to several United States isolates of Staphylococcus aureus with nonmobile Gmr determinants. Three E. faecalis isolates (from Houston and Chile) carried Tn5281-like elements, whereas two isolates (from Houston and Pennsylvania) had restriction endonuclease and DNA-DNA hybridization patterns more similar to those of the Tn4001-IS257 hybrid found in the nonmobile Gmr determinants in United States isolates of S. aureus. A strain from Thailand had a third pattern unrelated to either Tn5281 or the nonmobile Gmr determinants present in United States isolates of S. aureus. Our results demonstrate that there is both similarity and diversity between the Gmr determinant of strains of E. faecalis isolated in diverse geographic locations. Images PMID:1332593
Nano-oxide-layer insertion and specular effects in spin valves: Experiment and theory
NASA Astrophysics Data System (ADS)
Wang, L.; Qiu, J. J.; McMahon, W. J.; Li, K. B.; Wu, Y. H.
2004-06-01
We report a systematic study of NOL (nano-oxide-layer) insertion and specular effects on the giant magnetoresistance (GMR) of single, synthetic, and dual spin valves, using a semiclassical Boltzmann theory. It is confirmed that the GMR ratio is enhanced by NOL insertion inside the pinned layer or after the free layer. The enhancements are primarily due to the contribution of the majority carriers. The NOL insertions inside the inactive layers of spin valves such as the seed, under, and capping layers reduce the GMR ratio. Though introducing a NOL before or after the Cu spacer would, in principle, significantly suppress the GMR ratio due to the blocking effect or the average effect of different spin channels, large positive or negative (inverse) GMR is found by assuming spin-dependent NOL specular reflections. We have also demonstrated that specular reflection, even beyond a capping layer, may result in reduction of GMR. Upon appropriate NOL insertion, the amplitude of curve of GMR versus thickness of individual layer of spin valves may be generally enhanced, but the shape may change, depending on whether the distance of the NOL to the layer is small or large (distance effect). Finally, it is found that most results obtained for the single realistic spin valves are applicable to synthetic and dual spin valves.
Portable Biomarker Detection with Magnetic Nanotags
Hall, Drew A.; Wang, Shan X.; Murmann, Boris; Gaster, Richard S.
2012-01-01
This paper presents a hand-held, portable biosensor platform for quantitative biomarker measurement. By combining magnetic nanoparticle (MNP) tags with giant magnetoresistive (GMR) spin-valve sensors, the hand-held platform achieves highly sensitive (picomolar) and specific biomarker detection in less than 20 minutes. The rapid analysis and potential low cost make this technology ideal for point-of-care (POC) diagnostics. Furthermore, this platform is able to detect multiple biomarkers simultaneously in a single assay, creating a promising diagnostic tool for a vast number of applications. PMID:22495252
Open Loop Structure Low Cost Integrated Differential Inductive Micro Magnetic Volumetric Bio-Sensors
NASA Astrophysics Data System (ADS)
Khodadadi, Mohammad; Chang, Long; Litvinov, Dimitri
This investigation proposes a study, model, simulate and experiment innovative very low cost Magnetic induction biosensor for point of care diagnostics. The biosensor consists of 2 ``semi-loops'' in a micro fluidic channel, one as a sensor and one as a reference, the design takes advantage of microfabrication processes to produce more precise structures to improve sensitivity. Besides the attractively low cost, this biosensor has many advantages. Since the detector is basically a shaped wire, it is inherently robust and reliable. Typical errors in fabricating the wires will not affect its performance and it is sensing volumetric, unlike GMR-based sensors used in biosensor systems that boast single particle detection. Due to small dimensions the sensors do not need to be calibrated. This sensor also has a large range of detection since its sensitivity is proportional to the excitation frequency. Being able to sense Magnetic nano particles in the volume is an advantage in term of trapping MNPs and sensitivity and functionality. Basically, this new brilliant design, fill the gap between the fabricated sensors and hand wounded sensors.
Boron nitride nanotubes for spintronics.
Dhungana, Kamal B; Pati, Ranjit
2014-09-22
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.
Boron Nitride Nanotubes for Spintronics
Dhungana, Kamal B.; Pati, Ranjit
2014-01-01
With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics. PMID:25248070
NASA Astrophysics Data System (ADS)
Kuru, Hilal; Kockar, Hakan; Alper, Mursel
2017-12-01
Giant magnetoresistance (GMR) behavior in electrodeposited NiFe/Cu multilayers was investigated as a function of non-magnetic (Cu) and ferromagnetic (NiFe) layer thicknesses, respectively. Prior to the GMR analysis, structural and magnetic analyses of the multilayers were also studied. The elemental analysis of the multilayers indicated that the Cu and Ni content in the multilayers increase with increasing Cu and NiFe layer thickness, respectively. The structural studies by X-ray diffraction revealed that all multilayers have face centred cubic structure with preferred (1 1 0) crystal orientation as their substrates. The magnetic properties studied with the vibrating sample magnetometer showed that the magnetizations of the samples are significantly affected by the layer thicknesses. Saturation magnetisation, Ms increases from 45 to 225 emu/cm3 with increasing NiFe layer thickness. The increase in the Ni content of the multilayers with a small Fe content causes an increase in the Ms. And, the coercivities ranging from 2 to 24 Oe are between the soft and hard magnetic properties. Also, the magnetic easy axis of the multilayers was found to be in the film plane. Magnetoresistance measurements showed that all multilayers exhibited the GMR behavior. The GMR magnitude increases with increasing Cu layer thickness and reaches its maximum value of 10% at the Cu layer thickness of 1 nm, then it decreases. And similarly, the GMR magnitude increases and reaches highest value of pure GMR (10%) for the NiFe layer thickness of 3 nm, and beyond this point GMR decreases with increasing NiFe layer thickness. Some small component of the anisotropic magnetoresistance was also observed at thin Cu and thick NiFe layer thicknesses. It is seen that the highest GMR values up to 10% were obtained in electrodeposited NiFe/Cu multilayers up to now. The structural, magnetic and magnetoresistance properties of the NiFe/Cu were reported via the variations of the thicknesses of Cu and NiFe layers with stressing the role of layer thicknesses on the high GMR behavior.
Interface or bulk scattering in the semiclassical theory for spin valves
NASA Astrophysics Data System (ADS)
Wang, L.; McMahon, W. J.; Liu, B.; Wu, Y. H.; Chong, C. T.
2004-06-01
By taking into account spin asymmetries of the interface transmissions and the bulk mean free paths, we have treated pure interface, non-pure interface, bulk, and interface plus bulk scattering within the semiclassical Boltzmann theory. First, the optimizations of NOL (nano-oxide-layers) insertions in bottom, synthetic, and dual spin valves and the variations of the giant magnetoresistance (GMR) with the thickness of the free layer have been examined. For non-pure interface, bulk, and interface plus bulk scattering, qualitative trends of GMR versus NOL positions in spin valves are similar to each other. For pure interface scattering, there is no optimized NOL insertion positions and the blocking effect of the NOL inserted in the spacer remains effective as other three kinds of scattering. The GMR ratio for bulk scattering simply approaches zero when the free layer thickness becomes short; in contrast, for interface scattering or interface plus bulk scattering, the GMR ratio is nonzero at zero thickness of the free layer. Second, the relationships between GMR and specular and diffusive scattering have been explored. As far as specular reflection is concerned, our results imply that for a realistic bottom spin filter spin valve, Ta/NiFe/IrMn/CoFe/Cu/CoFe/Cu/Ta, roughness of the surfaces of Ta and the interfaces of Ta/NiFe, NiFe/IrMn, pinned layer/spacer, and spacer/free layer may lead to large GMR. We also find that the enhancement of GMR due to surface specular reflection is only a pure interface effect. The dependences of GMR on the specular transmissions roughly follow square relations. The trends of GMR against the spin-down diffusive scattering depend on the values of the spin-up transmission. Finally, impurity scattering was investigated and our semiclassical results are in qualitative agreement with the experiments and the quantum theory.
NASA Astrophysics Data System (ADS)
Qu, Guanxiong; Cheng, P.-H.; Du, Ye; Sakuraba, Yuya; Kasai, Shinya; Hono, Kazuhiro
2017-11-01
We have fabricated fully epitaxial current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices using C1b-half Heusler compound NiMnSb, the first candidate of the half-metallic material, as the electrode with a Ag spacer. The device shows magnetoresistance ratios of 25% at 4.2 K and 9.6% at 290 K, which are one of the highest values for the CPP-GMR with half-Heusler compounds. However, these values are much lower compared to those reported for CPP-GMR devices with L21-full Heusler compounds. Careful analysis of the microstructure using scanning transmission electron microscopy and energy dispersive spectroscopy through the upper NiMnSb/Ag interface indicates the heterogeneous formation of Ag-rich solid solution or the island growth of Ag on top of NiMnSb, which clarified a difficulty in evaluating an intrinsic spin-polarization in NiMnSb from CPP-GMR devices. Thus, to evaluate a spin-polarization of a NiMnSb thin film, we fabricated non-local spin valve (NLSV) devices using NiMnSb with Cu channel wires, which is free from the diffusion of Cu to NiMnSb because of no annealing proccess after deposition of Cu. Finally, intrinsic spin polarization of the NiMnSb single layer was extrapolated to be around 50% from NLSV, suggesting a difficulty in obtaining half-metallic nature in the NiMnSb epitaxial thin film.
One-step sol-gel imprint lithography for guided-mode resonance structures.
Huang, Yin; Liu, Longju; Johnson, Michael; C Hillier, Andrew; Lu, Meng
2016-03-04
Guided-mode resonance (GMR) structures consisting of sub-wavelength periodic gratings are capable of producing narrow-linewidth optical resonances. This paper describes a sol-gel-based imprint lithography method for the fabrication of submicron 1D and 2D GMR structures. This method utilizes a patterned polydimethylsiloxane (PDMS) mold to fabricate the grating coupler and waveguide for a GMR device using a sol-gel thin film in a single step. An organic-inorganic hybrid sol-gel film was selected as the imprint material because of its relatively high refractive index. The optical responses of several sol-gel GMR devices were characterized, and the experimental results were in good agreement with the results of electromagnetic simulations. The influence of processing parameters was investigated in order to determine how finely the spectral response and resonant wavelength of the GMR devices could be tuned. As an example potential application, refractometric sensing experiments were performed using a 1D sol-gel device. The results demonstrated a refractive index sensitivity of 50 nm/refractive index unit. This one-step fabrication process offers a simple, rapid, and low-cost means of fabricating GMR structures. We anticipate that this method can be valuable in the development of various GMR-based devices as it can readily enable the fabrication of complex shapes and allow the doping of optically active materials into sol-gel thin film.
Performance of current-in-plane pseudo-spin-valve devices on CMOS silicon-on-insulator underlayers
NASA Astrophysics Data System (ADS)
Katti, R. R.; Zou, D.; Reed, D.; Schipper, D.; Hynes, O.; Shaw, G.; Kaakani, H.
2003-05-01
Prior work has shown that current-in-plane (CIP) giant magnetoresistive (GMR) pseudo-spin-valve (PSV) devices grown on bulk Si wafers and bulk complementary metal-oxide semiconductor (CMOS) underlayers exhibit write and read characteristics that are suitable for application as nonvolatile memory devices. In this work, CIP GMR PSV devices fabricated on silicon-on-insulator CMOS underlayers are shown to support write and read performance. Reading and writing fields for selected devices are shown to be approximately 25%-50% that of unselected devices, which provides a margin for reading and writing specific bits in a memory without overwriting bits and without disturbing other bits. The switching characteristics of experimental devices were compared to and found to be similar with Landau-Lifschitz-Gilbert micromagnetic modeling results, which allowed inferring regions of reversible and irreversible rotations in magnetic reversal processes.
Quantitative multi-modal NDT data analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heideklang, René; Shokouhi, Parisa
2014-02-18
A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundantmore » information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity.« less
Field-angle and DC-bias dependence of spin-torque diode in giant magnetoresistive microstripe
NASA Astrophysics Data System (ADS)
Li, X.; Zhou, Y.; Zheng, C.; Chan, P. H.; Chan, M.; Pong, Philip W. T.
2016-11-01
The spin torque diode effect in all metal spintronic devices has been proposed as a microwave detector with a high power limit and resistivity to breakdown. The previous works have revealed the field-angle dependence of the rectified DC voltage (VDC) in the ferromagnetic stripe. The giant magnetoresistive (GMR) microstripe exhibits higher sensitivity compared with the ferromagnetic stripe. However, the influence of the magnetic field direction and bias current in the spin rectification of GMR microstripe is not yet reported. In this work, the angular dependence and bias dependence of resonant frequency (fR) and VDC are investigated. A macrospin model concerning the contribution of magnetic field, shape anisotropy, and unidirectional anisotropy is engaged to interpret the experimental data. fR exhibits a |sin δH| dependence on the in-plane field angle (δH). VDC presents either |sin δH| or |sin2 δH cos δH | relation, depending on the magnitude of Hext. Optimized VDC of 24 μV is achieved under 4 mT magnetic field applied at δH = 170°. Under out-of-plane magnetic field, fR shows a cos 2θH reliance on the polar angle (θH), whereas VDC is sin θH dependent. The Oersted field of the DC bias current (IDC) modifies the effective field, resulting in shifted fR. Enhanced VDC with increasing IDC is attributed to the elevated contribution of spin-transfer torque. Maximum VDC of 35.2 μV is achieved, corresponding to 47% increase compared with the optimized value under zero bias. Higher IDC also results in enlarged damping parameter in the free layer, resulting in increased linewidth in the spin torque diode spectra. This work experimentally and analytically reveals the angular dependence of fR and VDC in the GMR microstripe. The results further demonstrate a highly tunable fR and optimized VDC by bias current without the external magnetic field. GMR microstripe holds promise for application as a high-power, frequency-tunable microwave detector that works under small or zero magnetic field.
NASA Astrophysics Data System (ADS)
Yukino, Ryoji; Sahoo, Pankaj K.; Sharma, Jaiyam; Takamura, Tsukasa; Joseph, Joby; Sandhu, Adarsh
2017-01-01
We describe wavelength tuning in a one dimensional (1D) silicon nitride nano-grating guided mode resonance (GMR) structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation) for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D) GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.
Effect of early measles vaccine on pneumococcal colonization: A randomized trial from Guinea-Bissau
Byberg, Stine; Hervig Jacobsen, Lars; Bjerregaard-Andersen, Morten; Jensen, Aksel Karl Georg; Martins, Cesario; Aaby, Peter; Skov Jensen, Jørgen; Stabell Benn, Christine; Whittle, Hilton
2017-01-01
Background Measles vaccine (MV) may have non-specific beneficial effects for child health and particularly seems to prevent respiratory infections. Streptococcus pneumoniae is the leading cause of bacterial pneumonia among children worldwide, and nasopharyngeal colonization precedes infection. Objective We investigated whether providing early MV at 18 weeks of age reduced pneumococcal colonization and/or density up to 9 months of age. Method The study was conducted in 2013–2014 in Guinea-Bissau. Pneumococcal vaccine was not part of the vaccination program. Infants aged 18 weeks were block-randomized 2:1 to early or no early MV; at age 9 months, all children were offered MV as per current policy. Nasopharyngeal swabs were taken at baseline, age 6.5 months, and age 9 months. Pneumococcal density was determined by q-PCR. Prevalence ratios of pneumococcal colonization and recent antibiotic treatment (yes/no) by age 6.5 months (PR6.5) and age 9 months (PR9) were estimated using Poisson regression with robust variance estimates while the pneumococcal geometric mean ratio (GMR6.5 and GMR9) was obtained using OLS regression. Results Analyses included 512 children; 346 early MV-children and 166 controls. At enrolment, the pneumococcal colonization prevalence was 80% (411/512). Comparing early MV-children with controls, the PR6.5 was 1.02 (95%CI = 0.94–1.10), and the PR9 was 1.04 (0.96–1.12). The GMR6.5 was 1.02 (0.55–1.89), and the GMR9 was 0.69 (0.39–1.21). Early MV-children tended to be less frequently treated with antibiotics prior to follow up (PR6.5 0.60 (0.34–1.05) and PR9 0.87 (0.50–1.53)). Antibiotic treatment was associated with considerably lower colonization rates, PR6.5 0.85 (0.71–1.01) and PR9 0.66 (0.52–0.84), as well as lower pneumococcal density, GMR6.5 0.32 (0.12–0.86) and GMR9 0.52 (0.18–1.52). Conclusion Early MV at age 18 weeks had no measurable effect on pneumococcal colonization prevalence or density. Higher consumption of antibiotics among controls may have blurred an effect of early MV. Trial registration clinicaltrials.gov NCT01486355 PMID:28545041
Galfenol tactile sensor array and visual mapping system
NASA Astrophysics Data System (ADS)
Hale, Kathleen; Flatau, Alison
2006-03-01
The smart material, Galfenol, is being explored for its uses as a magnetostrictive material. This project seeks to determine if Galfenol can be used as a tactile sensor in a 2-D grid array, magnetic circuit system. When used within a magnetic circuit, Galfenol indicates induced stress and force as a change in flux, due to a change in permeability of the material. The change in flux is detected by Giant MagnetoResistive (GMR) Sensors, which produce a voltage change proportional to the field change. By using Galfenol in an array, this research attempts to create a sensory area. Galfenol is an alloy made of Iron and Gallium. Fe 100-xGa x, where 15 <= x <= 28, creates a material with useful mechanical and transduction attributes (Clark et al. and Kellogg). Galfenol is also distinguished by the crystalline structure of the material. Two types currently exist: single crystal and polycrystalline. Single crystal has higher transduction coefficients than polycrystalline, but is more costly. Polycrystalline Galfenol is currently available as either production or research grade. The designations are related to the sample growth rate with the slower rate being the research grade. The slower growth rate more closely resembles the single crystal Galfenol properties. Galfenol 17.5-18% research grade is used for this experiment, provided by Etrema Products Inc. The magnetic circuit and sensor array is first built at the macro scale so that the design can be verified. After the macro scale is proven, further development will move the system to the nano-level. Recent advances in nanofabrication have enabled Galfenol to be grown as nanowires. Using the nanowires, research will seek to create high resolution tactile sensors with spatial resolutions similar to human finger tips, but with greater force ranges and sensitivity capabilities (Flatau & Stadler). Possible uses of such systems include robotics and prosthetics.
NASA Astrophysics Data System (ADS)
Lin, Y. H.; Bai, R.; Qian, Z. H.
2018-03-01
Vehicle detection systems are applied to obtain real-time information of vehicles, realize traffic control and reduce traffic pressure. This paper reviews geomagnetic sensors as well as the research status of the vehicle detection system. Presented in the paper are also our work on the vehicle detection system, including detection algorithms and experimental results. It is found that the GMR based vehicle detection system has a detection accuracy up to 98% with a high potential for application in the road traffic control area.
2004-09-30
nanoparticles that consist of a polymer coated ?-Fe2O3 superparamagnetic core and CdSe/ZnS quantum dots (QDs) shell. A single layer of QDs was bound to the...Fe2O3) with polymer coating, the scale bar is 20 nm; b) A TEM image of QDs magnetic beads core-shell nanoparticles. The scale bar is 20 nm. c) A High...common practice in microfluidic/GMR sensor integration is using hybrid approaches by adding-on polymer based fluidic structures (such as PDMS fluidic
NASA Astrophysics Data System (ADS)
Fart, Albart; Gruntbug, Peter; Siegel, Edward
2011-03-01
Proton/Hydrogen-ion Diffusive-Magnetoresistance(DMR) of Siegel[APS March-Mtgs.(70s)] based upon Siegel[Int'l. Conf. Mag.-Alloys and Oxides("ICMAO"), The Technion(77); J. Mag. Mag. Mtls. 7, 312(78)] FIRST experimental-discovery of GMR and FIRST theoretical prediction of CMR[ibid. 7, 338 (78)], facilitates NEW water production in global-warming exacerbated dry arid/semi-arid regions: Only HYDROGEN is/can be "FLYING-WATER"!!! (aka "chemical-rain-in-pipelines"). EMET/TRUTH-in-the-``SEANCES'', would-be "Sciences": C. Perelman-Corredoira [Against the Tide(07)] featuring Martin-Bradshaw ["Healing the SHAME That BINDS You"(80s)] systemic sociological-dysfunctionality(S-D), and Grigory Perelman's HEROIC ETHICS (refusal of both pure-maths Poincare-conjecture proof 2007 Fields-medal and 2010 Clay-Institute so-called/media-hyped/P.Red/spin-doctored millennium-prize million-dollar would-be award, militates as well in the current "SEANCE" of physics/maths politics/media-hype/P.R /spin-doctoring VS. Siegel FIRST experimental GMR a never-acknowledged full decade PRE-"Fert"(88) /"Grunberg(89)" ``Phales-GroPE''/Thompson-CSF/ KFZ-JEWlich 2007 physics Wolf/Japan/Nobel-prizes!!!
Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf
Acuña-Marrero, David; Rastoin, Etienne; Friedlander, Alan M.; Donovan, Mary K.; Sala, Enric
2016-01-01
Overfishing has dramatically depleted sharks and other large predatory fishes worldwide except for a few remote and/or well-protected areas. The islands of Darwin and Wolf in the far north of the Galapagos Marine Reserve (GMR) are known for their large shark abundance, making them a global scuba diving and conservation hotspot. Here we report quantitative estimates of fish abundance at Darwin and Wolf over two consecutive years using stereo-video surveys, which reveal the largest reef fish biomass ever reported (17.5 t \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\mathrm{ha}}^{-1}$\\end{document}ha−1 on average), consisting largely of sharks. Despite this, the abundance of reef fishes around the GMR, such as groupers, has been severely reduced because of unsustainable fishing practices. Although Darwin and Wolf are within the GMR, they were not fully protected from fishing until March 2016. Given the ecological value and the economic importance of Darwin and Wolf for the dive tourism industry, the current protection should ensure the long-term conservation of this hotspot of unique global value. PMID:27190701
Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression
NASA Astrophysics Data System (ADS)
Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli
2018-06-01
Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.
NASA Astrophysics Data System (ADS)
Nam, Chunghee; Jang, Youngman; Lee, Ki-Su; Shim, Jungjin; Cho, B. K.
2006-04-01
Based upon a bulk scattering model, we investigated the variation of giant magnetoresistance (GMR) behavior after thermal annealing at Ta=250 °C as a function of the top free layer thickness of a GMR spin valve with nano-oxide layers (NOLs). It was found that the enhancement of GMR ratio after thermal annealing is explained qualitatively in terms of the increase of active GMR region in the free layer and, simultaneously, the increase of intrinsic spin-scattering ratio. These effects are likely due to the improved specular reflection at the well-formed interface of NOL. Furthermore, we developed a modified phenomenological model for sheet conductance change (ΔG) in terms of the top free layer thickness. This modified model was found to be useful in the quantitative analysis of the variation of the active GMR region and the intrinsic spin-scattering properties. The two physical parameters were found to change consistently with the effects of thermal annealing on NOL.
Nanostructure and giant magnetoresistive properties of granular systems.
Kooi, B J; Vystavel, T; De Hosson, J T
2001-03-01
This article aims to make a connection between the microstructures of various nanostructured alloys and giant magnetoresistive (GMR) properties. The GMR behavior of nanoclusters embedded in a nonmagnetic matrix differs considerably from an alloy with the content of a magnetic phase above the percolation threshold; that is to say, an increase of GMR effect upon going from 300 to 10 K for the former and a decrease of the GMR effect for the latter. The following materials systems were examined with high-resolution transmission electron microscopy and magnetoelectrical resistance measurements: magnetic Co and CoFe nanoclusters in a Au matrix, NiFe clusters in a Cu matrix, and NiFe/Cu spinodal decomposition waves with interconnection of the magnetic phase. After annealing (> or = 300 degrees C), Co particles in Au become semi- or incoherent, whereas under other conditions and in all other systems, the interfaces remain coherent. This state of coherency at the interface between magnetic particles and a nonmagnetic matrix turned out to have a detectable influence on the GMR behavior.
Isoscalar giant monopole resonance in Sn isotopes using a quantum molecular dynamics model
NASA Astrophysics Data System (ADS)
Tao, C.; Ma, Y. G.; Zhang, G. Q.; Cao, X. G.; Fang, D. Q.; Wang, H. W.; Xu, J.
2013-12-01
The isoscalar giant monopole resonance (GMR) in Sn isotopes and other nuclei is investigated in the framework of the isospin-dependent quantum molecular dynamics (IQMD) model. The spectrum of GMR is calculated by taking the rms radius of a nucleus as its monopole moment. The peak energy, the FWHM, and the strength of the GMR extracted by a Gaussian fit to the spectrum have been studied. The GMR peak energies for Sn isotopes from the calculations using a mass-number-dependent Gaussian wave-packet width σr for nucleons are found to be overestimated and show a weak dependence on the mass number compared with the experimental data. However, it is found that experimental data of the GMR peak energies for 56Ni, 90Zr, and 208Pb as well as Sn isotopes can be nicely reproduced after taking into account the isospin dependence in isotope chains in addition to the mass-number dependence of σr for nucleons in the IQMD model calculation.
Continuous control of spin polarization using a magnetic field
NASA Astrophysics Data System (ADS)
Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.
2016-05-01
The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.
GMR effect in CuCo annealed melt-spun ribbons.
Murillo, N; Grande, H; Etxeberria, I; Del Val, J J; González, J; Arana, S; Gracia, F J
2004-11-01
A thorough microstructural and magnetic analysis has been performed on as-quenched and annealed (475 and 525 degrees C, 1 hour) melt-spun Cu100-xCox (x = 10 and 15) granular alloys, presenting a giant magnetoresistance (GMR) effect. The annealed samples are inhomogeneous with respect to the Co-particle sizes and interparticles distances and, therefore, these particles present superparamagnetic and ferromagnetic behaviours, which determine the GMR response. The samples x = 15, treated at 525 degrees C during 1 hour, presented the best GMR ratio (approximately 5% at room temperature to be the highest value approaching roughly to the saturation under an applied magnetic field of 15 KOe), with the coexistence of Co-particles with both kinds of magnetic behaviour.
Modeling and experiments of magneto-nanosensors for diagnostics of radiation exposure and cancer
Kim, Dokyoon; Lee, Jung-Rok; Shen, Eric
2013-01-01
We present a resistive network model, protein assay data, and outlook of the giant magnetoresistive (GMR) spin-valve magneto-nanosensor platform ideal for multiplexed detection of protein biomarkers in solutions. The magneto-nanosensors are designed to have optimal performance considering several factors such as sensor dimension, shape anisotropy, and magnetic nanoparticle tags. The resistive network model indicates that thinner spin-valve sensors with narrower width lead to higher signals from magnetic nanoparticle tags. Standard curves and real-time measurements showed a sensitivity of ~10 pM for phosphorylated-structural maintenance of chromosome 1 (phosphor-SMC1), ~53 fM for granulocyte colony stimulation factor (GCSF), and ~460 fM for interleukin-6 (IL6), which are among the representative biomarkers for radiation exposure and cancer. PMID:22763391
Minichilli, Fabrizio; Bianchi, Fabrizio; Ronchi, Anna Maria; Gorini, Francesca; Bustaffa, Elisa
2018-02-09
Arsenic is ubiquitous and has a potentially adverse impact on human health. We compared the distribution of concentrations of urinary inorganic arsenic plus methylated forms (uc(iAs+MMA+DMA)) in four Italian areas with other international studies, and we assessed the relationship between uc(iAs+MMA+DMA) and various exposure factors. We conducted a human biomonitoring study on 271 subjects (132 men) aged 20-44, randomly sampled and stratified by area, gender, and age. Data on environmental and occupational exposure and dietary habits were collected through a questionnaire. Arsenic was speciated using chromatographic separation and inductively coupled mass spectrometry. Associations between uc(iAs+MMA+DMA) and exposure factors were evaluated using the geometric mean ratio (GMR) with a 90% confidence interval by stepwise multiple regression analysis. The 95th percentile value of uc(iAs+MMA+DMA) for the whole sample (86.28 µg/L) was higher than other national studies worldwide. A statistical significant correlation was found between uc(iAs+MMA+DMA) and occupational exposure (GMR: 2.68 [1.79-4.00]), GSTT gene (GMR: 0.68 [0.52-0.80]), consumption of tap water (GMR: 1.35 [1.02-1.77]), seafood (GMR: 1.44 [1.11-1.88]), whole milk (GMR: 1.34 [1.04-1.73]), and fruit/vegetables (GMR: 1.37 [1.03-1.82]). This study demonstrated the utility of uc(iAs+MMA+DMA) as a biomarker to assess environmental exposure. In a public health context, this information could be used to support remedial action, to prevent individuals from being further exposed to environmental arsenic sources.
Minichilli, Fabrizio; Bianchi, Fabrizio; Ronchi, Anna Maria; Gorini, Francesca; Bustaffa, Elisa
2018-01-01
Arsenic is ubiquitous and has a potentially adverse impact on human health. We compared the distribution of concentrations of urinary inorganic arsenic plus methylated forms (uc(iAs+MMA+DMA)) in four Italian areas with other international studies, and we assessed the relationship between uc(iAs+MMA+DMA) and various exposure factors. We conducted a human biomonitoring study on 271 subjects (132 men) aged 20–44, randomly sampled and stratified by area, gender, and age. Data on environmental and occupational exposure and dietary habits were collected through a questionnaire. Arsenic was speciated using chromatographic separation and inductively coupled mass spectrometry. Associations between uc(iAs+MMA+DMA) and exposure factors were evaluated using the geometric mean ratio (GMR) with a 90% confidence interval by stepwise multiple regression analysis. The 95th percentile value of uc(iAs+MMA+DMA) for the whole sample (86.28 µg/L) was higher than other national studies worldwide. A statistical significant correlation was found between uc(iAs+MMA+DMA) and occupational exposure (GMR: 2.68 [1.79–4.00]), GSTT gene (GMR: 0.68 [0.52–0.80]), consumption of tap water (GMR: 1.35 [1.02–1.77]), seafood (GMR: 1.44 [1.11–1.88]), whole milk (GMR: 1.34 [1.04–1.73]), and fruit/vegetables (GMR: 1.37 [1.03–1.82]). This study demonstrated the utility of uc(iAs+MMA+DMA) as a biomarker to assess environmental exposure. In a public health context, this information could be used to support remedial action, to prevent individuals from being further exposed to environmental arsenic sources. PMID:29425136
Moon, Seol Ju; Kim, Sun-Young; Lim, Cheol-Hee; Jang, Hwan Bong; Kim, Min-Gul; Jeon, Ji-Young
2017-07-01
We investigated botanical drug-pharmaceutical drug interactions between DW1029M (a botanical extract of Morus alba linne root bark and Puerariae radix) and metformin, losartan, and linagliptin in the steady state. Three studies were conducted as randomized, open-label, 2-period, 2-treatment, multiple-dose, 2-way crossover designs. Eligible subjects received metformin (500 mg twice daily), losartan (50 mg once daily), or linagliptin (5 mg once daily) with DW1029M (300 mg × 2T twice daily) every 12 hours on days 1 through 6 and a single dose on the morning of day 7. Coadministration of DW1029M with metformin, losartan, or linagliptin had no clinically relevant effects based on the area under the plasma concentration-time curve (AUC τ ) geometric least-squares mean ratio (GMR) - AUC τ GMR, 89.7; 90% confidence interval (CI), 81.0-99.4 for metformin; AUC τ GMR, 96.2; 90%CI, 86.3-107.1 for losartan; and AUC τ GMR, 89.7; 90%CI, 83.2-96.6 for linagliptin. In addition, coadministration of DW1029M did not have any clinically meaningful effect on the maximum plasma concentration (C max,ss ) - C max,ss GMR, 87.3; 90%CI, 76.2-100.0 for metformin; C max,ss GMR, 90.5; 90%CI, 78.3-104.6 for losartan; and C max,ss GMR, 81.4; 90%CI, 69.5-95.3 for linagliptin. Coadministration of DW1029M with metformin, losartan, or linagliptin was well tolerated. © 2016, The American College of Clinical Pharmacology.
Moon, Katherine A; Rule, Ana M; Magid, Hoda S; Ferguson, Jacqueline M; Susan, Jolie; Sun, Zhuolu; Torrey, Christine; Abubaker, Salahaddin; Levshin, Vladimir; Çarkoglu, Asli; Radwan, Ghada Nasr; El-Rabbat, Maha; Cohen, Joanna E; Strickland, Paul; Breysse, Patrick N; Navas-Acien, Ana
2018-03-06
Most smoke-free legislation to reduce secondhand smoke (SHS) exposure exempts waterpipe (hookah) smoking venues. Few studies have examined SHS exposure in waterpipe venues and their employees. We surveyed 276 employees of 46 waterpipe tobacco venues in Istanbul, Moscow, and Cairo. We interviewed venue managers and employees and collected biological samples from employees to measure exhaled carbon monoxide (CO), hair nicotine, saliva cotinine, urine cotinine, urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and urine 1-hydroxypyrene glucuronide (1-OHPG). We estimated adjusted geometric mean ratios (GMR) of each SHS biomarker by employee characteristics and indoor air SHS measures. There were 73 nonsmoking employees and 203 current smokers of cigarettes or waterpipe. In nonsmokers, the median (interquartile) range concentrations of SHS biomarkers were 1.1 (0.2, 40.9) µg/g creatinine urine cotinine, 5.5 (2, 15) ng/mL saliva cotinine, 0.95 (0.36, 5.02) ng/mg hair nicotine, 1.48 (0.98, 3.97) pg/mg creatinine urine NNAL, 0.54 (0.25, 0.97) pmol/mg creatinine urine 1-OHPG, and 1.67 (1.33, 2.33) ppm exhaled CO. An 8-hour increase in work hours was associated with higher urine cotinine (GMR: 1.68, 95% CI: 1.20, 2.37) and hair nicotine (GMR: 1.22, 95% CI: 1.05, 1.43). Lighting waterpipes was associated with higher saliva cotinine (GMR: 2.83, 95% CI: 1.05, 7.62). Nonsmoking employees of waterpipe tobacco venues were exposed to high levels of SHS, including measurable levels of carcinogenic biomarkers (tobacco-specific nitrosamines and PAHs). Smoke-free regulation should be extended to waterpipe venues to protect nonsmoking employees and patrons from the adverse health effects of SHS.
Macha, Sreeraj; Sennewald, Regina; Rose, Peter; Schoene, Katja; Pinnetti, Sabine; Woerle, Hans J; Broedl, Uli C
2013-03-01
Empagliflozin is a sodium glucose cotransporter 2 inhibitor in clinical development as a treatment for type 2 diabetes mellitus. The goal of this study was to investigate potential drug-drug interactions between empagliflozin and verapamil, ramipril, and digoxin in healthy volunteers. The potential drug-drug interactions were evaluated in 3 separate trials. In the first study, 16 subjects were randomized to receive single-dose empagliflozin 25 mg alone or single-dose empagliflozin 25 mg with single-dose verapamil 120 mg. In the second study, 23 subjects were randomized to receive empagliflozin 25 mg once daily (QD) for 5 days, ramipril (2.5 mg on day 1 then 5 mg QD on days 2-5) for 5 days or empagliflozin 25 mg with ramipril (2.5 mg on day 1 then 5 mg QD on days 2-5) for 5 days. In the third study, 20 subjects were randomized to receive single-dose digoxin 0.5 mg alone or empagliflozin 25 mg QD for 8 days with single-dose digoxin 0.5 mg on day 5. Exposure of empagliflozin was not affected by coadministration with verapamil (AUC0-∞: geometric mean ratio [GMR], 102.95%; 90% CI, 98.87-107.20; Cmax: GMR, 92.39%; 90% CI, 85.38-99.97) or ramipril (AUC over a uniform dosing interval τ at steady state [AUCτ,ss]: GMR, 96.55%; 90% CI, 93.05-100.18; Cmax at steady state [Cmax,ss]: GMR, 104.47%; 90% CI 97.65-111.77). Empagliflozin had no clinically relevant effect on exposure of ramipril (AUCτ,ss: GMR, 108.14%; 90% CI 100.51-116.35; Cmax,ss: GMR, 103.61%; 90% CI, 89.73-119.64) or its active metabolite ramiprilat (AUCτ,ss: GMR, 98.67%; 90% CI, 96.00-101.42; Cmax,ss: GMR, 98.29%; 90% CI, 92.67-104.25). Coadministration of empagliflozin had no clinically meaningful effect on digoxin AUC0-∞ (GMR, 106.11%; 90% CI, 96.71-116.41); however, a slight increase in Cmax was observed that was not considered clinically relevant (GMR, 113.94%; 90% CI, 99.33-130.70). All treatments were well tolerated. There were no serious adverse events or adverse events leading to discontinuation in any of the studies. No dose adjustment of empagliflozin is required when coadministered with ramipril or verapamil, and no dose adjustment of digoxin or ramipril is required when coadministered with empagliflozin. ClinicalTrials.gov identifiers: NCT01306175 (digoxin), NCT01276301 (verapamil), and NCT01284621 (ramipril). Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.
Photonic crystal resonances for sensing and imaging
NASA Astrophysics Data System (ADS)
Pitruzzello, Giampaolo; Krauss, Thomas F.
2018-07-01
This review provides an insight into the recent developments of photonic crystal (PhC)-based devices for sensing and imaging, with a particular emphasis on biosensors. We focus on two main classes of devices, namely sensors based on PhC cavities and those on guided mode resonances (GMRs). This distinction is able to capture the richness of possibilities that PhCs are able to offer in this space. We present recent examples highlighting applications where PhCs can offer new capabilities, open up new applications or enable improved performance, with a clear emphasis on the different types of structures and photonic functions. We provide a critical comparison between cavity-based devices and GMR devices by highlighting strengths and weaknesses. We also compare PhC technologies and their sensing mechanism to surface plasmon resonance, microring resonators and integrated interferometric sensors.
Magnetic detection of mercuric ion using giant magnetoresistance-based biosensing system.
Wang, Wei; Wang, Yi; Tu, Liang; Klein, Todd; Feng, Yinglong; Li, Qin; Wang, Jian-Ping
2014-04-15
We have demonstrated a novel sensing strategy employing a giant magnetoresistance (GMR) biosensor and DNA chemistry for the detection of mercuric ion (Hg(2+)). This assay takes advantages of high sensitivity and real-time signal readout of GMR biosensor and high selectivity of thymine-thymine (T-T) pair for Hg(2+). The assay has a detection limit of 10 nM in both buffer and natural water, which is the maximum mercury level in drinking water regulated by U.S. Environmental Protection Agency (EPA). The magnitude of the dynamic range for Hg(2+) detection is up to three orders (10 nM to 10 μM). Herein, GMR sensing technology is first introduced into a pollutant monitoring area. It can be foreseen that the GMR biosensor could become a robust contender in the areas of environmental monitoring and food safety testing.
Macha, Sreeraj; Lang, Benjamin; Pinnetti, Sabine; Broedl, Uli C
2014-11-01
This study was undertaken to investigate potential drugdrug interactions between the sodium glucose cotransporter 2 inhibitor empagliflozin and simvastatin. In this open-label, randomized crossover trial, healthy volunteers (median (range) age 36.5 (20 - 50) years) received 3 single-dose treatments: 25 mg empagliflozin (n = 18), 40 mg simvastatin (n = 17), and 25 mg empagliflozin with 40 mg simvastatin (n = 18). Based on standard criteria, simvastatin had no effect on empagliflozin area under the plasma concentration-time curve (AUC(0-∞), adjusted geometric mean ratio (GMR): 102.05; 90% CI: 98.90 - 105.29) or maximum plasma concentration (C(max), GMR: 109.49; 90% CI: 96.91 - 123.69). There were only minor deviations in simvastatin AUC(0-∞) (GMR: 101.26; 90% CI: 80.06 - 128.07) and C(max) (GMR: 97.18; 90% CI: 76.30 - 123.77) when co-administered with empagliflozin. Empagliflozin had no effect on AUC(0-∞) (GMR: 104.87; 90% CI: 90.09 - 122.07) or C(max) (GMR: 97.27; 90% CI: 84.90 - 111.44) of simvastatin acid, the active metabolite of simvastatin. Adverse events (AEs) were reported for 6 subjects on empagliflozin, 4 on simvastatin, and 5 on co-administered treatment. No serious AEs or investigator-defined drug-related AEs were reported. No relevant drug-drug interaction was observed, and pharmacokinetic results suggest that no dose adjustments for either drug are necessary when empagliflozin and simvastatin are co-administered. Empagliflozin was well tolerated when administered alone or in combination with simvastatin.
GMR-based PhC biosensor: FOM analysis and experimental studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syamprasad, Jagadeesh; Narayanan, Roshni; Joseph, Joby
2014-02-20
Guided Mode Resonance based Photonic crystal biosensor has a lot of potential applications. In our work, we are trying to improve their figure of merit values in order to achieve an optimum level through design and fabrication techniques. A robust and low-cost alternative for current biosensors is also explored through this research.
Ultra-wide detectable concentration range of GMR biosensors using Fe3O4 microspheres
NASA Astrophysics Data System (ADS)
Xu, Jie; Li, Qiang; Zong, Weihua; Zhang, Yongcheng; Li, Shandong
2016-11-01
Exchange-biased GMR sensors were employed for biodetection using a DC in-plane measuring method and a magnetic label of Fe3O4 microspheres. It was revealed that an ultra-wide concentration span covering five orders from 10 ng/mL to 1000 μg/mL was achieved in a home-made biodetection device. The concentration x dependence of output voltage difference |ΔV| between with and without magnetic labels, exhibits nonlinear futures, which undergoes two functions depending on the concentration region. For the low concentration region from 10 ng/mL to 10 μg/mL, a logarithmic relation of |ΔV|=26.3lgx+91.4 fits well, while for the high concentration region, a negative exponential function of |ΔV|=3113(1-e-x/250) describes the |ΔV|~x relation better. For the former, the "coffee ring" effect, formed during the solvent evaporation, was considered as the main reason for the nonlinear relation. While for the latter with high concentration, the overlap among the particles and the enhanced interaction of the magnetic dipole were responsible for the nonlinear |ΔV|~x relationship. Moreover, the calculated detectable concentration limit is agreed well with the experimental data.
Tunneling magnetoresistance sensor with pT level 1/f magnetic noise
NASA Astrophysics Data System (ADS)
Deak, James G.; Zhou, Zhimin; Shen, Weifeng
2017-05-01
Magnetoresistive devices are important components in a large number of commercial electronic products in a wide range of applications including industrial position sensors, automotive sensors, hard disk read heads, cell phone compasses, and solid state memories. These devices are commonly based on anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), but over the past few years tunneling magnetoresistance (TMR) has been emerging in more applications. Here we focus on recent work that has enabled the development of TMR magnetic field sensors with 1/f noise of less than 100 pT/rtHz at 1 Hz. Of the commercially available sensors, the lowest noise devices have typically been AMR, but they generally have the largest die size. Based on this observation and modeling of experimental data size and geometry dependence, we find that there is an optimal design rule that produces minimum 1/f noise. This design rule requires maximizing the areal coverage of an on-chip flux concentrator, providing it with a minimum possible total gap width, and tightly packing the gaps with MTJ elements, which increases the effective volume and decreases the saturation field of the MTJ freelayers. When properly optimized using this rule, these sensors have noise below 60 pT/rtHz, and could possibly replace fluxgate magnetometers in some applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiamin; Hono, K., E-mail: kazuhiro.hono@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-2-1, Sengen, Tsukuba 305-0047
2015-05-07
We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation,more » which made it a good candidate for CPP-GMR device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furubayashi, T., E-mail: furubayashi.takao@nims.go.jp; Takahashi, Y. K.; Sasaki, T. T.
2015-10-28
Enhancement of magnetoresistance output was attained in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices by using a bcc CuZn alloy for the spacer. Pseudo spin valves that consisted of the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy for ferromagnetic layers and CuZn alloy with the composition of Cu{sub 52.4}Zn{sub 47.6} for a spacer showed the large change of the resistance-area products, ΔRA, up to 8 mΩ·μm{sup 2} for a low annealing temperature of 350 °C. The ΔRA value is one of the highest reported so far for the CPP-GMR devices for the low annealing temperature, which is essential for processing read heads for hardmore » disk drives. We consider that the enhancement of ΔRA is produced from the spin-dependent resistance at the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/CuZn interfaces.« less
Electromagnetically induced transparency in planar metamaterials based on guided mode resonance
NASA Astrophysics Data System (ADS)
Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi
2017-06-01
We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.
Portable guided-mode resonance biosensor platform for point-of-care testing
NASA Astrophysics Data System (ADS)
Sung, Gun Yong; Kim, Wan-Joong; Ko, Hyunsung; Kim, Bong K.; Kim, Kyung-Hyun; Huh, Chul; Hong, Jongcheol
2012-10-01
It represents a viable solution for the realization of a portable biosensor platform that could screen/diagnose acute myocardial infarction by measuring cardiac marker concentrations such as cardiac troponin I (cTnI), creatine kinase MB (CK-MB), and myoglobin (MYO) for application to u-health monitoring system. The portable biosensor platform introduced in this presentation has a more compact structure and a much higher measuring resolution than a conventional spectrometer system. Portable guided-mode resonance (GMR) biosensor platform was composed of a biosensor chip stage, an optical pick-up module, and a data display panel. Disposable plastic GMR biosensor chips with nano-grating patterns were fabricated by injection-molding. Whole blood filtration and label-free immunoassay were performed on these single chips, automatically. Optical pick-up module was fabricated by using the miniaturized bulk optics and the interconnecting optical fibers and a tunable VCSEL (vertical cavity surface emitting laser). The reflectance spectrum from the GMR biosensor was measured by the optical pick-up module. Cardiac markers in human serum with concentrations less than 0.1ng/mL were analyzed using a GMR biosensor. Analysis time was 30min, which is short enough to meet clinical requirements. Our results show that the GMR biosensor will be very useful in developing lowcost portable biosensors that can screen for cardiac diseases.
Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.
2011-01-01
An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445
Lefèvre, Gilbert; Bhad, Prafulla; Jain, Jay Prakash; Kalluri, Sampath; Cheng, Yi; Dave, Hardik; Stein, Daniel S
2013-09-08
Artemether-lumefantrine (Coartem; AL) is a standard of care for malaria treatment as an oral six-dose regimen, given twice daily over three days with one to four tablets (20/120 mg) per dose, depending on patient body weight. In order to reduce the pill burden at each dose and potentially enhance compliance, two novel fixed-dose tablet formulations (80/480 mg and 60/360 mg) have been developed and tested in this study for bioequivalence with their respective number of standard tablets. A randomized, open-label, two-period, single-dose, within formulation crossover bioequivalence study comparing artemether and lumefantrine exposure between the novel 80/480 mg tablet and four standard tablets, and the novel 60/360 mg tablet and three standard tablets, was conducted in 120 healthy subjects under fed conditions. Artemether, dihydroartemisinin, and lumefantrine were measured in plasma by HPLC/UPLC-MS/MS. Pharmacokinetic (PK) parameters were determined by non-compartmental analyses. Adjusted geometric mean AUClast for artemether were 345 and 364 ng·h/mL (geometric mean ratio (GMR) 0.95; 90% CI 0.89-1.01) and for lumefantrine were 219 and 218 μg·h/mL (GMR 1.00; 90% CI 0.93-1.08) for 80/480 mg tablet versus four standard tablets, respectively. Corresponding Cmax for artemether were 96.8 and 99.7 ng/mL (GMR 0.97; 90% CI 0.89-1.06) and for lumefantrine were 8.42 and 8.71 μg/mL (GMR 0.97; 90% CI 0.89-1.05). For the 60/360 mg tablet versus three standard tablets, adjusted geometric mean AUClast for artemether were 235 and 231 ng·h/mL (GMR 1.02; 90% CI 0.94-1.10), and for lumefantrine were 160 and 180 μg·h/mL (GMR 0.89; 90% CI 0.83-0.96), respectively. Corresponding Cmax for artemether were 75.5 and 71.5 ng/mL (GMR 1.06; 90% CI 0.95-1.18), and for lumefantrine were 6.64 and 7.61 μg/mL (GMR 0.87; 90% CI 0.81-0.94), respectively. GMR for Cmax and AUClast for artemether and lumefantrine for all primary comparisons were within the bioequivalence acceptance criteria (0.80-1.25). In addition, secondary PK parameters also met bioequivalence criterion. Both of the novel artemether-lumefantrine tablet formulations evaluated are bioequivalent to their respective standard Coartem tablet doses. These novel formulations are easy to administer and may improve adherence in the treatment of uncomplicated malaria caused by Plasmodium falciparum. CTRI/2011/12/002256.
Hybrid GMR Sensor Detecting 950 pT/sqrt(Hz) at 1 Hz and Room Temperature
Guedes, André; Macedo, Rita; Jaramillo, Gerardo; Freitas, Paulo P.; Horsley, David A.
2018-01-01
Advances in the magnetic sensing technology have been driven by the increasing demand for the capability of measuring ultrasensitive magnetic fields. Among other emerging applications, the detection of magnetic fields in the picotesla range is crucial for biomedical applications. In this work Picosense reports a millimeter-scale, low-power hybrid magnetoresistive-piezoelectric magnetometer with subnanotesla sensitivity at low frequency. Through an innovative noise-cancelation mechanism, the 1/f noise in the MR sensors is surpassed by the mechanical modulation of the external magnetic fields in the high frequency regime. A modulation efficiency of 13% was obtained enabling a final device’s sensitivity of ~950 pT/Hz1/2 at 1 Hz. This hybrid device proved to be capable of measuring biomagnetic signals generated in the heart in an unshielded environment. This result paves the way for the development of a portable, contactless, low-cost and low-power magnetocardiography device. PMID:29509677
Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.
ERIC Educational Resources Information Center
Haier, Richard J.; And Others
1992-01-01
A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)
44 CFR 334.5 - GMR system description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... more levels as suits its needs. (a) Stage 3, Planning and Preparation. During the planning and preparation stage, Federal departments and agencies develop their GMR plans and maintain capability to carry... departments and agencies may need to gather additional data on selected resources or increase their...
Enhanced spin-valve giant magneto-resistance in non-exchange biased sandwich films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, M; Cerjan, C; Law, B
2000-02-17
A large giant magnetoresistance (GMR) value of 7.5% has been measured in simple NiFeCo(1)/Cu/NiFeCo(2) sandwich films grown on a 30 {angstrom} Cr seed layer. This spin-valve GMR effect is consistent with the differential switching of the two NiFeCo layers due to an enhanced coercivity of the NiFeCo(1) layer grown on the Cr seed layer. A change in growth texture of the NiFeCo(1) layer from fcc (111) to bcc (110) crystallographic orientation leads to an increase in magnetic anisotropy and an enhancement in coercivity. The GMR value increases to 8.7% when a thin CoFe interfacial enhancing layer is incorporated. Further enhancementmore » in GMR values up to 14% is seen in the sandwich films by nano-oxide layer formation. The specular reflection at oxide/magnetic layer interface further extends the mean free path of spin-polarized electrons.« less
Eriksen, Helle Brander; Lund, Najaaraq; Biering-Sørensen, Sofie; Correia, Cizete; Barbosa, Amarildo; Andersen, Andreas; Aaby, Peter; Jeppesen, Dorthe L; Benn, Christine Stabell
2014-05-30
There is increasing evidence that vaccines have an effect on general mortality which goes beyond specific disease protection. Oral polio vaccine (OPV) is widely used in low-income countries, but in observational studies in Guinea-Bissau we observed that not receiving OPV at birth was associated with reduced overall male infant mortality and enhanced immune response to BCG vaccine. We therefore initiated a randomized trial to test the overall effect of OPV at birth (OPV0). A small thymic gland is a predictor of mortality in high-mortality settings. Within the trial we aimed to test whether no-OPV0 was associated with increased thymic size. In 511 normal birth weight infants who were randomized to receive or not receive OPV0, thymic index and thymus/weight index were measured before randomization and after 2 weeks (N=49), 4 weeks (N=308) or 6 weeks (N=27). The association between OPV0 and the log transformed thymic size indicators were analyzed in ANCOVA models with thymic size at follow-up as the outcome and adjusting for thymic size at enrollment and age at follow-up. Estimates were reported as geometric mean ratios (GMR) with 95% confidence intervals, comparing no-OPV0 to OPV0. No-OPV0 was not associated with thymic index after 2 weeks (GMR: 1.14 (0.99-1.30)), after 4 weeks (GMR: 0.98 (0.93-1.05)) or after 6 weeks (GMR: 1.00 (0.81-1.23)). However, no-OPV0 was associated with increased thymus/weight index after 2 weeks (GMR: 1.22 (1.06-1.40)), but the effect was not seen after 4 weeks (GMR: 0.97 (0.92-1.03)) and 6 weeks (GMR: 0.99 (0.82-1.19)). There were no strong sex-differences. Overall there was no effect on thymic size of OPV0 when administered with BCG. The results could indicate that if an effect occurs, it is only within the first weeks after vaccination. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Louie, Richard Nam
2002-12-01
Aircraft fuselages suffer alternating stress during takeoffs and landings, and fatigue cracks begin to grow, usually at rivet holes. The detection of these fatigue cracks under installed fasteners in aging aircraft is a major goal of the nondestructive evaluation (NDE) community. The use of giant magnetoresistance (GMR) sensors in electromagnetic (EM) NDE has been increasing rapidly. For example, here at Langley Research Center, a Rotating Probe System (RPS) containing a GMR element has been incorporated into a product to detect deeply buried flaws in aerospace structures. In order to advance this eddy current probe application and many similar ones, research to create smaller, more sensitive and energy-efficient EM sensors has been aggressively pursued. Recent theoretical and experimental work on spin coherent transport supports the feasibility of carbon nanotube (CNT) based magnetic tunnel junctions. In this study, a spatial filtering scheme is presented that improves the signal to noise ratio of the RPS and does not significantly impact the number of false alarms. Signals due to buried flaws occur at higher frequencies than do signals due to rivet tilt or probe misalignment, and the strategy purposefully targets this fact. Furthermore, the spatial filtering scheme exploits decreases in the probe output that are observed immediately preceding and following the peak in output due to a fatigue crack. Using the new filters, an enhanced probability of flaw detection is expected. In the future, even tinier, more sensitive, low-power sensors are envisioned for the rotating probe and other nondestructive inspection systems. These may be comprised of single-walled carbon nanotubes (SWCNTs) that connect two ferromagnetic (FM) electrodes. Theoretical work has been done at Langley to model the electrical and magnetoconductance behavior of such junctions, for systems containing short "armchair" nanotubes. The present work facilitates the modeling of more realistic system sizes, through the re-writing of a critical code segment that gives a hundredfold improvement in speed. Furthermore, the tight-binding model calculations are now generalized to include all types of nanotubes, not merely armchair tubes. On the experimental side, innovative junction fabrication procedures are investigated, including diamond-tip scanning probe lithography and e-beam lithography. Programs are written for the Nanometer Pattern Generation System to effect the creation of many junctions at once, to increase the chances of a CNT connecting two FM electrodes. As it is not prudent to rely solely on luck, the capability for tube nanomanipulation with an unprecedented level of control is also shown, and a procedure for controlled deposition upon chemically functionalized lithographic patterns is discussed. All of the techniques demonstrated can be used to create a magnetic tunnel junction to be refrigerated for extensive magnetoconductance studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S.; Takahashi, Y. K.; Sakuraba, Y., E-mail: Sakuraba.Yuya@nims.go.jp
2016-03-21
We have investigated the structure and magneto-transport properties of Co{sub 2}Mn(Ge{sub 0.75}Ga{sub 0.25}) (CMGG) Heusler alloy thin films with near-stoichiometric and Mn-rich compositions in order to understand the effect of Co-Mn anti-sites on bulk spin polarization. Anomalous x-ray diffraction measurements using synchrotron radiated x-rays confirmed that Co{sub Mn} anti-sites easily form in the near-stoichiometric CMGG compound at annealing temperature higher than 400 °C, while it can be suppressed in Mn-rich CMGG films. Accordingly, large enhancement in negative anisotropic magnetoresistance of CMGG films and giant magnetoresistance (GMR) in current-perpendicular-to-plane (CPP) pseudo spin valves were observed in the Mn-rich composition. A large resistance-areamore » product change (ΔRA) of 12.8 mΩ μm{sup 2} was demonstrated in the CPP-GMR pseudo spin valves using the Mn-rich CMGG layers after annealing at 600 °C. It is almost twice of the maximum output observed in the CPP-GMR pseudo spin valves using the near-stoichiometric CMGG. These indicate that the spin polarization of CMGG is enhanced in the Mn-rich composition through suppressing the formation of Co{sub Mn}-antisites in CMGG films, being consistent with first-principle calculation results.« less
Bias and uncertainty of δ13CO2 isotopic mixing models
Zachary E. Kayler; Lisa Ganio; Mark Hauck; Thomas G. Pypker; Elizabeth W. Sulzman; Alan C. Mix; Barbara J. Bond
2009-01-01
The goal of this study was to evaluate how factorial combinations of two mixing models and two regression approaches (Keeling-OLS, MillerâTans-OLS, Keeling-GMR, MillerâTans-GMR) compare in small [CO2] range versus large[CO2] range regimes, with different combinations of...
NASA Astrophysics Data System (ADS)
Hoffman, R.; Siegel, E.
2010-03-01
(So MIScalled) ``Fert"-``Grunberg"[PRL(1988;1989)] GMR 2007 physics Nobel/Wolf/Japan-Prizes VS. decade-earlier(1973-1977) KEY FIRST Siegel at:Westin"kl"ouse/PSEG/IAEA/ABB[google:``Martin Ebner"(94-04) in financial media]/Vattenfall/Wallenbergs/nuc"el"ar-DoE Labs[at flickr.com, search on ``Giant- Magnotoresistance''; find: Intl.Conf.Mag.Alloys & Oxides(ICMAO), Haifa(Aug./1977); J.Mag.Mag.Mtls,(JMMM)7,312(1978)``unavailable: not yet scanned''/modified(last R(H) GMR Figs(7;8) deleted!!!) on JMMM/Reed-Elsevier website until 7/29/08 conveniently one- half-year after last (Nobel)award(12/2007); conveniently effectively deleted!!!; google: ``If Leaks Could Kill''; many APS/MRS Mtgs(1970s)<<<1988/1989] decade-earlier GMR: (1978)<<< (1988); 1988-1978 =10 years = one full decadeprecedence!!!] first experimental discovery in (so MIScalled) ``super''alloys [182/82, Hastelloy-X, 600, 690(!!!), Stainless-Steels: ANY/ALL!!!] generic endemic Wigner's[JAP,17,857(1946)]- disease/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/ thermo-mechanical-INstability!
High-sensitivity GMR with low coercivity in top-IrMn spin-valves
NASA Astrophysics Data System (ADS)
Liu, H. R.; Qu, B. J.; Ren, T. L.; Liu, L. T.; Xie, H. L.; Li, C. X.; Ku, W. J.
2003-12-01
Top-IrMn spin-valves with a structure of Ta/NiFe/CoFe/Cu/CoFe/IrMn/Ta have been investigated. The spin-valves were deposited by high vacuum DC magnetron sputtering at room temperature. The magnetoresistance ratio reaches 9.12% at room temperature. The coercivity of the free layer and the exchange bias field is 1.04 and 180 Oe, respectively. The maximum sensitivity of the spin-valves is 8.36%/Oe. A reduction of 33.2% of the coercivity was obtained after a 2-min RIE process. Utilizing standard integrated circuit (IC) process, mass production of robust giant magnetoresistance sensors can be achieved with these spin-valve thin films.
Innate immune responses following Kawasaki disease and toxic shock syndrome
Messina, Nicole; Germano, Susie; Bonnici, Rhian; Freyne, Bridget; Cheung, Michael; Goldsmith, Greta; Kollmann, Tobias R.; Levin, Michael; Burgner, David; Curtis, Nigel
2018-01-01
The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating evidence for the importance of the innate immune system in initiating and mediating the host inflammatory response. We compared innate immune responses in KD and toxic shock syndrome (TSS) participants more than two years after their acute illness with control participants to investigate differences in their immune phenotype. Toxic shock syndrome shares many clinical features with KD; by including both disease groups we endeavoured to explore changes in innate immune responses following acute inflammatory illnesses more broadly. We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 control participants in a case-control study. Analyses were adjusted for age, sex, and unstimulated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra production in response to stimulation with double stranded RNA (geometric mean ratio (GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incubation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls, TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01), and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01). Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflammatory innate immune phenotype suggesting a possible underlying immunological susceptibility or innate immune memory. PMID:29447181
Acuña-Marrero, David; Smith, Adam N H; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J; Calich, Hannah; Pawley, Matthew D M; Fischer, Chris; Salinas-de-León, Pelayo
2017-01-01
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.
Smith, Adam N. H.; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J.; Calich, Hannah; Pawley, Matthew D. M.; Fischer, Chris; Salinas-de-León, Pelayo
2017-01-01
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection. PMID:28829820
Innate immune responses following Kawasaki disease and toxic shock syndrome.
Chen, Katherine Y H; Messina, Nicole; Germano, Susie; Bonnici, Rhian; Freyne, Bridget; Cheung, Michael; Goldsmith, Greta; Kollmann, Tobias R; Levin, Michael; Burgner, David; Curtis, Nigel
2018-01-01
The pathogenesis of Kawasaki disease (KD) remains unknown and there is accumulating evidence for the importance of the innate immune system in initiating and mediating the host inflammatory response. We compared innate immune responses in KD and toxic shock syndrome (TSS) participants more than two years after their acute illness with control participants to investigate differences in their immune phenotype. Toxic shock syndrome shares many clinical features with KD; by including both disease groups we endeavoured to explore changes in innate immune responses following acute inflammatory illnesses more broadly. We measured the in vitro production of interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor antagonist (IL-1ra), and IL-10 following whole blood stimulation with toll-like receptor and inflammasome ligands in 52 KD, 20 TSS, and 53 control participants in a case-control study. Analyses were adjusted for age, sex, and unstimulated cytokine concentrations. Compared to controls, KD participants have reduced IL-1ra production in response to stimulation with double stranded RNA (geometric mean ratio (GMR) 0.37, 95% CI 0.15, 0.89, p = 0.03) and increased IL-6 production in response to incubation with Lyovec™ (GMR 5.48, 95% CI 1.77, 16.98, p = 0.004). Compared to controls, TSS participants have increased IFN-γ production in response to peptidoglycan (GMR 4.07, 95% CI 1.82, 9.11, p = 0.001), increased IL-1β production to lipopolysaccharide (GMR 1.64, 95% CI 1.13, 2.38, p = 0.01) and peptidoglycan (GMR 1.61, 95% CI 1.11, 2.33, p = 0.01), and increased IL-6 production to peptidoglycan (GMR 1.45, 95% CI 1.10, 1.92, p = 0.01). Years following the acute illness, individuals with previous KD or TSS exhibit a pro-inflammatory innate immune phenotype suggesting a possible underlying immunological susceptibility or innate immune memory.
Domain wall assisted GMR head with spin-Hall effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arun, R., E-mail: arunbdu@gmail.com; Sabareesan, P., E-mail: sendtosabari@gmail.com; Daniel, M., E-mail: danielcnld@gmail.com
2016-05-06
We theoretically study the dynamics of a field induced domain wall in the Py/Pt bi-layer structure in the presence of spin-Hall effect (SHE) by solving the Landau-Lifshitz-Gilbert (LLG) equation along with the adiabatic, nonadiabatic and SHE spin-transfer torques (STTs). It is observed that a weak magnetic field moves the domain wall with high velocity in the presence of SHE and the direction of the velocity is changed by changing the direction of the weak field. The numerical results show that the magnetization of the ferromagnetic layer can be reversed quickly through domain wall motion by changing the direction of amore » weak external field in the presence of SHE while the direction of current is fixed. The SHE reduces the magnetization reversal time of 1000 nm length strip by 14.7 ns. This study is extended to model a domain wall based GMR (Giant Magnetoresistance) read head with SHE.« less
NASA Astrophysics Data System (ADS)
Fukuzawa, Hideaki; Yuasa, Hiromi; Hashimoto, Susumu; Iwasaki, Hitoshi; Tanaka, Yoichiro
2005-08-01
We have realized a large magnetoresistance (MR) ratio of 10.2% by current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) spin-valve films having current-confined-path (CCP) structure formed by AlCu-NOL (nano-oxide-layer). CPP-GMR with conventional Co90Fe10 pinned and free layers showed an MR ratio and a ΔRA (the change of resistance area product) were 4% and 20mΩμm2, respectively, at a small RA (resistance area product) of 500mΩμm2. By replacing the Co90Fe10 layers by Fe50Co50 layers both for pinned and free layers, we have successfully realized a MR ratio and a ΔRA of 7.5% and 37.5mΩμm2, respectively, at a small RA of 500mΩμm2. Moreover, a large MR ratio of 10.2% and a large ΔRA of 418mΩμm2 were realized at a relatively large RA of 4100mΩμm2. This large MR ratio by using Fe50Co50 layers was due to a larger spin-dependent interface scattering factor γ of 0.72 for the interface between Fe50Co50 and Cu, which was improved from a γ of 0.62 for the interface between Co90Fe10 and Cu.
Schwartz, Jules I; Agrawal, Nancy G B; Wong, P H; Miller, Jutta; Bachmann, Kenneth; Marbury, Thomas; Hoelscher, David; Cavanaugh, Paul F; Gottesdiener, Keith
2009-10-01
The authors designed 2 randomized controlled studies to examine the effects of etoricoxib 60 to 120 mg daily on methotrexate pharmacokinetics in 50 rheumatoid arthritis (RA) patients on stable doses of methotrexate (7.5-20 mg). Patients received oral methotrexate at baseline and on days 7 and 14. In study 1, patients received etoricoxib 60 mg (days 1-7) and then 120 mg (days 8-14); in study 2, patients received etoricoxib 90 mg (days 1-7) and then 120 mg (days 8-14). For study 1, the AUC(0-infinity) geometric mean ratio (GMR) (90% confidence interval [CI]) for day 7 versus baseline was 1.01 (0.91, 1.12) for etoricoxib 60 mg; the area under the plasma concentration-time curve from zero to infinity (AUC(0-infinity)) GMR (90% CI) for day 14 was 1.28 (1.15, 1.42) for etoricoxib 120 mg. For study 2, the AUC(0-infinity) GMR (90% CI) for day 7 versus baseline was 1.07 (1.01, 1.13) for etoricoxib 90 mg; the AUC(0-infinity) GMR (90% CI) for day 14 was 1.05 (0.99, 1.11) for etoricoxib 120 mg. In summary, etoricoxib 60 and 90 mg had no effect on methotrexate plasma concentrations. Although no effect on methotrexate pharmacokinetics was observed with etoricoxib 120 mg in study 2, GMR AUC(0-infinity) fell outside the prespecified bounds in study 1. Standard monitoring of methotrexate-related toxicity should be continued when etoricoxib and methotrexate are administered concurrently, especially with doses >90 mg etoricoxib.
Schaaf, H. S.; Draper, H. R.; van der Laan, L.; Murray, S.; Wiesner, L.; Donald, P. R.; McIlleron, H. M.; Hesseling, A. C.
2016-01-01
There are limited pharmacokinetic data for use of the first-line antituberculosis drugs during infancy (<12 months of age), when drug disposition may differ. Intensive pharmacokinetic sampling was performed in infants routinely receiving antituberculosis treatment, including rifampin, isoniazid, pyrazinamide, and ethambutol, using World Health Organization-recommended doses. Regulatory-approved single-drug formulations, including two rifampin suspensions, were used on the sampling day. Assays were conducted using liquid chromatography-mass spectrometry; pharmacokinetic parameters were generated using noncompartmental analysis. Thirty-nine infants were studied; 14 (36%) had culture-confirmed tuberculosis. Fifteen (38%) were premature (<37 weeks gestation); 5 (13%) were HIV infected. The mean corrected age and weight were 6.6 months and 6.45 kg, respectively. The mean maximum plasma concentrations (Cmax) for rifampin, isoniazid, pyrazinamide, and ethambutol were 2.9, 7.9, 41.9, and 1.3 μg/ml, respectively (current recommended adult target concentrations: 8 to 24, 3 to 6, 20 to 50, and 2 to 6 μg/ml, respectively), and the mean areas under the concentration-time curves from 0 to 8 h (AUC0–8) were 12.1, 24.7, 239.4, and 5.1 μg · h/ml, respectively. After adjusting for age and weight, rifampin exposures for the two formulations used differed in Cmax (geometric mean ratio [GMR], 2.55; 95% confidence interval [CI], 1.47 to 4.41; P = 0.001) and AUC0–8 (GMR, 2.52; 95% CI, 1.34 to 4.73; P = 0.005). HIV status was associated with lower pyrazinamide Cmax (GMR, 0.85; 95% CI, 0.75 to 0.96; P = 0.013) and AUC0–8 (GMR, 0.79; 95% CI, 0.69 to 0.90; P < 0.001) values. No other important differences were observed due to age, weight, prematurity, ethnicity, or gender. In summary, isoniazid and pyrazinamide concentrations in infants compared well with proposed adult target concentrations; ethambutol concentrations were lower but similar to previously reported pediatric studies. The low rifampin exposures require further investigation. (This study has been registered at ClinicalTrials.gov under registration no. NCT01637558.) PMID:26810651
Giant magnetoresistance in ion beam deposited spin-valve films with specular enhancement
NASA Astrophysics Data System (ADS)
Sant, S.; Mao, M.; Kools, J.; Koi, K.; Iwasaki, H.; Sahashi, M.
2001-06-01
Three different techniques, natural oxidation, remote plasma oxidation and low energy ion beam oxidation, have been proved to be equally effective in forming nano-oxide layers (NOLs) in spin-valve films for specular enhancement of giant magnetoresistance (GMR) effect. GMR values over 12% have been routinely obtained in spin-valve films with NOL, corresponding to a 30% specular enhancement over those without NOL. The consistency and robustness of the oxidation processes has been demonstrated by a very large GMR value ˜19% in a dual spin-valve film with the NOLs formed in both pinned layers, the oscillatory dependence of the interlayer coupling field on Cu layer thickness in specular enhanced spin-valve films and the uniform and repeatable film performance over 5 in. substrates.
Degradation of the Giant Magnetoresistance in Fe/Cr Multilayers Due to Ar-Ion Beam Mixing
NASA Astrophysics Data System (ADS)
Kopcewicz, M.; Stobiecki, F.; Jagielski, J.; Szymański, B.; Schmidt, M.; Kalinowska, J.
2002-12-01
The influence of 200 keV Ar-ion irradiation on the interlayer coupling in the Fe/Cr multilayer system exhibiting the giant magnetoresistance effect (GMR) is studied by conversion electron Mössbauer spectroscopy (CEMS), VSM hysteresis loops, magnetoresistivity and electric resistivity measurements and supplemented by the small-angle X-ray diffraction (SAXRD). The increase of Ar ion dose causes an increase of interface roughness, as evidenced by the increase of the Fe step-sites detected by CEMS as a result of which the GMR gradually decreases and vanishes at doses exceeding 1×1014 Ar/cm2. A degradation of GMR with increasing Ar-ion dose is related to the formation of pinholes between Fe layers and the decrease of the antiferromagnetically coupled fraction.
Varki, Roslyn; Pequignot, Ed; Leavitt, Mark C; Ferber, Andres; Kraft, Walter K
2009-01-01
Background AVI-014 is an egg white-derived, recombinant, human granulocyte colony-stimulating factor (G-CSF). This healthy volunteer study is the first human investigation of AVI-014. Methods 24 male and female subjects received a single subcutaneous injection of AVI-014 at 4 or 8 mcg/kg. 16 control subjects received 4 or 8 mcg/kg of filgrastim (Neupogen, Amgen) in a partially blinded, parallel fashion. Results The Geometric Mean Ratio (GMR) (90% CI) of 4 mcg/kg AVI-014/filgrastim AUC(0–72 hr) was 1.00 (0.76, 1.31) and Cmax was 0.86 (0.66, 1.13). At the 8 mcg/kg dose, the AUC(0–72) GMR was 0.89 (0.69, 1.14) and Cmax was 0.76 (0.58, 0.98). A priori pharmacokinetic bioequivalence was defined as the 90% CI of the GMR bounded by 0.8–1.25. Both the white blood cell and absolute neutrophil count area under the % increase curve AUC(0–9 days) and Cmax (maximal % increase from baseline)GMR at 4 and 8 mcg/kg fell within the 0.5–2.0 a priori bound set for pharmacodynamic bioequivalence. The CD 34+ % increase curve AUC(0–9 days) and Cmax GMR for both doses was ~1, but 90% confidence intervals were large due to inherent variance, and this measure did not meet pharmacodynamic bioequivalence. AVI-014 demonstrated a side effect profile similar to that of filgrastim. Conclusion AVI-014 has safety, pharmacokinetic, and pharmacodynamic properties comparable to filgrastim at an equal dose in healthy volunteers. These findings support further investigation in AVI-014. PMID:19175929
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.
1999-01-01
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, J.J.; Thomas, G.; Huetten, A.R.
1999-03-16
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.
1998-01-01
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, J.J.; Thomas, G.; Huetten, A.R.
1998-10-20
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.
Pinholes and Nano-oxide Specular Layers in Spin Valves
NASA Astrophysics Data System (ADS)
Fry, R. A.; Egelhoff, W. F., Jr.; McMichael, R. D.; Chen, P. J.; Powell, C. J.; Beach, G.; Berkowitz, A. E.
2001-03-01
Recently, nano-oxide layers (NOL) in giant magnetoresistance (GMR) spin valves have attracted interest as a method of achieving increased GMR associated with specular reflection at Co/oxide interfaces. The NOL must be thin enough so that strong magnetic coupling across it exists; otherwise, the films separated by NOL could switch separately. We have investigated the structure NiO/2.5 nm Co/2.5 nm Cu/2 nm Co/NOL/2 nm Co/10 nm IrMn. The bottom Co is pinned by NiO more strongly than the top Co is pinned by IrMn; thus the top Co film can be switched to observe GMR loops. With no NOL, the GMR loop obtained by switching the 4 nm top Co film is shifted 300 Oe by the exchange bias of IrMn. Using CoO as a NOL, at thickness of 1 nm there is a sudden drop from 300 Oe to <10 Oe. It appears that pinhole coupling at CoO<1 nm forces the two Co films to switch together, but at CoO 1 nm the pinholes close up and the Co films switch separately. Such observations constitute a new approach to the study of pinholes, and we use it to investigate several oxides and metal spacer layers.
Effects of Substrate Surface Topology on NiFe/Cu/Co Spin Valve Characteristics
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Jun; Jeong, Won-Cheol; Cho, Kwon-Ku; Kim, Young-Keun; Joo, Seung-Ki
2000-08-01
In order to control the crystallinity of sputter-deposited NiFe/Cu/Co spin valve thin films, surface topology of 4°tilt-cut Si(111) substrates was modified in various ways prior to formation of the spin valves. In case of the mirror polished substrate, NiFe and Co showed fcc (110) preferred orientation with in-plane uniaxial magnetic anisotropy. The easy axes of these magnetic layers were aligned in 90° to each other and giant magnetoresistance (GMR) was measured to be 4.5% at room temperature. The spin valves formed on the amorphized substrate by Ar ion mass doping, however, did not show magnetic anisotropy due to the loss of crystallinity and no appreciable GMR could be observed. The spin valves deposited on the unpolished substrate, of which the average surface roughness was measured to be a few microns, turned out to show a sound multilayeredness as well as crystallinity, but GMR was reduced to 3.5%. Tailing in the magnetoresistance (R-H) curve occurred in the spin valves formed on the unpolished substrate, and it was thought to be attributed to the shape anisotropy related to the interface roughness of the films. Detailed discussion on the relationship between GMR and crystallinity of the magnetic layers has been made with the results of simple simulation.
Voysey, Merryn; Sadarangani, Manish; Clutterbuck, Elizabeth; Bolgiano, Barbara; Pollard, Andrew J
2016-07-25
Protein-polysaccharide conjugate vaccines such as Haemophilus influenzae type b (Hib), meningococcal, and pneumococcal vaccine, induce immunological memory and longer lasting protection than plain polysaccharide vaccines. The most common proteins used as carriers are tetanus toxoid (TT) and cross reacting material-197 (CRM), a mutant form of diphtheria toxoid. CRM conjugate vaccines have been reported to suppress antibody responses to co-administered Hib-TT vaccine. We conducted a systematic review and meta-analysis of randomised controlled trials in which infants were randomised to receive meningococcal or pneumococcal conjugate vaccines along with Hib-TT. Trials of licensed vaccines with different carrier proteins were included for group C meningococcal (MenC), quadrivalent ACWY meningococcal (MenACWY), and pneumococcal vaccines. Twenty-three trials were included in the meta-analyses. Overall, administration of MenC-CRM in a 2 or 3 dose schedule resulted in a 45% reduction in Hib antibody concentrations (GMR 0.55, 95% CI 0.49-0.62). MenACWY-CRM boosted Hib antibody responses by 22% (GMR 1.22, 95% CI 1.06-1.41) whilst pneumococcal CRM conjugate vaccines had no impact on Hib antibody responses (GMR 0.91, 95% CI 0.68-1.22). The effect of CRM protein-polysaccharide conjugate vaccines on Hib antibody responses varies greatly between vaccines. Co-administration of a CRM conjugate vaccine can produce either positive or negative effects on Hib antibody responses. These inconsistencies suggest that CRM itself may not be the main driver of variability in Hib responses, and challenge current perspectives on this issue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Macha, Sreeraj; Dieterich, Sabine; Mattheus, Michaela; Seman, Leo J; Broedl, Uli C; Woerle, Hans J
2013-02-01
This open-label study investigated potential drug-drug interactions between empagliflozin and metformin. 16 healthy men received treatment A (empagliflozin 50 mg q.d. for 5 days), treatment B (empagliflozin 50 mg q.d. for 4 days with metformin 1,000 mg b.i.d. for 3 days and 1,000 mg q.d. on Day 4) and treatment C (metformin 1,000 mg b.i.d. for 3 days and 1,000 mg q.d .on Day 4) in the sequence AB then C, or C then AB. Metformin had no clinically relevant effect on the area under the steady state plasma concentration-time curve (AUC(τ,ss) geometric mean ratio (GMR): 96.9; 90% CI: 92.3 - 101.7) or the maximum plasma concentration at steady state (C(max,ss) GMR: 100.5; 90% CI: 88.8 - 113.7) of empagliflozin. Similarly, empagliflozin had no clinically relevant effect on AUC(τ,ss) (GMR: 100.7; 90% CI: 95.9 - 105.6) or C(max,ss) (GMR: 103.6; 90% CI: 96.5 - 111.2) of metformin. The renal clearance of empagliflozin and metformin were unaffected by co-administration. Both drugs were well tolerated alone and in combination and did not cause hypoglycemia. These data support co-administration of empagliflozin and metformin without dose adjustment.
Ji, Y; Jin, H H; Wang, M D; Cao, W X; Bao, J L
2016-10-07
The retracted article is: Ji Y, Jin HH, Wang MD, Cao WX, et al. (2016). Methylation of the RASSFIA promoter in breast cancer. Genet. Mol. Res. 15: gmr.15028261. There are significant parts of this article (particularly, in the discussion section) that are copied from "Methylation of HIN-1, RASSF1A, RIL and CDH13 in breast cancer is associated with clinical characteristics, but only RASSF1A methylation is associated with outcome", by Jia Xu, Priya B Shetty, Weiwei Feng, Carol Chenault, Robert C Bast Jr, Jean-Pierre J Issa, Susan G Hilsenbeck and Yinhua Yu, published in BMC Cancer 2012; 12: 243. DOI: 10.1186/1471-2407-12-243. The first paragraphs of both discussions are identical. This is concerning. The abstract and introduction sections have much of their text plagiarized. Overall, there is high plagiarism detected. The GMR editorial staff was alerted and after a thorough investigation, we have strong reason to believe that the peer review process was failure and, after review and contacting the authors, the editors of Genetics and Molecular Research decided to retract the article in accordance with the recommendations of the Committee on Publication Ethics (COPE). The authors and their institutions were advised of this serious breach of ethics.
Scarsi, Kimberly K; Darin, Kristin M; Nakalema, Shadia; Back, David J; Byakika-Kibwika, Pauline; Else, Laura J; Dilly Penchala, Sujan; Buzibye, Allan; Cohn, Susan E; Merry, Concepta; Lamorde, Mohammed
2016-03-15
Levonorgestrel subdermal implants are preferred contraceptives with an expected failure rate of <1% over 5 years. We assessed the effect of efavirenz- or nevirapine-based antiretroviral therapy (ART) coadministration on levonorgestrel pharmacokinetics. This nonrandomized, parallel group, pharmacokinetic evaluation was conducted in three groups of human immunodeficiency virus-infected Ugandan women: ART-naive (n = 17), efavirenz-based ART (n = 20), and nevirapine-based ART (n = 20). Levonorgestrel implants were inserted at baseline in all women. Blood was collected at 1, 4, 12, 24, 36, and 48 weeks. The primary endpoint was week 24 levonorgestrel concentrations, compared between the ART-naive group and each ART group by geometric mean ratio (GMR) with 90% confidence interval (CI). Secondary endpoints included week 48 levonorgestrel concentrations and unintended pregnancies. Week 24 geometric mean levonorgestrel concentrations were 528, 280, and 710 pg/mL in the ART-naive, efavirenz, and nevirapine groups, respectively (efavirenz: ART-naive GMR, 0.53; 90% CI, .50, .55 and nevirapine: ART-naive GMR, 1.35; 90% CI, 1.29, 1.43). Week 48 levonorgestrel concentrations were 580, 247, and 664 pg/mL in the ART-naive, efavirenz, and nevirapine groups, respectively (efavirenz: ART-naive GMR, 0.43; 90% CI, .42, .44 and nevirapine: ART-naive GMR, 1.14; 90% CI, 1.14, 1.16). Three pregnancies (3/20, 15%) occurred in the efavirenz group between weeks 36 and 48. No pregnancies occurred in the ART-naive or nevirapine groups. Within 1 year of combined use, levonorgestrel exposure was markedly reduced in participants who received efavirenz-based ART, accompanied by contraceptive failures. In contrast, nevirapine-based ART did not adversely affect levonorgestrel exposure or efficacy. NCT01789879. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.
Scarsi, Kimberly K.; Darin, Kristin M.; Nakalema, Shadia; Back, David J.; Byakika-Kibwika, Pauline; Else, Laura J.; Dilly Penchala, Sujan; Buzibye, Allan; Cohn, Susan E.; Merry, Concepta; Lamorde, Mohammed
2016-01-01
Background. Levonorgestrel subdermal implants are preferred contraceptives with an expected failure rate of <1% over 5 years. We assessed the effect of efavirenz- or nevirapine-based antiretroviral therapy (ART) coadministration on levonorgestrel pharmacokinetics. Methods. This nonrandomized, parallel group, pharmacokinetic evaluation was conducted in three groups of human immunodeficiency virus–infected Ugandan women: ART-naive (n = 17), efavirenz-based ART (n = 20), and nevirapine-based ART (n = 20). Levonorgestrel implants were inserted at baseline in all women. Blood was collected at 1, 4, 12, 24, 36, and 48 weeks. The primary endpoint was week 24 levonorgestrel concentrations, compared between the ART-naive group and each ART group by geometric mean ratio (GMR) with 90% confidence interval (CI). Secondary endpoints included week 48 levonorgestrel concentrations and unintended pregnancies. Results. Week 24 geometric mean levonorgestrel concentrations were 528, 280, and 710 pg/mL in the ART-naive, efavirenz, and nevirapine groups, respectively (efavirenz: ART-naive GMR, 0.53; 90% CI, .50, .55 and nevirapine: ART-naive GMR, 1.35; 90% CI, 1.29, 1.43). Week 48 levonorgestrel concentrations were 580, 247, and 664 pg/mL in the ART-naive, efavirenz, and nevirapine groups, respectively (efavirenz: ART-naive GMR, 0.43; 90% CI, .42, .44 and nevirapine: ART-naive GMR, 1.14; 90% CI, 1.14, 1.16). Three pregnancies (3/20, 15%) occurred in the efavirenz group between weeks 36 and 48. No pregnancies occurred in the ART-naive or nevirapine groups. Conclusions. Within 1 year of combined use, levonorgestrel exposure was markedly reduced in participants who received efavirenz-based ART, accompanied by contraceptive failures. In contrast, nevirapine-based ART did not adversely affect levonorgestrel exposure or efficacy. Clinical Trials Registration. NCT01789879. PMID:26646680
NASA Astrophysics Data System (ADS)
Elda Swastika, P.; Antarnusa, G.; Suharyadi, E.; Kato, T.; Iwata, S.
2018-04-01
A potential wheatstone bridge giant magnetoresistance (GMR) biosensor have been successfully developed for biomolecule detection. [IrMn(10 nm)/CoFe(3 nm)/Cu(2.2 nm)/CoFeB(10 nm)] spin-valve structure has been chosen as the magnetic sensing surface, showing a magnetoresistance (MR) of 6% fabricated by DC magnetron sputtering method. The Fe3O4 magnetic nanoparticles used as biomolecular labels (nanotags) was synthesized by co-precipitation method, exhibiting soft magnetic behavior with saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) is 77.2 emu/g, 7.8 emu/g and 51 Oe, respectively. The X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and grew in their inverse spinel structure, highly uniform morphology with an average grain size was about 20 nm. Fe3O4 was coated with polyethylene-glycol (PEG)-4000 for surface functionalization. Detection of biomolecule such as formalin, gelatin from bovine-skin and porcine-skin were dispersed in ethanol at room temperature. Induction would cause a shift in output voltage with a minimum delta output voltage (ΔV) 4.937 mV (10%) for formalin detection, 2.268 mV (7%) for bovine-skin gelatin and 2.943 mV (7%) for porcine-skin gelatin detection. The ΔV of the wheatstone bridge in real-time measurement decrease by increase in biomolecules concentration. The change of ΔV with various concentration of biomolecule indicates that the spin-valve thin film with wheatstone-bridge circuit is potential as a biosensor.
Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe
Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jürgen
2013-01-01
Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. PMID:24312280
Macha, Sreeraj; Koenen, Rüdiger; Sennewald, Regina; Schöne, Katja; Hummel, Noemi; Riedmaier, Stephan; Woerle, Hans J; Salsali, Afshin; Broedl, Uli C
2014-02-01
Empagliflozin is a potent, oral, selective inhibitor of sodium glucose cotransporter 2 in development for the treatment of type 2 diabetes mellitus. The goal of these studies was to investigate potential drug-drug interactions between empagliflozin and gemfibrozil (an organic anion-transporting polypeptide 1B1 [OATP1B1]/1B3 and organic anion transporter 3 [OAT3] inhibitor), rifampicin (an OATP1B1/1B3 inhibitor), or probenecid (an OAT3 and uridine diphosphate glucuronosyltransferase inhibitor). Two open-label, randomized, crossover studies were undertaken in healthy subjects. In the first study, 18 subjects received the following in 1 of 2 randomized treatment sequences: a single dose of empagliflozin 25 mg alone and gemfibrozil 600 mg BID for 5 days with a single dose of empagliflozin 25 mg on the third day. In the second study, 18 subjects received a single dose of empagliflozin 10 mg, a single dose of empagliflozin 10 mg coadministered with a single dose of rifampicin 600 mg, and probenecid 500 mg BID for 4 days with a single dose of empagliflozin 10 mg on the second day in 1 of 6 randomized treatment sequences. In the gemfibrozil study, 11 subjects were male, mean age was 35.1 years and mean body mass index (BMI) was 23.47 kg/m(2). In the rifampicin/probenecid study, 10 subjects were male, mean age was 32.7 years and mean BMI was 23.03 kg/m(2). Exposure to empagliflozin was increased by coadministration with gemfibrozil (AUC0-∞: geometric mean ratio [GMR], 158.50% [90% CI, 151.77-165.53]; Cmax: GMR, 115.00% [90% CI, 106.15-124.59]), rifampicin (AUC0-∞: GMR, 135.20% [90% CI, 129.58-141.06]; Cmax: GMR, 175.14% [90% CI, 160.14-191.56]), and probenecid (AUC0-∞: GMR, 153.47% [90% CI, 146.41-160.88]; Cmax: GMR, 125.60% [90% CI, 113.67-138.78]). All treatments were well tolerated. Increases in empagliflozin exposure were <2-fold, indicating that the inhibition of the OATP1B1/1B3, OAT3 transporter, and uridine diphosphate glucuronosyltransferases did not have a clinically relevant effect on empagliflozin exposure. No dose adjustments of empagliflozin were necessary when it was coadministered with gemfibrozil, rifampicin, or probenecid. ClinicalTrials.gov identifiers: NCT01301742 and NCT01634100. Copyright © 2014 Elsevier HS Journals, Inc. All rights reserved.
GMR in magnetic multilayers from a first principles band structure Kubo-Greenwood approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, F.; Freeman, A.J.
1998-07-01
The authors employ the Kubo-Greenwood formula to investigate from first-principles the giant magnetoresistance in Fe{sub m}M{sub n} (M = V, Cr, Mn and Cu) superlattices. The results indicate that MR can arise from band structure changes from ferromagnetic to anti-ferromagnetic alignments. Quantum confinement in the perpendicular direction is induced by the potential steps between the Fe and spacer layers and causes a much larger MR in the current-perpendicular-to-the-plane (CPP) geometry than in the current-in-plane (CIP) geometry. In the presence of the spin-orbit coupling interaction, MR is found to be reduced by spin-channel mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, M. R.; Nakatani, T. M., E-mail: nakatani.tomoya@nims.go.jp; Stewart, D. A.
2016-04-21
The properties of Co{sub 2}(Mn{sub 1−x}Fe{sub x})Ge (CMFG) (x = 0–0.4) Heusler alloy magnetic layers within polycrystalline current-perpendicular-to-the plane giant magnetoresistance (CPP-GMR) spin-valves are investigated. CMFG films annealed at 220–320 °C exhibit partly ordered B2 structure with an order parameter S{sub B2} = 0.3–0.4, and a lower S{sub B2} was found for a higher Fe content. Nevertheless, CPP-GMR spin-valve devices exhibit a relatively high magnetoresistance ratio of ∼13% and a magnetoresistance-area product (ΔRA) of ∼6 mΩ μm{sup 2} at room temperature, which is almost independent of the Fe content in the CMFG films. By contrast, at low temperatures, ΔRA clearly increases with higher Fe content,more » despite the lower B2 ordering for increasing the Fe content. Indeed, first-principles calculations reveal that the CMFG alloy with a partially disordered B2 structure has a greater density of d-state at the Fermi level in the minority band compared to the Fe-free (Co{sub 2}MnGe) alloy. This could explain the larger ΔRA measured on CMFG at low temperatures by assuming that s-d scattering mainly determines the spin asymmetry of resistivity as described in Mott's theory.« less
NASA Astrophysics Data System (ADS)
Yuasa, H.; Hara, M.; Murakami, S.; Fuji, Y.; Fukuzawa, H.; Zhang, K.; Li, M.; Schreck, E.; Wang, P.; Chen, M.
2010-09-01
We have enhanced magnetoresistance (MR) for current-perpendicular-to-plane giant-magnetoresistive (CPP-GMR) films with a current-confined-path nano-oxide layer (CCP-NOL). In order to realize higher purity in Cu for CCPs, hydrogen ion treatment (HIT) was applied as the CuOx reduction process. By applying the HIT process, an MR ratio was increased to 27.4% even in the case of using conventional FeCo magnetic layer, from 13.0% for a reference without the HIT process. Atom probe tomography data confirmed oxygen reduction by the HIT process in the CCP-NOL. The relationship between oxygen counts and MR ratio indicates that further oxygen reduction would realize an MR ratio greater than 50%.
Loss, Georg; Bitter, Sondhja; Wohlgensinger, Johanna; Frei, Remo; Roduit, Caroline; Genuneit, Jon; Pekkanen, Juha; Roponen, Marjut; Hirvonen, Maija-Riitta; Dalphin, Jean-Charles; Dalphin, Marie-Laure; Riedler, Josef; von Mutius, Erika; Weber, Juliane; Kabesch, Michael; Michel, Sven; Braun-Fahrländer, Charlotte; Lauener, Roger
2012-08-01
There is evidence that gene expression of innate immunity receptors is upregulated by farming-related exposures. We sought to determine environmental and nutritional exposures associated with the gene expression of innate immunity receptors during pregnancy and the first year of a child's life. For the Protection Against Allergy: Study in Rural Environments (PASTURE) birth cohort study, 1133 pregnant women were recruited in rural areas of Austria, Finland, France, Germany, and Switzerland. mRNA expression of the Toll-like receptor (TLR) 1 through TLR9 and CD14 was assessed in blood samples at birth (n= 938) and year 1 (n= 752). Environmental exposures, as assessed by using questionnaires and a diary kept during year 1, and polymorphisms in innate receptor genes were related to gene expression of innate immunity receptors by using ANOVA and multivariate regression analysis. Gene expression of innate immunity receptors in cord blood was overall higher in neonates of farmers (P for multifactorial multivariate ANOVA= .041), significantly so for TLR7 (adjusted geometric means ratio [aGMR], 1.15; 95% CI, 1.02-1.30) and TLR8 (aGMR, 1.15; 95% CI, 1.04-1.26). Unboiled farm milk consumption during the first year of life showed the strongest association with mRNA expression at year 1, taking the diversity of other foods introduced during that period into account: TLR4 (aGMR, 1.22; 95% CI, 1.03-1.45), TLR5 (aGMR, 1.19; 95% CI, 1.01-1.41), and TLR6 (aGMR, 1.20; 95% CI, 1.04-1.38). A previously described modification of the association between farm milk consumption and CD14 gene expression by the single nucleotide polymorphism CD14/C-1721T was not found. Farming-related exposures, such as raw farm milk consumption, that were previously reported to decrease the risk for allergic outcomes were associated with a change in gene expression of innate immunity receptors in early life. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Muluneh, Melaku
2015-01-01
In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm2 microfluidic chip that incorporated a commercial 565 × 1145 μm2 IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series. PMID:25284502
Antiparallel pinned NiO spin valve sensor for GMR head application (invited)
NASA Astrophysics Data System (ADS)
Pinarbasi, M.; Metin, S.; Gill, H.; Parker, M.; Gurney, B.; Carey, M.; Tsang, C.
2000-05-01
NiO antiferromagnetic material possesses certain advantages for spin valve applications and has attracted considerable attention. Some of the key advantages are its insulating properties, very high corrosion resistance, less sensitivity to composition, and its low reset temperature. This material, however, has a low blocking temperature which prevents its application to simple spin valve designs. The use of this material in spin valve structures required significant improvements in thermal stability, blocking temperature, and the spin valve design. In the present study, the blocking temperature and the blocking temperature distribution of the NiO films have been improved by depositing the films reactively using ion beam sputtering. A number of improvements in the processing method and deposition system had to be made to allow full NiO spin valve deposition for mass production. Another critical part was the use of antiparallel pinned design in place of the simple design to improve the thermal stability of the NiO spin valves as read elements at disk drive temperatures. The selection of the ferromagnetic pinned layers and the Ru spacer thickness in AP-pinned spin valves has significant impact on the behavior of the devices. These spin valves are all bottom type, NiO/PL1/Ru/PL2/Cu/Co/NiFe/Ta, where the metallic portion of the spin valve is deposited on top of the NiO AF layer. The PL1 and PL2 are ferromagnetic layers comprising NiFe and Co layers. Read elements have been made using these spin valves that delivered areal densities of 12 Gbit/in. These topics and other improvements which resulted in successful use of NiO spin valves as GMR heads in hard disk drives will be discussed.
Muluneh, Melaku; Issadore, David
2014-12-07
In recent years there has been great progress harnessing the small-feature size and programmability of integrated circuits (ICs) for biological applications, by building microfluidics directly on top of ICs. However, a major hurdle to the further development of this technology is the inherent size-mismatch between ICs (~mm) and microfluidic chips (~cm). Increasing the area of the ICs to match the size of the microfluidic chip, as has often been done in previous studies, leads to a waste of valuable space on the IC and an increase in fabrication cost (>100×). To address this challenge, we have developed a three dimensional PDMS chip that can straddle multiple length scales of hybrid IC/microfluidic chips. This approach allows millimeter-scale ICs, with no post-processing, to be integrated into a centimeter-sized PDMS chip. To fabricate this PDMS chip we use a combination of soft-lithography and laser micromachining. Soft lithography was used to define micrometer-scale fluid channels directly on the surface of the IC, allowing fluid to be controlled with high accuracy and brought into close proximity to sensors for highly sensitive measurements. Laser micromachining was used to create ~50 μm vias to connect these molded PDMS channels to a larger PDMS chip, which can connect multiple ICs and house fluid connections to the outside world. To demonstrate the utility of this approach, we built and demonstrated an in-flow magnetic cytometer that consisted of a 5 × 5 cm(2) microfluidic chip that incorporated a commercial 565 × 1145 μm(2) IC with a GMR sensing circuit. We additionally demonstrated the modularity of this approach by building a chip that incorporated two of these GMR chips connected in series.
NASA Astrophysics Data System (ADS)
Nam, Chunghee; Lee, Ki-Su; Cho, B. K.
2005-05-01
We studied the interlayer coupling strength (Hin) and GMR ratio of a spin-valve with the top free layer, separated by a nano-oxide layer (NOL). With the total thickness of the top free layer being fixed at 60Å, the physical properties of the NOL spin-valve were studied with the thickness (tf) of the free layer under the inserted NOL and compared with those of the normal spin-valve with the same thickness as tf. It was found that the spin-valve with NOL has a higher GMR ratio than that of the normal spin-valve at the optimal condition (tf=40Å) after thermal annealing at T =250°C. The NOL spin-valve also shows a lower Hin than that of the optimal normal spin-valve with tf=40Å, which is comparable to that of the normal spin-valve with tf=60Å. This indicates that the enhancement of GMR, while keeping the Hin to be low, can be achieved by inserting a NOL into the top free layer.
Ferromagnetic resonance studies of granular materials (abstract)
NASA Astrophysics Data System (ADS)
Rubinstein, Mark; Das, Badri; Chrisey, D. B.; Horwitz, J.; Koon, N. C.
1994-05-01
We have investigated the ferromagnetic resonance (FMR) spectra of several granular alloys displaying giant magnetoresistance (GMR). For this task, we have produced melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80 by rapid quenching and thin films of Co80Cu20 by pulsed laser deposition. The salient feature of the FMR spectra is the increase of the resonance linewidth as a function of increasing annealing temperature. We have deconvoluted the FMR spectra to a single-domain powder pattern and a multidomain powder pattern. As a function of annealing temperature, the GMR of these samples attains a maximum value. Near the peak of the GMR curve, the FMR spectrum reveals that the ferromagnetic particles are half mono- and half multidomain. Since the maximum size of a single-domain particle is known, this enables us to estimate the spin diffusion length of the Cu conduction electrons. We have also demonstrated, theoretically and experimentally, that the appropriate demagnetizing field to apply to the ensemble of spherical magnetic particles that comprise our granular thin film is simply the field corresponding to the average magnetization.
Influence of the Ar-ion irradiation on the giant magnetoresistance in Fe/Cr multilayers
NASA Astrophysics Data System (ADS)
Kopcewicz, M.; Stobiecki, F.; Jagielski, J.; Szymański, B.; Schmidt, M.; Dubowik, J.; Kalinowska, J.
2003-05-01
The influence of 200 keV Ar-ion irradiation on the interlayer coupling in Fe/Cr multilayers exhibiting the giant magnetoresistance (GMR) effect is studied by the conversion electron Mössbauer spectroscopy (CEMS), vibrating sample magnetometer hysteresis loops, magnetoresistivity, and electric resistivity measurements and supplemented by the small-angle x-ray diffraction. The increase of Ar-ion dose causes an increase of interface roughness, as evidenced by the increase of the Fe step sites detected by CEMS. The modification of microstructure induces changes in magnetization reversal indicating a gradual loss of antiferromagnetic (AF) coupling correlated with the degradation of the GMR effect. Distinctly weaker degradation of AF coupling and the GMR effect observed for irradiated samples with a thicker Cr layer thickness suggest that observed effects are caused by pinholes creation. The measurements of temperature dependence of remanence magnetization confirm increase of pinhole density and sizes during implantation. Other effects which can influence spin dependent contribution to the resistance, such as interface roughness as well as shortening of mean-free path of conduction electrons, are also discussed.
Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing.
Zhang, Juwei; Tan, Xiaojiang
2016-08-25
Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.
Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing
Zhang, Juwei; Tan, Xiaojiang
2016-01-01
Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision. PMID:27571077
Zhao, H; Zhang, H W; Zhang, T; Gu, X M
2016-10-07
The retracted article is: Zhao H, Zhang HW, Zhang T and Gu XM (2016). Tumor necrosis factor alpha gene -308G>A polymorphism association with the risk of esophageal cancer in a Han Chinese population. Genet. Mol. Res. 15: gmr.15025866. Two major concerns were found in this article. Firstly, it was found to be substantially equal to the article "Tumor necrosis factor-alpha gene -308G > A polymorphism alters the risk of hepatocellular carcinoma in a Han Chinese population" published in the Diagnostic Pathology Diagnostic Pathology (2014) 9: 199, by Feng et al.; licensee BioMed Central. 2014 - DOI: 10.1186/s13000-014-0199-3. Secondly, the authors do not discuss limitations of their approaches in the discussion. The discussion is largely an elaboration of the literature in the introduction part. However, even in that context, the discussion does not appropriately review the literature and there are frequent references to conclusions that are not supported by the cited literature. The GMR editorial staff was alerted and after a thorough investigation, there is strong reason to believe that the peer review process was failure. Also, after review and contacting the authors, the editors of Genetics and Molecular Research decided to retract this article in accordance with the recommendations of the Committee on Publication Ethics (COPE). The authors and their institutions were advised of this serious breach of ethics.
Dooley, Kelly E; Sayre, Patrick; Borland, Julie; Purdy, Elizabeth; Chen, Shuguang; Song, Ivy; Peppercorn, Amanda; Everts, Stephanie; Piscitelli, Stephen; Flexner, Charles
2013-01-01
Cotreatment of tuberculosis (TB) and HIV among coinfected patients is now the standard of care. Rifampin (RIF) is a standard part of TB treatment but is a potent inducer of drug metabolizing enzymes. This study evaluated the effect of RIF or rifabutin (RBT) on the pharmacokinetics of the investigational HIV integrase inhibitor, dolutegravir (DTG). Phase I pharmacokinetic drug interaction study. In arm 1, healthy subjects received 50 mg of DTG once daily for 7 days (period 1), then 50 mg of DTG twice daily for 7 days (period 2), then 50 mg of DTG twice daily together with 600 mg of RIF once daily for 14 days (period 3). In arm 2, subjects received 50 mg of DTG once daily for 7 days (period 1) then 50 mg of DTG once daily together with 300 mg of RBT once daily for 14 days (period 2). PK sampling was performed at the end of each period. In arm 1, comparing period 3 to period 1, the geometric mean ratio (GMR) for the 24-hour area under the time-concentration curve (AUC0-24) was 1.33 [90% confidence interval (CI): 1.14 to 1.53], and the GMR for the trough (Cτ) was 1.22 (90% CI: 1.01 to 1.48). Comparing period 2 to period 1 in arm 2, the GMR for the AUC0-24 was 0.95 (90% CI: 0.82 to 1.10), and the GMR for the Cτ was 0.70 (90% CI: 0.57 to 0.87). Regimens including twice-daily DTG and RIF or once-daily DTG and RBT may represent a new treatment option for patients who require concomitant treatment of HIV and TB.
Effect of blueberry juice on clearance of buspirone and flurbiprofen in human volunteers
Hanley, Michael J; Masse, Gina; Harmatz, Jerold S; Cancalon, Paul F; Dolnikowski, Gregory G; Court, Michael H; Greenblatt, David J
2013-01-01
Aim The present study evaluated the possibility of drug interactions involving blueberry juice (BBJ) and substrate drugs whose clearance is dependent on cytochromes P4503A (CYP3A) and P4502C9 (CYP2C9). Methods A 50:50 mixture of lowbush and highbush BBJ was evaluated in vitro as an inhibitor of CYP3A activity (hydroxylation of triazolam and dealkylation of buspirone) and of CYP2C9 activity (flurbiprofen hydroxylation) using human liver microsomes. In clinical studies, clearance of oral buspirone and oral flurbiprofen was studied in healthy volunteers with and without co-treatment with BBJ. Results BBJ inhibited CYP3A and CYP2C9 activity in vitro, with 50% inhibitory concentrations (IC50) of less than 2%, but without evidence of mechanism-based (irreversible) inhibition. Grapefruit juice (GFJ) also inhibited CYP3A activity, but inhibitory potency was increased by pre-incubation, consistent with mechanism-based inhibition. In clinical studies, GFJ significantly increased area under the plasma concentration−time curve (AUC) for the CYP3A substrate buspirone. The geometric mean ratio (GMR = AUC with GFJ divided by AUC with water) was 2.12. In contrast, the effect of BBJ (GMR = 1.39) was not significant. In the study of flurbiprofen (CYP2C9 substrate), the positive control inhibitor fluconazole significantly increased flurbiprofen AUC (GMR = 1.71), but BBJ had no significant effect (GMR = 1.03). Conclusion The increased buspirone AUC associated with BBJ is quantitatively small and could have occurred by chance. BBJ has no effect on flurbiprofen AUC. The studies provide no evidence for concern about clinically important pharmacokinetic drug interactions of BBJ with substrate drugs metabolized by CYP3A or CYP2C9. PMID:22943633
Two-dimensional grating guided-mode resonance tunable filter.
Kuo, Wen-Kai; Hsu, Che-Jung
2017-11-27
A two-dimensional (2D) grating guided-mode resonance (GMR) tunable filter is experimentally demonstrated using a low-cost two-step nanoimprinting technology with a one-dimensional (1D) grating polydimethylsiloxane mold. For the first nanoimprinting, we precisely control the UV LED irradiation dosage and demold the device when the UV glue is partially cured and the 1D grating mold is then rotated by three different angles, 30°, 60°, and 90°, for the second nanoimprinting to obtain 2D grating structures with different crossing angles. A high-refractive-index film ZnO is then coated on the surface of the grating structure to form the GMR filter devices. The simulation and experimental results demonstrate that the passband central wavelength of the filter can be tuned by rotating the device to change azimuth angle of the incident light. We compare these three 2D GMR filters with differential crossing angles and find that the filter device with a crossing angle of 60° exhibits the best performance. The tunable range of its central wavelength is 668-742 nm when the azimuth angle varies from 30° to 90°.
Outreach impact study: the case of the Greater Midwest Region*
Huber, Jeffrey T; Kean, Emily B; Fitzgerald, Philip D; Altman, Trina A; Young, Zach G; Dupin, Katherine M; Leskovec, Jacqueline; Holst, Ruth
2011-01-01
Objectives: The purpose of the study was to assess the impact that funding from the National Network of Libraries of Medicine (NN/LM), Greater Midwest Region (GMR), has on member institutions' ability to conduct outreach on behalf of NN/LM. Methods: The study employed both content analysis and survey methodologies. The final reports from select GMR-funded outreach projects (n = 20) were analyzed based on a set of evaluation criteria. Project principal investigators (n = 13) were then surveyed using the same evaluation criteria. Results: Results indicated that outreach projects supported by GMR funding improved access to biomedical information for professionals and the general public. Barriers to conducting outreach projects included time constraints or commitments, staffing, scheduling and absenteeism, inadequate space, and issues associated with technology (e.g., hardware and software, Internet connectivity and firewall issues, and creation and use of new technologies). Conclusions: The majority of project principal investigators indicated that their attempts to conduct outreach were successful. Moreover, most noted that outreach had a positive impact on professionals as well as the general public. In general, it seems that negative outcomes, as with most barriers to conducting outreach, can be mitigated by more thorough planning. PMID:22022223
Magnetostrictive GMR spin valves with composite FeGa/FeCo free layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Luping; Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072; Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn
2016-03-15
We have fabricated strain-sensitive spin valves on flexible substrates by utilizing the large magnetostrictive FeGa alloy to promote the strain sensitivity and the composite free layer of FeGa/FeCo to avoid the drastic reduction of giant magnetoresistance (GMR) ratio. This kind of spin valve (SV-FeGa/FeCo) displays a MR ratio about 5.9%, which is comparable to that of the conventional spin valve (SV-FeCo) with a single FeCo free layer. Different from the previously reported works on magnetostrictive spin valves, the SV-FeGa/FeCo displays an asymmetric strain dependent GMR behavior. Upon increasing the lateral strain, the MR ratio for the ascending branch decreases moremore » quickly than that for the descending branch, which is ascribed to the formation of a spiraling spin structure around the FeGa/FeCo interface under the combined influences of both magnetic field and mechanical strain. A strain sensitivity of GF = 7.2 was achieved at a magnetic bias field of -30 Oe in flexible SV-FeGa/FeCo, which is significantly larger than that of SV-FeCo.« less
Outreach impact study: the case of the Greater Midwest Region.
Huber, Jeffrey T; Kean, Emily B; Fitzgerald, Philip D; Altman, Trina A; Young, Zach G; Dupin, Katherine M; Leskovec, Jacqueline; Holst, Ruth
2011-10-01
The purpose of the study was to assess the impact that funding from the National Network of Libraries of Medicine (NN/LM), Greater Midwest Region (GMR), has on member institutions' ability to conduct outreach on behalf of NN/LM. The study employed both content analysis and survey methodologies. The final reports from select GMR-funded outreach projects (n = 20) were analyzed based on a set of evaluation criteria. Project principal investigators (n = 13) were then surveyed using the same evaluation criteria. Results indicated that outreach projects supported by GMR funding improved access to biomedical information for professionals and the general public. Barriers to conducting outreach projects included time constraints or commitments, staffing, scheduling and absenteeism, inadequate space, and issues associated with technology (e.g., hardware and software, Internet connectivity and firewall issues, and creation and use of new technologies). The majority of project principal investigators indicated that their attempts to conduct outreach were successful. Moreover, most noted that outreach had a positive impact on professionals as well as the general public. In general, it seems that negative outcomes, as with most barriers to conducting outreach, can be mitigated by more thorough planning.
NASA Astrophysics Data System (ADS)
Kunnummal, Priyesh; Anand, S. P.; Haritha, C.; Rama Rao, P.
2018-05-01
Analysis of high resolution satellite derived free air gravity data has been undertaken in the Greater Maldive Ridge (GMR) (Maldive Ridge, Deep Sea Channel, northern limit of Chagos Bank) segment of the Chagos Laccadive Ridge and the adjoining Arabian and Central Indian Basins. A Complete Bouguer Anomaly (CBA) map was generated from the Indian Ocean Geoidal Low removed Free Air Gravity (hereinafter referred to as "FAG-IOGL") data by incorporating Bullard A, B and C corrections. Using the Parker method, Moho topography was initially computed by inverting the CBA data. From the CBA the Mantle Residual Gravity Anomalies (MRGA) were computed by incorporating gravity effects of sediments and lithospheric temperature and pressure induced anomalies. Further, the MRGA was inverted to get Moho undulations from which the crustal thickness was also estimated. It was found that incorporating the lithospheric thermal and pressure anomaly correction has provided substantial improvement in the computed Moho depths especially in the oceanic areas. But along the GMR, there was not much variation in the Moho thickness computed with and without the thermal and pressure gravity correction implying that the crustal thickness of the ridge does not depend on the oceanic isochrones used for the thermal corrections. The estimated Moho depths in the study area ranges from 7 km to 28 km and the crustal thickness from 2 km to 27 km. The Moho depths are shallower in regions closer to Central Indian Ridge in the Arabian Basin i.e., the region to the west of the GMR is thinner compared to the region in the east (Central Indian Basin). The thickest crust and the deepest Moho are found below the N-S trending GMR segment of the Chagos-Laccadive Ridge. Along the GMR the crustal thickness decreases from north to south with thickness of 27 km below the Maldives Ridge reducing to ∼9 km at 3°S and further increasing towards Chagos Bank. Even though there are similarities in crustal thickness between Maldive Ridge and other regions like Mascarene Plateau which was recently interpreted as underlain by continental crust, much more geoscientific work including drilling has to be undertaken to finally confirm the exact nature of the ridge.
Size dependence of vortex-type spin torque oscillation in a Co2Fe0.4Mn0.6Si Heusler alloy disk
NASA Astrophysics Data System (ADS)
Seki, T.; Kubota, T.; Yamamoto, T.; Takanashi, K.
2018-02-01
This paper reports the systematic investigation of vortex-type spin torque oscillation in circular disks of highly spin-polarized Co2Fe0.4Mn0.6Si (CFMS) Heusler alloys. We fabricated the current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with various disk diameters (D) using the layer stack of CFMS/Ag3Mg/CFMS. The gyrotropic motion of the vortex core was successfully excited for the CFMS circular disks with 0.2 µm ⩽ D ⩽ 0.3 µm. The CPP-GMR device with D = 0.2 µm exhibited the Q factor of more than 5000 and the large output power of 0.4 nW owing to the high coherency of vortex dynamics and the high spin-polarization of CFMS. However, the Q factor was remarkably decreased as D was reduced from 0.2 µm to 0.14 µm. The comparison with the calculated resonance frequencies suggested that this degradation of the Q factor was due to the transition of the oscillation mode from the vortex mode to other modes such as the low-coherent out-of-plane precession mode. The present experimental results also suggest that there exists an adequate disk size for the enhanced Q factor of the vortex-type spin torque oscillation.
Atomic engineering of spin valves using Ag as a surfactant
NASA Astrophysics Data System (ADS)
Yang, David X.; Shashishekar, B.; Chopra, Harsh Deep; Chen, P. J.; Egelhoff, W. F.
2001-06-01
In this study, dc magnetron sputtered NiO (50 nm)/Co (2.5 nm)/Cu(1.5 nm)/Co (3.0 nm) bottom spin valves were studied with and without Ag as a surfactant. At Cu spacer thickness of 1.5 nm, a strong positive coupling >13.92 kA/m (>175 Oe) between NiO-pinned and "free" Co layers leads to a negligible giant magnetoresistance (GMR) effect (<0.7%) in Ag-free samples. In contrast, spin valves deposited in the presence of ≈1 monolayer of surfactant Ag have sufficiently reduced coupling, 5.65 kA/m (71 Oe), which results in an order of magnitude increase in GMR (8.5%). Using transmission electron microscopy (TEM), the large positive coupling in Ag-free samples could directly be attributed to the presence of numerous pinholes. In situ x-ray photoelectron spectroscopy shows that, in Ag-containing samples, the large mobile Ag atoms float out to the surface during successive growth of Co and Cu layers. Detailed TEM studies show that surfactant Ag leaves behind smoother interfaces less prone to pinholes. The use of surfactants also illustrates their efficacy in favorably altering the magnetic characteristics of GMR spin valves, and their potential use in other magnetoelectronics devices and multilayer systems.
NASA Astrophysics Data System (ADS)
Atitoaie, Alexandru; Stancu, Alexandru; Ovari, Tibor-Adrian; Lupu, Nicoleta; Chiriac, Horia
2016-04-01
Magnetic nanowires are potential candidates for substituting, within enhanced cochlear implants, the role played by hair cilia from the inner ear, which are responsible for the transduction of acoustic vibrations into electric signals. The sound waves pressure that is bending the magnetic wires induces stresses that are leading to changes in magnetic properties, such as magnetization and permeability. These changes can be detected by a GMR sensor placed below the nanowire array or, in the case of different designs, by a pick-up coil wrapped around the fixed-end of the wires. For the latter case, we are studying the stress distributions caused by bending deformations using the COMSOL finite element software package. We are also proposing a theoretical method for the evaluation of magnetic permeability variation vs. induced stress dependence. The study is performed on CoFeSiB amorphous micro- and nanowires subjected to mechanical perturbations similar to the ones produced by sound pressure waves.
Code of Federal Regulations, 2013 CFR
2013-10-01
... PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.1 Purpose. (a) Provides policy guidance pursuant to the... Executive Order 10480. (b) Establishes a Graduated Mobilization Response (GMR) system for developing and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.1 Purpose. (a) Provides policy guidance pursuant to the... Executive Order 10480. (b) Establishes a Graduated Mobilization Response (GMR) system for developing and...
Jücker, M; Feldman, R A
1995-11-17
Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.
Portable, one-step, and rapid GMR biosensor platform with smartphone interface.
Choi, Joohong; Gani, Adi Wijaya; Bechstein, Daniel J B; Lee, Jung-Rok; Utz, Paul J; Wang, Shan X
2016-11-15
Quantitative immunoassay tests in clinical laboratories require trained technicians, take hours to complete with multiple steps, and the instruments used are generally immobile-patient samples have to be sent in to the labs for analysis. This prevents quantitative immunoassay tests to be performed outside laboratory settings. A portable, quantitative immunoassay device will be valuable in rural and resource-limited areas, where access to healthcare is scarce or far away. We have invented Eigen Diagnosis Platform (EDP), a portable quantitative immunoassay platform based on Giant Magnetoresistance (GMR) biosensor technology. The platform does not require a trained technician to operate, and only requires one-step user involvement. It displays quantitative results in less than 15min after sample insertion, and each test costs less than US$4. The GMR biosensor employed in EDP is capable of detecting multiple biomarkers in one test, enabling a wide array of immune diagnostics to be performed simultaneously. In this paper, we describe the design of EDP, and demonstrate its capability. Multiplexed assay of human immunoglobulin G and M (IgG and IgM) antibodies with EDP achieves sensitivities down to 0.07 and 0.33 nanomolar, respectively. The platform will allow lab testing to be performed in remote areas, and open up applications of immunoassay testing in other non-clinical settings, such as home, school, and office. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural Properties of Alternate Monatomic Layered [Fe/Co]n Epitaxial Films on MgO Substrate
NASA Astrophysics Data System (ADS)
Chu, In Chang; Saki, Yoshinobu; Kawasaki, Shohei; Doi, Masaaki; Sahashi, Masashi
2008-06-01
Body-centered-cubic (bcc) Fe50Co50 material is reported to show a high bulk spin scattering coefficient on current perpendicular to plane-giant magneto-resistance (CPP-GMR) system. But the origin of that phenomenon does not make sure yet. We prepared artificially alternate monatomic layered (AML) [Fe/Co] 41 MLs epitaxial films (Ts: 75, 250 °C) by monatomic deposition method and investigated the topology of AML [Fe/Co]n epitaxial films on MgO substrate with different orientation (001), (011) by the scanning tunnel microscopy (STM) and reflection high energy electron diffraction (RHEED), which we could confirm Frank-van der Merwe (FM) growth mode for AML [Fe/Co]n on MgO(001) and Volmer-Weber (VW) growth mode for that on Mg(011). The roughness of surface, Ra (0.20 nm) of AML [Fe/Co] 41 MLs epitaxial film grown at 75 °C on MgO(001) is smaller than that (0.46 nm) of AML [Fe/Co] grown at 250 °C on MgO(001), which has the large terraces of over 50 nm (Ra: 0.17 nm), even though there are some valleys between large terraces. Moreover we confirmed the structural properties of trilayered epitaxial films with AML [Fe/Co]n (Ra: 0.18 nm) and Fe50Co50 alloy epitaxial film on Au electrode by RHEED before confirming the characteristics of CPP-GMR devices.
Order of magnitude improvement of nano-contact spin torque nano-oscillator performance.
Banuazizi, Seyed Amir Hossein; Sani, Sohrab R; Eklund, Anders; Naiini, Maziar M; Mohseni, Seyed Majid; Chung, Sunjae; Dürrenfeld, Philipp; Malm, B Gunnar; Åkerman, Johan
2017-02-02
Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t Cu ) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t Cu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.
Ware, Joseph A; Dalziel, Gena; Jin, Jin Y; Pellett, Jackson D; Smelick, Gillian S; West, David A; Salphati, Laurent; Ding, Xiao; Sutton, Rebecca; Fridyland, Jane; Dresser, Mark J; Morrisson, Glenn; Holden, Scott N
2013-11-04
GDC-0941 is an orally administered potent, selective pan-inhibitor of phosphatidylinositol 3-kinases (PI3Ks) with good preclinical antitumor activity in xenograft models and favorable pharmacokinetics and tolerability in phase 1 trials, and it is currently being investigated in phase II clinical trials as an anti-cancer agent. In vitro solubility and dissolution studies suggested that GDC-0941, a weak base, displays significant pH-dependent solubility. Moreover, preclinical studies conducted in famotidine-induced hypochlorhydric dog suggested that the pharmacokinetics of GDC-0941 may be sensitive to pharmacologically induced hypochlorhydria. To investigate the clinical significance of food and pH-dependent solubility on GDC-0941 pharmacokinetics a four-period, two-sequence, open-label, randomized, crossover study was conducted in healthy volunteers. During the fasting state, GDC-0941 was rapidly absorbed with a median Tmax of 2 h. The presence of a high-fat meal delayed the absorption of GDC-0941, with a median Tmax of 4 h and a modest increase in AUC relative to the fasted state, with an estimated geometric mean ratio (GMR, 90% CI) of fed/fasted of 1.28 (1.08, 1.51) for AUC0-∞ and 0.87 (0.70, 1.06) for Cmax. The effect of rabeprazole (model PPI) coadministration on the pharmacokinetics of GDC-0941 was evaluated in the fasted and fed state. When comparing the effect of rabeprazole + GDC-0941 (fasted) to baseline GDC-0941 absorption in a fasted state, GDC-0941 median Tmax was unchanged, however, both Cmax and AUC0-∞ decreased significantly after pretreatment with rabeprazole, with an estimated GMR (90% CI) of 0.31 (0.21, 0.46) and 0.46 (0.35, 0.61), respectively for both parameters. When rabeprazole was administered in the presence of the high-fat meal, the impact of food did not fully reverse the pH effect; the overall effect of rabeprazole on AUC0-∞ was somewhat attenuated by the high-fat meal (estimate GMR of 0.57, with 90% CI, 0.50, 0.65) but unchanged for the Cmax (estimate of 0.43, with 90% CI, 0.37, 0.50). The results of the current investigations emphasize the complex nature of physicochemical interactions and the importance of gastric acid for the dissolution and solubilization processes of GDC-0941. Given these findings, dosing of GDC-0941 in clinical trials was not constrained relative to fasted/fed states, but the concomitant use of ARAs was restricted. Mitigation strategies to limit the influence of pH on exposure of molecularly targeted agents such as GDC-0941 with pH-dependent solubility are discussed.
Low-moderate urine arsenic and biomarkers of thrombosis and inflammation in the Strong Heart Study.
Moon, Katherine A; Navas-Acien, Ana; Grau-Pérez, Maria; Francesconi, Kevin A; Goessler, Walter; Guallar, Eliseo; Umans, Jason G; Best, Lyle G; Newman, Jonathan D
2017-01-01
The underlying pathology of arsenic-related cardiovascular disease (CVD) is unknown. Few studies have evaluated pathways through thrombosis and inflammation for arsenic-related CVD, especially at low-moderate arsenic exposure levels (<100 μg/L in drinking water). We evaluated the association of chronic low-moderate arsenic exposure, measured as the sum of inorganic and methylated arsenic species in urine (ΣAs), with plasma biomarkers of thrombosis and inflammation in American Indian adults (45-74 years) in the Strong Heart Study. We evaluated the cross-sectional and longitudinal associations between baseline ΣAs with fibrinogen at three visits (baseline, 1989-91; Visit 2, 1993-95, Visit 3, 1998-99) using mixed models and the associations between baseline ΣAs and Visit 2 plasminogen activator inhibitor-1 (PAI-1) and high sensitivity C-reactive protein (hsCRP) using linear regression. Median (interquartile range) concentrations of baseline ΣAs and fibrinogen, and Visit 2 hsCRP and PAI-1 were 8.4 (5.1, 14.3) μg/g creatinine, 346 (304, 393) mg/dL, 44 (30, 67) mg/L, and 3.8 (2.0, 7.0) ng/mL, respectively. Comparing the difference between the 75th and the 25th percentile of ΣAs (14.3 vs. 5.1 μg/g creatinine), ΣAs was positively associated with baseline fibrinogen among those with diabetes (adjusted geometric mean ratio (GMR): 1.05, 95% CI: 1.02, 1.07) not associated among those without diabetes (GMR: 1.01, 95% CI: 0.99, 1.02) (p-interaction for diabetes = 0.014), inversely associated with PAI-1 (GMR: 0.94, 95% CI: 0.90, 0.99), and not associated with hsCRP (GMR: 1.00, 95% CI: 0.93, 1.08). We found no evidence for an association between baseline ΣAs and annual change in fibrinogen over follow-up (p-interaction = 0.28 and 0.12 for diabetes and non-diabetes, respectively). Low-moderate arsenic exposure was positively associated with baseline fibrinogen in participants with diabetes and unexpectedly inversely associated with PAI-1. Further research should evaluate the role of prothrombotic factors in arsenic-related cardiovascular disease.
Sainz-Elipe, Sandra; Latorre, Jose Manuel; Escosa, Raul; Masià, Montserrat; Fuentes, Marius Vicent; Mas-Coma, Santiago; Bargues, Maria Dolores
2010-07-31
International travel and immigration have been related with an increase of imported malaria cases. This fact and climate change, prolonging the period favouring vector development, require an analysis of the malaria transmission resurgence risk in areas of southern Europe. Such a study is made for the first time in Spain. The Ebro Delta historically endemic area was selected due to its rice field landscape, the presence of only one vector, Anopheles atroparvus, with densities similar to those it presented when malaria was present, in a situation which pronouncedly differs from already assessed potential resurgence areas in other Mediterranean countries, such as France and Italy, where many different Anopheles species coexist and a different vector species dominates. The transmission risk was assessed analysing: 1) climate diagrams including the minimum temperature for Plasmodium falciparum and Plasmodium vivax development; 2) monthly evolution of the Gradient Model Risk (GMR) index, specifying transmission risk period and number of potential Plasmodium generations; 3) ecological characteristics using remote sensing images with the Eurasia Land Cover characteristics database and the monthly evolution of the Normalized Difference Vegetation Index (NDVI); 4) evaluation of A. atroparvus population dynamics. Climatological analyses and GMR index show that a transmission risk presently exists, lasting from May until September for P. falciparum, and from May until October for P. vivax. The GMR index shows that the temperature increase does not actually mean a transmission risk increase if accompanied by a precipitation decrease reducing the number of parasite generations and transmission period. Nevertheless, this limitation is offset by the artificial flooding of the rice fields. Maximum NDVI values and A. atroparvus maximum abundance correspond to months with maximum growth of the rice fields. The Ebro Delta presents the ecological characteristics that favour transmission. The temperature increase has favoured a widening of the monthly potential transmission window with respect to when malaria was endemic. The combined application of modified climate diagrams and GMR index, together with spatial characterization conforms a useful tool for assessing potential areas at risk of malaria resurgence. NDVI is a good marker when dealing with a rice field area.
2010-01-01
Background International travel and immigration have been related with an increase of imported malaria cases. This fact and climate change, prolonging the period favouring vector development, require an analysis of the malaria transmission resurgence risk in areas of southern Europe. Such a study is made for the first time in Spain. The Ebro Delta historically endemic area was selected due to its rice field landscape, the presence of only one vector, Anopheles atroparvus, with densities similar to those it presented when malaria was present, in a situation which pronouncedly differs from already assessed potential resurgence areas in other Mediterranean countries, such as France and Italy, where many different Anopheles species coexist and a different vector species dominates. Methods The transmission risk was assessed analysing: 1) climate diagrams including the minimum temperature for Plasmodium falciparum and Plasmodium vivax development; 2) monthly evolution of the Gradient Model Risk (GMR) index, specifying transmission risk period and number of potential Plasmodium generations; 3) ecological characteristics using remote sensing images with the Eurasia Land Cover characteristics database and the monthly evolution of the Normalized Difference Vegetation Index (NDVI); 4) evaluation of A. atroparvus population dynamics. Results Climatological analyses and GMR index show that a transmission risk presently exists, lasting from May until September for P. falciparum, and from May until October for P. vivax. The GMR index shows that the temperature increase does not actually mean a transmission risk increase if accompanied by a precipitation decrease reducing the number of parasite generations and transmission period. Nevertheless, this limitation is offset by the artificial flooding of the rice fields. Maximum NDVI values and A. atroparvus maximum abundance correspond to months with maximum growth of the rice fields. Conclusions The Ebro Delta presents the ecological characteristics that favour transmission. The temperature increase has favoured a widening of the monthly potential transmission window with respect to when malaria was endemic. The combined application of modified climate diagrams and GMR index, together with spatial characterization conforms a useful tool for assessing potential areas at risk of malaria resurgence. NDVI is a good marker when dealing with a rice field area. PMID:20673367
NASA Astrophysics Data System (ADS)
Shafer, Jacob
2011-10-01
The compressibility of nuclear matter (KA) is one of the constituent of the equation of state for nuclear matter which is important in the study Neutron Stars and Super Novae. The KA is proportional to the Giant Monopole Resonance (GMR) energy and is related by the equation EGMR = (h2/mr2) 1/2 *(AKA)1/2 , where ``m'' is the mass of a nucleon and ``r'' is the radius of the nucleus. The GMR in unstable nuclei is important because the KA is related to the ratio of protons to neutrons. For this reason, it is desirable to study unstable nuclei as well as stable nuclei. The study of the GMR in unstable nuclei will be done using inverse kinematics on a target of Lithium (6Li). A detector composed of two layers of thin strip scintillators and one layer of large block scintillators has been designed and constructed to give adequate energy and angular distribution over a large portion of the solid angle where decay particles from the ISGMR can be found. Attenuation of the light signal in the strip scintillators was measured using an Americium (241Am) alpha source. Gains in light collection efficiency due to various wrapping techniques were also measured. The thin strip scintillators are connected to the photomultiplier tube (PMT) via bundles of optical fiber. Losses in light calculation efficiency due to fiber bundles were measured as well. Funded by DOE and NSF-REU.
NASA Astrophysics Data System (ADS)
Keylock, Christopher J.
2018-04-01
A technique termed gradual multifractal reconstruction (GMR) is formulated. A continuum is defined from a signal that preserves the pointwise Hölder exponent (multifractal) structure of a signal but randomises the locations of the original data values with respect to this (φ = 0), to the original signal itself(φ = 1). We demonstrate that this continuum may be populated with synthetic time series by undertaking selective randomisation of wavelet phases using a dual-tree complex wavelet transform. That is, the φ = 0 end of the continuum is realised using the recently proposed iterated, amplitude adjusted wavelet transform algorithm (Keylock, 2017) that fully randomises the wavelet phases. This is extended to the GMR formulation by selective phase randomisation depending on whether or not the wavelet coefficient amplitudes exceeds a threshold criterion. An econophysics application of the technique is presented. The relation between the normalised log-returns and their Hölder exponents for the daily returns of eight financial indices are compared. One particularly noticeable result is the change for the two American indices (NASDAQ 100 and S&P 500) from a non-significant to a strongly significant (as determined using GMR) cross-correlation between the returns and their Hölder exponents from before the 2008 crash to afterwards. This is also reflected in the skewness of the phase difference distributions, which exhibit a geographical structure, with Asian markets not exhibiting significant skewness in contrast to those from elsewhere globally.
The long-solved problem of the best-fit straight line: application to isotopic mixing lines
NASA Astrophysics Data System (ADS)
Wehr, Richard; Saleska, Scott R.
2017-01-01
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introduce the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods - ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) - have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general - and convenient - solution is always the least biased.
Pilot and Repeat Trials as Development Tools Associated with Demonstration of Bioequivalence.
Fuglsang, Anders
2015-05-01
The purpose of this work is to use simulated trials to study how pilot trials can be implemented in relation to bioequivalence testing, and how the use of the information obtained at the pilot stage can influence the overall chance of showing bioequivalence (power) or the chance of approving a truly bioinequivalent product (type I error). The work also covers the use of repeat pivotal trials since the difference between a pilot trial followed by a pivotal trial and a pivotal trial followed by a repeat trial is mainly a question of whether a conclusion of bioequivalence can be allowed after the first trial. Repeating a pivotal trial after a failed trial involves dual or serial testing of the bioequivalence null hypothesis, and the paper illustrates how this may inflate the type I error up to almost 10%. Hence, it is questioned if such practice is in the interest of patients. Tables for power, type I error, and sample sizes are provided for a total of six different decision trees which allow the developer to use either the observed geometric mean ratio (GMR) from the first or trial or to assume that the GMR is 0.95. In cases when the true GMR can be controlled so as not to deviate more from unity than 0.95, sequential design methods ad modum Potvin may be superior to pilot trials. The tables provide a quantitative basis for choosing between sequential designs and pivotal trials preceded by pilot trials.
River reach classification for the Greater Mekong Region at high spatial resolution
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of hydro-ecological assessments and useful for a variety of stakeholders such as NGO, governments and researchers.
Distribution of blocking temperatures in nano-oxide layers of specular spin valves
NASA Astrophysics Data System (ADS)
Ventura, J.; Araujo, J. P.; Sousa, J. B.; Veloso, A.; Freitas, P. P.
2007-06-01
Specular spin valves show enhanced giant magnetoresistive (GMR) ratio when compared to other, simpler, spin valve structures. The enhancement of GMR results from specular reflection in nano-oxide layers (NOLs) formed by the partial oxidation of the pinned and free layer. These oxides forming the NOL order antiferromagnetically (AFM) below a temperature T ˜175 K. Here, we study the effects of the pinned layer magnetization and its domain structure on the AFM ordering of the NOL by performing field cooling measurements with different cooling fields (H0). We observe enhanced (reduced) exchange field and magnetoresistive ratio for H0>0(<0), i.e., parallel (antiparallel) to the pinned magnetization. These measurements allowed us to confirm the existence of a wide distribution of blocking temperatures (TB) in the NOL of specular spin valves, having a maximum at T ≈175 K, and extending to NOL regions with TB as low as 15 K.
Multiple-channel guided mode resonance Brewster filter with controllable spectral separation.
Ma, Jianyong; Cao, Hongchao; Zhou, Changhe
2014-05-01
In this work, a single-layer, multiple-channel guided mode resonance (GMR) Brewster filter with controllable spectral separation is proposed using the plane waveguide method and rigorous coupled-wave analysis. Based on the normalized eigenvalue equation, the controllability of the spectral separation is analyzed when the fill ratio of the grating layer is changed while its effective index is identical to that of the substrate. The location and the separation between resonances can be specifically controlled by modifying the fill ratio of the grating layer. In contrast to the ordinary GMR filter, where the location of the resonances is material dependent, it is demonstrated that the spectral separation for the first and second resonances can be linearly controlled by altering the fill ratio of the grating layer. In addition, the maximal shift of the second resonance is up to 5% of the first resonant wavelength using the single-layer Brewster filter.
Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F
2017-09-26
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
NASA Astrophysics Data System (ADS)
Fukushima, A.; Taniguchi, T.; Sugihara, A.; Yakushiji, K.; Kubota, H.; Yuasa, S.
2018-05-01
Perpendicularly magnetized magnetic tunnel junction (p-MTJ) is a key element for developing high-density spin-transfer torque switching magnetoresistive random access memory. Recently, a large exchange coupling (IEC) in the synthetic antiferromagnetic reference layer with Ir interlayer was observed in p-MTJs. The evaluation of the IEC is, however, difficult due to the electrostatic breakdown of MTJs. This study demonstrates the evaluation of the IEC with Ir interlayer in giant magnetoresistive (GMR) nanopillar. We fabricated three kinds of perpendicularly magnetized GMR elements; bottom-free structures with Cu or Ir spacer, and top-free structure with Ir spacer. The magnetoresistance (RH) loops of all samples show sharp changes of the magnetoresistance at the magnetic fields over ±10 kOe, indicating the existence of the large IECs. In particular, a sharp change of the magnetoresistance at the field over ±20 kOe was found for the element with Cu of 2 nm thickness.
The long-solved problem of the best-fit straight line: Application to isotopic mixing lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehr, Richard; Saleska, Scott R.
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introducemore » the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods – ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) – have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Here, using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general – and convenient – solution is always the least biased.« less
The long-solved problem of the best-fit straight line: Application to isotopic mixing lines
Wehr, Richard; Saleska, Scott R.
2017-01-03
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introducemore » the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods – ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) – have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Here, using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general – and convenient – solution is always the least biased.« less
Low-moderate urine arsenic and biomarkers of thrombosis and inflammation in the Strong Heart Study
Navas-Acien, Ana; Grau-Pérez, Maria; Francesconi, Kevin A.; Goessler, Walter; Guallar, Eliseo; Umans, Jason G.; Best, Lyle G.; Newman, Jonathan D.
2017-01-01
The underlying pathology of arsenic-related cardiovascular disease (CVD) is unknown. Few studies have evaluated pathways through thrombosis and inflammation for arsenic-related CVD, especially at low-moderate arsenic exposure levels (<100 μg/L in drinking water). We evaluated the association of chronic low-moderate arsenic exposure, measured as the sum of inorganic and methylated arsenic species in urine (ΣAs), with plasma biomarkers of thrombosis and inflammation in American Indian adults (45–74 years) in the Strong Heart Study. We evaluated the cross-sectional and longitudinal associations between baseline ΣAs with fibrinogen at three visits (baseline, 1989–91; Visit 2, 1993–95, Visit 3, 1998–99) using mixed models and the associations between baseline ΣAs and Visit 2 plasminogen activator inhibitor-1 (PAI-1) and high sensitivity C-reactive protein (hsCRP) using linear regression. Median (interquartile range) concentrations of baseline ΣAs and fibrinogen, and Visit 2 hsCRP and PAI-1 were 8.4 (5.1, 14.3) μg/g creatinine, 346 (304, 393) mg/dL, 44 (30, 67) mg/L, and 3.8 (2.0, 7.0) ng/mL, respectively. Comparing the difference between the 75th and the 25th percentile of ΣAs (14.3 vs. 5.1 μg/g creatinine), ΣAs was positively associated with baseline fibrinogen among those with diabetes (adjusted geometric mean ratio (GMR): 1.05, 95% CI: 1.02, 1.07) not associated among those without diabetes (GMR: 1.01, 95% CI: 0.99, 1.02) (p-interaction for diabetes = 0.014), inversely associated with PAI-1 (GMR: 0.94, 95% CI: 0.90, 0.99), and not associated with hsCRP (GMR: 1.00, 95% CI: 0.93, 1.08). We found no evidence for an association between baseline ΣAs and annual change in fibrinogen over follow-up (p-interaction = 0.28 and 0.12 for diabetes and non-diabetes, respectively). Low-moderate arsenic exposure was positively associated with baseline fibrinogen in participants with diabetes and unexpectedly inversely associated with PAI-1. Further research should evaluate the role of prothrombotic factors in arsenic-related cardiovascular disease. PMID:28771557
Lee, Jennifer; Zhang, Wenhui; Moy, Selina; Kowalski, Donna; Kerbusch, Virginie; van Gelderen, Marcel; Sawamoto, Taiji; Grunenberg, Nicole; Keirns, James
2013-03-01
Mirabegron is a β3-adrenoceptor agonist used for the treatment of overactive bladder. Mirabegron is formulated as an extended-release tablet using oral controlled-absorption system (OCAS) technology. This study was designed to assess the effects of food on the pharmacokinetic properties of mirabegron OCAS in accordance with regulatory requirements to support dosing recommendations. In this single-dose, randomized, open-label, 3-period, parallel-dose-group, crossover study, mirabegron OCAS 50 or 100 mg was administered orally to healthy adult subjects in the fasted state or after a high- or low-fat breakfast. Dose administrations were separated by a washout period of at least 10 days. Blood samples were drawn up to 96 hours after dosing, and plasma concentrations of mirabegron were analyzed by LC/MS-MS. PK properties were determined using noncompartmental methods. Primary end points for the assessment of food effects were Cmax and AUC0-∞. For tolerability assessment, adverse events (AEs) were monitored using investigators' questionnaires and subjects' spontaneous reports, vital sign measurements, hematology, clinical chemistry, and ECG. Thirty-eight subjects (male, 50%; mean age, 32.1 years; mean weight, 77.3 kg; race, 76.3% white) were enrolled in the 50-mg dose group and 38 subjects (male, 52.6%; mean age, 30.9 years; mean weight, 74.5 kg; race, 63.2% white) in the 100-mg dose group. With either fed condition or dose, the 90% CIs for the fed/fasted ratios of both Cmax and AUC0-∞ of mirabegron fell below the predetermined range for bioequivalence (80.0%-125.0%), suggesting that food had no effect on exposure to mirabegron OCAS. With the 50-mg dose, mirabegron Cmax was reduced by 45% with a high-fat breakfast compared with fasted conditions (geometric mean ratio [GMR], 54.8% [90% CI, 43.7%-68.6%]) and AUC0-∞, by 17% (GMR, 83.2% [90% CI, 74.2%-93.4%]). With the 100-mg dose, mirabegron Cmax and AUC0-∞ were reduced by 39% (GMR, 61.3% [90% CI, 47.8%-78.7%]) and 18% (82.4% [72.6%-93.5%]), respectively, after a high-fat breakfast. With the 50-mg dose, mirabegron Cmax was decreased by 75% (GMR, 25.0% [90% CI, 19.9%-31.3%]) and AUC0-∞ by 51% (48.7% [43.3%-54.7%]) after a low-fat breakfast. Corresponding reductions with the 100-mg dose were 64% (GMR, 36.3% [90% CI, 28.2%-46.8%]) for Cmax and 47% (GMR, 53.2% [90% CI, 46.8%-60.5%]) for AUC0-∞. The fed/fasted ratios for mirabegron Cmax and AUC0-∞ were in general independent of dose or sex. Food delayed Tmax compared with the fasted state, with similar increases with the high- and low-fat meals (0.9 hours with 50 mg and 1.5-2.0 hours with 100 mg). Mirabegron was generally well tolerated, with no apparent difference in AE frequency between the fasted and fed states. Mirabegron OCAS tablets exhibited a decrease in mirabegron plasma exposure with food that was independent of dose (50 or 100 mg) or gender but dependent on meal composition. A greater reduction in mirabegron exposure was observed after a low-fat breakfast compared with after a high-fat breakfast. Based on findings from previous studies, the effects of food observed in this study do not warrant dose adjustment in clinical practice. ClinicalTrials.gov identifier: NCT00939757. Copyright © 2013 Elsevier HS Journals, Inc. All rights reserved.
Magnetoelectric(ME) Composites and Functional Devices Based on ME Effect
NASA Astrophysics Data System (ADS)
Gao, Junqi
Magnetoelectric (ME) effect, a cross-coupling effect between magnetic and electric orders, has stimulated lots of investigations due to the potential for applications as multifunctional devices. In this thesis, I have investigated and optimized the ME effect in Metglas/piezo-fibers ME composites with a multi-push pull configuration. Moreover, I have also proposed several devices based on such composites. In this thesis, several methods for ME composites optimization have been investigated. (i) the ME coefficients can be enhanced greatly by using single crystal fibers with high piezoelectric properties; (ii) the influence of volume ratio between Metglas and piezo-fibers on ME coefficients has been studied both experimentally and theoretically. Modulating the volume ratio can increase the ME coefficient greatly; and (iii) the annealing process can change the properties of Metglas, which can enhance the ME response as well. Moreover, one differential structure for ME composites has been proposed, which can reject the external vibration noise by a factor of 10 to 20 dB. This differential structure may allow for practical applications of such sensors in real-world environments. Based on optimized ME composites, two types of AC magnetic sensor have been developed. The objective is to develop one alternative type of magnetic sensor with low noise, low cost and room-temperature operation; that makes the sensor competitive with the commercially available magnetic sensor, such as Fluxgate, GMR, SQUID, etc. Conventional passive sensors have been fully investigated, including the design of sensor working at specific frequency range, sensitivity, noise density characterization, etc. Furthermore, the extremely low frequency (< 10-3 Hz) magnetic sensor has undergone a redesign of the charge amplifier circuit. Additionally, the noise model has been established to simulate the noise density for this device which can predict the noise floor precisely. Based on theoretical noise analysis, the noise floor can be eliminated greatly. Moreover, another active magnetic senor based on nonlinear ME voltage coefficient is also developed. Such sensor is not required for external DC bias that can help the sensor for sensor arrays application. Inspired by the bio-behaviors in nature, the geomagnetic sensor is designed for sensing geomagnetic fields; it is also potentially used for positioning systems based on the geomagnetic field. In this section, some works for DC sensor optimization have been performed, including the different piezo-fibers, driving frequency and magnetic flux concentration. Meanwhile, the lock-in circuit is designed for the magnetic sensor to replace of the commercial instruments. Finally, the man-portable multi-axial geomagnetic sensor has been developed which has the highest resolution of 10 nT for DC magnetic field. Based on the geomagnetic sensor, some demonstrations have been finished, such as orientation monitor, magnetic field mapping, and geomagnetic sensing. Other devices have been also developed besides the magnetic sensor: (i) magnetic energy harvesters are developed under the resonant frequency condition. Especially, one 60 Hz magnetic harvester is designed which can harvester the magnetic energy source generated by instruments; and (ii) frequency multiplication tuned by geomagnetic field is investigated which potentially can be used for frequency multiplier or geomagnetic guidance devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Response (GMR) is a system for integrating mobilization actions designed to respond to ambiguous and/or... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Definitions. 334.4 Section 334.4 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Response (GMR) is a system for integrating mobilization actions designed to respond to ambiguous and/or... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Definitions. 334.4 Section 334.4 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Response (GMR) is a system for integrating mobilization actions designed to respond to ambiguous and/or... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Definitions. 334.4 Section 334.4 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Response (GMR) is a system for integrating mobilization actions designed to respond to ambiguous and/or... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Definitions. 334.4 Section 334.4 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND...
Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, Arthur J.
2013-09-10
Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR devices using rubrene as a prototype for organic semiconductors. (B) We discovered the electrical bistability and spin valve effect in a ferromagnet /organic semiconductor/ ferromagnet heterojunction. The mechanism of switching between conducting phases and its potential applications were suggested. (C) The ability of V(TCNE)x to inject spin into organic semiconductors such as rubrene wasmore » demonstrated for the first time. The mechanisms of spin injection and transport from and into organic magnets as well through organic semiconductors were elucidated. (D) In collaboration with the group of OSU Prof. Johnston-Halperin we reported the successful extraction of spin polarized current from a thin film of the organic-based room temperature ferrimagnetic semiconductor V[TCNE]x and its subsequent injection into a GaAs/AlGaAs light-emitting diode (LED). Thus all basic steps for fabrication of room temperature, light weight, flexible all organic spintronic devices were successfully performed. (E) A new synthesis/processing route for preparation of V(TCNE)x enabling control of interface and film thicknesses at the nanoscale was developed at OSU. Preliminary results show these films are higher quality and what is extremely important they are substantially more air stable than earlier prepared V(TCNE)x. In sum the breakthrough results we achieved in the past two years form the basis of a promising new technology, Multifunctional Flexible Organic-based Spintronics (MFOBS). MFOBS technology enables us fabrication of full function flexible spintronic devices that operate at room temperature.« less
Han, J C; Zhang, Y J; Li, X D
2016-10-07
The retracted article is: Han JC, Zhang YJ and Li XD (2015). Association between polymorphisms in the XRCC1 gene and the risk of non-small cell lung cancer. Genet. Mol. Res. 14: 12888-12893. The GMR editorial staff was alerted about this article (received on May 3, 2015; accepted on August 18, 2015) published on October 21, 2015 (DOI: 10.4238/2015.October.21.9) that was found to be substantially similar to the publication of "Association of XRCC1 gene polymorphisms with risk of non-small cell lung cancer" (received on January 25, 2015; accepted on March 23, 2015; e-published on April 1, 2015) by Kang et al., published in the International Journal of Clinical Experimental Pathology 8 (4): 4171-4176. The authors were aware of the Kang et al.'s paper, since they cite it several times in the manuscript published in GMR. Some of the language is similar between the two manuscripts, but what is the most concerning is that several of the tables in the papers are nearly identical. Tables 2 and 3 are exactly identical between the two articles, suggesting that the publication in GMR was plagiarized from the publication in the International Journal of Clinical Experimental Pathology. The Publisher and Editor decided to retract these articles in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation, we have strong reason to believe that the peer review process was failure and, after review and contacting the authors, the editors of Genetics and Molecular Research decided to retract the article. The authors and their institutions were advised of this serious breach of ethics.
Christopher, Ronald J; Morgan, Michael E; Tang, Yong; Anderson, Christen; Sanchez, Matilde; Shanahan, William
2017-04-01
To determine whether dosage adjustment is likely to be necessary for effective and well-tolerated use of a pharmaceutical agent, guidance documents from the US Food and Drug Administration recommend pharmacokinetics studies in patients with impaired renal or impaired hepatic function and in the elderly population. Three studies were conducted to evaluate the pharmacokinetic properties and tolerability of lorcaserin in these populations. Lorcaserin was evaluated in single-dose pharmacokinetics studies of 3 overweight/obese populations: (1) elderly (aged >65 years) patients; (2) patients with impaired renal function; and (3) those with impaired hepatic function. In elderly patients, C max was lower (geometric mean ratio [GMR], 0.83; 90% CI, 0.71-0.97), but AUC was unchanged versus adult patients. In patients with renal impairment, C max was reduced versus that in patients with normal renal function (GMR: mild impairment, 0.99 [90% CI, 0.76-1.29]; moderate, 0.70 [90% CI, 0.54-0.90]; and severe, 0.69 [90% CI, 0.53-0.89]); no trend in AUC was observed in this group versus renal impairment. In patients with hepatic impairment, C max was decreased (GMR: mild impairment, 0.92 [90% CI, 0.76-1.11]; moderate, 0.86 [90% CI, 0.71-1.04]), and AUC was increased versus patients with normal hepatic function. Based on these findings, no lorcaserin dose adjustments are necessary in elderly patients with normal renal function or in patients with mild/moderate renal or hepatic impairment. ClinicalTrials.gov identifiers: NCT00828581, NCT00828438, and NCT00828932. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut
2018-03-01
In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.
Ab-Initio Interfacial Studies of Cobalt/Copper Multilayers
NASA Astrophysics Data System (ADS)
Villagonzalo, Cristine; Setty, Arun K.; Muratov, Leonid; Cooper, Bernard R.
2002-03-01
We present a study of the interface of cobalt/copper (Co/Cu) multilayrs. For its potential in giant magnetoresistance (GMR) device applications,(S.S.Parkin, et al.), Appl. Phys. Lett. 58 (1991) 2710 the Co/Cu system has been studied extensively. The magnitude of GMR is found to depend sensitively on the nature of the interface, however, the underlying mechanism is not well understood. Therefore, we focus on the energy-configuration of Co/Cu multilayers (of 1-4 monolayers for each element) and on the effects of interpenetration. Using an ab-initio full-potential Linear Muffin-Tin Orbital (FP-LMTO) electronic structure method, we seek a stable interfacial structure. Unlike prior studies, our computations are for the experimentally relevant (111) direction. Our preliminary results indicate that Co impurities in bulk Cu are not energetically favorable, in accord with the experimentally observed immiscibility of Co and Cu. Studies in progress of interfacial relaxation in prelude to consideration of interdiffusion and lattice buckling will also be presented.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY PREPAREDNESS GRADUATED MOBILIZATION RESPONSE § 334.3 Background. (a) The GMR system is designed to... preparations over a longer period of time to increase their military power. Such preparations by potential.... These measures permit the development of reliable indicators of threat at an early time in the evolution...
44 CFR 334.5 - GMR system description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... departments and agencies may need to gather additional data on selected resources or increase their preparedness activities. Costed Option Packages may need to be updated or new ones prepared for the response..., but the Costed Option Packages may also require new funding. (3) If the crisis worsens, and prior to...
44 CFR 334.5 - GMR system description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... departments and agencies may need to gather additional data on selected resources or increase their preparedness activities. Costed Option Packages may need to be updated or new ones prepared for the response..., but the Costed Option Packages may also require new funding. (3) If the crisis worsens, and prior to...
44 CFR 334.5 - GMR system description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... departments and agencies may need to gather additional data on selected resources or increase their preparedness activities. Costed Option Packages may need to be updated or new ones prepared for the response..., but the Costed Option Packages may also require new funding. (3) If the crisis worsens, and prior to...
Portable GMR Handheld Platform for the Detection of Influenza A Virus.
Wu, Kai; Klein, Todd; Krishna, Venkatramana D; Su, Diqing; Perez, Andres M; Wang, Jian-Ping
2017-11-22
Influenza A virus (IAV) is a common respiratory pathogen infecting many hosts including humans, pigs (swine influenza virus or SIV), and birds (avian influenza virus or AIV). Monitoring swine and avian influenza viruses in the wild, farms, and live poultry markets is of great significance for human and veterinary public health. A portable, sensitive, and quantitative immunoassay device will be of high demand especially in the rural and resource-limited areas. We report herein our Z-Lab point-of-care (POC) device for sensitive and specific detection of swine influenza viruses with minimum sample handling and laboratory skill requirements. In the present study, a portable and quantitative immunoassay platform based on giant magnetoresistive (GMR) technology is used for the detection of IAV nucleoprotein (NP) and purified H3N2v. Z-Lab displays quantitative results in less than 10 min with sensitivities down to 15 ng/mL and 125 TCID 50 /mL for IAV nucleoprotein and purified H3N2v, respectively. This platform allows lab-testing to be performed outdoors and opens up the applications of immunoassays in nonclinical settings.
Magnetoresistive detection of strongly pinned uncompensated magnetization in antiferromagnetic FeMn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapa, Pavel N.; Roshchin, Igor V.; Ding, Junjia
2017-01-17
Here we observed and studied pinned uncompensated magnetization in an antiferromagnet using magnetoresistance measurements. For this, we developed antiferromagnet-ferromagnet spin valves (AFSVs) that consist of an antiferromagnetic layer and a ferromagnetic one, separated by a nonmagnetic conducting spacer. In an AFSV, the uncompensated magnetization in the antiferromagnet affects scattering of spin-polarized electrons giving rise to giant magnetoresitance (GMR). By measuring angular dependence of AFSVs' resistance, we detected pinned uncompensated magnetization responsible for the exchange bias effect in an antiferromagnet- only exchange bias system Cu/FeMn/Cu. The fact that GMR measured in this system persists up to 110 kOe indicates that themore » scattering occurs on strongly pinned uncompensated magnetic moments in FeMn. This strong pinning can be explained if this pinned uncompensated magnetization is a thermodynamically stable state and coupled to the antiferromagnetic order parameter. Finally, using the AFSV technique, we confirmed that the two interfaces between FeMn and Cu are magnetically different: The uncompensated magnetization is pinned only at the interface with the bottom Cu layer.« less
Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen
2014-02-10
Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.
Atomic Scale Studies of Magnetic Multilayers
NASA Astrophysics Data System (ADS)
Plisch, M. J.; Muller, D. A.; Katine, J. A.; Silcox, J.; Buhrman, R. A.
1998-03-01
The structure of interfaces in magnetic multilayers plays a crucial role in determining their transport properties(S.S.P. Parkin, Phys. Rev. Lett. 71), 1641 (1993).. A scanning transmission electron microscope (STEM) which can focus a 100 kV electron beam down to 2Åis used to make spatially resolved measurements across magnetic multilayers. Previous x-ray absorption measurements suggest that the Cu d electrons play a large role in coupling the Co layers(M.G. Samant, et. al., Phys. Rev. Lett. 72), 1112 (1994).. With electon energy loss spectroscopy (EELS), information on the spatial variation of Cu d states can be obtained. Interfacial structure and bonding have been examined in multilayers with 80 ÅCu/50 ÅCo periods (with no GMR) and 9 ÅCu/13 ÅCo periods (with greater than 50% GMR). A heteroepitaxial grain structure persisting across many multilayer periods has been seen in the short period structure, but not in the long period structure. There is mixing at the Cu/Co interface and the Cu d states near the interface are significantly modified by the Co. Fe/Cr multilayers have also been examined.
Falcão, Amilcar; Vaz-da-Silva, Manuel; Gama, Helena; Nunes, Teresa; Almeida, Luís; Soares-da-Silva, Patrício
2013-08-01
To investigate the effect of once-daily (QD) eslicarbazepine acetate (ESL) 800 mg and 1,200 mg administration on pharmacokinetics of a combined ethinylestradiol/levonorgestrel oral contraceptive (OC) in women of childbearing potential. Two two-way, crossover, two-period, randomized, open-label studies were performed in 20 healthy female subjects, each. In one period (ESL+OC period), subjects received ESL 800 mg QD in one study and ESL 1200 mg QD in the other study, for 15 days; concomitantly with the Day 14 ESL dose, an oral single dose of 30 μg ethinylestradiol and 150 μg levonorgestrel was administered. In the other period (OC alone), a single dose of 30 μg ethinylestradiol and 150 μg levonorgestrel was administered. Three weeks or more separated the periods. An analysis of variance (ANOVA) was used to test for differences between pharmacokinetic parameters of 30 μg ethinylestradiol and 150 μg levonorgestrel following ESL+OC and OC alone, and 90% confidence intervals (90%CI) for the ESL+OC/OC alone geometric mean ratio (GMR) were calculated. ESL significantly decreased the systemic exposure to both ethinylestradiol and levonorgestrel. GMR (90%CI) for AUC0-24 of ethinylestradiol were 68% (64%; 71%) following 1,200 mg ESL and 75% (71%; 79%) following 800 mg ESL. GMR (90%CI) for AUC0-24 of levonorgestrel were 76% (68%; 86%) following 1,200 mg ESL and 89% (82%; 97%) following 800 mg ESL. A clinically relevant dose-dependent effect of ESL administration on the pharmacokinetics of ethinylestradiol and levonorgestrel was observed. Therefore, to avoid inadvertent pregnancy, women of childbearing potential should use other adequate methods of contraception during treatment with ESL, and, in case ESL treatment is discontinued, until CYP3A4 activity returns to normal. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Lin; Small, Gary W; Arnold, Mark A
2003-11-01
The transfer of multivariate calibration models is investigated between a primary (A) and two secondary Fourier transform near-infrared (near-IR) spectrometers (B, C). The application studied in this work is the use of bands in the near-IR combination region of 5000-4000 cm(-)(1) to determine physiological levels of glucose in a buffered aqueous matrix containing varying levels of alanine, ascorbate, lactate, triacetin, and urea. The three spectrometers are used to measure 80 samples produced through a randomized experimental design that minimizes correlations between the component concentrations and between the concentrations of glucose and water. Direct standardization (DS), piecewise direct standardization (PDS), and guided model reoptimization (GMR) are evaluated for use in transferring partial least-squares calibration models developed with the spectra of 64 samples from the primary instrument to the prediction of glucose concentrations in 16 prediction samples measured with each secondary spectrometer. The three algorithms are evaluated as a function of the number of standardization samples used in transferring the calibration models. Performance criteria for judging the success of the calibration transfer are established as the standard error of prediction (SEP) for internal calibration models built with the spectra of the 64 calibration samples collected with each secondary spectrometer. These SEP values are 1.51 and 1.14 mM for spectrometers B and C, respectively. When calibration standardization is applied, the GMR algorithm is observed to outperform DS and PDS. With spectrometer C, the calibration transfer is highly successful, producing an SEP value of 1.07 mM. However, an SEP of 2.96 mM indicates unsuccessful calibration standardization with spectrometer B. This failure is attributed to differences in the variance structure of the spectra collected with spectrometers A and B. Diagnostic procedures are presented for use with the GMR algorithm that forecasts the successful calibration transfer with spectrometer C and the unsatisfactory results with spectrometer B.
Yoon, Sumin; Rhee, Su-Jin; Park, Sang-In; Yoon, Seo Hyun; Cho, Joo-Youn; Jang, In-Jin; Lee, SeungHwan; Yu, Kyung-Sang
2017-06-01
The aim of this study was to compare the pharmacokinetic (PK) characteristics of evogliptin and metformin following the administration of 2 evogliptin/metformin extended-release (XR) 2.5/500 mg FDC tablets with the coadministration of separate evogliptin 5-mg and metformin XR 1,000-mg tablets (separate formulations). A randomized, two-period, two-sequence crossover study was conducted. Subjects were randomly assigned to receive 2 FDC tablets or the individual tablets, followed by a 14-day washout period and the administration of the alternate treatment. Blood samples were collected predose and up to 72 hours postdose for each period. PK parameters including Cmax and AUClast were calculated. The geometric mean ratios (GMRs) and the 90% confidence intervals (CIs) between FDC and the separate formulations were calculated for the Cmax and AUClast of evogliptin and metformin. 33 subjects completed the study. The GMR (90% CI) values of Cmax and AUClast for evogliptin were 1.011 (0.959 - 1.066) and 1.010 (0.977 - 1.043), respectively. The GMR (90% CI) values of Cmax and AUClast for metformin were 0.892 (0.827 - 0.963) and 0.893 (0.841 - 0.947), respectively. There was no significant difference between the FDC and separate formulations regarding the occurrence of adverse events. All drug-related adverse events were considered to be mild and resolved without any treatment. Two FDC tablets of evogliptin/metformin XR 2.5/500 mg showed a similar PK profile to the separate formulations of evogliptin 5 mg and metformin XR 1,000 mg. All of the 90% CIs of GMR satisfied the regulatory bioequivalence criteria of 0.800 - 1.250. .
Validating self-reported mobile phone use in adults using a newly developed smartphone application.
Goedhart, Geertje; Kromhout, Hans; Wiart, Joe; Vermeulen, Roel
2015-11-01
Interpretation of epidemiological studies on health effects from mobile phone use is hindered by uncertainties in the exposure assessment. We used a newly developed smartphone application (app) to validate self-reported mobile phone use and behaviour among adults. 107 participants (mean age 41.4 years) in the Netherlands either downloaded the software app on their smartphone or were provided with a study smartphone for 4 weeks. The app recorded the number and duration of calls, text messages, data transfer, laterality and hands-free use. Self-reported mobile phone use was collected before using the app and after 6 months through an interviewer-administered questionnaire. The geometric mean ratios (GMR, 95% CI) and Spearman correlations (r) of self-reported (after 6 months) versus recorded number and duration of calls were: GMR=0.65 (0.53 to 0.80), r=0.53; and GMR=1.11 (0.86 to 1.42), r=0.57 respectively. Participants held the phone on average for 86% of the total call time near the head. Self-reported right side users held the phone for 70.7% of the total call time on the right side of the head, and left side users for 66.2% on the left side of the head. The percentage of total call time that the use of hands-free devices (headset, speaker mode, Bluetooth) was recorded increased with increasing frequency of reported hands-free device usage. The observed recall errors and precision of reported laterality and hands-free use can be used to quantify and improve radiofrequency exposure models based on self-reported mobile phone use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Schwartz, J I; Agrawal, N G; Wong, P H; Bachmann, K A; Porras, A G; Miller, J L; Ebel, D L; Sack, M R; Holmes, G B; Redfern, J S; Gertz, B J
2001-10-01
Rofecoxib is a highly selective and potent inhibitor of cyclooxgenase-2 (COX-2). Methotrexate is a disease-modifying agent with a narrow therapeutic index frequently prescribed for the management of rheumatoid arthritis. The objective of this study was to investigate the influence of clinical doses of rofecoxib on the pharmacokinetics of methotrexate in patients with rheumatoid arthritis. This was a randomized, double-blind, placebo-controlled study in 25 rheumatoid arthritis patients on stable doses of methotrexate. Patients received oral methotrexate (7.5 to 20 mg) on days -1, 7, 14, and 21. Nineteen patients received rofecoxib 12.5, 25, and 50 mg once daily on days 1 to 7, 8 to 14, and 15 to 21, respectively. Six patients received placebo on days 1 to 21 only to maintain a double-blinded design for assessment of adverse experiences. Plasma and urine samples were analyzed for methotrexate and its major although inactive metabolite, 7-hydroxymethotrexate. The AUC(0-infinity) geometric mean ratios (GMR) and their 90% confidence intervals (90% CI) (rofecoxib + methotrexate/methotrexate alone) for day 7/day -1, day 14/day -1, and day 21/day -1, for rofecoxib 12.5, 25, and 50 mg, were 1.03 (0.93, 1.14), 1.02 (0.92, 1.12), and 1.06 (0.96, 1.17), respectively (p > 0.2 for all comparisons to day -1). All AUC(0-infinity), GMR and Cmax GMR 90% CIs fell within the predefined comparability limits of (0.80, 1.25). Similar results were observed for renal clearance of methotrexate and 7-hydroxymethotrexate at the highest dose of rofecoxib tested (50 mg). It was concluded that rofecoxib at doses of 12.5, 25, and 50 mg once daily has no effect on the plasma concentrations or renal clearance (tested at the highest dose of rofecoxib) of methotrexate in rheumatoid arthritis patients.
Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane
2007-01-16
A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.
Traby, L; Kollars, M; Kaider, A; Eichinger, S; Wolzt, M; Kyrle, P A
2016-02-01
ESSENTIALS: In acute coronary syndromes, dual antiplatelet therapy inhibits platelets but confers a bleeding risk. Healthy male volunteers received clopidogrel or ticagrelor plus aspirin or clopidogrel or ticagrelor alone. The decrease in β-thromboglobulin in shed blood was comparable after single and dual antiplatelet therapy. We hypothesize that patients with acute coronary syndromes may not require dual antiplatelet therapy. Dual antiplatelet therapy with a P2Y12 inhibitor and aspirin is standard in acute coronary syndromes. Dual antiplatelet therapy causes more bleeding than single antiplatelet therapy with a P2Y12 inhibitor. To compare the effects of dual and single antiplatelet therapies on hemostatic system activation. In a randomized, parallel-group, double-blind, placebo-controlled study, 44 healthy volunteers received clopidogrel (600 mg, then 150 mg d(-1) ) and aspirin (100 mg d(-1) ) or placebo for 7 days; An additional 44 volunteers received single-dose ticagrelor (180 mg) and aspirin (300 mg) or placebo. β-Thromboglobulin (β-TG [IU L(-1) ]) and prothrombin fragment 1.2 (f1.2 [nmol L(-1) ]) were measured in blood obtained from bleeding time incisions. Data are given as geometric mean ratio (GMR [95% confidence interval]) to describe the differences in the first 2 h and as mean differences (Δ [95% confidence interval]) in area under the curve (AUC) to discriminate differences in effects over the total observation time. Clopidogrel plus aspirin and clopidogrel plus placebo reduced β-TG by a GMR of 0.51 (0.42-0.63) and 0.54 (0.46-0.64) at 2 h. Ticagrelor plus aspirin and ticagrelor plus placebo decreased β-TG by a GMR of 0.38 (0.26-0.57) and 0.47 (0.31-0.72). Ticagrelor plus aspirin and ticagrelor plus placebo reduced f1.2 by a GMR of 0.58 (0.45-0.75) and 0.55 (0.38-0.80); clopidogrel did not. Over 24 h, no difference in β-TG occurred between clopidogrel plus aspirin and clopidogrel plus placebo (ΔAUC = -2.9 [-9.9 to 4.1]) or between ticagrelor plus aspirin and ticagrelor plus placebo (ΔAUC = -3.5 [-11.8 to 4.7]). No difference in f1.2 occurred between clopidogrel plus aspirin and clopidogrel plus placebo (ΔAUC = -4.2 [-10.2 to 1.8]) or between ticagrelor plus aspirin and ticagrelor plus placebo (ΔAUC = -3.6 [-10.9 to 3.7]). P2Y12 inhibitor monotherapy and dual antiplatelet therapy inhibit hemostatic system activation to a comparable extent. © 2015 International Society on Thrombosis and Haemostasis.
The Galapagos Marine Reserve (GMR) is one of the most diverse ecosystems in the world. Phytoplankton are the base of the ecosystem food chain for many higher trophic organisms, so identifying phytoplankton biomass distribution is the first step in understanding the dynamic envir...
Does Watching Help? In Search of the Theory of Change for Education Monitoring
ERIC Educational Resources Information Center
Post, David
2015-01-01
In 2015 Education for All (EFA), concludes its 25-year cycle, and the Global Monitoring Report (GMR) publishes its final assessment of triumph and defeat in reaching the six EFA goals. Before the United Nations adopts new Sustainable Development Goals, it is essential to consider the underlying theories of monitoring. This essay addresses two…
Analysis and modeling of leakage current sensor under pulsating direct current
NASA Astrophysics Data System (ADS)
Li, Kui; Dai, Yihua; Wang, Yao; Niu, Feng; Chen, Zhao; Huang, Shaopo
2017-05-01
In this paper, the transformation characteristics of current sensor under pulsating DC leakage current is investigated. The mathematical model of current sensor is proposed to accurately describe the secondary side current and excitation current. The transformation process of current sensor is illustrated in details and the transformation error is analyzed from multi aspects. A simulation model is built and a sensor prototype is designed to conduct comparative evaluation, and both simulation and experimental results are presented to verify the correctness of theoretical analysis.
NASA Technical Reports Server (NTRS)
Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)
1998-01-01
A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.
ERIC Educational Resources Information Center
King, Kenneth
2014-01-01
The article underlines the historic importance of the treatment of skills development, finally, by the Education for All Global Monitoring Report (GMR) team. Among the many challenges in its analysis are the multiple and overlapping meanings of the word skill, and the consequent difficulties of quantifying and monitoring efforts at skills…
Spin injection into Pt-polymers with large spin-orbit coupling
NASA Astrophysics Data System (ADS)
Sun, Dali; McLaughlin, Ryan; Siegel, Gene; Tiwari, Ashutosh; Vardeny, Z. Valy
2014-03-01
Organic spintronics has entered a new era of devices that integrate organic light-emitting diodes (OLED) in organic spin valve (OSV) geometry (dubbed bipolar organic spin valve, or spin-OLED), for actively manipulating the device electroluminescence via the spin alignment of two ferromagnetic electrodes (Science 337, 204-209, 2012; Appl. Phys. Lett. 103, 042411, 2013). Organic semiconductors that contain heavy metal elements have been widely used as phosphorescent dopants in white-OLEDs. However such active materials are detrimental for OSV operation due to their large spin-orbit coupling (SOC) that may limit the spin diffusion length and thus spin-OLED based on organics with large SOC is a challenge. We report the successful fabrication of OSVs based on pi-conjugated polymers which contain intrachain Platinum atoms (dubbed Pt-polymers). Spin injection into the Pt-polymers is investigated by the giant magnetoresistance (GMR) effect as a function of bias voltage, temperature and polymer layer thickness. From the GMR bias voltage dependence we infer that the ``impendence mismatch'' between ferromagnetic electrodes and Pt-polymer may be suppressed due to the large SOC. Research sponsored by the NSF (Grant No. DMR-1104495) and NSF-MRSEC (DMR 1121252) at the University of Utah.
NASA Astrophysics Data System (ADS)
Magnusson, Robert; Yoon, Jae Woong; Amin, Mohammad Shyiq; Khaleque, Tanzina; Uddin, Mohammad Jalal
2014-03-01
For selected device concepts that are members of an evolving class of photonic devices enabled by guided-mode resonance (GMR) effects, we review physics of operation, design, fabrication, and characterization. We summarize the application potential of this field and provide new and emerging aspects. Our chosen examples include resonance elements with extremely wide reflection bands. Thus, in a multilevel structure with conformal germanium (Ge) films, reflectance exceeds 99% for spectral widths approaching 1100 nm. A simpler design, incorporating a partially etched single Ge layer on a glass substrate, exhibits a high-reflectance bandwidth close to 900 nm. We present a couple of interesting new device concepts enabled by GMRs coexisting with the Rayleigh anomaly. Our example Rayleigh reflector exhibits a wideband high-efficiency flattop spectrum and extremely rapid angular transitions. Moreover, we show that it is possible to fashion transmission filters by excitation of leaky resonant modes at the Rayleigh anomaly in a subwavelength nanograting. A unique transmission spectrum results, which is tightly delimited in angle and wavelength as experimentally demonstrated. We update our application list with new developments including GMR-based coherent perfect absorbers, multiparametric biosensors, and omnidirectional wideband absorbers.
Luo, J; Ohyama, T; Hashimoto, S; Hasunuma, T; Inoue, Y; Kotegawa, T; Ohashi, K; Uemura, N
2016-01-01
Pharmacokinetic exposures to fexofenadine (FEX) are reduced by apple juice (AJ); however, the relationship between the AJ volume and the degree of AJ‐FEX interaction has not been understood. In this crossover study, 10 healthy subjects received single doses of FEX 60 mg with different volumes (150, 300, and 600 mL) of AJ or water (control). To identify an AJ volume lacking clinically meaningful interaction, we tested a hypothesis that the 90% confidence interval (CI) for geometric mean ratio (GMR) of FEX AUCAJ/AUCwater is contained within a biocomparability bound of 0.5–2.0, with at least one tested volume of AJ. GMR (90% CI) of AUCAJ 150mL/AUCwater, AUCAJ 300mL/AUCwater, and AUCAJ 600mL/AUCwater were 0.903 (0.752–1.085), 0.593 (0.494–0.712), and 0.385 (0.321–0.462), respectively. While a moderate to large AJ‐FEX interaction is caused by a larger volumes of AJ (e.g., 300 to 600 mL), the effect of a small volume (e.g., 150 mL) appears to be not meaningful. PMID:27197662
Surfactant-assisted atomic-level engineering of spin valves
NASA Astrophysics Data System (ADS)
Chopra, Harsh Deep; Yang, David X.; Chen, P. J.; Egelhoff, W. F.
2002-03-01
Surfactant Ag is successfully used to atomically engineer interfaces and nanostructure in NiO-Co-Cu-based bottom spin valves. At a Cu spacer thickness of 1.5 nm, a strong net ferromagnetic (or positive) coupling >13.92 kA/m (>175 Oe) between NiO-pinned and ``free'' Co layers leads to a negligible ``giant'' magnetoresistance (GMR) effect (<0.7%) in Ag-free samples. In contrast, the net ferromagnetic coupling could be reduced by a factor of 2 or more in spin valves deposited in the presence of ~1-3 ML of surfactant Ag, and such samples exhibit more than an order of magnitude increase in GMR (8.5-13 %). Based on transmission electron microscopy (TEM), a large contribution to net ferromagnetic coupling in Ag-free samples could be directly attributed to the presence of numerous pinholes. In situ x-ray photoelectron spectroscopy and TEM studies show that surfactant Ag floats out to the surface during deposition of successive Co and Cu overlayers, leaving behind smooth interfaces and continuous layers that are less prone to intermixing and pinholes. The use of surfactants in the present study also illustrates their potential use in atomic engineering of magnetoelectronics devices and other multilayer systems.
Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang
2016-01-01
Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists. PMID:27548183
Xu, Jun; Wang, Jing; Li, Shiying; Cao, Binggang
2016-08-19
Recently, State of energy (SOE) has become one of the most fundamental parameters for battery management systems in electric vehicles. However, current information is critical in SOE estimation and current sensor is usually utilized to obtain the latest current information. However, if the current sensor fails, the SOE estimation may be confronted with large error. Therefore, this paper attempts to make the following contributions: Current sensor fault detection and SOE estimation method is realized simultaneously. Through using the proportional integral observer (PIO) based method, the current sensor fault could be accurately estimated. By taking advantage of the accurate estimated current sensor fault, the influence caused by the current sensor fault can be eliminated and compensated. As a result, the results of the SOE estimation will be influenced little by the fault. In addition, the simulation and experimental workbench is established to verify the proposed method. The results indicate that the current sensor fault can be estimated accurately. Simultaneously, the SOE can also be estimated accurately and the estimation error is influenced little by the fault. The maximum SOE estimation error is less than 2%, even though the large current error caused by the current sensor fault still exists.
Temperature compensated and self-calibrated current sensor using reference current
Yakymyshyn, Christopher Paul [Seminole, FL; Brubaker, Michael Allen [Loveland, CO; Yakymyshyn, Pamela Jane [Seminole, FL
2008-01-22
A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference electrical current carried by a conductor positioned within the sensing window of the current sensor is used to correct variations in the output signal due to temperature variations and aging.
A MEMS sensor for AC electric current
NASA Astrophysics Data System (ADS)
Leland, Eli Sidney
This manuscript describes the development of a new MEMS sensor for the measurement of AC electric current. The sensor is comprised of a MEMS piezoelectric cantilever with a microscale permanent magnet mounted to the cantilever's free end. When placed near a wire carrying AC current, the magnet couples to the oscillating magnetic field surrounding the wire, causing the cantilever to deflect, and piezoelectric coupling produces a sinusoidal voltage proportional to the current in the wire. The sensor is itself passive, requiring no power supply to operate. It also operates on proximity and need only be placed near a current carrier in order to function. The sensor does not need to encircle the current carrier and it therefore can measure current in two-wire zip-cords without necessitating the separation of the two conductors. Applications for tins sensor include measuring residential and commercial electricity use and monitoring electric power distribution networks. An analytical model describing the behavior of the current sensor was developed. This model was also adapted to describe the power output of an energy scavenger coupled to a wire carrying AC current. A mesoscale sensor exhibited a sensitivity of 75 mV/A when measuring AC electric current in a zip-cord. A mesoscale energy scavenger produced 345 muW when coupled to a zip-cord carrying 13 A. MEMS current sensors were fabricated from aluminum nitride piezoelectric cantilevers and composite permanent magnets. The cantilevers were fabricated using a four-mask process. Microscale permanent magnets were dispenser-printed using NdFeB magnetic powder with an epoxy binder. The MEMS AC current sensor was interfaced with amplification circuitry and packaged inside an almninum enclosure. The sensor was also integrated with a mesoscale energy scavenger and power conditioning circuitry to create a fully self-powered current sensor. Unamplified sensitivity of the sensor was 0.1-1.1 mV/A when measuring currents in single wires and zip-cords. The self-powered current sensor operated at a 0.6% duty cycle when coupled to the zip-cord of a 1500 W space heater drawing 13 A. The self-powered sensor's energy scavenger transferred energy to a 10 mF storage capacitor at a rate of 69 muJ/s.
Temperature compensated and self-calibrated current sensor using reference magnetic field
Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane
2007-10-09
A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by the magnetic field sensors and is used to correct variations in the output signal due to temperature variations and aging.
Temperature compensated current sensor using reference magnetic field
Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane
2007-10-09
A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by a separate but identical magnetic field sensor and is used to correct variations in the output signal due to temperature variations and aging.
Magnetoelectric Current Sensors
Bichurin, Mirza; Petrov, Roman; Leontiev, Viktor; Semenov, Gennadiy; Sokolov, Oleg
2017-01-01
In this work a magnetoelectric (ME) current sensor design based on a magnetoelectric effect is presented and discussed. The resonant and non-resonant type of ME current sensors are considered. Theoretical calculations of the ME current sensors by the equivalent circuit method were conducted. The application of different sensors using the new effects, for example, the ME effect, is made possible with the development of new ME composites. A large number of studies conducted in the field of new composites, allowed us to obtain a high magnetostrictive-piezoelectric laminate sensitivity. An optimal ME structure composition was matched. The characterization of a non-resonant current sensor showed that in the operation range to 5 A, the sensor had a sensitivity of 0.34 V/A, non-linearity less than 1% and for a resonant current sensor in the same operation range, the sensitivity was of 0.53 V/A, non-linearity less than 0.5%. PMID:28574486
Alginate Lyase (AlgL) Activity Is Required for Alginate Biosynthesis in Pseudomonas aeruginosa
Albrecht, Mark T.; Schiller, Neal L.
2005-01-01
To determine whether AlgL's lyase activity is required for alginate production in Pseudomonas aeruginosa, an algLΔ::Gmr mutant (FRD-MA7) was created. algL complementation of FRD-MA7 restored alginate production, but algL constructs containing mutations inactivating lyase activity did not, demonstrating that the enzymatic activity of AlgL is required for alginate production. PMID:15901714
NASA Astrophysics Data System (ADS)
Slatter, Rolf; Goffin, Benoit
2014-08-01
The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.
Mathian, A; Devilliers, H; Krivine, A; Costedoat-Chalumeau, N; Haroche, J; Huong, D Boutin-Le Thi; Wechsler, B; Hervier, B; Miyara, M; Morel, N; Le Corre, N; Arnaud, L; Piette, J C; Musset, L; Autran, B; Rozenberg, F; Amoura, Z
2011-11-01
To assess the factors influencing the efficacy of 2 injections of a pandemic 2009 influenza A (H1N1) vaccine in patients with systemic lupus erythematosus (SLE). We conducted a single-center, observational prospective study of 111 patients who were vaccinated with a monovalent, inactivated, nonadjuvanted, split-virus vaccine during December 2009 and January 2010 and received a second dose of vaccine 3 weeks later. The antibody response was evaluated using the hemagglutination inhibition assay according to the guidelines recommended for the pandemic vaccine, consisting of 3 immunogenicity criteria (i.e., a seroprotection rate of 70%, a seroconversion rate of 40%, and a geometric mean ratio [GMR] of 2.5). The 3 immunogenicity criteria were met on day 42 (seroprotection rate 80.0% [95% confidence interval (95% CI) 72.5-87.5%], seroconversion rate 71.8% [95% CI 63.4-80.2%], and GMR 10.3 [95% CI 2.9-14.2]), while only 2 criteria were met on day 21 (seroprotection rate 66.7% [95% CI 57.9-75.4%], seroconversion rate 60.4% [95% CI 51.3-69.5%], and GMR 8.5 [95% CI 3.2-12.0]). The vaccine was well tolerated. Disease activity, assessed by the Safety of Estrogens in Lupus Erythematosus National Assessment version of the SLE Disease Activity Index, the British Isles Lupus Assessment Group score, and the Systemic Lupus Activity Questionnaire, did not increase. In the multivariate analysis, vaccination failure was significantly associated with immunosuppressive treatment or a lymphocyte count of ≤ 1.0 × 10⁹/liter. The second injection significantly increased the immunogenicity in these subgroups, but not high enough to fulfill the seroprotection criterion in patients receiving immunosuppressive treatment. Our findings indicate that the efficacy of the vaccine was impaired in patients who were receiving immunosuppressive drugs or who had lymphopenia. A second injection increased vaccine immunogenicity without reaching all efficacy criteria for a pandemic vaccine in patients receiving an immunosuppressive agent. These results open possibilities for improving anti-influenza vaccination in SLE. Copyright © 2011 by the American College of Rheumatology.
A Theory of Gravity and General Relativity based on Quantum Electromagnetism
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2018-02-01
Based on first principles solutions in a unified framework of quantum mechanics and electromagnetism we predict the presence of a universal attractive depolarisation radiation (DR) Lorentz force (F) between quantum entities, each being either an IED matter particle or light quantum, in a polarisable dielectric vacuum. Given two quantum entities i = 1, 2 of either kind, of characteristic frequencies ν _i^0, masses m_i0 = hν _i^0/{c^2} and separated at a distance r 0, the solution for F is F = - G}m_1^0m_2^0/{≤ft( {{r^2}} \\right)^2}, where G} = χ _0^2{e^4}/12{π ^2} \\in _0^2{ρ _λ };{χ _0} is the susceptibility and π λ is the reduced linear mass density of the vacuum. This force F resembles in all respects Newton’s gravity and is accurate at the weak F limit; hence ℊ equals the gravitational constant G. The DR wave fields and hence the gravity are each propagated in the dielectric vacuum at the speed of light c; these can not be shielded by matter. A test particle µ of mass m 0 therefore interacts gravitationally with all of the building particles of a given large mass M at r 0 apart, by a total gravitational force F = -GMm 0/(r 0)2 and potential V = -∂F/∂r 0. For a finite V and hence a total Hamiltonian H = m 0 c 2 + V, solution for the eigenvalue equation of µ presents a red-shift in the eigen frequency ν = ν 0(1 - GM/r 0 c 2) and hence in other wave variables. The quantum solutions combined with the wave nature of the gravity further lead to dilated gravito optical distance r = r 0/(1 - GM/r 0 c 2) and time t = t 0/(1 - GM/r 0 c 2), and modified Newton’s gravity and Einstein’s mass energy relation. Applications of these give predictions of the general relativistic effects manifested in the four classical test experiments of Einstein’s general relativity (GR), in direct agreement with the experiments and the predictions given based on GR.
Webb, E L; Nampijja, M; Kaweesa, J; Kizindo, R; Namutebi, M; Nakazibwe, E; Oduru, G; Kabubi, P; Kabagenyi, J; Nkurunungi, G; Kizito, D; Muhangi, L; Akello, M; Verweij, J J; Nerima, B; Tukahebwa, E; Elliott, A M
2016-08-01
Parasitic helminths are potent immunomodulators and chronic infections may protect against allergy-related disease and atopy. We conducted a cross-sectional survey to test the hypothesis that in heavily helminth-exposed fishing villages on Lake Victoria, Uganda, helminth infections would be inversely associated with allergy-related conditions. A household survey was conducted as baseline to an anthelminthic intervention trial. Outcomes were reported wheeze in last year, atopy assessed both by skin prick test (SPT) and by the measurement of allergen-specific IgE to dust mites and cockroach in plasma. Helminth infections were ascertained by stool, urine and haemoparasitology. Associations were examined using multivariable regression. Two thousand three hundred and sixteen individuals were surveyed. Prevalence of reported wheeze was 2% in under-fives and 5% in participants ≥5 years; 19% had a positive SPT; median Dermatophagoides-specific IgE and cockroach-specific IgE were 1440 and 220 ng/ml, respectively. S. mansoni, N. americanus, S. stercoralis, T. trichiura, M. perstans and A. lumbricoides prevalence was estimated as 51%, 22%, 12%, 10%, 2% and 1%, respectively. S. mansoni was positively associated with Dermatophagoides-specific IgE [adjusted geometric mean ratio (aGMR) (95% confidence interval) 1.64 (1.23, 2.18)]; T. trichiura with SPT [adjusted odds ratio (aOR) 2.08 (1.38, 3.15)]; M. perstans with cockroach-specific IgE [aGMR 2.37 (1.39, 4.06)], A. lumbricoides with wheeze in participants ≥5 years [aOR 6.36 (1.10, 36.63)] and with Dermatophagoides-specific IgE [aGMR 2.34 (1.11, 4.95)]. No inverse associations were observed. Contrary to our hypothesis, we found little evidence of an inverse relationship between helminths and allergy-related outcomes, but strong evidence that individuals with certain helminths were more prone to atopy in this setting. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.
The Rogowski Coil Sensor in High Current Application: A Review
NASA Astrophysics Data System (ADS)
Nazmy Nanyan, Ayob; Isa, Muzamir; Hamid, Haziah Abdul; Nur Khairul Hafizi Rohani, Mohamad; Ismail, Baharuddin
2018-03-01
Rogowski coil is used for measuring the alternating current (AC) and high-speed current pulses. However, the technology makes the Rogowski coil (RC) come out with more improvement, modification and until today it’s still being studied for the new application. The Rogowski coil has a few advantages compared to the high frequency current transformer (HFCT). A brief review on the basic theory and the application of Rogowski coil as a current sensor measurement that been done by previous researchers are presented and discussed in this paper. Additionally, the review also focused on the capability of Rogowski coil for high current sensor measurement and their application for fault detection, over voltage current sensor, lightning current sensor and high impulse current detection. The experimental set up, techniques and measurement parameters in models also been discussed. Finally, a brief review on the performance analysis of current sensor measurement of Rogowski coil likes sensitivity, the maximum and current detection which could be used as a guideline to another researcher in order to develop an advanced RC as high current sensor in future is presented. This review reveal that the RC has a very good performance in high current sensor detection in term of sensitivity which is up to a few nanosecond, higher bandwidth, excellent in detection of high fault and also could measuring lightning current up to 400kA and has many advantages compare to conventional current transformer(CT).
NASA Astrophysics Data System (ADS)
Fukuzawa, H.; Yuasa, H.; Koi, K.; Iwasaki, H.; Tanaka, Y.; Takahashi, Y. K.; Hono, K.
2005-05-01
We have successfully observed a nanoconstricted structure for current-confined-path (CCP) effect in current-perpendicular-to-plane-giant-magnetoresistance (CPP-GMR) spin valves. By inserting an AlCu nano-oxide layer (NOL) formed by ion-assisted oxidation (IAO) between a pinned layer and a free layer, the MR ratio was increased while maintaining a small area resistance product (RA). The cross-sectional high-resolution transmission electron microscopy image of the sample with RA =380mΩμm2, ΔRA =16mΩμm2, and MR ratio=4.3% showed that an amorphous oxide layer is a main part of the NOL that blocks the electron conduction perpendicular to plane. Some parts of the NOL are punched through crystalline, metallic channels having a diameter of a few nanometers, which are thought to work as nanoconstricted electron conduction paths between the pinned layer and the free layer. Nano-energy-dispersive-x-ray-spectrum analysis also showed that Cu is enriched in the metallic channels, whereas Al is enriched in the amorphous oxide region, indicating that the metallic channel is made of Cu and the oxide is made of Al2O3. The nanoconstricted structure with good segregation between the metallic channel and the oxide layer enables us to realize a large MR ratio in CCP-CPP spin valves.
Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang
2017-01-01
This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554
Chen, Tao; He, Yuting; Du, Jinqiang
2018-06-01
This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.
Defense Acquisitions. Assessments of Selected Weapon Programs
2007-03-01
Selected Weapon Programs March 2007 GAO-07-406SP Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 What GAO Found United States Government Accountability Office Why GAO Did This...Joint Tactical Radio System Ground Mobile Radio (JTRS GMR) 93 JTRS Handheld, Manpack, Small Form Fit (JTRS HMS) 95 Kinetic Energy Interceptors (KEI) 97
Interfacial exchange, magnetic coupling and magnetoresistance in ultra-thin GdN/NbN/GdN tri-layers
NASA Astrophysics Data System (ADS)
Takamura, Yota; Goncalves, Rafael S.; Cascales, Juan Pedro; Altinkok, Atilgan; de Araujo, Clodoaldo I. L.; Lauter, Valeria; Moodera, Jagadeesh S.; MIT Team
Superconducting spin-valve structures with a superconductive (SC) spacer sandwiched between ferromagnetic (FM) insulating layers [Li PRL 2013, Senapati APL 2013, Zhu Nat. Mat. 2016.] are attractive since the SC and FM characteristics can mutually be controlled by the proximity effect. We investigated reactively sputtered GdN/NbN/GdN tri-layer structures with various (SC) NbN spacer thicknesses (dNbN) from superconducting to normal layers. Magnetoresistive behavior similar to GMR in metallic magnetic multilayers was observed in the tri-layers with dNbN between 5-10 monolayers (ML), where thinner NbN layers did not show superconductivity down to 4.2 K. The occurrence of GMR signal indicates the presence of a ML of FM metallic layers at the GdN/NbN interfaces. Susceptibility and transport measurements in these samples revealed that the interface layers (ILs) are ferromagnetically coupled with adjacent GdN layers. The thickness of each of the IL is deduced to be about 1.25 ML, and as a result for dNbN <2.5-ML the two FM layers in the tri-layer were magnetically coupled and switched simultaneously. These findings and interfacial characterization by various techniques will be presented. Work supported by NSF and ONR Grants.
Selecting a restoration technique to minimize OCR error.
Cannon, M; Fugate, M; Hush, D R; Scovel, C
2003-01-01
This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.
A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters.
Rossetti, Lia; Carminati, Domenico; Zago, Miriam; Giraffa, Giorgio
2009-03-15
A Qualified Presumption of Safety (QPS) approach was applied to dominant lactic acid bacteria (LAB) associated with Grana Padano cheese whey starters. Thirty-two strains belonging to Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum, and representing the overall genotypic LAB diversity associated with 24 previously collected whey starters [Rossetti, L., Fornasari, M.E., Gatti, M., Lazzi, C., Neviani, E., Giraffa, G., 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. International Journal of Food Microbiology 127, 168-171], were analyzed. All L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus isolates were susceptible to four (i.e. vancomycin, gentamicin, tetracycline, and erythromycin) of the clinically most relevant antibiotics. One L. fermentum strain displayed phenotypic resistance to tetracycline (Tet(R)), with MIC of 32 microg/ml, and gentamycin (Gm(R)), with MIC of 32 microg/ml. PCR was applied to this strain to test the presence of genes tet(L), tet(M), tet(S), and aac(6')-aph(2')-Ia, which are involved in horizontal transfer of Tet(R) and Gm(R), respectively but no detectable amplification products were observed. According to QPS criteria, we conclude that Grana cheese whey starters do not present particular safety concerns.
Granular giant magnetoresistive materials and their ferromagnetic resonances
NASA Astrophysics Data System (ADS)
Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.
1994-11-01
Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of (Cu(50 A)/Fe(10 A)) x 50. We interpret the linewidth of these materials in as simple a manner as possible, as a 'powder pattern' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 C for 15 min is 3.8 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe with the magnetic field in the plane of the film.
Ferromagnetic-resonance studies of granular giant-magnetoresistive materials
NASA Astrophysics Data System (ADS)
Rubinstein, M.; Das, B. N.; Koon, N. C.; Chrisey, D. B.; Horwitz, J.
1994-07-01
Ferromagnetic resonance (FMR) can reveal important information on the size and shape of the ferromagnetic particles which are dispersed in granular giant magnetoresistive (GMR) materials. We have investigated the FMR spectra of three different types of granular GMR material, each with different properties: (1) melt-spun ribbons of Fe5Co15Cu80 and Co20Cu80, (2) thin films of Co20Cu80 produced by pulsed laser deposition, and (3) a granular multilayer film of [Cu(50 Å)/Fe(10 Å)]×50. We interpret the linewidth of these materials in as simple a manner as possible, as a ``powder pattern'' of noninteracting ferromagnetic particles. The linewidth of the melt-spun ribbons is caused by a completely random distribution of crystalline anisotropy axes. The linewidth of these samples is strongly dependent upon the annealing temperature: the linewidth of the as-spun sample is 2.5 kOe (appropriate for single-domain particles) while the linewidth of a melt-spun sample annealed at 900 °C for 15 min is 4.5 kOe (appropriate for larger, multidomain particles). The linewidth of the granular multilayer is attributed to a restricted distribution of shape anisotropies, as expected from a discontinuous multilayer, and is only 0.98 kOe when the applied magnetic field is in the plane of the film.
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)
2001-01-01
Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.
Hybrid Structure Multichannel All-Fiber Current Sensor.
Jiang, Junzhen; Zhang, Hao; He, Youwu; Qiu, Yishen
2017-08-02
We have experimentally developed a hybrid-structure multi-channel all-fiber current sensor with ordinary silica fiber using fiber loop architecture. According to the rationale of time division multiplexing, the sensor combines parallel and serial structures. The purpose of the hybrid-structure multi-channel all-fiber current sensor is to get more information from the different measured points simultaneously. In addition, the hybrid-structure fiber current sensor exhibited a good linear response for each channel. A three-channel experiment was performed in the study and showed that the system could detect different current positions. Each channel could individually detect the current and needed a separate calibration system. Furthermore, the three channels will not affect each other.
Directly amplified redox sensor for on-chip chemical analysis
NASA Astrophysics Data System (ADS)
Takahashi, Sou; Futagawa, Masato; Ishida, Makoto; Sawada, Kazuaki
2014-03-01
In recent years, many groups have studied redox sensors for chemical analysis. A redox sensor has certain powerful advantages, such as its ability to detect multiple ions inside the sensing area, and its ability to measure concentrations of materials by using voltage and current signals. However, the output current signal of a redox sensor decreases when either concentration or sensing area decreases. Therefore, we propose the use of an amplified redox sensor (ARS) for measuring small current signals. The proposed sensor consists of a working electrode combined with a bipolar transistor. In this study, we fabricated an ARS sensor and performed low-concentration measurements using current signal amplification with an integrated bipolar transistor. The sensor chip successfully detected a potassium ferricyanide (K3[Fe(CN)6]) concentration of as low as 10 µM using cyclic voltammetry.
A copper-coated fiber Bragg grating current sensor
NASA Astrophysics Data System (ADS)
Jia, Danping; Zhao, Limin; Lin, Yingwen
2005-01-01
Conventional current transformer (CT) is based on the principles of electric magnetic induction with copper wire windings and iron cores, it is widely used in power systems. But it emerges more weakness as the applied voltage and power capacity more and more increase. Over the past 20 years optical current sensors have received significant attention by a number of groups around the world as next generation high voltage measurement devices, with a view to replacing iron-corn current transformers in the electric power industry. In the opposite side of conventional current transformer, optical fiber current sensor provides a solution of the existed problems. It brings the significant advantages that they are non-conductive and lightweight, which can allow for much simpler insulation and mounting designs as the application voltage increase to1000kV or more to day. In addition, optical sensors do not exhibit hysteresis and provide a much large dynamic range and frequency response than iron-core CT. Optical fiber Bragg grating current sensor is the most potential important one among the optical current sensors, but its current transferred sensibility and the capability of anti-variance of temperature and stress still in a lower level. In this paper, a copper coated Bragg grating current sensor are described. The sensibility is improved significantly.
Temperature compensated and self-calibrated current sensor
Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane
2007-09-25
A method is described to provide temperature compensation and reduction of drift due to aging for a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. The offset voltage signal generated by each magnetic field sensor is used to correct variations in the output signal due to temperature variations and aging.
Fabrication of Nanoscaled Systems
2007-05-01
corresponds to an effective dose as low as a few ýC/cm2 for sputtering of a 50 rum resist film. Comparison to observed sputtering rates in other polymeric ...materials (e.g. polystyrene and AZ and SU8 resists), coupled with time of flight SIMS measurements indicate that the relevant mechanism is indeed ion...approximately unity between GMR substrate and resist (for both electron and ion exposed HSQ), which we would not expect to be attainable using polymeric
Measurement of impulse current using polarimetric fiber optic sensor
NASA Astrophysics Data System (ADS)
Ginter, Mariusz
2017-08-01
In the paper the polarimetric current sensing solution used for measurements of high amplitude currents and short durations is presented. This type of sensor does not introduce additional resistance and inductance into the circuit, which is a desirable phenomenon in this type of measurement. The magneto element is a fiber optic coil made of spun fiber optic. The fiber in which the core is twisted around its axis is characterized by a small effect of interfering magnitudes, ie mechanical vibrations and pressure changes on the polarimeter. The presented polarimetric current sensor is completely fiber optic. Experimental results of a proposed sensor construction solution operating at 1550 nm and methods of elimination of influence values on the fiber optic current sensor were presented. The sensor was used to measure the impulse current. The generated current pulses are characterized by a duration of 23μs and amplitudes ranging from 1 to 3.5 kA. The currents in the discharge circuit are shown. The measurement uncertainty of the amplitude of the electric current in the range of measured impulses was determined and estimated to be no more than 2%.
Solution to the Boltzmann equation for layered systems for current perpendicular to the planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, W. H.; Zhang, X.-G.; MacLaren, J. M.
2000-05-01
Present theories of giant magnetoresistance (GMR) for current perpendicular to the planes (CPP) are based on an extremely restricted solution to the Boltzmann equation that assumes a single free electron band structure for all layers and all spin channels. Within this model only the scattering rate changes from one layer to the next. This model leads to the remarkable result that the resistance of a layered material is simply the sum of the resistances of each layer. We present a solution to the Boltzmann equation for CPP for the case in which the electronic structure can be different for differentmore » layers. The problem of matching boundary conditions between layers is much more complicated than in the current in the planes (CIP) geometry because it is necessary to include the scattering-in term of the Boltzmann equation even for the case of isotropic scattering. This term couples different values of the momentum parallel to the planes. When the electronic structure is different in different layers there is an interface resistance even in the absence of intermixing of the layers. The size of this interface resistance is affected by the electronic structure, scattering rates, and thicknesses of nearby layers. For Co-Cu, the calculated interface resistance and its spin asymmetry is comparable to that measured at low temperature in sputtered samples. (c) 2000 American Institute of Physics.« less
NASA Technical Reports Server (NTRS)
Biaggi-Labiosa, Azlin M.; Hunter, Gary W.
2013-01-01
A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.
NASA Astrophysics Data System (ADS)
Lim, China Ye-Ling
Over the past decade, our research group has worked on developing surface-based immunoassays to detect disease biomarkers. Our immunoassay platforms use a gold surface coated with an N-hydroxysuccinimide (NHS)-based monolayer and a layer of antibodies to capture a target antigen. Readout is achieved by surface-enhanced Raman scattering (SERS) or giant magnetoresistance (GMR) after labeling of the captured antigen with Raman dye-modified gold nanoparticles or magnetic particles, which are also coated with antibodies. Both of these platforms enable the low-level detection of numerous biomarkers and have the potential for translation into a point-of-need (PON) (i.e., rapid, easy to use, and field deployable) test. As part of an effort to develop a PON test, this dissertation includes investigations of: (1) SERS-based detection of botulinum neurotoxins (BoNTs), (2) protein immobilization procedures, and (3) magnetic microcapsules (MMCs) for use with GMR detection. First, a SERS-based immunoassay for bioterrorism agents, botulinum neurotoxins A (BoNT-A) and B (BoNT-B) with picomolar (or lower) detection limits for BoNT-A and BoNT-B in buffer and serum is described. These results not only demonstrate sufficient detection of these markers at levels important to homeland security and human health monitoring, but also the potential to translate this methodology to a PON test. Next, the reactivity of NHS ester-terminated monolayers, a common approach in protein immobilization chemistry, is investigated to assess the competition of the purported amidization reaction to that of hydrolysis. Results of kinetic studies on hydrolysis and aminolysis under relevant assay conditions show the rate of hydrolysis is 300x faster than that of aminolysis. These results indicate that it is highly unlikely that proteins are covalently linked to the surface and suggest that the protein layer is adsorbed via hydrophobic, hydrogen bonding, and electrostatic interactions. The last section examines the development of an MMC-based label. With marked improvement in both stability and magnetization over commercially-available magnetic nanoparticles, these MMCs show potential for the eventual enhanced function as a label in a GMR-based immunoassay. With these results, this dissertation aims to set the stage for the rational development of assays that will facilitate a paradigm shift towards PON tests.
Incompressibility in finite nuclei and nuclear matter
NASA Astrophysics Data System (ADS)
Stone, J. R.; Stone, N. J.; Moszkowski, S. A.
2014-04-01
The incompressibility (compression modulus) K0 of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in astrophysical objects and heavy-ion collisions. It is usually extracted from data on the giant monopole resonance (GMR) or calculated using theoretical models. We present a comprehensive reanalysis of recent data on GMR energies in even-even 112-124Sn and 106,100-116Cd and earlier data on 58≤A≤208 nuclei. The incompressibility of finite nuclei KA is calculated from experimental GMR energies and expressed in terms of A-1/3 and the asymmetry parameter β =(N-Z)/A as a leptodermous expansion with volume, surface, isospin, and Coulomb coefficients Kvol, Ksurf, Kτ, and KCoul. Only data consistent with the scaling approximation, leading to a fast converging leptodermous expansion, with negligible higher-order-term contributions to KA, were used in the present analysis. Assuming that the volume coefficient Kvol is identified with K0, the KCoul=-(5.2±0.7) MeV and the contribution from the curvature term KcurvA-2/3 in the expansion is neglected, compelling evidence is found for K0 to be in the range 250
NASA Astrophysics Data System (ADS)
Wiehe, Moritz; Wonsak, S.; Kuehn, S.; Parzefall, U.; Casse, G.
2018-01-01
The reverse current of irradiated silicon sensors leads to self heating of the sensor and degrades the signal to noise ratio of a detector. Precise knowledge of the expected reverse current during detector operation is crucial for planning and running experiments in High Energy Physics. The dependence of the reverse current on sensor temperature and irradiation fluence is parametrized by the effective energy and the current related damage rate, respectively. In this study 18 n-in-p mini silicon strip sensors from companies Hamamatsu Photonics and Micron Semiconductor Ltd. were deployed. Measurements of the reverse current for different bias voltages were performed at temperatures of -32 ° C, -27 ° C and -23 ° C. The sensors were irradiated with reactor neutrons in Ljubljana to fluences ranging from 2 × 1014neq /cm2 to 2 × 1016neq /cm2. The measurements were performed directly after irradiation and after 10 and 30 days of room temperature annealing. The aim of the study presented in this paper is to investigate the reverse current of silicon sensors for high fluences of up to 2 × 1016neq /cm2 and compare the measurements to the parametrization models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto
2016-04-26
A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylindermore » when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.« less
Comparison between semiconducting and oxide layers as a reflection layer in spin-valve films
NASA Astrophysics Data System (ADS)
Dinia, A.; Schmerber, G.; Ulhaq, C.
2003-07-01
It is well established that appropriate oxide capping is effective in forming nano-oxide layers (NOL) in spin-valve films for specular enhancement of giant magnetoresistance (GMR) effect. However, the beneficial effect of a NOL is strongly dependent on its process of formation. Therefore, we are interested to use a nano-semiconducting layer (NSL) for specular reflection instead of oxide layers because its achievement is easier since no specific growth conditions are needed. Moreover, we intend to compare the efficiency of the electronic confinement inside the spin valve induced either by NSL or NOLs for structures with the same stack. We have prepared hard-soft spin valve structures by sputtering on glass substrates with the following stacking sequence: Fe6 nm/Cu3 nm/CoFe1.8 nmRu0.8 nmCoFe3 nmCu2 nmRu2 nm. The reflecting layers have been inserted in the middle of the Fe soft layer and on the top of the spin valve. The GMR effect is enhanced by 60% and 75% respectively for the NSL and the NOL. This shows that the NOL is more efficient in term of electronic confinement. To understand the origin of the difference between the NOL and NSL magnetization measurements as well as transmission electron microscopy are presented.
Price, Donald M; Jin, Zhigang; Rabinovitch, Simon; Campbell, Shelagh D
2002-01-01
Wee1 kinases catalyze inhibitory phosphorylation of the mitotic regulator Cdk1, preventing mitosis during S phase and delaying it in response to DNA damage or developmental signals during G2. Unlike yeast, metazoans have two distinct Wee1-like kinases, a nuclear protein (Wee1) and a cytoplasmic protein (Myt1). We have isolated the genes encoding Drosophila Wee1 and Myt1 and are using genetic approaches to dissect their functions during normal development. Overexpression of Dwee1 or Dmyt1 during eye development generates a rough adult eye phenotype. The phenotype can be modified by altering the gene dosage of known regulators of the G2/M transition, suggesting that we could use these transgenic strains in modifier screens to identify potential regulators of Wee1 and Myt1. To confirm this idea, we tested a collection of deletions for loci that can modify the eye overexpression phenotypes and identified several loci as dominant modifiers. Mutations affecting the Delta/Notch signaling pathway strongly enhance a GMR-Dmyt1 eye phenotype but do not affect a GMR-Dwee1 eye phenotype, suggesting that Myt1 is potentially a downstream target for Notch activity during eye development. We also observed interactions with p53, which suggest that Wee1 and Myt1 activity can block apoptosis. PMID:12072468
NASA Technical Reports Server (NTRS)
Trost, T. F.; Zaepfel, K. P.
1980-01-01
A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.
Ultra-dense magnetoresistive mass memory
NASA Technical Reports Server (NTRS)
Daughton, J. M.; Sinclair, R.; Dupuis, T.; Brown, J.
1992-01-01
This report details the progress and accomplishments of Nonvolatile Electronics (NVE), Inc., on the design of the wafer scale MRAM mass memory system during the fifth quarter of the project. NVE has made significant progress this quarter on the one megabit design in several different areas. A test chip, which will verify a working GMR bit with the dimensions required by the 1 Meg chip, has been designed, laid out, and is currently being processed in the NVE labs. This test chip will allow electrical specifications, tolerances, and processing issues to be finalized before construction of the actual chip, thus providing a greater assurance of success of the final 1 Meg design. A model has been developed to accurately simulate the parasitic effects of unselected sense lines. This model gives NVE the ability to perform accurate simulations of the array electronic and test different design concepts. Much of the circuit design for the 1 Meg chip has been completed and simulated and these designs are included. Progress has been made in the wafer scale design area to verify the reliable operation of the 16 K macrocell. This is currently being accomplished with the design and construction of two stand alone test systems which will perform life tests and gather data on reliabiliy and wearout mechanisms for analysis.
Moore, James A.; Sparks, Dennis O.
1998-11-10
An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.
Foam-machining tool with eddy-current transducer
NASA Technical Reports Server (NTRS)
Copper, W. P.
1975-01-01
Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.
Predictive sensor method and apparatus
NASA Technical Reports Server (NTRS)
Nail, William L. (Inventor); Koger, Thomas L. (Inventor); Cambridge, Vivien (Inventor)
1990-01-01
A predictive algorithm is used to determine, in near real time, the steady state response of a slow responding sensor such as hydrogen gas sensor of the type which produces an output current proportional to the partial pressure of the hydrogen present. A microprocessor connected to the sensor samples the sensor output at small regular time intervals and predicts the steady state response of the sensor in response to a perturbation in the parameter being sensed, based on the beginning and end samples of the sensor output for the current sample time interval.
Toward a New Generation of Photonic Humidity Sensors
Kolpakov, Stanislav A.; Gordon, Neil T.; Mou, Chengbo; Zhou, Kaiming
2014-01-01
This review offers new perspectives on the subject and highlights an area in need of further research. It includes an analysis of current scientific literature mainly covering the last decade and examines the trends in the development of electronic, acoustic and optical-fiber humidity sensors over this period. The major findings indicate that a new generation of sensor technology based on optical fibers is emerging. The current trends suggest that electronic humidity sensors could soon be replaced by sensors that are based on photonic structures. Recent scientific advances are expected to allow dedicated systems to avoid the relatively high price of interrogation modules that is currently a major disadvantage of fiber-based sensors. PMID:24577524
Fiber-Optic Sensor for Aircraft Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.
2012-01-01
An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.
Fiber-Optic Sensor for Aircraft Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2012-01-01
An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.
Validation of a new micro-manometer pressure sensor for cardiovascular measurements in mice.
Trevino, Rodolfo J; Jones, Douglas L; Escobedo, Daniel; Porterfield, John; Larson, Erik; Chisholm, Gary B; Barton, Amanda; Feldman, Marc D
2010-01-01
Abstract The Scisense (London, ON, Canada) micro-manometer pressure sensor is currently being used by investigators to evaluate cardiovascular physiology in mice, but has not been validated to date. The purpose of the current study is to compare the 1.2 F Scisense pressure sensor to the current gold standard produced by Millar Instruments (Houston, TX) (1.4 F). In vitro comparisons were preformed including temperature drift, frequency response analysis up to 250 Hz, and damping coefficient and natural frequency determined via a pop test. The authors also performed in vivo comparisons including pressure drift, dose-response studies to IV isoproterenol, maximum adrenergic stimulation with IV dobutamine, and simultaneous placement of both micro-manometer pressure sensors in the same intact murine hearts. The authors conclude that both sensors are equivalent, and that the Scisense pressure sensor represents an alternative to the current gold standard, the Millar micro-manometer pressure sensor for in vivo pressure measurements in the mouse.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broad-band, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60 Hz terrestrial power systems and in 400 Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology contained in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low and high voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically electromagnetic interference (EMI) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a novel fiber-optic temperature sensor embedded in the sensing head. The technology used in the sensor is examined and the results of precision tests conducted at various temperatures within the wide operating range are given. The results of early EMI tests are also given.
A fiber-optic current sensor for aerospace applications
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1990-01-01
A robust, accurate, broadband, alternating current sensor using fiber optics is being developed for space applications at power frequencies as high as 20 kHz. It can also be used in low- and high-voltage 60-Hz terrestrial power systems and in 400-Hz aircraft systems. It is intrinsically EMI (electromagnetic interference) immune and has the added benefit of excellent isolation. The sensor uses the Faraday effect in optical fiber and standard polarimetric measurements to sense electrical current. The primary component of the sensor is a specially treated coil of single-mode optical fiber, through which the current carrying conductor passes. Improved precision is accomplished by temperature compensation by means of signals from a fiber-optic temperature sensor embedded in the sensing head. The authors report on the technology contained in the sensor and also relate the results of precision tests conducted at various temperatures within the wide operating range. The results of early EMI tests are shown.
Fiber optic and laser sensors IX; Proceedings of the Meeting, Boston, MA, Sept. 3-5, 1991
NASA Technical Reports Server (NTRS)
Depaula, Ramon P. (Editor); Udd, Eric (Editor)
1991-01-01
The present volume on fiber-optic and laser sensors discusses industrial applications of fiber-optic sensors, fiber-optic temperature sensors, fiber-optic current sensors, fiber-optic pressure/displacement/vibration sensors, and generic fiber-optic systems. Attention is given to a fiber-sensor design for turbine engines, fiber-optic remote Fourier transform IR spectroscopy, near-IR fiber-optic temperature sensors, and an intensity-type fiber-optic electric current sensor. Topics addressed include fiber-optic magnetic field sensors based on the Faraday effect in new materials, diaphragm size and sensitivity for fiber-optic pressure sensors, a microbend pressure sensor for high-temperature environments, and linear position sensing by light exchange between two lossy waveguides. Also discussed are two-mode elliptical-core fiber sensors for measurement of strain and temperature, a fiber-optic interferometric X-ray dosimeter, fiber-optic interferometric sensors using multimode fibers, and optical fiber sensing of corona discharges.
Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi
2018-02-14
This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.
Theory of unidirectional magnetoresistance in magnetic heterostructures
NASA Astrophysics Data System (ADS)
Zhang, Steven S.-L.; Vignale, Giovanni
2017-09-01
We present a general drift-diffusion theory beyond linear response to explain the unidirectional magnetoresistance (UMR) observed in recent experiments in various magnetic heterostructures. In general, such nonlinear magnetoresistance may originate from the concerted action of current-induced spin accumulation and spin asymmetry in electron mobility. As a case study, we calculate the UMR in a bilayer system consisting of a heavy-metal (HM) and a ferromagnetic metal (FM), where the spin accumulation is induced via the spin Hall effect in the bulk of the HM layer. Our previous formulation [cf. PRB 94, 140411(R) (2016)] is generalized to include the interface resistance and spin memory loss, which allows us to analyze in details their effects on the UMR. We found that the UMR turns out to be independent of the spin asymmetry of the interfacial resistance, at variance with the linear giant-magnetoresistance (GMR) effect. A linear relation between the UMR and the conductivity-spin asymmetry is revealed, which provides an alternative way to control the sign and magnitude of the UMR and hence may serve as an experimental signature of our proposed mechanism.
Lightning Current Measurement with Fiber-Optic Sensor
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2014-01-01
A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.
Sensor Technology and Performance Characteristics
The US EPA is currently involved in detailed laboratory and/or field studies involving a wide variety of low cost air quality sensors currently being made available to potential citizen scientists. These devices include sensors associated with the monitoring of nitrogen dioxide (...
Integrated-optic current sensors with a multimode interference waveguide device.
Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol
2016-04-04
Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.
Methanol sensor operated in a passive mode
Ren, Xiaoming; Gottesfeld, Shimshon
2002-01-01
A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.
Low Cost Sensors-Current Capabilities and Gaps
1. Present the findings from the a recent technology review of gas and particulate phase sensors 2. Focus on the lower-cost sensors 3. Discuss current capabilities, estimated range of measurement, selectivity, deployment platforms, response time, and expected range of acceptabl...
NASA Astrophysics Data System (ADS)
Park, Jaehee
2007-06-01
A fiber Fabry-Perot inteferometric sensor bonded close to a fusing element has been studied for the measurement of electric current flowing through a fuse. The phase shift of the sensor output signal is proportional to the square of the electric current passing through the fuse and the sensitivity is 0.827°/mA2.
NASA Astrophysics Data System (ADS)
Jung, J. W.; Shiozaki, R.; Doi, M.; Sahashi, M.
2011-04-01
Using current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) measurement, we have evaluated the bulk and interface spin scattering asymmetric coefficients, βF and γF/N and the specific interfacial resistance, AR*F/N, for exchange-biased spin-valves consisting of artificially ordered B2 structure Fe50Co50 and Ag spacer layer. Artificially epitaxial ordered Fe50Co50 superlattices have been successfully fabricated on MgO (001) substrate by alternate monatomic layer (AML) deposition at a substrate temperature of 75 °C. The structural properties of the full epitaxial trilayer, AML[Fe/Co]n/Ag/AML[Fe/Co]n, on the Ag electrode have been confirmed by in situ reflection high-energy electron diffraction and transmission electron diffraction microscopy. A considerably large resistance-area product change and MR ratio (ΔRA > 3 mΩμm2 and MR ratio ˜5%) were confirmed even at thin AML[Fe/Co]n layer at room temperature (RT) in our spin-valve elements. The estimated values of βF and γF/N were 0.80 and 0.84 ± 0.02, respectively, from the Valet-Fert theory analysis of ΔRA as a function of thickness of the ferromagnetic layer (3, 4, and 5 nm) on the basis of the two-current model.
Rainfall and River Currents Retrieved from Microwave Backscatter
Plant, W.J.; Keller, W.C.; Hayes, K.; Nystuen, J.; Spicer, K.
2003-01-01
The use of CW microwave sensors in yielding information on both river surface velocities and rain rates was discussed. Eight CW microwave sensors were installed at Cowlitz river in Western Washington State in the US. The sensors measured the river surface velocity via Doppler shifts at eight locations across the river. Comparison of the surface velocities derived from the sensors mounted on the bridge with those measured by current meters and acoustic sensors demonstrated good agreement.
Current status of visibility sensors for aviation
NASA Technical Reports Server (NTRS)
Burnham, D. C.
1983-01-01
The development of a new increased range higher visibility was investigated. The visibility sensor that is currently is the Transmissometer. Current transmissometer technology provides only a factor of 10 dynamic range with a single base line. The FAA is preparing to install automated weather observing systems (AWOS) at many locations. These systems require visibilities up to approximately 5 miles. To use a transmissometer for this type of measurement, the base line must be about 1,000 feet; where alignment becomes very difficult to maintain. New technologies were developd for measuring visibility. Improved transmissometers, forward-scatter meters and back-scatter meters have become available. A current practical issue for visibility sensors is how to specify one that is good enough to meet the needs of aviation. The first question is what performance is required; how accurately must the sensor measure? Visibility sensors do not actually measure the visibility directly. The purpose of measuring the visibility is to predict what the pilot will see a considerable distance away from the sensor location. The atmosphere introduces considerable variation in the measurement and the basic sensor accuracy needed is difficult to define. The second question for high visibilities is what to use as the standard reference sensor. The third question pertains to the competitive procurement of visibility sensors, which is mandated at present. Two acceptance test procedures to be used to insure satisfactory sensor performance is examined.
Pharmacokinetics and Safety of Momelotinib in Subjects With Hepatic or Renal Impairment.
Xin, Yan; Kawashima, Jun; Weng, Winnie; Kwan, Ellen; Tarnowski, Thomas; Silverman, Jeffrey A
2018-04-01
Momelotinib is a Janus kinase 1/2 inhibitor in clinical development for the treatment of myelofibrosis. Two phase 1 open-label, parallel-group, adaptive studies were conducted to evaluate the pharmacokinetics of a single 200-mg oral dose of momelotinib in subjects with hepatic or renal impairment compared with healthy matched control subjects with normal hepatic or renal function. Plasma pharmacokinetics of momelotinib and its major active metabolite, M21, were evaluated, and geometric least-squares mean ratios (GMRs) and associated 90% confidence intervals (CIs) for impaired versus each control group were calculated for plasma exposures (area under concentration-time curve from time 0 to ∞ [AUC ∞ ] and maximum concentration) of momelotinib and M21. There was no clinically significant difference in plasma exposures of momelotinib and M21 between subjects with moderate or severe renal impairment or moderate hepatic impairment and healthy control subjects. Compared with healthy control subjects, momelotinib AUC ∞ was increased (GMR, 197%; 90%CI, 129%-301%), and M21 AUC ∞ was decreased (GMR, 52%; 90%CI, 34%-79%) in subjects with severe hepatic impairment. The safety profile following a single dose of momelotinib was similar between subjects with hepatic or renal dysfunction and healthy control subjects. These pharmacokinetic and safety results indicate that dose adjustment is not necessary for momelotinib in patients with renal impairment or mild to moderate hepatic impairment. In patients with severe hepatic impairment, however, the dose of momelotinib should be reduced. © 2017, The American College of Clinical Pharmacology.
Current Sensor Fault Reconstruction for PMSM Drives
Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan
2016-01-01
This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform. PMID:26840317
Non-contact current and voltage sensor
Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A
2014-03-25
A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.
Youssef, Joseph El; Engle, Julia M.; Massoud, Ryan G.; Ward, W. Kenneth
2010-01-01
Abstract Background A cause of suboptimal accuracy in amperometric glucose sensors is the presence of a background current (current produced in the absence of glucose) that is not accounted for. We hypothesized that a mathematical correction for the estimated background current of a commercially available sensor would lead to greater accuracy compared to a situation in which we assumed the background current to be zero. We also tested whether increasing the frequency of sensor calibration would improve sensor accuracy. Methods This report includes analysis of 20 sensor datasets from seven human subjects with type 1 diabetes. Data were divided into a training set for algorithm development and a validation set on which the algorithm was tested. A range of potential background currents was tested. Results Use of the background current correction of 4 nA led to a substantial improvement in accuracy (improvement of absolute relative difference or absolute difference of 3.5–5.5 units). An increase in calibration frequency led to a modest accuracy improvement, with an optimum at every 4 h. Conclusions Compared to no correction, a correction for the estimated background current of a commercially available glucose sensor led to greater accuracy and better detection of hypoglycemia and hyperglycemia. The accuracy-optimizing scheme presented here can be implemented in real time. PMID:20879968
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu.; Filippova, E. O.; Chazov, P. A.; Shamarin, N. N.; Podgornykh, O. A.
2016-11-01
Monitoring of the edge clamped workpiece deflection during milling has been carried our using acoustic emission, accelerometer and eddy current sensors. Such a monitoring is necessary in precision machining of vital parts used in air-space engineering where a majority of them made by milling. The applicability of the AE, accelerometers and eddy current sensors has been discussed together with the analysis of measurement errors. The appropriate sensor installation diagram has been proposed for measuring the workpiece elastic deflection exerted by the cutting force.
A New Mirroring Circuit for Power MOS Current Sensing Highly Immune to EMI
Aiello, Orazio; Fiori, Franco
2013-01-01
This paper deals with the monitoring of power transistor current subjected to radio-frequency interference. In particular, a new current sensor with no connection to the power transistor drain and with improved performance with respect to the existing current-sensing schemes is presented. The operation of the above mentioned current sensor is discussed referring to time-domain computer simulations. The susceptibility of the proposed circuit to radio-frequency interference is evaluated through time-domain computer simulations and the results are compared with those obtained for a conventional integrated current sensor. PMID:23385408
Distributed measurement of high electric current by means of polarimetric optical fiber sensor.
Palmieri, Luca; Sarchi, Davide; Galtarossa, Andrea
2015-05-04
A novel distributed optical fiber sensor for spatially resolved monitoring of high direct electric current is proposed and analyzed. The sensor exploits Faraday rotation and is based on the polarization analysis of the Rayleigh backscattered light. Preliminary laboratory tests, performed on a section of electric cable for currents up to 2.5 kA, have confirmed the viability of the method.
Kondalkar, Vijay V; Li, Xiang; Park, Ikmo; Yang, Sang Sik; Lee, Keekeun
2018-02-05
A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.
Measuring Thicknesses of Coatings on Metals
NASA Technical Reports Server (NTRS)
Cotty, Glenn M., Jr.
1986-01-01
Digital light sensor and eddy-current sensor measure thickness without contact. Surface of Coating reflects laser beam to optical sensor. Position of reflected spot on sensor used by microcomputer to calculate coating thickness. Eddy-current sensor maintains constant distance between optical sensor and metal substrate. When capabilities of available components fully exploited, instrument measures coatings from 0.001 to 6 in. (0.0025 to 15 cm) thick with accuracy of 1 part in 4,000. Instrument readily incorporated in automatic production and inspection systems. Used to inspect thermal-insulation layers, paint, and protective coatings. Also used to control application of coatings to preset thicknesses.
Naidjate, Mohammed; Helifa, Bachir; Feliachi, Mouloud; Lefkaier, Iben-Khaldoun; Heuer, Henning; Schulze, Martin
2017-08-31
This paper propose a new concept of an eddy current (EC) multi-element sensor for the characterization of carbon fiber-reinforced polymers (CFRP) to evaluate the orientations of plies in CFRP and the order of their stacking. The main advantage of the new sensors is the flexible parametrization by electronical switching that reduces the effort for mechanical manipulation. The sensor response was calculated and proved by 3D finite element (FE) modeling. This sensor is dedicated to nondestructive testing (NDT) and can be an alternative for conventional mechanical rotating and rectangular sensors.
Alpha-Particle Gas-Pressure Sensor
NASA Technical Reports Server (NTRS)
Buehler, M. C.; Bell, L. D.; Hecht, M. H.
1996-01-01
An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.
Measuring NO, NO2, CO2 and O3 with low-cost sensors
NASA Astrophysics Data System (ADS)
Müller, Michael; Graf, Peter; Hüglin, Christoph
2017-04-01
Inexpensive sensors measuring ambient gas concentrations can be integrated in sensor units forming dense sensor networks. The utilized sensors have to be sufficiently accurate as the value of such networks directly depends on the information they provide. Thus, thorough testing of sensors before bringing them into service and the application of effective strategies for performance monitoring and adjustments during service are key elements for operating the low-cost sensors that are currently available on the market. We integrated several types of low-cost sensors into sensor units (Alphasense NO2 B4/B42F/B43F, Alphasense NO B4, SensAir CO2 LP8, Aeroqual O3 SM50), run them in the field next to instruments of air quality monitoring stations and performed tests in the laboratory. The poster summarizes our findings regarding the achieved sensor accuracy, methods to improve sensor performance as well as strategies to monitor the current state of the sensor (drifts, sensitivity) within a sensor network.
Koschwanez, Heidi E.; Reichert, W. Monty
2007-01-01
To date, there have been a number of cases where glucose sensors have performed well over long periods of implantation; however, it remains difficult to predict whether a given sensor will perform reliably, will exhibit gradual degradation of performance, or will fail outright soon after implantation. Typically, the literature emphasizes the sensor that performed well, while only briefly (if at all) mentioning the failed devices. This leaves open the question of whether current sensor designs are adequate for the hostile in vivo environment, and whether these sensors have been assessed by the proper regimen of testing protocols. This paper reviews the current in vitro and in vivo testing procedures used to evaluate the functionality and biocompatibility of implantable glucose sensors. An overview of the standards and regulatory bodies that govern biomaterials and end-product device testing precedes a discussion of up-to-date invasive and non-invasive technologies for diabetes management. Analysis of current in vitro, in vivo, and then post implantation testing is presented. Given the underlying assumption that the success of the sensor in vivo foreshadows the long-term reliability of the sensor in the human body, the relative merits of these testing methods are evaluated with respect to how representative they are of human models. PMID:17524479
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot.
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-04-10
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid.
Design and Experimental Study of a Current Transformer with a Stacked PCB Based on B-Dot
Wang, Jingang; Si, Diancheng; Tian, Tian; Ren, Ran
2017-01-01
An electronic current transformer with a B-dot sensor is proposed in this study. The B-dot sensor can realize the current measurement of the transmission line in a non-contact way in accordance with the principle of magnetic field coupling. The multiple electrodes series-opposing structure is applied together with differential input structures and active integrating circuits, which can allow the sensor to operate in differential mode. Maxwell software is adopted to model and simulate the sensor. Optimization of the sensor structural parameters is conducted through finite-element simulation. A test platform is built to conduct the steady-state characteristic, on-off operation, and linearity tests for the designed current transformer under the power-frequency current. As shown by the test results, in contrast with traditional electromagnetic CT, the designed current transformer can achieve high accuracy and good phase-frequency; its linearity is also very good at different distances from the wire. The proposed current transformer provides a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system, thereby satisfying the development demands of the smart power grid. PMID:28394298
Eddy Current Probe for Surface and Sub-Surface Inspection
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor); Simpson, John W. (Inventor)
2014-01-01
An eddy current probe includes an excitation coil for coupling to a low-frequency alternating current (AC) source. A magneto-resistive sensor is centrally disposed within and at one end of the excitation coil to thereby define a sensing end of the probe. A tubular flux-focusing lens is disposed between the excitation coil and the magneto-resistive sensor. An excitation wire is spaced apart from the magneto-resistive sensor in a plane that is perpendicular to the sensor's axis of sensitivity and such that, when the sensing end of the eddy current probe is positioned adjacent to the surface of a structure, the excitation wire is disposed between the magneto-resistive sensor and the surface of the structure. The excitation wire is coupled to a high-frequency AC source. The excitation coil and flux-focusing lens can be omitted when only surface inspection is required.
Development and Application of Wide Bandwidth Magneto-Resistive Sensor Based Eddy Current Probe
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John
2010-01-01
The integration of magneto-resistive sensors into eddy current probes can significantly expand the capabilities of conventional eddy current nondestructive evaluation techniques. The room temperature solid-state sensors have typical bandwidths in the megahertz range and resolutions of tens of microgauss. The low frequency sensitivity of magneto-resistive sensors has been capitalized upon in previous research to fabricate very low frequency eddy current sensors for deep flaw detection in multilayer conductors. In this work a modified probe design is presented to expand the capabilities of the device. The new probe design incorporates a dual induction source enabling operation from low frequency deep flaw detection to high frequency high resolution near surface material characterization. Applications of the probe for the detection of localized near surface conductivity anomalies are presented. Finite element modeling of the probe is shown to be in good agreement with experimental measurements.
High-speed uncooled MWIR hostile fire indication sensor
NASA Astrophysics Data System (ADS)
Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.
2011-06-01
Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.
Gait Analysis Using Wearable Sensors
Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian
2012-01-01
Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763
Role of the array geometry in multi-bilayer hair cell sensors
NASA Astrophysics Data System (ADS)
Tamaddoni, Nima J.; Sarles, Stephen A.
2014-03-01
Recently, a bio-inspired, synthetic membrane-based hair cell sensor was fabricated and characterized. This sensor generates current in response to mechanical stimuli, such as airflow or free vibration, which perturb the sensor's hair. Vibration transferred from the hair to a lipid membrane (lipid bilayer) causes a voltage-dependent time rate of change in electrical capacitance of the membrane, which produces measurable current. Studies to date have been performed on systems containing only two droplets and a single bilayer, even though an array of multiple bilayers can be formed with more than 2 droplets. Thus, it is yet to be determined how multiple lipid bilayers affect the sensing response of a membrane-based hair cell sensor. In this work, we assemble serial droplet arrays with more than 1 bilayer to experimentally study the current generated by each membrane in response to perturbation of a single hair element. Two serial array configurations are studied: The first consists of a serial array of 3 bilayers formed using 4 droplets with the hair positioned in an end droplet. The second configuration consists of 3 droplets and 2 bilayers in series with the hair positioned in the central droplet. In serial arrays of up to four droplets, we observe that mechanotransduction of the hair's motion into a capacitive current occurs at every membrane, with bilayers positioned adjacent to the droplet containing the hair generating the largest sensing current. The measured currents suggest the total current generated by all bilayers in a 4-droplet, 3-bilaye array is greater than the current produced by a single-membrane sensor and similar in magnitude to the sum of currents output by 3, single-bilayer sensors operated independently. Moreover, we learned that bilayers positioned on the same side of the hair produce sensing currents that are in-phase, whereas bilayers positioned on opposite sides of the droplet containing the hair generate out-of-phase responses.
EIT-based fabric pressure sensing.
Yao, A; Yang, C L; Seo, J K; Soleimani, M
2013-01-01
This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.
Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang
2017-12-06
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.
Electro-optical rendezvous and docking sensors
NASA Technical Reports Server (NTRS)
Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.
1991-01-01
Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.
Fiber-optic sensors for aerospace electrical measurements: An update
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1991-01-01
Fiber-optic sensors are being developed for electrical current, voltage, and power measurements in aerospace applications. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. Concentration is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. This paper reports on the development of these sensors, the results of evaluation, improvements now in progress, and the future direction of the work.
Design of Diaphragm and Coil for Stable Performance of an Eddy Current Type Pressure Sensor.
Lee, Hyo Ryeol; Lee, Gil Seung; Kim, Hwa Young; Ahn, Jung Hwan
2016-07-01
The aim of this work was to develop an eddy current type pressure sensor and investigate its fundamental characteristics affected by the mechanical and electrical design parameters of sensor. The sensor has two key components, i.e., diaphragm and coil. On the condition that the outer diameter of sensor is 10 mm, two key parts should be designed so as to keep a good linearity and sensitivity. Experiments showed that aluminum is the best target material for eddy current detection. A round-grooved diaphragm is suggested in order to measure more precisely its deflection caused by applied pressures. The design parameters of a round-grooved diaphragm can be selected depending on the measuring requirements. A developed pressure sensor with diaphragm of t = 0.2 mm and w = 1.05 mm was verified to measure pressure up to 10 MPa with very good linearity and errors of less than 0.16%.
Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos
2015-01-01
Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208
Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos
2015-07-10
Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.
Halo current diagnostic system of experimental advanced superconducting tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D. L.; Shen, B.; Sun, Y.
2015-10-15
The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.
Fiber-optic sensors for aerospace electrical measurements - An update
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Rose, A. H.; Tang, D.; Day, G. W.
1991-01-01
The authors report the progress made on the development of aerospace current and voltage sensors which use fiber-optic and optical sensing heads. These sensors are presently designed to cover ac frequencies from 60 Hz to 20 kHz. The current sensor, based on the Faraday effect in optical fiber, is in advanced development after some initial testing. The emphasis is on packaging methods and ways to maintain consistent sensitivity with changes in temperature. The voltage sensor, utilizing the Pockels effect in a crystal, has excelled in temperature tests. The authors report on the development of these sensors. The authors also relate the technology used in the sensors, the results of evaluation, improvements being made, and the future direction of the work.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.
Zhang, Mingji; Or, Siu Wing
2018-02-14
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.
Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression
2018-01-01
A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920
Sensor Buoy System for Monitoring Renewable Marine Energy Resources.
García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco
2018-03-22
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources
García, Emilio; Morant, Francisco
2018-01-01
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions. PMID:29565823
Emission current control system for multiple hollow cathode devices
NASA Technical Reports Server (NTRS)
Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)
1988-01-01
An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.
NASA Astrophysics Data System (ADS)
Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith
The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.
Increased and mistimed sex hormone production in night shift workers.
Papantoniou, Kyriaki; Pozo, Oscar J; Espinosa, Ana; Marcos, Josep; Castaño-Vinyals, Gemma; Basagaña, Xavier; Juanola Pagès, Elena; Mirabent, Joan; Martín, Jordi; Such Faro, Patricia; Gascó Aparici, Amparo; Middleton, Benita; Skene, Debra J; Kogevinas, Manolis
2015-05-01
Night shift work has been associated with an increased risk for breast and prostate cancer. The effect of circadian disruption on sex steroid production is a possible underlying mechanism, underinvestigated in humans. We have assessed daily rhythms of sex hormones and melatonin in night and day shift workers of both sexes. We recruited 75 night and 42 day workers, ages 22 to 64 years, in different working settings. Participants collected urine samples from all voids over 24 hours on a working day. Urinary concentrations of 16 sex steroid hormones and metabolites (estrogens, progestagens, and androgens) and 6-sulfatoxymelatonin were measured in all samples. Mean levels and peak time of total and individual metabolite production were compared between night and day workers. Night workers had higher levels of total progestagens [geometric mean ratio (GMR) 1.65; 95% confidence intervals (CI), 1.17-2.32] and androgens (GMR: 1.44; 95% CI, 1.03-2.00), compared with day workers, after adjusting for potential confounders. The increased sex hormone levels among night shift workers were not related to the observed suppression of 6-sulfatoxymelatonin. Peak time of androgens was significantly later among night workers, compared with day workers (testosterone: 12:14 hours; 10:06-14:48 vs. 08:35 hours; 06:52-10:46). We found increased levels of progestagens and androgens as well as delayed peak androgen production in night shift workers compared with day workers. The increase and mistiming of sex hormone production may explain part of the increased risk for hormone-related cancers observed in night shift workers. ©2015 American Association for Cancer Research.
Networked sensors for the combat forces
NASA Astrophysics Data System (ADS)
Klager, Gene
2004-11-01
Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.
In-Situ Transfer Standard and Coincident-View Intercomparisons for Sensor Cross-Calibration
NASA Technical Reports Server (NTRS)
Thome, Kurt; McCorkel, Joel; Czapla-Myers, Jeff
2013-01-01
There exist numerous methods for accomplishing on-orbit calibration. Methods include the reflectance-based approach relying on measurements of surface and atmospheric properties at the time of a sensor overpass as well as invariant scene approaches relying on knowledge of the temporal characteristics of the site. The current work examines typical cross-calibration methods and discusses the expected uncertainties of the methods. Data from the Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER), Enhanced Thematic Mapper Plus (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Thematic Mapper (TM) are used to demonstrate the limits of relative sensor-to-sensor calibration as applied to current sensors while Landsat-5 TM and Landsat-7 ETM+ are used to evaluate the limits of in situ site characterizations for SI-traceable cross calibration. The current work examines the difficulties in trending of results from cross-calibration approaches taking into account sampling issues, site-to-site variability, and accuracy of the method. Special attention is given to the differences caused in the cross-comparison of sensors in radiance space as opposed to reflectance space. The results show that cross calibrations with absolute uncertainties lesser than 1.5 percent (1 sigma) are currently achievable even for sensors without coincident views.
NASA Astrophysics Data System (ADS)
Tanner, Meghan; Henson, Gabriel; Senevirathne, Indrajith
Advent of cost-effective solid-state sensors has spurred an immense interest in microcontrollers, in particular Arduino microcontrollers. These include serious engineering and physical science applications due to their versatility and robustness. An Arduino microcontroller coupled with a commercially available sensor has been used to methodically measure, record, and explore low currents, low voltages, and corresponding dissipated power towards assessing secondary physical properties in a select set of engineered systems. System was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino software while the bootloader was used to upload the code. High-side measurement INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. A collection of measurements was obtained via the sensor and was compared with measurements from standardized devices to assess reliability and uncertainty. Some sensors were modified/hacked to improve the sensitivity of the measurements.
Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon
2016-07-15
Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.
NASA Astrophysics Data System (ADS)
Zhang, Hongtao; Wang, Pengfei
2012-06-01
The current schemes of detecting the status of passengers in airplanes cannot satisfy the more strict regulations recently released by the United States Transportation Security Administration. In basis of investigation on the current seat occupancy sensors for vehicles, in this paper we present a novel scheme of seat occupancy sensors based on Fiber Bragg Grating technology to improve the in-flight security of airplanes. This seat occupancy sensor system can be used to detect the status of passengers and to trigger the airbags to control the inflation of air bags, which have been installed in the airplanes of some major airlines under the new law. This scheme utilizes our previous research results of Weight-In- Motion sensor system based on optical fiber Bragg grating. In contrast to the current seat occupancy sensors for vehicles, this new seat occupancy sensor has so many merits that it is very suitable to be applied in aerospace industry or high speed railway system. Moreover, combined with existing Fiber Bragg Grating strain or temperature sensor systems built in airplanes, this proposed method can construct a complete airline passenger management system.
Li, Xiangfei; Lin, Yuliang
2017-01-01
This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system. PMID:29211017
RE-DEFINING THE ROLES OF SENSORS IN OBJECTIVE PHYSICAL ACTIVITY MONITORING
Chen, Kong Y.; Janz, Kathleen F.; Zhu, Weimo; Brychta, Robert J.
2011-01-01
Background As physical activity researchers are increasingly using objective portable devices, this review describes current state of the technology to assess physical activity, with a focus on specific sensors and sensor properties currently used in monitors and their strengths and weakness. Additional sensors and sensor properties desirable for activity measurement and best practices for users and developers also are discussed. Best Practices We grouped current sensors into three broad categories for objectively measuring physical activity: associated body movement, physiology, and context. Desirable sensor properties for measuring physical activity and the importance of these properties in relationship to specific applications are addressed, and the specific roles of transducers and data acquisition systems within the monitoring devices are defined. Technical advancements in sensors, microcomputer processors, memory storage, batteries, wireless communication, and digital filters have made monitors more usable for subjects (smaller, more stable, and longer running time) and for researchers (less costly, higher time resolution and memory storage, shorter download time, and user-defined data features). Future Directions Users and developers of physical activity monitors should learn about the basic properties of their sensors, such as range, accuracy, precision, while considering the data acquisition/filtering steps that may be critical to data quality and may influence the desirable measurement outcome(s). PMID:22157770
Apparatus for detecting the presence of a liquid
Kronberg, James W.
1995-01-01
An apparatus for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present in the region, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. The change in the resonant frequency is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the presence of the liquid. The detector generates an audible or visible signal, or both, in response to the change in current.
Apparatus for detecting the presence of a liquid
Kronberg, J.W.
1993-01-01
This invention is comprised of an apparatus for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. This change is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the liquid. The detector generates an audible or visible signal, or both, in response to the current change.
EIT-Based Fabric Pressure Sensing
Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.
2013-01-01
This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538
Development of a directional sensitive pressure and shear sensor
NASA Astrophysics Data System (ADS)
Wang, Wei-Chih; Dee, Jeffrey; Ledoux, William; Sangeorzan, Bruce; Reinhall, Per G.
2002-06-01
Diabetes mellitus is a disease that impacts the lives of millions of people around the world. Lower limb complications associated with diabetes include the development of plantar ulcers that can lead to infection and subsequent amputation. Shear stress is thought to be a major contributing factor to ulcer development, but due in part to technical difficulties with transducing shear stress, there is no widely used shear measurement sensor. As such, we are currently developing a directionally sensitive pressure/shear sensor based on fiber optic technology. The pressure/shear sensor consists of an array of optical fibers lying in perpendicular rows and columns separated by elastomeric pads. A map of pressure and shear stress is constructed based on observed macro bending through the intensity attenuation from the physical deformation of two adjacent perpendicular fibers. The sensor has been shown to have low noise and responded linearly to applied loads. The smallest detectable force on each sensor element based on the current setup is ~0.1 lbs. (0.4N). The smallest area we have resolved in our mesh sensor is currently ~1 cm2.
Zafar, Sufi; D'Emic, Christopher; Jagtiani, Ashish; Kratschmer, Ernst; Miao, Xin; Zhu, Yu; Mo, Renee; Sosa, Norma; Hamann, Hendrik F; Shahidi, Ghavam; Riel, Heike
2018-06-22
Silicon nanowire field effect transistor (FET) sensors have demonstrated their ability for rapid and label free detection of proteins, nucleotide sequences, and viruses at ultralow concentrations with the potential to be a transformative diagnostic technology. Their nanoscale size gives them their unique ultralow detection ability but also makes their fabrication challenging with large sensor to sensor variations, thus limiting their commercial applications. In this work, a combined approach of nanofabrication, device simulation, materials and electrical characterization is applied towards identifying and improving fabrication steps that induce sensor to sensor variations. An enhanced complementary metal-oxide-semiconductor (CMOS) compatible process for fabricating silicon nanowire FET sensors is demonstrated. Nanowire (30 nm width) FETs with aqueous solution as gates are shown to have the Nernst limit sub-threshold swing SS = 60 mV/decade with ~1.7% variations, whereas literature values for SS are ≥ 80 mV/decade with larger (>10 times) variations. Also, their threshold voltage variations are significantly (~3 times) reduced, compared to literature values. Furthermore, these improved FETs have significantly reduced drain current hysteresis (~0.6 mV) and enhanced on-current to off-current ratios (~10 6 ). These improvements resulted in nanowire FET sensors with lowest (~3%) reported sensor to sensor variations, compared to literature studies. Also, these improved nanowire sensors have the highest reported sensitivity and enhanced signal to noise ratio with the lowest reported defect density of 1x10 18 eV -1 cm -3 in comparison to literature data. In summary, this work brings the nanowire sensor technology a step closer to commercial products for early diagnosis and monitoring of diseases.
Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon
2016-01-01
Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored. PMID:27428981
Non-contact FBG sensing based steam turbine rotor dynamic balance vibration detection system
NASA Astrophysics Data System (ADS)
Li, Tianliang; Tan, Yuegang; Cai, Lin
2015-10-01
This paper has proposed a non-contact vibration sensor based on fiber Bragg grating sensing, and applied to detect vibration of steam turbine rotor dynamic balance experimental platform. The principle of the sensor has been introduced, as well as the experimental analysis; performance of non-contact FBG vibration sensor has been analyzed in the experiment; in addition, turbine rotor dynamic vibration detection system based on eddy current displacement sensor and non-contact FBG vibration sensor have built; finally, compared with results of signals under analysis of the time domain and frequency domain. The analysis of experimental data contrast shows that: the vibration signal analysis of non-contact FBG vibration sensor is basically the same as the result of eddy current displacement sensor; it verified that the sensor can be used for non-contact measurement of steam turbine rotor dynamic balance vibration.
Hu, Keke; Wang, Yixian; Cai, Huijing; Mirkin, Michael V; Gao, Yang; Friedman, Gary; Gogotsi, Yury
2014-09-16
Nanometer-sized glass and quartz pipettes have been widely used as a core of chemical sensors, patch clamps, and scanning probe microscope tips. Many of those applications require the control of the surface charge and chemical state of the inner pipette wall. Both objectives can be attained by coating the inner wall of a quartz pipette with a nanometer-thick layer of carbon. In this letter, we demonstrate the possibility of using open carbon nanopipettes (CNP) produced by chemical vapor deposition as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. By applying a potential to the carbon layer, one can change the surface charge and electrical double-layer at the pipette wall, which, in turn, affect the ion current rectification and adsorption/desorption processes essential for resistive-pulse sensors. CNPs can also be used as versatile electrochemical probes such as asymmetric bipolar nanoelectrodes and dual electrodes based on simultaneous recording of the ion current through the pipette and the current produced by oxidation/reduction of molecules at the carbon nanoring.
Eddy current sensing of intermetallic composite consolidation
NASA Technical Reports Server (NTRS)
Dharmasena, Kumar P.; Wadley, Haydn N. G.
1991-01-01
A finite element method is used to explore the feasibility and optimization of a probe-type eddy current sensor for determining the thickness of plate specimens during a hot isostatic pressing cycle. The dependence of the sensor's impedance upon sample-sensor separation in the high frequency limit is calculated, and factors that maximize sensitivity to the final stages of densification are identified.
An Ad-hoc Satellite Network to Measure Filamentary Current Structures in the Auroral Zone
NASA Astrophysics Data System (ADS)
Nabong, C.; Fritz, T. A.; Semeter, J. L.
2014-12-01
An ad-hoc cubesat-based satellite network project known as ANDESITE is under development at Boston University. It aims to develop a dense constellation of easy-to-use, rapidly-deployable low-cost wireless sensor nodes in space. The objectives of the project are threefold: 1) Demonstrate viability of satellite based sensor networks by deploying an 8-node miniature sensor network to study the filamentation of the field aligned currents in the auroral zones of the Earth's magnetosphere. 2) Test the scalability of proposed protocols, including localization techniques, tracking, data aggregation, and routing, for a 3 dimensional wireless sensor network using a "flock" of nodes. 3) Construct a 6U Cube-sat running the Android OS as an integrated constellation manager, data mule and sensor node deplorer. This small network of sensor nodes will resolve current densities at different spatial resolutions in the near-Earth magnetosphere using measurements from magnetometers with 1-nT sensitivities and 0.2 nT/√Hz self-noise. Mapping of these currents will provide new constraints for models of auroral particle acceleration, wave-particle interactions, ionospheric destabilization, and other kinetic processes operating in the low-beta plasma of the near Earth magnetosphere.
Kato, Tomotaka; Mizutani, Shinsuke; Takiuchi, Hiroya; Sugiyama, Seiichi; Hanioka, Takashi; Naito, Toru
2017-08-04
The presence of any age-related differences in gingival pigmentation associated with smoking, particularly in a young population, remains to be fully investigated. The purpose of this study was to determine the age-related differences in smoking gingival pigmentation. Gingival pigmentation was analyzed using the gingival melanosis record (GMR) and Hedin's classification with frontal oral photographs taken at 16 dental offices in Japan. Participants were categorized into 10-year age groups, and their baseline photographs were compared. In addition, to evaluate the effect of smoking cessation on gingival pigmentation, subjects were divided into a former smoker group (stopped smoking) and current smoker group. A total of 259 patients 19 to 79 years of age were analyzed. People in their 30s showed the most widespread gingival pigmentation. In addition, subjects in their 20s showed a weak effect of smoking cessation on gingival pigmentation. These findings suggested that the gingival pigmentation induced by smoking was more remarkable in young people than in middle-aged people. This information may be useful for anti-smoking education, especially among young populations with a high affinity for smoking.
NASA Technical Reports Server (NTRS)
Anderson, Karl F. (Inventor); Parker, Allen R., Jr. (Inventor)
1993-01-01
A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages.
NASA Astrophysics Data System (ADS)
Chang, Song-Lin
There are only a few solid state humidity sensors available today. Most of those sensors use a porous oxide material as a principal part of the device. The devices work on the basis of a change in resistance as the moisture in the air varies. In this experiment, two solid state humidity sensors have been developed for use under practical conditions. One is a Polymer Oxide Semiconductor device with a POLYOX film that absorbs the moisture from the air. The amount of water dipoles absorbed by the polymer is a function of relative humidity. This sensor can measure relative humidity from 20% to 90%. The other is a Dew Point sensor. The sensor is in contact with the upper surface of a miniature Peltier cooler. Water molecules deposited on the sensor surface cause the electrical current through the sensor to increase. The operator adjusts the temperature of the Peltier cooler until a saturated current through the sensor is reached. About one min. is required to measure low relative humidities. The Dew Point sensor can measure a range of relative humidities of 30% to 80%.
A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.
Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming
2017-07-01
To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.
System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.
Lee, Sung Pil
2015-10-01
Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display.
Electromagnetic sensors for general lightning application
NASA Technical Reports Server (NTRS)
Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.
1980-01-01
Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.
Laser sensor system documentation.
DOT National Transportation Integrated Search
2017-03-01
Phase 1 of TxDOT Project 0-6873, True Road Surface Deflection Measuring Device, developed a : laser sensor system based on several sensors mounted on a rigid beam. : This sensor system remains with CTR currently, as the project is moving into Phase 2...
Heusler alloys with bcc tungsten seed layers for GMR junctions
NASA Astrophysics Data System (ADS)
Frost, William; Hirohata, Atsufumi
2018-05-01
We demonstrate that polycrystalline Co2FeSi Heusler alloys films can be grown with perpendicular anisotropy without the use of an MgO interface. By heating the substrate to 400 °C prior to deposition and using a tungsten seed layer perpendicular anisotropy is induced in the Heusler layer. This is maintained as the thickness of the Co2FeSi is increased up to 12.5 nm. The layers with thickness dependent coercivity can be implemented into a giant magnetoresistance structure leading to spin-valve behaviour without the need for an exchange biased pinned layer.
NASA Astrophysics Data System (ADS)
Mikaeilzadeh, L.; Pirgholi, M.; Tavana, A.
2018-05-01
Based on the ab-initio non-equilibrium Green's function (NEGF) formalism based on the density functional theory (DFT), we have studied the electron transport in the all-Heusler device Co2CrSi/Cu2CrAl/Co2CrSi. Results show that the calculated transmission spectra is very sensitive to the structural parameters and the interface. Also, we obtain a range for the thickness of the spacer layer for which the MR effect is optimum. Calculations also show a perfect GMR effect in this device.
Spectroscopic observation of 5 SN candidates
NASA Astrophysics Data System (ADS)
Elias-Rosa, N.; Pursimo, T.; Korhonen, H.; Pastorello, A.; Derlopa, the NEON school PhD students S.; Marian, V.; Scognamiglio, D.; Szigeti, L.; Cabezas, M.; Fernandes, C. S.; McWhirter, P. R.; Zervas, K.
2017-09-01
We report the spectroscopic classification of SNe 2017gla, 2017glz, 2017gop, and 2017gqq, and the verification of SN2017gmr. The targets were supplied by the following surveys: ATLAS survey, see Tonry et al. (2011, PASP, 123, 58) and Tonry et al. (ATel #8680); Pan-STARRS Survey for Transients (Chambers et al. 2016, arXiv:1612.05560, and http://pswww.ifa.hawaii.edu ), the PMO-Tsinghua Supernova Survey (PTSS, http://www.cneost.org/ptss/ ); and the D The observations were performed with the 2.56 m Nordic Optical Telescope equipped with ALFOSC (range 350-950 nm; resolution 1.4 nm FWHM).
2010-01-01
mallei virAG; Kmr 45 pBHR4-GFP Broad-host-range vector containing gfp from pQBI T7 GFP (Quantum Biotech); Gmr 45 pBHR1-TG pBHR1 containing gfp...Bonanno, J. M. Sauder, S. Pukatzki, S. K. Burley, S. C. Almo, and J. J. Mekalanos. 2009. Type VI secretion apparatus and phage tail-associated protein...14251. 37. Pell, L. G., V. Kanelis, L. W. Donaldson, P. L. Howell, and A. R. Davidson. 2009. The phage lambda major tail protein structure reveals a
Pharmacokinetics of Empagliflozin and Pioglitazone After Coadministration in Healthy Volunteers.
Macha, Sreeraj; Mattheus, Michaela; Pinnetti, Sabine; Broedl, Uli C; Woerle, Hans J
2015-07-01
The aim was to investigate the effects of coadministration of the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin with the thiazolidinedione pioglitazone. In study 1, 20 healthy volunteers received 50 mg of empagliflozin alone for 5 days, followed by 50 mg of empagliflozin coadministered with 45 mg of pioglitazone for 7 days and 45 mg of pioglitazone alone for 7 days in 1 of 2 treatment sequences. In study 2, 20 volunteers received 45 mg of pioglitazone alone for 7 days and 10, 25, and 50 mg of empagliflozin for 9 days coadministered with 45 mg of pioglitazone for the first 7 days in 1 of 4 treatment sequences. Pioglitazone exposure (Cmax and AUC) increased when coadministered with empagliflozin versus monotherapy in study 1. The geometric mean ratio (GMR) for pioglitazone Cmax at steady state (Cmax,ss) and for AUC during the dosing interval at steady state (AUCτ,ss) when coadministered with empagliflozin versus administration alone was 187.89% (95% CI, 166.35%-212.23%) and 157.97% (95% CI, 148.02%-168.58%), respectively. Because an increase in pioglitazone exposure was not expected, based on in vitro data, a second study was conducted with the empagliflozin doses tested in Phase III trials. In study 2, pioglitazone exposure decreased marginally when coadministered with empagliflozin. The GMR for pioglitazone Cmax,ss when coadministered with empagliflozin versus administration alone was 87.74% (95% CI, 73.88%-104.21%) with empagliflozin 10 mg, 90.23% (95% CI, 66.84%-121.82%) with empagliflozin 25 mg, and 89.85% (95% CI, 71.03%-113.66%) with empagliflozin 50 mg. The GMR for pioglitazone AUCτ,ss when coadministered with empagliflozin versus administration alone was 90.01% (95% CI, 77.91%-103.99%) with empagliflozin 10 mg, 88.98% (95% CI, 72.69%-108.92%) with empagliflozin 25 mg, and 91.10% (95% CI, 77.40%-107.22%) with empagliflozin 50 mg. The effects of empagliflozin on pioglitazone exposure are not considered to be clinically relevant. Empagliflozin exposure was unaffected by coadministration with pioglitazone. Empagliflozin and pioglitazone were well tolerated when administered alone or in combination. In study 1, adverse events were reported in 1 of 19 participants on empagliflozin 50 mg alone, 4 of 20 on pioglitazone alone, and 5 of 18 on combination treatment. In study 2, adverse events were reported in 8 of 20 participants on pioglitazone alone, 10 of 18 when coadministered with empagliflozin 10 mg, 5 of 17 when coadministered with empagliflozin 25 mg, and 6 of 16 when coadministered with empagliflozin 50 mg. These results indicate that pioglitazone and empagliflozin can be coadministered without dose adjustments. EudraCT identifiers: 2008-006087-11 (study 1) and 2009-018089-36 (study 2). Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
Williams, Daphne D; Peng, Bin; Bailey, Christine K; Wire, Mary B; Deng, Yanli; Park, Jung Wook; Collins, David A; Kapsi, Shiva G; Jenkins, Julian M
2009-04-01
Eltrombopag is the first orally self-administered, small-molecule, nonpeptide thrombopoietin receptor agonist for the treatment of chronic idiopathic thrombocytopenic purpura. The aim of these studies was to assess the effect of food and antacids on the pharmacokinetic and safety profiles of eltrombopag. Two independent, single-dose, open-label, randomized-sequence, crossover studies of oral eltrombopag were conducted in healthy adult volunteers. The first study (study A) compared eltrombopag 50 mg (tablets or capsules) administered in the fasted state or tablets with a high-fat, high-calcium breakfast. The second study (study B) investigated eltrombopag tablets (75 mg) administered in the fasted state; immediately after a low-fat, low-calcium meal or a high-fat, low-calcium meal; 1 hour before a high-fat, low-calcium meal; or with an antacid containing aluminum hydroxide and magnesium carbonate. Vital signs were recorded and electrocardiogram and clinical laboratory tests were performed at screening, within 24 hours before and within 48 hours after each dose of study medication. Symptom assessment was performed and adverse events (AEs) were assessed previous to study drug administration through follow-up in terms of severity and relationship to study medication. In study A, 18 male subjects (mean age, 23.0 years; weight, 70.3 kg; white race, 94.4%) who received a high-fat, high-calcium breakfast had reduced bioavailability of eltrombopag in terms of AUC(0-infinity)) by 59% (geometric mean ratio [GMR], 0.41; 90% CI, 0.36-0.46) and C(max) by 65% (GMR, 0.35; 90% CI, 0.30-0.41) compared with subjects in a fasted state. In study B, the bioavailability in 26 subjects (14 male, 12 female; mean age, 35.6 years; weight, 76.0 kg; white race, 65.4%) was not significantly changed when administered with food that was low in calcium, despite the fat content (GMRs ranged from 0.87-1.03 for AUC(0-infinity) and 0.85-1.01 for C(max) across the 3 studied meals). Mean plasma AUC(0-infinity)) and C(max) values decreased by approximately 70% (GMR, 0.30; 90% CI, 0.24-0.36 for AUC(0-infinity)) and 0.24-0.38 for C(max)) when administered with a metal cation-containing antacid. No serious AEs were reported and all AEs were rated as mild to moderate in intensity. The most frequently reported AE was headache (study A, 6.3%; study B, 12.0%-29.2%). Concomitant administration of eltrombopag with high-calcium food or an antacid containing aluminum and magnesium was associated with significantly reduced systemic exposure, whereas low-calcium meals were not. A single dose of eltrombopag was generally well tolerated in these healthy volunteers.
Calibration of High Heat Flux Sensors at NIST
Murthy, A. V.; Tsai, B. K.; Gibson, C. E.
1997-01-01
An ongoing program at the National Institute of Standards and Technology (NIST) is aimed at improving and standardizing heat-flux sensor calibration methods. The current calibration needs of U.S. science and industry exceed the current NIST capability of 40 kW/m2 irradiance. In achieving this goal, as well as meeting lower-level non-radiative heat flux calibration needs of science and industry, three different types of calibration facilities currently are under development at NIST: convection, conduction, and radiation. This paper describes the research activities associated with the NIST Radiation Calibration Facility. Two different techniques, transfer and absolute, are presented. The transfer calibration technique employs a transfer standard calibrated with reference to a radiometric standard for calibrating the sensors using a graphite tube blackbody. Plans for an absolute calibration facility include the use of a spherical blackbody and a cooled aperture and sensor-housing assembly to calibrate the sensors in a low convective environment. PMID:27805156
NASA Astrophysics Data System (ADS)
Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.
2014-11-01
An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.
Eddy-current non-inertial displacement sensing for underwater infrasound measurements.
Donskoy, Dimitri M; Cray, Benjamin A
2011-06-01
A non-inertial sensing approach for an Acoustic Vector Sensor (AVS), which utilizes eddy-current displacement sensors and operates well at Ultra-Low Frequencies (ULF), is described here. In the past, most ULF measurements (from mHertz to approximately 10 Hertz) have been conducted using heavy geophones or seismometers that must be installed on the seafloor; these sensors are not suitable for water column measurements. Currently, there are no readily available compact and affordable underwater AVS that operate within this frequency region. Test results have confirmed the validity of the proposed eddy-current AVS design and have demonstrated high acoustic sensitivity. © 2011 Acoustical Society of America
New Gas Polarographic Hydrogen Sensor
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Barile, Ron
2004-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor. is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H+ ions or protons; H+ ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic 02 sensors are commercially available; a gas polarographic 02 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
Wang, Chuji
2009-01-01
Fiber loop ringdown (FLRD) utilizes an inexpensive telecommunications light source, a photodiode, and a section of single-mode fiber to form a uniform fiber optic sensor platform for sensing various quantities, such as pressure, temperature, strain, refractive index, chemical species, biological cells, and small volume of fluids. In FLRD, optical losses of a light pulse in a fiber loop induced by changes in a quantity are measured by the light decay time constants. FLRD measures time to detect a quantity; thus, FLRD is referred to as a time-domain sensing technique. FLRD sensors have near real-time response, multi-pass enhanced high-sensitivity, and relatively low cost (i.e., without using an optical spectral analyzer). During the last eight years since the introduction of the original form of fiber ringdown spectroscopy, there has been increasing interest in the FLRD technique in fiber optic sensor developments, and new application potential is being explored. This paper first discusses the challenging issues in development of multi-function, fiber optic sensors or sensor networks using current fiber optic sensor sensing schemes, and then gives a review on current fiber optic sensor development using FLRD technique. Finally, design perspectives on new generation, multi-function, fiber optic sensor platforms using FLRD technique are particularly presented. PMID:22408471
Evaluation of sensor arrays for engine oils using artificial oil alteration
NASA Astrophysics Data System (ADS)
Sen, Sedat; Schneidhofer, Christoph; Dörr, Nicole; Vellekoop, Michael J.
2011-06-01
With respect to varying operation conditions, only sensors directly installed in the engine can detect the current oil condition hence enabling to get the right time for the oil change. Usually, only one parameter is not sufficient to obtain reliable information about the current oil condition. For this reason, appropriate sensor principles were evaluated for the design of sensor arrays for the measurement of critical lubricant parameters. In this contribution, we report on the development of a sensor array for engine oils using laboratory analyses of used engine oils for the correlation with sensor signals. The sensor array comprises the measurement of conductivity, permittivity, viscosity and temperature as well as oil corrosiveness as a consequence of acidification of the lubricant. As a key method, rapid evaluation of the sensors was done by short term simulation of entire oil change intervals based on artificial oil alteration. Thereby, the compatibility of the sensor array to the lubricant and the oil deterioration during the artificial alteration process was observed by the sensors and confirmed by additional laboratory analyses of oil samples take.
Fundamental Study of Tank with MgB2 Level Sensor for Transportation of Liquid Hydrogen
NASA Astrophysics Data System (ADS)
Maekawa, Kazuma; Takeda, Minoru; Matsuno, Yu; Fujikawa, Shizuichi; Kuroda, Tsuneo; Kumakura, Hiroaki
We are currently developing an external-heating-type superconducting magnesium diboride (MgB2) level sensor for a liquid hydrogen (LH2) tank. The aim of this study is to investigate the measuring current dependence of the level-detecting characteristics of the MgB2 level sensor for LH2 under a static condition which has not yet been clarified. It was found that the linear correlation coefficient was 0.99 or more, indicating high linearity, regardless of the measuring current at heater inputs of 3 W and 6 W. Moreover, there was no effect of self-heating by the measuring current and it was found that a current of up to 100 mA can be used.
Eddy Current Method for Fatigue Testing
NASA Technical Reports Server (NTRS)
Simpson, John W. (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)
1997-01-01
Flux-focusing electromagnetic sensor using a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. A ferrous shield isolates a high-turn pick-up coil from an excitation coil. Use of the magnetic shield produces a null voltage output across the receiving coil in presence of an unflawed sample. Redistribution of the current flow in the sample caused by the presence of flaws. eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. Maximum sensor output is obtained when positioned symmetrically above the crack. By obtaining position of maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. Accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output resulting in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip enabling the search region to be clearly defined. Under low frequency operation, material thinning due to corrosion causes incomplete shielding of the pick-up coil. Low frequency output voltage of the probe is therefore a direct indicator of thickness of the test sample. Fatigue testing a conductive material is accomplished by applying load to the material, applying current to the sensor, scanning the material with the sensor, monitoring the sensor output signal, adjusting material load based on the sensor output signal of the sensor, and adjusting position of the sensor based on its output signal.
New type of eddy current sensor for large-displacement test
NASA Astrophysics Data System (ADS)
Pan, Haifeng; Zhu, Huizhong; Fu, Zhibin; Xu, Yuzheng; Feng, Guanping
2001-09-01
In this paper a new type of large displacement eddy current sensor is developed to overcome the three main disadvantages of the traditional eddy current senor. For a traditional sensor, the measurement range is limited and less than one half of the diameter of the measuring coil. The output is high sensitivity to the changes of the target material and the cable length connected between the probe and the preamplifier. When the material or the cable length changed, it is necessary to readjust the preamplifier. The probe of the new eddy current sensor has three coaxial measuring coils, one is an exciting coil and the other two are receiving coils. The diameter of measuring coils is (Phi) 11 mm. The measurement range of this sensor is 40mm and almost four times of the diameter of the coil. The form of differential input and feedback amplification is used in signal amplifier. Thus the effect of the common modules, such as the changes of the target material and the cable length, can be counteracted well.
Combustion Products Monitor: Trade Study Testing
NASA Technical Reports Server (NTRS)
Wallace, William T.; Trowbridge, John B.
2011-01-01
Current combustion products monitoring on the International Space Station (ISS) uses a handheld device (Compound Specific Analyzer-Combustion Products, CSA-CP) containing electrochemical sensors used to measure the concentration of carbon monoxide (CO), hydrogen chloride (HCl), hydrogen cyanide (HCN), and oxygen (O2). The CO sensor in this device accounts for a well-known cross-sensitivity with hydrogen (H2), which is important, as ISS air can contain up to 100 ppm H2. Unfortunately, this current device is being discontinued, and due to space constraints, the new model cannot accommodate the size of the current CO sensor. Therefore, a trade study was conducted in order to determine which CO sensors on the market were available with compensation for H2, and which instruments used these sensors, while also measuring HCN, O2, and carbon dioxide (CO2). The addition of CO2 to the device is helpful, as current monitoring of this gas requires a second hand-held monitor. By providing a device that will monitor both combustion products and CO2, volume and up-mass can be reduced as these monitors are delivered to ISS.
Apparatus for detecting the presence of a liquid
Kronberg, J.W.
1995-10-31
An apparatus is described for detecting the presence of a liquid in a region, including an electrically passive sensor adapted for contacting the liquid, and an electrically active detector. The sensor is a circuit with a pair of spaced-apart terminals connected to a switch that closes in the presence of the liquid. The detector carries an alternating current with a resonant frequency. When the sensor is placed in a region and liquid is present in the region, the circuit of the sensor is closed. By bringing the detector close to the sensor, an alternating current is induced in the sensor that will, in turn, alter the resonant frequency of the detector. The change in the resonant frequency is signaled by a transducer. The switch can operate by a change in conductivity of a material between the terminals of the sensor or by expansion of a liquid absorber that pushes the two terminals together, or by a change in the conductivity of the space between the terminals as a result of the presence of the liquid. The detector generates an audible or visible signal, or both, in response to the change in current. 12 figs.
Integral Sensor Fault Detection and Isolation for Railway Traction Drive.
Garramiola, Fernando; Del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka
2018-05-13
Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive.
Integral Sensor Fault Detection and Isolation for Railway Traction Drive
del Olmo, Jon; Poza, Javier; Madina, Patxi; Almandoz, Gaizka
2018-01-01
Due to the increasing importance of reliability and availability of electric traction drives in Railway applications, early detection of faults has become an important key for Railway traction drive manufacturers. Sensor faults are important sources of failures. Among the different fault diagnosis approaches, in this article an integral diagnosis strategy for sensors in traction drives is presented. Such strategy is composed of an observer-based approach for direct current (DC)-link voltage and catenary current sensors, a frequency analysis approach for motor current phase sensors and a hardware redundancy solution for speed sensors. None of them requires any hardware change requirement in the actual traction drive. All the fault detection and isolation approaches have been validated in a Hardware-in-the-loop platform comprising a Real Time Simulator and a commercial Traction Control Unit for a tram. In comparison to safety-critical systems in Aerospace applications, Railway applications do not need instantaneous detection, and the diagnosis is validated in a short time period for reliable decision. Combining the different approaches and existing hardware redundancy, an integral fault diagnosis solution is provided, to detect and isolate faults in all the sensors installed in the traction drive. PMID:29757251
Test/QA Plan for Verification of Nitrate Sensors for Groundwater Remediation Monitoring
A submersible nitrate sensor is capable of collecting in-situ measurements of dissolved nitrate concentrations in groundwater. Although several types of nitrate sensors currently exist, this verification test will focus on submersible sensors equipped with a nitrate-specific ion...
Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines
Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf
2015-01-01
Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content. PMID:26580621
Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines.
Feulner, Markus; Hagen, Gunter; Müller, Andreas; Schott, Andreas; Zöllner, Christian; Brüggemann, Dieter; Moos, Ralf
2015-11-13
Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttner, William J.; Rivkin, Carl; Burgess, Robert
Hydrogen sensors are recognized as a critical element in the safety design for any hydrogen system. In this role, sensors can perform several important functions including indication of unintended hydrogen releases, activation of mitigation strategies to preclude the development of dangerous situations, activation of alarm systems and communication to first responders, and to initiate system shutdown. The functionality of hydrogen sensors in this capacity is decoupled from the system being monitored, thereby providing an independent safety component that is not affected by the system itself. The importance of hydrogen sensors has been recognized by DOE and by the Fuel Cellmore » Technologies Office's Safety and Codes Standards (SCS) program in particular, which has for several years supported hydrogen safety sensor research and development. The SCS hydrogen sensor programs are currently led by the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory. The current SCS sensor program encompasses the full range of issues related to safety sensors, including development of advance sensor platforms with exemplary performance, development of sensor-related code and standards, outreach to stakeholders on the role sensors play in facilitating deployment, technology evaluation, and support on the proper selection and use of sensors.« less
Chander, G.; Markham, B.L.; Helder, D.L.
2009-01-01
This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of-Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Markham, Brian L.; Helder, Dennis L.
2009-01-01
This paper provides a summary of the current equations and rescaling factors for converting calibrated Digital Numbers (DNs) to absolute units of at-sensor spectral radiance, Top-Of- Atmosphere (TOA) reflectance, and at-sensor brightness temperature. It tabulates the necessary constants for the Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Advanced Land Imager (ALI) sensors. These conversions provide a basis for standardized comparison of data in a single scene or between images acquired on different dates or by different sensors. This paper forms a needed guide for Landsat data users who now have access to the entire Landsat archive at no cost.
An Intrinsic Fiber-Optic Sensor for Structure Lightning Current Measurement
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.
2014-01-01
An intrinsic optical-fiber sensor based on Faraday Effect is developed that is highly suitable for measuring lightning current on aircraft, towers and complex structures. Originally developed specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on lightning towers, the sensor can help validate other sensors and lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a lightning tower. High current capabilities were demonstrated up to 200 kA at a lightning test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered lightning at the International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for lightning current measurement where low weight, complex shapes, large structure dimension, large current, and low frequency capabilities are important considerations.
Bias-field equalizer for bubble memories
NASA Technical Reports Server (NTRS)
Keefe, G. E.
1977-01-01
Magnetoresistive Perm-alloy sensor monitors bias field required to maintain bubble memory. Sensor provides error signal that, in turn, corrects magnitude of bias field. Error signal from sensor can be used to control magnitude of bias field in either auxiliary set of bias-field coils around permanent magnet field, or current in small coils used to remagnetize permanent magnet by infrequent, short, high-current pulse or short sequence of pulses.
A Review of Current Neuromorphic Approaches for Vision, Auditory, and Olfactory Sensors.
Vanarse, Anup; Osseiran, Adam; Rassau, Alexander
2016-01-01
Conventional vision, auditory, and olfactory sensors generate large volumes of redundant data and as a result tend to consume excessive power. To address these shortcomings, neuromorphic sensors have been developed. These sensors mimic the neuro-biological architecture of sensory organs using aVLSI (analog Very Large Scale Integration) and generate asynchronous spiking output that represents sensing information in ways that are similar to neural signals. This allows for much lower power consumption due to an ability to extract useful sensory information from sparse captured data. The foundation for research in neuromorphic sensors was laid more than two decades ago, but recent developments in understanding of biological sensing and advanced electronics, have stimulated research on sophisticated neuromorphic sensors that provide numerous advantages over conventional sensors. In this paper, we review the current state-of-the-art in neuromorphic implementation of vision, auditory, and olfactory sensors and identify key contributions across these fields. Bringing together these key contributions we suggest a future research direction for further development of the neuromorphic sensing field.
NASA Astrophysics Data System (ADS)
Ariyoshi, Tetsuya; Takane, Yuta; Iwasa, Jumpei; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka
2018-04-01
In this paper, we report a direct-conversion-type X-ray sensor composed of trench-structured silicon photodiodes, which achieves a high X-ray-to-current conversion efficiency under side X-ray irradiation. The silicon X-ray sensor with a length of 22.6 mm and a trench depth of 300 µm was fabricated using a single-poly single-metal 0.35 µm process. X-rays with a tube voltage of 80 kV were irradiated along the trench photodiode from the side of the test chip. The theoretical limit of X-ray-to-current conversion efficiency of 83.8% was achieved at a low reverse bias voltage of 25 V. The X-ray-to-electrical signal conversion efficiency of conventional indirect-conversion-type X-ray sensors is about 10%. Therefore, the developed sensor has a conversion efficiency that is about eight times higher than that of conventional sensors. It is expected that the developed X-ray sensor will be able to markedly lower the radiation dose required for X-ray diagnoses.
Calza, L; Colangeli, V; Magistrelli, E; Bussini, L; Conti, M; Ramazzotti, E; Mancini, R; Viale, P
2017-08-01
The aim of the study was to assess plasma concentrations of darunavir/ritonavir and raltegravir in older patients compared with younger patients with HIV-1 infection. In this observational, open-label study, adult HIV-infected out-patients aged ≤ 40 years (younger patients) or ≥ 60 years (older patients) and treated with tenofovir/emtricitabine plus darunavir/ritonavir (800/100 mg daily) or raltegravir (400 mg twice daily) were asked to participate. The trough concentrations (C trough ) of darunavir/ritonavir and raltegravir were assessed at steady state using a validated high-performance liquid chromatography (HPLC)-tandem mass spectrometry method. A total of 88 HIV-positive patients were enrolled in the study. Forty-six patients were treated with darunavir/ritonavir, and 42 with raltegravir. The geometric mean plasma C trough (coefficient of variation) of raltegravir was comparable between the 19 older and 23 younger subjects: 106 ng/mL (151%) and 94 ng/mL (129%), respectively [geometric mean ratio (GMR) 0.85; 95% confidence interval (CI) 0.71-1.57; P = 0.087]. In contrast, the geometric mean plasma C trough of darunavir was significantly higher among the 21 older patients [2209 ng/mL (139%)] than among the 25 younger patients [1876 ng/mL (162%); GMR 1.56; 95% CI: 1.22-1.88; P = 0.004]. Similarly, the geometric mean C trough of ritonavir was significantly higher among older than among younger individuals. The mean plasma C trough of darunavir and ritonavir was significantly higher in older patients than in younger patients with HIV-1 infection, while the mean plasma level of raltegravir was comparable in the two groups. However, both regimens showed good tolerability in both younger and older subjects. © 2017 British HIV Association.
Macha, Sreeraj; Jungnik, Arvid; Hohl, Kathrin; Hobson, Dagmar; Salsali, Afshin; Woerle, Hans J
2013-11-01
Empagliflozin is an orally available, potent and highly selective inhibitor of the sodium glucose cotransporter 2 (SGLT2). This study was undertaken to investigate the effect of food on the pharmacokinetics of 25 mg empagliflozin and to assess dose proportionality between 10 mg and 25 mg empagliflozin under fasted conditions. In this open-label, 3-way, cross-over study, 18 healthy volunteers received 3 single doses of empagliflozin in a randomized sequence (25 mg empagliflozin under fasted conditions, 25 mg empagliflozin after a high-fat, high-calorie breakfast and 10 mg empagliflozin under fasted conditions), each separated by a washout period of at least 7 days. Serial plasma samples were collected at selected time points over a period of 72 hours. Administration with food had no clinically relevant effect on the area under the plasma concentration-time curve (AUC0-∞) of empagliflozin (geometric mean ratio (GMR): 84.04, 90% confidence interval (CI): 80.86 - 87.34). The decrease observed in the maximum plasma concentrations (Cmax) of empagliflozin (GMR: 63.22, 90% CI: 56.74 - 70.44) when administered with food was not considered clinically meaningful. The increases in AUC0-∞ and Cmax for 10 mg vs. 25 mg empagliflozin administered under fasting conditions were roughly dose-proportional, as demonstrated by the slope β of the regression lines being slightly less than 1 (slope β for AUC0-∞: 0.94, 95% CI: 0.90 - 0.97; slope β for Cmax: 0.91, 95% CI: 0.80 - 1.01). Empagliflozin was well tolerated under fed and fasting conditions. The results support administration of empagliflozin tablets independently of food. Increases in empagliflozin exposure under fasting conditions were roughly dose-proportional between 10 mg and 25 mg empagliflozin.
Skuhala, Tomislava; Trkulja, Vladimir; Runje, Mislav; Vukelic, Dalibor; Desnica, Bosko
2014-04-01
To investigate the relationship between plasma and cyst concentrations of albendazolesulphoxide (ASO) and their effects on parasitological findings and disease recurrence in patients with liver hydatidosis. The study was conducted at the University Hospital for Infectious Diseases Dr. Fran Mihaljević, Zagreb, Croatia, between August 2006 and January 2011. Consecutive patients (N=48, age 6-77 years) were treated with albendazole (3×5 mg/kg/d) over 28 days before surgical cyst removal (n=34) or percutaneous evacuation (PAIR) (n=14). Plasma ASO was determined on days 10 and 28 of treatment and cyst concentrations at surgery/PAIR. Disease recurred in 3 surgically treated patients. Variability of ASO concentrations was substantial. Plasma concentrations on day 10 were higher than on day 28 (geometric means ratio [GMR] 2.00; 95%CI 1.38-2.91, P<0.001) and higher than cyst concentrations at the time of treatment (GMR=1.58, 1.01-2.34, P=0.045). Higher cyst (but not plasma) concentrations were independently associated with lower odds of protoscolex motility (OR=0.23, 0.01-0.70, P<0.001) and higher odds of protoscolex destruction (OR=1.17, 1.04-1.46, P<0.001). With adjustment for age and protoscolex motility, higher day 10 plasma concentrations (but not cyst concentrations) were associated with lower odds of disease recurrence (OR=0.49, 0.09-0.97, P=0.035). Plasma concentrations did not predict cyst concentrations. Viability of protoscolices progressively decreased with increasing ASO concentrations in the cyst. Data strongly suggested that higher plasma concentrations reduced the risk of disease recurrence.
Galalctic Tides & the Sinusoidal Potential
NASA Astrophysics Data System (ADS)
Bartlett, David F.
2011-05-01
The sinusoidal potential is a nonNewtonian alternative to dark matter. Instead of φ = -GM/r we write φ = -(GM/r) cos kor, where ko= 2π/ λo and λo = Ro/20= 400 pc. Evidence for this choice for the "wavelength” λo has been given in one article and many previous meetings of the AAS & DDA. The solar system and nearby stars are trapped in a local groove of width Δr < 400 pc. The rapid alternation of attraction and repulsion within the groove gives very strong Galactic radial tides. The epicyclic period is only 7 Myr . The Keplerian period for comets in the middle of the Oort cloud is also 7 Myr. The 1:1 resonance between material in the groove and the cloud provides a new mechanism for filling the Oort cloud. The Oort cloud is emptied by the same strong radial tides. Evidence is found in the 499 comets with calculated 1/aoriginal in the latest Catalogue of Cometary Orbits (Marsden & Williams 2008). . I separate the comets into 12 classes on the basis of Quality (4 types) and semi-major axis aoriginal . For 10 of the 12 classes radial tides dominate Z-tides. The classic Oort cloud comets (1851-1996) have a particularly strong modulation with galactic longitude. This modulation is exactly in those directions where a radial tide would be important. The equally numerous recent Oort comets (1996-2008) show a different evidence for strong radial tides. The recent comets generally have much larger perihelion distances q than the classic ones. Here the evidence is that a radial tide is removing angular momentum from the orbit and thus bringing the perihelion closer to the earth and to observers.
Herb-Drug Interaction between Echinacea purpurea and Etravirine in HIV-Infected Patients
Valle, Marta; Miranda, Cristina; Cedeño, Samandhy; Negredo, Eugenia; Clotet, Bonaventura
2012-01-01
The aim of this open-label, fixed-sequence study was to investigate the potential of the botanical supplement Echinacea purpurea to interact with etravirine, a nonnucleoside reverse transcriptase inhibitor of HIV. Fifteen HIV-infected patients receiving antiretroviral therapy with etravirine (400 mg once daily) for at least 4 weeks were included. E. purpurea root/extract-containing capsules were added to the antiretroviral treatment (500 mg every 8 h) for 14 days. Etravirine concentrations in plasma were determined by high-performance liquid chromatography immediately before and 1, 2, 4, 6, 8, 10, 12, and 24 h after a morning dose of etravirine on day 0 and etravirine plus E. purpurea on day 14. Individual etravirine pharmacokinetic parameters were calculated by noncompartmental analysis and compared between days 0 and 14 by means of the geometric mean ratio (GMR) and its 90% confidence interval (CI). The median age was 46 years (interquartile range, 41 to 50), and the median body weight was 76 kg (interquartile range, 68 to 92). Echinacea was well tolerated, and all participants completed the study. The GMR for etravirine coadministered with E. purpurea relative to etravirine alone was 1.07 (90% CI, 0.81 to 1.42) for the maximum concentration, 1.04 (90% CI, 0.79 to 1.38) for the area under the concentration-time curve from 0 to 24 h, and 1.04 (90% CI, 0.74 to 1.44) for the concentration at the end of the dosing interval. In conclusion, the coadministration of E. purpurea with etravirine was safe and well tolerated in HIV-infected patients; our data suggest that no dose adjustment for etravirine is necessary. PMID:22869560
Super-Eddington stellar winds: unifying radiative-enthalpy versus flux-driven models
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Townsend, Richard H. D.; Quataert, Eliot
2017-12-01
We derive semi-analytic solutions for optically thick, super-Eddington stellar winds, induced by an assumed steady energy addition Δ {\\dot{E}} concentrated around a near-surface heating radius R in a massive star of central luminosity L*. We show that obtaining steady wind solutions requires both that the resulting total luminosity L_o = L_\\ast + Δ {\\dot{E}} exceed the Eddington luminosity, Γo ≡ Lo/LEdd > 1, and that the induced mass-loss rate be such that the 'photon-tiring' parameter, m ≡ {\\dot{M}} GM/R L_o ≤ 1-1/Γ _o, ensuring the luminosity is sufficient to overcome the gravitational potential GM/R. Our analysis unifies previous super-Eddington wind models that either: (1) assumed a direct radiative flux-driving without accounting for the advection of radiative enthalpy that can become important in such an optically thick flow; or (2) assumed that such super-Eddington outflows are adiabatic, neglecting the effects of the diffusive radiative flux. We show that these distinct models become applicable in the asymptotic limits of small versus large values of mΓo, respectively. By solving the coupled differential equations for radiative diffusion and wind momentum, we obtain general solutions that effectively bridge the behaviours of these limiting models. Two key scaling results are for the terminal wind speed to escape speed, which is found to vary as v_∞^2/v_esc^2 = Γ _o/(1+m Γ _o) -1, and for the final observed luminosity Lobs, which for all allowed steady-solutions with m < 1 - 1/Γo exceeds the Eddington luminosity, Lobs > LEdd. Our super-Eddington wind solutions have potential applicability for modelling phases of eruptive mass-loss from massive stars, classical novae, and the remnants of stellar mergers.
Ye, Mao; Sun, Mingming; Chen, Xu; Feng, Yanfang; Wan, Jinzhong; Liu, Kuan; Tian, Da; Liu, Manqiang; Wu, Jun; Schwab, Arthur P; Jiang, Xin
2017-05-01
High abundance of human pathogen and antibiotic resistance genes (ARGs) in landfill leachate has become an emerging threat against human health. Therefore, sulfate- and calcination-modified eggshells as green agricultural bioresource were applied to test the feasibility of removing pathogenic bacteria and ARGs from leachate. The highest removal of Escherichia coli (E. coil) and gentamycin resistant gene (gmrA) from artificial contaminated landfill leachate was achieved by the application of eggshell with combined treatment of sulfate and calcination. The 16S and gmrA gene copies of E. coil declined significantly from 1.78E8±8.7E6 and 4.12E8±5.9E6 copies mL -1 to 1.32E7±2.6E6 and 2.69E7±7.2E6 copies mL -1 , respectively, within 24h dynamic adsorption equilibrium process (p<0.05). Moreover, according to the Langmuir kinetic model, the greatest adsorption amount (1.56×10 9 CFU E. coil per gram of modified eggshells) could be obtained at neutral pH of 7.5. The optimal adsorption eggshells were then screened to the further application in three typical landfill leachates in Nanjing, eastern China. Significant decrease in species and abundance of pathogenic bacteria and ARGs (tet, sul, erm, qnr, and ampC) indicated its great efficiency to purify landfill leachates. This study demonstrated that sulfate-calcined eggshells can be an environmentally-friendly and highly efficient bioadsorbent to the management of reducing dissemination risk of pathogen and ARGs in landfill leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kaur, Primal; Chow, Vincent; Zhang, Nan; Moxness, Michael; Kaliyaperumal, Arunan; Markus, Richard
2017-01-01
Objective To demonstrate pharmacokinetic (PK) similarity of biosimilar candidate ABP 501 relative to adalimumab reference product from the USA and European Union (EU) and evaluate safety, tolerability and immunogenicity of ABP 501. Methods Randomised, single-blind, single-dose, three-arm, parallel-group study; healthy subjects were randomised to receive ABP 501 (n=67), adalimumab (USA) (n=69) or adalimumab (EU) (n=67) 40 mg subcutaneously. Primary end points were area under the serum concentration-time curve from time 0 extrapolated to infinity (AUCinf) and the maximum observed concentration (Cmax). Secondary end points included safety and immunogenicity. Results AUCinf and Cmax were similar across the three groups. Geometrical mean ratio (GMR) of AUCinf was 1.11 between ABP 501 and adalimumab (USA), and 1.04 between ABP 501 and adalimumab (EU). GMR of Cmax was 1.04 between ABP 501 and adalimumab (USA) and 0.96 between ABP 501 and adalimumab (EU). The 90% CIs for the GMRs of AUCinf and Cmax were within the prespecified standard PK equivalence criteria of 0.80 to 1.25. Treatment-related adverse events were mild to moderate and were reported for 35.8%, 24.6% and 41.8% of subjects in the ABP 501, adalimumab (USA) and adalimumab (EU) groups; incidence of antidrug antibodies (ADAbs) was similar among the study groups. Conclusions Results of this study demonstrated PK similarity of ABP 501 with adalimumab (USA) and adalimumab (EU) after a single 40-mg subcutaneous injection. No new safety signals with ABP 501 were identified. The safety and tolerability of ABP 501 was similar to the reference products, and similar ADAb rates were observed across the three groups. Trial registration number EudraCT number 2012-000785-37; Results. PMID:27466231
Capacitively coupled RF voltage probe having optimized flux linkage
Moore, James A.; Sparks, Dennis O.
1999-02-02
An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.
Staying alive! Sensors used for monitoring cell health in bioreactors.
O'Mara, P; Farrell, A; Bones, J; Twomey, K
2018-01-01
Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.
MAGID-II: a next-generation magnetic unattended ground sensor (UGS)
NASA Astrophysics Data System (ADS)
Walter, Paul A.; Mauriello, Fred; Huber, Philip
2012-06-01
A next generation magnetic sensor is being developed at L-3 Communications, Communication Systems East to enhance the ability of Army and Marine Corps unattended ground sensor (UGS) systems to detect and track targets on the battlefield. This paper describes a magnetic sensor that provides superior detection range for both armed personnel and vehicle targets, at a reduced size, weight, and level of power consumption (SWAP) over currently available magnetic sensors. The design integrates the proven technology of a flux gate magnetometer combined with advanced digital signal processing algorithms to provide the warfighter with a rapidly deployable, extremely low false-alarm-rate sensor. This new sensor improves on currently available magnetic UGS systems by providing not only target detection and direction information, but also a magnetic disturbance readout, indicating the size of the target. The sensor integrates with Government Off-the-Shelf (GOTS) systems such as the United States Army's Battlefield Anti-Intrusion System (BAIS) and the United States Marine Corps Tactical Remote Sensor System (TRSS). The system has undergone testing by the US Marine Corps, as well as extensive company testing. Results from these field tests are given.
Toyama, Shigeru; Tanaka, Yasuhiro; Shirogane, Satoshi; Nakamura, Takashi; Umino, Tokio; Uehara, Ryo; Okamoto, Takuma; Igarashi, Hiroshi
2017-07-31
A sheet-type shear force sensor and a measurement system for the sensor were developed. The sensor has an original structure where a liquid electrolyte is filled in a space composed of two electrode-patterned polymer films and an elastic rubber ring. When a shear force is applied on the surface of the sensor, the two electrode-patterned films mutually move so that the distance between the internal electrodes of the sensor changes, resulting in current increase or decrease between the electrodes. Therefore, the shear force can be calculated by monitoring the current between the electrodes. Moreover, it is possible to measure two-dimensional shear force given that the sensor has multiple electrodes. The diameter and thickness of the sensor head were 10 mm and 0.7 mm, respectively. Additionally, we also developed a measurement system that drives the sensor, corrects the baseline of the raw sensor output, displays data, and stores data as a computer file. Though the raw sensor output was considerably affected by the surrounding temperature, the influence of temperature was drastically decreased by introducing a simple arithmetical calculation. Moreover, the influence of pressure simultaneously decreased after the same calculation process. A demonstrative measurement using the sensor revealed the practical usefulness for on-site monitoring.
Sensor networks in the low lands.
Meratnia, Nirvana; van der Zwaag, Berend Jan; van Dijk, Hylke W; Bijwaard, Dennis J A; Havinga, Paul J M
2010-01-01
This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation.
A Review of Hydrazine Sensors: The State of the Art
NASA Technical Reports Server (NTRS)
Meneghelli, B. J.
2004-01-01
Several types of sensors have been developed over the past few years that quantify the vapor concentrations of the hydrazines. These sensor s are able to detect concentrations as low as 10 parts per billion (ppb) up to several parts per million (ppm). The scope of this review wi ll be focused on those sensors that are most current in the marketpla ce as either leak detectors or personnel monitors. Some technical information on the theory of operations of each hydrazine detector will a lso be included. The review will highlight current operations that utilize hydrazine sensors including the Kennedy Space Center (KSC), the United States Air Force (USAF) at Cape Canaveral Air Station (CCAS), USAF F-16 facilities. The orientation of the review will be towards giving users usable practical information on hydrazine sensors.
Linear air-fuel sensor development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, F.; Miller, C.
1996-12-14
The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changesmore » by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.« less
NASA Technical Reports Server (NTRS)
Dominquez, Jesus; Barile, Ron
2006-01-01
Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H ions or protons; H ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic O2 sensors are commercially available; a gas polarographic O2 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.
Requirements for Coregistration Accuracy in On-Scalp MEG.
Zetter, Rasmus; Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri
2018-06-22
Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.
Sensors for noncontact vibration diagnostics in rotating machinery
NASA Astrophysics Data System (ADS)
Procházka, Pavel
2016-06-01
The paper deals with electromagnetic sensors for noncontact vibration diagnostics in rotating machinery. The sensors were designed for operational measurements in turbomachinery by means of the tip-timing method. The main properties of eddy-current, Hall effect, induction and magnetoresistive sensors are described and compared. Possible arrangements of the experimental systems for static and dynamic calibration of the sensors are suggested and discussed.
Sonic CPT Probing in Support of DNAPL Characterization
2000-11-21
directed at developing advanced sensors for delivery by the cone penetrometer. To accommodate these new sensors , probe sizes have increased (from 1.44-in...capability of the CPT, a sonic vibratory system was integrated with conventional CPT to advance cone penetrometer sensor packages past currently attainable...Sonic, Cone Penetrometer, Site Characterization, Fluorescense, Sensor , Shock Hardened Sensors , Geoprobe• 17. SECURITY CLASSIFICATION OF REPORT
Stearns, Daniel G.; Vernon, Stephen P.; Ceglio, Natale M.; Hawryluk, Andrew M.
1999-01-01
A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.
A Comparison of Two Sensors Used to Measure High-Voltage, Fast-Risetime Signals in Coaxial Cable
NASA Astrophysics Data System (ADS)
Farr, Everett G.; Atchley, Lanney M.; Ellibee, Donald E.; Carey, William J.; Altgilbers, Larry L.
We consider here two sensors that are commonly used to measure high-voltage fast-risetime signals in coaxial cable. One sensor measures the current in the cable, and is called a Current-Viewing Resistor, or CVR. In this design, the cable jacket is cut, a portion of the cable jacket is removed, and a number of resistors are inserted in parallel across the gap, thereby creating a low resistance in series with the outer cable jacket. The voltage across these resistors is proportional to the current in the coax. The second sensor measures the derivative of the voltage in the coax. It is fabricated from a "sawed-off" SMA connector that is inserted through a small hole in the cable jacket. In this paper we characterize the accuracy of both sensors when used with RG-220 cable, and we discuss the situations when one might prefer one measurement type over the other.
Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling
2014-01-01
Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738
Pereira, Elsa Vaz; Figueira, Rita Bacelar; Salta, Maria Manuela Lemos; da Fonseca, Inês Teodora Elias
2009-01-01
This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH)2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established. PMID:22291514
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-05-02
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components.
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-01-01
Image sensors are the core components of computer, communication, and consumer electronic products. Complementary metal oxide semiconductor (CMOS) image sensors have become the mainstay of image-sensing developments, but are prone to leakage current. In this study, we simulate the CMOS image sensor (CIS) film stacking process by finite element analysis. To elucidate the relationship between the leakage current and stack architecture, we compare the simulated and measured leakage currents in the elements. Based on the analysis results, we further improve the performance by optimizing the architecture of the film stacks or changing the thin-film material. The material parameters are then corrected to improve the accuracy of the simulation results. The simulated and experimental results confirm a positive correlation between measured leakage current and stress. This trend is attributed to the structural defects induced by high stress, which generate leakage. Using this relationship, we can change the structure of the thin-film stack to reduce the leakage current and thereby improve the component life and reliability of the CIS components. PMID:28468324
Poitout, V; Moatti-Sirat, D; Reach, G; Zhang, Y; Wilson, G S; Lemonnier, F; Klein, J C
1993-07-01
We have developed a miniaturized glucose sensor which has been shown previously to function adequately when implanted in the subcutaneous tissue of rats and dogs. Following a glucose load, the sensor output increases, making it possible to calculate a sensitivity coefficient to glucose in vivo, and an extrapolated background current in the absence of glucose. These parameters are used for estimating at any time the apparent subcutaneous glucose concentration from the current. In the previous studies, this calibration was performed a posteriori, on the basis of the retrospective analysis of the changes in blood glucose and in the current generated by the sensor. However, for clinical application of the system, an on line estimation of glucose concentration would be necessary. Thus, this study was undertaken in order to assess the possibility of calibrating the sensor in real time, using a novel calibration procedure and a monitoring unit which was specifically designed for this purpose. This electronic device is able to measure, to filter and to store the current. During an oral glucose challenge, when a stable current is reached, it is possible to feed the unit with two different values of blood glucose and their corresponding times. The unit calculates the in vivo parameters, transforms every single value of current into an estimation of the glucose concentration, and then displays this estimation. In this study, 11 sensors were investigated of which two did not respond to glucose. In the other nine trials, the volunteers were asked to record every 30 s what appeared on the display during the secondary decrease in blood glucose.(ABSTRACT TRUNCATED AT 250 WORDS)
Sensor technology workshop: Structure and goals
NASA Technical Reports Server (NTRS)
Wilson, Barbara A.
1991-01-01
The Astrotech 21 charter for the second of three workshops is described. The purpose was to identify technology needs in the areas of electromagnetic radiation sensors, and to recommend a plan to develop the required capabilities that are not currently available. The panels chosen for this workshop focused specifically on those technologies needed for the Astrotech 21 Program including: gamma ray and x ray sensors, ultraviolet and visible sensors, direct infrared sensors, and heterodyne submillimeter wave sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramaswamy, B.; Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu
We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.
A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements
NASA Astrophysics Data System (ADS)
Dennison, Christopher R.; Wild, Peter M.; Wilson, David R.; Cripton, Peter A.
2008-08-01
We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm2, respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics.
Non-Destructive Techniques Based on Eddy Current Testing
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754
Non-destructive techniques based on eddy current testing.
García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto
2011-01-01
Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.
Current profilers and current meters: compass and tilt sensors errors and calibration
NASA Astrophysics Data System (ADS)
Le Menn, M.; Lusven, A.; Bongiovanni, E.; Le Dû, P.; Rouxel, D.; Lucas, S.; Pacaud, L.
2014-08-01
Current profilers and current meters have a magnetic compass and tilt sensors for relating measurements to a terrestrial reference frame. As compasses are sensitive to their magnetic environment, they must be calibrated in the configuration in which they will be used. A calibration platform for magnetic compasses and tilt sensors was built, based on a method developed in 2007, to correct angular errors and guarantee a measurement uncertainty for instruments mounted in mooring cages. As mooring cages can weigh up to 800 kg, it was necessary to find a suitable place to set up this platform, map the magnetic fields in this area and dimension the platform to withstand these loads. It was calibrated using a GPS positioning technique. The platform has a table that can be tilted to calibrate the tilt sensors. The measurement uncertainty of the system was evaluated. Sinusoidal corrections based on the anomalies created by soft and hard magnetic materials were tested, as well as manufacturers’ calibration methods.
NASA Astrophysics Data System (ADS)
Khair, Ummul; Jabbar Lubis, Abdul; Agustha, Indra; Dharmawati; Zulfin, M.
2017-12-01
The current electricity needs is very primary, all objects including electronics require power, it encourages people not to be able to save electricity so the theft of electric power would be done. The use of ACS712 current sensor as the sensor with arduino uno would find out the power consumption continuously and prevent the theft of electricity because of the use of electricity which has been determined by PLN and the people fetl that it is not enough for every house, so the author made a tool for prevention of theft of electric power by using the arduino uno, buzzer, ACS712 current sensor, lcd, and relay then the power usage can be controlled according to the use to prevent the occurrence of theft of electricity so the use can be seen directly on the lcd 16x2and GSM modem to give information to employees of PLN so that it can reduceelectrical theft by the public.
Effect of nano oxide layer on exchange bias and GMR in Mn-Ir-Pt based spin valve
NASA Astrophysics Data System (ADS)
Jeon, D. M.; Lee, J. P.; Lee, D. H.; Yoon, S. Y.; Kim, Y. S.; Suh, S. J.
2004-05-01
We have investigated the effect of nano oxide layers (NOLs), which were fabricated by a plasma oxidation of CoFe layer on the magnetic properties and magneto-resistance (MR) in a Mn-Ir-Pt based spin valve. The adjusted NOL could result in the high MR and the strong exchange coupling field ( Hex). From a high resolution electron microscopy analysis the oxide was about 1 nm. The strong reflectivity at the interface of a free and oxide capping layer should lead to the decrease of an interlayer coupling field, which could possibly improve the Hex.
Multiband guided-mode resonance filter in bilayer asymmetric metallic gratings
NASA Astrophysics Data System (ADS)
Wang, Yanhui; Li, Xiangjun; Lang, Tingting; Jing, Xufeng; Hong, Zhi
2018-07-01
In this paper, a guided-mode resonances (GMRs) based multiband filter in bilayer asymmetric metallic gratings is presented. Four sharp dips are generated in the frequency range of 1.4-2.0 THz, which are induced by the split of two GMR modes (TE0 and TM0) due to the break of the structure's symmetry. This symmetry of the structure depends on the relative position between the upper layer and lower layer gratings. Therefore, by choosing proper lateral displacement, the split of TE0 or/and TM0 modes can be eliminated. Two-, three-, and four- GMRs based polarization insensitive or sensitive filters are demonstrated numerically.
Enhanced In-Pile Instrumentation at the Advanced Test Reactor
NASA Astrophysics Data System (ADS)
Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.
2012-08-01
Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.
Oxygen concentration sensor for an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, T.; Okada, Y.; Mieno, T.
1988-09-29
This patent describes an oxygen concentration sensor, comprising: an oxygen ion conductive solid electrolyte member forming a gas diffusion restricted region into which a measuring gas is introduced; a pair of electrodes sandwiching the solid electrolyte member; pump current supply means applying a pump voltage to the pair of electrodes through a current detection element to generate a pump current; and a heater element connected to the solid electrolyte member for heating the solid electrolyte member for heating the solid electrolyte member when a heater current is supplied from a heater current source; wherein the oxygen concentration sensor detects anmore » oxygen concentration in the measuring gas in terms of a current value of the pump current supplied through the current detection element and controls oxygen concentration in the gas diffusion restricted region by conducting oxygen ions through the solid electrolyte member in accordance to the flow of the pump current; and wherein the current detection element is connected to the electrode of the pair of electrodes facing the gas diffusion restricted region for insuring that the current value is representative of the pump current and possible leakage current from the heater current.« less
Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors.
Bohrer, Forest I; Colesniuc, Corneliu N; Park, Jeongwon; Schuller, Ivan K; Kummel, Andrew C; Trogler, William C
2008-03-26
The use of hydrogen peroxide as a precursor to improvised explosives has made its detection a topic of critical importance. Chemiresistor arrays comprised of 50 nm thick films of metallophthalocyanines (MPcs) are redox selective vapor sensors of hydrogen peroxide. Hydrogen peroxide is shown to decrease currents in cobalt phthalocyanine sensors while it increases currents in nickel, copper, and metal-free phthalocyanine sensors; oxidation and reduction of hydrogen peroxide via catalysis at the phthalocyanine surface are consistent with the pattern of sensor responses. This represents the first example of MPc vapor sensors being oxidized and reduced by the same analyte by varying the metal center. Consequently, differential analysis by redox contrast with catalytic amplification using a small array of sensors may be used to uniquely identify peroxide vapors. Metallophthalocyanine chemiresistors represent an improvement over existing peroxide vapor detection technologies in durability and selectivity in a greatly decreased package size.
Sensor Networks in the Low Lands
Meratnia, Nirvana; van der Zwaag, Berend Jan; van Dijk, Hylke W.; Bijwaard, Dennis J. A.; Havinga, Paul J. M.
2010-01-01
This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation. PMID:22163669
Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto
2016-04-26
A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, ormore » alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.« less
An Optical Fiber Sensor and Its Application in UAVs for Current Measurements
Delgado, Felipe S.; Carvalho, João P.; Coelho, Thiago V. N.; Dos Santos, Alexandre B.
2016-01-01
In this paper, we propose and experimentally investigate an optical sensor based on a novel combination of a long-period fiber grating (LPFG) with a permanent magnet to measure electrical current in unmanned aerial vehicles (UAVs). The proposed device uses a neodymium magnet attached to the grating structure, which suffers from an electromagnetic force produced when the current flows in the wire of the UAV engine. Therefore, it causes deformation on the sensor and thus, different shifts occur in the resonant bands of the transmission spectrum of the LPFG. Finally, the results show that it is possible to monitor electrical current throughout the entire operating range of the UAV engine from 0 A to 10 A in an effective and practical way with good linearity, reliability and response time, which are desirable characteristics in electrical current sensing. PMID:27801798
Morawski, Ireneusz; Voigtländer, Bert
2010-03-01
We present combined noncontact scanning force microscopy and tunneling current images of a platinum(111) surface obtained by means of a 1 MHz quartz needle sensor. The low-frequency circuit of the tunneling current was combined with a high-frequency signal of the quartz resonator enabling full electrical operation of the sensor. The frequency shift and the tunneling current were detected simultaneously, while the feedback control loop of the topography signal was fed using one of them. In both cases, the free signal that was not connected to the feedback loop reveals proportional-integral controller errorlike behavior, which is governed by the time derivative of the topography signal. A procedure is proposed for determining the mechanical oscillation amplitude by utilizing the tunneling current also including the average tip-sample work function.
NASA Technical Reports Server (NTRS)
Buehler, M. G.; Kuhlman, G. M.; Keymeulen, D.; Myung, N.; Kounaves, S. P.
2003-01-01
REDOX and conductivity sensors are metal electrodes that are used to detect ionic species in solution by measuring the electrochemical cell current as the voltage is scanned. This paper describes the construction of the sensors, the potentiostat electronics, the measurement methodology, and applications to water quality measurements.
A Review of Current Neuromorphic Approaches for Vision, Auditory, and Olfactory Sensors
Vanarse, Anup; Osseiran, Adam; Rassau, Alexander
2016-01-01
Conventional vision, auditory, and olfactory sensors generate large volumes of redundant data and as a result tend to consume excessive power. To address these shortcomings, neuromorphic sensors have been developed. These sensors mimic the neuro-biological architecture of sensory organs using aVLSI (analog Very Large Scale Integration) and generate asynchronous spiking output that represents sensing information in ways that are similar to neural signals. This allows for much lower power consumption due to an ability to extract useful sensory information from sparse captured data. The foundation for research in neuromorphic sensors was laid more than two decades ago, but recent developments in understanding of biological sensing and advanced electronics, have stimulated research on sophisticated neuromorphic sensors that provide numerous advantages over conventional sensors. In this paper, we review the current state-of-the-art in neuromorphic implementation of vision, auditory, and olfactory sensors and identify key contributions across these fields. Bringing together these key contributions we suggest a future research direction for further development of the neuromorphic sensing field. PMID:27065784
Willa, Christoph; Schmid, Alexander; Briand, Danick; Yuan, Jiayin; Koziej, Dorota
2017-08-02
We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO 2 sensor. We monitor the direct-current resistance changes as a function of CO 2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO 2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes.
A Circular Microstrip Antenna Sensor for Direction Sensitive Strain Evaluation.
Lopato, Przemyslaw; Herbko, Michal
2018-01-20
In this paper, a circular microstrip antenna for stress evaluation is studied. This kind of microstrip sensor can be utilized in structural health monitoring systems. Reflection coefficient S 11 is measured to determine deformation/strain value. The proposed sensor is adhesively connected to the studied sample. Applied strain causes a change in patch geometry and influences current distribution both in patch and ground plane. Changing the current flow in patch influences the value of resonant frequency. In this paper, two different resonant frequencies were analysed because in each case, different current distributions in patch were obtained. The sensor was designed for operating frequency of 2.5 GHz (at fundamental mode), which results in a diameter less than 55 mm. Obtained sensitivity was up to 1 MHz/100 MPa, resolution depends on utilized vector network analyser. Moreover, the directional characteristics for both resonant frequencies were defined, studied using numerical model and verified by measurements. Thus far, microstrip antennas have been used in deformation measurement only if the direction of external force was well known. Obtained directional characteristics of the sensor allow the determination of direction and value of stress by one sensor. This method of measurement can be an alternative to the rosette strain gauge.
A survey of current solid state star tracker technology
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Staley, D. A.
1985-12-01
This paper is a survey of the current state of the art in design of star trackers for spacecraft attitude determination systems. Specific areas discussed are sensor technology, including the current state-of-the-art solid state sensors and techniques of mounting and cooling the sensor, analog image preprocessing electronics performance, and digital processing hardware and software. Three examples of area array solid state star tracker development are presented - ASTROS, developed by the Jet Propulsion Laboratory, the Retroreflector Field Tracker (RFT) by Ball Aerospace, and TRW's MADAN. Finally, a discussion of solid state line arrays explores the possibilities for one-dimensional imagers which offer simplified scan control electronics.
Estimating pixel variances in the scenes of staring sensors
Simonson, Katherine M [Cedar Crest, NM; Ma, Tian J [Albuquerque, NM
2012-01-24
A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene between the current image frame and the reference image frame.
Review on the Traction System Sensor Technology of a Rail Transit Train.
Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong
2017-06-11
The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed.
Review on the Traction System Sensor Technology of a Rail Transit Train
Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong
2017-01-01
The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed. PMID:28604615
Clinical potential of implantable wireless sensors for orthopedic treatments.
Karipott, Salil Sidharthan; Nelson, Bradley D; Guldberg, Robert E; Ong, Keat Ghee
2018-04-01
Implantable wireless sensors have been used for real-time monitoring of chemicals and physical conditions of bones, tendons and muscles to diagnose and study orthopedic diseases and injuries. Due to the importance of these sensors in orthopedic care, a critical review, which not only analyzes the underlying technologies but also their clinical implementations and challenges, will provide a landscape view on their current state and their future clinical role. Areas covered: By conducting an extensive literature search and following the leaders of orthopedic implantable wireless sensors, this review covers the battery-powered and battery-free wireless implantable sensor technologies, and describes their implementation for hips, knees, spine, and shoulder stress/strain monitoring. Their advantages, limitations, and clinical challenges are also described. Expert commentary: Currently, implantable wireless sensors are mostly limited for scientific investigations and demonstrative experiments. Although rapid advancement in sensors and wireless technologies will push the reliability and practicality of these sensors for clinical realization, regulatory constraints and financial viability in medical device industry may curtail their continuous adoption for clinical orthopedic applications. In the next five years, these sensors are expected to gain increased interest from researchers, but wide clinical adoption is still unlikely.
Microwave Sensors for Breast Cancer Detection
2018-01-01
Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript. PMID:29473867
Development of Magneto-Resistive Angular Position Sensors for Space Applications
NASA Astrophysics Data System (ADS)
Hahn, Robert; Langendorf, Sven; Seifart, Klaus; Slatter, Rolf; Olberts, Bastian; Romera, Fernando
2015-09-01
Magnetic microsystems in the form of magneto- resistive (MR) sensors are firmly established in automobiles and industrial applications. They measure path, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In a recent assessment study performed by HTS GmbH and Sensitec GmbH under ESA Contract a market survey has confirmed that space industry has a very high interest in novel, contactless position sensors based on MR technology. Now, a detailed development stage is pursued, to advance the sensor design up to Engineering Qualification Model (EQM) level and to perform qualification testing for a representative pilot space application.The paper briefly reviews the basics of magneto- resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The results of the assessment study are presented and potential applications and uses of contactless magneto-resistive angular sensors for spacecraft are identified. The baseline mechanical and electrical sensor design will be discussed. An outlook on the EQM development and qualification tests is provided.
Microwave Sensors for Breast Cancer Detection.
Wang, Lulu
2018-02-23
Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
2016-11-29
travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents
2016-11-29
travel time between the seafloor and the sea surface; bottom pressure and temperature; and near-bottom horizontal currents hourly for up to 5 years...pressure and current sensors (CPIESs). CPIESs (Figure 1) are moored instruments that measure (1) the round-trip acoustic travel time between the...measurements of surface-to-bottom round-trip acoustic- travel time (’c), bottom pressure and temperature, and near-bottom horizontal currents
Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo
2012-08-01
Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.
Advanced sensor-simulation capability
NASA Astrophysics Data System (ADS)
Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.
1990-09-01
This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.
NASA Astrophysics Data System (ADS)
Viecco, Camilo H.; Camp, L. Jean
Effective defense against Internet threats requires data on global real time network status. Internet sensor networks provide such real time network data. However, an organization that participates in a sensor network risks providing a covert channel to attackers if that organization’s sensor can be identified. While there is benefit for every party when any individual participates in such sensor deployments, there are perverse incentives against individual participation. As a result, Internet sensor networks currently provide limited data. Ensuring anonymity of individual sensors can decrease the risk of participating in a sensor network without limiting data provision.
Mountable eddy current sensor for in-situ remote detection of surface and sub-surface fatigue cracks
Yepez, III, Esteban; Roach, Dennis P [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; DeLong, Waylon A [Albuquerque, NM
2011-09-06
A wireless, integrated, mountable, portable, battery-operated, non-contact eddy current sensor that provides similar accuracy to 1970's laboratory scale equipment (e.g., a Hewlett-Packard GP4194A Impedance Analyzer) at a fraction of the size and cost.
Cooperative implementation of a high temperature acoustic sensor
NASA Technical Reports Server (NTRS)
Baldini, S. E.; Nowakowski, Edward; Smith, Herbert G.; Friebele, E. J.; Putnam, Martin A.; Rogowski, Robert; Melvin, Leland D.; Claus, Richard O.; Tran, Tuan; Holben, Milford S., Jr.
1991-01-01
The current status and results of a cooperative program aimed at the implementation of a high-temperature acoustic/strain sensor onto metallic structures are reported. The sensor systems that are to be implemented under this program will measure thermal expansion, maneuver loads, aircraft buffet, sonic fatigue, and acoustic emissions in environments that approach 1800 F. The discussion covers fiber development, fabrication of an extrinsic Fabry-Perot interferometer acoustic sensor, sensor mounting/integration, and results of an evaluation of the sensor capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Maksudul M.; Sampathkumaran, Uma
The present invention relates to a modular chemiresistive sensor. In particular, a modular chemiresistive sensor for hypergolic fuel and oxidizer leak detection, carbon dioxide monitoring and detection of disease biomarkers. The sensor preferably has two gold or platinum electrodes mounted on a silicon substrate where the electrodes are connected to a power source and are separated by a gap of 0.5 to 4.0 .mu.M. A polymer nanowire or carbon nanotube spans the gap between the electrodes and connects the electrodes electrically. The electrodes are further connected to a circuit board having a processor and data storage, where the processor canmore » measure current and voltage values between the electrodes and compare the current and voltage values with current and voltage values stored in the data storage and assigned to particular concentrations of a pre-determined substance such as those listed above or a variety of other substances.« less
Capaciflector-guided mechanisms
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1996-01-01
A plurality of capaciflector proximity sensors, one or more of which may be overlaid on each other, and at least one shield are mounted on a device guided by a robot so as to see a designated surface, hole or raised portion of an object, for example, in three dimensions. Individual current-measuring voltage follower circuits interface the sensors and shield to a common AC signal source. As the device approaches the object, the sensors respond by a change in the currents therethrough. The currents are detected by the respective current-measuring voltage follower circuits with the outputs thereof being fed to a robot controller. The device is caused to move under robot control in a predetermined pattern over the object while directly referencing each other without any offsets, whereupon by a process of minimization of the sensed currents, the device is dithered or wiggled into position for a soft touchdown or contact without any prior contact with the object.
Lightning Tests on the WC-130 Research Aircraft.
1982-12-01
in the WC-136 tests at various times.) E- Feild Fiber Optic Test Article Sensor Transmitter (Typ)WiePr Indtuced Voltag Sensor"" *Fiber I"=Current optic...well-characterized. 5.1 Skin Current Measurements Skin current vectors were measured at five fuselage locations on the left side of the WC-130 at a...MGL-S7) which were mounted so that they sampled two orthogonal components of the skin current vector . The measured responses were then inte- grated
Proposed biomimetic molecular sensor array for astrobiology applications
NASA Astrophysics Data System (ADS)
Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.
2001-08-01
A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambley, Michael R.; Haves, Philip; McDonald, Sean C.
2005-04-13
Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The othermore » four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.« less
NASA Technical Reports Server (NTRS)
Tang, Dingding; Rose, A. H.; Day, G. W.; Etzel, Shelley M.
1991-01-01
Annealing procedures that greatly reduce linear birefringence in single-mode fiber coils are described. These procedures have been successfully applied to coils ranging from 5 mm to 10 cm in diameter and up to 200 or more turns. They involve temperature cycles that last 3-4 days and reach maximum temperatures of about 850 C. The residual birefringence and induced loss are minimized by proper selection of fiber. The primary application of these coils is optical fiber current sensors, where they yield small sensors that are more stable than those achieved by other techniques. A current sensor with a temperature stability of 8.4 x 10 to the -5th/K over the range from -75 to 145 C has been demonstrated. This is approximately 20 percent greater than the temperature dependence of the Verdet constant. Packaging degrades the stability, but a packaged sensor coil with a temperature stability of about 1.6 + 10 to the -4th/K over the range from -20 to 120 C has also been demonstrated.
Degtiarenko, Pavel V [Williamsburg, VA; Popov, Vladimir E [Newport News, VA
2011-03-22
A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.
Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y
2014-01-31
Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.
A CMOS smart temperature and humidity sensor with combined readout.
Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas
2014-09-16
A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.
Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2013-01-01
A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.
2017-01-01
We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO2 sensor. We monitor the direct-current resistance changes as a function of CO2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes. PMID:28726384
Modeling of Current Consumption in 802.15.4/ZigBee Sensor Motes
Casilari, Eduardo; Cano-García, Jose M.; Campos-Garrido, Gonzalo
2010-01-01
Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data. PMID:22219671
Modeling of current consumption in 802.15.4/ZigBee sensor motes.
Casilari, Eduardo; Cano-García, Jose M; Campos-Garrido, Gonzalo
2010-01-01
Battery consumption is a key aspect in the performance of wireless sensor networks. One of the most promising technologies for this type of networks is 802.15.4/ZigBee. This paper presents an empirical characterization of battery consumption in commercial 802.15.4/ZigBee motes. This characterization is based on the measurement of the current that is drained from the power source under different 802.15.4 communication operations. The measurements permit the definition of an analytical model to predict the maximum, minimum and mean expected battery lifetime of a sensor networking application as a function of the sensor duty cycle and the size of the sensed data.
Expanding the functionality and applications of nanopore sensors
NASA Astrophysics Data System (ADS)
Venta, Kimberly E.
Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic nanopores, which previously could not be reliably measured. Current nanopore sensor resolution levels have facilitated innovative research on nanoscale systems, including studies of DNA and nanoparticle characterization. Further nanopore system improvements will enable vastly improved DNA sequencing capabilities and open the door to additional nanopore sensing applications.
Eide, Ingvar; Westad, Frank
2018-01-01
A pilot study demonstrating real-time environmental monitoring with automated multivariate analysis of multi-sensor data submitted online has been performed at the cabled LoVe Ocean Observatory located at 258 m depth 20 km off the coast of Lofoten-Vesterålen, Norway. The major purpose was efficient monitoring of many variables simultaneously and early detection of changes and time-trends in the overall response pattern before changes were evident in individual variables. The pilot study was performed with 12 sensors from May 16 to August 31, 2015. The sensors provided data for chlorophyll, turbidity, conductivity, temperature (three sensors), salinity (calculated from temperature and conductivity), biomass at three different depth intervals (5-50, 50-120, 120-250 m), and current speed measured in two directions (east and north) using two sensors covering different depths with overlap. A total of 88 variables were monitored, 78 from the two current speed sensors. The time-resolution varied, thus the data had to be aligned to a common time resolution. After alignment, the data were interpreted using principal component analysis (PCA). Initially, a calibration model was established using data from May 16 to July 31. The data on current speed from two sensors were subject to two separate PCA models and the score vectors from these two models were combined with the other 10 variables in a multi-block PCA model. The observations from August were projected on the calibration model consecutively one at a time and the result was visualized in a score plot. Automated PCA of multi-sensor data submitted online is illustrated with an attached time-lapse video covering the relative short time period used in the pilot study. Methods for statistical validation, and warning and alarm limits are described. Redundant sensors enable sensor diagnostics and quality assurance. In a future perspective, the concept may be used in integrated environmental monitoring.
Microoptomechanical sensor for intracranial pressure monitoring
NASA Astrophysics Data System (ADS)
Andreeva, A. V.; Luchinin, V. V.; Lutetskiy, N. A.; Sergushichev, A. N.
2014-12-01
The main idea of this research is the development of microoptomechanical sensor for intracranial pressure monitoring. Currently, the authors studied the scientific and technical knowledge in this field, as well as develop and test a prototype of microoptomechanical sensor for intracranial pressure (ICP) monitoring.
Highlights from the Air Sensors 2014 Workshop
In June 2014, the U.S. Environmental Protection Agency (EPA) hosted its fourth next-generation air monitoring workshop to discuss the current state of the science in air sensor technologies and their applications for environmental monitoring, Air Sensors 2014: A New Frontier. Th...
Berger, Dietrich; Lanza, Gisela
2017-12-21
This publication presents the realisation of a sensor concept, which is based on eddy current testing, to detect textile defects during preforming of semi-finished carbon fibre parts. The presented system has the potential for 100% control of manufactured carbon fibre based components, allowing the immediate exclusion of defective parts from further process steps. The core innovation of this system is given by the high degree of process integration, which has not been implemented in the state of the art. The publication presents the functional principle of the sensor that is based on half-transmission probes as well as the signals that can be gained by its application. Furthermore, a method to determine the optimum sensor resolution is presented as well as the sensor housing and its integration in the preforming process.
A Fiber-Optic Aircraft Lightning Current Measurement Sensor
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2013-01-01
A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.
Detailed studies of full-size ATLAS12 sensors
NASA Astrophysics Data System (ADS)
Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.
2016-09-01
The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.
Recent developments of genetically encoded optical sensors for cell biology.
Bolbat, Andrey; Schultz, Carsten
2017-01-01
Optical sensors are powerful tools for live cell research as they permit to follow the location, concentration changes or activities of key cellular players such as lipids, ions and enzymes. Most of the current sensor probes are based on fluorescence which provides great spatial and temporal precision provided that high-end microscopy is used and that the timescale of the event of interest fits the response time of the sensor. Many of the sensors developed in the past 20 years are genetically encoded. There is a diversity of designs leading to simple or sometimes complicated applications for the use in live cells. Genetically encoded sensors began to emerge after the discovery of fluorescent proteins, engineering of their improved optical properties and the manipulation of their structure through application of circular permutation. In this review, we will describe a variety of genetically encoded biosensor concepts, including those for intensiometric and ratiometric sensors based on single fluorescent proteins, Forster resonance energy transfer-based sensors, sensors utilising bioluminescence, sensors using self-labelling SNAP- and CLIP-tags, and finally tetracysteine-based sensors. We focus on the newer developments and discuss the current approaches and techniques for design and application. This will demonstrate the power of using optical sensors in cell biology and will help opening the field to more systematic applications in the future. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Jha, Maya Nand; Levy, Jason; Gao, Yang
2008-01-01
Reducing the risk of oil spill disasters is essential for protecting the environment and reducing economic losses. Oil spill surveillance constitutes an important component of oil spill disaster management. Advances in remote sensing technologies can help to identify parties potentially responsible for pollution and to identify minor spills before they cause widespread damage. Due to the large number of sensors currently available for oil spill surveillance, there is a need for a comprehensive overview and comparison of existing sensors. Specifically, this paper examines the characteristics and applications of different sensors. A better understanding of the strengths and weaknesses of oil spill surveillance sensors will improve the operational use of these sensors for oil spill response and contingency planning. Laser fluorosensors were found to be the best available sensor for oil spill detection since they not only detect and classify oil on all surfaces but also operate in either the day or night. For example, the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) sensor was identified to be a valuable tool for oil spill surveillance. However, no single sensor was able to provide all information required for oil spill contingency planning. Hence, combinations of sensors are currently used for oil spill surveillance. Specifically, satellite sensors are used for preliminary oil spill assessment while airborne sensors are used for detailed oil spill analysis. While satellite remote sensing is not suitable for tactical oil spill planning it can provide a synoptic coverage of the affected area. PMID:27879706
Eddy Current Sensing of Torque in Rotating Shafts
NASA Astrophysics Data System (ADS)
Varonis, Orestes J.; Ida, Nathan
2013-12-01
The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.
Integrated Joule switches for the control of current dynamics in parallel superconducting strips
NASA Astrophysics Data System (ADS)
Casaburi, A.; Heath, R. M.; Cristiano, R.; Ejrnaes, M.; Zen, N.; Ohkubo, M.; Hadfield, R. H.
2018-06-01
Understanding and harnessing the physics of the dynamic current distribution in parallel superconducting strips holds the key to creating next generation sensors for single molecule and single photon detection. Non-uniformity in the current distribution in parallel superconducting strips leads to low detection efficiency and unstable operation, preventing the scale up to large area sensors. Recent studies indicate that non-uniform current distributions occurring in parallel strips can be understood and modeled in the framework of the generalized London model. Here we build on this important physical insight, investigating an innovative design with integrated superconducting-to-resistive Joule switches to break the superconducting loops between the strips and thus control the current dynamics. Employing precision low temperature nano-optical techniques, we map the uniformity of the current distribution before- and after the resistive strip switching event, confirming the effectiveness of our design. These results provide important insights for the development of next generation large area superconducting strip-based sensors.
Review on State-of-the-art in Polymer Based pH Sensors
Korostynska, Olga; Arshak, Khalil; Gill, Edric; Arshak, Arousian
2007-01-01
This paper reviews current state-of-the-art methods of measuring pH levels that are based on polymer materials. These include polymer-coated fibre optic sensors, devices with electrodes modified with pH-sensitive polymers, fluorescent pH indicators, potentiometric pH sensors as well as sensors that use combinatory approach for ion concentration monitoring. PMID:28903277
NASA Astrophysics Data System (ADS)
Jahangiri, Mojtaba; Yousefiazari, Ehsan; Ghalamboran, Milad
2017-12-01
Pressure sensor is one of the most commonly used sensors in the research laboratories and industries. These are generally categorized in three different classes of absolute pressure sensors, gauge pressure sensors, and differential pressure sensors. In this paper, we fabricate and assess the pressure sensitivity of the current vs. voltage diagrams in a graphite/ZnO/graphite structure. Zinc oxide layers are deposited on highly oriented pyrolytic graphite (HOPG) substrates by sputtering a zinc target under oxygen plasma. The top electrode is also a slice of HOPG which is placed on the ZnO layer and connected to the outside electronic circuits. By recording the I-V characteristics of the device under different forces applied to the top HOPG electrode, the pressure sensitivity is demonstrated; at the optimum biasing voltage, the device current changes 10 times upon changing the pressure level on the top electrode by 20 times. Repeatability and reproducibility of the observed effect is studied on the same and different samples. All the materials used for the fabrication of this pressure sensor are biocompatible, the fabricated device is anticipated to find potential applications in biomedical engineering.
Macro-spin modeling and experimental study of spin-orbit torque biased magnetic sensors
NASA Astrophysics Data System (ADS)
Xu, Yanjun; Yang, Yumeng; Luo, Ziyan; Xu, Baoxi; Wu, Yihong
2017-11-01
We reported a systematic study of spin-orbit torque biased magnetic sensors based on NiFe/Pt bilayers through both macro-spin modeling and experiments. The simulation results show that it is possible to achieve a linear sensor with a dynamic range of 0.1-10 Oe, power consumption of 1 μW-1mW, and sensitivity of 0.1-0.5 Ω/Oe. These characteristics can be controlled by varying the sensor dimension and current density in the Pt layer. The latter is in the range of 1 × 105-107 A/cm2. Experimental results of fabricated sensors with selected sizes agree well with the simulation results. For a Wheatstone bridge sensor comprising of four sensing elements, a sensitivity up to 0.548 Ω/Oe, linearity error below 6%, and detectivity of about 2.8 nT/√Hz were obtained. The simple structure and ultrathin thickness greatly facilitate the integration of these sensors for on-chip applications. As a proof-of-concept experiment, we demonstrate its application in detection of current flowing in an on-chip Cu wire.
Biological and chemical sensors based on graphene materials.
Liu, Yuxin; Dong, Xiaochen; Chen, Peng
2012-03-21
Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).
Study of Integrated USV/UUV Observation System Performance in Monterey Bay
2017-09-01
5 IV. EXPERIMENTAL SETUP... quasi -stationary at depth in low-current environments. This thesis evaluates the performance of deep sensors in determining behavior of a moving source...acoustic sensors that would be quasi -stationary receivers when in drift mode at depth in low current environments. One key advantage to this technique is
Eddy current sensor concepts for the Bridgman growth of semiconductors
NASA Astrophysics Data System (ADS)
Dharmasena, Kumar P.; Wadley, Haydn N. G.
1997-03-01
Electromagnetic finite element methods have been used to identify eddy current sensor designs for monitoring CdTe vertical Bridgman crystal growth. A model system consisting of pairs of silicon cylinders with electrical conductivities similar to those of solid and liquid CdTe has been used to evaluate the multifrequency response of several sensors designed for locating and characterizing the curvature of liquid-solid interfaces during vertical Bridgman growth. At intermediate frequencies (100-800 kHz), the sensor's imaginary impedance monotonically increases as interfacial curvature changes from concave to convex or the interface location moves upwards through the sensor. The experimental data are in excellent agreement with theoretical predictions. At higher test frequencies (˜ 5 MHz), the test circuit's parasitics contribute to the sensor's response. Even so, the predicted trends with interface location/curvature were found to be still preserved, and the experiments confirm that the sensor's high frequency response depends more on interface location and has only a small sensitivity to curvature. Multifrequency data obtained from these types of sensors have the potential to separately discriminate the location and the shape of liquid-solid interfaces during the vertical Bridgman growth of CdTe and other semiconductor materials of higher electrical conductivity.
Superconducting magnetic sensors for mine detection and classification
NASA Astrophysics Data System (ADS)
Clem, Ted R.; Koch, Roger H.; Keefe, George A.
1995-06-01
Sensors incorporating Superconducting Quantum Interference Devices (SQUIDs) provide the greatest sensitivity for magnetic anomaly detection available with current technology. During the 1980's, the Naval Surface Warfare Center Coastal Systems Station (CSS) developed a superconducting magnetic sensor capable of operation outside of the laboratory environment. This sensor demonstrated rugged, reliable performance even onboard undersea towed platforms. With this sensor, the CSS was able to demonstrate buried mine detection for the US Navy. Subsequently the sensor was incorporated into a multisensor suite onboard an underwater towed vehicle to provide a robust mine hunting capability for the Magnetic and Acoustic Detection of Mines (MADOM) project. This sensor technology utilized niobium superconducting componentry cooled by liquid helium to temperatures on the order of 4 degrees Kelvin (K). In the late 1980's a new class of superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen (77K). This advance has opened up new opportunities, especially for mine reconnaissance and hunting from small unmanned underwater vehicles (UUVs). This paper describes the magnetic sensor detection and classification concept developed for MADOM. In addition, opportunities for UUV operations made possible with high Tc technology and the Navy's current efforts in this area will be addressed.
Establishing imaging sensor specifications for digital still cameras
NASA Astrophysics Data System (ADS)
Kriss, Michael A.
2007-02-01
Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.
A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun
2012-03-01
A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ~1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.
A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures.
Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun
2012-04-21
A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ∼1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.
Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.
Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo
2016-04-26
Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).